
Architecture Survey

Name of system: Hadoop Distributed File System ****

Reviewer: Zhiyuan Wu

Date: Oct 17
th

, 2011

§1 Introduction

1.1 Purpose of system

The Hadoop Distributed File System complements the popular Hadoop Map-Reduce algorithm.

Naturally, they are part of the same Apache project.

Hadoop MapReduce algorithm distributes computation to slave nodes. (See the section 2.1 for details

on MapReduce.) In order for slave nodes to have better access to the data it needs, data should be

placed as close to the slave node as possible. In short, Hadoop Map-Reduce benefits from file systems

that are location-aware. In data center terms, this location awareness is termed rack-awareness. The

Hadoop Distributed File System is a rack aware file system, among many that Hadoop supports.

HDFS’ importance is attached to Hadoop’s own importance. Hadoop’s innovation is within the

MapReduce itself. The MapReduce framework allows programmers to orchestrate massively distributed

computations without having to concern themselves with the multi-threading, synchronization and

messaging mechanisms themselves. Thus Hadoop MapReduce has made distributed parallel computing

accessible to a less multi-threading savvy audience.

1.2 Book Chapter

Author of software: David Cutting

Author of book chapter: Robert Chansler, Hairong Kuang, Sanjay Radia, Konstantin Shvachko, and

Suresh Srinivas

Five star rating of book chapter: ****

I feel this chapter is well written. It explained the architecture of HDFS quite well. However, since HDFS

is bundled with Hadoop, its architecture greatly depends on the nature of the MapReduce algorithm

framework. I think the book chapter did not explain enough about MapReduce to demonstrate why

HDFS is designed as so.

1.3 History

In 2003, David Cutting started developing a webpage crawler/indexer to compete with Google. This

software took shape in Nutch. Much to his dismay, David found that he lacked sufficient computational

power to topple Google’s lead.

To mitigate this problem, David found a cluster to run

Nutch on. He found that latency and cross-rack

communication was slowing performance. Borrowing a

page from Google File System [GGL03], he developed

Nutch Distributed File System in 2004. Nutch DFS was

rack aware and was quite fast.

In 2005, Nutch was absorbed into Apache Lucene, an

indexer and top level Apache project. Later in 2006,

Hadoop Map Reduce was created as an additional

member of the Lucene project. Around this time,

Facebook and Yahoo discovered the usefulness of

MapReduce and contributed heavily in money and code.

In 2008, Hadoop became its own top level Apache project.

HDFS tagged along in this promotion and the rest is

history.

1.4 Basic metrics

KLOC 1.3 MLoc

Project start-up 2003 (as Nutch)

Number of major releases 21

Number of developers 48

Size of user community or

number of installations

High. Some important users are: Yahoo, Powerset,

Facebook, Amazon.

Major stakeholders Doug Cutting and the user community

Use of concurrency Via the Map-Reduce Framework (see section 2.1)

Implementation language Java

Supporting software

Cross Platform Standalone, requires Java JVM

HDFS depends on Hadoop Core and Avro (part of the

Hadoop project. See section 2.2)

§2 Architecture

It does not make sense to talk about the Hadoop Distributed File System architecture without describing

motivations from Hadoop itself. Section 2.1 talks about main mechanisms of the MapReduce algorithm

itself. Section 2.2 talks about the Hadoop architecture, including the HDFS architecture. Section 2.3

rounds the rear with an explanation of the read scenario in HDFS.

2.1 Map Reduce Algorithm and Data Control Flows

The crown jewel of the Hadoop is the MapReduce system. This algorithm framework was initially

published by Google in their famous 2003 paper. [DG04] Like its name implies, MapReduce is

composed of two steps: Map and Reduce. These two steps merely specify the required input and

output data structures and that processing on each data entry in the input is independent of other data

entries. Thus, data processing can be trivially distributed.

The Map step takes as input a map of key-value pairs and for each pair conducts some data processing.

The output is a list of key-value pairs. Explicitly:

Map : <key, value> --> List <key, value>

The important element here is that a single key-value pair from the input must be able to be processed

independently from the other pairs. Thus, this step can be parallelized by design. As such, the input can

be and is split into many chunks and each chunk is given to a slave node for processing. This

independence restriction is important to the Map Step.

The resulting lists of key-value pairs from all

slave nodes are combined to make a master

list on the master node. At this point the

Reduce step starts. This master list again is a

list of key-value pairs. The keys in this list are

not necessarily unique. Given a particular key,

there is a list of corresponding values. The

input to the Reduce step is a key to list of

values mapping. The output is simply a list of

values. Explicitly:

Reduce: <key, List<value>> --> List <value>

The algorithm framework has that in the

reduce step, processing conducted on each

key is independent of the other keys. Thus,

the Reduce step is also trivially parallelizable

via entry-wise distribution. This independence

restriction is important to the Reduce step.

The ingenuity of this algorithm framework is that the developer is only required to write the map and

reduce functions and the framework takes care of parallelization. Task distribution can be split across

keys thanks to the independence restrictions placed at each step.

Tying the framework back to the discussion of Hadoop Distributed File System, it is quite intuitive to see

the benefits of placing data closer to the slave node that processes it. Rack-awareness reduces cross

rack communication.

2.2 Hadoop architecture

Hadoop takes advantage of the independence restrictions imposed by the Map and Reduce steps and

delegates computation tasks to slave nodes.

2.2.1 High Level Architecture

The Hadoop architecture is made simple in the diagram

to the right. The MapReduce algorithm (explained in

section 2.1) sits on top of a distributed file system.

Arrows represent data access. Large enclosing

rectangles represent the master and slave nodes. The

small rectangles represent functional units.

The file system layer can be any virtualized distributed

file system. Hadoop performs best when coupled with

the Hadoop Distributed File System because the

physical data node, being location/rack aware, can be

placed closer to the task tracker that will access this

data.

2.2.2 Development View

To the right is a high simplified view of the software

dependency stack in the Hadoop Apache project. Core

contains utilities like I/O and networking protocols. Avro

contains utilities for data serialization and cross-language

RPC.

2.2.3 HDFS Concept Architecture

To the right is the concept architecture of the

Hadoop Distributed File System. The arrows

represent data flow and boxes contain functional

units. The ovals are the clients of HDFS, in most

cases, Hadoop itself.

For each data access:

1. A client calls a Namenode to determine

which node to access data from.

2. The Namenode looks up the location

information from a metadata store

3. The client uses this location data to read/write from/to target rack

4. Writes are replicated. Typically, the two copies of the same data are placed on the same rack

and a third copy is placed on a different rack. Placing two copies of data on the same rack

allows for better read performance. The third copy is for redundancy.

2.3 High level scenarios

The diagram at the right describes in detail a

read scenario in HDFS.

Arrows represent data access. Boxes

represent logical entities. The encapsulating

light blue boxes represent location.

§3 Style and Methodology

3.1 Architectural style:

At the logic level, MapReduce uses pipeline architecture. HDFS is implemented in Java and thus takes up

an OOP style. HDFS follows the implementation pattern of a typical file system. The only difference is

that the metadata stores block information rather than file descriptors.

The distribution mechanism for Hadoop follows a master-slave model.

3.2 Major evolutionary changes: [If any. How has architecture changed over time?]

HDFS followed the design outline from the famous Google paper on the Google File System. [GGL03] No

evolutionary changes in architecture have occurred.

3.3 Performance bottlenecks:

As with any master-slave system, the master is a single point of failure. However, Hadoop performs

mostly data crunching tasks and is not designed for reliability. It is observed that it is normal that a few

nodes fail during a computational run. [GGL03] In case of failure, Hadoop reruns a job.

3.4 Real time:

HDFS’ rack awareness helps reduce latency during data accesses. Data on the same rack takes less time

to access than data from another rack.

3.5 Methodology:

The development methodology for Hadoop is typical of open source projects. It is agile and is based on

incremental improvements.

§Appendix: Kruchten’s eight context attributes

Size L = 1.3 MLoc

Criticality
Lo = Computations usually for data aggregation. Usually one

or two entries are expected to be erroneous

Age of System M~L = 8 years

Rate of Change Med = low number of major releases

Business Model
Open Source, funding from large corporations that use

Hadoop

Stable architecture
Lo = Hadoop has been based around the simple Map Reduce

algorithm. The overall architecture has remain the same

Team distribution
VH = team members are often contributors from within large

corporations across the world.

Governance
Lo = the open source model often has an adhoc governance

model based around a chief contributor

§Bibliography

[GGL03] Ghemawat S., Gobioff H., Leung S. T. The Google file system. ACM SIGOPS Operating

Systems Review - SOSP '03 Volume 37 Issue 5, December 2003

[DG04] Dean, J. and Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters in

OSDI'04: 6th Symp, 2004.

