
1

Survey of software architecture V0.1

Name of system: VisTrails

Reviewer: Chun Liu

Date: Nov, 19th, 2011

Author of software: Cláudio Silva, Juliana Freire

Author of book chapter: Juliana Freire, David Koop, Emanuele Santos, Carlos Scheidegger,

Huy T. Vo

Five star rating of book chapter: 5 stars (good explanations on each component of architecture.)

Purpose of system:

VisTrails is a tool that supports data exploration and data visualization. It includes many useful

features of scientific workflow and visualization systems. It helps users easier explore and compare

different visual representations of data.

VisTrails has two basic design requirements in mind. First, VisTrails allow users able to specify

their own data exploration process, i.e, declaring their process modules in a workflow. The processes

should be executable after users define a workflow. Second, VisTrails allow users to view the

workflow history, or in other words, the system should capture data provenance. Viewing workflow

history helps users remember how the results can be reproduce, and helps users analyze different

steps to solve a problem. The second requirement makes VisTrails different from other scientific

tools.

VisTrails addresses usability issues. To allow a broader set of users, including some people who

do not have programming experiences, VisTrails provides different kinds of data operations and user

interfaces that make data exploration process simpler, for example, to query workflows, to suggest

workflow completions.

VisTrails is a general tool for data exploration. VisTrails makes simpler for users to integrate

external tools and libraries, such as VTK, Web services, and etc. This has been a beneficial to use the

system in a wide range of application areas, including astronomy, quantum physics, molecular

modeling, and other sciences.

2

Basic metrics

KLOC:

At least 208,638 LOC python code.

Estimated around 1M LOC. (I can’t find code size information on web)

Project start-up:

Initial development in 2004.

First release in September 2007.

Number of major releases:

 8 major releases:

 1.6.2: April 2011

 1.5.1: August 2010

 1.4.2: March 2010

 1.4: January 2010

 1.3: July 2009

 1.2: July 2008

 1.1: May 2008

 1.0: September 2007

Number of developers:

 16

Size of user community or number of installations:

 Downloads: over 25,000 times

Major stakeholders:

 The University of Utah,

 The Department of Energy under the SciDAC program (SDM and VACET) and UV-CDAT,

 IBM Faculty

Use of concurrency:

 Workflow views, Workflow Version Trees, Workflow Executions are separated tasks.

Implementation language:

Initial Development: C++

Late in 2005, VisTrails is mainly implemented in Python/PyQt/Qt.

Supporting software:

 VTK, Image Magick, Web Services, pylab

3

High level architecture

Diagram of software architecture

High level scenarios

 All data explorations begin with building the workflow graphs. Users can drag modules from

the Module Registry and drop them into the Workflow Editor canvas, which creates another version

of workflow (i.e. changes the workflow graph) and generates a child in the version tree.

 During creating the workflow graph, users can do query via Query Engine, for example,

searching keywords in Workflow canvas.

 When users are satisfy with the current workflow graph, Execution button will be pressed.

Then, the system calls the Execution Engine, and let the Execution Engine to process the data,

followed by the steps specified in the workflow graph. Execution Engine will generate and present

the results to user via graphs, for example, via VTK GUI. If necessary, Execution Engine will also

generate data documentations.

4

Data structures or algorithms

Data structures:

Bijectivedict

Graph

Point

Queue

Rect

Stack

Tree

And other GUI structures.

Control flow and/or data key to the architecture if any

Workflow pipelines,

Version Trees,

Database Layer,

Spreadsheet-style interfaces.

Architectural style:

 Data-Flow style

Major evolutionary changes:

 In late 2005, all the implementations have changed from C++/Java to Python.

Performance bottlenecks:

 Database Layer.

Real time:

 No time restrictions, but still need some reasonable response time.

Notation for architecture:

 Module Diagram

Methodology:

 No information, since there is no developers’ site/forum for VisTrails.

 (the methodology is not agile)

5

Appendix

Kruchten’s eight context attributes applied to Brown/Wilson systems

1. Size: L (estimated 1M)

2. Criticality: Med

3. Age of system: M (2004-present)

4. Rate of change: Med (around a release every half year)

5. Business model: Commercial & Open source (plug-in in Maya is Commerial)

6. Stable architecture: Lo

7. Team distribution: Med (managed by University of Utah)

8. Governance: Lo (small team)

