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Abstract

Software architecture visualization tools tend to support
browsing, that is, exploration by following concepts.  If
architectural diagrams are to be used during daily software
maintenance tasks, these tools also need to support
specific fact-finding through searching.  Searching is
essential to program comprehension and hypothesis
testing.  Furthermore, searching allows users to reverse
the abstractions in architectural diagrams and access facts
in the underlying program code.  In this paper, we
consider the problem of searching and browsing software
architectures using perspectives from information retrieval
and program comprehension.  After analyzing our own
user studies and results from the literature, we propose a
solution: the Searchable Bookshelf, an architecture
visualization tool that supports both navigation styles.  We
also present a prototype of our tool which is an extension
of an existing architecture visualization tool.
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1. Introduction

A software architecture diagram is a high-level view of a
software system [10, 25].  Common ways of representing
software architectures include box-and-line drawings,
hierarchical trees, and nested boxes [11].  They are
structural abstractions of the underlying software; they
itentionally leave out details, so that selected concepts can
be depicted more clearly.  In other words, they are
visualizations of a large, complex information space—the
program code.

There are two navigation styles for investigating an
information spaces: searching and browsing [18].
Searching, sometimes called analytical searching, is a
planned activity with a specific goal, such as to find a
particular fact.  It is often associated with who, what,
when, and where questions.  Searches involve formulating
queries or looking in indices.  In contrast, browsing is an
exploratory strategy, with no fixed endpoint, and is
relatively unstructured.  The knowledge seeker relies on

serendipity to uncover relevant information.  Browsing is
associated with why and how questions and exploratory
investigations, and involves actions such as flipping
through the pages in a book, or following links through
hypertext.

When browsing a software architecture diagram, such as
one shown in Figure 1, the user explores a software
system via a visualization.  The visualization is generated
by abstracting details from the source code to show a
conceptual representation of the system.  Since browsing
is suitable for exploring new domains, such an interface is
appropriate for users who are unfamili ar with the software
system.  Browsing can be used to investigate the
hierarchical composition of the software system by
moving from subsystem to subsystem.  However, if a
software maintainer wanted to learn about the source code
and not just the architecture, she would need to access the
facts that were used to construct the abstraction.  In
software visualization, this process is called reverse
abstraction, moving from representations of concepts to
the underlying facts [31].  For instance, to find the lines of
code that is represented by a single edge, the software
maintainer needs to reverse abstract the architecture
diagram.  It is easier to reverse abstract using searching.
This navigation strategy is commonly used by
programmers through text editors and utiliti es, such as
grep .  Unfortunately, tools that work with text do not
carry over to diagrams.

In this paper, we examine the problem of browsing and
searching software architecture diagrams and the
underlying program code.  We use results from our own
user studies, and the literature from various fields to guide
the development of a tool to solve this problem.  We
propose a solution, adding search capabiliti es to an
existing software architecture visualization tool, and
construct a prototype, the Searchable Bookshelf.

The majority of software architecture visualization tools
only support browsing.  Tools such as Rigi [20], PUNS
[16], Dali [14], and Software Bookshelf [8] display
software architectures and allow users to explore them,
but have only primitive query mechanisms.  Other tools
allow the user to query and build views, such as CIA [4],
the Extensible Dependency Tool Set (EDATS) [33], Inter-
Module Code Analysis system (IMCA) [7], LSME [21],



and ManSART [35].  However, these tools operate only
on architectural level facts, they do not use the
architecture as a means for organizing or accessing the
information space underlying the abstraction.  Indeed, we
use similar tools for creating the Software Landscape
diagrams.

Approaching the problem from the opposite direction,
there are tools that facilit ate searching on source code, for
instance grep  and its variants [13, 34], scruple [22] and
tksee  [30], but they operate separately from any
available architectural or conceptual information.  Our
goal here is to allow the end-user to reverse abstract the
information represented in the Software Landscapes, using
both visual and textual data found in the source code and
the diagrams.

The Searchable Bookshelf is an extension of the
Software Bookshelf as constructed by Holt et al [12].
Searches are specified using GCL, a query language from
information retrieval, designed for use with structured and
semi-structured texts such as source code [5, 6].  GCL is
distinguished by its support for queries that reference both
structure and content, and by its uniform handling of
structured data, so that diagrams, source code, and
documentation can be searched using the same interface.

In Sections 2-5, we further discuss the idea of software
as an information space.  We use results from information
retrieval, program comprehension, and software
visualization literature, as well as our own user studies to
motivate the design of the Searchable Bookshelf.  The
tool itself, along with an extended example, is described
in Section 6, and additional details about the development
of the Searchable Bookshelf are given in Section 7.

2. Navigation Styles

Information spaces can take many forms.  They may be
physical, such as libraries and card catalogues, city streets,
or a region of wilderness.  In such environments, browsing
is analogous to taking a walk or looking at a map, while
searching is analogous to asking a person, consulting a
card catalogue, or looking up a street index. Examples of
electronic information spaces are databases, document
repositories, or the World Wide Web.  When these
electronic information spaces were first developed, the
only way to navigate them was by searching.  Users had to
formulate queries using a command language or fill -in
forms.  With the advent of hypertext and visual displays,
browsing, or surfing, of electronic information spaces has
become feasible.

Consider the example of a physical li brary.  If a user has
a specific book in mind and knew something about that
book such as its title or author, she can use a search
strategy.  She can look up this information in a catalogue,
find the book’s location on the shelves, and obtain the
book directly.  On the other hand, if the user has just read
an interesting book and wants to know more about the
topic, she could use a browsing strategy.  She can go to

where the book was shelved and examine others nearby
volumes.  This example ill ustrates two points.  First, both
searching and browsing are necessary to using the library
effectively and the specific strategy chosen depends on the
task.  Second, browsing assumes that the information has
been organized so that related elements can be found
together.

These two navigation styles are present in many
electronic spaces, for instance, in the Yahoo index at
http://www.yahoo.com.  Yahoo is an index of web pages
organized hierarchically by categories.  On its main page,
there is a search field and a number of top level categories
which supports browsing.  Users can search for categories
and sites of interest by typing keywords into the search
field.

A software system can also be considered an
information space.  Instead of books or web pages, there
are subsystems, modules, files, functions, variables, and
lines of program code.  The most common method of
navigating program source is searching, using utiliti es like
grep , or features in a text editor.  However, once an
organization is imposed on the code, such as class
hierarchy, call graphs, or a software architecture, it is
possible to browse based on structure.  A visualization of
the organization provides additional support for browsing.
The diagram can serve as a map of the categories and the
relationships between them.  Also, by depicting the
organization visually, additional information can be
conveyed.  For example, the importance of a concept or
attribute can be shown using colour or size.

In the next three sections, these two navigation styles
will be discussed, first separately and then together, within
the context of information seeking within a software
system.

3. Browsing Software Architectures

There are a number of tools for browsing software
architectures, such as Rigi, Dali , the Software Bookshelf,
and the Portable Bookshelf (PBS).  Although there are
differences between the tools, they are conceptually
similar in that they all display software systems as graphs,
and these graphs can be explored to view the architecture
of the software system.  We will use PBS to ill ustrate
browsing of architecture diagrams, since we have studied
users’ interactions with this tool and the Searchable
Bookshelf is an extension of this tool.  PBS is actually a
set of tools for generating software architectures from
program source.  It uses a Java-capable web browser as
user interface, so users can uniformly access program
source, documentation, and architectural diagrams called
Software Landscapes [24].

Figure 1 is a Software Landscape of the FS (File
System) subsystem of the Linux™ operating system
kernel.  Although this diagram is shown grayscale, colours
are used to distinguish between boxes and lines.  Modules
or files are represented as blue rectangles with a corner



folded down.  Subsystems are drawn as gray rectangles
with tabs, like a file folder.  Green edges represent
variable references and red edges represent function calls
between rectangles.  The graph is drawn using a nested
box formalism, meaning that subsystems can contain other
subsystems or modules.  In the diagram, the FS subsystem
contains four subsystems and a module.  In order to see
the internal organization of one of these smaller boxes, the
user can click on it with a mouse.  A new landscape is
displayed showing the subsystems and modules contained
in the originally selected box.  If the selected box is a file,
the lines of code in the file are displayed.

Figure 1: Software Landscape Diagram
The landscape also shows the clients and suppliers of

the subsystem.  The clients are the row of boxes shown at
the top of the landscape; They use resources, such as
variables and functions, provided by the central
subsystem.  Similarly, the suppliers are the row of boxes
at the bottom of the landscape; They provide resources to
the central subsystem.  Clients and suppliers can be either
subsystems or modules.  In the diagram, the FS subsystem
has 5 client subsystems and 6 supplier subsystems.  By
using this convention, we can show the central subsystem
in context.

A Software Landscape is generated  by a series of static
analysis tools.  A parser creates a factbase consisting of
function calls and variable references.  The hierarchical
decomposition of the software is recovered by clustering
files into subsystems using manual and automatic
techniques.  The resulting information is drawn and
adjusted using a Java applet.

Landscapes and PBS are designed to be browsed.  The
basic mode of navigation is point-and-click, just as with
other World Wide Web constructs.  Searches are limited
to a single Landscape at a time.  It follows Shneiderman’s
mantra for visual information seeking: “Overview first,
zoom and filter, then details on demand.” [26], p. 523
The user is first presented with an overview of the
software system and she can zoom in on subsystems of

interest.  Edges and nodes can be filtered out selectively
and additional information is available through mouse
clicks.

3.1 User studies

Portable Bookshelves have been constructed for a
number of large systems at IBM Canada Ltd.  Typically,
these systems have several hundred thousand lines of code
and are maintained by 10-20 people.  The PBS usually
contains the program code, some documentation, and
Software Landscapes.  We have studied PBS users both
formally and informally over the past 3 years [3, 29, 32].
PBS was observed being used in a number of tasks, but
there are four tasks in which it worked particularly well:
famili arizing newcomers to the maintenance team with the
documented software system, providing experienced team
members with an overview of an unfamili ar subsystem,
validating relations between subsystems, and verifying
reengineering decisions.

Newcomers, or software immigrants, found Software
Landscapes particularly useful during their first two weeks
on the team [27].  The pictures gave them a good
overview of the system and a sense of the relations
between the parts.  Both of these advantages are typical of
tools with a browsing interface [18].  Project veterans
would also use the landscapes before modifying an
unfamili ar subsystem.  They would use the diagrams to
help them relate their knowledge of other parts of software
system to the subsystem of interest.  However, beyond
providing an initial overview, landscapes were not used
during actual maintenance tasks, such as defect repairs or
feature addition, because there was a mismatch between
the information provided by the landscapes and the
information required by maintainers to perform these
tasks.  Landscapes provide abstract, high-level
information, and this information tends to be conceptually
distant from the concrete, low-level information provided
by source code [27].  This gap is noteworthy because it
underlines the fact that a maintainer’s essential task is to
modify the source code. Therefore, in order for landscapes
to help with maintenance tasks, the users must be able to
relate the concepts that they depict to source code.  In
other words, they need to be able to reverse abstract the
diagrams.

Senior developers have been observed using landscapes
to check for anomalous edges.  These edges denote a
relationship between two modules or subsystems, where
there should not be one.  These anomalies, which are
found by browsing, serve as the basis for searches to
identify the offending lines of code [3].  During
reengineering, for example, re-implementing subsystems
in a modern object-oriented programming language,
landscapes are consulted to verify that they do not
contradict any decisions made.  For instance, a maintainer
uses them to check that there are no edges to the re-
designed subsystem that are not accounted for [27].



In using Landscapes, there were a number of situations
in which browsing was not suff icient for the task at hand.
Often when viewing a Software Landscape, a software
maintainer wanted to relate the boxes and arrows to the
source code they represented.  In the case of boxes, this
question could be answered by following branches of the
hierarchy to its leaves, which were files.  In the case of
arrows, this question can only be answered with diff iculty
using search tools, such as grep , that are outside of PBS.
In another situation, a software maintainer isolated a
problem to a specific file and wanted to know what
subsystem that file belonged to.  This question could not
be easily answered by browsing the landscapes.  These
examples ill ustrate situations requiring an architecture-
guided search facilit y.

4. Searching Software Architectures

We now turn to the second navigational style, searching.
It is a style that we commonly use with source code,
databases, and indices.  Searching is a powerful
information seeking strategy.  Its popularity is evident in
the number of search tools and search specification, or
query, languages available.  Many studies have been
performed in the field of information retrieval to
characterize strategies used to query databases and
textbases [18].  Searching is flexible and can be used to
gather varying amounts of information from one or many
sources.  The main drawback of searching is that it is
diff icult to obtain an overview of the information space.
Also, this mode of interaction is better suited to locating
specific facts rather than gleaning concepts.

Software architecture visualization tools have limited
search faciliti es.  Since we could not study software
developers and maintainers as they searched software
architectures, we studied how they search source code.
We conducted a survey using a questionnaire on a web
page to collect information on the tools used to search, the
strengths and weaknesses of these tools, and anecdotes of
searches [28].  The results of the survey most germane to
this discussion are the search targets and the tools used for
searching.

The most common search targets were: function
definitions (or bodies), all uses of a function, all uses of a
variable, and variable definitions.  These search targets
were identified repeatedly by respondents, but most did
not use specialized tools such as tagging utiliti es or cross
reference generators that would simpli fy these searches.
The three most common tools used for searching were the
text editor, grep  (a UNIX regular expression matching
utilit y) and find  (also a UNIX utilit y, alternatively File
Find under Microsoft Windows).  Although respondents
were looking for semantically significant elements in the
source code, they specified their searches using only
strings or regular expressions.

A search facilit y for a software architecture must be able
to specify searches for meaningful elements in the source

code such as functions and variables.  Such searches are
diff icult using only strings or regular expressions to
specify the targets. Consider the problem of searching for
references to the variable "i" in a set of C source files.
The grep  command “grep i *.c ” prints all the lines
on which the character "i" appears. This command may
produce a considerable volume of output, most of which
will not contain a reference to the variable.  It is also
diff icult to express a query that may match across multiple
lines, such as "find all functions that contain a call to both
fork() and exec()".  A more powerful query language, or a
form-based interface with mouse actions will be necessary
to support semantic searches.

5. Combining Browsing and Searching

In the previous two subsections, we discussed how
browsing and searching are both necessary to navigate an
information space.  The navigation style chosen depends
on the task at hand.  Users browse to explore the
information and to understand concepts.  They search to
find particular facts and to answer specific questions.
Furthermore, users often switch between these strategies
to accomplish a single task.  For example, a user may
perform a search to find a starting point for browsing.  Or
during browsing, a user may find an appropriate keyword
to use for a search.

These styles of navigation support different program
comprehension strategies.  Currently, the dominant model
of program comprehension is the integrated model which
states that programmers use top-down and bottom-up
comprehension strategies as dictated by the available
information and frequently switch between them[15, 19].

A programmer uses a bottom-up strategy by reading the
source code and building abstract concepts by chunking
together low-level information [23].  A software
maintainer using bottom-up program comprehension
would require searching.  Bottom-up comprehension
relies on finding facts in the code and building concepts
with them.  Both strategies move from lines of source
code to abstractions.

A programmer uses a top-down strategy by employing
domain knowledge to build a set of expectations about the
program.  These expectations are mapped onto features or
beacons in the source code [2, 17].  A software maintainer
using a top-down strategy would require browsing.  Top-
down moves from concepts to specific code elements.
Both strategies involve the user moving from high-level
concepts to program source.

Just as navigating an information space requires both
browsing and searching, the integrated program
comprehension model states that programmers use both
top-down and bottom-up strategies.  Since software
maintainers use both bottom-up and top-down strategies to
comprehend code, there should be a unified interface for
searching and browsing the software architecture.
Because the programmer frequently switches between



code comprehension strategies, she should not have to
change tools or views to switch navigation modes.

In the next section, we describe the Searchable
Bookshelf and how it supports both browsing and
searching.  In the following section, we present the
technical details of the design and construction of our
tool.

6. The Searchable Bookshelf

The interface to the Searchable Bookshelf of the Linux
kernel is shown in Figure 2.  The column along the left
side contains the table of contents of the Bookshelf and
indicates what information is available.  The landscape
diagram is found the large window in the right.  The
interface to the search tool is the HTML form found in the
small window on the bottom.  It consists of a text box to
enter the query, a scrolli ng selection box from which to
specify search targets, and a button to activate the search.

The contents of the list of search targets is generated
from the same information as the currently displayed

landscape.  It can contain subsystems, modules, or files.
In Figure 2, the seven choices in the target list correspond
to the seven subsystems in the Software Landscape.
These choices are used to restrict the search to specific
parts of the software system.  If no target is specified, the
entire system is searched.  Queries made in the form are
passed to the grug  tool using a Perl script via the CGI.
Information returned by the query is also displayed within
the frame.

The grug  tool is an extension of grep , and combines
regular expression search with semantic and structural
search capabiliti es taken from the GCL query language.
In addition to regular expression and literal string
matching, grug  can search for more meaningful
information such as declaration, definition, and use of
variables, functions, modules and subsystems.

Recall our discussion earlier of searching for all
references to the variable "i".  This search can be
performed in grug  with the query:

VARREF > " i"

Figure 2: The Searchable Bookshelf



The ">" symbol should be read as "containing".
Expressions enclosed in double quotes (") match on
complete tokens such as variable or function names.
Using grug, it is possible to distinguish between variable
declarations and references.  Declarations of the variable
"i" may be identified using the grug  query:

VARDEF > " i"
Both queries return the lines where the variable "i"

appears.  Character positions may be used to identify
other structural elements, such as searches for functions
containing the reference to the variable i.

FUNDEF > (VARREF > " i")
More complex combinations are also possible, for
instance:

FUNDEF > ((FUNREF > "fork") AND
(FUNREF > "exec"))

which finds all functions that contain a call to both fork()
and exec().

By combining grug  with Software Landscapes, we
create a software architecture visualization tool that
supports both navigation styles, browsing and searching.
Transitions between different styles can occur with each
new mouse click issued by the user.

6.1 Extended Example

In this subsection, we demonstrate how the Searchable
Bookshelf is used in a realistic task to ill ustrate a selection
of its functionality.  The example shows both the browsing
and searching capabiliti es of the Searchable Bookshelf
and how they can be used together.

In the course of building a PBS for the Linux kernel, we
observed that there was some architectural erosion in the
file system subsystem.  The device drivers use a Facade
design pattern, meaning that all drivers are meant to be
accessed through single interface.[9]  This interface
allows higher level file system functionality, such as
logical and virtual file systems, to be constructed
independently of the implementation details of any
particular device.  In other words, the same file structure
can then be used across different storage devices, such as
hard disk drives and floppy disk drives.  However, the
ISO File System (ISOFS) subsystem of the logical file
system that does not follow this convention.  The ISOFS
subsystem implements the ISO 9660 file system for CD-
ROM files and accesses resources from the CD-ROM
device driver directly, instead of using the Facade
interface [1].

Lucy the programmer has been given the task of
carrying out this architectural repair.  The purpose of an
architectural repair is to restore the original design of the
system.  In this case, the task is to repair the Facade
design pattern, so that the ISOFS does not access the CD-
ROM driver directly.  Lucy has previous experience with
a UNIX operating system, is famili ar with Linux, and has
used the Searchable Bookshelf extensively.  Lucy begins
by browsing the landscapes to find the ISOFS subsystem.

In the diagram of the ISOFS subsystem, she sees that the
devices subsystem is indeed a supplier, as it is located
beneath the central system.  At this point, she can perform
a visual query, that is, a manipulation of a visual elements
to see relationships more clearly.  Lucy clicks on the
devices subsystem to select it, then she clicks on the
backtrace button to find out what modules in the ISOFS
subsystem use the CDROM subsystem.  The result is a
single green edge from the inode.c  module to the
Driver subsystem.  Lucy now knows that she needs to find
a variable reference between two files, so she can begin
searching.

She needs to find a variable that is declared in the driver
subsystem and is used in the inode.c  module, so she
types the following query:
(VARNAM < (VARDEF < SUBSYS ("driver")))
> ( def @ (VARREF < (MODULE (" inode.c")

< SUBSYS (" isofs"))))
In English the query would be “ find all the variable names
that can be found in a variable definition in the driver
subsystem that is also referenced by the inode.c
module in the isofs subsystem.”

In the preceding query, the majority of terms,
VARNAM, VARDEF, SUBSYS, VARREF, and
MODULE, are GCL macros to access indexed
information in the factbase.  Two of the macros, SUBSYS
and MODULE, take parameters.  The “>” symbol should
be read as “contained in” and the “<” symbol as
“containing.” The “def @ ” expression is used follow
cross references between the variables and their
definitions.  The factbase, GCL query language, and
macros are explained in greater detail i n Section 7.

Lucy wants to search the entire system, so she does not
select any targets before clicking the query button.  This
query does not return any matches, so Lucy thinks for a
moment before realizing that the edge could also represent
use of a variable type or macro.  She proceeds to make
some more queries based on this idea.  First, she searches
for the type usage:

(TYPNAM < (TYPDEF < SUBSYS
("driver"))) > ( def @ (TYPREF < (MODULE

(" inode.c") < SUBSYS (" isofs"))))
An English translation of the query is “ find the names of
all the types that are defined in the driver subsystem and is
also used in a variable definition in the inode.c  module
of the isofs subsystem.”

This search returns the type name “cdrom_multisession”
which is found in the file cdrom.h.  Although she has
found a match, Lucy will also search for any uses of
macros as well .  This search is similar in to the ones above
and yields the match “CDROM_LBA”, also from the file
cdrom.h .

Although the architecture can be repaired in a number of
ways, Lucy accomplish the task by creating a new header
file for the ISOFS subsystem.  Armed with her search
results, Lucy copies these definitions into a new header
file that is part of the in the ISOFS subsystem, and



modifies inode.c  to use this new header.  To keep the
code maintainable, she puts a comment into both the old
and the new header files indicating that portions of the
code have been copied, and that changes should be
propagated.

7. Adding Search to an Architecture
Browsing tool

In this section, we present some of the technical details
of the search mechanism in the Searchable Bookshelf.
We begin by providing a rationale for selecting GCL as
the query language and an overview of the language itself.
This section also includes a description of the tool to
generate the factbase for the Searchable Bookshelf and the
syntax of GCL.

The two most common search specifications in text
editors and simple search tools such as grep , are literal
string matching and regular expression matching.  Both
regular expression and string matching operate by
comparing a specified target to a file or set of files and
returning matching records.  Often, a record is defined as
a line of text, but it can also be defined as a word, a data
record, or file.

Although these two search specification mechanisms are
commonly used, we found that they had two main
shortcomings when used to search software architectures.
The first drawback is they cannot be used to search for
semantic elements.  These mechanisms are agnostic about
the structure of text being searched.  Consequently, there
is no syntax to restrict searches to a particular structural or
syntactic element.  The second drawback of these two
mechanisms is that the matches they return come in fixed
units or records.  Depending on the task, the size of the
match can vary.  Sometimes it is the name of a function, at
other times, it is statement block, and at still others, it can
be an entire function definition.

GCL overcomes the two drawbacks given above.  Its
syntax can be used to search both structure and text.
Since GCL is programming language- and schema-
independent, it can be used with different software
systems and the various documents associated with them,
such as source code, documentation, and landscapes.

This query language was designed for use with
structured and semi-structured text, such as web data,
bibliographies, and email [5, 6].  The query language
requires character-level markup of the text to indicate the
boundaries of structural elements.  For example, HTML
tags can serve as the markup for a web document.
Alternatively, a document can be marked up implicitly by
building an index.  We use this last approach with the
Searchable Bookshelf, since PBS also has an underlying
factbase.  In this tool a factbase, or index, is constructed
using an extended version of the GNU C Compiler.  Some
of the facts that are extracted are definitions and uses of
macros, variables, functions  Included with each fact, are
the file positions at which each element occurs.

In section 7.1, the method we use to generate the
factbase is described.  In section 7.2, we describe the
syntax of the GCL query language itself.

7.1 Factbase Generation

We extended the GNU C compiler so that a set of
factbase files (one for each source file) is generated during
compilation if the "-FB" flag is used.  This usage is
analogous to the “-d” flag which is used to generate output
for use with a debugger.  While making this change, we
found that it was necessary to modify the C pre-processor
to emit both a character map and a set of facts describing
its activities, such as macro expansion, file inclusion,
locations of comments.  The character map describes the
actual source of every character in the pre-processed file
so that facts generated in the compiler proper can be
mapped back to their source files.  Facts are generated
only for the compiled portions of the code.

Often, more than one fact is collected for each statement
of interest and in addition to the facts themselves, the
factbase also contains information about their locations.
Consider the following variable declaration:

0 1 2 3 4 5 6 7 8 9
i n t c o u n t ;
The factbase would contain facts about the variable

definition, type of the variable, and the name of the
variable.  Each of the facts would have a start and end
locations in terms of file positions, and these would be
denoted in the factbase using SGML-style tags.  The start
of the variable definitions would be denoted with the tag
<vardef> and associated with file position 0.
Correspondingly, the end of the variable definition would
be denoted as </vardef> and associated with the file
position 9.  Thus, the complete list of facts for the above
declaration would be:
Fact File Position Fact File Position
<vardef> 0 </vardef> 9
<vartyp> 0 </vartyp> 2
<varnam> 4 </varnam> 8

More facts would be collected about other statements,
such as a function definition, which would includes facts
on function name, return type, arguments, types of the
arguments.  The parser generates over 60 different types
of facts, about macros, macro calls, function declarations,
definitions, and calls, variable definitions, declarations,
and calls, type definitions and uses, and blocks.

Locations are recorded as file positions because grug
performs matches at the character level.  The file positions
can be used to retrieve the matches from a file quickly and
easily.  These locations are used to enforce a rule for
matches.  This rule will be discussed in the next
subsection.

7.2 The grug Tool

There are four aspects of the grug  tool that need to be
understood: basic queries, the matching rules for



solutions, the operators to form complex queries, and the
macros.  These concepts will be explained with the aid of
the code sample shown in Figures 3 and 4.  The program
prints command line arguments to standard output. Figure
3 shows the original program code, while Figure 4 shows
the same program code with the file positions labeled.

A basic grug  query is a literal string or regular
expression to be matched.  Searches can be performed on
the source code or on the tags in the factbase.  These
searches function in the same way as commonly found
tools and utiliti es, but it should be noted that only the
match itself is returned and rather than the line, or record,
containing the match. In technical terms, the solution to a
query is a set of extents or ranges in the text of the
leftmost shortest matches.  For example, the query
“main”  on the code sample has the solution “main” at
file positions 5-8.  Double quoted strings match complete
tokens.  Regular expressions need to be enclosed in back
quotation marks and match anywhere.  The query
` arg.*`  would return  matches to argc from file
positions 14-17, and 50-63, and matches to argv from file
positions 27-30, 93-96, and 123-126.

Figure 3: Program Source for echo.c

0 1 2 3 4 5 6 7 8 9
0 v o i d \n m a i n (

1 i n t a r g c ,

2 c h a r * a r g

3 v [ ] ) \n { \t i n t

4 i ; \n \n \t f o r (

5 i = 1 ; i <

6 a r g c - 1 ; i

7 + + ) \n \t { \n \t \t p

8 r i n t f ( “ % s

9 ” , a r g v [ i ]

10 ) ; \n \t } \n \n \t p r

11 i n t f ( “ % s \ n

12 ” , a r g v [ i ]

13 ) ; \n } \n ^Z

Figure 4: echo.c with File Positions Labeled

An important rule about solutions is that extents may
overlap, but they cannot nest.  In other words, a solution
cannot itself contain an entire solution.  However, a
solution can begin within the extent of another solution, so
long as it ends outside of that extent.  This rule is the
reason that both start and end positions must be stored in
the factbase.  This distinction becomes important with
complex queries that return multiple solutions.

The next significant feature of grug  are the operators
which are used to combine queries we can obtain solutions
other than simple strings.  These longer solutions must
begin and end with solutions to basic queries, i.e. literal
strings and regular expressions.  The operators fall i nto
three categories: ordering, combination, and containment.

There is one ordering operating, “ ... ” .  It can be used
to search for an extent that begins and ends with a query.
For instance, the query ` printf(`...`);` would
return every call to printf, that is, file positions 79-102 and
108-124, in the example.  The search

“< vardef>” ... “</ vardef>”
would match every variable definition in the factbase.
There are two combination operators, AND and OR.
Again, solutions must begin and end with a match to a
query.  For example, the query “ argv” AND “ argc”
match file positions 14-30, and return “argc, char *
argv ” .  Finally, there are four containment operators:
containing, contained in, not containing, and not contained
in, represented by >, <, /> , and /<  respectively.  The
query (` printf(`...`);\n`) >  ‘\\n`  would
return all calls to printf containing “ \n” .  In the example,
only the second call to printf would be returned.

Macros in grug  allow users to chunk frequently used,
but complex, searches to simpli fy their use.  The utilit y
can retrieve macros from a file.  Different sets of macros
could be defined for different purposes, such as email ,
bibliographies, and programming languages.  For
example, LINE =  `^` ... `$`  defines a macro
called LINE that returns each line in the file.  This macro
can be used for grep-like searches, such as

LINE < ` arg.*`
 which matches every line containing the specified

regular expression.  Macros are also used to simpli fy
access to information in the factbase.  Recall the variable
definition from the previous subsection.  There were three
different facts that were denoted by pairs of tags.  Using
only the tags, a search for the declaration of the variable
“count” would be written as:

(“< vardef>”...”</ vardef>”) >
((“< varnam>”...“</ varnam>”) > “count”)
But if we introduce the following macros:

VARDEF = “< vardef>” ... “</ vardef>”
VARNAM = “< varnam>” ... “</ varnam>”

the query would be simpli fied to:
VARDEF > (VARNAM > “count”)

As ill ustrated in the extended example, pre-defined
macros were the primary way to access structural and
semantic information.  For each type of fact in the

1  void
2  main( int argc, char * argv[])
3  {
4    int i;
5
6    for( i = 1; i < argc – 1; i++)
7    {
8      printf("%s ", argv[ i]);
9    }
10
11   printf("% s\n", argv[ i]);
12 }



factbase, a corresponding macro is defined.  The same
macro names could be used in different programming
languages, so queries for the same facts would remain
consistent, thus making grug  programming language
independent.  The grug  tool can also be used to search
documentation in addition to source code and landscapes.
We plan to use this abilit y to extend the information space
accessed by future versions of the Searchable Bookshelf.

8. Summary and Future Work

We developed the Searchable Bookshelf by taking a
number of concepts from information retrieval and
applying them to software.  The first notion is the
information space.  The written data of a software system,
source code, documentation, Software Landscapes, etc.,
can be thought of as an information space.  The second
notion is that an information space can only be fully
utili zed when both navigation styles, browsing and
searching, are available.  Browsing is used to explore the
information space and to understand high-level concepts.
Searching is used to find specific facts and to identify
low-level details.  Browsing is most effective when some
conceptual organization has been imposed on the data,
which allows the users to follow relationships between
points in the information space.  Software architecture
diagrams, such as Software Landscape, impose such an
organization, and browsing is a commonly available
navigation style in software architecture visualization
tools.  In contrast, searching is a navigation style that has
long been available on program code, but is largely absent
in architecture visualization tools.  The Searchable
Bookshelf is an architecture visualization tool that
supports both navigation styles.

The Searchable Bookshelf was constructed by adding a
search tool to PBS, an existing architecture visualization
tool that supported browsing, but had limited search
capabiliti es.  Searches are specified using the GCL query
language, also taken from information retrieval.  The main
feature of this language is it can be used to search both
structure and text.  There are two key reasons for adding
searching to PBS.  The first reason is that the architecture
diagrams become more germane to daily maintenance
tasks, such as defect repairs and feature additions, because
users can reverse the abstractions in the diagrams.  By
reverse abstracting, software maintainers uncover the facts
that were clustered together to make a concept, and it is
these facts that they require to modify the source code.  In
other words, browsing is needed to understand the
concepts, but searching is needed to uncover the facts
underlying the concepts.  The second reason is the two
navigation styles, browsing and searching, parallel the two
primary program comprehension strategies, top-down and
bottom-up, respectively.  The dominant model of program
comprehension, the integrated model, states that
programmers use the strategy that fits the available
information and switch freely between them.  Hence, the

navigation styles supported by the Searchable Bookshelf
are consistent with program comprehension strategies.

Our first prototype of the Searchable Bookshelf was
completed in the Spring of 1998.[22]  Experience with the
prototype led to several design changes (notably the
addressing of elements at the character level) that are
included in the description above and are being
incorporated into the current version.

The Searchable Bookshelf and its underlying technology
can be improved in a number of ways.  First and foremost,
the usabilit y of the Searchable Bookshelf has not been
validated.  Although, we relied on our own user studies
and similar studies in the literature to design the
Searchable Bookshelf, we have not tested our tool with
professional software maintainers.  The second issue is
that there is no mechanism in our tool to support learning
of the GCL query language.  Currently, there is a steep
learning curve between simple queries for strings and
regular expressions and complex ones, like those in the
extended example.  Third, we are working to improve the
query language to deal with source code features, such as
blocks and recursive patterns.
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