
Software Architecture as a Shared Mental Model

Ric Holt,
University of Waterloo, Waterloo, Canada

holt@uwaterloo.ca

Abstract. Software architecture is commonly
considered to be the structure of a large piece of
software -- commonly presented as a nested set of box
and arrow diagrams. This paper takes a different
position, claiming that software architecture is most
usefully thought of as a mental model shared among the
people responsible for software. This point of view
leads to a number of principles regarding how we should
design, present, and think about software architecture.
Keywords. Software architecture, software
visualization, cognitive models, program
comprehension.

Background: Styles, Reference
Architectures and Views

Thanks to foundational contributions by Garlan & Shaw
[2], Perry & Wolf [4], Kruchten [3], and others, we have
a clear idea that there are:

1. styles or patterns of architecture, e.g., the pipe-
and-filter style,

2. reference architectures, e.g., the reference
architecture for compilers contains a scanner, a
parser, a semantic analyzer, etc.,

3. views of a software architecture, e.g., the view
of the logical hierarchy of the system, or the
view of the executing software across hardware
systems.

I will assume that these ideas are well understood.

At Least 100 KLOC

I will consider only those software systems which
are large enough so that they require years of
development by a team (at least three people). In other
words, I will only consider PitL (programming in the
large) and PitM (programming in the many). Smaller
systems have structure, which perhaps should be called
patterns, I would not call that structure "software
architecture". Generally, PitL and PitM come into play

when the source code size reaches roughly 100 to 500
KLOC.

Social Architecture

Systems characterized by PitM are inherently
managed by teams and these teams must communicate.
Indeed:
Conway's Law. The structure of a system reflects the
structure of the team that created it [1].
This law leads to:
Position of paper. The key purpose of software
architecture is to facilitate team communication and
understanding.
For a team to communicate, it needs a common
”vocabulary", e.g., a person working on Linux needs to
be able to refer to the Memory Manager and to IPC
without wasting time wondering if his cohorts
understand what he is talking about.

But this mutual understanding must be much deeper
than shared phrases. Rather, the understanding must
include a shared model of what the system parts are and
how they interact. My position is that this shared model
is the essence in software architecture. Without this
model, the team would be mired in confusion, without a
way to work cooperatively in developing and
maintaining the software.

In a perfect world, this model would be written
down, say in an Architecture Description Language, but
we don't have time to wait for perfection. Why?
Because software developers never have enough time.
Because the mental model must exist for the team to
make progress, and once it exists in peoples' minds,
much of the advantage of recording it in detail becomes
superfluous. Of course, documentation of software
architecture is a good thing, but such documentation
should recognize its purpose: helping people to think
and communicate. Excessive time spent in documenting

a changing architecture is taken away from other
demands such as demands for short-time-to-market and
high performance. While there are uses for a precisely
recorded software architecture, that I will maintain the
claim that a shared mental model is the main purpose of
a software architecture.

I hope that I have established that one of the key
purposes of software architecture is to serve as a shared
mental model. This position leads to the question of
how we can best use our mental model (our software
architecture). This means: how do we best use our
mental horsepower --- our personal cognitive engine ---
to deal with software architecture. Much of the rest of
the paper lists cognitive principles and their relationship
to software architecture.

But first, let's consider the fact that software
architecture necessarily exists in a social setting. It is a
short step from Conway's Law to the concept of
ownership, i.e., in PitM it is scarcely avoidable that parts
of the system become "owned" by individuals, who are
responsible for the correct working of the part, and for
understanding the workings of the part. This in turn
leads to (sometimes overly) proprietary ownership and
territoriality, to positions of influence and power, e.g., I
understand this part and I won't explain it to you unless
you're nice to me.

It leads to concepts of power and governance: who
controls the overall architecture and how are decisions
taken to change it. How are decisions about the
architecture enforced, e.g., if the team head directs that
no-one is to use MFC (Microsoft Foundation Classes),
how does he make this decision stick?

These social concepts impinge directly on software
architecture, indeed, it is best to consider that they are a
part of the architecture. To understand the architecture,
Conway reminds us that you need to understand the
organization of the team that manages it.

Cognitive Principles

This section presents various cognitive principles
and discusses how they can help us create better
software architecture.

Students are taught that it is good to learn all they
can about the subject at hand; curiously, this lesson
works in reverse at the architecture level. At this level,
we try to minimize what we learn because this learning
comes at the expense of limited time and limited brain
power --- and we are easily overwhelmed by
complexity.
Cognitive miser principle. Don't waste brain power
[6].
A key purpose of software architecture is to assist our
mental faculties by enforcing or promoting simplicity.

This, in spite of the fact that the actual software system
is overwhelmingly complex. Our software architecture
must abstract away unwanted detail, even if the
abstraction sometimes is not true to the actual
underlying system. To re-iterate this curious fact: it is
often advantageous for the software architecture to
oversimplify its representation of the corresponding
implementation, in order to make it easier think about
the architecture. (Of course, one must be honest and
recognize the danger of these simplifications.)
Law of maximal ignorance. Don't learn more than
you need to get the job done.
This corollary of the Cognitive Miser principle explains
that the software architecture can protect us from
learning too much about the system. We don't have
time to learn everything; we barely have time to learn
what is essential for today's work. A good software
architecture is sparse (light weight), telling us only what
we need not know about the shape of the system, its
parts and their interactions.

To construct effective mental models for software
architecture, we need to know something about how
brains work.
Right brain (visual) architecture. Brain science
indicates that spatial reasoning is isolated, usually in
the right brain hemisphere.
Related cognitive facilities are the basis of our
understanding of orientation (above, beside, inside, etc.),
connectivity, position, texture, colour, etc. When we
visualize software architecture, we are using these
cognitive facilities to represent our mental models.
Indeed, for many of us "seeing is believing", i.e., we
only understand a model when we can visualize it.

The term visualization is often used, in quite a
different sense, to mean creating a diagram, usually on a
computer screen. We should not confuse that action,
carried out by a computer, with the cognitive function of
constructing and manipulating a mental model.

Our brains are marvelously adapted for
visualization. How else can we walk through our homes
without damaging ourselves? How can we give
directions for finding a restaurant? We use these
powerful mental facilities to help us proficiently think
about and talk about software architecture. We make
hand gestures to show flow of data. We say a particular
subsystem calls "down" to another. We draw one box
inside another to show it is contained. We draw a big
box to represent a subsystem containing much code.
We draw connecting arrows to illustrate interacting
subsystems. We show data flow going from left to
right, etc.
Law of minimal change. When the software changes
in a modest way, our model for it should also change in
a minimal way.

For example, visualization of software architecture of
two sequential releases of Linux should have similar
layouts, colours, connectivity, etc. Why? Because
sequential releases do not involve large changes in the
software architecture (well, not very often, anyway).
Unfortunately, some tools purporting to help us
understand the structure of a system produce automatic
layouts, which ignore the layouts of previous versions of
the system.

Once a team has invested the time to visualize the
architecture of its software system, they should not
change their mental model of the system unnecessarily.
Each change of this model in their heads takes time,
causes confusion and is error prone. Think of the
change as installing a new piece of software, while dis-
installing old software, in the heads of each team
member.
Law of position permanence. Visualizations of
versions of a system should show corresponding parts of
the system at roughly the same positions with roughly
the same sizes and shapes.
Position permanence follows from the fact that our
mental models are commonly positional, e.g., we may
visualize the support library as lying in the bottom right
corner of the picture of the entire system. We should
not unnecessary change these aspects of the model.
Left brain (verbal) architecture. Much mental
representation of a software architecture is verbal or
logical information,.
For exampe, "the Memory Manager implements virtual
memory, and has an internal structure inherited from
Minix". This verbal information must be efficiently
linked to the right brain architecture, i.e., to the
visualization.

Note that the left brain, as well as the right brain,
benefits from appropriate use of principles such as the
Cognitive Miser, Maximal Ignorance, Minimal Change
(e.g., do not needlessly change terminology), etc.

Cleanliness and Simplicity

As I have already noted, a key purpose of software
architecture is to provide a shared mental model that is
easy to understand and to visualize. There are important
further advantages of visualization, as I will now
discuss.
Law of ugliness hiding. Unobserved ugly parts of a
system stay ugly.
(Apologies to David Parnas for perverting his
"information hiding" slogan.) They stay ugly because
we don't know that they are ugly. The converse of this
law is that once we see ugly things, we tend to fix them.
Aesthetic principle. Visualization leads to cleanliness.

The Aesthetic principle, applied to software
architecture, means that things that are messy to think
about probably ought to be simplified. People
instinctively like things to be simple and clean, so when
they see an ugly thing, they try to fix it. These laws
regarding ugliness and cleanliness explain why software
visualization leads to better software.

There is a deep need for simplicity of software
architecture: our brains are the essential machinery we
use for solving serious problems in software
architecture. If we fail to feed our brains with good
mental models, which fit well with our cognitive
abilities, we will not do a good job as software
architects.

One way we "add simplicity" to a complex software
architecture is to factor off complexities, which
correspond to:
Platform assumptions. Each system rests on a set of
mechanisms and assumptions, called here "platforms".
For example, the system is written in Java, runs on
Unix, uses call backs for GUI, runs each transaction
concurrently, etc. These must be learned but should not
be considered part of the (central) architecture. This
approach simplifies the central architecture. Aside:
Clashing platform assumptions make system merging
difficult [5].

Conclusion

This paper takes the position that software
architecture is most usefully thought of as a means for
sharing thoughts among developers of a system. This
point of view leads us to focus on how we think about
software architecture and how we should optimize ways
of representing architecture -- to improve our thinking
and communication.

I am not saying: do not develop or study software
architecture. Rather, I am warning that overly
mechanized or detailed approaches to software
architecture are self defeating.

When teaching about or designing software
architecture we should remember that architecture is
intimately intertwined with the social structure of the
development team. We should remember that
architecture is used largely within peoples' heads, to
think about what the architecture is and how to change
it, and then to communicate these ideas to other people.
We should remember that our cognitive facilities are
highly limited and at the same time are highly tuned for
certain kinds of operations such as spatial reasoning.
Irony of simplicity. The hard part is making it easy.
The hardest part of creation of good software
architecture is figuring out how make it easy to
understand.

Acknowledgements. Thanks to Matt Armstrong for
his helpful suggestions on an early draft of this paper.
Thanks to the IWPC referees for a number of
corrections and good suggestions.

References

1. Ivan T. Bowman and Richard C. Holt., “Reconstructing

Ownership Architecture To Help Understand Software
Systems”, IWPC '99: International Workshop on
Program Comprehension, Pittsburgh, May 5-7, 1999.

2. Garlan, David and Shaw, Mary, “An Introduction to
Software Architecture”, Advances in Software
Engineering and Knowledge Engineering, Volume 1,
World Scientific Publishing Co., 1993.

3. Kruchten, P.B., “The 4+1 Views Model of Architecture”,
IEEE Software, Nov 95, pp 42-50.

4. Perry, Dewayne E. and Wolf, Alexander L., “Foundations
for the Study of Software Architecture”, ACM SIGSOFT
Software Engineering Notes, 17:4, October 1992 pp 40-
52.

5. Garlan, David and Allen, R., and Ockerbloom, J.,
“Architectural Mismatch or, Why it's Hard to Build
systems out of Existing Parts”, Proceedings of the 17th
International Conference on Software Engineering , April
1995.

6. Psybox web site, http://www.psybox.com/
web_dictionary/dictionaryWebindex.htm.
Psybox definition: "Cognitive miser – Theory from the
social cognition field, whereby human beings are seen as
having limited processing capacity with which to deal
with an infinitely complex and ever-changing
environment. They must therefore make the best use
possible of these resources and treat them in a miserly
manner, utilizing heuristics, schemas, etc."

