
1

Welcome toWelcome to
SENG 480A / SENG 520 / [SENG 371]SENG 480A / SENG 520 / [SENG 371]

Software EvolutionSoftware Evolution
Hausi A. MHausi A. Müüllerller

University of VictoriaUniversity of Victoria

Fall 2004Fall 2004

22

Lecture OutlineLecture Outline

• Software life cycle
• Software qualities
• Software evolution
• Software reverse engineering
• Software architecture and views
• Software comprehension
• Architectural styles
• Attribute-based architectural styles

33

Laws of software evolutionLaws of software evolution

• First Law of Lehman [Leh80]:
“Software which is used in a real-world
environment must change or become less and less
useful in that environment.”

• Second Law of Lehman [Leh80]:
“As an evolving program changes, its structure
becomes more complex, unless active efforts are
made to avoid this phenomenon.”

44

Laws of software evolution Laws of software evolution ……

• Third Law of Lehman [Leh80]:
“Program evolution is a self-regulating process. System
attributes such as size, time between releases, and the
number of reported errors are approximately invariant for
each system release.”

• Fourth Law of Lehman [Leh80]:
“Over a program’s lifetime, its rate of development is
approximately constant and independent of the resources
devoted to system development.”

2

55

Laws of software evolution Laws of software evolution ……

• Fifth Law of Lehman [Leh80]:
“Over the lifetime of a system, the incremental system
change in each release is approximately constant.”

• What can we say about the complexity of the
software systems developed over the past 40 years?

Constant?
Increase?

66

Software reverse engineeringSoftware reverse engineering
• Def. A two-step process

Information extraction
Information abstraction

• Def. A three-step process [Tilley95]
Information gathering
Knowledge organization
Information navigation, analysis, and presentation

• Def. Analyzing subject system [CC90]
to identify its current components and their dependencies
to extract and create system abstractions and design information

• The subject system is not altered; however, additional
knowledge about the system is produced

77

Software reverse engineering Software reverse engineering ……

• Feedback loops in life cycle models (e.g., waterfall or spiral model) are
opportunities for reverse engineering

• Related terms
Abstraction and composition
Design recovery [Big89] and concept assignment [BMW94]
Redocumentation [WTMS95]
Inverse engineering [RBCM91]
Static and dynamic analysis
Summarizing resource flows and software structures
Change and impact analysis
Maintainability analysis
Migration analysis
Portfolio analysis
Economic analysis

88

Forward engineeringForward engineering

• Traditional software process of moving from
high-level abstractions and logical
implementation-independent designs to the
physical implementation of a system

Requirements

Design

Source code

Behaviour

3

99

RestructuringRestructuring

• Transformation from one representation to another at
the same relative abstraction level, while preserving
the subject’s system external behavior

Requirements

Design

Source code

Behaviour
1010

The Horseshoe ModelThe Horseshoe Model
of Software Migrationof Software Migration

Existing system New system

Abstract system

1111

Reengineering CategoriesReengineering Categories

• Automatic restructuring
• Automatic transformation
• Semi-automatic transformation
• Design recovery and reimplementation
• Code reverse engineering and forward

engineering
• Data reverse engineering and schema

migration
• Migration of legacy systems to modern

platforms
1212

The Horseshoe ModelThe Horseshoe Model

Existing system New system

Abstract system

ComponentsComponents MiddlewareMiddleware

Automatic

Semi-automatic

4

1313

Reengineering Categories...Reengineering Categories...

• Automatic restructuring
to obtain more readable source code
enforce coding standards

• Automatic transformation
to obtain better source code
HTML’izing of source code
simplify control flow (e.g., dead code, goto’s)
refactoring and remodularizeing
Y2K remediation

1414

Reengineering Categories...Reengineering Categories...
• Semi-automatic transformation

to obtain better engineered system (e.g., rearchitect
code and data)
semi-automatic construction of structural,
functional, and behavioral abstractions
re-architecting or re-implementing the subject
system from these abstractions

1515

Design RecoveryDesign Recovery
Levels of AbstractionsLevels of Abstractions

• Application
Concepts, business rules, policies

• Function
Logical and functional specifications,
non-functional requirements

• Structure
Data and control flow, dependency graphs
Structure and subsystem charts
Software Architectures

• Implementation
AST’s, symbol tables, source text

1616

Synthesizing ConceptsSynthesizing Concepts

• Build multiple hierarchical mental models
• Subsystems based on SE principles

classes, modules, directories, cohesion,
data & control flows, slices

• Design and change patterns
• Business and technology models
• Function, system, and application architectures
• Common services and infrastructure

5

1717

The The ubiquitous ubiquitous graph modelgraph model

Subsystem

Aggregation

Calls
Functions

Composite node

Subsystem

Generalization

Data

Composite arc
Abstraction mechanisms
Classification, aggregation,

generalization, grouping

Model
Entities and relationships

Typed nodes and arcs

1818

Assignment 1 Part IIAssignment 1 Part II
How to get started?How to get started?

• For example, compare the evolution of software
systems with the evolution of a village, city, highway
system, bridges, rail system, steam engine

• What can we learn from the evolution of other
systems?

• For the steam engine, initially technology and how to
build and engine effectively were the problems; later
on, safety was the main concern

• For operating system, until recently we were mostly
concerned about their utility and efficiency;
nowadays security is a major concern

1919

Assignment 1 Part IIIAssignment 1 Part III
How to get started?How to get started?

• What are the major static components and relationships?
Graph model

• Nodes and arcs
What are the entities?
What are the relationships?

• Graphs
Call graph (functions and function calls)
Module graph (files and file dependencies—calls, uses)
Abstract data types (data types and access functions)

• The next few slides provide ideas for identifying entities and
relationships or nodes and arcs in the graph model

2020

IdeasIdeas
• Apply everything you learned about software structure over the past four

years
• Don’t settle on the first idea you come up with

• Use the diagrams suggested in the resources, but you need legends and
explanations (prose) to go with the diagrams

SEI views
Siemens views
Rational views

• Exploit file and directory structure (i.e., build subsystems)
• Form abstract data types (i.e., build classes)
• Call graph (i.e., function-function relationships)
• Entity relationship diagrams (ER)

Identify node categories (entities)
Identify arc categories (relationships)

6

2121

More ideasMore ideas
• Form abstraction hierarchies
• Encapsulate control, data, control & data (objects)
• Summarize graphs to build hierarchies
• Compose views

emphasize important aspects
de-emphasize immaterial components

• Recognize and match design patterns
• Separate concerns
• Extract UML (class) diagrams
• Recognize and identify APIs and interfaces
• Mine configuration management system for

product lines
versions, releases

• Use visualization techniques
SHriMP
Rigi

2222

2323 2424

AssignmentsAssignments

• Assignment 1
Gawk rsf posted

• Assignment 2 posted
Three parts

• Definitions
• Eclipse
• Migration to SVG (or Avalon)

