
Programmer Information Needs after
Memory Failure

Chris Parnin
Georgia Institute of Technology

Atlanta, Georgia USA
chris.parnin@gatech.edu

Spencer Rugaber
Georgia Institute of Technology

Atlanta, Georgia USA
spencer@cc.gatech.edu

Abstract—Despite its vast capacity and associative powers, the
human brain does not deal well with interruptions. Particularly
in situations where information density is high, such as during a
programming task, recovering from an interruption requires ex-
tensive time and effort. Although modern program development
environments have begun to recognize this problem, none of these
tools take into account the brain’s structure and limitations. In
this paper, we present a conceptual framework for understanding
the strengths and weaknesses of human memory, particularly
with respect to it ability to deal with work interruptions. The
framework explains empirical results obtained from experiments
in which programmers were interrupted while working. Based
on the framework, we discuss programmer information needs
that development tools must satisfy and suggest several memory
aids such tools could provide. We also describe our prototype
implementation of these memory aids.

I. INTRODUCTION

Despite human memory‘s remarkable abilities, memory
limitations inhibit programmer productivity. In particular, work
interruption devastates memory and makes tasks take twice as
long to perform and have twice as many errors [1]. Unfortu-
nately, such interruptions are common—developers rarely are
able to program in long continuous sessions [2]. Instead, a
developer’s day is fragmented into many short sessions (15-
30 minutes) interspersed with occasional longer ones (1-2
hours). Further, at the start of each of the longer sessions, a
programmer often spends a significant amount of time (15-30
minutes) recovering before resuming coding.

Yet, almost no current programming tool is built based on
a modern understanding of the strengths and weaknesses of
human memory. Current software development environments
and their accompanying tools are based on tool design frame-
works decades old, founded on psychology research that is
even older. As one of the authors of a prominent framework
recently stated, “These models are being used long-past their
shelf-life” [3].

The overall thesis of our research is that programmer
recovery from interruption can be improved by making use
of tools specifically designed to address the limitations of
human memory. To validate this thesis, we must demonstrate
the effects of interruption on a programmer and casually
relate them to limitations of human memory, i.e., explain
programmer performance problems in terms of memory limi-
tations. Further, we need to devise strategies for overcoming

these memory limitations and contextualize them in terms of
programmer information needs.

In this paper, we describe programmer information needs
in terms of the cognitive neuroscience of human memory.
In so doing, we abstract out key concepts and principles of
human memory from modern neuroscience literature. Finally,
we describe how these information needs can be realized
with new tools and relate them to shortcomings in existing
programming tools.

II. THE COGNITIVE NEUROSCIENCE OF MEMORY

Memory is both fragile and resilient. Why do we seem
unable to remember the simplest of things like a phone number
for more than a few moments but are able to recite the gist
of conversations or complicated movie plots in vivid detail
many years later? Previously, we provided a general review of
the psychological and cognitive neuroscience research on the
brain and memory [4]. In the current paper, we synthesize our
findings in terms of five different types of human memory that
are heavily used during programming. Our categories, derived
Fuster’s [5] and Morris and Frey’s [6] accounts of memory,
are the following: prospective, attentive, associative, episodic,
and conceptual (summarized in Figure 1).

PROSPECTIVE MEMORY

Prospective memory holds reminders to perform future
actions in specific circumstances (e.g., to buy milk on the way
home from work) [7]. Prospective memory is located in the
anterior prefrontal cortex (lateral Brodmann area 10) of the
brain and is supported by memory processes distinct from
those supporting other types of memory [8]. When forming
a prospective memory, both an intended action and a retrieval
cue are stored. Subsequently, perceptual processes monitor
the environment for the cue, retrieve the memory, and bring
cognitive attention to the intended action.

Given the complexity of the process for storing into and
recalling from prospective memory, naturally there are several
points of failure [9]: When an intention is held in prospective
memory, a monitoring process continually scans for the condi-
tions for acting upon the intention. These monitoring processes
compete with other cognitive resources, leaving prospective
memory susceptible to monitor failure, failure to act on an
applicable intention. When a condition is realized, prompting

978-1-4673-1214-1/12/$31.00 c© 2012 IEEE ICPC 2012, Passau, Germany123

processes must also compete against active goals in order
for the intention to receive conscious attention. Therefore,
prospective memory is also susceptible to engage failure, a
failure to acquire conscious attention.

ATTENTIVE MEMORY

Attentive memory holds conscious memories that can be
freely attended to. Within it, goals, plans, and task-relevant
items can be sustained for substantial periods of time. At-
tentive memory is found in the ventrolateral and dorsolateral
prefrontal cortex (PFC) (Brodmann areas 8, 9, 44, 45, 46, and
lateral 47), a region situated in the most anterior (forehead)
portion of the brain’s frontal lobe. Attentive memory has two
complementary operations: focusing and filtering.

Attentive memory is highly volatile and prone to frequent
failures. When a programmer is actively engaged in a pro-
gramming task, attentive memory allows a programmer to
maintain focus on particular programming elements or goals
that are relevant to a programming task. Although residuals of
previously attended items can be found after switching atten-
tion [10], task switches often result in concentration failure,
a failure to maintain focus on an item. Attentive memory can
only provide reliable focus on a few consciously accessible
items at a time. Constraints imposed by phase coherence and
modality separation frequently induce limit failure, a failure to
hold the required number of items. Moreover, interruption is
very likely to disrupt a programmer’s maintenance of attended
items, such as a programming location being edited.

HIPPOCAMPAL NETWORK

The next two types of memory make use of the same
pathway of the brain, called the hippocampal network. The
hippocampal network is responsible for many specialized
memory activities such as remembering item familiarity, spa-
tial location, temporal order, contextual details, and general as-
sociations. The hippocampal network includes the hippocam-
pus, parahippocampus, and entorhinal cortex.

The hippocampus network is used by two main memory
components: associative memory and episodic memory. When
a stimulus reaches the hippocampus, several stages of pro-
cessing and memory formation occur. In the earliest stage,
the hippocampus determines the familiarity of the stimulus
and, if deemed interesting enough, reinforces pathways that
form basic associations. In later stages, events are formed into
experiences, higher-level episodic formations, by integrating
with information held in the prefrontal cortex.

ASSOCIATIVE MEMORY

Associative memory holds a set of non-conscious links
between manifestations of co-occurring stimuli. Associative
memory is located within the limbic system, in the perforant
pathway of the hippocampus. Associative memories are essen-
tial for the “automatic recording of attended experience” [6].
The reason why the brain evolved the ability to record such ac-
tivity is that many important events cannot be anticipated and

do not recur, and therefore traces and features of experiences
must be recorded in real-time.

Despite the raw power of associative memory, it has several
weaknesses. When an associative memory is born in the
hippocampus, it is still fragile, and its expected lifetime is
only a few hours. Formation of an association is determined by
uncontrollable factors such as uniqueness, novelty, or interest.
For example, in brain imaging studies of subjects memorizing
words, the experimenters could predict which words would
be forgotten based on their activation strength in associative
memory [11]; that is, forgotten words did not produce a strong
enough response to engage associative memory during the
memorization period. In such cases, the result is a retention
failure. To combat this failure, people often form intentional
associative memories though internal speech (activation of
speech motor systems and speech comprehension [12]), which
is nearly equivalent to hearing ourselves speak aloud and may
subsequently excite auto-associative mechanisms [13].

Other times, an associative memory is formed, but with
weak or missing associations. For example, it is common
to associate with the visual features of an item, but fail to
associate with other attributes such as its name, limiting our
ability to recall it. This phenomenon is evident when someone
says, “I’ll recognize it when I see it”. As a result, association
failure, a failure to form complete or strong associations,
frequently occur.

Motor

Perceptions

Perceptual
Abstractions

Executive
Abstractions

Attentive
Memory

Prospective
Memory

Episodic
Memory Associative

Memory

Conceputal
Memory

Fig. 1: Memory types in sagittal view of brain.

EPISODIC MEMORY

Tulving, an influential memory researcher, describes
episodic memory as the recollection of past events [14].
Whereas associative memory provides the facility for soaking
up raw experiences, episodic memory involves a much more
complex network of memory processes. Located in the entorhi-
nal cortex (Brodmann areas 28 and 34), episodic memories
involve highly processed input from every sensory modality,
as well as input relating to ongoing cognitive processes.

124

Additionally, as the brain develops over time, the ability to
learn and anticipate complex forms of episodic structures
enables more concise representations of experiences to be
retained [15].

In order to form episodic memories cognitive resources are
required, and when those resources are otherwise engaged
(on a hard programming task, for example), memory failure
can occur. For example, episodic memory requires processes
in the lateral prefrontal cortex for maintaining information
about recency and ordering about events retained in the
hippocampus [16]. As a result, when learning new experiences
it is common to incur a recollection failure, a failure to
recall a sequence of events in a complete and orderly fashion.
However, research has shown that episodic cues can assist
in improving episodic memory, even in memory-impaired
patients [17].

Episodic memory is not as fully automatic as the spatio-
temporal and perpetual components of associative memory
can be easily disrupted [18]. For example, a person may
remember the experience of hearing sentences being read
aloud; but forget details such as whether the voice was male
or female or the specific order of the sentences. Therefore,
experiences requiring heavy cognitive load are susceptible to
source failure, a failure to recall contextual details associated
with an experience.

CONCEPTUAL MEMORY

How does the brain remember objects such as a hammer and
concepts such as tool? The brain first learns basic features
of encountered stimuli such as the wood grains and metal
curves of a hammer and then organizes those features into
progressively higher levels of abstraction. In this way, con-
ceptual memory is best understood as a continuum between
perceptions and abstractions.

In Fuster’s account of the brain [5], the continuum of
conceptual memory is ingrained in the physical organization of
the brain. Fuster divides the brain into two major components:
the perceptual region and the executive region. Within the
perceptual region, starting in the most posterior (rear) region
of the brain, banks of highly tuned neurons fire in response to
basic perceptions, such as color or lines. Continuing forward,
more complex perceptions such as orientation or movement are
processed. Eventually, perceptions such as a bouncing sphere
give way to concepts such as a ball and so on.

The executive region exhibits the same pattern of abstrac-
tions as its perceptual counterpart. It contains abstractions
over action: acts, plans, programs, and goals. Starting in the
premotor area, with responsibility for planning basic actions
such as phyletic motor movements, the level of abstraction
increases as one moves onward, ending at the most frontal
regions of the brain containing the most abstract concepts such
as goals.

A process called repetition suppression enables the brain
to retain memory of previously seen perceptions by slowing
the firing rate of the neurons related to those perceptions.

This effect can last for days as perceptions become more
abstract. Repetition suppression causes certain perceptions to
be primed. Priming occurs when suppression of certain brain
areas short-circuit the processing of information, allowing the
response to become more probable.

There are several failures possible when remembering per-
ceptions. As a result of priming perceptions and abstractions in
conceptual memory, associative and attentive memory become
more effective over time in successfully forming associations
and increasing focusing capability. However, perceptions must
be continually refreshed due to the short duration of repetition
suppression. Further, this information is exceedingly low-level
and non-conscious. To recall a forgotten perception, one would
have to rely on residual effects such as priming, which is
error-prone and involuntary. In general, the state of unprimed
memory results in activation failure, an inefficient state of
conceptual memory. Interruption may reduce the effect of
priming of concepts needed for a programming task, requiring
that the programmer refresh his/her memory.

There are also weaknesses possible when remembering
abstractions. One weakness is that several exposures may
be required before an abstraction can be formed. That is, a
person may not be able to incorporate an abstraction directly
into the processing and remembering of instances of that
abstraction until after systematic consolidation has situated
that abstraction in the processing pathway. Because the for-
mation of abstractions in conceptual memory rely on systemic
consolidation, it is common to experience formation failure,
a failure to form an abstraction. Interruption may reduce the
ability for a programmer to hold together newer ideas that do
not yet have conceptual memory support.

III. PROGRAMMER INFORMATION NEEDS

In this section, for each memory type, we first describe a
programming activity and how it greatly stresses that type.
We then demonstrate how various memory failures affect
developers in practice, and the mechanisms they use to cope
with those memory failures. Finally, we then generalize these
behaviors as information needs that each correspond to a
particular memory failure. In Table I, we give a summary of
the information needs that result after memory failure. The
table displays the different memory types and their memory
failures. In support of the memory failures and corresponding
information needs, memory aids are derived.

A. Prospective Memory Support

1) Task: Resuming a Blocked Programming Task: Devel-
opers often become blocked on a task: i.e., being in a state
where no progress can be made until an external constraint
is resolved. For example, developers can become blocked
when coordinating with other developers (waiting for a busy
teammate to become available again or finish a task) [19].
Other reasons include holding off on a task due to an unex-
pected shift in scheduling priority or server/database down-
time [2]. Regardless of how the developer became blocked,
the consequence is the same: A blocked developer must

125

TABLE I: INFORMATION NEEDS AND MEMORY AIDS FOR DIFFERENT MEMORY FAILURES.

MEMORY PROGRAMMING ACTIVITY FAILURE INFORMATION NEED MEMORY AIDS

prospective Resuming blocked tasks Monitor failure Support monitoring applicability smart reminders
Engage failure Provide multi. levels of engagement

attentive Refactoring large code Concentration failure Provide persisted and stateful focus touch points
Limit failure Facilitate multiplicity

associative Navigating unfamiliar code Retention failure Provide distinguishable features associative links
Association failure Support indexing by multi. modalities

episodic Learning new API Source failure Store context code narratives
Recollection failure Support narrative

conceptual Forming concepts Activation failure Support priming memlets
Formation failure Support abstraction

remember to perform a task after a potentially lengthy interval.
Unfortunately, prospective memory’s ability to prompt us at
the appropriate time can be quite unreliable.

2) Developer Studies: Various studies have described how
developers have tried to cope with prospective memory fail-
ures. For example, developers often leave TODO comments
throughout code [20]. To leave a TODO comment, a devel-
oper writes a comment beginning with the text “// TODO:
Remember to fix ...”, which can later be seen in a list of
TODOs collected in a tool view such as the Task List. A
drawback of this mechanism is that there is no impetus
for viewing these reminders. Instead, to force a prospective
prompt, developers may intentionally leave a compile error
to ensure they remember to perform a task [2]. A problem
with compile errors is that they inhibit the ability to switch
to another task on the same codebase. Finally, developers also
do what other office workers do [21]: leave sticky notes and
emails to themselves [2].

3) Information Needs: Monitor failures are a common
reason why programmers fail to act on applicable prospective
actions. Monitoring can be a cognitively demanding and
distracting activity, especially in cases requiring polling an
external condition, such as another team member’s progress.

Information Need 1 - Programmers need facilities for moni-
toring and polling the status of external constraints inhibiting
prospective actions.

Engage failures are a common reason why programmers
fail to recognize the reminder for a prospective action. Passive
reminders, such as sticky notes or comments in the code often
fail to engage conscious attention.

Information Need 2 - Programmers need facilities for mod-
ulating their levels of engagement in prospective actions.

To address the shortcomings of existing coping mecha-
nisms, we introduce the concept of a smart reminder, which

compensates for prospective memory failures by providing
facilities for monitoring and polling external conditions and
for modulating levels of engagement.

B. Attentive Memory Support

1) Task: Tracking Refactoring Changes: Some program-
ming tasks require developers to make similar changes across
a codebase. For example, if a developer needs to refactor code
in order to move a component from one location to another or
to update the code to use a new version of an API, then that
developer needs to systematically and carefully edit all those
locations affected by the desired change. Unfortunately, even
a simple change can lead to many complications, requiring
the developer to track the status of many locations in the
code. Even worse, after an interruption to such as task, the
tracked statuses in attentive memory quickly evaporate and
the numerous visited and edited locations confound retrieval.

2) Developer Studies: Studies examining refactoring prac-
tices of programmers have found several deficiencies in tool
support [22].One essential deficiency is the lack of ability
to track the statuses of many locations in code. As a work-
around, developers abandon refactoring tools and instead rely
on compile errors that were introduced when refactoring.
Interactive compile errors (which appear or disappear auto-
matically as a programmer makes changes) can represent the
task well in an automated fashion: A correct change removes
the compile error, whereas an incorrect change arising from
a complication adds more compile errors. A programmer
can be interrupted in this state and still have a means to
continue the task. Unfortunately, using compile errors to track
changes is not a general solution and can still lead to incorrect
refactorings [23].

3) Information Needs: Concentration failures arise when
programmers need to shift attention away from a programming
task. Interruptions to tasks can cause programmers to lose

126

track of the status of previously attended locations of code.

Information Need 3 - Developers need support for persistent
and stateful focus on program locations.

Limit failures occur when programmers need to hold many
items related to a programming task in attentive memory.
Such tasks can often involve hundreds of program locations,
a number well beyond the handful of items that attentive
memory can support.

Information Need 4 - Developers need support for attending
to numerous program locations.

In support of tasks that heavily tax attentive memory with
many points of attention, we introduce the concept of touch
points, which supports maintaining status across many loca-
tions in code.

C. Supporting Associative Memory

1) Task: Navigating Unfamiliar Code: Some programming
tasks require developers to explore and understand unfamiliar
code. For example, if a developer newly joins a project or
is assigned to fix a bug in an unfamiliar region of code,
then he must quickly absorb and familiarize himself with
the code. This includes learning new identifiers, locations,
relationships, conventions, and behaviors. Such a task deeply
taxes associative memory.

2) Developer Studies: Observations of developers suggest
they frequently rely on associations with environmental cues,
interface elements of the programming environment, for nav-
igating and understanding new code. For example, Ko et
al. [24] observed that programmers used cues, such as open-
document tabs and scrollbars, for maintaining context during
their programming tasks. However, these cues are often in-
sufficient: The act of navigation often disturbs the state of
environmental cues, and the paucity of interface elements, such
as tabbed panes, which often only contain a file name, starves
associability. In studies of developer navigation histories, a
common finding is that developers frequently flip through open
tabs because they fail to associate the tabs with desired code
locations [25].

3) Information Needs: Retention failures occur when envi-
ronmental stimuli do not offer sufficient features to trigger
associative mechanisms in the hippocampus. Unfortunately,
for programmers, source code text is often visually repetitive,
lacking highly distinguishing visual features. Further, interface
elements, such as tabs, only provides one consistent associative
feature: a file name (tab position is frequently unstable, making
spatial positioning an unreliable associative feature for tabs).

Information Need 5 - Developers need support for diverse and
distinguishable features for building associations with code
locations.

Association failures occur when incomplete or weak as-
sociations are formed. For example, when programmers are
interrupted after exploring new code, it is common for devel-
opers to associate a block of a code with semantic information,

such as its functionality, but fail to form strong associations
with details such as its name or location [26]. As a result,
developers often spend significant time locating code after an
interruption [2].

Information Need 6 - Developers need support for indexing
into associative memory via multiple modalities in order to
recall code locations.

To address these needs, we provide associative links, which
are memory aids that provide distinguishable features and
indexing by multiple modalities. Specially, we give an exam-
ple of how a code tab can be made more associable with
alternative modalities.

D. Episodic Memory Support

1) Task: Learning a New API: Developers must often learn
how to use new programming language features or APIs. For
example, if a developer wanted to plot tweets obtained from
the Twitter API onto a map using the Google Maps API, she
would have to learn how to deal with the many concepts
and quirks associated with both of the APIs. The difficulty
of learning new APIs is often compounded by the fact that
documentation, when it exists, is often of poor quality and
lacks sufficient examples and explanations [27]. As a result,
programmers can become derailed from their original task,
when unresolved understanding [28] blocks progress. They
must often piece together their learning experiences from many
hours or days of frustrating coding attempts and false starts,
sprinkled with occasional moments of triumph.

2) Developer Studies: A common strategy developers use
for recovering from episodic memory failures is to use source
control history in order to perform a systematic review of
previously made changes [2]. However, developers complain
of the problems they have with using existing diff tools
including: The information provided is unordered, verbose,
time-consuming, and cognitively demanding.

Studies of programmers have found that presenting in-
formation about a past programming session in an episodic
manner [29], [26], [30], improves recall of a past programming
task. Similarly, studies that examined recall of life experiences
have shown that when a sequential presentation of events
(pictures) from a past experience is given, that presentation
can be more effective at stimulating recall than when other
contextual details (names or locations) are given [29], [17].
Also, recall is boosted when the pictures are combined with
more contextual elements (such as street locations on a map).
Finally, psychology studies have shown that presenting infor-
mation in a narrative form is an optimal learning strategy for
intermediate learners [31].

3) Information Needs: Source failures are common when
learning new experiences. For example, a programmer may
undergo a source failure if she knows that she copied code
from an online example, but cannot recall the origin of the
example.

Information Need 7 - Developers need support in retaining
contextual details about their programming experiences.

127

Developers often need to recollect a past programming
experience. After returning to an interrupted learning ex-
perience, a developer may need to reflect on her current
status. Developers also need to tell stories in different ways.
For example, developers occasionally need to relate their
programming experiences to colleagues who want to perform
similar tasks. In both cases, it is difficult to provide a faithful
account of how the programming task was done, resulting in
recollection failures.

Information Need 8 - Developers need support in recollecting
personal and social narratives of their learning experiences.

To address episodic memory failures, we introduce the
concept of a code narrative, which support developers in
retaining and recollecting contextual details and narratives
about their learning experiences.

E. Supporting Conceptual Memory

1) Task: Forming Concepts: Developers are expected to
maintain expertise in their craft throughout their careers.
Unfortunately, the path to becoming an expert is not easily
walked: For a novice, evidence suggests this can be a 10
year journey [32]. And for experts trying to become experts
in new domains, like the desktop developer becoming a web
developer, there are many concepts that must be put aside and
new ones learned.

Studies examining the difference between an expert and a
novice find that performance differences arise from differences
in brain activity. Not only do experts require less brain activity
than novices, they also use different parts of their brains [33]:
Experts use conceptual memory whereas novices use attentive
memory. That is, experts are able to exploit abstractions
in conceptual memory, whereas novices must hold primitive
representations in attentive memory.

2) Developer Studies: Studies suggest that sketching, di-
agramming, and note-taking are important ways for devel-
opers to capture and conceptualize development knowledge.
Sketches are used throughout the lifetime of a project, ex-
panding to include different facets and migrating to different
media along the way [34]. Diagrams are used to form and
retain early concepts [35]. Note-taking is a also common
strategy to retain information about a programmed task when
interrupted; however, such notes can often be incomplete and
lead to resumption failures [26].

3) Information Needs: Formation failures occur when a
concept has not been consolidated into conceptual memory,
which may require several months to form. Until that time,
developers use intermediary devices such as notes or sketches
to assist in viewing and reasoning about concepts. However,
these devices are generally constructed on media that are
neither long-lasting nor linked into the software system.

Information Need 9 - Developers need support in annotating
and abstracting code as intermediaries to forming concepts.

Activation failures occur when a concept has not been
used recently, lessening a programmer’s ability to use that

learned concept. Developers that have been interrupted during
a programming task need to refresh the concepts associated
with the task before resuming work.

Information Need 10 - Developers need support in reviewing
relevant concepts in order to promote priming.

To address conceptual memory failures, we introduce the
concept of a memlet, which support developers in abstracting
and refreshing concepts in source code.

IV. TOOLS FOR PREVENTION OF AND RECOVERY FROM
MEMORY FAILURE

In this section, we describe tools we have devised that
address the information needs articulated in the previous
section. Each tool is presented in terms of the information
needs served and the way in which it address the needs.

A. Smart Reminders for Prospective Memory
1) Information Needs: A smart reminder is a prospective

memory aid that enables a programmer to condition the
timing and modulate the level of engagement provided by
a reminder. A smart reminder is composed of three parts: a
reminder condition, a notification mechanism, and a reminder
message. The reminder condition is an objective determining
the applicability of a reminder. The notification mechanism is
a device in which the reminder is conveyed to the user. The
reminder message is a textual notification.

To support Information Need 1, a smart reminder can be
created with a reminder condition that monitors applicability.
Studies of prospective memory show that using conditions,
such as entrance to the physical space related to a task,
can be an effective strategy [36]. To support such strategies,
we have created proximity conditions, which condition the
display of a reminder based on proximity to relevant locations
such as a class or namespace path. To support monitoring of
external conditions, we have devised several domain-specific
conditions that check on things such as task completion in a
task tracker and checkins of source files into source control
systems. Ultimately, a rich space of reminder conditions are
possible, tailorable to different types of programming environ-
ments, team compositions, personal preferences, and software
development processes.

To support Information Need 2, a smart reminder can be
created with a notification mechanism that varies in strength.
Passive notifications do not force attention, but remain passive
until dismissed. For example, we have created smart reminders
that are persistently visible in the lower righthand corner of
the editor viewport (the viewport is always visible regardless
of scroll position of the editor). In contrast, obstructive no-
tifications force immediate attention of a programmer until
they are explicitly dismissed. Constrictive notifications do not
directly force attention, unless a programer attempts to proceed
with a certain activity. For example, smart reminders can be
shown when a developer attempts to perform an activity such
as a checkin, program build or program execution. Finally, it
is possible to design notifications that blend these different
levels.

128

2) Related Devices:
• TagSea: a set of hierarchical tags on annotated source

code lines [37].
• Roadblock: an intentional compile error that must be

addressed before compiling a program.
Todo comments often get treated as documentation, with its

known limitations, and not as prospective reminders. TagSea
support representing and organizing reminder messages, but
do not support engaging a user’s attention or conditioning the
display of the reminder. Roadblocks can be viewed as constric-
tive notifications but not as the other various configurations of
a smart reminder.

B. Touch Points for Attentive Memory

1) Information Needs: Touch points are attentive memory
aids that enables a programmer to maintain persistent and
stateful attention to programming elements. A programming
element is a named entity such as a class or a method. A
programming element can also refer to a statement with an
internally specified name.

To support Information Need 3, a touch point tracks infor-
mation about an element’s state and can be further highlighted
and annotated. To keep track, a touch point maintains internal
state about recency of edits and visits. This internal state
enables programmers to track and filter touch points that have
not been attended to, and review the ones that have. Finally,
highlighted and annotated track points enable developers to
preserve a long-term focus on problematic areas of code.

To support Information Need 4, touch points can be hi-
erarchically organized and grouped. Touch points can be
expanded and collapsed based on the structure of the tracked
programming elements. Groups of touch points can be created,
merged, and split to reflect different investigations.

Finally, there are several ways to automatically create touch
points. A group of touch points can be created interactively
from the result of keyword or structured searches or based on
the recently recorded programming activity.

2) Related Devices:
• bookmarks: statements that have been flagged by the user.
• task context: a tree-like collection of programming ele-

ments, excluding statements, weighted by frequency of
activity [38].

Bookmarks are designed to indicate points of interest but
do not scale well, whereas touch points are designed to
handle ephemeral explosions of demand on attentive memory.
Like task context, touch points can be manually specified
or automatically generated from programming activity. Touch
points differ in that they are sets of a tree-like collection of
programming elements, including statements indicating activ-
ity, annotations, and issues. That is, they support managing
multiple locations and tracking progress.

C. Associative Links for Associative Memory

1) Information Needs: An associative link is a memory
aid that helps a programmer form and recall associations

by providing distinctive features and multimodal indexing. In
addition to a code location, an associative link has a modal
property. A modal property is information about the code
location or an event undertaken by the programmer at the
code location that emphasizes a specific aspect of interest.
Some examples of modalities include:

• lexical: alphabetic combinations, i.e., identifiers.
• structural: position in program element organization.
• spatial: visible position in programming interface.
• operational: user action taken at the source code location.
• syntactical: grammatical role of the source code element.
For supporting navigation within unfamiliar code, we

demonstrate how associative links can be used to improve
the accessibility of a tabbed pane containing code. In most
program development environments, a tabbed pane provides
only a lexical association to a code location. That is, the name
might be a method name or a file name. To improve access,
three additional associative links are added to tabbed panes:
operational, syntactical, and structural. The operational asso-
ciative link provides information about the last programming
action that the programmer undertook at the code location,
such as an edit or a search. The syntactical associative link
provides a thumbnail of the code in the current document
viewport. The structural associative link provides a subset
of the programming element hierarchy containing the code
location. Overall, the presence of the additional modalities
are more likely to encourage the formation of associative
memories, as there are more distinctive elements present
during the act of navigation.

To support Information Need 6, modal queries can be
used to recall code locations. For example, it is common
for several tabbed panes to be opened after performing a
search or when stepping through a program while debugging.
Using associative queries based on operational associations,
a programmer can filter out tabbed panes that were used for
debugging and show only the ones that were visited from a
search. By scanning the list of thumbnails in the tab bar, a
programmer can use syntactical associations to recall the code
location. By examining the partial hierarchy of programming
elements, the programmer can use structural associations, such
as the namespace or project location, to recall the desired code
location. Overall, the associative links allow multiple modes
of indexing into code locations to improve access.

2) Related Devices:
• NavTracs: a set of files associated by frequent co-

visitation [25].
• Code Canvas: a fixed layout of source code content,

associating each file with a spatial position on a zoomable
plane [39].

• Code Bubbles: a dynamic layout of source code frag-
ments, associating each fragment with a spatial position
on a scrollable plane [40].

There are several related devices that exhibit characteristics
similar to associative links. NavTracs provide ways of indexing
into code locations via operational modality, specificly naviga-

129

tion actions. By redesigning the entire programming interface,
both Code Canvas and Code Bubbles provide ways of indexing
into code locations via spatial modality. Nevertheless, none of
these devices systematically consider which modal properties
to support in the context of forming associative memories or
provide multiple modalities for improving access.

D. Code Narratives for Episodic Memory

1) Information Needs: A code narrative is an episodic
memory aid that helps a developer recall contextual details and
the history of programming activity. It is composed of a stream
of programming events woven into a narrative structure. A
programming event is an action performed in a programming
environment, such as an edit, a search or a run-time exception.
A narrative structure provides a schema for anticipating and
organizing the events of a story. Narrative structures are
socially constructed [15], meaning certain groups, such as de-
velopers, have their own learned narrative structures. Based on
our study of how developers present their learning experiences
on blogs, we found two common narrative structures used by
developers: overcoming obstacles and teaching tutorials [41].

To support Information Need 7, a programming environe-
ment is heavily instrumented, such that, in addition to record-
ing a stream of programming events, contextual details such
as code snapshots, search terms and results, addresses of code
samples, and stack traces are retained.

To support Information Need 8, the stream of events is
organized into a series of episodes. An episode is an ab-
straction of a series of events, as defined by the narrative
structure’s schema. For the obstacle narrative structure, the
following details are populated: setting, conflict, investigation,
and resolution. The setting is an overview of files encountered
and programming tasks undertaken. The conflict is the encoun-
tered problem, such as a runtime exception, that prevented
a task from being completed. The investigation is the series
of programming events used to discover the problem. The
resolution is the series of programming events that solved the
conflict.

For the tutorial narrative structure, the following details are
populated: setting (a series of alternations between procedure
and code snippet) and conclusion. The procedure is a textual
description of how code is changed and where the change
was made. The code snippet is a set of source code lines that
was created as a result of the procedure. The conclusion is a
textual description of limitations or future directions related
to the procedure. We have prototyped algorithms that semi-
automatically populate a series of programming events into a
tutorial-style narrative and publish it as a blog post.

Finally, a distinction is made between personal and shared
narratives. When a narrative is shared, more care must be taken
so that it is understandable by others, who may lack context.
Therefore, shared narratives tend to have a flat structure, as
events must be related in strict order. In contrast, personal
narratives can leverage existing episodic memories, enabling
a programmer to move fluidly through his own experiences.
In support of personal narratives, we allow coding details

to be organized hierarchically, by clustering and grouping
programming events into programming activities, supporting
improved indexing.

2) Related Devices:

• information quests: are a collection of files visited, anno-
tated with an information seeking goal and shared with
others [42].

• code replays: are a stream of change events that can be
replayed and shared with others [30]

Information quests, provide a mechanism for sharing and
visiting files during a programming experience, but not for
relating a general narrative or contextual details about the
experience. Code replays and code narratives both share a
stream of change events. However, code narratives include
additional programming events, such as navigation and search,
and further organize those events into a narrative structure.
Code replays provide an excellent mechanism for recollecting
an coding experience as a “flash-bulb experience”. However,
for a programming task that can span several days, a code
replay can overwhelm a programmer with an excessively long
and unstructured sequence of code changes.

E. Memlets for Conceptual Memory

1) Information Needs: A memlet is an conceptual memory
aid that helps a programmer form and prime concepts by
supporting abstraction and reviewing concepts that need to be
refreshed. A memlet is composed of a programming element,
an overlay, and a set of workspaces. A overlay is a visual
plane that contains a set of annotations projected onto the
programming element. An workspace, is a visual plane that
contains an alternative representation of the programming
element, such as a sketch or diagram.

To support Information Need 9, annotations and abstrac-
tions are provided. Annotations can be viewed in conjunction
with the programming element. Workspaces can be shared
with other programming elements, enabling a programmer to
represent abstractions between programming elements.

To support Information Need 10, code that has not been
recently viewed can be toggled to auto-display annotations.
Additionally, visual cues indicating non-recency can be used
to encourage reviewing relevant workspace.

2) Related Devices:

• ConcernMapper: a set of concerns organizing projections
of programming elements [43].

• Code folding: a set of hierarchical compiler directives
organizing source code lines.

In ConcernMapper, a concern allows a single abstraction to
be built over many programming elements; whereas memlets
allow abstractions to happen at a finer granularity. Code
folding interleaves organization with source code; whereas
memlets provide overlays and alternative workspaces. In con-
trast with memlets, these devices do not integrate developer’s
sketching-like behavior, nor consider which organized knowl-
edge may need to be primed.

130

V. DISCUSSION

A look at the mechanisms of the brain and its capacity
for memory gives us a renewed perspective into our existing
theories about programmer cognition. Consider, the classic
work of Shneiderman and Mayer: When programmers were
asked to recite recently viewed programs, they describe se-
mantic and not syntactic contents [44]. However, consider-
ing the underlying mechanisms of the brain, an alternative
explanation is that semantics (abstractions) are more easily
primed in conceptual memory than syntactics (perceptions),
and are therefore easier to freely recall. Further, the conclusion
that syntactic information is not retained can also be given
an alternative explanation: Syntactics are retained, but not
directly; instead an association forms between semantic and
syntactic information, explaining the difficulty in freely recall-
ing the syntactics. This also suggests that in future viewings
of the code, syntactics plays a role in associatively recalling
semantics related to the block of code without a renewed
comprehension effort.

Other frameworks of programming information needs, such
as the one described by Storey et al. [45], build on theo-
ries such as Shneiderman and Mayer’s to provide means of
supporting program comprehension and reducing cognitive
overload. Overall, the guidance from such frameworks is
sound, but ultimately limited. For example, Storey et al.’s
information needs are limited to exploration tasks and do not
incorporate memory failures and resulting information needs
reflected in everyday programming tasks.

Developers use many coping mechanisms to ward off mem-
ory failures. For example, developers send email messages
to themselves as prospective reminders, use compile errors
as attentive points of focus and use source code history to
reconstruct a narrative of their work. Our aim is not to
discount the value of these mechanisms, but to instead use their
existence as evidence for the importance of understanding the
corresponding memory failures. We propose that by using this
understanding, we can build a tool framework that supports
the many fragile facets of human memory, ultimately leading
to better tools for software development.

Understanding memory types may also help us better under-
stand our research tools. For example, two research tools, Code
Canvas and Code Bubbles, support a similar modality: spatial.
But what appears similar on the surface may actually support
different memory types. Code Bubble’s fluid and dynamically
changing landscape likely promotes temporary spatial associ-
ations that last a few hours; whereas the stable layout of Code
Canvas likely promotes a longer-term, conceptual memory of
spatial abstractions.

Our framing and presentation of the cognitive neuroscience
of memory has several limitations. We, do not include litera-
ture on reasoning or problem solving. We also do not discuss
interactions among memory types. For example, prospective
memory cooperates with associative memory to hold long-term
intentions. Finally, there are other information needs yet to be
found that the community can seek.

VI. CONCLUSION

In this paper, we have examined the previously explored lit-
erature of cognitive neuroscience of human memory and struc-
tured the results in terms of five memory types particularly
relevant to programmers: attentive, prospective, associative,
episodic, and conceptual memory. We describe how failures
in these memory types can be related to empirical evidence
of programmers information seeking and preservation needs.
Finally, we present five memory aids—touch points, smart re-
minders, associative links, code narratives, and memlets—that
address these information needs and can inspire future tool
development.

We have prototyped a set of tools, called worklets, including
the five examples in the paper, as extensions for Visual
Studio. More details on implementation of code narratives 1

and associative links 2 can be found online. We are in the
process of refining the tools for evaluation and designing a
series of laboratory and field experiments for evaluating the
effectiveness of the tools in managing interruptions.

REFERENCES

[1] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of task
switching and interruptions,” in CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems. New York, NY,
USA: ACM Press, 2004, pp. 175–182.

[2] C. Parnin and S. Rugaber, “Resumption strategies for interrupted pro-
gramming tasks,” Software Quality Journal, vol. 19, pp. 5–34, 2011,
10.1007/s11219-010-9104-9.

[3] M.-A. Storey, “an interactive visualization environment for exploring
java programs,” 2011, plenary presentation: International Conference
on Program Comprehension. [Online]. Available: http://www.slideshare.
net/mastorey/icpc-2011-storey-8471063

[4] C. Parnin, “A cognitive neuroscience perspective on memory for pro-
gramming tasks,” in In the Proceedings of the 22nd Annual Meeting of
the Psychology of Programming Interest Group (PPIG), 2010.

[5] J. M. Fuster, “The prefrontal cortex–an update: time is of the essence.”
Neuron, vol. 30, no. 2, pp. 319–333, May 2001. [Online]. Available:
http://view.ncbi.nlm.nih.gov/pubmed/11394996

[6] R. G. Morris and U. Frey, “Hippocampal synaptic plasticity: role in
spatial learning or the automatic recording of attended experience?”
Philosophical transactions of the Royal Society of London. Series B,
Biological sciences, vol. 352, no. 1360, pp. 1489–1503, 1997. [Online].
Available: http://dx.doi.org/10.1098/rstb.1997.0136

[7] E. Winograd, Practical Aspects of Memory: Current Research and
Issues. Chichester: Wiley, 1988, vol. 2, ch. Some observations on
prospective remembering, pp. 348–353.

[8] J. R. Reynolds, R. West, and T. Braver, “Distinct neural circuits
support transient and sustained processes in prospective memory
and working memory.” Cerebral cortex (New York, N.Y. : 1991),
vol. 19, no. 5, pp. 1208–1221, May 2009. [Online]. Available:
http://dx.doi.org/10.1093/cercor/bhn164

[9] K. Kondo, M. Maruishi, H. Ueno, K. Sawada, Y. Hashimoto, T. Ohshita,
T. Takahashi, T. Ohtsuki, and M. Matsumoto, “The pathophysiology of
prospective memory failure after diffuse axonal injury - lesion-symptom
analysis using diffusion tensor imaging,” BMC Neuroscience, vol. 11,
no. 1, pp. 147–157, November 2010.

[10] J.-S. Provost, M. Petrides, F. Simard, and O. Monchi, “Investigating
the Long-Lasting residual effect of a set shift on frontostriatal
activity,” Cerebral Cortex, Dec. 2011. [Online]. Available: http:
//dx.doi.org/10.1093/cercor/bhr358

1http://blog.ninlabs.com/2011/11/auto-blogging-publishing-a-
coding-task-to-wordpress-5/

2http://blog.ninlabs.com/2011/10/napkin-idea-code-tabs/

131

[11] L. L. Eldridge, B. J. Knowlton, C. S. Furmanski, S. Y. Bookheimer,
and S. A. Engel, “Remembering episodes: a selective role for
the hippocampus during retrieval.” Nature neuroscience, vol. 3,
no. 11, pp. 1149–1152, November 2000. [Online]. Available:
http://dx.doi.org/10.1038/80671

[12] G. Hickok, K. Okada, and J. T. Serences, “Area Spt in the Human
Planum Temporale Supports Sensory-Motor Integration for Speech Pro-
cessing,” Journal of Neurophysiology, vol. 101, no. 5, pp. 2725–2732,
May 2009.

[13] C. McGettigan, J. E. Warren, F. Eisner, C. R. Marshall, P. Shanmu-
galingam, and S. K. Scott, “Neural correlates of sublexical processing
in phonological working memory.” Journal of cognitive neuroscience,
vol. 23, no. 4, pp. 961–977, April 2011.

[14] E. Tulving, Organization of memory. New York: Academic Press, 1972,
ch. Episodic and semantic memory, pp. 381–403.

[15] S.-Y. Kim, “The Effects of Storytelling and Pretend Play on Cognitive
Processes, Short-Term and Long-Term Narrative Recall.” Child Study
Journal, vol. 29, no. 3, pp. 175–91, 1999. [Online]. Available:
http://www.eric.ed.gov/ERICWebPortal/detail?accno=EJ605419

[16] E. L. Glisky, M. R. Polster, and B. C. Routhieaux, “Double dissociation
between item and source memory,” Neuropsychology, vol. 9, pp. 229–
235, 1995.

[17] S. Hodges, E. Berry, and K. Wood, “SenseCam: A wearable camera
that stimulates and rehabilitates autobiographical memory.” Memory
(Hove, England), vol. 19, no. 7, pp. 685–696, Oct. 2011. [Online].
Available: http://dx.doi.org/10.1080/09658211.2011.605591

[18] I. Kahn, A. Pascual-Leone, H. Theoret, F. Fregni, D. Clark, and
A. Wagner, “Transient disruption of ventrolateral prefrontal cortex dur-
ing verbal encoding affects subsequent memory performance.” Journal
of neurophysiology, vol. 94, no. 1, pp. 688–698, July 2005.

[19] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in ICSE ’07: Proceedings of the 29th
international conference on Software Engineering. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 344–353.

[20] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or to
bug: exploring how task annotations play a role in the work practices of
software developers,” in ICSE ’08: Proceedings of the 30th international
conference on Software engineering. New York, NY, USA: ACM, 2008,
pp. 251–260.

[21] V. Bellotti, B. Dalal, N. Good, P. Flynn, D. G. Bobrow, and N. Duche-
neaut, “What a to-do: studies of task management towards the design of
a personal task list manager,” in CHI ’04: Proceedings of the SIGCHI
conference on Human factors in computing systems. New York, NY,
USA: ACM, 2004, pp. 735–742.

[22] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Transactions on Software Engineering, vol. 99, no.
PrePrints, 2011.

[23] X. Ge and E. Murphy-Hill, “Reconciling manual and automatic refactor-
ing,” in ICSE ’12: Proceedings of the 34th International Conference on
Software Engineering. Washington, DC, USA: IEEE Computer Society,
2012, p. to appear.

[24] A. J. Ko, M. J. Coblenz, and H. H. Aung, “An exploratory study of how
developers seek, relate, and collect relevant information during software
maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971–
987, 2006, senior Member-Myers, Brad A.

[25] J. Singer, R. Elves, and M.-A. Storey, “Navtracks: Supporting navigation
in software maintenance,” in ICSM ’05: Proceedings of the 21st IEEE
International Conference on Software Maintenance. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 325–334.

[26] C. Parnin and R. DeLine, “Evaluating cues for resuming interrupted
programming tasks,” in Proceedings of the 28th international
conference on Human factors in computing systems, ser. CHI ’10.
New York, NY, USA: ACM, 2010, pp. 93–102. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753342

[27] M. P. Robillard, “What makes apis hard to learn? answers from devel-
opers,” IEEE Softw., vol. 26, pp. 27–34, November 2009.

[28] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in end-user
programming systems,” in Proceedings of the 2004 IEEE Symposium
on Visual Languages - Human Centric Computing, ser. VLHCC ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 199–206.
[Online]. Available: http://dx.doi.org/10.1109/VLHCC.2004.47

[29] I. Safer and G. C. Murphy, “Comparing episodic and semantic interfaces
for task boundary identification,” in CASCON ’07: Proceedings of the

2007 conference of the center for advanced studies on Collaborative
research. ACM, 2007, pp. 229–243.

[30] L. Hattori, M. D’Ambros, M. Lanza, and M. Lungu, “Software evolution
comprehension: Replay to the rescue,” in Program Comprehension
(ICPC), 2011 IEEE 19th International Conference on, june 2011, pp.
161 –170.

[31] M. B. W. Wolfe and J. A. Mienko, “Learning and memory of
factual content from narrative and expository text,” British Journal of
Educational Psychology, vol. 77, no. 3, pp. 541–564, 2007. [Online].
Available: http://dx.doi.org/10.1348/000709906X143902

[32] M. T. H. Chi, R. Glaser, and E. Rees, Expertise in problem
solving. Erlbaum, 1982, vol. 1, pp. 7–75. [Online]. Available:
http://www.public.asu.edu/∼mtchi/papers/ChiGlaserRees.pdf

[33] J. Milton, A. Solodkin, P. Hlustı́k, and S. L. Small, “The mind
of expert motor performance is cool and focused.” Neuroimage,
vol. 35, no. 2, pp. 804–813, Apr. 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.neuroimage.2007.01.003

[34] J. Walny, J. Haber, M. Dork, J. Sillito, and S. Carpendale, “Follow that
sketch: Lifecycles of diagrams and sketches in software development,” in
Visualizing Software for Understanding and Analysis (VISSOFT), 2011
6th IEEE International Workshop on, sept. 2011, pp. 1 –8.

[35] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to
the whiteboard: how and why software developers use drawings,” in
CHI ’07: Proceedings of the SIGCHI conference on Human factors in
computing systems. New York, NY, USA: ACM, 2007, pp. 557–566.

[36] M. R. McGee-Lennon, M. K. Wolters, and S. Brewster, “User-centred
multimodal reminders for assistive living,” in Proceedings of the 2011
annual conference on Human factors in computing systems, ser. CHI
’11. New York, NY, USA: ACM, 2011, pp. 2105–2114. [Online].
Available: http://doi.acm.org/10.1145/1978942.1979248

[37] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T. Cheng, and
M. Muller, “How software developers use tagging to support reminding
and refinding,” IEEE Trans. Softw. Eng., vol. 35, pp. 470–483, July 2009.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1591903.1592342

[38] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in SIGSOFT ’06/FSE-14: Proceedings of the 14th
ACM SIGSOFT international symposium on Foundations of software
engineering. New York, NY, USA: ACM, 2006, pp. 1–11.

[39] R. DeLine and K. Rowan, “Code canvas: zooming towards better
development environments,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 207–210. [Online].
Available: http://doi.acm.org/10.1145/1810295.1810331

[40] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung,
J. Kaplan, C. Coleman, F. Adeputra, and J. J. LaViola, Jr.,
“Code bubbles: rethinking the user interface paradigm of integrated
development environments,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 455–464. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806866

[41] C. Parnin and C. Treude, “Measuring api documentation on
the web,” in Proceedings of the 2nd International Workshop
on Web 2.0 for Software Engineering, ser. Web2SE ’11. New
York, NY, USA: ACM, 2011, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/1984701.1984706

[42] A. Guzzi, M. Pinzger, and A. van Deursen, “Combining micro-blogging
and ide interactions to support developers in their quests,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on, sept.
2010, pp. 1 –5.

[43] M. P. Robillard and F. Weigand-Warr, “Concernmapper: simple view-
based separation of scattered concerns,” in Proceedings of the 2005
OOPSLA workshop on Eclipse technology eXchange, ser. eclipse ’05.
New York, NY, USA: ACM, 2005, pp. 65–69. [Online]. Available:
http://doi.acm.org/10.1145/1117696.1117710

[44] B. Shneiderman and R. Mayer, “Syntactic/semantic interactions in
programmer behavior: A model and experimental results,” International
Journal of Parallel Programming, vol. 8, pp. 219–238, 1979,
10.1007/BF00977789. [Online]. Available: http://dx.doi.org/10.1007/
BF00977789

[45] M.-A. D. Storey, F. D. Fracchia, and H. A. Müller, “Cognitive design
elements to support the construction of a mental model during software
exploration,” J. Syst. Softw., vol. 44, pp. 171–185, January 1999.
[Online]. Available: http://dx.doi.org/10.1016/S0164-1212(98)10055-9

132

