
Fix Your Requirements(.txt)! A Study of Vulnerable Python
Packages in Open-Source Software

Mashal Abbas
smabbasz@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

Shahpar Khan
shahpar.khan@uwaterloo.ca

University of Waterloo
Waterloo, Ontario, Canada

Abdul Monum
amonum@uwaterloo.ca
University of Waterloo

Waterloo, Ontario, Canada

ABSTRACT
The heterogeneity of modern software requires the use of
packages that provides useful functionality that otherwise
would require custom implementations. Most software is
not written with security as a first-class citizen and the code
for these packages is no different. In such cases, the vul-
nerabilities that stem from these packages are inherited by
projects that use them.While security patches are frequently
released for vulnerable versions, the integration of newer
versions in projects is not a standard practice leading to in-
secure software. In this work, we investigate the prevalence
of vulnerable packages in open-source Python software, and
their evolution in response to discovered vulnerabilities. On
a set of curated Python projects, we find that 53.5% of projects
are vulnerable due to insecure package dependencies. We fur-
ther investigate and find out that around one-third of the
projects adopt to safer versions of package dependencies.

1 INTRODUCTION
Open-source software often consists of many different components.
The vulnerabilities that exist in each of the components propagate
to the software itself. One such component is the packages that are
used for functionality in the software. Insecure or vulnerable pack-
ages can lead to information leakage or undesired functionalities
in the software [13]. Integrating newer versions of packages may
lead to changes in code implementation, dependency changes, or
the introduction of new bugs. These factors may delay the integra-
tion of the newer version of the packages which leads to insecure
software.

Python is one of the most popular languages that is used in open-
source software. A unique feature of Python is that it has its own
eco-system of open-source packages known as the Python Package
Index (PyPI) [21]. The open-source nature of the packages leads
to more opportunities for vulnerabilities to creep in as software
evolves. According to Alfadel et al. there exist at least 252 insecure
packages in PyPI as of 2021 [12].

This project aims to investigate the prevalence of insecure Python
packages in open-source software. Leveraging WoC [17] and Safety
[18], we build a pipeline that can test for vulnerable packages within
open-source software. We evaluate our methodology on a suite of a
highly curated python projects published on GitHub [23]. We carry
out an extensive quantitative analysis to find out the presence of
vulnerable packages. We see how software adapts in light of discov-
ered vulnerabilities and the window of vulnerability that persists.
This allows us to assess the security of open-source projects and
the practices that are being followed by the community when it
comes to security fixes of packages.

In particular, we address the following research questions:
RQ1: How prevalent are security vulnerabilities in popular
and active open-source Python projects?

We investigate whether popular and active open-source Python
projects still use vulnerable Python packages and find that around
53.8% of the projects are vulnerable through insecure packages
at the time of this paper. Furthermore, we highlight the most fre-
quently used vulnerable packages and their corresponding CVEs.
RQ2: How often do projects adopt the use of secure versions
of Python packages?

We explore the adoption of Python projects to the use of secure
packages and find that around one-third of the projects keep their
dependencies up to date. In addition to that, we find that some
projects do not update their dependencies at all.
RQ3: What factors affect the adoption of secure packages?

We examine whether factors such as the number of contributors,
project size, and the number of commits have a significant effect
on adopting the secure update of vulnerable Python packages. We
do not find any significant correlation between these factors. We
believe that a qualitative study would help us answer this question.

In this paper, we will first discuss the background needed to
understand the project in § 2 followed by the motivation in § 3.
Details of how we carried out our research can be found in § 4. We
then discuss our results in § 5.

2 BACKGROUND
In this project, we leverageWorld of Code (WoC)which is a database
that contains the source code of projects from GitHub, BitBucket,
Debian, PyPI and GitLab [17]. This corpus is created so that it can
be used to carry out research in the Software Engineering realm. It
contains information about the commits to the project, the authors,
and the blobs therefore, it can encapsulate the evolution of the
project. For this project, we use it to extract the dependencies that
are needed for a project. These are found in the requirements.txt
file.

To detect the vulnerabilities in projects we use Safety which uses
SafetyDB [19]. SafetyDB contains the known security vulnerabili-
ties in Python packages and is updated once a month by syncing
with PyUp. The list of these known vulnerabilities is known as
Common Vulnerabilities and Exposures (CVEs) maintained by the
MITRE Corporation. Safety scans for insecure dependencies that
are present within the project and the corresponding CVEs that
affect the package and its version. It also gives recommendations
on what should be done to make the project safer.

1



CS846, Winter 2023, University of Waterloo Abbas, Khan, and Monum

3 MOTIVATION
Open-source software tends to grow large in size with many con-
tributors and hence it is imperative that maintaining it will become
a challenge [16]. In addition, it has many external components that
need to be kept up-to-date in terms of security and functionality.
One of the most commonly used such components are packages.
They are widely used in Python projects and due to the open-source
nature of these packages they also evolve with time.

Many modern tools can be used to check the state of projects
and find out vulnerabilities present in the software. One of the tools
that can check the security of packages used in a project is Safety
[19]. However, projects with prevailing vulnerable packages still
exist.

In the preliminary setup of our project, we wanted to see how
prevalent are vulnerable packages and whether our research will
yield something substantial. Therefore, we scoured GitHub and
randomly tested popular Python projects to see whether there exists
a project that is vulnerable and can be flagged using Safety CLI. It
did not take us long to come across Flask-WTF — an integration
between Flask and WTForms [24]. The popularity of Flask-WTF
can be judged from the following statistics on its GitHub repository:
1.3K stars and 301 forks. Upon checking the health of the Flask-
WTF repository using Safety CLI client we found out that Flask-
WTF is using a vulnerable version of a Python package called py.
The vulnerable version corresponds to CVE-2022-42969, which
reports the py library allowing remote attackers to conduct a ReDoS
(Regular expression Denial of Service) attacks through version
1.11.0 [11].

This demonstrates how imperative it is to answer the research
questions we have listed in § 1. Furthermore, it also highlights that
despite the presence of these tools, projects still do not use them. It
points towards other reasons why open-source software are still
vulnerable.

4 METHODOLOGY
This section entails a description of how we carried out our quanti-
tative study.We take a deep dive into the rationale andmethodology
behind our dataset compilation and data processing that forms our
subsequent analysis.

In this project, we aim to see how plagued open-source Python
projects are and how they affect the community. Therefore, it is
important to investigate the Python projects that are popular and
widely used. For this study, we compile our dataset out of GitHub
repositories, however, our selection of projects depends on two
main requirements:

(1) The repositories need to have high popularity metrics — such
as stars and watchers.

(2) The repositories must contain a requirements.txt file speci-
fying all the of the Python dependencies.

To address our first requirement, we use of an open-source cu-
rated list of Python projects published on GitHub. This repository
is called awesome-python [23]. This list contains approximately
500 projects that are actively monitored by the admin panel. The
projects are across different domains such as Hardware and ML.
There are over 1.6K commits, 162K stars, and 22.8K forks on this
repository making it a highly credible source of popular Python

projects. We manually check multiple projects in this repository
and confirm that these projects have high popularity metrics. After
confirming that and establishing Awesome Python as our main
source of projects, we iterate over their list and extract the author
and repository names and saved them in a text file.

With the project names list at our disposal, we turn to World
of Code (WoC). WoC provides a massive collection of basemaps
that enables the users to query mappings and extract the data per
their needs. As for our second requirement, we want to investigate
GitHub repositories that are primarily Python projects containing
a requirements.txt. With WoC, we can achieve this by using the
project-to-commit maps where the key is the project name and the
value is a list of commit that modified requirements.txt file. For our
interaction with the data stored on WoC servers, we use Oscar [22]
— a convenience Python library to access World of Code data. With
the help of Oscar APIs, we reliably automated our tasks for greater
efficiency.

After filtering the projects based on them having a require-
ments.txt file, we get a final set of 183 projects. We store the result
of the project-to-commit maps and move on to the next phase of
our data processing. At this stage, we extract the data from require-
ments.txt blob and save it in a text file. We do this for each commit
of each project that modified requirements.txt. The name of each
file is a concatenation of three fields we extract from WoC: author,
Unix timestamp, and timezone. The final directory structure looked
like this.

projects

project_a

author_time_timezone.txt

...

project_b

author_time_timezone.txt

...

...
Now we are set to collect our vulnerability reports on each of

these requirements.txt files. For this task, we use Safety — an open-
source command-line tool for scanning Python environments for
dependency security and compliance risks [18]. Safety utilizes the
SafetyDB which is a maintained list of vulnerable Python modules
with respect to certain Common Vulnerabilities and Exposures
(CVEs) [19]. We analyze all requirements.txt using Safety and create
a CSV file out of its result. This CSV file has the following features:

(1) The name of the project
(2) The author of the project
(3) Time
(4) Timezone
(5) A list of names of packages scanned
(6) Total number of packages scanned
(7) Total number of vulnerabilities detected
(8) Vulnerability ID
(9) The name of the vulnerable package
(10) The vulnerable version of the package
(11) The analyzed version of the package
(12) CVE

2



Fix Your Requirements(.txt)! A Study of Vulnerable Python Packages in Open-Source Software CS846, Winter 2023, University of Waterloo

Package Name Number of Projects
sphinx 38
wheel 23
requests 23
jinja2 22
py 20

Table 1: Top 5 most vulnerable packages and the number of
projects affected by them

Each row represented a vulnerability in a single commit of a re-
quirements.txt file. We have made this data available on our GitHub
repository [20].

With the rich data at our disposal, we run our exploratory data
analysis using a Python notebook that answers the research ques-
tion in § 1. After doing extensive analysis, we share our findings
and results in § 5.

5 RESULTS
In this section, we present and discuss the results of our empirical
study of vulnerable packages in the Python projects curated by
awesome-python [23].

RQ1: How prevalent are security vulnerabilities in popular
open-source Python projects?

Security vulnerabilities from packages may propagate to projects
that use them. In this RQ, we investigate how many projects have
and still use vulnerable Python packages, which packages are the
most vulnerable, and the number of vulnerabilities that are present
in the wild.

By analyzing all the modified versions of the requirements.txt
file for a project and running Safety CLI for each version, we can
determine whether the project was vulnerable at any given point
in time. We find that 75.6% (140) projects were vulnerable at some
point throughout their existence and 53.5% (98) are still vulnerable
according to the latest commit that modified the requirements.txt
file as reported by WoC [17]. For the projects that are still vulner-
able, we find that there exists a total of 571 unique CVEs and 613
unique vulnerabilities across 62 packages. Every other project being
vulnerable is an alarming situation and shows that security vulner-
abilities through insecure packages are prevalent. Moreover, the
sheer number of vulnerabilities associated with a relatively small
set of packages shows that security is not considered a priority
when writing these packages and thus these packages should be
used with high caution. The top five most vulnerable packages are
shown in Table 1 and the most common CVEs are shown in Table 2.

Given a project is vulnerable, we were also interested to know
how many packages out of the total packages required to build
the project are vulnerable. We find that the median number of
such vulnerable packages in each project are 6.66% and the number

CVE Number of Projects Affected
CVE-2020-11022 [7] 38
CVE-2020-11023 [8] 38
CVE-2018-18074 [6] 35
CVE-2022-40898 [10] 23
CVE-2020-28493 [9] 22

Table 2: Top 5 CVEs prevalent and the number of projects
affected by them

Change in Vulnerabilities Number of Projects
Decreased 45
Increased 39
Same 44
Removed all 30

Table 3: Evolution of projects in terms of change in
vulnerabilities

increases to 30% when considering the upper quartile. These obser-
vations are expected since vulnerabilities often lie at the extreme
end of the distribution.

RQ2: How often do projects adopt the use of secure versions
of Python packages?

In an ideal world, project maintainers should ensure that their
project is up-to-date not only with respect to system functionality
but also in terms of security. With the advent of well document
CVEs and safety tools such as Safety CLI [18], this task should be
non-trivial. In this RQ, we examine how projects evolve in main-
taining the use of secure versions of packages to build their project.
This can translate in terms of adopting the newer version of the
package with the security update, using a different secure package
that provides similar functionality, or writing your own custom
implementation.

Since we have all the modified versions of requirements.txt, we
can examine the first and latest version of the file to determine how
the projects have evolved in terms of using secure packages. The
results are summarized in Table 3.

We find that roughly one-third of the projects put an effort in
terms of adopting secure versions while two-thirds either maintain
or increase the number of vulnerabilities throughout. The increase
can either be attributed to newer CVEs discovered for the same
version of the insecure package or the addition of new insecure
packages. Of the 45 projects that decreased the number of vulnera-
bilities through insecure packages, 30 of them removed all of the
vulnerabilities which reflects good security maintenance practice.

To visualize the evolution of a single project in terms of security
vulnerabilities, we analyzed the project tyiannak/pyAudioAnalysis [15]
that illustrates all of the above three cases in Fig. 1. We plot the
time of the commit of each version of requirements.txt in its exis-
tence and the number of CVEs corresponding to each modified ver-
sion. We can observe that CVEs from the year 2021 have remained

3



CS846, Winter 2023, University of Waterloo Abbas, Khan, and Monum

Project Number of Negligent Commits
ironmussa/Optimus 1284
Kotti/Kotti 263
Miserlou/Zappa 154
nficano/python-lambda 118
flask-admin/flask-admin 95

Table 4: Top 5 projects with the most number of negligent
commits

throughout the existence of the project while CVE-2019-10775 and
CVE-2020-7598 were introduced just before the end of 2021. On
the other hand, the top four CVEs in the graph were present in the
years before 2018 but removed after 2020.

Figure 1: Time when requirements.txt was modified and the
number of CVEs associated to each modified version

We can also note from Fig. 1 that there exist CVEs associated with
packages that were discovered in later years after their use. While
we emphasize that the projects were still vulnerable during that
time period, the lack of discovery during that time is not to blame
on the project maintainers. As such, we proceed to analyze the vul-
nerabilities associated with commits that modified requirements.txt
after the CVE was discovered. In particular, it means those commits
where they updated the requirements.txt (add or remove packages)
but the packages with known vulnerabilities still exist in the list.
We extracted the year in which the CVE was published from the
CVE name and compared it with the year of the commit which
modified requirements.txt. We find that approximately one-third
(52) of the projects were guilty of such negligence at some point in
their existence and there were a total of 2535 such commits. The top
five projects with the most number of negligent commits are shown
in Table 4. To probe the current state of these projects, we analyze
the latest version of requirements.txt. We find that the same num-
ber of projects still contain at least one CVE that came earlier than
when the packages list was updated. These results highlight that
maintainers of projects do not prioritize the use of secure packages
even when they are updating the list of packages for that project.

Project CVE Count
ironmussa/Optimus 59
TheAlgorithms/Python 10
scanny/python-pptx 8
flask-admin/flask-admin 7
rochacbruno/quokka 7

Table 5: Top 5 projects with most number of CVEs that
should not have been present

CVE Negligent Years
CVE-2013-7489 [2] 8
CVE-2016-9243 [3] 5
CVE-2017-3735 [4] 4
CVE-2013-2132 [1] 4
CVE-2017-3736 [5] 4

Table 6: Top 5 CVEs with most number of negligent years

In Table 5 we summarize the top five projects that contain CVEs
that should have not been present if a secure list of packages were
used. The number of total such CVEs across all projects goes up to
107. Since we only compare the CVE year and the commit year, we
suspect the actual number to be much higher. Even this restrictive
number suggests that older CVEs are still prevalent in open-source
projects.

We were also curious to know the distribution of time when
the CVE was discovered compared to the year package list was
last updated. We find that a project contained a CVE which was
discovered a median of two years before the use of package. The
list of top 5 such CVEs with the most number of such negligent
time is summarized in Table 6.

RQ3: What factors affect the adoption of secure packages?

There can be a lot of factors at play which can affect the adop-
tion of secure packages. In this RQ, we intend to investigate this by
finding any characteristics in the nature of projects that can help
distinguish whether this project maintains a list of secure packages
or not. As such, we analyze the number of commits that modified
requirements.txt and the number of authors associated with up-
dating the requirements.txt. We compare projects that decreased
the number of vulnerabilities or had no vulnerabilities throughout
(maintaining a secure packages list) with the projects that either
increased vulnerabilities or had the same number (not maintaining
a secure packages list). As you can observe in Fig. 2 and Fig. 3, the
distribution of the number of authors and the number of commits
that modified requirements.txt for both sets of projects is roughly
the same. The median number of authors for projects that adopt the
use of secure packages and vice versa is 5 and 4 respectively and
the median number of such commits does not have a significant
difference (17 and 10) given the high amount of standard deviation.
Since all sampled projects are popular, and have a high number
of stars and watchers associated with them, popularity is also not

4



Fix Your Requirements(.txt)! A Study of Vulnerable Python Packages in Open-Source Software CS846, Winter 2023, University of Waterloo

a distinguishable metric to judge. Hence, we cannot find any dis-
tinguishable characteristics between the nature of the two sets of
projects such that we can determine whether a project is likely
to adopt secure packages. Therefore, if any such factors exist that
affect the adoption of secure packages, we are unable to find them
in this empirical study and thus we do not have a concrete answer
to this research question.

Figure 2: Author Distribution of projects that maintain
secure packages vs those that do not

Figure 3: Commit Distribution of projects that maintain
secure packages vs those that do not

6 DISCUSSION
Through our study, we learn that there are projects that do not
update their dependencies when vulnerabilities are found within
them. Since these vulnerabilities are publicly known there is the
risk of attacks if an older version of the package is being used.
These risks are even greater if the software is using or has access
to private data. There are tools that developers can use to check
the state of their projects regularly. These tools are easy to use and
can be automated so that once a vulnerability is found it can alarm
one of the developers.

We find all the CVEs that affect a particular version of the pack-
age. These CVEs might not be relevant to the scope in which the

package is being used but as the project develops more functional-
ity might be added that uses that package and hence it is better if
all the packages are up to date. Furthermore, some vulnerabilities
might not have a fix, and hence developers using these packages
must be cautious about whether this vulnerability will affect their
functionality or not.

We believe that it is the responsibility of the developers to keep
track of the dependencies that are used in the project and that
updates should be integrated as soon as possible. In conclusion, we
urge you to fix your requirements.txt!

7 RELATEDWORKS
There have been various studies previously that quantitatively
study and research the repercussions of using vulnerable software
dependencies. In this section, we will talk about two past studies
on the implication of using vulnerable software packages.

The open-source nature of the packages leads to more opportuni-
ties for vulnerabilities to creep in as software evolves. According to
Alfadel et al., there exist shortcomings in discovering vulnerabilities
in Python packages [12]. The authors come to this conclusion by
conducting an empirical study that discovers over 500 vulnerabili-
ties in 252 Python packages. The authors also emphasize that there
is a window between the release of the vulnerability patch and its
public disclosure leaving an interval for malicious entities to act.

Similarly, the evolution of security vulnerabilities through pack-
age dependencies can lead to catastrophic consequences. Vulnera-
bility in one package can easily plague all the other packages linked
to it. The evolution of security vulnerabilities in Node Package
Manager (npm) dependency networks is quantitatively studied by
Decan et al. [14]. The authors studied almost 400 security reports
that affected over 72K unique package releases. The research team
empirically establishes that it takes a long time to discover vulner-
abilities and 15% of these vulnerabilities are either fixed after the
public announcement of the vulnerability, or not fixed at all.

Our work builds on the insights of the aforementioned works and
aims to find how many vulnerabilities through insecure packages
are prevalent and propagated through open-source software that
uses them. We further investigate the rate of adoption of secure
versions and the causes of the delay.

8 THREATS TO VALIDITY
We extracted almost 500 project names from the list curated by the
authors of Awesome Python. However, the total number of projects
we were able to evaluate to establish our results was 183. There is a
three-part explanation for the reduced number of projects. First, our
core requirement for analysis depended on using Safety to inspect
vulnerabilities. Safety requires a requirements.txt file to query it
against its database, therefore, we dropped all the projects that did
not maintain a requirements.txt file. Second, we noticed that there
can be a few discrepancies between the commit history on WoC
and the commit history on the actual GitHub. Since we depended
on commits to the projects available on WoC, we dropped all the
projects if we did not get a single commit against requirements.txt
in those projects. Lastly, in a requirements.txt file you can specify
dependency with or without specifying the specific version. In case
you do not specify the version, at the time of installation, Python’s

5



CS846, Winter 2023, University of Waterloo Abbas, Khan, and Monum

Preferred Installer Program (PIP) installs the latest version. Safety
requires packages specified with a version so that it can query its
database to see if it is vulnerable with respect to a CVE or not.
Therefore, projects that had requirements.txt with all packages
specified without a version had to be dropped as well. We believe
that the packages with no versions attached to them in the require-
ments.txt will be downloaded as the latest version and hence can
be considered safe. Therefore, they might not affect the scope of
our study.

Inspecting packages against a wide range of CVEs manually
would be extremely tedious. To solve this, we looked for software
solutions that are free to use and can be automated. Safety was
the only software that met our working demands completely. We
rely on Safety to detect vulnerable Python packages and thus any
vulnerable packages not listed in the Safety DB will not be detected.
However, Safety is a well-maintained and up-to-date project and
thus we do not expect any significant false negatives. However,
Safety is synced only once per month, hence any zero-day vulnera-
bilities might have been missed.

We have only analyzed a subset of Python projects available
in the WoC corpus due to time and computation constraints. We
extracted projects which we believe cover multiple domains by
using the Awesome Python project. However, our insights may not
generalize as they may change with changing the population. An
improvement will be to run this on all the projects available in WoC
which would require a large-scale study.

We carried out a quantitative analysis with the data that we had
at our disposal. This data might not be complete to answer our
RQ3, there may be several external factors that affect how a project
updates its dependencies. In future work, we can couple it up with a
qualitative study to understand what might be the external factors.

9 CONCLUSION
With this study, we aimed to see how open-source software re-
sponds to evolving dependencies. In this project, we carry out a
small-scale study to investigate the prevalence of vulnerabilities
through insecure packages in Python projects. We use WoC [17] to
get our corpus of projects and use Safety [18] to detect the vulnera-
bilities of the dependencies in open-source software. We then carry
out a quantitative analysis of our data and find out that around half
of these projects are currently vulnerable. Furthermore, only one-
third of the projects adopt to secure versions of the packages while
the rest are negligent. In the future, this project can be expanded
to find out the reasons why dependencies are not kept up-to-date
and the insights can be made more generalized on a large corpus
of projects.

REFERENCES
[1] 2013. CVE-2013-2132. https://nvd.nist.gov/vuln/detail/CVE-2013-2132
[2] 2013. CVE-2013-7489. https://nvd.nist.gov/vuln/detail/CVE-2013-7489
[3] 2016. CVE-2016-9243. https://nvd.nist.gov/vuln/detail/CVE-2016-9243
[4] 2017. CVE-2017-3735. https://nvd.nist.gov/vuln/detail/CVE-2017-3735
[5] 2017. CVE-2017-3736. https://nvd.nist.gov/vuln/detail/CVE-2017-3736
[6] 2018. CVE-2018-18074. https://nvd.nist.gov/vuln/detail/CVE-2018-18074
[7] 2020. CVE-2020-11022. https://nvd.nist.gov/vuln/detail/CVE-2020-11022
[8] 2020. CVE-2020-11023. https://nvd.nist.gov/vuln/detail/CVE-2020-11023
[9] 2020. CVE-2020-28493. https://nvd.nist.gov/vuln/detail/CVE-2020-28493
[10] 2022. CVE-2022-40898. https://nvd.nist.gov/vuln/detail/CVE-2022-40898
[11] 2022. CVE-2022-42969. https://nvd.nist.gov/vuln/detail/CVE-2022-42969

[12] Mahmoud Alfadel, Diego Costa, and Emad Shihab. 2021. Empirical Analysis of Se-
curity Vulnerabilities in Python Packages. https://doi.org/10.1109/SANER50967.
2021.00048

[13] Kemal Altinkemer, Jackie Rees, and Sanjay Sridhar Krannert. 2005. Vulnerabilities
and Patches of Open Source Software : An Empirical Study.

[14] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Impact of
Security Vulnerabilities in the Npm Package Dependency Network. In Proceedings
of the 15th International Conference on Mining Software Repositories (Gothenburg,
Sweden) (MSR ’18). Association for Computing Machinery, New York, NY, USA,
181–191. https://doi.org/10.1145/3196398.3196401

[15] Theodoros Giannakopoulos. 2016. Python Audio Analysis Library: Feature
extraction, classification, segmentation and applications. https://github.com/
tyiannak/pyAudioAnalysis

[16] Feras Hanandeh, Ahmad Saifan, Mohammed Akour, Noor Alhussein, and Khadi-
jah Shatnawi. 2017. Evaluating Maintainability of Open Source Software: A Case
Study. International Journal of Open Source Software and Processes 8 (01 2017),
1–20. https://doi.org/10.4018/IJOSSP.2017010101

[17] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam Tutko,
David Kennard, Russell Zaretzki, and Audris Mockus. 2020. World of Code:
Enabling a Research Workflow for Mining and Analyzing the Universe of Open
Source VCS data. arXiv:2010.16196 [cs.SE]

[18] Pyupio. 2017. Safety Cli - Security for your python dependencies. https:
//pyup.io/safety/

[19] Pyupio. 2017. SafetyDB: A curated database of insecure Python packages. https:
//github.com/pyupio/safety-db

[20] Project Repository. 2023. Vulnerable Python Packages Study. https://github.
com/abdulmonum/vulnerable-python-packages-study

[21] Jukka Ruohonen, Kalle Hjerppe, and Kalle Rindell. 2021. A Large-Scale Security-
Oriented Static Analysis of Python Packages in PyPI. In 2021 18th International
Conference on Privacy, Security and Trust (PST). IEEE. https://doi.org/10.1109/
pst52912.2021.9647791

[22] Ssc-Oscar. 2018. oscar.py: Python interface for Oscar Data. https://github.com/
ssc-oscar/oscar.py

[23] Vinta. 2015. Awesome-python: A curated list of awesome python frameworks,
libraries, software and resources. https://github.com/vinta/awesome-python/

[24] WTForms. 2010. Flask-WTF. https://flask-wtf.readthedocs.io/en/1.0.x/

6

https://nvd.nist.gov/vuln/detail/CVE-2013-2132
https://nvd.nist.gov/vuln/detail/CVE-2013-7489
https://nvd.nist.gov/vuln/detail/CVE-2016-9243
https://nvd.nist.gov/vuln/detail/CVE-2017-3735
https://nvd.nist.gov/vuln/detail/CVE-2017-3736
https://nvd.nist.gov/vuln/detail/CVE-2018-18074
https://nvd.nist.gov/vuln/detail/CVE-2020-11022
https://nvd.nist.gov/vuln/detail/CVE-2020-11023
https://nvd.nist.gov/vuln/detail/CVE-2020-28493
https://nvd.nist.gov/vuln/detail/CVE-2022-40898
https://nvd.nist.gov/vuln/detail/CVE-2022-42969
https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1145/3196398.3196401
https://github.com/tyiannak/pyAudioAnalysis
https://github.com/tyiannak/pyAudioAnalysis
https://doi.org/10.4018/IJOSSP.2017010101
https://arxiv.org/abs/2010.16196
https://pyup.io/safety/
https://pyup.io/safety/
https://github.com/pyupio/safety-db
https://github.com/pyupio/safety-db
https://github.com/abdulmonum/vulnerable-python-packages-study
https://github.com/abdulmonum/vulnerable-python-packages-study
https://doi.org/10.1109/pst52912.2021.9647791
https://doi.org/10.1109/pst52912.2021.9647791
https://github.com/ssc-oscar/oscar.py
https://github.com/ssc-oscar/oscar.py
https://github.com/vinta/awesome-python/
https://flask-wtf.readthedocs.io/en/1.0.x/

	1 Introduction
	2 Background
	3 Motivation
	4 Methodology
	5 Results
	6 Discussion
	7 Related Works
	8 Threats to Validity
	9 Conclusion
	References

