Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



with terribly complex objects even at the
““fundamental’’ particle level. The phys-
icist labors on, however, in a firm faith
that there are unifying principles to be
found, whether in quarks or in unified-
field theories. Einstein argued that there
must be simplified explanations of nature,
because God is not capricious or arbitrary.

No such faith comforts the software en-
gineer. Much of the complexity that he
must master is arbitrary complexity,
forced without rhyme or reason by the
many human institutions and systems to
which his interfaces must conform. These
differ from interface to interface, and
from time to time, not because of necessity
but only because they were designed by
different people, rather than by God.

In many cases, the software must con-
form because it is the most recent arrival
on the scene. In others, it must conform
because it is perceived as the most
conformable. But in all cases, much com-
plexity comes from conformation to other
interfaces; this complexity cannot be
simplified out by any redesign of the soft-
ware alone.

Changeability. The software entity is
constantly subject to pressures for change.
Of course, so are buildings, cars, com-
puters. But manufactured things are infre-
quently changed after manufacture; they
are superseded by later models, or essen-
tial changes are incorporated into later-
serial-number copies of the same basic
design. Call-backs of automobiles are
really quite infrequent; field changes of
computers somewhat less so. Both are
much less frequent than modifications to
fielded software.

In part, this is so because the software of
a system embodies its function, and the
function is the part that most feels the
pressures of change. In part it is because
software can be changed more easily—it is
pure thought-stuff, infinitely malleable.
Buildings do in fact get changed, but the
high costs of change, understood by all,
serve to dampen the whims of the
changers.

All successful software gets changed.
Two processes are at work. First, as a soft-
ware product is found to be useful, people
try it in new cases at the edge of or beyond
the original domain. The pressures for ex-
tended function come chiefly from users
who like the basic function and invent new
uses for it.

Second, successful software survives
beyond the normal life of the machine
vehicle for which it is first written. If not

12

new computers, then at least new disks,
new displays, new printers come along;
and the software must be conformed to its
new vehicles of opportunity.

In short, the software product is embed-
ded in a cultural matrix of applications,
users, laws, and machine vehicles. These
all change continually, and their changes
inexorably force change upon the software
product.

Invisibility. Software is invisible and un-
visualizable. Geometric abstractions are
powerful tools. The floor plan of a build-
ing helps both architect and client evaluate
spaces, traffic flows, views. Contra-
dictions and omissions become obvious.

Despite progress in
restricting and simplifying
software structures, they
remain inherently
unvisualizable, and thus
do not permit the mind to
use some of its most
powerful conceptual tools.

Scale drawings of mechanical parts and
stick-figure models of molecules, al-
though abstractions, serve the same pur-
pose. A geometric reality is captured in a
geometric abstraction.

The reality of software is not inherently
embedded in space. Hence, it has no ready
geometric representation in the way that
land has maps, silicon chips have dia-
grams, computers have connectivity
schematics. As soon as we attempt to dia-
gram software structure, we find it to con-
stitute not one, but several, general
directed graphs superimposed one upon
another. The several graphs may represent
the flow of control, the flow of data, pat-
terns of dependency, time sequence,
name-space relationships. These graphs
are usually not even planar, much less
hierarchical. Indeed, one of the ways of
establishing conceptual control over such
structure is to enforce link cutting until
one or more of the graphs becomes hierar-
chical.!

In spite of progress in restricting and
simplifying the structures of software,
they remain inherently unvisualizable, and
thus do not permit the mind to use some of
its most powerful conceptual tools. This

lack not only impedes the process of
design within one mind, it severely hinders
communication among minds.

Past breakthroughs
solved accidental
difficulties

If we examine the three steps in soft-
ware-technology development that have
been most fruitful in the past, we discover
that each attacked a different major dif-
ficulty in building software, but that those
difficulties have been accidental, not
essential, difficulties. We can also see the
natural limits to the extrapolation of each
such attack.

High-level languages. Surely the most
powerful stroke for software productivity,
reliability, and simplicity has been the pro-
gressive use of high-level languages for
programming. Most observers credit that
development with at least a factor of five
in productivity, and with concomitant
gains in reliability, simplicity, and com-
prehensibility.

What does a high-level language ac-
complish? It frees a program from much
of its accidental complexity. An abstract
program consists of conceptual con-
structs: operations, data types, sequences,
and communication. The concrete ma-
chine program is concerned with bits, reg-
isters, conditions, branches, channels,
disks, and such. To the extent that the
high-level language embodies the con-
structs one wants in the abstract program
and avoids all lower ones, it eliminates a
whole level of complexity that was never
inherent in the program at all.

The most a high-level language candois
to furnish all the constructs that the pro-
grammer imagines in the abstract pro-
gram. To be sure, the level of our thinking
about data structures, data types, and
operations is steadily rising, but at an ever-
decreasing rate. And language devel-
opment approaches closer and closer to
the sophistication of users.

Moreover, at some point the elabora-
tion of a high-level language creates a tool-
mastery burden that increases, not re-
duces, the intellectual task of the user who
rarely uses the esoteric constructs.

Time-sharing. Time-sharing brought a
major improvement in the productivity of
programmers and in the quality of their
product, although not so large as that

COMPUTER

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



flowcharts after, not before, writing the
programs they describe.

Second, the screens of today are too
small, in pixels, to show both the scope
and the resolution of any seriously detailed
software diagram. The so-called *‘desktop
metaphor”’ of today’s workstation is in-
stead an ‘‘airplane-seat’’ metaphor. Any-
one who has shuffled a lap full of papers
while seated between two portly passen-
gers will recognize the difference—one can
see only a very few things at once. The true
desktop provides overview of, and ran-
dom access to, a score of pages. Moreover,
when fits of creativity run strong, more
than one programmer or writer has been
known to abandon the desktop for the
more spacious floor. The hardware tech-
nology will have to advance quite substan-
tially before the scope of our scopes is suf-
ficient for the software-design task.

More fundamentally, as I have argued
above, software is very difficult to
visualize. Whether one diagrams control
flow, variable-scope nesting, variable
cross-references, dataflow, hierarchical
data structures, or whatever, one feels
only one dimension of the intricately in-
terlocked software elephant. If one
superimposes all the diagrams generated
by the many relevant views, it is difficult to
extract any global overview. The VLSI
analogy is fundamentally misleading—a
chip design is a layered two-dimensional
description whose geometry reflects its
realization in 3-space. A software system
is not.

Program verification. Much of the ef-
fort in modern programming goes into
testing and the repair of bugs. Is there
perhaps a silver bullet to be found by
eliminating the errors at the source, in the
system-design phase? Can both productiv-
ity and product reliability be radically
enhanced by following the profoundly dif-
ferent strategy of proving designs correct
before the immense effort is poured into
implementing and testing them?

Ido not believe we will find productivity
magic here. Program verification is a very
powerful concept, and it will be very im-
portant for such things as secure operat-
ing-system kernels. The technology does
not promise, however, to save labor. Veri-
fications are so much work that only a
few substantial programs have ever been
verified.

Program verification does not mean
error-proof programs. There is no magic
here, either. Mathematical proofs also can
be faulty. So whereas verification might

16

reduce the program-testing load, it cannot
eliminate it.

More seriously, even perfect program
verification can only establish that a pro-
gram meets its specification. The hardest
part of the software task is arriving at a
complete and consistent specification, and
much of the essence of building a program
is in fact the debugging of the specification.

Environments and tools. How much
more gain can be expected from the ex-
ploding researches into better program-
ming environments? One’s instinctive
reaction is that the big-payoff prob-
lems—hierarchical file systems, uniform
file formats to make possible uniform pro-

Language-specific smart
editors promise at most
freedom from

syntactic errors and
simple semantic errors.

gram interfaces, and generalized tools—
were the first attacked, and have been
solved. Language-specific smart editors
are developments not yet widely used in
practice, but the most they promise is
freedom from syntactic errors and simple
semantic errors.

Perhaps the biggest gain yet to be real-
ized from programming environments is
the use of integrated database systems to
keep track of the myriad details that must
be recalled accurately by the individual
programmer and kept current for a group
of collaborators on a single system.

Surely this work is worthwhile, and
surely it will bear some fruit in both
productivity and reliability. But by its very
nature, the return from now on must be
marginal.

Workstations. What gains are to be ex-
pected for the software art from the cer-
tain and rapid increase in the power and
memory capacity of the individual work-
station? Well, how many MIPS can one
use fruitfully? The composition and edit-
ing of programs and documents is fully
supported by today’s speeds. Compiling
could stand a boost, but a factor of 10 in
machine speed would surely leave think-
time the dominant activity in the program-
mer’s day. Indeed, it appears to be so now.

More powerful workstations we surely
welcome. Magical enhancements from
them we cannot expect.

Promising attacks on the
conceptual essence

Even though no technological
breakthrough promises to give the sort of
magical results with which we are so fami-
liar in the hardware area, there is both an
abundance of good work going on now,
and the promise of steady, if unspecta-
cular progress.

All of the technological attacks on the
accidents of the software process are
fundamentally limited by the productivity
equation:

time of task = E (frequency); X (time);
i

If, as I believe, the conceptual compo-
nents of the task are now taking most of
the time, then no amount of activity on the
task components that are merely the ex-
pression of the concepts can give large
productivity gains.

Hence we must consider those attacks
that address the essence of the software
problem, the formulation of these com-
plex conceptual structures. Fortunately,
some of these attacks are very promising.

Buy versus build. The most radical
possible solution for constructing soft-
ware is not to construct it at all.

Every day this becomes easier, as more
and more vendors offer more and better
software products for a dizzying variety of
applications. While we software engineers
have labored on production methodology,
the personal-computer revolution has
created not one, but many, mass markets
for software. Every newsstand carries
monthly magazines, which sorted by
machine type, advertise and review dozens
of products at prices from a few dollars to
a few hundred dollars. More specialized
sources offer very powerful products for
the workstation and other Unix markets.
Even software tools and environments can
be bought off-the-shelf. I have elsewhere
proposed a marketplace for individual
modules. ?

Any such product is cheaper to buy than
to build afresh. Even at a cost of one hun-
dred thousand dollars, a purchased piece
of software is costing only about as much
as one programmer-year. And delivery is
immediate! Immediate at least for prod-
ucts that really exist, products whose de-
veloper can refer products to a happy user.
Moreover, such products tend to be much
better documented and somewhat better
maintained than home-grown software.

COMPUTER

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



Authorized licensed use limited to: IEEE Xplore. Downloaded on January 6, 2009 at 14:01 from IEEE Xplore. Restrictions apply.



