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Abstract

One of the problems of empirical studies of software evolution is the lack of an effec-
tive technique for extracting facts about very large software systems (millions of lines of
code) over hundreds of versions. In this paper, we describe a linker-based approach to pro-
gram extraction that is well suited for the study of large software system evolution. Our
approach is particularly accurate, convenient and efficient. Its core component is a fact
extractor, called ldx, which is a customized version of the GNU code linker ld and per-
forms both code linking and fact extraction. We call a ldx output graph an as-linked view
(ALV). A sequence of ALVs of successive versions of a software system can be utilized to
help understand software evolution. We describe our preliminary empirical studies on the
evolution of two large open source systems, Linux and PostgreSQL. We discuss several in-
teresting results, which either validate results from earlier studies or suggest new concepts
in studying software evolution.
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1 Introduction

Modern software systems are extraordinarily large. For example, large commercial
database systems and telephone systems have millions of lines of code and are
highly complex. One of the problems of empirical studies of software evolution
is the lack of an effective technique for extracting facts about very large software
systems (millions of lines of code) over hundreds of versions. We argue that many
current source code extractors are slow, heavyweight, and error-prone when being
applied to extract facts across multiple versions for a long period. This restricts the
use of program models in the study of large software system evolution.
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Fig. 1. Lightweight Linker-Based Program Extraction

A sequence of program models of a large software system provide more infor-
mation than simple metrics such as the number of lines of code and the number of
modules. For example, function call graphs can be used to study how the interrela-
tionships of functions evolve over time; and variable usage graphs can be utilized
to assess the maintainability of a software system based on common coupling as
discussed by Schach and Offutt [14]. We believe that the study of large software
system evolution can benefit from program extraction techniques that are accurate,
lightweight, and easy to automate.

We have developed a program extraction pipeline that is an adapted version of
the program build pipeline. Figure 1 shows this pipeline. The core component
of the pipeline is a linker-based fact extractor called ldx, which outputs a special
kind of software view called as-linked view (ALV). An as-linked view is a graph of
executable that comprises function calls and variable uses as well as object module
dependencies perceived by the code linker as a program is being built. We have
successfully applied this pipeline to study the evolution of many large software
systems such as Linux [4] and PostgreSQL [5].

In this paper, we describe our linker-based approach to program extraction and
discuss its uses in studying software evolution by examples. Our approach offers
a practical means to facilitate research in the field of software evolution. The goal
of this paper is not to enumerate all types of possible evolutionary analyses based
on ldx facts, but to motivate ideas of studying software evolution using program
models.

The rest of this paper is organized as follows. Section 2 presents our linker-
based program extraction pipeline and discusses its benefits and limitations. Sec-
tion 3 describes several empirical studies on the evolution of two large open source
software systems, Linux and PostgreSQL. Section 4 reviews the related work. Sec-
tion 5 concludes the paper.

2 Lightweight Linker Extraction

In the field of software evolution, an effective program extraction technique is not
readily available without sacrificing completeness in favor of speed, convenience,
and robustness. We made such a tradeoff in the development of our linker-based
fact extractor ldx.
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Fig. 2. Linker vs. Extractor

2.1 Linker Extractor

The ldx is a customized version of the GNU code linker ld. It can be used as a full
substitute for ld during the extraction of as-linked views, thus making the extraction
process the same as the normal program build process.

As shown in Figure 2, the extractor ldx operates directly on object code instead
of source code. It has all the functionalities of GNU ld. In addition, it effectively
leverages linker knowledge to produce useful relations (function calls and variable
uses) as well as object module dependencies seen by the code linker during program
building. The output of ldx is in the form of Graph Exchange Language (GXL) [2]
or Tuple Attribute Language (TA) [10].

We use symbol linkage to refer to function calls and variable uses, which are
most widely used relations in studying software. Extracting symbol linkage can be
achieved using several different approaches such as the following:

(1) Customize an existing code linker;
(2) Customize the front end of an existing compiler;
(3) Develop a lightweight source extractor from scratch.

This list is by no means complete but gives three viable approaches. Our fact
extractor ldx takes the first approach, and CPPX [1], CAN [7], and TkSee/SN [6]
use the second approach. The idea of developing extractors through customization
is to leverage knowledge and functionality of existing tools as much as possible. In
the development of ldx, we made only small modifications to GNU ld to support
fact extraction. The resulting fact extractor includes a abundant set of features of
ld . For example, our extractor is available on most platforms and supports multiple
binary code formats. Compared to the first two approaches, developing an extractor
from scratch is more expensive and requires more maintenance.
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2.2 ALV Example

We now examine a small C program called Hello.c. We explain how to extract
its as-linked view and what information this view contains. The Hello.c program
is shown as follows:

#include <stdio.h>
int main() {

printf("Hello\n");
}

To extract Hello.c on a Linux machine, we can execute the following com-
mands. Command 13 is used to substitute ldx for GNU ld. The compiler gcc will
use ldx instead of ld as its code linker. Command 14 produces an object file
Hello.o. Command 15 builds the final executable Hello. The file Hello.ta
is generated as Hello is being created, and it stores facts produced by ldx.

[12] ls
Hello.c
[13] ln -s ‘which ldx‘ ˜/bin/ld
[14] gcc -c Hello.c
[15] gcc Hello.o -o Hello
[16] ls
Hello Hello.c Hello.o Hello.ta

Figure 3 shows a graph of the Hello program based on the data in Hello.ta.
This graph is an as-linked view. The node at the top represents the executable
program, which depends on one object module Hello.o and one dynamic library
libc.so.6. At the bottom of the graph is a name reference printf, which is
in the shape of diamond. The call between function main and function printf
exists as a resolved cross-reference. Looking at the source code, we know that the
function main is defined in Hello.c. Thus, it is contained by the object module
Hello.o. The function printf is provided by the dynamic C programming
library libc.so.6.

Hello.o /lib/libc.so.6

main printf

printf

Hello

Fig. 3. ALV of Hello

2.3 Benefits and Limitations

The major benefits that a linker extractor like ldx offers include the following:
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(i) It can deal with very large software systems at a reasonably fast speed.
We have observed that the average linking time accounts for about 1-2 per-

cent of the total build time for a software system. The extractor ldx is about
10 times slower than the linker ld. Therefore, linker extraction only causes
10-20 percent overhead of the total build time. This performance figure was
collected through extracting two large open source systems (Linux and Post-
greSQL) as well as the DB2 database management system on an IBM PC with
one Pentium 4 1.6GHz CPU and 1GB memory.

(ii) Its output is more than one order of magnitude smaller than CPPX output.
In comparison with CPPX, which outputs a complete abstract syntax graph

(ASG) for each C/C++ source file, ldx only outputs facts about function calls
and variable uses as well as object module dependencies. This benefits stud-
ies related to call graphs and variable usage by saving time in extracting and
transforming data. The disadvantage is that ldx output is not useful for studies
requiring details below the function level (e.g., program slicing).

(iii) It is less susceptible to failure than a general purpose source code extractor.
A binary format is less prone to change than syntax checking performed

by a source extractor. A source extractor needs more frequent updates than an
binary code extractor. For example, in order to build 368 releases (1996-2003)
of the Linux Kernel from 2.0 to 2.5.75, we needed to download three different
versions of GNU GCC: 2.91.66, 2.95.3, and 3.1. The GCC-3.0 based CPPX
ran into problems when being used to extract older Linux versions before
year 1999 since more strict syntax checking was performed by GCC-3.0. The
ldx based on ld-2.14 had no problems of extracting facts from all binary code
produced by three different GCC compilers.

(iv) The intricacies of the build process become transparent during fact extraction.
The build scripts of a large software system normally include configure,

Makefile(s), and shell scripts. The configure script probes the underlying sys-
tem environment to generate appropriate structures, algorithms, and Make-
file(s). Then, the Makefile(s) are used to build the entire system. Many intri-
cacies occur in this process, and they may hinder fact extraction. By using
ldx, the build process simply becomes the fact extraction process.

(v) It is easy to automate fact extraction over multiple versions.
The extractor ldx has all the functionality of GNU ld. By substituting ldx for

ld, we can piggyback a program’s build process to carry out fact extraction
automatically. For example, we successfully extracted 85 monthly builds of
PostgreSQL (from January 1997 to January 2004) by simply building them.
The extraction took 10.5 hours on a Linux machine with Pentium 4 1.6 GHz
CPU and 1 GB memory.

The decision to extract facts at link-time renders the analysis fast and straight-
forward. However, there are several drawbacks of the ldx-based extraction. First, it
is not capable of producing detailed information below the function level and does
not support analyses related to types and data structures. This can be complemented
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by using other source code extractors, such as CPPX, when necessary. Second, it
simply fails when syntax errors are present in the source code. We found that syntax
errors did exist in large software systems such as Linux and PostgreSQL, but only
in a negligible amount. We manually fixed those syntax errors. Third, it only con-
siders configurations for a particular platform. If multiple platforms are involved,
ldx has to be run on all those platforms. In this case, ldx probably is not a good
choice for collecting program facts.

3 Empirical Studies

This section describes several empirical studies we have conducted. We show that
linker-based program extraction produces useful data for studying the evolution of
large software systems. We focus our discussions on two well-known large open
source systems, PostgreSQL and Linux. PostgreSQL is a large Database Man-
agement System (DBMS), and Linux is a Unix-type operating system originally
created by Linus Torvalds with the assistance of developers around the world.

We extracted as-linked views for 85 monthly builds of PostgreSQL (January
1997 – January 2004) and for 368 releases of the Linux kernel (2.0 – 2.5.75). Linux-
2.0 was released on June 09 1996, and Linux-2.5.75 was released on July 13 2003.
The 368 releases of Linux cover 86 months development. Due to the fact that the
order of Linux releases by version numbers is different from their order by date,
we studied Linux in two cases: (1) analyzing 324 releases ordered both by version
numbers and date; (2) analyzing 79 representative (both stable and development)
releases ordered by date, which were chosen on an approximately monthly basis.
In the latter case, we did not choose any release from June 2000 to December
2000 since no development releases had ever been officially delivered during that
time. Instead, we used the last development release in May 2000 to represent the
development activities in those months.

3.1 Evolution of Functions and Function Calls

Given the ldx output of a software system, we can easily collect various statistics
of functions and function calls, for example, the number of functions, the number
of function calls, and the average number of calls per function.

PostgreSQL

Figure 4 provides an evolutionary view of PostgreSQL. In Figure 4(a), we can
see that PostgreSQL grows approximately linearly in terms of the number of func-
tions defined. The growth rate is about 45-50 functions per month. Lehman stated
that

�
-type systems grow continually [12]. It is interesting to see that PostgreSQL

not only observes the law of continuing growth but also grows at a linear rate.
It is suspected that the average number of function calls per function stays con-

stant as a software system evolves. To our knowledge, no explicit empirical studies
have been conducted to verify this conjecture. Figure 4(b) plots the average number
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of function calls per function in two cases: (1) counting all function calls including
those to system library functions, and (2) ignoring calls to system library functions.
Both cases show considerable instability in PostgreSQL in its early development
period prior to its major release 6.5. Reading through PostgreSQL’s release notes
and change logs, we found that frequent restructurings were done during that pe-
riod. Similar results were reported in [9]. A sudden rise in the number of calls per
function appears after release 7.3. An examination of PostgreSQL ALVs revealed
that this rise was caused by the rewrite of error reporting. The old elog func-
tion of elog.c was replaced by three new functions errstart, errfinish
and elog finish. This resulted in a widespread change across the system. The
call graph of PostgreSQL is becoming larger and more complicated overall. This
clearly shows Lehman’s law of growing complexity [12].

Figure 4(c) shows a scatter plot of the number of function calls against the
number of functions. Two trend lines based on linear regression are included in the
figure. They explain the strong linear relationship between the number of function
calls and the number of functions. The fit indexes of both,

���
, have very high values

around �����	� . They indicate the high quality of the fit of the two linear regression
models.

Linux Kernel

We found that the evolution of Linux was significantly different from that of
PostgreSQL. This perhaps is because these two applications are targeted at different
domains. One is a operating system, and the other is a database system.

Figure 5(a) shows that the releases of Linux are growing at a super-linear rate
over time. This further confirms the growth rate of Linux reported by Godfrey and
Tu in year 2000 [8]. In addition, the growth of Linux shows irregularities such
as jumps. All the jumps only appeared during the period of development releases
that are odd-numbered. For example, from month 76 to month 78, the number of
functions jumped from 8500 to 12500. This was apparently caused by integration
effort.

As Linux evolves, each function makes three calls approximately. However,
the average number of calls does not stay constant but oscillates. We can see from
Figure 5(b) that a sudden rise occurred during each development period and then
it was followed by continuous drops. Two drops are particularly interesting. The
smaller drop in month 14 was related to release 2.1.44, which was extremely un-
stable and can cause filesystem corruption according to the online documentation
of Linux [4]. The larger drop from month 47 to month 55 was related to the pre-
releases of Linux 2.4.0, which we suspect was intended to bring the system back
to a more maintainable form. A significant amount effort was expended but no
releases were delivered form June to December in 2000.

The scatter plot shown in Figure 5(c) has a linear regression trend line with a
very high

�
�
value. However, the linear model in this figure does not fit the data as

well as the two models in Figure 4(c). There are more outliers not consistent with
the linear regression model for Linux.
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3.2 Evolution of References to Global Variables

In this section, we discuss the evolution of references to global variables. We also
study how coupling between modules grows over time. Due to the limited space,
we only show our empirical results of the Linux kernel. The figures in this section
used data from 324 kernel releases.

We only count global variables that are readable and writable, and we ignore
all global constants. Figure 6(a) shows two growth lines of global variables in
Linux. One is the growth of global variables that are referenced by functions, i.e.,���������

; the other captures the growth of global variables that cause common cou-
pling between two different modules, i.e., 	�
����������� ��������� . Modules � and � are
common (global) coupled if they share references to the same global variable and
one of them defines that global variable. The

���������
and 	�
����������� ���������

are both
growing at a linear rate approximately and are strongly correlated.

Figure 6(b) plots the growth of the number of references to global variables. If
a function makes several references to a global variable, we only count one refer-
ence to that variable. That is to say, references to global variables are lifted to the
function level. The growth curve in the figure is a mixture of constant levels, sharp
rises, and sudden drops. The sudden drop right before the milestone release 2.4.0
reflects that great effort was devoted to enhance the maintainability of the kernel at
that time. Figure 6(c) shows the growth of common couplings between modules.
It is interesting that the figures 6(b) and 6(c) share a very similar curve. This can
be explained as that common coupling relationships between modules are actually
lifted references to global variables at the module level.

In an earlier study on the maintainability of the Linux kernel, Schach and Of-
futt manually counted the number of instances of common coupling for all kernel
releases before release 2.4 and they found that the exponential growth of common
coupling is an inherent feature of successive versions of Linux [14]. They further
claimed that the development of Linux would be slowed in the future unless the
kernel is restructured with a bare minimum of common coupling. Our results sug-
gest that restructuring efforts have reduced the instances of common coupling. We
suspect that this restructuring process partially contributed to the delay of Linux
releases from June 2000 to December 2000. Figure 6(c) shows a worrying trend
toward more instances of common coupling as release 2.6 is coming close. This
trend requires attention of Linux developers.

Lehman’s law of self regulation states that the inherent stabilizing mechanisms
of a software system yield regulations as the system evolves [12]. A superimposed
ripple on the general growth patterns of a software system is a commonly observed
phenomenon. The curves in Figure 6 and 6(c) strongly suggest that the develop-
ment of Linux is self-regulated.

3.3 Evolutionary Change of Program Models

In order to effectively analyze software evolution, researchers need good models of
change. In the following, we will describe a simple model of change based on the
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concept of program models. Given two releases of a software system, � and � , we
use

��� ��� and
��� ��� to represent their program models respectively. We assume

that
�

is an algorithm for generating sets, for example, sets of lines of code and
sets of function calls. We define ���	����
 � 
�� � �� ��� and ��� ����
 � 
�� � �� ��� to denote
the differences between these two releases:

��������
 � 
�� � ��� ����� ��� ����� ��� ���
��� ����
 � 
�� � ��� ����� ��� ����� ��� ���

We then define relative change rates of addition and deletion as:

��������
 � 
�� � � �� �����
! ���	����
 � 
�� � �� ��� !! ��� �"�$# ��� ��� !

�%� ����
 � 
��&� � ��� ���'�
! ��� ����
 � 
�� � ��� ��� !! ��� ���$# ��� ��� !

A program model, in the simplest case, can be an ordered set (sequence) of
lines of source code. A diff tool can be used to determine what is added or deleted
for any two software releases. In the study of the change history of Linux, we used
the graph of function calls and variable uses as the program model of Linux. We
studied 79 Linux releases that were chosen on an approximately monthly basis.

We calculated monthly change rates. We plotted them using stacked areas as
shown in Figure 7. The light grey area represents deletion, and the dark grey area
represents addition. Figure 7(a) displays a view of change rates at the function level
for any two adjacent monthly releases, while Figure 7(b) provides a view of change
rates at the subsystem level. We adopted the source code directory structure as the
subsystem hierarchy. A subsystem is a directory that directly contains at least one
source file. The dependencies between subsystems are calculated based on lower
level function calls and variable uses. Both figures show that Linux is continually
changed in order to meet new requirements. The law of continuing change [12]
applies to Linux. However, the change was not evenly distributed. The two figures
also suggest that the evolution of Linux is punctuated. Substantial changes were
made during the periods of months 5-13, 40-49, and 68-78.

By Linux tradition, even-numbered kernel releases (e.g., 2.4) are stable releases
for production systems, while odd numbered kernel releases (e.g., 2.5) are develop-
ment releases. A notable spike appears between two stable release, Linux-2.4.0 and
Linux-2.4.1. This spike is apparently caused by the integration of various features
experimented during the development periods of releases 2.3.x.

Figure 7 shows that change of Linux is largely targeted at introducing new
features (addition) rather than restructuring the system (deletion). For example,
the spike in month 76 has a larger addition rate and a smaller deletion rate. This
can be mapped to the sudden growth of functions shown in Figure 5(a). In month
26, the deletion rate is grater than the addition rate. The kernel was cleaned up by
removing gratuitous function calls and variable uses during that time.
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4 Related Work

Our linker-based program extraction pipeline is a modified version of the SwagKit
program comprehension pipeline [3,11]. Our pipeline extracts facts at the stage of
code linking, while the SwagKit pipeline extracts facts at the stage of compilation.
Our approach is more cost effective when being used to extract facts from hundreds
of versions of a large software system.

Lehman’s pioneering work on software evolution has resulted in eight laws on
how

�
-type software systems evolve [12,13]. As shown in Section 3, as-linked

views are useful for examining whether the evolution of large software systems
conforms to these laws. In particular, we examined four laws: continuing growth,
growing complexity, self-regulation, and continuing change. Lehman suggests us-
ing the number of modules to measure the size of a large software system, while
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we used the number of functions.
Godfrey et. al. studied the evolution of the Linux kernel [8]. They used the

number of uncommented lines of code (LOC) to measure various aspects of Linux.
In contrast, our data of Linux provides a relational view of the system. We suspect
that our data may be used to produce more interesting results to validate their views
of Linux’s evolution. Also, they studied all source files regardless of what archi-
tecture they are targeted at. We studied only compiled versions for the i386/i686
architecture.

Schach and Offutt studied the maintainability of Linux by counting the num-
ber of instances of common coupling [14]. They did the work manually. Our
linker-based approach to fact extraction is easy to automate and more accurate. In
addition, our studies on Linux’s common coupling further extend their work and
reveal that substantial restructuring has been done to reduce common couplings
before release 2.4.

5 Conclusions

We presented a linker-based approach to program extraction. We customized the
GNU linker ld into ldx to extract facts from binary code. The ldx fact extraction is
accurate, convenient, and easy to automate. It is suitable for analyzing the evolution
of very large software systems. We successfully applied ldx to extract hundreds of
versions of Linux and PostgreSQL.

We conducted empirical studies on the evolution of PostgreSQL and Linux. Our
studies confirmed four of Lehman’s laws and showed several interesting results.
For example, PostgreSQL is growing at a linear rate while Linux still at a super-
linear rate. This is surprising given that Godfrey et.al. has shown the growth Linux
is super-linear during its early development periods. The maintainability of Linux
measured using common coupling gets improved before release 2.4 but shows a
big growth as release 2.6 is approaching. We also presented a set-based model for
studying software change based on ldx data.

Finally, we consider our method of linker-based program extraction provides a
practical means to advance the study of large software system evolution. Now, we
are preparing a web site to host all the data we have collected so far. We hope that
our data can help the software evolution community to promote future research.
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