Browsing and Sear ching Softwar e Ar chitectures

Susan Elliott Sim"
TComputer Science
University of Toronto
simsuz@cs.utoronto.ca

Abstract

Software achitedure visualization tools tend to suppart
browsing, that is, exploration by following concepts. If
architedural diagrams are to be used during daily software
maintenance tasks, these tods also neel to suppat
spedfic fad-finding through seaching. Seaching is
esential to program comprehension and hypothesis
testing. Furthermore, seaching alows users to reverse
the abstradions in architectural diagrams and accessfads
in the underlying program code. In this paper, we
consider the problem of searching and browsing software
architedures using perspedives from information retrieval
and program comprehension. After analyzing our own
user studies and results from the literature, we propcse a
solution: the Seachable Bookshelf, an architedure
visuali zation tool that supparts both navigation styles. We
also present a prototype of our tool which is an extension
of an existing architedure visuali zation todl.

Keywords

software achitedure, information retrieval, program
comprehension, software visualization

1. Introduction

A software achitedure diagramisahigh-level view of a
software system [10, 25]. Common ways of representing
software achitedures include box-and-line drawings,
hierarchicd trees, and nested baxes [11]. They are
structural abstradions of the underlying software; they
itentionally leave out detail s, so that seleded concepts can
be depicted more dealy. In other words, they are
visudlizations of alarge, complex information space—the
program code.

There ae two navigation styles for investigating an
information spaces: seaching and browsing [1§].
Searching, sometimes cdled anayticd seaching, is a
planned adivity with a spedfic goal, such as to find a
particular fad. It is often associated with who, what,
when, and where questions. Seaches involve formulating
queries or looking in indices. In contrast, browsing is an
exploratory strategy, with no fixed endpadnt, and is
relatively unstructured. The knowledge seeker relies on

CharlesL.A. Clarke

"Eledricd and Computer Engineaing
University of Toronto

clclarke@ee@.utoronto.ca {holt, amcox} @plg.uwaterloo.ca

Richard C. Holt* Anthony M. Cox*

*Computer Science
University of Waterloo

serendipity to uncover relevant information. Browsing is
asciated with why and how questions and exploratory
investigations, and involves adions such as flipping
through the pages in a bodk, or following links through
hypertext.

When browsing a software achitedure diagram, such as
one shown in Figure 1, the user explores a software
system via avisudizaion. The visualizdion is generated
by abstrading details from the source ®de to show a
conceptual representation of the system. Since browsing
is alitable for exploring rew domains, such an interfaceis
appropriate for users who are unfamili ar with the software
system. Browsing can be used to investigate the
hierarchicd compaosition of the software system by
moving from subsystem to subsystem. However, if a
software maintainer wanted to lean about the source @de
and not just the achitedure, she would need to accessthe
fads that were used to construct the @stradion. In
software visudization, this process is cdled reverse
abstraction, moving from representations of concepts to
the underlying fads[31]. For instance, to find the lines of
code that is represented by a single alge, the software
maintainer needs to reverse &strad the achitedure
diagram. It is easier to reverse @strad using seaching.
This navigation dtrategy is commonly used by
programmers through text editors and utiliti es, such as
grep . Unfortunately, tools that work with text do not
cary over to dagrams.

In this paper, we examine the problem of browsing and
seaching software achitedure diagrams and the
underlying program code. We use results from our own
user studies, and the literature from various fields to guide
the development of a tod to solve this problem. We
propcse a solution, adding seach cgpabilities to an
existing software achitedure visudizaion tool, and
construct a prototype, the Searchable Bookshelf.

The majority of software achitedure visualizdion tools
only suppat browsing. Tods such as Rigi [20], PUNS
[16], Ddi [14], and Software Bookshelf [8] display
software achitedures and allow users to explore them,
but have only primitive query mechanisms. Other tools
alow the user to query and huild views, such as CIA [4],
the Extensible Dependency Tod Set (EDATS) [33], Inter-
Module Code Analysis gistem (IMCA) [7], LSME [21],

and ManSART [35]. However, these tools operate only
on architedural level fads, they do not use the
architedure & a means for organizing or accessng the
information spaceunderlying the astradion. Indead, we
use similar tools for credaing the Software Landscegpe
diagrams.

Approaching the problem from the oppasite diredion,
there ae toals that fadlit ate searching on source @de, for
instance grep and its variants [13, 34], scruple [22] and
tksee [30], but they operate separately from any
available achitedural or conceptual information. Our
goa here is to alow the end-user to reverse @strad the
information represented in the Software Landscapes, using
both visual and textual data found in the source @de ad
the diagrams.

The Seachable Bookshelf is an extension of the
Software Bookshelf as constructed by Holt et a [12].
Seaches are spedfied using GCL, a query language from
information retrieval, designed for use with structured and
semi-structured texts guch as ource mde [5, 6]. GCL is
distinguished by its suppart for queries that reference bath
structure and content, and by its uniform handling of
structured data, so that diagrams, source @de, and
documentation can be seached using the same interface

In Sedions 2-5, we further discussthe ideaof software
as an information space We use results from information
retrieval, program comprehension, and software
visudlization literature, as well as our own user studies to
motivate the design of the Seachable Bookshelf. The
todl itself, along with an extended example, is described
in Sedion 6, and additional detail s about the devel opment
of the Searchable Bookshelf are givenin Sedion 7.

2. Navigation Styles

Information spaces can take many forms. They may be
physicd, such aslibraries and card caaogues, city streds,
or aregion of wilderness In such environments, browsing
is analogous to taking a walk or looking at a map, while
seaching is analogous to asking a person, consulting a
cad caaogue, or looking p a stred index. Examples of
eledronic information spaces are databases, document
repositories, or the World Wide Web. When these
eledronic information spaces were first developed, the
only way to navigate them was by searching. Users had to
formulate queries using a command languege or fill-in
forms. With the alvent of hypertext and visua displays,
browsing, or surfing, of eledronic information spaces has
becme feasible.

Consider the example of aphysicd library. If auser has
a spedfic bodk in mind and knew something about that
bodk such as its title or author, she can use a seach
strategy. She can look up this information in a cdalogue,
find the bodk’s locdion on the shelves, and oltain the
bodk diredly. On the other hand, if the user has just read
an interesting bodk and wants to know more éout the
topic, she muld use abrowsing strategy. She can @ to

where the bodk was delved and examine others nearby
volumes. This example ill ustrates two pdnts. First, both
seaching and browsing are necessary to using the library
effedively and the spedfic strategy chosen depends on the
task. Seoond, browsing assumes that the information has
been organized so that related elements can be found
together.

These two navigation styles are present in many
eledronic spaces, for instance in the Yahoo index at
http://www.yahoo.com. Yahoo is an index of web pages
organized hierarchicdly by caegories. On its main page,
thereisaseach field and a number of top level caegories
which supparts browsing. Users can seach for categories
and sites of interest by typing keywords into the seach
field.

A software system can aso be onsidered an
information space Instead of bodks or web pages, there
are subsystems, modules, files, functions, variables, and
lines of program code. The most common method o
navigating program sourceis saching, using uiliti es like
grep , or feaures in a text editor. However, once a
organizaion is imposed on the @de, such as class
hierarchy, cdl graphs, or a software achitedure, it is
possble to browse based on structure. A visualization of
the organizaion provides additional suppart for browsing.
The diagram can serve & amap o the cdegories and the
relationships between them. Also, by depicting the
organizaion visually, additional information can be
conveyed. For example, the importance of a wncept or
attribute can be shown using colour or size

In the next three sedions, these two navigation styles
will be discussed, first separately and then together, within
the oontext of information seeking within a software
system.

3. Browsing Softwar e Architectures

There ae a number of tods for browsing software
architedures, such as Rigi, Dali, the Software Bookshelf,
and the Portable Bookshelf (PBS). Although there ae
differences between the tods, they are nceptualy
similar in that they all display software systems as graphs,
and these graphs can be ecplored to view the achitedure
of the software system. We will use PBS to illustrate
browsing of architecure diagrams, since we have studied
users interadions with this tool and the Seachable
Bookshelf is an extension of thistod. PBSisaduadly a
set of tods for generating software achitedures from
program source It uses a Java-cgpable web browser as
user interface so users can uriformly access program
source, documentation, and architedural diagrams cdled
Software Landscapes [24].

Figue 1 is a Software Landscgpe of the FS (File
System) subsystem of the Linux™ operating system
kernel. Althoughthisdiagramis shown grayscde, colours
are used to distinguish between boxes and lines. Modules
or files are represented as blue redangles with a crner

folded dowvn. Subsystems are drawn as gray redangles
with tabs, like a file folder. Green edges represent
variable references and red edges represent function cdls
between redangles. The graph is drawn using a nested
box formalism, meaning that subsystems can contain other
subsystems or modules. In the diagram, the FS subsystem
contains four subsystems and a module. In order to see
the internal organization of one of these smaller boxes, the
user can click on it with a mouse. A new landscape is
displayed showing the subsystems and modules contained
in the originally seleded bax. If the seleded box is afile,
the lines of code in the file ae displayed.

Figure 1: Software Landscape Diagram

The landscgpe dso shows the dients and suppliers of
the subsystem. The dients are the row of boxes sown at
the top d the landscape; They use resources, such as
variables and functions, provided by the cantra
subsystem. Similarly, the suppliers are the row of boxes
at the bottom of the landscape; They provide resources to
the central subsystem. Clients and suppliers can be dther
subsystems or modules. In the diagram, the FS subsystem
has 5 client subsystems and 6 supplier subsystems. By
using this convention, we can show the central subsystem
in context.

A Software Landscgpe is generated by a series of static
analysis tools. A parser credes a fadbase @mnsisting of
function cdls and variable references. The hierarchicd
decomposition of the software is recvered by clustering
files into subsystems using manual and automatic
techniques. The resulting information is drawn and
adjusted using a Java gplet.

Landscepes and PBS are designed to be browsed. The
basic mode of navigation is point-and-click, just as with
other World Wide Web constructs. Seaches are limited
to asingle Landscape & atime. It follows Shneiderman’s
mantra for visual information seeking: “Overview first,
zoom and filter, then details on demand.” [26], p. 523
The user is first presented with an overview of the
software system and she can zoom in on subsystems of

interest. Edges and nodes can be filtered aut seledively
and additional information is available through mouse
clicks.

3.1 User studies

Portable Bookshelves have been constructed for a
number of large systems at IBM Canada Ltd. Typicdly,
these systems have several hurdred thousand lines of code
and are maintained by 10-20 people. The PBS usualy
contains the program code, some documentation, and
Software Landscgpes. We have studied PBS users both
formally and informally over the past 3 yeas [3, 29, 32].
PBS was observed being wsed in a number of tasks, but
there ae four tasks in which it worked particularly well:
famili arizing rewcomers to the maintenance team with the
documented software system, providing experienced team
members with an overview of an urfamiliar subsystem,
validating relations between subsystems, and verifying
reengineaing dedsions.

Newcomers, or software immigrants, found Software
Landscepes particularly useful during their first two weeks
on the tean [27]. The pictures gave them a good
overview of the system and a sense of the relations
between the parts. Both of these alvantages are typicd of
tools with a browsing interface [18]. Projed veterans
would also use the landscgpes before modifying an
unfamiliar subsystem. They would use the diagrams to
help them relate their knowledge of other parts of software
system to the subsystem of interest. However, beyond
providing an initial overview, landscgpes were not used
during adual maintenance tasks, such as defed repairs or
fedure aldition, because there was a mismatch between
the information provided by the landscgpes and the
information required by maintainers to perform these
tasks. Landscepes provide astrad, highlevel
information, and this information tends to be conceptually
distant from the mncrete, low-level information provided
by source ®de [27]. This gap is noteworthy becaise it
underlines the fad that a maintainer’s essential task is to
modify the source @de. Therefore, in order for landscgpes
to help with maintenance tasks, the users must be ale to
relate the concepts that they depict to source mde. In
other words, they neal to be &le to reverse @strad the
diagrams.

Senior developers have been observed using landscapes
to chedk for anomalous edges. These alges denote a
relationship between two modules or subsystems, where
there should not be one. These aomalies, which are
found by browsing, serve & the basis for seaches to
identify the offending lines of code [3]. During
reengineaing, for example, re-implementing subsystems
in a modern objed-oriented programming language,
landscgpes are mnsulted to verify that they do not
contradict any dedsions made. For instance, a maintainer
uses them to chedk that there ae no edges to the re-
designed subsystem that are not acaunted for [27].

In using Landscepes, there were anumber of situations
in which browsing was not sufficient for the task at hand.
Often when viewing a Software Landscepe, a software
maintainer wanted to relate the boxes and arrows to the
source ®de they represented. In the cae of boxes, this
guestion could be answered by following branches of the
hierarchy to its leaves, which were files. In the cae of
arrows, this question can only be axswered with difficulty
using seach toadls, such as grep , that are outside of PBS.
In another situation, a software maintainer isolated a
problem to a spedfic file aad wanted to know what
subsystem that file belonged to. This question could not
be eaily answered by browsing the landscapes. These
examples ill ustrate situations requiring an architedure-
guided seach fadlity.

4. Searching Software Architectures

We now turn to the second navigational style, searching.
It is a style that we commonly use with source mde,
databases, and indices. Seaching is a powerful
information seeking strategy. Its popularity is evident in
the number of seach tods and seach spedfication, or
query, languages available. Many studies have been
performed in the field of information retrieval to
charaderize drategies used to query databases and
textbases [18]. Seaching is flexible axd can be used to
gather varying amounts of information from one or many
sources. The main drawbad of seaching is that it is
difficult to oktain an overview of the information space
Also, this mode of interadion is better suited to locating
spedfic fads rather than geaning concepts.

Software achitedure visualization tods have limited
seach fadlities. Since we ould not study software
developers and maintainers as they seached software
architedures, we studied how they search source ®de.
We onducted a survey using a questionnaire on a web
page to colled information on the todls used to search, the
strengths and weaknesses of these todls, and aneadates of
seaches [28]. The results of the survey most germane to
this discusson are the seach targets and the tools used for
seaching.

The most common seach targets were: function
definitions (or bodes), all uses of afunction, all uses of a
variable, and variable definitions. These search targets
were identified repeaedly by respondents, but most did
not use spedalized tools such as tagging uiliti es or cross
reference generators that would simplify these seaches.
The three most common toadls used for searching were the
text editor, grep (a UNIX regular expresson matching
utility) and find (also a UNIX tility, aternatively File
Find under Microsoft Windows). Although respondents
were looking for semanticdly significant elements in the
source ®de, they spedfied their seaches using only
strings or regular expressons.

A seach fadlity for a software achitecure must be ale
to spedfy searches for meaningful elements in the source

code such as functions and variables. Such seaches are
difficult using only strings or regular expressons to
spedfy the targets. Consider the problem of searching for
references to the variable "i" in a set of C source files.
The grep command “grep i*.c " printsall the lines
on which the charader "i" appeas. This command may
produce a onsiderable volume of output, most of which
will not contain a reference to the variable. It is aso
difficult to expressa query that may match aaossmultiple
lines, such as "find all functions that contain a cdl to bah
fork() and exe)". A more powerful query language, or a
form-based interfacewith mouse adions will be necessary
to suppart semantic searches.

5. Combining Browsing and Sear ching

In the previous two subsedions, we discussed how
browsing and searching are both necessary to navigate an
information space The navigation style chosen depends
on the task at hand. Users browse to explore the
information and to understand concepts. They seach to
find particular fads and to answer spedfic questions.
Furthermore, users often switch between these strategies
to acomplish a single task. For example, a user may
perform a seach to find a starting point for browsing. Or
during browsing, a user may find an appropriate keyword
to use for a seach.

These styles of navigation suppat different program
comprehension strategies. Currently, the dominant model
of program comprehension is the integrated model which
states that programmers use top-down and bdtom-up
comprehension strategies as dictated by the available
information and frequently switch between them[15, 19].

A programmer uses a bottom-up strategy by reading the
source @de and huilding abstrad concepts by chunking
together low-level information [23]. A software
maintainer using bottom-up program comprehension
would require seaching. Bottom-up comprehension
relies on finding fads in the code and building concepts
with them. Both strategies move from lines of source
code to abstradions.

A programmer uses a top-down strategy by employing
domain knowledge to huild a set of expedations about the
program. These expedations are mapped onto feaures or
beaconsin the source mde[2, 17]. A software maintainer
using a top-down strategy would require browsing. Top-
down moves from concepts to spedfic code dements.
Both dtrategies involve the user moving from high-level
concepts to program source

Just as navigating an information space requires both
browsng and seaching, the integrated program
comprehension model states that programmers use both
top-down and bdtom-up strategies. Since software
maintai ners use both bottom-up and top-down strategies to
comprehend code, there should be aunified interfacefor
seaching and browsing the software achitedure.
Becaise the programmer frequently switches between

X f=] Metscape: PBS Bookshelf: linux (¥2.0.27a)

EE

File Edit View Go Bookmarks Options Directory Window

Help

Go To Top
Landscape

= —| linux

linux -

The litz ndscagpe.

hd

et Be Bl o o s s ™0 ddo @5 7t a7

Legendl 0ueries|

fs (subsystem)

Entities
Wirtuzl Filesystern
- pravides access to many different hardware D roclule

e (4

Project: linnx Release: V2.0.27a

Maintained by: Landscape Viewer 5.5 Started.

| | - subsystem

brewste ing.toronto.edn
Lastupdated: 25 Ang 1998

4 Books

@ PBS Home Page
@ Landscape
@ Bookshelf Introduction

Click entity box for description.

Fielations

I~ — useproc (1)

.

|

@ Linux Books

® Limnux Links

@ Linux Newsgroups

@ Limw Architecture Papers
@ Extracted Facts

9¢ Subsystems
@ fs.55
@ init.ss

@ ipc.ss
@ lib.ss

@ mm ss

e

Subsystem Tree: £

linux {
fs.s5

fs—drv.ss {
block.ss {
block-hd .ss
block-ide.ss
cdrom.ss {
cdrom -Aztech.ss i

i

Figure 2: The Searchable Bookshelf

code cmmprehension strategies, she should not have to
change todls or views to switch navigation modes.

In the next sedion, we describe the Seachable
Bookshelf and how it suppats both browsing and
seaching. In the following sedion, we present the
technicd details of the design and construction of our
toal.

6. The Searchable Bookshelf

The interfaceto the Seachable Bookshelf of the Linux
kernel is drown in Figure 2. The @mlumn along the left
side mntains the table of contents of the Bookshelf and
indicaes what information is available. The landscegpe
diagram is found the large window in the right. The
interfaceto the seach toal isthe HTML form found in the
small window on the bottom. It consists of a text box to
enter the query, a scrolling seledion box from which to
spedfy seach targets, and a button to adivate the search.

The oontents of the list of seach targets is generated
from the same information as the aurrently displayed

landscgpe. It can contain subsystems, modules, or files.
In Figure 2, the seven choices in the target list correspond
to the seven subsystems in the Software Landscgpe.
These doices are used to restrict the search to spedfic
parts of the software system. If no target is pedfied, the
entire system is eached. Queries made in the form are
passd to the grug tod using a Perl script via the CGI.
Information returned by the query is also displayed within
the frame.

The grug tod is an extension of grep , and combines
regular expresson seach with semantic and structural
seach cagpabiliti es taken from the GCL query languege.
In addtion to regular expresson and literal string
matching, grug can seach for more meaningful
information such as dedaration, definition, and use of
variables, functions, modules and subsystems.

Recdl our discusson ealier of seaching for all
references to the variable "i". This sach can be
performed in grug with the query:

VARREF >" "

The ">" symbd should be read as "containing'.
Expressons enclosed in double quotes (') match on
complete tokens such as variable or function names.
Using grug, it is possble to distinguish between variable
dedarations and references. Dedarations of the variable
"i" may beidentified usingthe grug query:
VARDEF >" "

Both queries return the lines where the variable "i"
appeas. Charader positions may be used to identify
other structural elements, such as saches for functions

containing the referenceto the variablei.
FUNDEF > (VARREF >" i)

More @mplex combinations are dso possble, for
instance
FUNDEF > ((FUNREF > "fork") AND
(FUNREF > "exec"))
which finds all functions that contain a cal to bah fork()
and exeq).

By combining grug with Software Landscgpes, we
crege a software achitedure visuaizdion tod that
supparts both navigation styles, browsing and searching.
Transitions between different styles can occur with eadh
new mouse dick isaued by the user.

6.1 Extended Example

In this sibsedion, we demonstrate how the Seachable
Bookshelf isused in aredistic task to ill ustrate aseledion
of itsfunctionality. The example shows both the browsing
and seaching capabiliti es of the Searchable Bookshelf
and how they can be used together.

In the murse of building a PBS for the Linux kernel, we
observed that there was ome achitedural erosion in the
file system subsystem. The device drivers use aFacale
design pattern, meaning that al drivers are meant to be
accesxd through single interface[9] This interface
allows higher level file system functionality, such as
logicd and virtual file systems, to be nstructed
independently of the implementation details of any
particular device In other words, the same file structure
can then be used aaossdifferent storage devices, such as
hard disk drives and floppy disk drives. However, the
ISO File System (ISOFS) subsystem of the logicd file
system that does not follow this convention. The ISOFS
subsystem implements the SO 9660 file system for CD-
ROM files and accesses resources from the CD-ROM
device driver diredly, instead of using the Facale
interface[1].

Lucy the programmer has been gven the task of
carrying out this architedural repair. The purpose of an
architedural repair is to restore the original design of the
system. In this case, the task is to repair the Facale
design pattern, so that the ISOFS does not accessthe CD-
ROM driver diredly. Lucy has previous experience with
a UNIX operating system, is familiar with Linux, and has
used the Seachable Bookshelf extensively. Lucy begins
by browsing the landscapes to find the |SOFS subsystem.

In the diagram of the ISOFS subsystem, she sees that the
devices subsystem is indeal a supplier, as it is locaed
beneah the central system. At this point, she can perform
avisua query, that is, a manipulation of avisual elements
to see relationships more dealy. Lucy clicks on the
devices sibsystem to seled it, then she dicks on the
badktracebutton to find out what modules in the ISOFS
subsystem use the CDROM subsystem. The result is a
singe green edge from the inode.c module to the
Driver subsystem. Lucy now knows that she needs to find
a variable reference between two files, so she can begin
seaching.

She neadsto find a variable that is dedared in the driver
subsystem and is used in the inode.c module, so she

types the foll owing query:
(VARNAM < (VARDEF < SUBSYS ("driver")))
> (def @ (VARREF < (MODULE (" inode.c")

< SUBSYS (" isofs"))))
In English the query would be “find all the variable names
that can be found in a variable definition in the driver
subsystem that is also referenced by the inode.c
module in the isofs subsystem.”

In the precaling query, the majority of terms,
VARNAM, VARDEF, SUBSYS, VARREF, and
MODULE, ae GCL macos to acces indexed
information in the fadbase. Two of the maaos, SUBSY'S
and MODULE, take parameters. The “>" symbad should
be read as “contained in” and the “<” symbad as
“containing.” The “def @ " expresson is used follow
cross references between the variables and their
definitions. The fadbase, GCL query language, and
maaos are explained in greaer detail in Sedion 7.

Lucy wants to seach the entire system, so she does not
seled any targets before dicking the query button. This
guery does not return any matches, so Lucy thinks for a
moment before redizing that the edge could also represent
use of a variable type or maao. She proceeals to make
some more queries based on thisidea First, she searches
for the type usage:

(TYPNAM < (TYPDEF < SUBSYS
("driver"))) > (def @ (TYPREF < (MODULE
(" inode.c") < SUBSYS (" isofs™))))
An Endlish trandation of the query is “find the names of
all the types that are defined in the driver subsystem and is
also used in avariable definition in the inode.c module
of the isofs sibsystem.”

This ®ach returns the type name “cdrom_multi sesson”
which is found in the file cdrom.h. Although she has
found a match, Lucy will also seach for any uses of
macaosaswell. This achis gmilar in to the ones above
and yields the match “CDROM_LBA”, also from the file
cdrom.h .

Althoughthe achitedure can be repaired in a number of
ways, Lucy acaomplish the task by creding a new header
file for the ISOFS subsystem. Armed with her search
results, Lucy copies these definitions into a new healer
file that is part of the in the ISOFS subsystem, and

modifies inode.c to use this new header. To keep the
code maintainable, she puts a omment into bah the old
and the new healer files indicaing that portions of the
code have been copied, and that changes sould be
propagated.

7. Adding Search to an Architecture
Browsing tool

In this dion, we present some of the technicd details
of the seach medianism in the Seachable Bookshelf.
We begin by providing a rationale for seleding GCL as
the query language and an overview of the language itself.
This ®dion also includes a description of the todl to
generate the fadbase for the Searchable Bookshelf and the
syntax of GCL.

The two most common search spedficaions in text
editors and simple seach todls such as grep , are literal
string matching and regular expresson matching. Both
reguar expresson and string matching operate by
comparing a spedfied target to a file or set of files and
returning matching records. Often, a record is defined as
aline of text, but it can also be defined as a word, a data
record, or file.

Althoughthese two seach spedficaion medanisms are
commonly used, we found that they had two main
shortcomings when used to seach software achitedures.
The first drawbadk is they cannot be used to search for
semantic dements. These mechanisms are gnostic about
the structure of text being seached. Consequently, there
iSho syntax to restrict searches to a particular structural or
syntadic dement. The secmnd drawbadk of these two
medanisms is that the matches they return come in fixed
units or recrds. Depending on the task, the size of the
match can vary. Sometimesit is the name of a function, at
other times, it is gatement block, and at still others, it can
be an entire function definiti on.

GCL overcomes the two drawbadks given above. Its
syntax can be used to seach both structure and text.
Since GCL is programming languege- and schema-
independent, it can be used with different software
systems and the various documents asociated with them,
such as ource ®de, documentation, and landscepes.

This query language was designed for use with
structured and semi-structured text, such as web data,
bibliographies, and email [5, 6]. The query language
reguires charader-level markup of the text to indicae the
boundaries of structural elements. For example, HTML
tags can serve @& the markup for a web dacument.
Alternatively, a document can be marked up implicitly by
building an index. We use this last approach with the
Seachable Bookshelf, since PBS also has an urderlying
fadbase. In this tod a fadbase, or index, is constructed
using an extended version of the GNU C Compiler. Some
of the fads that are extraded are definitions and uses of
maaos, variables, functions Included with eat fad, are
the fil e positions at which ead element occurs.

In sedion 7.1, the method we use to generate the
fadbase is described. In sedion 7.2, we describe the
syntax of the GCL query language itself.

7.1 Factbase Generation

We etended the GNU C compiler so that a set of
fadbase fil es (one for eat sourcefil€) is generated during
compilation if the "-FB" flag is used. This usage is
analogousto the “-d” flag which is used to generate output
for use with a debugger. While making this change, we
found that it was necessary to modify the C pre-procesor
to emit both a dharader map and a set of fads describing
its adivities, such as maao expansion, file inclusion,
locdions of comments. The charader map describes the
adual source of every charader in the pre-processd file
so that fads generated in the compiler proper can be
mapped badk to their source files. Fads are generated
only for the compiled pations of the cde.

Often, more than one fad is colleded for ead statement
of interest and in addition to the fads themselves, the
fadbase dso contains information about their locations.
Consider the foll owing variable dedaration:

o 1 2 3 4 5 6 7 8 9
i n t c o u n t

The fadbase would contain fads about the variable
definition, type of the variable, and the name of the
variable. Each of the fads would have astart and end
locaions in terms of file positions, and these would be
denoted in the fadbase using SGML-style tags. The start
of the variable definitions would be denoted with the tag
<vardef> and asociated with file postion O.
Correspondingly, the end of the variable definition would
be denoted as </vardef> and aswociated with the file
position 9. Thus, the ommplete list of fads for the dbove
dedaration would be:

Faa File Position Fad File Position
<vardef> 0 </vardef> 9
<vartyp> 0 </vartyp> 2
<varnam> 4 </varnam> 8

More fads would be mlleded about other statements,
such as a function definition, which would includes fads
on function name, return type, arguments, types of the
arguments. The parser generates over 60 dfferent types
of fads, about maaos, maao cdls, function dedarations,
definitions, and cdls, variable definitions, dedarations,
and cdl's, type definitions and uses, and blocks.

Locaions are recorded as file positions becaise grug
performs matches at the charader level. The file positions
can be used to retrieve the matches from afile quickly and
eally. These locaions are used to enforce arule for
matches. This rule will be discused in the next
subsedion.

7.2 Thegrug Tool

There ae four aspeds of the grug tod that need to be
understood basic queries, the matching rules for

solutions, the operators to form complex queries, and the
maaos. These mncepts will be explained with the ad o
the code sample shown in Figures 3 and 4. The program
prints command line aguments to standard output. Figure
3 shows the original program code, while Figure 4 shows
the same program code with the fil e positions label ed.

A basic grug query is a literal string or regular
expresson to be matched. Searches can be performed on
the source @de or on the tags in the fadbase. These
seaches function in the same way as commonly found
tools and utiliti es, but it should be noted that only the
match itself is returned and rather than the line, or record,
containing the match. In technicd terms, the solution to a
guery is a set of extents or ranges in the text of the
leftmost shortest matches. For example, the query
“main” on the cde sample has the solution “main” at
file positions 5-8. Double quoted strings match complete
tokens. Regular expressons neal to be enclosed in bacdk
guotation marks and match anywhere. The query
“arg.* would return matches to argc from file
positions 14-17, and 5063, and matches to argv from file
positions 27-30, 93-96, and 123126.

1 void
2 main(int argc, char * argv(])
3 {
4 int i;
5
6 for(i=1; i< argc-—1;i++)
7
8 printf("%s ", argv[1i]);
9
10
11 printf("% s\n", argv[i]);
12 }
Figure 3: Program Source for echo.c

0O |1 |2 |3 |4 |5 |6 |7 |8 |9
o v o |i d \n m a |i n
1 i n |t a r g |c |,
2 ¢ h a 'r * a r g
3 v |]) \n { &t i n 't
4 i ; \n \n @t f o r
5 i = 1 i <
6 a r g |c - 1 i
7+ +) n &t { \Wn %t \t p
8 r i n |t f (“ % 'S
9 |” |, a r g v [i]
10) ; n t } \Wn \n %t p r
11 i n |t f (“ % s |\ n
12 |7 |, a r g v [i]
13) 5+ W} \n Z

Figure 4: echo.c with File Positions Labeled

An important rule @out solutions is that extents may
overlap, but they cannot nest. In other words, a solution
cannot itself contain an entire solution. However, a
solution can begin within the extent of another solution, so
long as it ends outside of that extent. This rule is the
reason that both start and end pasitions must be stored in
the fadbase. This distinction becomes important with
complex queries that return multi ple solutions.

The next significant feaure of grug are the operators
which are used to combine queries we can ohtain solutions
other than simple strings. These longer solutions must
begin and end with solutions to basic queries, i.e. literal
strings and regular expressons. The operators fall into
three céegories: ordering, combination, and containment.

There is one ordering operating, “... ”. It can be used
to seach for an extent that begins and ends with a query.
For instance the query " printf(C..."); would
return every cdl to printf, that is, file positions 79-102 and

108-124, inthe example. The search
“<vardef>" ... “</ vardef>"

would match every variable definition in the fadbase.
There ae two combination operators, AND and OR
Again, solutions must begin and end with a match to a
guery. For example, the query “argv” AND “ argc”
match file pasitions 14-30, and return “argc, char *
argv ". Finaly, there ae four containment operators:
containing, contained in, not containing, and not contained
in, represented by >, <, />, and /< respedively. The
query (printfC...");\n°) > ‘\n® would
return al cdls to printf containing “\n”. In the example,
only the second cadl to printf would be returned.

Maaos in grug alow users to chunk frequently used,
but complex, searches to simplify their use. The utility
can retrieve maaos from afile. Different sets of maaos
could be defined for different purposes, such as email,
bibliographies, and programming languages. For
example, LINE= ™" .. °§ defines a maao
cdled LINE that returns ead line in the file. This maao
can be used for grep-like seaches, such as

LINE<® arg.*

which matches every line ontaining the spedfied
regular expresson. Maaos are dso used to simplify
accessto information in the fadbase. Recdl the variable
definition from the previous subsedion. There were three
different fads that were denoted by pairs of tags. Using
only the tags, a search for the dedaration of the variable
“count” would be written as:

(“< vardef>"..."</ vardef>") >
((*< varnam>"...“</ varnam>") > “count”)

But if we introducethe following maaos:
VARDEF = “< vardef>" ... “</
VARNAM = “< varnam>" ... “</

the query would be simplified to:

VARDEF > (VARNAM > “count”)

As illustrated in the extended example, pre-defined
maaos were the primary way to access $ructural and
semantic information. For ead type of fad in the

vardef>"
varnam>"

fadbase, a @rresponding maao is defined. The same
maao names could be used in different programming
languages, so queries for the same fads would remain
consistent, thus making grug programming language
independent. The grug tod can also be used to seach
documentation in addition to source mde and landscapes.
We plan to use this ability to extend the information space
accessd by future versions of the Searchable Bookshelf.

8. Summary and Future Work

We developed the Seachable Bookshelf by taking a
number of concepts from information retrieval and
applying them to software. The first notion is the
information space The written data of a software system,
source ®de, documentation, Software Landscgpes, etc.,
can be thought of as an information space The secmnd
notion is that an information space ca only be fully
utilized when both rnavigation styles, browsing and
seaching, are available. Browsingis used to explore the
information space ad to understand high-level concepts.
Seaching is used to find spedfic fads and to identify
low-level details. Browsing is most effedive when some
conceptual organizaion has been imposed on the data,
which alows the users to follow relationships between
points in the information space Software achitecure
diagrams, such as Software Landscape, impose such an
organizdion, and browsing is a cmmonly available
navigation style in software achitedure visualizaion
todls. In contrast, seaching is a navigation style that has
long been avail able on program code, but is largely absent
in architedure visualizaion toods. The Seachable
Bookshelf is an architedure visudization tod that
supparts both navigation styles.

The Seachable Bookshelf was constructed by adding a
seach tod to PBS, an existing architedure visualizaion
too that suppated browsing, but had limited seach
cgpabiliti es. Seaches are spedfied using the GCL query
language, also taken from information retrieval. The main
feaure of this languege is it can be used to seach both
structure and text. There ae two key reasons for adding
seachingto PBS. The first reason is that the achitedure
diagrams bemme more germane to daily maintenance
tasks, such as defed repairs and feaure alditions, because
users can reverse the @stradions in the diagrams. By
reverse astrading, software maintainers uncover the fads
that were dustered together to make a oncept, and it is
these fads that they require to modify the source @de. In
other words, browsing is needed to understand the
concepts, but seaching is nealed to uncover the fads
underlying the @ncepts. The secnd reason is the two
navigation styles, browsing and seaching, parallel the two
primary program comprehension strategies, top-down and
bottom-up, respedively. The dominant model of program
comprehension, the integrated model, states that
programmers use the dtrategy that fits the available
information and switch fredy between them. Hence the

navigation styles sipparted by the Searchable Bookshelf
are consistent with program comprehension strategies.

Our first prototype of the Seachable Bookshelf was
completed in the Spring of 1998[22] Experience with the
prototype led to several design changes (notably the
addressng of elements at the darader level) that are
included in the description above ad are being
incorporated into the aurrent version.

The Seachable Bookshelf and its underlying technology
can be improved in a number of ways. First and foremost,
the usability of the Seachable Bookshelf has not been
validated. Although we relied on our own user studies
and similar studies in the literature to design the
Seachable Bookshelf, we have not tested our tod with
profesdonal software maintainers. The second isale is
that there is no medchanism in our toal to suppart leaning
of the GCL query language. Currently, there is a steg
leaning curve between simple queries for strings and
regular expressons and complex ones, like those in the
extended example. Third, we ae working to improve the
guery language to ded with source mde fedures, such as
blocks and reaursive patterns.

Acknowledgments

Thiswork is supparted by NSERC and sponsored by the
Consortium for Software Engineaing Reseach (CSER).
Thanks to Ivan Bowman for his advice on the Linux
kernel.

9. References

[1] |. T. Bowman, R. C. Holt, and N. Brewster, “Linux as
a Case Study: Its Extraded Software Architedure,”
presented at 21st Internationa Conference on
Software Engineeaing, Los Angeles, CA, 1999

[2] R. Brooks, “ Towards atheory of the cmmprehension o
computer programs,” International Journal of Man-
Machine Sudies, vol. 18, pp. 543554, 1983

[3] |. Carmichad, V. Tzerpos, and R. C. Holt, “Design
Maintenance Unexpeded Architedural Interadions,”
presented at International Conference on Software
Maintenance, Nice, France 1995

[4] Y.-F. Chen, M. Y. Nishimoto, and C. V.
Ramamoorthy, “The C Information Abstradion
System,” IEEE Transactions on Software
Engineering, vol. 16, pp. 325334, 1990

[5] C. L. A. Clake, G. V. Cormadk, and F. J. Burkowski,
“An Algebra for Structured Text Seach and a
Framework for its Implementation,” The Computer
Journal, vol. 38, pp. 43-56, 1995

[6] C. L. A. Clake, G. V. Cormadk, and F. J. Burkowski,
“Schema-Independent Retrieval from Heterogeneous
Structured Text,” presented a Fourth Annuwe
Sympaosium on Document Analysis and Retrieval, Las
Vegas, NV, 1995

[7] S. W. Dietrich and F. W. Cdlliss “A Conceptua
Design for a Code Analysis Knowledge Base’
Journal of Software Maintenance: Research and
Practice, vol. 4, pp. 16-36, 1995

(8]

(9]

(10]

(11

[12]

(13

(14]

[19]

[16]

[17]

(18]

(19

[20]

(23]

[22]

(23

[24]

[29]

[26]

P. Finnigan, R. C. Holt, I. Kaas, S. Ker, K.
Kontogiannis, H. Mller, J. Mylopoudos, S. Perelgut,
M. Stanley, and K. Wong, “The Software Bookshelf,”
IBM Systems Journal, vol. 36, pp. 564593 1997.

E. Gamma, R. Helm, R. Johrson, and J. Vlissdes,
Design Patterns: Elements of Reusable Object-
Oriented Software: Addison-Wesley, 1995

D. Garlan and M. Shaw, Software Architecture:
Perspectives on an Emerging Discipline: Prentice-
Hall Press 1996

D. Harel, “On Visual Formalisms,” Communications
of the ACM, vol. 31, pp. 514530, 1988

R. C. Holt, “Software Bookshelf: Overview and
Construction,” , 1997.

J. Ja&kkola ad P. Kilpeldinen, “The Sgrep Home
Page,” Department of Computer Science, University
of Helsinki, Helsinki, Finland
http://www.hel sinki.fi/ ~jj agkkol/sgrep.html, 1999

R. Kazman and S. J. Carriere, “View Extradion and
View Fusion in Architedural Understanding,”
presented at 5th International Conference of Software
Reuse, Victoria, BC, 1998

S. Letovsky, “Cognitive Proceses in Program
Comprehension,” presented at Empiricd Studies of
Programmers, First Workshop, 1986

Linore and Cleveland, “A program understanding
suppat environment,” IBM Systems Journal, vol. 28,
pp. 324-344, 1989

D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway,
Mental Models and Software Maintenance. Norwood,
New Jersey: Ablex Publishing, 1986

G. Marchionini, Information Seeking in Electronic
Environments: Cambridge University Press 1995

A. v. Mayrhauser and A.-M. Vans, “Program
Comprehension During Software Maintenance and
Evolution,” Computer, pp. 44-45, 1995

H. A. Muller, M. A. Orgun, S. R. Tilley, and J. S. Uhl,
“A Reverse-Engineging Approach to Subsystem
Structure ldentification,” Software Maintenance:
Research and Practice, vol. 5, pp. 181-204, 1993

G. C. Murphy and D. Notkin, “Lightweight Lexicd
Source Model Extradion,” ACM Transactions of
Software Engineering and Methodology, vol. 5, pp.
262-292 1996

S. Paul and A. Prakesh, “A Framework for Source
Code Seach Using Program Patterns,” |EEE
Transactions on Software Engineering, vol. 20, pp.
463475 1994

N. Pennington, “Stimulus Strutures and Menta
Representations in Expert Comprehension o
Computer Programs,” Cognitive Psychology, vol. 19,
pp. 295341, 1987

D. A. Penny, “The Software Landscgpe: A Visua
Formalism for Programming-in-the-Large,” Ph.D.
Thesis in Department of Computer Science Toronto:
University of Toronto, 1992

D. E. Perry and A. L. Wolf, “Founditions for the
Study of Software Architedure,” ACM SIGSOFT, vol.
17, pp. 40-52, 1992

B. Shneiderman, Designing the User Interface for
Effective Human-Computer Interaction, 3rd ed:
Addison-Wesley, 1998

[27]

(28]

[29]

(30]

(31

(32

(33

(34]

(39

S. E. Sm, “Suppating Multiple Program
Comprehension Strategies During Software
Maintenance” Master's Thesis in Department of
Computer Science Toronto: University of Toronto,
1998

S. E. Sm, C. L. A. Clarke, and R. C. Holt,
“Archetypal Source Code Seaches: A Survey of
Software Developers and Maintainers,” presented at
6th International Workshop on Program
Comprehension, Ischig, Italy, 1998

S. E. Sim and R. C. Holt, “The Ramp-Up Problem in
Software Projeds: A Case Study of How Software
Immigrants Naturalize” presented a 20th
International Conference on Software Engineeing,
Kyoto, Japan, 1998

J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil
“An Examination o Software Engineging Work
Pradices,” presented a CASCON97, Toronto,
Canada, 1997.

J. Stasko, J. Domingue, and M. H. Brown, “ Software
Visudizaion: Programming as a Multimedia
Experience” : The MIT Press 1998

V. Tzepos, R. C. Holt, and G. Farmaner, “Web-Based
Presentation o Hierarchic Software Architedure,”
presented at Workshop on Software Engineaing on
the World Wide Web, Boston, MA, 1997

N. Wilde, A. Chapman, and R. Richardson, “The
Extensible Dependency Anaysis Too Set: A
Knowledge Base for Understanding Industria
Software,” International Journal of Software
Engineering and Knowledge Engineering, vol. 4, pp.
521-534, 1994

S Wu and U. Manber, “Agrep-- A Fast
Approximately Pattern-Matching Todl,” presented at
USENIX Winter 1992 Technicd Conference, San
Francisco, U.S.A., 1992

A. Yeh, D. Harris, and M. Chase, “Manipulated
Remvered Software Architedure Views,” presented at
1%th International Conference on Software
Engineaing, Boston, MA, 1997.

