Managing people

- Managing people working as individuals and in groups
Objectives

- To emphasize the importance of people in the software engineering process.
- To describe fundamental cognitive factors which managers should be aware of.
- To discuss group working and group organization.
- To explain why the working environment for software engineers is important.
Topics covered

- Cognitive fundamentals
- Management implications
- Project staffing
- Group working
- Working environments
People in the process

- People are an organization’s most important assets.
- The tasks of a manager are essentially people oriented. Unless there is some understanding of people, management will be unsuccessful.
- Software engineering is primarily a cognitive activity.
Management activities

◆ Problem solving (using available people)
◆ Motivating (people who work on a project)
◆ Planning (what people are going to do)
◆ Estimating (how fast people will work)
◆ Controlling (people’s activities)
◆ Organizing (the way in which people work)
Cognitive fundamentals

- People don’t all think the same way but everyone is subject to some basic constraints on their thinking due to:
 - Memory organization
 - Knowledge representation
 - Motivation influences

- If we understand these constraints, we can understand how they affect people participating in the software process.
Memory organization

From senses

Short-term memory

Working memory

Long-term memory
(Large capacity, slow access)
Short-term memory

- Fast access, limited capacity
- 5-7 locations
- Holds “chunks” of information where the size of a chunk may vary depending on its familiarity.
- Fast decay time
Working memory

- Larger capacity, longer access time.
- Memory area used to integrate information from short-term memory and long-term memory.
- Relatively fast decay time.
Long-term memory

- Slow access, very large capacity.
- Unreliable retrieval mechanism.
- Slow but finite decay time - information needs reinforcing.
- Relatively high threshold - work has to be done to get information into long-term memory.
Information transfer

- Problem solving usually requires transfer between short-term memory and working memory.
- Information may be lost or corrupted during this transfer.
- Information processing occurs in the transfer from short-term to long-term memory.
Cognitive chunking

Loop (process entire array)

Loop (process unsorted part of array)

Compare adjacent elements

Swap if necessary so that smaller comes first
Knowledge modelling

- **Semantic knowledge**: knowledge of concepts such as the operation of assignment, concept of parameter passing etc.
- **Syntactic knowledge**: knowledge of details of a representation *e.g.*, a Java while loop.
Knowledge acquisition

- Semantic knowledge is acquired through experience and active learning - the “ah” factor
- Syntactic knowledge is acquired by memorization.
- New syntactic knowledge can interfere with existing syntactic knowledge.
 - *E.g.*, problems in mixing up syntax of different programming languages
Semantic knowledge

- *E.g., Computing concepts:*
 - notion of a writable store
 - iteration
 - concept of an object
 - ...

Motivation

◆ An important role of a manager is to motivate the people working on a project.
◆ Motivation is a complex issue but it appears that there are different types of motivation based on:
 - Basic needs (e.g., food, sleep)
 - Personal needs (e.g., respect, self-esteem)
 - Social needs (e.g., to be accepted as part of a group)
Personality types

- *Needs hierarchy* is an over-simplification.

- Must also take into account different personality types:
 - Task-oriented
 - Self-oriented
 - Interaction-oriented
Personality types

◆ **Task-oriented.**
 - The motivation for doing the work is the work itself.

◆ **Self-oriented.**
 - The work is a means to an end which is the achievement of individual goals - *e.g.*, to get rich, to play tennis, to travel etc.

◆ **Interaction-oriented**
 - The principal motivation is the presence and actions of co-workers. People go to work because they like to go to work.
Motivation balance

- Individual motivations are made up of elements of each class.
- Balance can change depending on personal circumstances and external events.
Problem solving

- **Structured programming:** Limited control structures place a lesser load on short-term and working memory.

- **Software development ability:** is the ability to integrate new knowledge with existing computer and task knowledge and hence derive creative problem solutions.

- Thus, problem solving is language independent.
Problem solving

- Problem
- Partial solutions
- Solution

New knowledge

Existing knowledge

Long-term memory

Working memory
Training

◆ Language concepts should match semantic structures formed - more errors are likely to be made by low-level language programmers.

◆ Easy for programmers to learn a new language of the same type.

◆ May be more difficult for experienced programmers to learn a new language of a different type than for novices.
Motivation

- Motivations depend on satisfying needs.
- It can be assumed that physiological and safety needs are satisfied.
- Social, esteem and self-realization needs are most significant from a managerial viewpoint.
Need satisfaction

◆ Social
 • Provide communal facilities
 • Allow informal communications

◆ Esteem
 • Recognition of achievements
 • Appropriate rewards

◆ Self-realization
 • Training - people want to learn more
 • Responsibility
Project staffing

◆ Choosing people to work on a project is a major managerial responsibility.

◆ Appointment decisions are usually based on:
 • information provided by the candidate (their CV)
 • information gained at an interview
 • recommendations from other people who know the candidate

◆ Some companies use aptitude tests
 • There is no agreement on whether or not these tests are actually useful
Group working

- **Software engineering is a group activity**
 - The development schedule for most non-trivial software projects is such that they cannot be completed by one person working alone.
 - Group interaction is a key determinant of group performance.

- **Flexibility in group composition is limited**
 - Managers must do the best they can with available people
Time distribution

- 20% Non-productive activities
- 30% Working alone
- 50% Interaction with other people
Group composition

◆ Group composed of members who share the same motivation can be problematic:
 • Task-oriented - everyone wants to do their own thing.
 • Self-oriented - everyone wants to be the boss.
 • Interaction-oriented - too much chatting, not enough work.

◆ An effective group has a balance of all types.

◆ Can be difficult to achieve because most engineers are task-oriented.
Group leadership

- Leadership depends on respect not title.
- There should be both a technical and an administrative leader.
- Democratic leadership is more effective than autocratic leadership.
- A career path based on technical competence should be supported.
Group cohesiveness

◆ In a cohesive group, members consider the group to be more important than any individual in it.

◆ Advantages of a cohesive group are:
 • Group quality standards can be developed.
 • Team members learn from each other and get to know each other’s work.
 • Egoless programming where members strive to improve each other’s programs can be practised.
Group loyalties

- Group members tend to be loyal to cohesive groups.
- “Groupthink” is preservation of group irrespective of technical or organizational considerations.
- Management should act positively to avoid groupthink by forcing external involvement with each group.
Group communications

◆ Status of group members
 • Higher status members tend to dominate conversations.

◆ Personalities in groups
 • Too many people of the same personality type can be a problem.

◆ Communication channels
 • Communication channelled though a central coordinator tend to be ineffective.
Team organization

- Software engineering group sizes should be relatively small (< 8 members).
- Break big projects down into multiple smaller projects.
- Small teams may be organized in an informal, democratic way.
- Chief programmer teams try to make the most effective use of skills and experience.
Chief programmer teams

Specialist pool

- Administrator
- Toolsmith
- OS specialist
- Tech. author
- Test specialist

Nucleus of chief programmer team

- Chief programmer
- Backup programmer
- Librarian

Outside Communication
Chief programmer teams

- Consist of a kernel of specialists helped by others added to the project as required.
- Reportedly successful but problems with this approach are:
 - Finding talented chief programmers.
 - Disruption to normal organizational structures.
 - Demotivating effect on those who are not chief programmers.
Working environments

- Physical workplace provision has an important effect on individual productivity and satisfaction:
 - Comfort
 - Privacy
 - Facilities

- Health and safety considerations must be taken into account:
 - Lighting
 - Heating
 - Furniture
Environmental factors

- Privacy - each engineer requires an area for uninterrupted work.
- Outside awareness - people prefer to work in natural light.
- Personalization - individuals adopt different working practices and like to organize their environment in different ways.
Office grouping

Meeting room

Office

Communal area

Office

Window

Office

Shared documentation

Office

Office

Office

Office
Equipment provision

◆ Computers
 - Each engineer should have a personal workstation with access to software which is needed for his/her job.

◆ Telecommunications
 - telephone, fax, e-mail, networking facilities.
 - groupware - systems such as Lotus Notes facilitate information sharing.
 - Good telecommunications facilities can reduce travel costs drastically.
Key points

- Managers must have some understanding of people if they are to be effective.
- Human cognitive structures place fundamental limits on the ways in which people work.
- The success of techniques such as structured programming and OO development is partially a consequence of cognitive structures.
- Staff selection factors include education, domain experience, adaptability and personality.
Key points

◆ Software development groups should be small and cohesive.
◆ Group communications are affected by status, size, and organization of the group.
◆ The working environment has a significant effect on productivity.