
Trevor Bekolay SocialCalc survey 1 of 6

Survey of software architecture

Name of system: SocialCalc

Reviewer: Trevor Bekolay

Date: November 21, 2011

Author of software: The original implementation (called WikiCalc) was created by Dan Bricklin. Social-
Calc is a rewrite of WikiCalc, written by a team of programmers at Socialtext, led by Dan Bricklin. Audrey
Tang, the author of the chapter, is part of the Socialtext team.

Author of book chapter: Audrey Tang

Five star rating of book chapter: The chapter is well written and organized, and gives a good amount
of detail, being relatively comprehensive without being too technical. The “lessons learned” section is better
developed than in other chapters, though the lack of a clear goal made the chapter as a whole not as well
motivated as the Wesnoth chapter. Overall: ****

Purpose of system: SocialCalc is a spreadsheet program that runs in a browser, allowing the spreadsheet
to be accessible over the internet and edited by multiple people simultaneously.

While the program is made freely available through an open source license, it is primarily used as part of a
suite of “social” tools created by Socialtext and sold as a socially-oriented intranet web content management
system to mid-size and large organizations. SocialCalc has also been used as the collaborative spreadsheet
program included with the laptops distributed in the One Laptop Per Child program. It is also used by the
Drupal module “sheetnode,” which uses SocialCalc to make an editable collaborative spreadsheet possible
in the popular content management system Drupal.

Basic metrics

Lines of code: Below is the output from the CLOC tool.

Language files blank comment code

Javascript 8 4429 3273 16763
Perl 4 922 627 4055
HTML 3 208 0 1742
Bourne Shell 10 57 157 253
CSS 1 3 18 27

SUM: 26 5619 4075 22840

In total, with blank lines and comments, SocialCalc is made up of 32.5 KLOC.

Project start-up: WikiCalc development was started by Dan Bricklin in 2005. It was abandoned once
SocialCalc development started in 2006. The first release of SocialCalc occurred in October 2009, three years
after the start of development.

Trevor Bekolay SocialCalc survey 2 of 6

Number of major releases: Two; SocialCalc is currently on version 1.1.0.

Number of developers: Socialtext has approximately 40 employees worldwide, but it is unclear how
many of those employees were involved in SocialCalc development. Given the size of the codebase, very
likely a small proportion of those 40 employees.

Size of user community or number of installations: Socialtext lists 80 companies on its list of
customers, each of which would have several hundreds or thousands of employees accessing the intranet.
Over a million OLPC XO-1s have been sold, each of which has a copy of SocialCalc installed on it. There
are currently approximately 140 installations of Drupal using “sheetnode.” In all, I would estimate that
there are approximately 1.2 million users with access to SocialCalc, though it is unlikely that as many users
actually make use of it.

Major stakeholders: The primary stakeholder is Socialtext, which uses SocialCalc as a part of its suite
of enterprise web collaboration tools. The people involved with the One Laptop Per Child program are also
stakeholders, as they rely on SocialCalc to provide the ability to create spreadsheets on their laptops. Web
administrators that use Drupal and the sheetnode module are also minor stakeholders.

Use of concurrency: SocialCalc is a piece of client-side JavaScript code, with a small server-side compo-
nent written in Perl. It is not resource intensive enough to require the use of concurrency.

Implementation language: As previously mentioned, the majority of SocialCalc is implemented in
JavaScript, and is executed on the client’s machine. A smaller portion of code is executed on the server side,
and is implemented in Perl, although a port of SocialCalc using Node.js as the client-side language exists.

Supporting software: SocialCalc uses the Javascript library Wikiwyg for rendering WikiText. It also uses
the Web::Hippie for real-time collaboration with multiple users.

High level architecture

Diagram of software architecture: Because SocialCalc is such a small program, the high-level architec-
ture can be expressed in terms of the JavaScript and Perl classes that make up the program, making it more
of a concrete architecutre than a conceptual one. There is no inheritance in SocialCalc, so all of the dot-
ted lines represent ownership relationships; for example, the TableEditor object contains a RenderContext
object.

Trevor Bekolay SocialCalc survey 3 of 6

This diagram comes from the book chapter. I have also added lines and text to indicate which of the classes
belong to each of the layers, as the main architectural style used in SocialCalc is layering, with the layers
following the Model-View-Controller design pattern. All of the classes in the Model layer deal with the
actual storage of the information in a spreadsheet. The class in the View layer deals with what portion of
the spreadsheet can be viewed in the UI currently. The classes in the controller deal with handling user
interaction with the UI, which can change the View layer (updating the UI to show different portions of the
spreadsheet) or the Model layer (updating the actual values stored in the spreadsheet).

High level scenarios: The chapter describes two important high-level scenarios.

The first is the general scenario of what happens when the user initiates any command through the TableEditor.
SocialCalc is designed to be responsive, even if the underlying processes are busy, so when a command needs
to occur, rather than stopping until the command is run, SocialCalc adds the command to a list of commands
to be run in the background, allowing the user to continue making changes to the spreadsheet while the
changes are made in the background. The flowchart for doing this is included below (simplified from the
book chapter).

Trevor Bekolay SocialCalc survey 4 of 6

The important element here is the deferredCommands queue. If the engine is currently busy, the current
command is added to the deferredCommands queue. Once a command is completed, the deferredCommands
queue is checked; if an element exists in the queue, then it is executed before the engine is marked as not
busy.

The second scenario is how a cell is rendered, specifically how a cell containing text formatted with Wiki-
markup is rendered. The ability to use Wiki-markup is another feature that sets SocialCalc apart from
traditional spreadsheet programs, as well as other online spreadsheet appications.

Trevor Bekolay SocialCalc survey 5 of 6

The intermediate step SocialCalc.Callbacks.expand wiki is not strictly necessary, and the parsing step
could happen immediately after the valueformat is determined to be text-wiki. However, using this Callback
mechanism makes SocialCalc more modular, as it is possible to use a different mechanism to implement this
callback, and can easily be made to do nothing if some users of SocialCalc do not want to enable WikiText
in their SocialCalc installation.

Data structures or algorithms: The save format used by SocialCalc is quite different from a typical
spreadsheet program. Rather than just being one large file, the save format is split into four parts, two of
which are optional. This save format has the advantage of being human readable, while still being easy to
manipulate programmatically. The four parts that make up the save format are as follows.

� The required meta part lists which of the other parts are included.

� The required sheet part contains the information about the format and content of each cell in the
spreadsheet. It also includes some information about the entire spreadsheet, such as the fonts used,
and other formatting information.

� The optional edit part saves the TableEditor’s state, so that the spreadsheet looks exactly the same
when loaded.

� The optional audit part contains a partial history of commands executed.

As mentioned in the previous section, the deferredCommands queue is an important data structure that
allows SocialCalc to remain responsive even when a number of commands need to be executed by the engine.
Another related data structure that is interesting is the undo stack, which is only briefly mentioned in the
chapter. Whenever a command is executed, or added to the deferredCommands queue, a corresponding
undo-command is added to the undo stack. When the user clicks Undo, the undo-command at the top of
the stack is run to restore the application to the state before the last command was executed.

The undo stack is also used in a clever manner for conflict resolution when multiple users are editing the
same spreadsheet. This will be discussed in the “real-time” section below.

Architectural style: The primary arichtectural style is layering. The particular layers used fit a common
design pattern, the Model-View-Controller pattern. The mapping between layers and classes is straightfor-
ward: Sheet is the model, representing the data in the spreadsheet in memory; RenderContext is the view,
keeping track of which parts of the spreadsheet should be displayed on the page; and TableControl is the
controller, taking in mouse and keyboard input, updating the view and model when necessary.

Major evolutionary changes: The biggest chance occurred in 2006 when Dan Bricklin decided to work
with Socialtext, abandoning the feature-complete WikiCalc for a complete rewrite called SocialCalc. The
primary architectural change between the two was in the roles of the client and server. In WikiCalc, all of
the processing was done server-side by several perl scripts. This meant that everything had to be processed
behind the scenes and rendered all at once, which meant poor performance and poor interaction. SocialCalc
moved the majority of the processing to the client-side, meaning that the server only had to be used sparingly,
making the whole application more responsive.

Performance bottlenecks: In the original WikiCalc, a large bottleneck was in the rendering of large
spreadsheets, as each cell in the spreadsheet was a table cell entry in the browser’s document object model
(DOM); for even moderate sized spreadsheets (say 100 rows and 100 columns) that meant many DOM
entries (10,000 for a 100 × 100 sheet). SocialCalc removed the bottleneck by having a predefined numbers
of columns and rows displayed, and when the user scrolls to different parts of the spreadsheet, the displayed
rows and columns are updated with information being scrolled to. Additional DOM entries are not added.
This means that the application is always only representing a subset of the whole spreadsheet in the DOM,
even though the whole spreadsheet is available through the Sheet class.

Trevor Bekolay SocialCalc survey 6 of 6

Real time: Real-time collaboration is an important part of SocialCalc. When multiple users are editing
the same spreadsheet, SocialCalc adds an additional step to command-running scenario described above;
after the command is removed from the deferredCommands queue, but before the command is actually
executed, it is broadcast to any other users editing the same spreadsheet.

This handles the vast majority of online interactions, but with this strategy there is the possibility that two
users will change the same cell of the spreadsheet at the same time, causing a race condition in which users
could end up with different versions of the same spreadsheet. To handle this conflict, the built-in undo/redo
mechanism is used. As a client broadcasts its command, it checks to see if there is a command on the same
cell currently pending. If there is, then it undoes the current command, and then redoes the command once
the pending operation is completed. That means that if two clients make a change at around the same time,
whichever one occurs last will always be the command that is reflected in both clients.

Notation for architecture: In general, in the diagrams above, nodes are classes and arrows represent
either the flow of control or has-a relationships. The particulars of each diagram should be clear upon
inspection.

Methodology: Socialtext uses an agile methodology. This is slightly complicated by the fact that the
development team is not located in the same physical area; in Socialtext, team members are located across
the United States, and indeed the world (chapter author Audrey Tang is located in Taiwan, for example).
Tang notes, however, that rather than being a complication, the “distributed agile” methodology used by
Socialtext results in more self-descriptive artifacts (e.g. code and tests), and quicker development because an
entire Design-Development-Quality Assurance cycle can happen in a single 24-hour day with team members
located in time zones 8-hours apart from each other.

Appendix: Kruchten’s context attributes

Size S (32.5 KLOC)

Criticality Med (an important spreadsheet might need to be viewed at a critical time)

Age of system M

Rate of change Lo

Business model Commercial (even though the software is released with an open source license)

Stable architecture Lo

Team distribution VHi (different time zones)

Governance Med

