
Page 1

Software Architecture Survey Form (CS 746)

Name of system: Eclipse

Reviewer: Xuan Choo

Date: 5 Nov 2011

Author of software: IBM Canada (Object Technology International)

Author of book chapter: Kim Moir

Five star rating of book chapter: *****

Purpose of system:

The Eclipse project is an open source integrated development environment implemented using

the Java language. The main goal of the Eclipse project is to develop a generic environment in

which program development could take place. Another goal of the project is to create a

modular and fully customizable environment that could be used to develop programs not just

with the Java language, but with other programming languages as well.

The main purpose of the Eclipse platform is to develop software. Interestingly, the Eclipse

platform is used to develop future iterations of itself. Because of its architecture, the core of

the Eclipse platform (known as the Rich Client Platform) can also be used as part of Java

applications. This allows developers to utilize the core features of Eclipse (e.g. the UI elements,

and the plug-in environment) in their own applications, which may not be development related.

In the Eclipse platform, a plug-in is defined as modular component written in the Java language

that implements a particular sub-feature of the eventual platform. This plug-in architecture

allows developers to extend the functionality of Eclipse to encompass multiple programming

languages, allowing it to become a truly generic integrated development environment.

Basic metrics -

KLOC: The Eclipse project has three major sub-projects: the Eclipse platform, the JDT (java

development tools), and the PDE (plugin development environment). The lines of code

count is listed for each of these sub-projects.

 Eclipse platform

Source: Ohloh project page for Eclipse [http://www.ohloh.net/p/eclipse/analyses/latest]

Language Code Lines
Comment
Lines Blank Lines Total Lines

Java 1,705,860 1,005,031 303,193 3,014,084

XML 236,170 5,553 5,584 247,307

C 138,994 3,776 9,750 152,520

HTML 54,303 726 10,676 65,705

http://www.ohloh.net/p/eclipse/analyses/latest

Page 2

C++ 31,094 1,020 2,402 34,516

CSS 4,752 1,103 1,102 6,957

MetaFont 3,623 0 9 3,632

JavaScript 2,374 447 342 3,163

shell script 742 107 44 893

XML Schema 374 4 64 442

DOS batch
script 242 115 60 417

Make 124 85 42 251

SUM: 2,178,652 1,017,967 333,268 3,529,887

 JDT

Source: Ohloh project page for the JDT [http://www.ohloh.net/p/eclipse-jdt/analyses/latest]

Language Code Lines
Comment

Lines Blank Lines Total Lines

Java 1,990,890 456,147 248,679 2,695,716

HTML 105,033 823 8,090 113,946

XML 37,244 1,883 2,962 42,089

MetaFont 1,215 0 2 1,217

JavaScript 735 121 35 891

CSS 246 29 30 305

shell script 1 0 1 2

SUM: 2,135,364 459,003 259,799 2,854,166

 PDE

Source: Ohloh project page for the PDE

[http://www.ohloh.net/p/eclipse-pde/analyses/latest]

Language Code Lines
Comment
Lines Blank Lines Total Lines

Java 358,615 154,786 61,131 574,532

HTML 29,814 820 2,976 33,610

XML 27,337 2,033 1,862 31,232

MetaFont 3,904 0 164 4,068

CSS 627 69 120 816

XSL
Transformation 358 10 3 371

XML Schema 112 15 3 130

SUM: 420,767 157,733 66,259 644,759

http://www.ohloh.net/p/eclipse-jdt/analyses/latest
http://www.ohloh.net/p/eclipse-pde/analyses/latest

Page 3

Project start-up: 7 Nov 2001 (v1.0 release)

Number of major releases: 11 (v1.0, v2.0, v2.1, v3.0-3.7)

Number of developers:

 Active commiters: 592

Inactive commiters: 867

Total: 1,459

 Source: Eclipse company / project commit details -

[http://dash.eclipse.org/dash/commits/web-app/commit-count-loc.php]

Size of user community or number of installations:

Unknown, most probably in the millions.

Source: 2011 Eclipse community survey -

[http://www.eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf]

Major stakeholders:

Many companies have a vested interested in the Eclipse project. Some of these

companies were part of the original development team of Eclipse (indicated with a solid

bullet point, italics indicate company is currently not actively making commits to

Eclipse). All the remaining listed companies all have at least 1 active committer (to

date).

Source: Eclipse commits history -

[http://dash.eclipse.org/dash/commits/web-app/commit-count-loc.php?&sortBy=&show=]

 Borland

 IBM

 Merant

 QNX Software Systems Co.

 Rational Software (now
IBM)

 Red Hat, Inc.

 SuSE (now Novell)

 TogetherSoft (now Borland)
o Actuate Corporation
o Adobe Systems
o AGETO Service
o Atos Origin
o Business Systems

Integration AG
o CEA List
o Cisco Systems, Inc.

o Cloudsmith Inc.
o Compeople AG
o Continental AG
o Eclipse Foundation
o Engineering Group
o Ericsson AB
o Freescale Semiconductor
o Google Inc.
o Intalio Inc.
o Intel Corporation
o Itemis AG
o Mentor Graphics
o Mia-Software
o Motorola
o Nokia
o Nuxeo
o Obeo

http://dash.eclipse.org/dash/commits/web-app/commit-count-loc.php
http://www.eclipse.org/org/community_survey/Eclipse_Survey_2011_Report.pdf
http://dash.eclipse.org/dash/commits/web-app/commit-count-loc.php?&sortBy=&show=

Page 4

o Open Canarias S.L.
o OpenMethods LLC
o Oracel
o Prosyst Software
o Remain BV
o SAP AG
o SAS
o Siemens AG
o Sierra Wireless

o Sonatype
o Soyatec
o SpringSource, Inc
o Tasktop
o Texas Instruments
o Thales
o Tieto
o Xored Software, Inc.
o Zend Technologies

Use of concurrency: No

Implementation language: Primarily Java.

 Supporting software: Eclipse requires the Java runtime environment to be installed to run.

Page 5

High level architecture -

 Diagram of software architecture:

Figure 1 - Current Eclipse architecture. Lines with rounded terminations indicate plug-in

implementation.

Eclipse Platform

IDE Workbench UI

RCP

Workspace Team

Generic Workbench UI

Help

SWT

JFace

Platform Runtime

Plugin Management (OSGi based)

Java Runtime Environment
(Java Virtual Machine)

JDT

PDE

Other Tools
Debug

Other RCP
Applications

More Tools

Page 6

High level scenarios:

The following is a high-level scenario demonstrating the "lazy activation" principle of the

Eclipse system. Note that in this scenario, the plug-ins are added to the plug-in registry

but is not activated (i.e. the class file is loaded) until the plug-in is required.

Figure 2 - High-level scenario of "lazy activation"

 Data structures or algorithms:

Every feature in the Eclipse system is implemented as a plug-in. This way, the system is

extremely modular, and can be customized to any working style. Interestingly, Eclipse

utilizes a "lazy activation" approach to activating the installed plug-ins. With this

method, plug-ins are only loaded when they need to be used.

 Control flow and/or data key to the architecture (if any):

Eclipse utilizes manifest files to store information such as required runtime

environments, plug-in version and plug-in dependency information. Eclipse also utilizes

workspaces, which are used to contain files and metadata used by the user in their

projects.

Architectural style:

 Although Eclipse is composed entirely of plug-ins (even the core components are also

considered plug-ins), the core of the Eclipse platform has a layered architecture. Outside the

core of the Eclipse platform, Eclipse takes on an abstract data types and objects architecture,

with each plug-in defining one abstract object.

Check

Manifest file

Check plug-

in registry

Eclipse

start-up

Add plug-in

to registry

All plug-ins

loaded?

No

Yes

Load plug-in

class file

Plug-in

required?

Done

Yes

No

Page 7

Major evolutionary changes:

There have been a couple of evolutionary changes to the architecture of Eclipse. The first major

architecture change is the adoption of the OSGi standard for managing the myriad of plug-ins

for Eclipse. The switch to OSGi did not affect the visual layout of the architecture, it did alter the

way in which the plug-in dependencies were handled (e.g. it is now possible to support dynamic

loading and unloading of plug-ins).

 Another major change to the architecture involved the refactoring of the platform to allow Rich

Client Platforms (RCPs) to be developed. RCPs are essentially Java based applications that utilize

the Eclipse platform, but do not require the IDE-related components to function. This moved

allowed organizations to utilize the core features of Eclipse (SWT, JFace, a generic workbench

UI, and the OSGi plug-in management system) in other applications not related to program

development.

 The following is a diagram showing the early architecture of Eclipse, with the changes indicated

above shown. (Contrast this to Figure 1)

Figure 3 - Early Eclipse architecture with evolutionary changes indicated.

Eclipse Platform

Workspace Team

Workbench UI

Help SWT

JFace

Platform Runtime

Plugin Management

Java Runtime Environment
(Java Virtual Machine)

RCP

Eclipse
Platform

(Elements
not in RCP)

OSGi
Standard

JDT

PDE

Other Tools

More Tools

Page 8

Performance bottlenecks:

 The primary performance bottleneck is the Java runtime environment (JRE). Since the entire

project is Java based, without the runtime environment, nothing will be executed. Additionally,

performance hits to the runtime environment (e.g. CPU utilization slowing down the JRE) will

affect the entire system.

Real time:

Real time support is not implemented in the Eclipse system by default. However, it is

conceivable that a real-time plug-in could be developed for Eclipse.

Notation for architecture:

 IDE - Integrated development environment

 JDT - Java development tools

 PDE - Plug-in development environment

 SWT - Standard widget toolkit

 RCP - Rich client platform

Methodology:

 Because of the large and wide spread nature of the development team, the development

methodology is not easily definable. Each developer (committer) to the Eclipse project is

allowed to make their own changes to the project as they see fit. There is however, a core team

of Eclipse developers that work on "incubations" of new releases of the system. With this

method, minor improvements are made to the released software, while the team makes the

major changes and testing to the "incubated" project.

Appendix:

Kruchten's eight context attributes applied to Brown/Wilson systems -

1. Size: L (~7MLOC)

2. Criticality: Lo - Med (depends on implementation of platform)

3. Age of system: L (10 yrs)

4. Rate of change: Med (There have been 11 major releases thus far)

5. Business model: Open source

6. Stable architecture: Med (Within the 11 major releases, the architecture has evolved at least 2

times, with another major evolution expected for the upcoming v4.0 release)

7. Team distribution: Hi (Development team meets entirely on the internet)

8. Goverance: XHi (Although developers and testers are spread out globally and across multiple

companies, there is a board of directors to oversee the project. A full-time staff is also

employed to handle matters like marketing, IT support, system administration, and so forth)

