
Architecture Survey

Name of system Chapter 9: Continuous Integration (Hudson/Jenkins) *****

Reviewer Zhiyuan Wu

Date Oct 30
th

, 2011

§1 Introduction

1.1 Purpose and Introduction

Agile software development is founded on the notion of rapid iterative and incremental development.

However, rapid development is often wrought with deviations from specifications. To detect and

prevent frequent check-ins from causing these deviations, Continuous Integration software is used. It

automatically performs repeated builds and testing. As such, CI software allows developers to become

aware of and take action upon errors as soon as new code is submitted.

CI software can be used to facilitate integration and functional testing. It can also used to conduct cross-

platform testing. Furthermore, it can also be used to conduct slow-running and data intensive tests.

Continuous Integration systems shine in these situations because these forms of testing are often

difficult to perform on an individual basis.

In addition to the above standard features, Continuous Integration software sometimes sports many

different plugins. For example:

• Deployment mechanisms

• Bug tracking mechanisms

The Wilson book discusses four CI software implementations:

• BuildBot

• CDash

• PonyBuild

• Hudson/Jenkins

This report will go into detail about the architecture of Hudson/Jenkins, the most widely used CI system

in industry. I will motivate the general CI system through architectural examples from Hudson/Jenkins.

1.2 Book Chapter

Author of software Kohsuke Kawaguchi [Hudson/Jenkins]

Author of book chapter Titus Brown · Rosangela Canino-Koning

Five star rating of book chapter Very valuable. Easy to follow. *****

This chapter very clearly explained the difference in architecture between the four CI

systems. It also demonstrated how this difference in architecture matched their usage

domain. This book chapter explained the form-follows-function nature of Continuous

Integration software architecture design. This design paradigm is characterized by how

each of the four software implementations of Continuous Integration systems

1.3 History of Hudson and Jenkins

In 2001, Kohsuke Kawaguchi was employed by Sun Microsystems and started work on Hudson. As agile

development becomes more prevalent, Hudson became widely adopted in industry.

In January 2010, Oracle purchased Sun. During this time, the Hudson community wished to move the

Hudson repository from Java Net, owned by Oracle, to Github, a large open source repository. Oracle

blocked this move. This among other reasons, the Hudson community decided to fork out this project

and thus started the Jenkins project. An interesting anecdote is that eventually Hudson, Oracle’s fork,

eventually also moved to Github.

The difference between these two forks is quite striking. The Oracle branch, Hudson, sports very good

documentation. Jenkins on the other hand is more feature rich and moves at a faster pace. Jenkins

however, has poor documentation and adhoc release intervals.

These two forks entertain a rare comparison between corporate and true open source development

cultures.

1.4 Basic metrics

 Jenkins Hudson

KLOC 1.3 MLoc 350 KLoc

Project start-up 2010 fork from Hudson 2001

Number of major releases
435 (396 since the

Jenkins/Hudson Split)

401 (includes releases

before the Jenkins fork)

Number of developers 524 173

Size of user community or

number of installations

High, many corporations and software development shops use

Jenkins/Hudson for integration testing

Major stakeholders Kohsuke Kawaguchi Oracle

Use of concurrency Simultaneous build jobs on multiple slaves

Implementation language Java

Supporting software Cross Platform Standalone, requires Java 5 JVM

§2 Architecture

2.1.1 Reference Architecture

The reference architecture of the general CI system is

shown on the right. Boxes are major components.

Arrows represent information flow.

All CI systems have a build mechanism that describes and schedule builds. This mechanism forms the

core competency. Mostly, they consist of:

• Build configuration

• Scheduling

• Build execution

Independently, they also have various additional systems for:

• Build monitoring

• Build reporting

2.1.2 Distributed Architecture

In most cases, the build execution, monitoring and report

can be distributed to slave nodes. As such, many CI

mechanisms use a distributed architecture.

Often, for one software instance, multiple builds may be

required. Different builds are required for different

operating system support, such as Mac, Windows and

Linux. They may be required for different browser

support, such as Firefox, IE and Safari.

Much differentiation in CI systems dwells in how

distribution control is implemented. For instance, Jenkins

and Hudson have a master node that coordinates builds.

Section 2.2 describes a high level scenario that

demonstrates the master-slave relationship in Jenkins and Hudson.

2.2 High level scenarios

Most Continuous Integration systems implement a clear

separation of control between the master and slave nodes.

In CDash, control belongs to the individual slavves. The master is

merely a centralized reporting server.

Buildbot has a powerful master that produces explicit build scripts

for slaves to run. The slaves merely run these scripts as tasks and

return the results the master. In this case, control resides in the

master.

In Hudson and Jenkins, control is distributed. Jobs can be

submitted to either the master or a slave. Never the less, the master is capable of querying idle slaves

to take part in build jobs. If no slaves are available, the master would do it by itself. The diagram to the

left describes the master-slave coordination scenario. This flexible scenario is also true for PonyBuild.

2.3 Control Flow

Continuous Integration software implements a pipeline model at

the highest level. They always involve:

• Checking code from some code repository

• Building the code

• Running appropriate tests

• Building appropriate build and test metrics

The diagram in the right is the build pipeline for Jenkins and

Hudson. Arrows represent information flow. Rectangles

represent actions and rhombuses represent decisions.

2.4 Data structures or algorithms

An interesting addition to Jenkins and Hudson is its capability to

accept plugins. These plugins add capabilities like:

• Multi-language builds (eg: Java, Python, Erlang)

• Multi-platform builds (eg: Mac, Windows, Linux)

• Specific reporting formats

• Additional security layers

• Additional logging mechanisms.

This extensibility has given Jenkins and Hudson a competitive

edge over the user specific CDash, feature constrained Buildbot

and experimental but unreliable PonyBuild.

§3 Style and Methodology

3.1 Major evolutionary changes

CI systems typically have a common architecture. Looking back through the release notes of Hudson,

most of the major features have existed since 2002. Each new release merely added bug fixes and

feature refinements.

3.2 Architectural style

Jenkins and Hudson are written in Java. On a low level, they follow a very OO programming style. At the

high level, they follow a pipeline architectural style. This style is illustrated in 2.3 and 2.4.

3.3 Performance bottlenecks

The Hudson system is heavily reliant on the master node. The master can easily become a single point

of failure. Nevertheless, it is possible to directly query a slave node to process single jobs. However,

single slave nodes do not have the capability to delegate tasks the same way the master node does.

3.4 Real time [Parts of system critical for fast enough response?]

Since CI systems are essentially processing background builds, latency is not a major issue. As for real

time processing, the Master-Slave architecture allows for parallel processing of multiple build jobs.

Since builds do not need to communicate with each other or with the master, there is no complicated

synchronization mechanism.

3.5 Notation for architecture

The notations for architecture are stated within the images shown.

3.6 Methodology

For lack of a better term, Hudson and Jenkins both are open source and use an open source paradigm.

This methodology involves quick turnover releases. Bugs and fixes are pushed out as soon as they are

completed. Features are staged across multiple deliveries. All in all, they use an agile process.

§Appendix: Kruchten’s eight context attributes

Stat Jenkins (Oracle fork) Hudson (Public fork)

Size L = 1MLOC L = 350KLOC

Criticality Med = company critical Med = company critical

Age of System L=10yr L=10yr

Rate of Change Hi Hi

Business Model open source open source

Stable architecture Lo=stable architecture Lo=stable architecture

Team distribution
VH=Diff times zones or diff

natural languages

VH=Diff times zones or diff

natural languages

Governance Lo=Small intimate team Lo=Small intimate team

