
Name of system: SnowFlock

Reviewer: Thang Minh Le

Date: November 7th, 2011

Author of software: H. Andrés Lagar-Cavilla

Author of book chapter: Roy Bryant & H. Andrés Lagar-Cavilla

Five star rating of book chapter: ****

Purpose of the system: Cloud computing is attractive for its scalability, high performance and low cost.
Taking advantages of hardware virtualization, a cloud service can address any hardware demand starting
from a single host to a cluster of thousand hosts. A host in a cloud is a pure virtual machine (VM) rather
a physical machine. This makes cloud an ideal environment to run computational intensive applications.
However, the issue of most cloud services nowadays is the lack of an efficient way to create a large
cluster of hosts. SnowFlock has a solution to this matter. In its simplest form, SnowFlock provides a set
of APIs to programmatically create multiple VMs in seconds. Each new VM created by SnowFlock is a
cloned VM of the original VM. In order to achieve performance acceleration, SnowFlock has its design
drawn from these insights:

 It is possible to start executing a child VM from a minimal set of data

 Children will typically access only a fraction of the original memory image of the parent

 It is common for children to allocate memory after forking

 Children clearly work on a great amount of temporal locality in their memory accesses

Lazy state replication and multicast distribution are the main themes of SnowFlock. On experiments
conducted with 128 processors, SnowFlock achieves 7% better compared with optimal execution. It
achieves sub-second VM fork irrespective of number of clones. SnowFlock is an order of magnitude
faster and sends less than two orders of magnitude than VM fork based on suspend/resume or
migration. SnowFlock has proved its performance advance in different load tests including:

 NCBI Blast: the most popular computational tool used by biologist.

 SHRiMP: a tool for aligning large collections of very short DNA sequences against a know
genome.

 QuantLib: an open source toolkit widely used in quantitative finance

 Aqsis – Rednderman: an open source implementation of Pixar’s Renderman.

 Distcc: a software distributes builds of C/C++ program over the network for parallel compilation.

Basic Metrics

KLOC: http://cloc.sourceforge.net v 1.55 T=31.0 s (174.5 files/s, 49677.7 lines/s)
--
Language files blank comment code
--
C 2051 99077 101556 532271
Bourne Shell 178 21890 27328 211849
C/C++ Header 1338 26007 42233 122283
C++ 386 21751 14246 81245

m4 43 2905 4527 45734
Java 298 6160 6165 35844
HTML 340 1202 461 28033
Python 335 7897 9099 27544
Assembly 104 2606 7669 23250
make 201 1626 851 5679
Fortran 77 54 1000 1172 4605
Fortran 90 15 263 466 3517
Teamcenter def 4 20 0 2162
Perl 11 311 271 1776
Bourne Again Shell 18 223 266 1285
C Shell 18 60 293 874
MUMPS 1 134 0 793
Expect 2 0 0 590
XML 5 42 74 353
CSS 3 18 5 134
XSD 1 1 3 115
XSLT 1 7 2 48
IDL 1 4 0 44
DOS Batch 1 1 0 38
Javascript 1 4 0 27
DTD 1 6 2 11
--
SUM: 5411 193215 216689 1130104
--

Project start-up: the first public release was in September 2008

Number of major release: there has no major release. The product is still in development. The latest

release is minor version 2.

Size of user community or number of installations: SnowFlock is released under GPL license.

Community mostly is researchers from University of Toronto and Carnegie Mellon University. The size of

community is small less than 10.

Major stakeholders: the tool is built for any cloud services using Xen virtualization technology. Major

stakeholders are cloud service venders, researchers and any developers who want to get involved.

Use of concurrency: Concurrency happens in multicast distribute module where it takes a role of server
and multicast requested data to all cloned VMs. Instead of only sending data to the requested cloned
VM, it multicasts the data to all clones, which is essentially a pre-fetch mechanism for other cloned VMs
who do not make requests for this data.

Implementation language: mainly in C/C++

Supporting software: the SnowFlock implementation is particular for Xen hypervisor. It can only run

widely on Unix/Linux system with x86 architecture (also x86_64, IA64, ARM) with Xen.

High Level Architecture

Diagram of software architecture:

memServer: provides all clones with the data they need from the parent. The server sits and waits for
page request from clones.

Memory CoW: a copy-on-write mechanism to keep the memory required by cloned VMs unmodified in
parent VM

mcdist: distribution service which multicasts data to all cloned VMs. It takes the advantages of network
hardware parallelism to efficiently distribute parent states to all cloned VMs.

diskServer: most of data accesses of cloned VMs are through suitable distributed filesystems such as
HDFS or PVFS, diskServer just keeps binaries and configuration files and hence has similar function with
memServer

memtap: acts on cloned VM’s behalf to communicate with the memory server to request pages that are
needed but missing

SnowFlock is architected to adopt client/server replication model. A cloned VM takes a role of a client to
send requests to server for fetching missing data. Server replies to the requested client in a multicast
manner. The data sent to all other VMs as a pre-fetching advantage. Multicasting data to all clones
significantly improves the cloning process. Other three optimizations specific to SnowFlock are:

 LockStep Detection: In the case when multiple clones request the same page in very close
succession, mcdist server ignores all but the first of such requests

 Flow Control: To avoid clones to be drowned by too many pages sent by an eager server, the
server throttles its sending rate to a weighted average of client’s receive rate

 End Game: when the server has sent most pages, it falls back to unicast responses.

Parent VM Cloned VM

High level scenarios:

(1) Suspend: SnowFlock suspends the current VM (original VM) to create VM Descriptor and
Memory Server.

(2) Descriptor Distribution: SnowFlock uses mcdist to multicast VM Descriptor to all clones.
(3) Descriptor spawn VMs: after receiving VM Descriptor, SnowFlock will initiate clones from the

descriptor. At this point, all clones are mostly empty state-wise since VM Descriptor only has the
most important data to instantiate a new clone only. All other data will be requested by clones
when in need.

(4) State fetched on-demand: clones send request to parent VM for a require state

Architectural style: SnowFlock adopts object oriented architectural style. Each module has its own role

and interacts with other modules for different services. For example, Memory State uses mcdist to send

state data to cloned VMs. Memory State is responsible to maintain a frozen coy of parent’s state.

Major evolutionary changes: there have been no evolutionary changes since the SnowFlock paper
published in 2008.

Performance bottlenecks: As mentioned in the chapter, SnowFlock performs well in most workload.

However, the lazy replication approach isn’t free. In some workload, it is indeed the bottleneck. The

reason is due to during state transfer, the clone is left waiting for state to arrive before it can continue

execution. This blocking is somewhat degrades the clone’s performance in some cases. For example, a

cloned database server.

Real time: the system has real time requirement.

Notation for architecture: INC

Methodology: INC

Appendix

1. Size: L

2. Criticality: Med

3. Age of system: M

4. Rate of change: Lo

5. Business model: open source

6. Stable architecture: Lo

7. Team distribution: Lo

8. Governance: Lo

