
School of Computer Science

CS 246
Object-Oriented Software Development

Course Material∗
Winter 2013

http: //www.student.cs.uwaterloo.ca / ∼cs246

∗Permission is granted to make copies for personal or educational use.

Contents

1 Shell 1
1.1 File System . 4
1.2 Pattern Matching . 7
1.3 Quoting . 11
1.4 Shell Commands . 13
1.5 System Commands . 20
1.6 File Permission . 32
1.7 Input/Output Redirection . 35
1.8 Variables . 40
1.9 Arithmetic . 43
1.10 Programming . 45

1.10.1 Routine . 49
1.10.2 Environment Variables 52
1.10.3 Control Structures 54

2

CS 246 3

1.10.3.1 Test . 55
1.10.3.2 Shift . 57
1.10.3.3 Selection 58
1.10.3.4 Looping 61

1.11 Cleanup Script . 65
1.12 Regress Script . 68

2 C++ 71
2.1 First Program . 71
2.2 Program Structure . 73

2.2.1 Comment . 73
2.2.2 Statement . 75

2.3 Declaration . 76
2.3.1 Identifier . 76
2.3.2 Basic Types . 77
2.3.3 Variable Declaration 77
2.3.4 Type Qualifier . 78
2.3.5 Literals . 81

2.4 Expression . 85
2.4.1 Conversion . 90
2.4.2 Coercion . 92

CS 246 4

2.4.3 Math Operations . 93
2.5 Control Structures . 96

2.5.1 Block . 97
2.5.2 Selection . 99
2.5.3 Conditional Expression Evaluation 102
2.5.4 Looping . 103

2.6 Structured Programming . 106
2.6.1 Multi-Exit Loop . 108
2.6.2 Multi-Level Exit . 115

2.7 Type Constructor . 121
2.7.1 Enumeration . 122
2.7.2 Pointer/Reference . 124
2.7.3 Aggregates . 134

2.7.3.1 Array . 134
2.7.3.2 Structure 137
2.7.3.3 Union . 142

2.7.4 String . 144
2.7.5 Type Equivalence . 152
2.7.6 Type Nesting . 153
2.7.7 Type-Constructor Literal 155

CS 246 5

2.8 Modularization . 157
2.9 Routine . 158

2.9.1 Argument/Parameter Passing 162
2.9.2 Array Parameter . 166

2.10 Input/Output . 167
2.10.1 Formatted I/O . 169

2.10.1.1 Formats 170
2.10.1.2 Input . 171
2.10.1.3 Output . 177

2.10.2 Unformatted I/O . 178
2.11 Command-line Arguments 181
2.12 Preprocessor . 186

2.12.1 Variables/Substitution 186
2.12.2 File Inclusion . 189
2.12.3 Conditional Inclusion 190

2.13 Assertions . 192
2.14 Debugging . 195

2.14.1 Debug Print Statements 196
2.14.2 Errors . 200

2.15 Dynamic Storage Management 203

CS 246 6

2.16 Overloading . 211
2.17 Routine Pointer . 215
2.18 Object . 219

2.18.1 Object Member . 221
2.18.2 Operator Member . 224
2.18.3 Constructor . 225

2.18.3.1 Literal . 229
2.18.3.2 Conversion 230

2.18.4 Destructor . 232
2.18.5 Copy Constructor / Assignment 235
2.18.6 Initialize const / Object Member 244
2.18.7 Static Member . 246

2.19 Random Numbers . 249
2.20 Declaration Before Use . 253
2.21 Encapsulation . 259
2.22 System Modelling . 265

2.22.1 UML . 267
2.23 Separate Compilation . 281
2.24 Inheritance . 295

2.24.1 Implementation Inheritance 295

CS 246 7

2.24.2 Type Inheritance . 300
2.24.3 Constructor/Destructor 306
2.24.4 Copy Constructor / Assignment 307
2.24.5 Overloading . 309
2.24.6 Virtual Routine . 311
2.24.7 Downcast . 316
2.24.8 Slicing . 317
2.24.9 Protected Members 318
2.24.10 Abstract Class . 319
2.24.11 Multiple Inheritance 323
2.24.12 UML . 325

2.25 Composition / Inheritance Design 326
2.26 Template . 329

2.26.1 Standard Library . 333
2.26.1.1 Vector . 335
2.26.1.2 Map . 342
2.26.1.3 List . 346
2.26.1.4 foreach 349

2.27 Namespace . 351

3 Tools 357

CS 246 8

3.1 C/C++ Composition . 357
3.2 Compilation . 358

3.2.1 Preprocessor . 359
3.2.2 Translator . 360
3.2.3 Assembler . 362
3.2.4 Linker . 362

3.3 Compiling Complex Programs 363
3.3.1 Dependencies . 363
3.3.2 Make . 366

3.4 Source-Code Management 373
3.4.1 SVN . 374
3.4.2 Repository . 375
3.4.3 Checking Out . 378
3.4.4 Adding . 379
3.4.5 Checking In . 381
3.4.6 Modifying . 382
3.4.7 Revision Number . 386
3.4.8 Updating . 387

3.5 Debugger . 393
3.5.1 GDB . 394

CS 246 9

4 Software Engineering 404
4.1 Software Crisis . 405
4.2 Software Development . 406
4.3 Development Processes . 407
4.4 Software Methodology . 411

4.4.1 System Design . 412
4.4.2 Top-Down . 412

4.5 Design Quality . 414
4.5.1 Coupling . 415
4.5.2 Cohesion . 416

4.6 Design Principles . 420
4.7 Design Patterns . 420

4.7.1 Pattern Catalog . 422
4.7.1.1 Class Patterns 423
4.7.1.2 Object Patterns 427

4.8 Testing . 441
4.8.1 Human Testing . 442
4.8.2 Machine Testing . 443
4.8.3 Testing Strategies . 445
4.8.4 Tester . 447

CS 246 10

Index 449

1 Shell
• After signing onto a computer (login), a mechanism must exist to display

information and perform operations.

• The two main approaches are graphical and command line.

•Graphical user interface (GUI) (desktop):

◦ use icons to represent actions (programs) and data (files),
◦ click on icon launches (starts) a program or displays data,
◦ program may pop up a dialog box for arguments to affect its execution.

• Command-line interface(shell):

◦ use text strings to access programs (commands) and data (filenames),
◦ command is typed after a prompt in an interactive area to start it,
◦ arguments follow the command to affect its execution.

•Graphical interface is convenient, but seldom programmable.

• Command-line interface requires more typing, but allows programming.

• A shell is a program that reads commands and interprets them.

• It provides a simple programming-language withstring variables and a few
statements.

1

CS 246 2

• Unix shells falls into two basic camps,sh (ksh, bash) andcsh(tcsh), each
with slightly different syntax and semantics.

• Focus on bash with some tcsh.

• Area (window) where shell runs is called aterminal or xterm.

• Shell line begins with aprompt denoted by$ (sh) or% (csh) (often
customized).

• A command is typed after the prompt butnot executed untilEnter /Return
key is pressed.

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009
$ whoamiEnter # print userid
jfdoe
$ echo Hi There!Enter # print any string
Hi There!

• Comment begins with a hash (#) and continues to the end of line.

•Multiple commands can be typed on the command line separatedby the
semi-colon.

CS 246 3

$ date; whoami; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hi There!

• Commands can be editted on the command line (not sh):
◦ position cursor,, with ⊳ and⊲ arrow keys,
◦ remove characters before cursor withbackspace/delete key,
◦ type new characters before cursor,
◦ pressEnter at any point along the command line to execute modified

command.
•Most commands haveoptions, specified with a minus followed by one or

more characters, which affect how the command operates.

$ uname -m # machine type
x86 64
$ uname -s # operating system
Linux
$ uname -a # all system information
Linux linux008.student.cs 2.6.31-21-server #59-Ubuntu SMP x86 64 GNU/Linux

•Options are normally processed left to right; one option maycancel another.
• No standardization for command option names and syntax.

CS 246 4

• Shell terminates with commandexit .

$ exit # exit shell and possibly terminal

◦ when the shell of terminal/xterm terminates, the terminal/xterm
terminates.
◦ when the login terminal/xterm terminates, you sign off the computer

(logout).

1.1 File System
• Shell commands interact extensively with the file system.

• Files are containers for data stored on persistent storage (usually disk).

• File names are organized in an N-ary tree: directories are vertices, files are
leaves.

• Information is stored at specific locations in the hierarchy.

CS 246 5

/ root of the local file system
bin basic system commands
lib system libraries
usr

bin more system commands
lib more system libraries
include system include files, .h files

tmp system temporary files
u or home user files

jfdoe home directory
., . . current, parent directory
.bashrc, .emacs, .login,. . . hidden files
cs246 course files

a1 assignment 1 files
q1x.C, q2y.h, q2y.cc, q3z.cpp

other users

• Directory named “/ ” is the root of the file system.

• bin, lib, usr, include : system commands, system library and include files.

• tmp : temporary files created by commands (shared among all users).

• u or home : user files are located in this directory.

CS 246 6

• Directory for a particular user is called theirhome directory.

• Each file has a unique path-name in the file system, referencedwith an
absolute pathname.

• An absolute pathnameis a list of all the directory names from the root to
the file name separated by the backslash character “/ ”.

/u/jfdoe/cs246/a1/q1x.C # => file q1x.C

• Shell provides short names for a file using an implicit starting location.

• At sign on, the shell creates acurrent directory variable set to the user’s
home directory.

• Any file name not starting with “/ ” is automatically prefixed with the
current directory to create the necessary absolute pathname.

• A relative pathname is a list of all the directory names from the current
directory to the file name separated by the character “/ ”.

• E.g., when userjfdoe signs on, home and current directory are set to
/u/jfdoe.

.bashrc # => /u/jfdoe/.bashrc
cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

CS 246 7

• Shell special character “~” (tilde) expands to user’s home directory.

~/cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

• Every directory contains 2 special directories:

◦ “ .” points to current directory.

./cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

◦ “ . .” points to parent directory above the current directory.

. ./. ./usr/include/limits.h # => /usr/include/limits.h

1.2 Pattern Matching
• Shells provide pattern matching of file names,globbing (regular

expressions), to reduce typing lists of file names.

• Different shells and commands support slightly different forms and syntax
for patterns.

• Pattern matching is provided by characters,*, ?, {}, [], denoting different
wildcards (from card games, e.g., Joker is wild, i.e., can be any card).

• Patterns are composable: multiple wildcards joined into complex pattern
(Aces, 2s and Jacks are wild).

CS 246 8

• E.g., if the current directory is/u/jfdoe/cs246/a1 containing filesq1x.C,
q2y.h, q2y.cc, q3z.cpp

◦ * matches 0 or more characters

$ echo q* # shell globs “q*” to match file names, which echo prints
q1x.C q2y.h q2y.cc q3z.cpp

◦ ? matches 1 character

$ echo q*.??
q2y.cc

◦ {. . .} matches any alternative in the set

$ echo *.{C,cc,cpp}
q1x.C q2y.cc q3z.cpp

◦ [. . .] matches 1 character in the set

$ echo q[12] *
q1x.C q2y.h q2y.cc

◦ [!. . .] (^ csh) matches 1 characternot in the set

$ echo q[!1] *
q2y.h q2y.cc q3z.cpp

CS 246 9

◦ Create ranges using hyphen (dash)

[0-3] # => 0 1 2 3
[a-zA-Z] # => lower or upper case letter
[!a-zA-Z] # => any character not a letter

◦ Hyphen is escaped by putting it at start or end of set

[-?*]* # => matches file names starting with -, ?, or *
• If globbing pattern does not match any files, the pattern is the file name

(including wildcards).

$ echo q*.ww q[a -z].cc # files do not exist so no expansion
q*.ww q[a-z].cc

csh prints: echo : No match.

• Hidden filescontain administrative information and start with “.” (dot).

◦ ignored by globbing patterns⇒ * does not match all file names in a
directory.

• Pattern.* matches all hidden files:

◦match “.”, then zero or more characters, e.g.,.bashrc, .login, etc.,and
“ .”, “ . .”

CS 246 10

◦matching “.”, “ . .” can be dangerous

$ rm .* # remove hidden files, and current/parent directory!!!

• Pattern.[!.]* matches all single “.” hidden files butnot “ .” and “ . .”
directories.

◦match “.”, then any character NOT a “.”, and zero or more characters
◦⇒ there must be at least 2 characters, the 2nd character cannotbe a dot
◦ “ .” starts with dot but fails the 2nd pattern requiring anothercharacter
◦ “ . .” starts with dot but the second dot fails the 2nd pattern requiring

non-dot character

•On the command line, pressing thetab key after typing several characters of
a command/file name causes the shell to automatically complete the name.

$ ectab # cause completion of command name to echo
$ echo q1tab # cause completion of file name to q1x.C

• If the completion is ambiguous (i.e., more than one):

◦ shell “beeps”,
◦ prints all completions if tab is pressed again,
◦ then you type more characters to uniquely identify the name.

CS 246 11

$ datab # beep
$ datab # print completions
dash date
$ dattab # add “t” to complete command

1.3 Quoting
•Quoting controls how shell interprets strings of characters.

• Backslash(\) : escapeany character, including special characters.

$ echo .[!.]* # globbing pattern
.bashrc .emacs .login .vimrc
$ echo \.\[\!\.\]* # print globbing pattern
.[!.]*

• Backquote(8) : execute text as a command, and replace it with command
output.

$ echo 8whoami 8 # $ whoami => jfdoe
jfdoe

•Globbing does NOT occur within a single/double quoted string.

CS 246 12

• Single quote(’) : protect everything (including newline) except single
quote.

$ echo ’.[!.]*’ # no globbing
.[!.]*
$ echo ’\.\[\!\.\]*’ # no escaping
\.\[\!\.\]*
$ echo ’abc
> cdf’ # prompt “>” means current line is incomplete
abc
cdf

A single quote cannot appear inside a single quoted string.

◦ E.g., file name containing special characters
(blanks/wildcards/comment).

$ echo Book Report #2
Book Report
$ echo ’Book Report #2’
Book Report #2

• Double quote(") : protect everything except double quote, backquote, and
dollar sign (variables), which can be escaped.

CS 246 13

$ echo ".[!.]* \.\[\!\.\]*
8whoami 8 ${HOST} \"\ 8\$"

.[!.]* \.\[\!\.\]* cs246 linux032.student.cs " 8$

• To stop prompting or output from any shell command, type<ctrl>-c
(C-c), i.e., press<ctrl> thenc key, causing the shell to interrupt the current
command.

$ echo "abc
> C-c
$

1.4 Shell Commands
• A command typed after the prompt is executed by the shell (shell

command) or the shell calls a command program (system command).

• Shell commands read/write shell information/state.

• help : display information about bash commands (not sh or csh).

CS 246 14

help [command-name]

$ help cd
cd : cd [-L|-P] [dir]

Change the shell working directory.
. . .

◦ without argument, lists all bash commands.

• cd : change the current directory (navigate file hierarchy).

cd [directory]

$ cd . # change to current directory
$ cd . . # change to parent directory
$ cd cs246 # change to subdirectory
$ cd cs246/a1 # change to subsubdirectory

◦ argument must be a directory and not a file
◦ cd : move to home directory, same ascd ~
◦ cd - : move to previous current directory
◦ cd ~/cs246 : move tocs246 directory contained injfdoe home directory
◦ cd /usr/include : move to/usr/include directory

CS 246 15

◦ cd . . : move up one directory level
◦ If path does not exist,cd fails and current directory is unchanged.

• pwd : print the current directory.

$ pwd
/u/jfdoe/cs246

• history and “!” (bang!) : print a numbered history of most recent
commands entered and access them.

$ history
1 date
2 whoami
3 echo Hi There
4 help
5 cd . .
6 pwd

$!2 # rerun 2nd history command
whoami
jfdoe
$!! # rerun last history command
whoami
jfdoe
$!ec # rerun last history command starting with “ec”
echo Hi There
Hi There

◦ !N rerun commandN
◦ !! rerun last command
◦ !xyz rerun last command starting with the string “xyz”

CS 246 16

◦ Arrow keys△/▽ move forward/backward through history commands on
command line.

$ △ pwd
$ △ cd . .
$ △ help

• alias : substitution string for command name.

alias [command-name=string]

◦ No spaces before/after “=” (csh does not have “=”).
◦ Providenickname for frequently used or variations of a command.

$ alias d=date
$ d
Mon Oct 27 12:56:36 EDT 2008
$ alias off="clear; exit" # why quotes?
$ off # clear screen before terminating shell

◦ Always use quotes to prevent problems.
◦ Aliases are composable, i.e., one alias references another.

CS 246 17

$ alias now="d"
$ now
Mon Oct 27 12:56:37 EDT 2008

◦Without argument, print all currently defined alias names and strings.

$ alias
alias d=’date’
alias now=’d’
alias off=’clear; exit’

◦ Alias CANNOT be command argument.

$ alias cs246assn=/u/jfdoe/cs246/a1
$ cd cs246assn # alias only expands for command
bash: cd : cs246assn: No such file or directory

◦ Alias entered on command line disappears when shell terminates.
◦ Two options for making aliases persist across sessions:

1. insert thealias commands in the appropriate (hidden).shellrc file,
2. place a list ofalias commands in a file (often.aliases) andsource that

file from the.shellrc file.

• type (cshwhich) : indicate how name is interpreted as command.

CS 246 18

$ type now
now is aliased to ‘d’
$ type d
d is aliased to ‘date’
$ type date
date is hashed (/bin/date) # hashed for faster lookup
$ type -p date # -p => only print command file-name
/bin/date
$ type fred # no “fred” command
bash: type: fred: not found
$ type -p fred # no output

• echo : write arguments, separated by spaces and terminated with newline.

$ echo We like ice cream # 4 arguments
We like ice cream
$ echo " We like ice cream " # 1 argument
We like ice cream

• time : execute a command and print a time summary.

◦ program execution is composed of user and system time.
∗ user time is the CPU time used during execution of a program.

CS 246 19

∗ system timeis the CPU time used by the operating system to support
execution of a program (e.g., file or network access).

◦ program execution is also interleaved with other programs:

u s usuu s

r

uexecution
my

∗ real time is from start to end including interleavings: user + system≈
real-time

◦ different shells print these values differently.

$ time myprog
real 1.2
user 0.9
sys 0.2

% time myprog
0.94u 0.22s 0:01.2

◦ test if program modification produces change in execution performance
∗ used to compare user (and possibly system) times before and after

modification

• exit : terminates shell, with optional integer exit status (return code)N.

exit [N]

CS 246 20

◦ [N] is in range 0-255; larger values are truncated (256⇒ 0, 257⇒ 1,
etc.) , negative values (if allowed) become unsigned (-1⇒ 255).
◦ exit status defaults to zero if unspecified, which usually means success.

1.5 System Commands
• Command programs called by shell (versus executed by shell).

• sh / bash / csh / tcsh : startsubshell.

$. . . # bash commands
$ tcsh # start tcsh in bash
% . . . # tcsh commands
% sh # start sh in tcsh
$. . . # sh commands
$ exit # exit sh
% exit # exit tcsh
$ exit # exit original bash and terminal

◦ Allows switching among shells for different purposes.

• chsh : set login shell (bash, tcsh, etc.).

CS 246 21

$ echo ${0} # what shell am I using ?
/bin/tcsh
$ chsh # change to different shell
Password: XXXXXX
Changing the login shell for jfdoe
Enter the new value, or press ENTER for the default

Login Shell [/bin/tcsh]: /bin/bash

•man : print information about command, option names and function.

$ man bash
. . . # information about “bash” command
$ man chsh
. . . # information about “chsh” command
$ man man
. . . # information about “man” command

• ls : list the directories and files in the specified directory.

ls [-al] [file or directory name-list]

◦ -a lists all files, including hidden files
◦ -l generates along listing (details) for each file
◦ no file/directory name implies current directory

CS 246 22

$ ls . # list current directory (non-hidden files)
q1x.C q2y.h q2y.cc q3z.cpp
$ ls -a # list current directory plus hidden files
. . . .bashrc .emacs .login q1x.C q2y.h q2y.cc q3z.cpp

•mkdir : create a new directory at specified location in file hierarchy.

mkdir directory-name-list

$ mkdir d d1 d2 d3 # create 4 directories in current directory

• cp : copy files; with the-r option, copy directories.

cp [-i] source-file target-file
cp [-i] source-file-list target-directory
cp [-i] -r source-directory-list target-directory

◦ -i prompt for verification if a target file is being replaced.
◦ -r recursively copy contents of a source directory to a target directory.

$ cp f1 f2 # copy file f1 to f2
$ cp f1 f2 f3 d # copy files f1, f2, f3 into directory d
$ cp -r d1 d2 d3 # copy directories d1, d2 recursively into directory d3

•mv : move files and/or directories to another location in the filehierarchy.

CS 246 23

mv [-i] source-file target-file
mv [-i] source-file-list/source-directory-list target-directory

◦ if the target-file does not exist, the source-file is renamed;otherwise the
target-file is replaced.
◦ -i prompt for verification if a target file is being replaced.

$ mv f1 foo # rename file f1 to foo
$ mv f2 f3 # delete file f3 and rename file f2 to f3
$ mv f3 d1 d2 d3 # move file f3 and directories d1, d2 into directory d3

• rm : remove (delete) files; with the-r option, remove directories.

rm [-ifr] file-list/directory-list

$ rm f1 f2 f2 # file list
$ rm -r d1 d2 # directory list, and all subfiles/directories
$ rm -r f1 d1 f2 # file and directory list

◦ -i prompt for verification for each file/directory being removed.
◦ -f (default) do not prompt for verification for each file/directory being

removed.
◦ -r recursively delete the contents of a directory.

CS 246 24

◦ UNIX does not give a second chance to recover deleted files; becareful
when usingrm , especially with globbing, e.g.,rm * or rm .*
◦ UW has hidden directory.snapshot in every directory containing

backups of all files in that directory (per hour for 8 hours, per night for 7
days, per week for 21 weeks)

$ ls .snapshot # directories containing backup files
hourly.0 hourly.6 nightly.4 weekly.11 weekly.17 weekly.3 weekly.9
hourly.1 hourly.7 nightly.5 weekly.12 weekly.18 weekly.4
hourly.2 nightly.0 nightly.6 weekly.13 weekly.19 weekly.5
hourly.3 nightly.1 weekly.0 weekly.14 weekly.2 weekly.6
hourly.4 nightly.2 weekly.1 weekly.15 weekly.20 weekly.7
hourly.5 nightly.3 weekly.10 weekly.16 weekly.21 weekly.8
$ cp .snapshot/hourly.0/q1.h q1.h # restore file from previous hour

• Usealias for setting command options for particular commands.

$ alias cp="cp -i"
$ alias mv="mv -i"
$ alias rm="rm -i"

which always uses the-i option on commandscp, mv andrm.

• Alias can be overridden by quoting or escaping the command name.

CS 246 25

$ "rm" -r xyz
$ \rm -r xyz

which does not add the-i option.

• cat/more/less : print files.

cat file-list

◦ cat shows the contents in one continuous stream.
◦more/less paginate the contents one screen at a time.

$ cat q1.h
. . . # print file q1.h completely
$ more q1.h
. . . # print file q1.h one screen at a time

type “space” for next screen, “q” to stop

• lp/lpstat/lprm : add, query and remove files from the printer queues.

lp [-d printer-name] file-list
lpstat [-d] [-p [printer-name]]
lprm [-P printer-name] job-number

◦ if no printer is specified, use default printer (ljp 3016 in MC3016).

CS 246 26

◦ lpstat : -d prints default printer,-p without printer-name lists all printers
◦ each job on a printer’s queue has a unique number.
◦ use this number to remove a job from a print queue.

$ lp -d ljp 3016 uml.ps # print file to printer ljp 3016
$ lpstat # check status, default printer ljp 3016
Spool queue: lp (ljp 3016)
Rank Owner Job Files Total Size
1st rggowner 308 tt22 10999276 bytes
2nd jfdoe 403 uml.ps 41262 bytes
$ lprm 403 # cancel printing
services203.math: cfA403services16.student.cs dequeued
$ lpstat # check if cancelled
Spool queue: lp (ljp 3016)
Rank Owner Job Files Total Size
1st rggowner 308 tt22 10999276 bytes

• cmp/diff : compare 2 files and print differences.

cmp file1 file2
diff file1 file2

◦ return 0 if files equal (no output) and non-zero otherwise (output
difference)

CS 246 27

◦ cmp generates the first difference between the files.
file x file y

1 a\n a\n
2 b\n b\n
3 c\n c\n
4 d\n e\n
5 g\n h\n
6 h\n i\n
7 g\n

$ cmp x y
x y differ: char 7, line 4

newline is counted⇒ 2 characters per line in files
◦ diff generates output describing how to change first file into second file.

$ diff x y
4,5c4 # replace lines 4 and 5 of 1st file
< d # with line 4 of 2nd file
< g

> e
6a6,7 # after line 6 of 1st file
> i # add lines 6 and 7 of 2nd file
> g

CS 246 28

◦ Useful for checking output from previous program with current program.

• find : search for names in the file hierarchy.

find [file/directory-list] [expr]

◦ if [file/directory-list] omitted, search current directory, “.”
◦ if [expr] omitted, match all file names, “-name "*"”
◦ recursively find file/directory names starting in current directory

matching pattern “t*”

$ find -name "t*" # why quotes ?
./test.cc
./testdata

◦ -name pattern restrict file names to globbing pattern
◦ -type f | d select files of type file or directory
◦ -maxdepth N recursively descend at mostN directory levels (0⇒

current directory)
◦ logical not, and andor (precedence order)

-not expr
expr -a expr
expr -o expr

CS 246 29

-a assume if no operator,expr expr ⇒ expr -a expr
◦ \(expr \) evaluation order
◦ recursively find only file names starting in current directory matching

pattern “t*”

$ find . -type f -name "t*" # same as -type f -a -name “t*”
test.cc

◦ recursively find only file names in file list (excluding hiddenfiles) to a
maximum depth of 3 matching patternst* or *.C.

$ find * -maxdepth 3 -a -type f -a \(-name "t*" -o -name "*.C" \)
test.cc
q1.C
testdata/data.C

• egrep : (extended global regular expression print) search & print lines
matching pattern in files (Google). (same asgrep -E)

egrep -irn pattern-string file-list

◦ list lines containing “main” in files with suffix “.cc”

CS 246 30

$ egrep main *.cc # why no quotes ?
q1.cc:int main() {
q2.cc:int main() {

◦ -i ignore case in both pattern and input files
◦ -r recursively examine files in directories.
◦ -n prefix each matching line with line number
◦ returns 0 if one or more lines match and non-zero otherwise (counter

intuitive)
◦ list lines with line numbers containing “main” in files with suffix “.cc”

$ egrep -n main *.cc
q1.cc:33:int main() {
q2.cc:45:int main() {

◦ list lines containing “fred” in any case in file “names.tex”

$ egrep -i fred names.txt
names.txt:Fred Derf
names.txt:FRED HOLMES
names.txt:freddy jones

◦ list lines that match start of line “^”, match “#include”, match 1 or more
space or tab “[]+”, match either “"” or “ <”, match 1 or more characters

CS 246 31

“ .+”, match either “"” or “ >”, match end of line “$” in files with suffix
“ .h” or “ .cc”

$ egrep ’^#include[]+["<].+[">]$’ *.{h,cc} # why quotes ?
egrep: *.h: No such file or directory
q1.cc:#include <iostream>
q1.cc:#include <iomanip>
q1.cc:#include “q1.h”

◦ egrep pattern is different from globbing pattern.
Most important difference is “*” is a wildcard qualifier not a wildcard.

• ssh : (secure shell) safe, encrypted, remote-login between client/server
hosts.

ssh [-Y] [-l user] [user@] hostname

◦ -Y allows remote computer (University) to create windows on local
computer (home).
◦ -l login user on the server machine.
◦ To login from home to UW environment:

CS 246 32

$ ssh -Y -l jfdoe linux.student.cs.uwaterloo.ca
. . . # enter password, run commands (editor, programs)
$ ssh -Y jfdoe@linux.student.cs.uwaterloo.ca

1.6 File Permission
• UNIX supports security for each file or directory based on 3 kinds of users:

◦ user : owner of the file,
◦ group : arbitrary name associated with a set of userids,
◦ other : any other user.

• File or directory has permissions, read, write, and execute/search for the 3
sets of users.

◦ Read/write allow specified set of users to read/write a file/directory.
◦ Executable/searchable:
∗ file : execute as a command, e.g., file contains a program or shell script,
∗ directory : search by certain system operations but not readin general.

• Usels -l command to print file-permission information.

CS 246 33

drwxr-x--- 2 jfdoe jfdoe 4096 Oct 19 18:19 cs246
drwxr-x--- 2 jfdoe jfdoe 4096 Oct 21 08:51 cs245
-rw------- 1 jfdoe jfdoe 22714 Oct 21 08:50 test.cc
-rw------- 1 jfdoe jfdoe 63332 Oct 21 08:50 notes.tex

• Columns are: permissions, #-of-directories (including “.” and “ . .”), owner,
group, file size, change date, file name.
• Permission information is:

−−−d rwx r−x

group permissions
other permissions

- = file
d = directory user permission

• E.g., drwx r-x ---, indicates
◦ directory in which the user has read, write and execute permissions,
◦ group has only read and execute permissions,
◦ others have no permissions at all.
• In general, never allow “other” users to read or write your files.
• Default permissions (usually) on:

CS 246 34

◦ file: rw- r-- ---, owner read/write, group only read, other none.
◦ directory:rwx --- ---, owner read/write/execute, group/other none.

• chgrp : change group-name associated with file.

chgrp [-R] group-name file/directory-list

◦ -R recursively modify the group of a directory.

$ chgrp cs246 05 cs246 # course directory
$ chgrp -R cs246 05 cs246/a5 # assignment directory/files

Must associate group along entire pathname and files.

• Creating/deleting group-names is done by system administrator.

• chmod : add or remove from any of the 3 security levels.

chmod [-R] mode-list file/directory-list

◦ -R recursively modify the security of a directory.
◦ mode-list has the formsecurity-level operator permission.
◦ Security levels are denoted byu for user,g for group,o for other,a for all

(ugo).
◦Operator+ adds permission,- removes permission.

CS 246 35

◦ Permissions are denoted byr for readable,w for writable andx for
executable.
◦ Elements of themode-list are separated by commas.

chmod g-r,o-r,g-w,o-w foo # long form, remove read/write for group/others
chmod go-rw foo # short form
chmod g+rx cs246 # allow group users read/search
chmod -R g+rw cs246/a5 # allow group users read/write, recursively

To achieve desired access, must associate permission alongentire pathname
and files.

1.7 Input/Output Redirection
• Every command has three standard files: input (0), output (1)and error (2).

• By default, these are connected to the keyboard (input) and screen
(output/error).

command
0

1

2

CS 246 36

$ sort -n # -n means numeric sort
7 sort reads unsorted values from keyboard
30
5
C-d close input file
5 sort prints sorted values to screen
7
30

• To close an input file from the keyboard, type<ctrl>-d (C-d), i.e., press
<ctrl> thend key, causing the shell to close the keyboard input file.

• Redirection allows:

◦ input from a file (faster than typing at keyboard),
◦ saving output to a file for subsequent examination or processing.

• Redirection performed using operators< for input and> / >> for output
to/from other sources.

$ sort -n < input 1> output 2> errors

CS 246 37

input

output

errors

1>
1>>

2>
2>>

0

<

sort

◦ < means read input from file rather than keyboard.
◦ > (same as1>), 1>, 2> means (create if needed) file and write

output/errors to file rather than screen (destructive).
◦ >> (same as1>>), 1>>, 2>> means (create if needed) file and append

output/errors to file rather than screen.

• Command is (usually) unaware of redirection.

• Can tie standard error to output (and vice versa) using “>&” ⇒ both write to
same place.

$ sort -n < input 1> output 2>&1 # stderr (2) goes to stdout (1)
$ sort -n < input 1> output 1>&2 # stdout (1) goes to stderr (2)

CS 246 38

<

2>&1

1>&2
input

output

errors

0
sort

1

2

•Order of tying redirection files is important.

$ sort 2>&1 > output # tie stderr to screen, redirect stdout to “output”
$ sort > output 2>&1 # redirect stdout to “output”, tie stderr to “output”

• To ignore output, redirect to pseudo-file/dev/null.

$ sort data 2> /dev/null # ignore error messages

• Redirection requires explicit creation of intermediate (temporary) files.

$ sort data > sortdata # sort data and store in “sortdata”
$ egrep -v "abc" sortdata > temp # print lines without “abc”, store in “temp”
$ tr a b < temp > result # translate a’s to b’s and store in “result”
$ rm sortdata temp # remove intermediate files

• Shell pipe operator| makes standard output for a command the standard

CS 246 39

input for the next command, without creating intermediate file.

$ sort data | grep -v "abc" | tr a b > result

• Standard error is not piped unless redirected to standard output.

$ sort data 2>&1 | grep -v "abc" 2>&1 | tr a b > result 2>&1

now both standard output and error go through pipe.

• Print file hierarchy using indentation.

$ find cs246
cs246
cs246/a1
cs246/a1/q1x.C
cs246/a1/q2y.h
cs246/a1/q2y.cc
cs246/a1/q3z.cpp

$ find cs246 | sed ’s|[^/]*/| |g’
cs246

a1
q1x.C
q2y.h
q2y.cc
q3z.cpp

sed : inline editor, pattern changes all occurrences (g) of string [^/]*/ (zero
or more characters not “/” and then “/”, where “*” is a wildcard qualifier not
a wildcard) to 3 spaces.

CS 246 40

1.8 Variables
• syntax :[a-zA-Z][a-zA-Z0-9]* where “*” is wildcard qualifier

• case-sensitive:

VeryLongVariableName Page1 Income Tax 75

• Some identifiers are reserved (e.g.,if , while), and hence,keywords.
• Variables ONLY hold string values (arbitrary length).

• Variable is declareddynamicallyby assigning a value with operator “=”.

$ cs246assn=/u/jfdoe/cs246/a1 # declare and assign

No spaces before or after “=”.

• A variable’s value is dereferenced using operators “$” or “ ${}”.

$ echo $cs246assn ${cs246assn}
/u/jfdoe/cs246/a1 /u/jfdoe/cs246/a1
$ cd $cs246assn # or ${cs246assn}

• Unlike alias, variable can be command or argument.

CS 246 41

$ alias d=date
$ d # alias expands as command
Sun Apr 15 11:20:11 EDT 2012
$ d=date
$ $d # variable expands as command
Sun Apr 15 11:20:20 EDT 2012
$ echo d # alias does not expand as argument
d
$ echo ${d} # variable expands as argument
date

• Dereferencing undefined variable returns empty string.

$ echo $xxx # no output just newline
empty line

• Beware concatenation.

$ cd $cs246assndata # change to /u/jfdoe/cs246/a1data

Where does this move to?

• Always use braces to allow concatenation with other text.

$ cd ${cs246assn}data # cd /u/jfdoe/cs246/a1data

CS 246 42

• Beware commands/arguments composed in variables.

$ out=sortdata # output file
$ dsls=’ls | sort -r > ${out}’ # store files names in descending (-r) order
$ ${dsls} # execute command
ls: cannot access |: No such file or directory
ls: cannot access sort: No such file or directory
ls: cannot access >: No such file or directory
ls: cannot access ${out}: No such file or directory

• Behaviour results because the shell tokenizes, substitutes variables, and
then executes.

• Shell sees only one token, “${dsls}”, so the tokenswithin the variable are
not marked correctly, e.g., “|” and ”>” not marked as pipe/redirection
tokens.

• Then variable substitution for “${dsls}”, giving tokens
’ls’ ’|’ ’sort’ ’-r’ ’>’ ’${out}’, sols is the command and
remaining tokens are file names.
Why no “cannot access” message above for-r?

• To make this work, shell needs to tokenize and substitute a second time
beforeexecution.

CS 246 43

• eval command causes its arguments to be processed by shell.

$ eval ${dsls} # tokenize/substitute then tokenize/substitute
$ cat sortdata # no errors, check results
. . . # list of file names in descending order

◦ 1st tokenize/substitute gives
eval ’ls’ ’|’ ’sort’ ’-r’ ’>’ ’${out}’
◦ 2nd tokenize/substitute gives’ls | sort -r > sortdata’, which shell

executes

1.9 Arithmetic
• Shell variables have type string.

$ i=3 # i has string value “3” not integer 3

• Arithmetic requires integers,3 + 7, not strings,"3" + "17".

• Arithmetic is performed by:

◦ converting a string to an integer (if possible),
◦ performing an integer operation,
◦ and converting the integer result back to a string.

CS 246 44

• bash performs these steps with shell-command operator$((expression)).

$ echo $((3 + 4 - 1))
6
$ echo $((3 + ${i} * 2))
9
$ echo $((3 + ${k})) # k is unset
bash: 3 + : syntax error: operand expected (error token is " ")

• Basic integer operations,+, -, *, /, % (modulus), with usual precedence,
and().

• For shells without arithmetic shell-command (e.g., sh, csh), use system
commandexpr.

$ echo 8expr 3 + 4 - 1 8 # for sh, csh
6
$ echo 8expr 3 + ${i} \ * 2 8 # escape *
9
$ echo 8expr 3 + ${k} 8 # k is unset
expr: non-numeric argument

CS 246 45

1.10 Programming
• A shell program or script is a file (scriptfile) containing shell commands to

be executed.

#!/bin/bash [-x]
date # shell and OS commands
whoami
echo Hi There

• First line should begin with magic comment: “#! ” (sha-bang) with shell
pathname for executing the script.

• It forces a specific shell to be used, which is run as a subshell.

• If the “#! ” line is missing, a subshell of the same kind as the invoking shell
is used for sh shells (bash) and sh is used for csh shells (tcsh).

•Optional-x is for debugging and prints trace of the script during
execution.

• Script can be invoked directly using a specific shell:

CS 246 46

$ bash scriptfile # direct invocation
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hi There!

or as a command if it has executable permissions.

$ chmod u+x scriptfile # make script file executable
$./scriptfile # command execution
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hi There!

• Script can have parameters.

#!/bin/bash [-x]
date
whoami
echo ${1} # parameter for 1st argument

• Arguments are passed on the command line:

CS 246 47

$./scriptfile "Hello World"
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hello World
$./scriptfile Hello World
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hello

Why noWorld?

• Special parameter variables to access arguments/result.

◦ ${#} number of arguments, not including script name
◦ ${0} always name of shell script

echo ${0} # in scriptfile
printsscriptfile.
◦ ${1}, ${2}, ${3}, . . . refers to arguments by position (not name), i.e., 1st,

2nd, 3rd, ... argument
◦ ${*} and${@} list all arguments, e.g.,${1} ${2} . . ., not including script

name
Difference occurs inside double quotes:

CS 246 48

∗ "${*}" arguments as a single string string, e.g.,"${1} ${2} . . ."
∗ "${@}" arguments as separate strings, e.g.,"${1}" "${2}" . . .
◦ ${$} process id of executing script.
◦ ${?} exit status of the last command executed; 0 often⇒ exited normally.

$ cat scriptfile
#!/bin/bash
echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # some arguments
echo "${*}" # all arguments as a single string
echo "${@}" # all arguments as separate strings
echo ${$} # process id of executing subshell
exit 21 # script exit status
$./scriptfile a1 a2 a3 a4 a5
5 # number of arguments
scriptfile a1 a2 a3 a4 # script-name / args 1-4
a1 a2 a3 a4 a5 # args 1-5, 1 string
a1 a2 a3 a4 a5 # args 1-5, 5 strings
27028 # process id of subshell
$ echo ${?} # print script exit status
21

CS 246 49

• Interactive shell session is just a script reading commandsfrom standard
input.

$ echo ${0} # shell you are using (not csh)
bash

1.10.1 Routine

• A routine is defined as follows:

routine name() { # number of parameters depends on call
commands

}

• Invoke like a command.

routine name [args ...]

• E.g., create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g -e input-file [output-file]"
exit 1 # terminate script with non-zero exit code

}
usage # call, no arguments

CS 246 50

• Routine arguments are accessed the same as in the script.

$ cat scriptfile
#!/bin/bash
rtn() {

echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # some arguments
echo "${*}" # all arguments as a single string
echo "${@}" # all arguments as separate strings
echo ${$} # process id of executing subshell
return 17 # routine exit status

}
rtn a1 a2 a3 a4 a5 # invoke routine
echo ${?} # print routine exit status
exit 21 # script exit status

CS 246 51

$./scriptfile # run script
5 # number of arguments
scriptfile a1 a2 a3 a4 # script-name / args 1-5
a1 a2 a3 a4 a5 # args 1-5, 1 string
a1 a2 a3 a4 a5 # args 1-5, 5 strings
27028 # process id of subshell
17 # routine exit status
$ echo ${?} # print script exit status
21

• Routines/variables must be created before used, are then visible throughout
the script, and can be removed.

rtn1() {
var=3 # new variable
rtn2 # call rtn2, see all routines
unset rtn2 # remove routine!!!

}
rtn2() {

echo ${var} # see all variables
unset var # remove variable!!!

}
rtn1 # call

CS 246 52

• source filename : execute commands from a file in the current shell.

◦ For convenience or code sharing, a script may be subdivided into
multiple files.
◦ E.g., put commonly used routines or set of commands into separate files.
◦ No “#!. . . ” at top, because not invoked directly like a script.
◦ Sourcing a fileincludesit into the current shell script andevaluatesthe

lines.

source ./aliases # include/evaluate aliases into .shellrc file
source ./usage.bash # include/evaluate usage routine into scriptfile

◦ Created or modified variables/routines from sourced file immediately
affect current shell.

1.10.2 Environment Variables

• Each shell has a set of environment (global) and script (local/parameters)
variables.

• Shell has aN sets of variables: environment, local, arguments for routine
callsC1−i.

CS 246 53

Envir: $E0 $E1 $E2...
Local: $L0 $L1 $L2...
Args1: $0 $1 $2...0

1

2

Shell (command)

... (call stack)
Argsi: $0 $1 $2...

• New variable declare on the local list.

$ var=3 # new local variable

• A variable is moved to environment list if exported.

$ export var # move from local to environment list

• Login shell starts with a number of useful environment variables, e.g.:

$ set # print variables/routines (and values)
HOME=/u/jfdoe # home directory
HOSTNAME=linux006.student.cs # host computer
PATH=. . . # lookup directories for OS commands
SHELL=/bin/bash # login shell
. . .

CS 246 54

• A script executes in its own subshell with acopyof calling shell’s
environment variables (works across different shells), but not calling shell’s
locals or arguments.

$./scriptfile # execute script in subshell

Envir: $E0 $E1 $E2......

Envir: $E0 $E1 $E2...

Shell

(scriptfile)Subshell...

copied

•When a (sub)shell ends, changes to its environment variables do not affect
its containing shell (environment variables only affect subshells).

•Only put a variable in the environment list to make it accessible by
subshells.

1.10.3 Control Structures

• Shell provides control structures for conditional and iterative execution;
syntax for bash is presented (csh is different).

CS 246 55

1.10.3.1 Test

• test ([]) command compares strings, integers and queries files.

• test expression is constructed using the following:
test operation priority

! expr not high
\(expr \) evaluation order (must be escaped)
expr1 -a expr2 logical and (not short-circuit)
expr1 -o expr2 logical or (not short-circuit) low

• test comparison is performed using the following:

CS 246 56

test operation
string1 = string2 equal (not ==)
string1 != string2 not equal
integer1 -eq integer2 equal
integer1 -ne integer2 not equal
integer1 -ge integer2 greater or equal
integer1 -gt integer2 greater
integer1 -le integer2 less or equal
integer1 -lt integer2 less
-d file exists and directory
-e file exists
-f file exists and regular file
-r file exists with read permission
-w file exists with write permission
-x file exists with executable or searchable

• Logical operators-a (and) and-o (or) evaluate both operands.

• test returns 0 if expression is true and 1 otherwise (counter intuitive).

CS 246 57

$ i=3
$ test 3 -lt 4 # integer test
$ echo ${?} # true
0
$ test 8whoami 8 = jfdoe # string test
$ echo ${?} # false
1
$ test 2 -lt ${i} -o 8whoami 8 = jfdoe # compound test
$ echo ${?} # true
0
$ [-e q1.cc] # file test, using brackets [] with spaces
$ echo ${?} # true
0

1.10.3.2 Shift

• shift [N] : destructively shift parameters to the leftN positions, i.e.,
${1}=${N+1}, ${2}=${N+2}, etc., and${#} is reduced byN.

◦ If no N, 1 is assumed.
◦ If N is 0 or greater than${#}, there is no shift.

CS 246 58

$ cat scriptfile
#!/bin/bash
echo ${1}; shift 1
echo ${1}; shift 2
echo ${1}; shift 3
echo ${1}

$./scriptfile 1 2 3 4 5 6 7
1
2
4
7

1.10.3.3 Selection

• An if statement provides conditional control-flow.

if test-command if test-command ; then
then

commands commands
elif test-command elif test-command ; then

then
commands commands

.
else else

commands commands
fi fi

Semi-colon is necessary to separatetest-command from keyword.

CS 246 59

• test-command is evaluated; exit status of zero implies true, otherwise false.

• Check for different conditions:

if test " 8whoami 8" = "jfdoe" ; then
echo "valid userid"

else
echo "invalid userid"

fi
if diff file1 file2 > /dev/null ; then # ignore diff output

echo "same files"
else

echo "different files"
fi
if [-x /usr/bin/cat] ; then # alternate syntax for test

echo "cat command available"
else

echo "no cat command"
fi

• Beware unset variables or values with special characters (e.g., blanks).

CS 246 60

if [${var} = ’yes’] ; then . . . # var unset => if [= ’yes’]
bash: [: =: unary operator expected
if [${var} = ’yes’] ; then . . . # var=“a b c” => if [a b c = ’yes’]
bash: [: too many arguments
if ["${var}" = ’yes’] ; then . . . # var unset => if [“” = ’yes’]
if ["${var}" = ’yes’] ; then . . . # var=“a b c” => if [“a b c” = ’yes’]

When dereferencing, always quote variables, except for safe variables
${#}, ${$}, ${?}, which generate numbers.

• A case statement selectively executes one ofN alternatives based on
matching a string expression with a series of patterns (globbing), e.g.:

case expression in
pattern | pattern | . . .) commands ;;
. . .
*) commands ;; # optional match anything

esac

•When a pattern is matched, the commands are executed up to “;;”, and
control exits thecase statement.

• If no pattern is matched, thecase statement does nothing.

• E.g., command with only one of these options:

CS 246 61

-h, --help, -v, --verbose, -f file, --file file

usecase statement to process option:

usage() { . . . } # print message and terminate script
verbose=no
case "${1}" in # process single option
’-h’ | ’--help’) usage ;;
’-v’ | ’--verbose’) verbose=yes ;;
’-f’ | ’--file’) # has additional argument

shift 1 # access argument
file="${1}"
;;

*) usage ;; # default, has to be one argument
esac
if [${#} -ne 1] ; then usage ; fi # check only one argument remains
. . . # execute remainder of command

1.10.3.4 Looping

• while statement executes its commands zero or more times.

CS 246 62

while test-command while test-command ; do
do

commands commands
done done

• test-command is evaluated; exit status of zero implies true, otherwise false.

• Check for different conditions:

search command-line parameters for “-x”
while ["${1}" != "-x"] ; do # string compare

shift # destructive
done
print parameters hard way, non-destructive
i=1
while [${i} -le ${#}] ; do

eval arg="\${${i}}" # 1st step ${1}, 2nd step argument 1
echo "${arg}" # process value
i=$((${i} + 1))

done

CS 246 63

process files data1, data2, . . .
i=1
file=data${i}
while [-f "${file}"] ; do # file regular and exists?

. . . # process file
i=$((${i} + 1)) # advance to next file
file=data${i}

done

• for statement is a specializedwhile statement for iterating with an index
over list of strings.

for index [in list] ; do
commands

done
for name in ric peter jo mike ; do

echo ${name}
done
for arg in "${@}" ; do # process parameters, why quotes?

echo ${arg}
done

If no “ in list”, iterate over quoted parameters, i.e.,"${@}".
•Or over a set of values:

CS 246 64

for ((init-expr; test-expr; incr-expr)); do # double parenthesis
commands

done

for ((i = 1; i <= ${#}; i += 1)); do
eval echo "\${${i}}" # ${1-#}

done

• Use directly on command line:

$ for file in *.C ; do cp "${file}" "${file}".old ; done

• A while /for loop may containbreak andcontinue to terminate loop or
advance to the next loop iteration.

CS 246 65

process files data1, data2, . . .
i=1
while [0] ; do # while true, infinite loop

file=data${i} # create file name
if [! -f "${file}"] ; then break ; fi # file not exist, stop ?

. . . # process file
if [${?} -ne 0] ; then continue ; fi # bad return, next file

. . . # process file
i=$((${i} + 1)) # advance to next file

done

1.11 Cleanup Script

CS 246 66

#!/bin/bash
#
List and remove unnecessary files in directories
#
Usage: cleanup [[-r|R] [-i|f] directory-name]+
-r|-R clean specified directory and all subdirectories
-i|-f prompt or not prompt for each file removal
Examples:
$ cleanup jfdoe
$ cleanup -R .
$ cleanup -r dir1 -i dir2 -r -f dir3
Limitations:
* only removes files named: core, a.out, *.o, *.d
* does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | -R] [-i | -f] directory-name]+"
exit 1

}
defaults() { # defaults for each directory

prompt="-i" # do not prompt for removal
depth="-maxdepth 1" # not recursive

}

CS 246 67

remove() {
for file in 8find "${1}" ${depth} -type f -a \(-name ’core’ -o \

-name ’a.out’ -o -name ’*.o’ -o -name ’*.d’ \) 8

do
echo "${file}" # print removed file
rm "${prompt}" "${file}"

done
}
if [${#} -eq 0] ; then usage ; fi # no arguments ?
defaults # set defaults for directory
while [${#} -gt 0] ; do # process command-line arguments

case "${1}" in
"-h") usage ;; # help ?
"-r" | "-R") depth="" ;; # recursive ?
"-i" | "-f") prompt="${1}" ;; # prompt for deletion ?
*) # directory name ?

remove "${1}" # remove files in this directory
defaults # set defaults for directory
;;

esac
shift # remove argument

done

CS 246 68

1.12 Regress Script

#!/bin/bash
#
Compare output from two programs printing any differences.
#
Usage: regress program1 ’program1-options’ program2 ’program2-options’
#
Examples:
regress ls ’’ ls ’’
regress ls ’’ ls ’’ ’“a b c”’
regress cat ’’ cat ’-n’ regress regress
regress regress “cat ’’ cat ’-n’” regress “cat ’’ cat ’-n’” regress regress
regress myprog ’-w’ samplesoln ’-w’ 27 100 -2 -100

usage() {
echo "Usage: ${0} program1 \"program1-options\"" \

"program2 \"program2-options\" argument-list"
exit 1

}

CS 246 69

process() {
for parm in "${@}" ; do # process parameters

must use eval to reevaluate parameters
eval ${prog1} ${opts1} ${parm} > /tmp/tmp1 ${$} 2>&1 # run programs,
eval ${prog2} ${opts2} ${parm} > /tmp/tmp2 ${$} 2>&1
diff /tmp/tmp1 ${$} /tmp/tmp2 ${$} # compare output from programs
if [${?} -eq 0] ; then # check return code

echo "identical output"
fi
rm /tmp/tmp1 ${$} /tmp/tmp2 ${$} # remove temporary files

done
}
if [${#} -lt 4] ; then usage ; fi # check command-line arguments
if [! -x " 8type -P ${1} 8"] ; then echo "program1 is unexecutable" ; usage
if [! -x " 8type -P ${3} 8"] ; then echo "program2 is unexecutable" ; usage
prog1=${1} # copy first 4 parameters
opts1=${2}
prog2=${3}
opts2=${4}
shift 4 # remove first 4 parameters
if [${#} -eq 0] ; then process "" # process empty argument-list
else process "${@}" ; fi # process argument-list

CS 246 70

•Without eval :

regress ls ’’ ls ’’ ’"a b c"’

becomesls a b c, rather thanls ’a b c’.

2 C++

2.1 First Program
• Java

import java.lang.*; // implicit
class Hello {

public static
void main(String[] args) {

System.out.println("Hello!");
System.exit(0);

}
}

• C/C++
#include <stdio.h>

int main() {
printf("Hello!\n");
return 0;

}

#include <iostream> // access to output
using namespace std; // direct naming

int main() { // program starts here
cout << "Hello!" << endl;
return 0; // return 0 to shell, optional

}

71

CS 246 72

• #include <iostream> copies (imports) basic I/O descriptions (no equivalent
in Java).

• using namespace std allows imported I/O names to be accessed directly
(otherwise qualification is necessary).

• int main() is the routine where execution starts.

• curly braces,{ . . . }, denote a block of code, i.e., routine body ofmain.

• cout << "Hello!" << endl prints"Hello!" to standard output, calledcout
(System.out in Java,stdout in C).

• endl starts a newline after"Hello!" (println in Java,’\n’ in C).

•Optionalreturn 0 returns zero to the shell indicating successful completion
of the program; non-zero usually indicates an error.

•main magic! If no value is returned, 0 is implicitly returned.

• Routineexit (JavaSystem.exit) terminates a program at any location and
returns a code to the shell, e.g.,exit(0) (#include <cstdlib>).

◦ LiteralsEXIT SUCCESS andEXIT FAILURE indicate successful or
unsuccessful termination status.
◦ e.g.,return EXIT SUCCESS or exit(EXIT FAILURE).

CS 246 73

• Java/C/C++ program are transformed from human readable form (text) to
machine readable form (numbers) for execution, calledcompilation.

• Compilation is performed by acompiler; several compilers exist for C++.

• Compile withg++ command:

$ g++ firstprogram.cc # compile program, generate executable "a.out"
$./a.out # execute program; execution permission

C program-files use suffix.c; C++ program-files use suffixes.C / .cpp / .cc .

2.2 Program Structure
• A C++ program is composed of comments for people, and statements for

both people and the compiler.

• A source file contains a mixture of comments and statements.

• The C/C++ compiler only reads the statements and ignores thecomments.

2.2.1 Comment

• Comments document what a program does and how it does it.

• Comment may appear where whitespace (space, tab, newline) is allowed.

CS 246 74

• Two kinds of comments in C/C++ (same in Java):

Java / C / C++
1 /* . . . */
2 // remainder of line

• First comment begins with the start symbol,/*, and ends with the terminator
symbol,*/, and hence, can extend over multiple lines.

• Cannot be nested one within another:

/* . . . /* . . . */ . . . */
↑ ↑

end comment treated as statements

• Be extremely careful in using this comment to elide/comment-out code:

/* attempt to comment-out a number of statements
while (. . .) {

/* . . . nested comment causes errors */
if (. . .) {

/* . . . nested comment causes errors */
}

}
*/

CS 246 75

• Second comment begins with the start symbol,//, and continues to the end
of the line, i.e., only one line long.

• Can be nested one within another:

// . . . // . . . nested comment

so it can be used to comment-out code:

// while (. . .) {
// /* . . . nested comment does not cause errors */
// if (. . .) {
// // . . . nested comment does not cause errors
// }
// }

2.2.2 Statement

• The syntax for a C/C++ statement is a series of tokens separated by
whitespace and terminated by a semicolon (except for a block, {}).

CS 246 76

2.3 Declaration
• A declaration introduces names or redeclares names from previous

declarations.

2.3.1 Identifier

• name used to refer to a variable or type.

• syntax :[a-zA-Z][a-zA-Z0-9]* where “*” is wildcard qualifier

• case-sensitive:

VeryLongVariableName Page1 Income Tax 75

• Some identifiers are reserved (e.g.,if , while), and hence,keywords.

CS 246 77

2.3.2 Basic Types

Java C / C++
boolean bool (C <stdbool.h>)
char char / wchar t ASCII / unicode character
byte char / wchar t integral types
int int
float float real-floating types
double double

label type, implicit

• C/C++ treatchar / wchar t as character and integral type.

• Java typesshort andlong are created using type qualifiers.

2.3.3 Variable Declaration

• C/C++ declaration: type followed by list of identifiers, except label with an
implicit type (same in Java).

CS 246 78

Java / C / C++
char a, b, c, d;
int i, j, k;
double x, y, z;
id :

• Declarations may have an initializing assignment (except for fields in
struct /class):

int i = 3; int i = 3, j = 4, k = 5;
int j = 4;
int k = 5;

• Value of anuninitialized variable is usually undefined.

int i;
cout << i << endl; // i has undefined value

Some C/C++ compilers check for uninitialized variables (use-Wall option).

2.3.4 Type Qualifier

•Other integral types are composed with type qualifiers modifying integral
typeschar andint .

CS 246 79

• C/C++ provide size (short , long) and signed-ness (signed ⇒
positive/negative,unsigned ⇒ positive only) qualifiers.
• int providesrelativemachine-specific types: usuallyint ≥ 2 bytes for

16-bit computer and 4 bytes for 32/64-bit computer,long ≥ int , long long
≥ long .
• #include <climits> specifies names for lower/upper bounds of a type’s

range of values for a machine, e.g., a 32/64-bit computer:

integral types range (lower/upper bound name)
char (signed char) SCHAR MIN to SCHAR MAX, e.g.,-128 to 127
unsigned char 0 to UCHAR MAX, e.g.0 to 255
short (signed short int) SHRT MIN to SHRT MAX, e.g.,-32768 to 32767
unsigned short (unsigned short int) 0 to USHRT MAX, e.g.,0 to 65535
int (signed int) INT MIN to INT MAX, e.g.,-2147483648 to 2147483647
unsigned int 0 to UINT MAX, e.g.,0 to 4294967295
long (signed long int) (LONG MIN to LONG MAX),

e.g.,-2147483648 to 2147483647
unsigned long (unsigned long int) 0 to (ULONG MAX, e.g.0 to 4294967295
long long (signed long long int) LLONG MIN to LLONG MAX,

e.g.,-9223372036854775808 to 9223372036854775807
unsigned long long (unsigned long long int) 0 to (ULLONG MAX), e.g.,0 to 18446744073709551615

• #include <stdint.h> providesabsolutetypes[u]intN t for signed /unsigned
N = 8, 16, 32, 64 bits.

CS 246 80

integral typesrange (lower/upper bound name)
int8 t INT8 MIN to INT8 MAX, e.g.,-128 to 127
uint8 t 0 to UINT8 MAX, e.g.,0 to 255
int16 t INT16 MIN to INT16 MAX, e.g.,-32768 to 32767
uint16 t 0 to UINT16 MAX, e.g.,0 to 65535
int32 t INT32 MIN to INT32 MAX, e.g.,-2147483648 to 2147483647
uint32 t 0 to UINT32 MAX, e.g.,0 to 4294967295
int64 t INT64 MIN to INT64 MAX,

e.g.,-9223372036854775808 to 9223372036854775807
uint64 t 0 to UINT64 MAX, e.g.,0 to 18446744073709551615

• C/C++ provide two basic real-floating typesfloat anddouble , and one
real-floating type generated with type qualifier.

• #include <cfloat> specifies names for precision and magnitude of
real-floating values.

CS 246 81

real-float typesrange (precision, magnitude)
float FLT DIG precision,FLT MIN 10 EXP to FLT MAX 10 EXP,

e.g,. 6+ digits over range 10−38 to 1038, IEEE (4 bytes)
double DBL DIG precision,DBL MIN 10 EXP to DBL MAX 10 EXP,

e.g., 15+ digits over range 10−308 to 10308, IEEE (8 bytes)
long double LDBL DIG precision,LDBL MIN 10 EXP to LDBL MAX 10 EXP,

e.g., 18-33+ digits over range 10−4932 to 104932, IEEE (12-16 bytes)

float : ±1.17549435e-38 to ±3.40282347e+38
double : ±2.2250738585072014e-308 to ±1.7976931348623157e+308
long double : ±3.36210314311209350626e-4932 to ±1.18973149535723176502e+4932

2.3.5 Literals

• Variables contain values, and each value has aconstant(C) or literal (C++)
meaning.

• E.g., the integral value 3 is constant/literal, i.e., it cannot change, it always
means 3.

3 = 7; // disallowed

• Every basic type has a set of literals that define its values.

CS 246 82

• A variable’s value always starts with a literal, and changesvia another
literal or computation.

• C/C++ and Java share almost all the same literals for the basic types.

type literals
boolean false , true

character’a’, ’\’’
integral decimal :123, -456, 123456789

octal, prefix0 : 0144, -045, 04576132
hexadecimal, prefix0X / 0x : 0xfe, -0X1f, 0xe89abc3d

real-floating .1, 1., -1., 0.52, -7.3E3, -6.6e-2, E/e exponent

• Use the right literal for a variable’s type:

bool b = true ; // not 1
int i = 1; // not 1.0
double d = 1.0 // not 1
char c = ’a’; // not 97

• Escape sequence provides quoting of special characters in achar literal
using a backslash,\.

CS 246 83

’\\’ backslash
’\’’ single quote
’\t’, ’\n’ (special names) tab, newline, ...
’\0’ zero, string termination character
’\ooo’ octal value,ooo up to 3 octal digits
’\xhh’ hexadecimal value,hh up to 2 hexadecimal digits forchar ,

up to 4 hexadecimal digits forwchar t (not Java)
cout << ’\\’ << endl

<< ’\’’ << endl
<< ’\t’ << ’\t’ << ’x’ << ’\n’ // newline value 10
<< ’y’ << ’\12’ // octal for 10
<< ’z’ << ’\xa’; // hexadecimal for 10

\
’

x
y
z

• C/C++ provide user named literals (write-once/read-only variables) with
type qualifierconst (Javafinal).

CS 246 84

Java C/C++

final char Initial = ’D’;
final short int Size = 3, SupSize;
SupSize = Size + 7;
final double PI = 3.14159;

const char Initial = ’D’;
const short int Size = 3, SupSize = Size + 7;
disallowed
const double PI = 3.14159;

• C/C++const variablemustbe assigned a value at declaration (or by a
constructor’s declaration); the value can be the result of an expression.

• A constant variable can (only) appear in contexts where a literal can appear.

Size = 7; // disallowed

•Good practise is to name literals so all usages can be changedvia its
initialization value.

const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;

• There are trillions of literals⇒ cannot all be stored in memory.

•Only the literals in a program use storage, some are embeddedinto
computer instructions.

CS 246 85

2.4 Expression
Java C/C++ priority

postfix., [], call ::, ., -> [], call, cast high
prefix+, -, !, ~, cast, +, -, !, ~, &, *, cast,

(unary)new new , delete , sizeof
binary*, /, % *, /, %

+, - +, -
bit shift <<, >>, >>> <<, >>

relational<, <=, >, >=, instanceof <, <=, >, >=
equality==, != ==, !=
bitwise& and &

^ exclusive-or ^
| or |

logical&& short-circuit &&
| | | |

conditional?: ?:
assignment=, +=, -=, *=, /=, %= =, +=, -=, *=, /=, %=

<<=, >>=, >>>=, &=, ^=, |= <<=, >>=, &=, ^=, |=
comma , low

• Expression evaluation is like algebra:

CS 246 86

◦ operations exist and are called using name with parenthesized
argument(s).

abs(-3); |−3|
sqrt(x);

√
x

pow(x, y); xy

◦ operators are prioritized and performed from high to low.

x + y * sqrt(z); // call, multiple, add
◦ operators with same priority are done left to right

x + y - z; // add, subtract
3.0 / v * w; // divide, multiple

except for unary,?, and assignment operators, which associate right to
left.

-~x; // complement, negate
*&p; // address-of, dereference
x = y = z; // z to y to x

◦ parentheses control order of evaluation, i.e., override rules

x + y * z; // multiple, add
(x + y) * z; // add, multiple

CS 246 87

• Subexpressions and argument evaluation is unspecified (Java left to right)

(i + j) * (k + j); // either + done first
(i = j) + (j = i); // either = done first
g(i) + f(k) + h(j); // g, f, or h called in any order
f(p++, p++, p++); // arguments evaluated in any order

• Beware ofoverflow.

unsigned int a = 4294967295, b = 4294967295, c = 4294967295;
(a + b) / c; // => 0 as a+b overflows leaving zero
a / c + b / c; // => 2

Perform extra operations (2 divides) to keep numbers small.

• C++ relational/equality returnfalse /true ; C return0/1.

• Referencing (address-of),&, and dereference,*, operators do not exist in
Java because access to storage is restricted.

• Pseudo-routinesizeof returns the number of bytes for a type or variable
(not in Java):

long int i;
sizeof (long int); // type, at least 4
sizeof (i); // variable, at least 4

CS 246 88

Thesizeof a pointer (type or variable) is the size of the pointer on that
particular computer and not the size of the type the pointer references.

• Bit-shift operators,<< (left), and>> (right) shift bits in integral variables
left and right.

◦ left shift is multiplying by 2, modulus variable’s size;
◦ right shift is dividing by 2 if unsigned or positive (like Java >>>);

otherwise undefined.

int x, y, z;
x = y = z = 1;
cout << (x << 1) << ’ ’ << (y << 2) << ’ ’ << (z << 3) << endl;
x = y = z = 16;
cout << (x >> 1) << ’ ’ << (y >> 2) << ’ ’ << (z >> 3) << endl;
2 4 8
8 4 2

Why are parenthesis necessary?

• Division operator,/, accepts integral and real-float operands, but truncates
for integrals.

3 / 4 // 0 not 0.75
3.0 / 4.0 // 0.75

CS 246 89

• Remainder (modulus) operator,%, only accepts integral operands.

◦ If either operand is negative, the sign of the remainder is implementation
defined, e.g.,-3 % 4, 3 % -4, -3 % -4 can be3 or -3.

• Assignment is an operator; useful forcascade assignmentto initialize
multiple variables of the same type:

a = b = c = 0; // cascade assignment
x = y = z + 4;

◦Other uses of assignment in an expression are discouraged!; i.e.,
assignments only on left side.

•General assignment operators, e.g.,lhs += rhs implicitly rewritten as:

temp = &(lhs); *temp = *temp + rhs;
not:

lhs = lhs + rhs;

hence, the left-hand side,lhs, is evaluated only once:

v[f(3)] += 1; // only calls f once
v[f(3)] = v[f(3)] + 1; // calls f twice

CS 246 90

• Comma expression allows multiple expressions to be evaluated in a context
where only a single expression is allowed.

x, f + g, sqrt(3) / 2, m[i][j] ← value returned

◦ Expressions evaluated left to right with the value of rightmost expression
returned.

•Operators++ / -- are discouraged because subsumed by general+= / -=.

i += 1; versus i ++
i += 3; versus i ++ ++ ++; // disallowed

2.4.1 Conversion

• Conversion transforms a value to another type by changing the value to the
new type’s representation.

• Conversions can occur implicitly by the compiler or explicitly by the
programmer using acastoperator or C++static cast operator.

int i; double d;
d = i; // implicit (compiler)
d = (double)i; // explicit with cast (programmer)
d = static cast <double >(i);

CS 246 91

• Two kinds of conversions:

◦ widening/promotion conversion, no information is lost:
bool → char → short int → long int → double
true 1 1 1 1.000000000000000

wherefalse → 0; true → 1
◦ narrowing conversion, information can be lost:

double → long int → short int → char → bool
77777.77777777777 77777 12241 209 true

where 0→ false ; non-zero→ true

• C/C++ have implicit widening and narrowing conversions (Java only
implicit widening).

• Beware of implicit narrowing conversions:

int i; double d;
i = d = 3.5; // d -> 3.5
d = i = 3.5; // d -> 3.0 truncation

•Good practice is to perform narrowing conversions explicitly with cast as
documentation.

CS 246 92

int i; double d1 = 7.2, d2 = 3.5;
i = (int) d1; // explicit narrowing conversion
i = (int) d1 / (int) d2; // explicit narrowing conversions for integer division
i = static cast <int >(d1 / d2); // alternative technique after integer division

• C/C++ supports casting among the basic types and user definedtypes.

2.4.2 Coercion

• Coercion reinterprets a value to another type but the result is may notbe
meaningful in the new type’s representation.

• Some narrowing conversions are considered coercions.

◦ E.g., when a value is truncated or converting non-zero totrue , the result
is nonsense in the new type’s representation.

• Also, having typechar represent ASCII charactersand integral (byte)
values allows:

char ch = ’z’ - ’a’; // character arithmetic!

which may or may not be reasonable as it might generate an invalid
character.

• But the most common coercion is through pointers:

CS 246 93

int i, *ip = &i; // ip is a pointer to an integer
double d, *dp = &d; // dp is a pointer to a double
dp = (double *)ip; // lie, say dp points at double but really an integer

Using the explicit cast, programmer has lied to the compilerabout the type
of ip.

•Good practice is to limit narrowing conversions and NEVER lie about a
variable’s type.

2.4.3 Math Operations

• #include <cmath> provides overloaded real-float mathematical-routines for
typesfloat , double andlong double :

CS 246 94

operation routine
|x| abs(x)
arccosx acos(x)
arcsinx asin(x)
arctanx atan(x)
⌈x⌉ ceil(x)
cosx cos(x)
coshx cosh(x)
ex exp(x)
⌊x⌋ floor(x)

operation routine
x mody fmod(x, y)
lnx log(x)
logx log10(x)
xy pow(x, y)
sinx sin(x)
sinhx sinh(x)√

x sqrt(x)
tanx tan(x)
tanhx tanh(x)

and math literals:

M E 2.7182818284590452354 // e
M LOG2E 1.4426950408889634074 // log 2 e
M LOG10E 0.43429448190325182765 // log 10 e
M LN2 0.69314718055994530942 // log e 2
M LN10 2.30258509299404568402 // log e 10
M PI 3.14159265358979323846 // pi
M PI 2 1.57079632679489661923 // pi/2
M PI 4 0.78539816339744830962 // pi/4
M 1 PI 0.31830988618379067154 // 1/pi
M 2 PI 0.63661977236758134308 // 2/pi
M 2 SQRTPI 1.12837916709551257390 // 2/sqrt(pi)
M SQRT2 1.41421356237309504880 // sqrt(2)
M SQRT1 2 0.70710678118654752440 // 1/sqrt(2)

CS 246 95

• Some systems also providelong double math literals.

• pow(x,y) (xy) is computed using logarithms, 10y log x (versus repeated
multiplication), wheny is non-integral value⇒ y≥ 0

pow(-2.0, 3.0); −23 =−2×−2×−2=−8
pow(-2.0, 3.1); −23.1 = 103.1×log−2.0 = nan (not a number)

nan is generated because log−2 is undefined.

•Quadratic roots ofax2+bx+ c arer =−b±
√

b2−4ac/2a

#include <iostream>
#include <cmath>
using namespace std;

int main() {
double a = 3.5, b = 2.1, c = -1.2;
double dis = b * b - 4.0 * a * c, dem = 2.0 * a;
cout << "root1: " << (-b + sqrt(dis)) / dem << endl;
cout << "root2: " << (-b - sqrt(dis)) / dem << endl;

}

•Must explicitly link in the math library:

$ g++ roots.cc -lm # link math library

CS 246 96

2.5 Control Structures

Java C/C++
block { intermixed decls/stmts } { intermixed decls/stmts }

selection if (bool-expr1) stmt1
else if (bool-expr2) stmt2
. . .
else stmtN

if (bool-expr1) stmt1
else if (bool-expr2) stmt2
. . .
else stmtN

switch (integral-expr) {
case c1: stmts1; break ;
. . .
case cN: stmtsN; break ;
default : stmts0;

}

switch (integral-expr) {
case c1: stmts1; break ;
. . .
case cN: stmtsN; break ;
default : stmts0;

}
looping while (bool-expr) stmt while (bool-expr) stmt

do stmt while (bool-expr) ; do stmt while (bool-expr) ;

for (init-expr ;bool-expr ;incr-expr) stmt for (init-expr ;bool-expr ;incr-expr) stmt
transfer break [label] break

continue [label] continue
goto label

return [expr] return [expr]
throw [expr] throw [expr]

label label : stmt label : stmt

CS 246 97

2.5.1 Block

• Block is a series of statements bracketed by braces,{. . .}, which can be
nested.

• A block forms a complete statement but does not have to be terminated with
a semicolon.

• Block serves two purposes: bracket several statements intoa single
statement and introduce local declarations.

•Good practice is to always use a block versus single statement to allow easy
insertion and removal of statements to or from block.

if (x > y) // no block
x = 0; // cannot directly add statements

if (x > y) { // block
x = 0; // can directly add/remove statements

}
Does the shell have this problem?

• Declarations may be intermixed among executable statements in a block.

• Block variables are allocated first-in first-out (FIFO) fromthestack
memory area.

CS 246 98

{ // block1
// variables
{ // block2

// variables
}

} low address

code
memory

high address

stack

bl
oc

k1

bl
oc

k2

heapstatic
free

• Localizing declarations in nested blocks reduces declaration clutter at
beginning of a block.

int i, j, k; // global
. . . // use i, j, k

int i;
. . . // use i
{ int j; // local

. . . // use i, j
{ int k; // local

. . . // use i, j, k

However, it can also make locating declarations more difficult.

• Variable names can be reused in different blocks, i.e., possibly overriding
(hiding) prior variables.

CS 246 99

int i = 1; . . . // first i
{ int k = i, i = 2;. . . // k = first i, second i overrides first

{ int i = 3;. . . // third i (overrides second)

2.5.2 Selection

• C/C++ selection statements areif andswitch (same as Java).

• An if statement selectively executes one of two alternatives based on a
comparison result:

if (x > y) max = x;
else max = y;

• For nestedif statements,else matches closestif , which results in the
dangling elseproblem.

• E.g., reward WIDGET salesperson who sold $10,000 or more worth of
WIDGETS and dock pay of those who sold less than $5,000.

CS 246 100

Dangling Else Fix Using Null Else Fix Using Block

if (sales < 10000)
if (sales < 5000)

income -= penalty;

else // incorrect match!!!
income += bonus;

if (sales < 10000)
if (sales < 5000)

income -= penalty;
else ; // null statement

else
income += bonus;

if (sales < 10000) {
if (sales < 5000)

income -= penalty;

} else
income += bonus;

• Unnecessary equality for boolean as value is alreadytrue or false .

bool b;
if (b == true) . . . // if (b)

• Conversions cause confusion.

if (-0.5 <= x <= 0.5). . . // looks right and compiles
if (((-0.5 <= x) <= 0.5)). . .

What does this do?

• Common mistake to assigny to x and convertsx to bool (possible in Java
for one type).

if (x = y). . .

• A switch statement selectively executes one ofN alternatives based on

CS 246 101

matching an integral value with a series of case clauses:

switch (day) { // integral expression
case Mon: case Tue: case Wed: case Thu: // case value list

cout << "PROGRAM" << endl;
break ; // exit switch

case Fri:
wallet += pay;
// FALL THROUGH

case Sat:
cout << "PARTY" << endl;
wallet -= party;
break ; // exit switch

case Sun:
cout << "REST" << endl;
break ; // exit switch

default : // optional
cerr << "ERROR: bad day" << endl;
exit(EXIT FAILURE); // TERMINATE PROGRAM

}

•Only one label for eachcase clause but a list ofcase clauses is allowed.

•Once case label matches, the clauses statements are executed, and control

CS 246 102

continues to thenextstatement.

• If no case clause is matched and there is adefault clause, its statements are
executed, and control continues to thenext statement.

• Unless there is abreak statement to prematurely exit theswitch statement.

• It is a common error to forget the break in a case clause.
•Otherwise, theswitch statement does nothing.

2.5.3 Conditional Expression Evaluation

• Conditional expression evaluationperforms partial (short-circuit)
expression evaluation.

&& only evaluates the right operand if the left operand is true
| | only evaluates the right operand if the left operand is false
?: only evaluates one of two alternative parts of an expression

• && and| | are similar to logical& and| for bitwise (boolean) operands, i.e.,
both produce a logical conjunctive or disjunctive result.

• However, short-circuit operators evaluate operands lazily until a result is
determined, short circuiting the evaluation of other operands.

CS 246 103

d != 0 && n / d > 5 // may not evaluate right operand, prevents division by

false and anything is?

• Hence, short-circuit operators are control structures in the middle of an
expression becausee1 && e2 6≡ &&(e1, e2) (unless lazy evaluation).

• Logical & and| evaluate operands eagerly, evaluating both operands.

• Conditional?: evaluates one of two expressions, and returns the result of
the evaluated expression.

• Acts like anif statement in an expression and can eliminate temporary
variables.

f((a < 0 ? -a : a) + 2); int temp;
if (a < 0) temp = -a;
else temp = a;
f(temp + 2);

2.5.4 Looping

• C/C++ looping statements arewhile , do andfor (same as Java).

• while statement executes its statementzero or more times.

CS 246 104

while (x < 5) {
. . . // executes 0 or more times

}

• Beware of accidental infinite loops.

x = 0;
while (x < 5); // extra semicolon!

x = x + 1;

x = 0;
while (x < 5) // missing block

y = y + x;
x = x + 1;

• do statement executes its statementone or more times.

do {
. . . // executes one or more times

} while (x < 5);

• for statement is a specializedwhile statement for iterating with an index.

init-expr ;
while (bool-expr) {

stmts;
incr-expr ;

}

for (init-expr ; bool-expr ; incr-expr) {
stmts;

}

• If init-expr is a declaration, the scope of its variables is the remainderof the

CS 246 105

declaration, the other two expressions, and the loop body.

for (int i = 0, j = i; i < j; i += 1) { // i and j declared
// i and j visible

} // i and j deallocated and invisible

•Many ways to use thefor statement to construct iteration:

for (i = 1; i <= 10; i += 1) { // count up
// loop 10 times

} // i has value 11 on exit
for (i = 10; 1 <= i; i -= 1) { // count down

// loop 10 times
} // i has value 0 on exit
for (p = s; p != NULL; p = p->link) { // pointer index

// loop through list structure
} // p has the value NULL on exit
for (i = 1, p = s; i <= 10 && p != NULL; i += 1, p = p->link) { // 2 indices

// loop until 10th node or end of list encountered
}

• Comma expression is used to initialize and increment 2 indices in a context
where normally only a single expression is allowed.

CS 246 106

• Default true value inserted if no conditional is specified infor statement.

for (; ;) // rewritten as: for (; true ;)

• break statement terminates enclosing loop body.

• continue statement advances to the next loop iteration.

2.6 Structured Programming
• Structured programming is about managing (restricting) control flow

using a fixed set of well-defined control-structures.

• A small set of control structures used with a particular programming style
make programs easier to write and understand, as well as maintain.

•Most programmers adopt this approach so there is a universal(common)
approach to managing control flow (e.g., like traffic rules).

• Developed during late 1960’s to early 1970’s to overcome the
indiscriminant use of the GOTO statement.

•GOTO leads to convoluted logic in programs (i.e., does NOT support a
methodical thought process).

CS 246 107

• I.e., arbitrary transfer of control makes programs difficult to understand and
maintain.

• Restricted transfer reduces the points where flow of controlchanges, and
therefore, is easy to understand.

• There are 3 levels of structured programming:

classical
◦ sequence: series of statements
◦ if-then-else: conditional structure for making decisions
◦ while: structure for loops with test at top
Can write any program (actually only needwhile s or onewhile andifs).

extended
◦ use the classical control-structures and add:
∗ case/switch: conditional structure for making decisions
∗ for: while with initialization/test/increment
∗ repeat-until/do-while: structure for loops with test at bottom

modified
◦ use the extended control-structures and add:
∗ one or more exits from arbitrary points in a loop

CS 246 108

∗ exits from multiple nested control structures
∗ exits from multiple nested routine calls

2.6.1 Multi-Exit Loop

•Multi-exit loop (or mid-test loop) has one or more exit locationswithin the
loop body.

•While-loop has 1 exit located at the top (Ada):

while i < 10 do

. . .
end while

loop -- infinite loop
exit when i >= 10; -- loop exit

. . . ↑ reverse condition
end loop

• Repeat-loop has 1 exit located at the bottom:

do
. . .

while (i < 10)

loop -- infinite loop
. . .

exit when i >= 10; -- loop exit
end loop ↑ reverse condition

• Exit should not be restricted to only top and bottom, i.e., can appear in the
loop body:

CS 246 109

loop
. . .

exit when i >= 10;
. . .

end loop

• Loop exit has ability to change kind of loop solely by moving the exit line.

• In general, your coding style should allow changes and insertion of new
code with minimal changes to existing code.

• Eliminate priming (duplicated) code necessary withwhile :

read(input, d);
while ! eof(input) do

. . .
read(input, d);

end while

loop
read(input, d);

exit when eof(input);
. . .

end loop

•Good practice is to reduce or eliminate duplicate code.Why?

• Loop exit is outdented or commented or both (Eye Candy)⇒ easy to find
without searching entire loop body.

• Same indentation rule as for theelse of if-then-else (outdentelse):

CS 246 110

if . . . then
XXX
else
XXX

end if

if . . . then
XXX

else // outdent
XXX

end if

• A multi-exit loop can be written in C/C++ in the following ways:

for (;;) { while (true) { do {
.

if (i >= 10) break ; if (i >= 10) break ; if (i >= 10) break ;
.

} } } while (true);

• The for version is more general as easily modified to have a loop index.

for (int i = 0; i < 10; i += 1) { // loop index

• Eliminateelse on loop exits:

CS 246 111

BAD GOOD

for (;;) {
S1
if (C1) {

S2
} else {

break ;
}
S3

}

for (;;) {
S1

if (! C1) break ;
S2

S3
}

BAD GOOD

for (;;) {
S1
if (C1) {

break ;
} else {

S2
}
S3

}

for (;;) {
S1

if (C1) break ;

S2

S3
}

S2 is logically part of loop bodynot part of anif .

• Allow multiple exit conditions:

CS 246 112

for (;;) {
S1

if (i >= 10) break ;

S2
if (j >= 10) break ;

S3
}

bool flag1 = false, flag2 = false;
while (! flag1 & ! flag2) {

S1
if (C1) flag1 = true;
} else {

S2
if (C2) flag2 = true;
} else {

S3
}

}
}

• Eliminate flag variables necessary withwhile .

◦ flag variable is used solely to affect control flow, i.e., does not contain
data associated with a computation.

• Examine linear search such that:

◦ no invalid subscript for unsuccessful search
◦ index points at the location of the key for successful search.

• First approach: use only control-flow constructsif andwhile :

CS 246 113

int i = -1; bool found = false ;
while (i < size - 1 & ! found) { // rewrite: &(i<size-1, !found)

i += 1;
found = key == list[i];

}
if (found) { . . . // found
} else { . . . // not found
}

Why must the program be written this way?

• Second approach: allow short-circuit control structures.

for (i = 0; i < size && key != list[i]; i += 1);
// rewrite: if (i < size) if (key != list[i])

if (i < size) { . . . // found
} else { . . . // not found
}

• How does&& prevent subscript error?

• Short-circuit&& does not exist in all programming languages, and requires
knowledge of Boolean algebra (false and anything is?).

• Third approach: use multi-exit loop (especially if no&& exits).

CS 246 114

for (i = 0; ; i += 1) { // or for (i = 0; i < size; i += 1)
if (i >= size) break ;
if (key == list[i]) break ;

}
if (i < size) { . . . // found
} else { . . . // not found
}

•When loop ends, it is known if the key is found or not found.

•Why is it necessary to re-determine this fact after the loop?

• Can it always be re-determined?

• Extra test after loop can be eliminated by moving it into loopbody.

for (i = 0; ; i += 1) {
if (i >= size) { . . . // not found

break ;
} // exit

if (key == list[i]) { . . . // found
break ;

} // exit
} // for

• E.g., an element is looked up in a list of items, if it is not in the list, it is

CS 246 115

added to the end of the list, if it exists in the list its associated list counter is
incremented.

for (int i = 0; ; i += 1) {
if (i >= size) {

list[size].count = 1;
list[size].data = key;
size += 1; // needs check for array overflow
break ;

} // exit
if (key == list[i].data) {

list[i].count += 1;
break ;

} // exit
} // for

• None of these approaches is best in all cases; select the approach that best
fits the problem.

2.6.2 Multi-Level Exit

•Multi-level exit transfers out of multiple control structures where exit
points areknown at compile time.

CS 246 116

• Labelled exit (break /continue) provides this capability (Java):

L1: {
. . . declarations . . .
L2: switch (. . .) {

L3: for (. . .) {
. . . break L1 ; . . . // exit block
. . . break L2 ; . . . // exit switch
. . . break L3 ; . . . // exit loop

}
. . .

}
. . .

}

• Labelledbreak /continue transfer control out of the control structure with
the corresponding label, terminating any block that it passes through.

• C/C++ do not have labelledbreak /continue ⇒ simulate withgoto .

• goto label allows arbitrary transfer of controlwithin a routine from the
goto to statement marked with label variable.

• Label variable is declared by prefixing an identifier with a “:” to a
statement.

CS 246 117

L1: i += 1; // associated with expression
L2: if (. . .) . . .; // associated with if statement
L3: ; // associated with empty statement

• Labels can only be declared in a routine,where the label has routine scope.

◦ i.e., label identifier is unique within a routine body⇒ cannot be
overridden in local blocks.

int L1; // identifier L1
L2: ; // identifier L2
{

double L1; // can override variable identifier
double L2; // cannot override label identifier

}

• goto transfers control backwards/forwards to labelled statement.

L1: ;
. . .
goto L1; // transfer backwards, up
goto L2; // transfer forward, down
. . .
L2: ;

•Why is it good practice to associate a label with an empty statement?

CS 246 118

• Transforming labelledbreak to goto :

{
. . . declarations . . .
switch (. . .) {

for (. . .) {
. . . goto L1 ; . . . // exit block
. . . goto L2 ; . . . // exit switch
. . . goto L3 ; . . . // exit loop

}
L3: ; // empty statement
. . .

}
L2: ;
. . .

}
L1: ;

•Why are labels at the end of control structures not as good as at start?

•Why is it a good idea to put label on its own empty statement?

•Multi-level exits are commonly used with nested loops:

CS 246 119

int i, j;

for (i = 0; i < 10; i += 1) {

for (j = 0; j < 10; j += 1) {

. . .
if (. . .) goto B2; // outdent

. . . // rest of loop
if (. . .) goto B1; // outdent

. . . // rest of loop

} B2: ;

. . . // rest of loop

} B1: ;

int i, j;
bool flag1 = false;
for (i = 0; i < 10 && ! flag1 ; i += 1) {

bool flag2 = false;
for (j = 0; j < 10 &&

! flag1 && ! flag2 ; j += 1) {
. . .
if (. . .) flag2 = true;
else {

. . . // rest of loop
if (. . .) flag1 = true;
else {

. . . // rest of loop
} // if

} // if
} // for
if (! flag1) {

. . . // rest of loop
} // if

} // for

• Indentation matches with control-structure terminated.

CS 246 120

• Eliminate all flag variables with multi-level exit!

◦ Flag variables are the variable equivalent to a gotobecause they can be
set/reset/tested at arbitrary locations in a program.

• Simple case (exit 1 level) of multi-level exit is a multi-exit loop.

•Why is it good practice to label all exits?

•Other uses of multi-level exit to remove duplicate code:
duplication no duplication

if (C1) {
S1;
if (C2) {

S2;
if (C3) {

S3;
} else

S4;
} else

S4;
} else

S4;

if (C1) {
S1;
if (C2) {

S2;
if (C3) {

S3;
goto C :

}
}

}
S4; // only once

C: ;

switch { // not allowed
case C1:

S1
// fall-through

case C2:
S2
// fall-through

case C3:
S3
break;

default :
S4; // only once

}

CS 246 121

• If any conditions are false, the same code is executed (e.g.,printing an error
message), resulting in code duplication.

• Normal and labelledbreak are agoto with restrictions:

◦ Cannot be used to create a loop (i.e., cause a backward branch); hence,
all repeated execution is clearly delineated by loop constructs.
◦ Cannot be used to branchinto a control structure.

•Only usegoto to perform static multi-level exit, e.g., simulate labelled
break and continue .
• return statements can simulate multi-exit loop and multi-level exit.

•Multi-level exits appear infrequently, but are extremely concise and
execution-time efficient.

2.7 Type Constructor
• Type constructor declaration builds more complex type from basic types.

CS 246 122

constructor Java C/C++
enumerationenum Colour { R, G, B } enum Colour { R, G, B }

pointer any-type *p;
reference (final) class-type r; any-type &r; (C++ only)

array any-type v[] = new any-type[10]; any-type v[10];
any-type m[][] = new any-type[10][10]; any-type m[10][10];

structure class struct or class

2.7.1 Enumeration
• An enumeration is a type defining a set of named literals with only

assignment, comparison, and conversion to integer:

enum Days {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering
Days day = Sat; // variable declaration, initialization
enum {Yes, No} vote = Yes; // anonymous type and variable declaration
enum Colour {R=0x1, G=0x2, B=0x4} colour; // type/variable declaration, explicit number
colour = B; // assignment

• Identifiers in an enumeration are calledenumerators.

• First enumerator is implicitly numbered 0; thereafter, each enumerator is
implicitly numbered +1 the previous enumerator.

• Enumerators can be explicitly numbered.

CS 246 123

enum { A = 3, B, C = A - 5, D = 3, E }; // 3 4 -2 3 4
enum { Red = ’R’, Green = ’G’, Blue = ’B’ }; // 82, 71, 66

• Enumeration in C++ denotes a new type; enumeration in C is alias forint .

day = Sat; // enumerator must match enumeration
day = 42; // disallowed C++, allowed C
day = R; // disallowed C++, allowed C
day = colour ; // disallowed C++, allowed C

• Alternative mechanism to create literals isconst declaration.

const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;
short int day = Sat;
days = 42; // assignment allowed

• C/C++ enumerators must be unique in block.

enum CarColour { Red, Green, Blue, Black };
enum PhoneColour { Red, Orange, Yellow, Black };

EnumeratorsRed andBlack conflict. (Java enumerators are always
qualified).

• In C, “enum ” must also be specified for a declaration:

CS 246 124

enum Days day = Sat; // repeat “enum” on variable declaration

• Trick to count enumerators (if no explicit numbering):

enum Colour { Red, Green, Yellow, Blue, Black, No Of Colours };

No Of Colours is 5, which is the number of enumerators.

• Iterating over enumerators:

for (Colour c = Red; c < No Of Colours; c = (Colour) (c + 1)) {
cout << c << endl;

}

Why is the cast,(Colour), necessary? Is it a conversion or coercion?

2.7.2 Pointer/Reference

• pointer/referenceis a memory address.

• Used to access the value stored in the memory location at the pointer
address.

• All variables have an address in memory, e.g.,int x = 5, y = 7:

CS 246 125

x 5

100

int

address

identifier/value

value type

7

200

int

y

• Two basic addressing operations:

1. referencing: obtain address of a variable; unary operator& in C++:

100 ← &x
200 ← &y

2.dereferencing: retrieve value at an address; unary operator* in C++:

5 ← *(100) ← *(&x)
7 ← *(200) ← *(&y)

Note, unary and binary use of operators&/* for reference/dereference and
conjunction/multiplication.

• So what does a variable name mean? Forx, is it 5 or 100? It depends!

• A variable name is a symbolic name for the pointer to its value, e.g.,x
means&x, i.e., symbolx is always replaced by pointer value100.

•What happens in this expression so it can execute?

CS 246 126

x = x + 1;

• First, each variable name is substituted (rewritten) for its pointer value:

(&x) = (&x) + 1 where x ≡ &x
(100) = (100) + 1

Assign into memory location 100 the value 101? Only partially correct!

• Second, when a variable name appears on the right-hand side of
assignment, it implies the variable’s value not its address.

(&x) = *(&x) + 1
(100) = *(100) + 1
(100) = 5 + 1

Assign into memory location 100 the value 6? Correct!

• Hence, a variable name always means its address, and a variable name is
also implicitly dereferenced on the right side of assignment.

• Exception is&x, which just means&x not &(&x).

• Notice, identifierx (in a particular scope) is a literal (const) pointer
because it always means the same memory address (e.g., 100).
•Generalize notion of literal variable-name to variable name that can point to

more than one memory location (like integer variable versusliteral).

CS 246 127

• A pointer variable is a (non-const) variable that contains different
variable addressesrestricted to a specific typein any storage location (i.e.,
static, stack or heap storage).
◦ Java references can only addressobject types on theheap.

int *p1 = &x, *p2 = &y, *p3 = 0; // or p3 is uninitialized

p1 100

int *

p2 200

p3 0 / 0x34fe7

x5

int

7 y

pointer
null/undefined

50

40

30 100

200

30 ← &p1
40 ← &p2
50 ← &p3
100 ← *&p1
200 ← *&p2
0 ← *&p3
5 ← **&p1
7 ← **&p2
? ← **&p3

• Storage is needed for different address values, so a pointervariable also has
an address!
• By convention, no variable is placed at thenull address(pointer),null in

Java, 0 in C/C++.

CS 246 128

• Hence, an address value is another variable’s address (indirection) or null
address or an undefined address when uninitialized.

◦ null address often means pointer is unused.

•Multiple pointers may point to the same memory address (p2 = p1, dashed
line).

• Dereferencing null/undefined pointer isundefinedas no variable at address
(but not error).

• Variable pointed-at is thetarget variable and its value is thetarget value.

◦ e.g.,x is the target variable ofp1 with target value 5.

• Can a pointer variable point to itself?

• Same implicit reference/dereference rules apply for pointer variables.

p1 = &x; // pointer assignment
(&p1) ← &x // no rewrite rule for x, why?
(30) ← 100

Assign to memory location 30 the value 100.

CS 246 129

p2 = p1; // pointer assignment
(&p2) ← *(&p1) // rewrite rules
(40) ← *(30)
(40) ← 100

Assign to memory location 40 the value 100.

• Value assignment requires explicit dereferencing to access values:

*p2 = *p1; // value assignment, y = x
*(&p2) ← *(*(&p1)) // rewrite rules
*(40) ← *(*(30))
200 ← *(100)
200 ← 5

Assign to memory location 200 the value 5.

•Often the target value is used more than the pointer value.

*p2 = ((*p1 + *p2) * (*p2 - *p1)) / (*p1 - *p2);

Less tedious and error prone to write:

p2 = ((p1 + p2) * (p2 - p1)) / (p1 - p2);

• C++ reference pointer provides extra implicit dereferenceto access target
value:

CS 246 130

int &r1 = x, &r2 = y;
r2 = ((r1 + r2) * (r2 - r1)) / (r1 - r2);

• Hence, difference between plain and reference pointer is anextra
implicit dereference.
◦ I.e., do you want to write the “*”, or let the compiler write the “*”?

• However, extra implicit dereference generates a problem for pointer
assignment.

r2 = r1;
*(&r2) ← *(*(&r1)) // value assignment
(&r2) ← *(&r1) // not pointer assignment

• C++ solves the missing pointer assignment by making reference pointer a
literal (const), like a plain variable.

◦ Hence, a reference pointer cannot be assigned after its declaration, so
pointer assignment is impossible.
◦ As a literal, initialization must occur at declaration, butinitializing

expression has implicit referencing because address isalwaysrequired.

int &r1 = &x; // error, should not have & before x

CS 246 131

• Java solves this problem by only using reference pointers, only having
pointer assignment, and using a different mechanism for value assignment
(clone).

• Is there one more solution?

• Since reference means its target’s value, address of a reference means its
target’s address.

int i;
int &r = i;
&r; *(&r) ⇒ &i not &r

• Hence, cannot initialize reference to reference or pointerto reference.

int & &rr = r; // reference to reference, rewritten &r
int & *pr = &r; // pointer to reference

• As well, an array of reference is disallowed (reason unknown).

int &ra[3] = { i, i, i }; // array of reference

• Type qualifiers can be used to modify pointer types.

CS 246 132

const short int w = 25;
const short int *p4 = &w;

int * const p5 = &x;
int &p5 = x;

const long int z = 37;
const long int * const p6 = &z;

300

100

308

w25

x5

z37

300

100

308

60

70

80

p4

p5

p6

• p4 may point atany short int variable (const or non-const) and may not
change its value.
Why canp4 point to a non-const variable?

• p5 may only point at theint variablex and may change the value ofx
through the pointer.

◦ * const and& are literal pointers but* const has no implicit
dereferencing like&.

• p6 may only point at thelong int variablez and may not change its value.

• Pointer variable has memory address, so it is possible for a pointer to
address another pointer or object containing a pointer.

CS 246 133

int *px = &x, **ppx = &px,
&rx = x, *prx = ℞ &prx ← *(&rx)

pxppx

prx rx 100
5 x

108

116

124

132
100

100108

100

• Pointer/reference type-constructor is not distributed across the
identifier list.
int * p1, p2; p1 is a pointer, p2 is an integerint *p1, *p2;
int & rx = i, ry = i; rx is a reference, ry is an integerint &rx =i, &ry = i;

• C++ idiom for declaring pointers/references is misleading; only works for
single versus list of variables.

int * i; int * i, k;
double & x = d; double & x = d, y = d;

Gives false impression of distribution across the identifier list.

CS 246 134

2.7.3 Aggregates

• Aggregates are a set of homogeneous/heterogeneous values and a
mechanism to access the values in the set.

2.7.3.1 Array

• Array is a set ofhomogeneous values.

int array[10]; // 10 int values

• Array type,int , is the type of each set value; arraydimension, 10, is the
maximum number of values in the set.

• An array can be structured to have multiple dimensions.

int matrix[10][20]; // 10 rows, 20 columns => 200 int values
char cube[5][6][7]; // 5 rows, 6 columns, 7 deep => 210 char values

Common dimension mistake:matrix[10, 20]; meansmatrix[20] because
10, 20 is a comma expression not a dimension list.

• Number of dimensions is fixed at compile time, but dimension size may be:

◦ static (compile time),
◦ block dynamic (static in block),

CS 246 135

◦ or dynamic (change at any time).

• C++ only supports a compile-time dimension value;g++ allows a runtime
expression.

int r, c;
cin >> r >> c; // input dimensions
int array[r]; // dynamic dimension, g++ only
int matrix[r][c]; // dynamic dimension, g++ only

• Array values (elements) are accessed bysubscripts, “[]” (look like
dimensions).

• A dimension is subscripted from 0 to dimension-1.

array[5] = 3; // location at column 5
i = matrix[0][2] + 1; // value at row 0, column 2
c = cube[2][0][3]; // value at row 2, column 0, depth 3

Common subscript mistake:matrix[3, 4] meansmatrix[4], 4th row of matrix.

• An array name without a subscript means the first element.

array ⇒ array[0]
matrix ⇒ matrix[0][0]
cube ⇒ cube[0][0][0]

CS 246 136

• C/C++ array is a contiguous set of elements not a reference tothe element
set as in Java.

Java C/C++
int x[] = new int [6] int x[6]

1 7 5 0 8 -1x 6 1 7 5 0 8 -1x

• C/C++ do not store dimension information in the array!
• Hence, cannot query dimension sizes,no subscript checking, and no array

assignment.

• Declaration of a pointer to an array is complex in C/C++ .

• Because no array-size information, the dimension value foran array pointer
is unspecified.

int i, arr[10];
int *parr = arr; // think parr[], pointer to array of N ints

• However, no dimension information results in the followingambiguity:

int *pvar = &i; // think pvar[] and i[1]
int *parr = arr; // think parr[]

CS 246 137

• Variablespvar and parr have same type but one points at a variable and
other an array!

• Programmer decides if variable or array by not using or usingsubscripting.

*pvar // variable
*parr // variable, arr[0]
parr[0], parr[3] // array, many
pvar[3] // array, but wrong

• ASIDE: Practise reading a complex declaration:

◦ parenthesize type qualifiers based on operator priority,
◦ read inside parenthesis outwards,
◦ start with variable name,
◦ end with type name on the left.

const long int * const a[5] = {0,0,0,0,0};
const long int * const (&x)[5] = a;
const long int (* const ((&x)[5])) = a;

ax

0 0 0 0 0
x : reference to an array of 5 constant pointers to constant long integers

2.7.3.2 Structure

CS 246 138

• Structure is a set ofheterogeneous values, including (nested) structures.

Java C/C++

class Foo {
int i = 3;
. . . // more fields

}

struct Foo {
int i; // no initialization
. . . // more members

}; // semi-colon terminated

• Components of a structure are calledmembers subdivided into data and
routine/function members1 in C++.

• All members of a structure are accessible (public) by default.

• A structure member cannot be directly initialized (unlike Java) .

• A structure is terminated with a semicolon.

• Structure can be defined and instances declared in a single statement.

struct Complex { double re, im; } s; // definition and declaration

• In C, “struct ” must also be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration
1Java subdivides members into fields (data) and methods (routines).

CS 246 139

• Structures with the same type can be assigned but not compared.

struct Student {
struct Name { // nested structure

char first[20]; // array
char last[20]; // array

} name;
double age;
int marks[10]; // array

} s1, s2, *sp1 = &s1;
s1 = s2; // allowed
s1 == s2; // disallowed, no structure relational operations

Notice, arrays in the structures are copied, but there is no array copy. How?

• Structure members are accessed bymember selection, using selection
operator “.” (like Java).

s1.name.first[0] = ’a’;
s1.age = 34;
s1.marks[3] = 99;

• Pointers to structures have a problem:

◦ C/C++ are unique in having the priority of selection operator “ .” higher
than dereference operator “*”.

CS 246 140

◦ Hence,*p.f executes as*(p.f), which is incorrect. Why?
◦ To get the correct effect, use parenthesis:(*p).f.

(*sp1).name.first[0] = ’a’;
(*sp1).age = 34;
(*sp1).marks[5] = 95;

• Alternatively, use (special) selection operator-> for pointers to structures:

◦ performs dereference and member selection in correct order, i.e.,p->f is
rewritten as(*p).f.

sp1->name.first[0] = ’a’;
sp1->age = 34;
sp1->marks[5] = 95;

◦ for reference pointers,-> is unnecessary becauser.f means(*r).f, sor.f
makes more sense than(&r)->f.

• Structuresmustbe compared member by member.

◦ comparing bits (e.g.,memcmp) fails as alignment padding leaves
undefined values between members.

• Recursive types (lists, trees) are defined using a self-referential pointer in a
structure:

CS 246 141

struct Student {
. . . // data members
Student *link; // pointer to another Student

}

• A bit field allows direct access to individual bits of memory:

struct S {
int i : 3; // 3 bits
int j : 7; // 7 bits
int k : 6; // 6 bits

} s;
s.i = 2; // 010
s.j = 5; // 0000101
s.k = 9; // 001001

• A bit field must be an integral type.

• Unfortunately allocation of bit-fields is implementation defined⇒ not
portable (maybe left to right or right to left!).

• Hence, the bit-fields in variables above must be reversed.

•While it is unfortunate C/C++ bit-fields lack portability, they are the
highest-level mechanism to manipulate bit-specific information.

CS 246 142

2.7.3.3 Union

• Union is a set ofheterogeneous values, including (nested) structures,
where all members overlay the same storage.

union U {
char c;
int i;
double d;

} u;

i dcu

• Used to access internal representation or save storage by reusing it for
different purposes at different times.

CS 246 143

union U {
float f;
struct { // IEEE floating-point representation

unsigned int sign : 1; // may need to be reversed
unsigned int exp : 8;
unsigned int frac : 23;

} s;
int i;

} u;
u.f = 3.5e3; cout << u.s.sign << ’\t’ << u.s.exp << ’\t’ << u.s.frac << endl;
u.f = -3.5e-3; cout << u.s.sign << ’\t’ << u.s.exp << ’\t’ << u.s.frac << endl;
u.f = 3.5; cout << u.f << ’\t’ << hex << u.i << endl;
u.i = 3; cout << u.i << ’\t’ << u.f << endl;

produces:

0 8a 5ac000 internal structure of 3.5e3
1 76 656042 internal structure of -3.5e-3
3.5 40600000 coerce double to int
3 4.2039e-45 coerce int to double

• Reusing storage is dangerous and can usually be accomplished via other
techniques.

CS 246 144

2.7.4 String

• A string is a sequence of characters with specialized operations to
manipulate the sequence.

• Strings are provided in C by an array ofchar , string literals, and library
facilities.

char s[10]; // string of at most 10 characters

• String literal is a double-quoted sequence of characters.

"abc"
"a b c"

• Pointer to a string literal must beconst .

const char *cs = "abc";

Why?

• Juxtaposed string literals are concatenated.

const char *n1 = "johndoe";
const char *n2 = "john" "doe"; // divide literal for readability

• Character escape sequences may appear in string literal.

CS 246 145

"\\ \" \’ \t \n \12 \xa"

• Sequence of octal digits is terminated by length (3) or first character not an
octal digit; sequence of hex digits is arbitrarily long, butvalue truncated to
fit character type.

"\0123\128\xaaa\xaw"

How many characters?

• Techniques for preventing escape ambiguity.

◦Octal escape can be written with 3 digits.

"\01234"

◦Octal/hex escape can be written as concatenated strings.

"\12" "34" "\xa" "abc" "\x12" "34"

• Every string literal is implicitly terminated with a character’\0’.

◦ e.g., string literal"abc" is actually 4 characters:’a’, ’b’, ’c’, and
’\0’, which occupies 4 bytes of storage.

• Zero value is asentinelused by C-string routines to locate the string end.

• Drawbacks:

CS 246 146

◦ A string cannot contain a character with the value’\0’.
◦ To find string length, must linearly search for’\0’, which is expensive

for long strings.

• Because C-string variable is fixed-sized array, managementof
variable-sized strings is the programmer’s responsibility, requiring complex
storage management.

• C++ solves these problems by providing a “string” type using a length
member and managing all of the storage for the variable-sized strings
(#include <string>).

• Set of powerful operations that perform actions on groups ofcharacters.

CS 246 147

Java String C char [] C++ string
strcpy, strncpy =

+, concat strcat, strncat +
equal, compareTo strcmp, strncmp ==, !=, <, <=, >, >=
length strlen length
charAt [] []
substring substr
replace replace
indexOf, lastIndexOf strstr find, rfind

strcspn find first of, find last of
strspn find first not of, find last not of

c str

• All of the C++ stringfind members return values of typestring::size type
and valuestring::npos if a search is unsuccessful.

CS 246 148

string a, b, c; // declare string variables
cin >> c; // read white-space delimited sequence of characters
cout << c << endl; // print string
a = "abc"; // set value, a is “abc”
b = a; // copy value, b is “abc”
c = a + b; // concatenate strings, c is “abcabc”
if (a == b) // compare strings, lexigraphical ordering
string::size type l = c.length(); // string length, l is 6
char ch = c[4]; // subscript, ch is ’b’, zero origin
c[4] = ’x’; // subscript, c is “abcaxc”, must be character literal
string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length 3,
c.replace(2, 1, d); // replace starting at position 2 for length 1 and insert d, c is “abcaxaxc”
string::size type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is
p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5
p = c.find first of("aeiou"); // search for first vowel, p is 0
p = c.find first not of("aeiou"); // search for first consonant (not vowel), p is 1
p = c.find last of("aeiou"); // search for last vowel, p is 5
p = c.find last not of("aeiou"); // search for last consonant (not vowel), p is 7

• Note different call syntaxc.substr(2, 3) versus substr(c, 2, 3).

•Memberc str converts a string to achar * pointer (’\0’ terminated).

• Count and print words in string-variableline containing words separated by

CS 246 149

whitespace.

unsigned int count = 0;
string line, alpha = "abcdefghijklmnopqrstuvwxyz"

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
. . . // line is initialized with text
line += "\n"; // add newline as sentinel
for (;;) { // scan words off line

// find position of 1st alphabetic character
string::size type posn = line.find first of(alpha);

if (posn == string::npos) break ; // any characters left ?
line = line.substr(posn); // remove leading whitespace
// find position of 1st non-alphabetic character
posn = line.find first not of(alpha);
// extract word from start of line
cout << line.substr(0, posn) << endl; // print word
count += 1; // count words
line = line.substr(posn); // delete word from line

} // for

CS 246 150

\n

\n

\n

\n

\n

\n

\n

T h e q u i c k b r o w n

0 1 3 4 5 6 82 7 9 . . .

line

T h e q u i c k b r o w n

q u i c k b r o w n

q u i c k b r o w n

b r o w n

b r o w n

npos

CS 246 151

• It is seldom necessary to iterate through the characters of astring
variable!

• Contrast C and C++ style strings (note, management of stringstorage):

#include <string> // C++ string routines
using namespace std;
#include <string.h> // C string routines
int main() {

// C++ string
const string X = "abc", Y = "def", Z = "ghi";
string S = X + Y + Z;
// C string
const char *x = "abc", *y = "def", *z = "ghi";
char s[strlen(x)+strlen(y)+strlen(z)+1]; // pre-compute size
strcpy(s, ""); // initialize to null string
strcat(strcat(strcat(s, x), y), z);

}

Why “+1” for dimension ofs?

CS 246 152

2.7.5 Type Equivalence

• In Java/C/C++, two types are equivalent if they have the samename, called
name equivalence.

struct T1 { struct T2 { // identical structure
int i, j, k; int i, j, k;
double x, y, z; double x, y, z;

}; };
T1 t1, t11 = t1; // allowed, t1, t11 have compatible types
T2 t2 = t1; // disallowed, t2, t1 have incompatible types
T2 t2 = (T2)t1; // disallowed, no conversion from type T1 to T2

• TypesT1 andT2 arestructurally equivalent , but have different names so
they are incompatible, i.e., initialization of variablet2 is disallowed.

• An alias is a different name for same type, so alias types are equivalent.

• C/C++ providestypedef to create a alias for an existing type:

CS 246 153

typedef short int shrint1; // shrint1 => short int
typedef shrint1 shrint2; // shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrint1 s1; // implicitly rewritten as: short int s1
shrint2 s2; // implicitly rewritten as: short int s2
shrint3 s3; // implicitly rewritten as: short int s3

• All combinations of assignments are allowed amongs1, s2 ands3, because
they have the same type name “short int ”.

• Java provides no mechanism to alias types.

2.7.6 Type Nesting

• Type nesting is useful for organizing and controlling visibility for type
names:

CS 246 154

enum Colour { R, G, B, Y, C, M };
struct Foo {

enum Colour { R, G, B }; // nested type
struct Bar { // nested type

Colour c[5]; // type defined outside (1 level)
};
::Colour c[5]; // type defined outside (top level)
Colour cc; // type defined same level
Bar bars[10]; // type defined same level

};
Colour c1 = R; // type/enum defined same level
Foo::Colour c2 = Foo::R; // type/enum defined inside
Foo::Bar bar; // type defined inside

• Variables/types at top nesting-level are accessible with unqualified “::”.

• References to types inside the nested type do not require qualification (like
declarations in nested blocks).

• References to types nested inside another type must be qualified with type
operator “::”.

•With nested types,Colour (and its enumerators) andFoo in top-level scope;
without nested types need:

CS 246 155

enum Colour { R, G, B, Y, C, M };
enum Colour2 { R2, G2, B2 }; // prevent name clashes
struct Bar {

Colour2 c[5];
};
struct Foo {

Colour c[5];
Colour2 cc;
Bar bars[10];

};
Colour c1 = R;
Colour2 c2 = R2;
Bar bar;

• Do not pollute lexical scopes with unnecessary names (name clashes).

2.7.7 Type-Constructor Literal

enumerationenumerators
pointer 0 or NULL indicates a null pointer
structure struct { double r, i; } c = { 3.0, 2.1 };
array int v[3] = { 1, 2, 3 };

• C/C++ use0 to initialize pointers (Javanull).

CS 246 156

• System include-file defines the preprocessor variableNULL as0.
• Structure and array initialization can occur as part of a declaration.

struct { int i; struct { double r, i; } s; } d = { 1, { 3.0, 2.1 } }; // nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

• A nested structure or multidimensional array is created using nested braces.

• Initialization values are placed into a variable starting at beginning of the
structure or array.

• Not all the members/elements must be initialized.

◦ If not explicitly initialized, a variable isdefault initialized , which means
zero-filled for basic types.

int b[10]; // uninitialized
int b[10] = {}; // zero initialized

• g++ has a cast extension allowing construction of structure andarray literals
in executable statements not just declarations:

void rtn(const int m[2][3]);
struct Complex { double r, i; } c;
rtn((int [2][3]){ {93, 67, 72}, {77, 81, 86} }); // g++ only
c = (Complex){ 2.1, 3.4 }; // g++ only

CS 246 157

• In both cases, a cast indicates the type and structure of the literal.
• String literals can be used as a shorthand array initializervalue:

char s[6] = "abcde"; rewritten as char s[6] = { ’a’, ’b’, ’c’, ’d’, ’e’, ’\0’ };

• It is possible to leave out the first dimension, and its value is inferred from
the number of literals in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 6?)
int v[] = { 0, 1, 2, 3, 4 } // 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

2.8 Modularization
•Modularization is the division of a system into interconnecting parts

(components), using some systematic basis, and is the foundation of
software engineering.

•Medium and large systems must be modularized so people can understand
them.

• Essentially any contiguous block of code or group of variables can be
factored into a routine or structureand given a name (or viceversa).

•Module

CS 246 158

◦ separates usage from implementation by enforcing logical boundaries
among components,
◦ eliminates duplicate code byfactoring common code/declarations into

single location.

• Interfacesprovide the boundaries through various programming-language
mechanisms.

• Hence, modularization provides a mechanism toabstract algorithms and
data structures through interfaces.

2.9 Routine
• Like algebra, arbitrary operations can be define and invoked, e.g.,

f (x) = 3x2+2.5x−17, wheref (4.5) = 55.

double f(double x) { return 3.0 * x * x + 2.5 * x - 17.0; }
f(4.5); // returns 55

• A routine is the simplest module for factoring code (routine/procedural
abstraction).

• Input and output parameters define a routine’s interface.

CS 246 159

C C++

[inline] void p(OR T f(
T1 a // pass by value

)
{ // routine body

// intermixed decls/stmts
}

[inline] void p(OR T f(
T1 a, // pass by value
T2 &b, // pass by reference
T3 c = 3 // optional, default value
)

{ // routine body
// intermixed decls/stmts

}

• Routine is either aprocedureor afunction based on the return type.

• Procedure does NOT return a value that can be use in an expression,
indicated with return type ofvoid :

void usage() {
cout << "Usage: " << . . . << endl; // some usage message
exit(EXIT FAILURE); // TERMINATE PROGRAM

}

• Procedure can return values via the argument/parameter mechanism.

• Procedure terminates when control runs off the end of its routine body or a
return statement is executed:

CS 246 160

void proc() {
. . . return ; . . .
. . . // run off end => return

}

• Function returns a value that can be used in an expression, and hence,must
execute areturn statement specifying a value:

int func() {
. . . return 3; . . .
return a + b;

}

• A return statement can appear anywhere in a routine body, and multiple
return statements are possible.

• Routine with no parameters has parametervoid in C and empty parameter
list in C++:

. . . rtn(void) { . . . } // C: no parameters

. . . rtn() { . . . } // C++: no parameters

◦ In C, empty parameters mean no information about the number or types
of the parameters is supplied.

CS 246 161

• If a routine is qualified withinline , the routine is expanded (maybe) at the
call site, i.e., unmodularize, to increase speed at the costof storage (no call).

• Routine cannot be nested in another routine (possible ingcc).

• Java requires all routines to be defined in aclass .

• Each routine call creates a new block on the stack containingits parameters
and local variables, and returning removes the block.

• Variables declared outside of routines are defined in an implicit static
block.

int i; // static block, global
const double PI = 3.14159;
int rtn(double d) // code block
{ . . . return 4; // create stack block
} // remove stack block
int main() // code block
{ int j; // create stack block

{ int k; // create stack block
rtn(3.0);

} // remove stack block
} // remove stack block

CS 246 162

low address

memory

high address

free
heap

static

P
Ii

0 3.1

code

m
ai

n

rt
n

stack

jkd

Where is the program executing?

• Static block is a separate memory area from stack and heap areas andis
always zero filled.

•Good practise is to ONLY use static block for literals/variables accessed
throughout program.

2.9.1 Argument/Parameter Passing

•Modularization without communication is useless; information needs to
flow from call to routine and back to call.

• Communication is achieved by passing arguments from a call to parameters
in a routine and back to arguments or return values.

CS 246 163

◦ value parameter: parameter is initialized by copying argument (input
only).
◦ reference parameter: parameter is a reference to the argument and is

initialized to the argument’s address (input/output).
pass by value

parameter

argument
pass by reference

copy address-of (&)
5

5

100

200

104

204104

7

• Java/C, parameter passing is by value, i.e., basic types andobject references
are copied.

• C++, parameter passing is by value or reference depending onthe type of
the parameter.

• Argument expressions are evaluatedin any order.

• For value parameters, each argument-expression result is copied into the
corresponding parameter in the routine’s block on the stack, which may
involve an implicit conversion.

• For reference parameters, each argument-expression result is referenced
(address of) and this address is pushed on the stack as the corresponding

CS 246 164

reference parameter.

struct S { double d; };
void r1(S s, S &rs, S * const ps) {

s.d = rs.d = ps->d = 3.0;
}
int main() {

S s1 = {1.0}, s2 = {2.0}, s3 = {7.5};
r1(s1, s2, &s3);
// s1.d = 1.0, s2.d = 3.0, s3.d = 3.0

}

argument

parameter

s3

ps

3.0
300

300

s1

s

100
1.0

1.0

s2

rs

2.0
200

200

s3

ps

7.5
300

300

s1

s

100
1.0

3.0

s2

rs

3.0
200

200

call return

• C-style pointer-parameter simulates the reference parameter, but requires&
on argument and use of-> with parameter.

• Value passing is most efficient for small values or for large values with high

CS 246 165

referencing because the values are accessed directly (not through pointer).

• Reference passing is most efficient for large values with low/medium
referencing because the values are not duplicated in the routine but
accessed via pointers.

• Problem: cannot change a literal or temporary variable via parameter!

void r2(int &i, Complex &c, int v[]);
r2(i + j, (Complex){ 1.0, 7.0 }, (int [3]){ 3, 2, 7 }); // disallowed!

• Use type qualifiers to create read-only reference parameters so the
corresponding argument is guaranteed not to change:

void r2(const int &i, const Complex &c, const int v[]) {
i = 3; // disallowed, read only!
c.re = 3.0;
v[0] = 3;

}
r2(i + j, (Complex){ 1.0, 7.0 }, (int [5]){ 3, 2, 7, 9, 0 });

• Provides efficiency of pass by reference for large variables, security of pass
by value as argument cannot change, and allows literals and temporary
variables as arguments.

CS 246 166

• C++ parameter can have adefault value, which is passed as the argument
value if no argument is specified at the call site.

void r3(int i, double g, char c = ’*’, double h = 3.5) { . . . }
r3(1, 2.0, ’b’, 9.3); // maximum arguments
r3(1, 2.0, ’b’); // h defaults to 3.5
r3(1, 2.0); // c defaults to ’*’, h defaults to 3.5

• In a parameter list, once a parameter has a default value, allparameters to
the right must have default values.

• In a call, once an argument is omitted for a parameter with a default value,
no more arguments can be specified to the right of it.

2.9.2 Array Parameter

• Array copy is unsupported so arrays cannot be passed by value.

• Instead, array argument is a pointer to the array that is copied into the
corresponding array parameter (pass by value).

• A formal parameter array declaration can specify the first dimension with a
dimension value,[10] (which is ignored), an empty dimension list,[], or a
pointer,*:

CS 246 167

double sum(double v[5]);
double sum(double *m[5]);

double sum(double v[]);
double sum(double *m[]);

double sum(double *v);
double sum(double **m);

•Good practice uses the middle form as it clearly indicates the variable can
be subscripted.
• An actual declaration cannot use[]; it must use*:

double sum(double v[]) { // formal declaration
double *cv; // actual declaration, think cv[]
cv = v; // address assignment

• Routine to add up the elements of an arbitrary-sized array ormatrix:

double sum(int cols, double v[]) {
double total = 0.0;
for (int c = 0; c < cols; c += 1)

total += v[c];
return total;

}

double sum(int rows, int cols, double *m[]) {
double total = 0.0;
for (int r = 0; r < rows; r += 1)

for (int c = 0; c < cols; c += 1)
total += m[r][c];

return total;
}

2.10 Input/Output
• Input/Output (I/O) is divided into two kinds:

CS 246 168

1.Formatted I/O transfers data with implicit conversion of internal values
to/from human-readable form.

2.Unformatted I/O transfers data without conversion, e.g., internal integer
and real-floating values.

CS 246 169

2.10.1 Formatted I/O

Java C C++
import java.io.*; #include <stdio.h> #include <iostream>
import java.util.Scanner;
File, Scanner, PrintStream FILE ifstream, ofstream
Scanner in = new in = fopen("f", "r"); ifstream in("f");

Scanner(new File("f"))
PrintStream out = new out = fopen("g", "w") ofstream out("g")

PrintStream("g")
in.close() close(in) scope ends,in.close()
out.close() close(out) scope ends,out.close()
nextInt() fscanf(in, "%d", &i) in >> T
nextFloat() fscanf(in, "%f", &f)
nextByte() fscanf(in, "%c", &c)
next() fscanf(in, "%s", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()

in.clear()
skip("regexp") fscanf(in, "%*[regexp]") in.ignore(n, c)
out.print(String) fprintf(out, "%d", i) out << T

fprintf(out, "%f", f)
fprintf(out, "%c", c)
fprintf(out, "%s", s)

Formatted I/O occurs to/from astream file, and values are conversed based

CS 246 170

• Both I/O libraries can cascade multiple I/O operations, i.e., input or output
multiple values in a single expression.

2.10.1.1 Formats

• Format of input/output values is controlled viamanipulators defined in
#include <iomanip>.

oct integral values in octal
dec integral values in decimal
hex integral values in hexadecimal
left / right (default) values with padding after / before values
boolalpha / noboolalpha (default) bool values as false/true instead of 0/1
showbase / noshowbase (default) values with / without prefix 0 for octal & 0x for hex
showpoint / noshowpoint (default) print decimal point if no fraction
fixed (default) /scientific float-point values without / with exponent
setprecision(N) fraction of float-point values in maximum of N columns
setfill(’ch’) padding character before/after value (default blank)
setw(N) NEXT VALUE ONLY in minimum of N columns
endl flush output buffer and start new line (output only)
skipws (default) /noskipws skip whitespace characters (input only)

CS 246 171

•Manipulators are not variables for input/output , but control I/O
formatting for all literals/variables after it, continuing to the next I/O
expression for a specific stream file.

• Except manipulator setw , which only applies to the next value in the
I/O expression.
• endl is not the same as’\n’, as’\n’ does not flush buffered data.

• During input,skipsw/noskipws toggle between ignoring whitespace
between input tokens and reading the whitespace characters(i.e., tokenize
versus raw input).

2.10.1.2 Input

• C/C++ formatted input hasimplicit character conversion for all basic types
and is extensible to user-defined types (Java uses anexplicit Scanner).

CS 246 172

Java C C++

import java.io.*;
import java.util.Scanner;
Scanner in =

new Scanner(new File("f"));
PrintStream out =

new PrintStream("g");
int i, j;
while (in.hasNext()) {

i = in.nextInt(); j = in.nextInt();
out.println("i:"+i+" j:"+j);

}
in.close();
out.close();

#include <stdio.h>
FILE *in = fopen("f", "r");

FILE *out = fopen("g", "w");

int i, j;
for (;;) {

fscanf(in, "%d%d", &i, &j);
if (feof(in)) break ;

fprintf(out,"i:%d j:%d\n",i,j);
}
close(in);
close(out);

#include <fstream>
ifstream in("f");

ofstream out("g");

int i, j;
for (;;) {

in >> i >> j;
if (in.fail()) break ;

out << "i:" << i
<<" j:"<<j<<endl;

}
// in/out closed implicitly

• Input values for a stream file are C/C++ literals:3, 3.5e-1, etc., separated by
whitespace.

• Except for characters and character strings,which are not in quotes.

• Type of operand indicates the kind of literal expected in thestream, e.g., an
integer operand means an integer literal is expected.

• Input starts reading where the last input left off, and scanslines to obtain
necessary number of literals.

CS 246 173

• Hence, placement of input values on lines of a file is often arbitrary.
• To read strings containing white spaces use routine

getline(stream, string, char), which allows different delimiting characters
on input:

string s;
getline(cin, s, ’ ’); // read characters until ’ ’ => cin >> c
getline(cin, s, ’@’); // read characters until ’@’
getline(cin, s, ’\n’); // read characters until newline (default)

• C/C++ must attempt to readbeforeend-of-file is set and can be tested.
• End of file is the detection of the physical end of a file;there is no

end-of-file character.
• From a shell, typing<ctrl>-d (C-d), i.e., press<ctrl> andd keys

simultaneously, causes the shell to close the current inputfile marking its
physical end.
• In C++, end of file can be explicitly detected in two ways:
◦ stream membereof returnstrue if the end of file is reached andfalse

otherwise.
◦ stream memberfail returnstrue for invalid literal OR no literal if end of

file is reached, andfalse otherwise.

CS 246 174

• Safer to checkfail and then checkeof.

for (;;) {
cin >> i;

if (cin.eof()) break ; // should use “fail()”
cout << i << endl;

}

• If "abc" is entered (invalid integer literal),fail becomestrue buteof is false .

•Generates infinite loop as invalid data is not skipped for subsequent reads.

• Streams also have coercion tovoid *: if fail(), null pointer; otherwise
non-null pointer.

cout << cin; // print fail() status of stream cin
while (cin >> i) . . . // read and check pointer to != 0

•When bad data is read,stream must be reset and bad data cleared:

CS 246 175

#include <iostream>
#include <limits> // numeric limits
using namespace std;
int main() {

int n;
cout << showbase; // prefix hex with 0x
cin >> hex; // input hex literals
for (;;) {

cout << "Enter hexadecimal number: ";
cin >> n;
if (cin.fail()) { // problem ?

if (cin.eof()) break ; // eof ?
cout << "Invalid hexadecimal number" << endl;
cin.clear(); // reset stream failure
cin.ignore(numeric limits<int >::max(), ’\n’); // skip until newline

} else {
cout << hex << "hex:" << n << dec << " dec:" << n << endl;

}
}
cout << endl;

}

• After an unsuccessful read,clear() resets the stream.

CS 246 176

• ignore skipsn characters, e.g.,cin.ignore(5) or until a specified character.

• Read in file-names, which may contain spaces, and process each file:

#include <fstream>
using namespace std;
int main() {

ifstream fileNames("fileNames"); // requires char * argument
string fileName;

for (;;) { // process each file
getline(fileNames, fileName); // may contain spaces

if (fileNames.fail()) break ; // handle no terminating newline
ifstream file(fileName.c str()); // access char *
// read and process file

}
}

• In C, routinefeof returnstrue when eof is reached andfscanf returnsEOF.

• Parameters in C are always passed by value, so arguments tofscanf must be
preceded with& (except arrays) so they can be changed.

CS 246 177

2.10.1.3 Output

• Java output style converts values to strings, concatenatesstrings, and prints
final long string:

System.out.println(i + " " + j); // build a string and print it

• C/C++ output style has a list of formats and values, and output operation
generates strings:

cout << i << " " << j << endl; // print each string as formed

• No implicit conversion from the basic types to string in C++ (but one can be
constructed).

•While it is possible to use the Java string-concatenation style in C++, it
is incorrect style.
• Use manipulators to generate specific output formats:

CS 246 178

#include <iostream> // cin, cout, cerr
#include <iomanip> // manipulators
using namespace std;
int i = 7; double r = 2.5; char c = ’z’; const char *s = "abc";
cout << "i:" << setw(2) << i

<< " r:" << fixed << setw(7) << setprecision(2) << r
<< " c:" << c << " s:" << s << endl;

#include <stdio.h>
fprintf(stdout, "i:%2d r:%7.2f c:%c s:%s\n", i, r, c, s);

i: 7 r: 2.50 c:z s:abc

2.10.2 Unformatted I/O

• Expensive to convert from internal (computer) to external (human) forms
(bits⇔ characters).

•When data does not have to be seen by a human, use efficient unformatted
I/O so no conversions.

• Uses same mechanisms as formatted I/O to connect variable tofile
(open/close).

CS 246 179

• read andwrite routines directly transfer bytes from/to a file, where each
takes a pointer to the data and number of bytes of data.

read(char *data, streamsize num);
write(char *data, streamsize num);

• Read/write of types other than characters requires a coercion castor C++
reinterpret cast .

CS 246 180

#include <iostream>
#include <fstream>
using namespace std;

int main() {
ofstream outfile("myfile"); // open output file “myfile”
if (outfile.fail()) . . . // unsuccessful open ?
double d = 3.0;
outfile.write((char *)&d , sizeof (d)); // coercion
outfile.close(); // close file before attempting read

ifstream infile("myfile"); // open input file “myfile”
if (infile.fail()) . . . // unsuccessful open ?
double e;
infile.read(reinterpret cast<char *>(&e), sizeof (e)); // coercion
if (d != e) . . . // problem
infile.close();

}

• Coercion would be unnecessary if buffer type wasvoid *.

CS 246 181

2.11 Command-line Arguments
• Starting routinemain has two overloaded prototypes.

int main(); // C: int main(void);
int main(int argc, char *argv[]); // parameter names may be different

• Second form is used to receive command-line arguments from the shell,
where the command-line string-tokens are transformed intoC/C++
parameters.

• argc is the number of string-tokens on the command line, including the
command name.

• Java does not include command name, so number of tokens is oneless.

• argv is an array of pointers to C character strings that make up token
arguments.

CS 246 182

% ./a.out -option infile.cc outfile.cc
0 1 2 3

argc = 4 // number of command-line tokens
argv[0] = ./a.out\0 // not included in Java
argv[1] = -option\0
argv[2] = infile.cc\0
argv[3] = outfile.cc\0
argv[4] = 0 // mark end of variable length list

• Because shell only has string variables, a shell argument of"32" does not
mean integer 32, and may have to converted.

• Routinemain usually begins by checkingargc for command-line
arguments.

CS 246 183

Java C/C++

class Prog {
public static void main(String[] args) {

switch (args.length) {
case 0: . . . // no args

break ;
case 1: . . . args[0] . . . // 1 arg

break ;
case . . . // others args

break ;
default : . . . // usage message

System.exit(1);
}
. . .

int main(int argc, char *argv[]) {
switch (argc) {

case 1: . . . // no args
break ;

case 2: . . . args[1] . . . // 1 arg
break ;

case . . . // others args
break ;

default : . . . // usage message
exit(EXIT FAILURE);

}
. . .

• Arguments are processed in the rangeargv[1] throughargv[argc - 1] (one
greater than Java).

• Process following arguments from shell command line for command:

cmd [size (> 0) [code (> 0) [input-file [output-file]]]]

• Note, dynamic allocation,stringstream (atoi does not indicate errors), and
no duplicate code.

CS 246 184

#include <iostream>
#include <fstream>
#include <sstream>
#include <cstdlib> // exit
using namespace std; // direct access to std

bool convert(int &val, char *buffer) { // convert C string to integer
std::stringstream ss(buffer); // connect stream and buffer
ss >> dec >> val; // convert integer from buffer
return ! ss.fail() && // conversion successful ?

// characters after conversion all blank ?
string(buffer).find first not of(" ", ss.tellg()) == string::npos;

} // convert

enum { sizeDeflt = 20, codeDeflt = 5 }; // global defaults

void usage(char *argv[]) {
cerr << "Usage: " << argv[0] << " [size (>= 0 : " << sizeDeflt << ") [code
<< codeDeflt << ") [input-file [output-file]]]]" << endl;

exit(EXIT FAILURE); // TERMINATE PROGRAM
} // usage

int main(int argc, char *argv[]) {
int size = sizeDeflt, code = codeDeflt; // default value
istream *infile = &cin; // default value

CS 246 185

ostream *outfile = &cout; // default value
switch (argc) {

case 5:
outfile = new ofstream(argv[4]);
if (outfile->fail()) usage(argv); // open failed ?
// FALL THROUGH

case 4:
infile = new ifstream(argv[3]);
if (infile->fail()) usage(argv); // open failed ?
// FALL THROUGH

case 3:
if (! convert(code, argv[2]) | | code < 0) usage(argv) ; // invalid integer ?
// FALL THROUGH

case 2:
if (! convert(size, argv[1]) | | size < 0) usage(argv); // invalid integer ?
// FALL THROUGH

case 1: // all defaults
break ;

default : // wrong number of options
usage(argv);

}
// program body
if (infile != &cin) delete infile; // close file, do not delete cin!
if (outfile != &cout) delete outfile; // close file, do not delete cout!

} // main

CS 246 186

2.12 Preprocessor
• Preprocessor is a text editor that modifies the program textbefore

compilation.

• Program you see is not what the compiler sees!
• A preprocessor statement starts with a# character, followed by a series of

tokens separated by whitespace, which is usually a single line and not
terminated by punctuation.

• The three most commonly used preprocessor facilities are substitution, file
inclusion, and conditional inclusion.

2.12.1 Variables/Substitution

• #define statement declares a preprocessor string variable, and itsvalue is
all the text after the name up to the end of line.

CS 246 187

#define Integer int
#define begin {
#define end }
#define gets =
#define set
#define with =
Integer main() begin

Integer x gets 3, y;
x gets 5;
set y with x;

end

// transformed
int main() {

int x = 3, y;
x = 5;
y = x;

}

• Preprocessor can transform the syntax of C/C++ program (discouraged).
• Preprocessor variables can be defined and initialized on thecompilation

command with option-D.

% g++ -DDEBUG="2" -DASSN . . . source-files

Initialization value is text after=.

• Same as putting the following#define s in a program without changing the
program:

#define DEBUG 2
#define ASSN 1

CS 246 188

• Cannot have both-D and #define for the same variable.
• Predefined preprocessor-variables exist identifying hardware and software

environment, e.g.,mcpu is kind of CPU.

• Replace#define with enum for integral types; otherwise useconst
declarations (Javafinal).

enum { arraySize = 100 }; #define arraySize 100
enum { PageSize = 4 * 1024 }; #define PageSize (4 * 1024)
const double PI = 3.14159; #define PI 3.14159
int array[arraySize], pageSize = PageSize;
double x = PI;

enum uses no storage whileconst declarations might.

• #define can declare macros with parameters, which expand during
compilation, textually substituting arguments for parameters, e.g.:

#define MAX(a, b) ((a > b) ? a : b)
z = MAX(x, y); // rewritten as: z = ((x > y) ? x : y)

• Useinline routines in C/C++ rather that#define macros.

inline int MAX(int a, int b) { return a > b ? a : b; }

CS 246 189

2.12.2 File Inclusion

• File inclusion copies text from a file into a C/C++ program.

• An included file may contain anything.

• An include file normally imports preprocessor and C/C++
templates/declarations for use in a program.

• All included text goes through every compilation step, i.e., preprocessor,
compiler, etc.

• Java implicitly includes by matching class names with file names in
CLASSPATH directories, then extracting and including declarations.

• The#include statement specifies the file to be included.

• C convention uses suffix “.h” for include files containing C declarations.

• C++ convention drops suffix “.h” for its standard libraries and has special
file names for equivalent C files, e.g.,cstdio versusstdio.h.

#include <stdio.h> // C style
#include <cstdio> // C++ style
#include "user.h"

• A file name can be enclosed in<> or "".

CS 246 190

• <> means preprocessor only looks in the system include directories.

• "" means preprocessor starts looking for the file in the same directory as
the file being compiled, then in the system include directories (/usr/include).

• System fileslimits.h (climit) andstddef.h (cstddef) contain many useful
#define s.

◦ e.g., null pointer literalNULL and min/max values for types (e.g.,
see/usr/include/limits.h).

2.12.3 Conditional Inclusion

• Preprocessor has anif statement, which may be nested, to conditionally
add/remove code from a program.
• Conditionalif uses the same relational and logical operators as C/C++, but

operands can only be integer or character values.

CS 246 191

#define DEBUG 0 // declare and initialize preprocessor variable
. . .
#if DEBUG == 1 // level 1 debugging
include "debug1.h"
. . .
#elif DEBUG == 2 // level 2 debugging
include "debug2.h"
. . .
#else // non-debugging code
. . .
#endif

• By changing value of preprocessor variableDEBUG, different parts of the
program are included for compilation.

• To exclude code (comment-out), use0 conditional as0 implies false.

#if 0
. . . // code commented out
#endif

• Possible to check if a preprocessor variable is defined or notdefined using
#ifdef or #ifndef :

CS 246 192

#ifndef MYDEFS H // if not defined
#define MYDEFS H 1 // make it so
. . .
#endif

• Used in an#include file to ensure its contents are only expanded once.

• Note difference between checking if a preprocessor variable is defined and
checking the value of the variable.

• The former capability does not exist in most programming languages, i.e.,
checking if a variable is declared before trying to use it.

2.13 Assertions
• Assertions document program assumptions:

◦ pre-conditions – things true before a computation (e.g., all values are
positive),
◦ invariants – things true across the computation (e.g., all values during the

computation are positive, because only+,*, / operations),
◦ post-conditions – things true after the computation (e.g.,all results are

positive).

CS 246 193

• Assumptions cannot reflect external usage, where there is nocontrol.

◦ E.g., at interface points, a routine call can be made with incorrect values.
◦ Checking interface parameters is not an assumption about program

behaviour, rather about user behaviour.

• Assertions occurafter usage checks when a program has control over its
computation.

◦ E.g., after checking a “car” is passed to a routine to calculate braking
distance, an assumption of correct behaviour is a positive braking
distance.
◦ Therefore, routine can assert post-condition “braking distance is greater

than zero” before returning.

•Macroassert tests a boolean expression representing a logical assumption:

CS 246 194

#include <cassert>
unsigned int stopping distance(Car car) {

if (car != . . .) exit(EXIT FAILURE); // check parameter

brakes = . . . ;
assert(brakes > 0); // pre-condition

distance = brakes . . . ;
assert(distance > 0); // invariant
distance = . . . ;
assert(distance > 0); // invariant

distance = . . . ;
assert(distance > 0); // post-condition
return distance;

}

• If assert fails (false result), it aborts program and printsexpression:

a.out: test.cc:19: unsigned int stopping distance(Car):
Assertion ’distance > 0’ failed.

• Use comma expression to add documentation to assertion message.

CS 246 195

assert(("Internal error, please report", distance > 0));
a.out: test.cc:19: unsigned int stopping distance(Car):

Assertion (’"Internal error, please report", distance >

• Assertions inhot spot, i.e., point of high execution, can significantly
increase program cost.

• Compiling a program with preprocessor variableNDEBUG defined removes
all asserts.

% g++ -DNDEBUG . . . # all asserts removed

• Therefore, never put computations needed by a program into an assertion.

assert(needed computation(. . .) > 0); // may not be executed

2.14 Debugging
• Debuggingis the process of determining why a program does not have an

intended behaviour.

•Often debugging is associated with fixing a program after a failure.

• However, debugging can be applied to fixing other kinds of problems, like
poor performance.

CS 246 196

• Before using debugger tools it is important to understand what you are
looking for and if you need them.

2.14.1 Debug Print Statements

• An excellent way to debug a program is tostart by inserting debug print
statements (i.e., as the program is written).

• It takes more time, but the alternative is wasting hours trying to figure out
what the program is doing.

• The two aspects of a program that you need to know are: where the
program is executing and what values it is calculating.

• Debug print statements show the flow of control through a program and
print out intermediate values.

• E.g., every routine should have a debug print statement at the beginning and
end, as in:

CS 246 197

int p(. . .) {
// declarations
cerr << "Enter p " << parameter variables << endl;
. . .
cerr << "Exit p " << return value(s) << endl;
return r;

}

• Result is a high-level audit trail of where the program is executing and what
values are being passed around.

• Finer resolution requires more debug print statements in important control
structures:

if (a > b) {
cerr << "a > b" << endl ; // debug print
for (. . .) {

cerr << "x=" << x << ", y=" << y << endl; // debug print
. . .

}
} else {

cerr << "a <= b" << endl; // debug print
. . .

}

CS 246 198

• By examining the control paths taken and intermediate values generated, it
is possible to determine if the program is executing correctly.

• Unfortunately, debug print statements can generate enormous amounts of
output.

It is of the highest importance in the art of detection to be able to
recognize out of a number of facts which are incidental and which
vital. (Sherlock Holmes, The Reigate Squires)

•Gradually comment out debug statements as parts of the program begin to
work to remove clutter from the output, but do not delete themuntil the
program works.

•When you go for help, your program should contain debug print-statements
to indicate some attempted at understanding the problem.

• Use a preprocessor macro to simplify debug prints:

#define DPRT(title, expr) \
{ std::cerr << #title "\t\"" << PRETTY FUNCTION << "\" " << \

expr << " in " << FILE << " at line " << LINE << std::endl;

for printing entry, intermediate, and exit locations and data:

CS 246 199

#include <iostream>
#include "DPRT.h"
int test(int a, int b) {

DPRT(ENTER, "a:" << a << " b:" << b);
if (a < b) {

DPRT(a < b, "a:" << a << " b:" << b);
}
DPRT(, a + b); // empty title
DPRT(HERE, ""); // empty expression
DPRT(EXIT, a);
return a;

}

which generates debug output:

ENTER "int test(int, int)" a:3 b:4 in test.cc at line 14
a < b "int test(int, int)" a:3 b:4 in test.cc at line 16

"int test(int, int)" 7 in test.cc at line 18
HERE "int test(int, int)" in test.cc at line 19
EXIT "int test(int, int)" 3 in test.cc at line 20

CS 246 200

2.14.2 Errors

• Debug print statements do not prevent errors, they simply aid in finding
errors.

•What you do about an error depends on the kind of error.

• Errors fall into two basic categories: syntax and semantic.

• Syntax error is in the arrangement of the tokens in the programming
language.

• These errors correspond to spelling or punctuation errors when writing in a
human language.

• Fixing syntax errors is usually straight forward especially if the compiler
generates a meaningful error message.

• Always read the error message carefully andcheckthe statement in error.

You see (Watson), but do not observe. (Sherlock Holmes, A Scandal in
Bohemia)

• Difficult syntax errors are:

◦missing closing" or */, as the remainder of the program isswallowed as
part of the character string or comment.

CS 246 201

◦missing{ or }, especially if the program is properly indented (editors can
help here)
◦missing semi-colon at end of structure

• Semantic error is incorrect behaviour or logic in the program.

• These errors correspond to incorrect meaning when writing in a human
language.

• Semantic errors are harder to find and fix than syntax errors.

• A semantic or execution error message only tells why the program stopped
not what caused the error.

• In general, when a program stops with a semantic error, the statement in
error is often not the one that must be fixed.

•Must work backwards from the error to determine the cause of the problem.

In solving a problem of this sort, the grand thing is to be able to reason
backwards. That is a very useful accomplishment, and a very easy one,
but people do not practise it much. In the everyday affairs of life it is
more useful to reason forward, and so the other comes to be neglected.
(Sherlock Holmes, A Study in Scarlet)

• Reason from the particular (error symptoms) to the general (error cause).

CS 246 202

◦ locate pertinent data : categorize as correct or incorrect
◦ look for contradictions
◦ list possible causes
◦ devise a hypothesis for the cause of the problem
◦ use data to find contradictions to eliminate hypotheses
◦ refine any remaining hypotheses
◦ prove hypothesis is consistent with both correct and incorrect results, and

accounts for all errors
• E.g., an infinite loop with nothing wrong with the loop.

i = 10;
while (i != 5) {

. . .
i += 2;

}
The initialization is wrong.
• Difficult semantic errors are:
◦ uninitialized variable
◦ invalid subscript or pointer value
◦ off-by-one error

CS 246 203

• Finally, if a statement appears not to be working properly, but looks correct,
check the syntax.

if (a = b) {
cerr << "a == b" << endl;

}

When you have eliminated the impossible whatever remains, however
improbable must be the truth. (Sherlock Holmes, Sign of Four)

2.15 Dynamic Storage Management
• Java/Scheme aremanaged languages because the language controls all

memory management, e.g.,garbage collectionto free dynamically
allocated storage.

• C/C++ areunmanaged languages because the programmer is involved in
memory management, e.g., no garbage collection so dynamic storage must
be explicitly freed.

• C++ provides dynamic storage-management operationsnew /delete and C
providesmalloc/free.

• Do not mix the two forms in a C++ program.

CS 246 204

Java C C++

class Foo { char c1, c2; }
Foo r = new Foo();
r.c1 = ’X’;
// r garbage collected

struct Foo { char c1, c2; };
struct Foo *p =

(struct Foo *) // coerce
malloc(// allocate
sizeof (struct Foo) // size

);
p->c1 = ’X’;
free(p); // explicit free

struct Foo { char c1, c2; };
Foo *p = new Foo();
p->c1 = ’X’;
delete p; // explicit free
Foo &r = *new Foo();
r.c1 = ’X’;
delete &r; // explicit free

F
oo F
oo

low address

code

high address

static

heap stack

memory

p

r

free

Unallocated memory in heap is also free.

• Allocation has 3 steps:

1. determine size of allocation,
2. allocate heap storage of correct size/alignment,

CS 246 205

3. coerce undefined storage to correct type.

• C++ operatornew performs all 3 steps implicitly; each step is explicit in C.

• Coercion cast is required in C++ formalloc but optional in C.

◦ C has implicit cast fromvoid * (pointer to anything) to specific pointer
(dangerous!).
◦Good practise in C is to use a cast so compiler can verify type

compatibility on assignment.

• Parenthesis after the type name in thenew operation are optional.

• For referencer, why is there a “*” beforenew and an “&” in the delete ?

• Storage for dynamic allocation comes from a memory area called theheap.
• If heap is full (i.e., no more storage available),malloc returns 0, andnew

terminates program with an error.

• Before storage can be used, itmustbe allocated.

Foo *p; // forget to initialize pointer with “new”
p->c1 = ’R’; // places ’R’ at some random location in memory

Called an uninitialized variable.

• After storage is no longer needed itmustbe explicitly deleted.

CS 246 206

Foo *p = new Foo;
p = new Foo; // forgot to free previous storage

Called amemory leak.
• After storage is deleted, itmustnot be used:

delete p;
p->c1 = ’R’; // result of dereference is undefined

Called adangling pointer.
• Unlike Java, C/C++ allowall types to be dynamically allocated not just

object types, e.g.,new int .

• As well, C/C++ allowall types to be allocated on the stack, i.e., local
variables of a block:

CS 246 207

Java C++

{ // basic & reference
int i;
double d;
AggrType agr =

new AggrType();
. . .

} // garbage collected

stack heap

...

d

i

agr

{ // all types
int i;
double d;
AggrType agr;
. . .

} // implicit delete
...

agr

d

i

heapstack

• Stack allocation eliminates explicit storage-management(simpler) and is
more efficient than heap allocation —use it whenever possible.

{ // good, use stack
int i;
. . . // use i

}

{ // bad, unnecessary dynamic allocation
int *ip = new int ;
. . . // use *ip
delete ip;

}

• Dynamic allocation in C++ should be used only when a variable’s
storage must outlive the block in which it is allocated.

CS 246 208

Type *rtn(. . .) {
Type *tp = new Type; // MUST USE HEAP
. . . // initialize/compute using tp
return tp; // storage outlives block

} // tp deleted later

• Declaration of a pointer to an array is complex in C/C++ .

• Because no array-size information, no dimension for an array pointer.

int *parr = new int [10]; // think parr[], pointer to array of 10 ints

• No dimension information results in the following ambiguity:

int *pvar = new int ; // basic “new”
int *parr = new int [10]; // parr[], array “new”

• Variablespvar andparr have the same type but one is allocated with the
basicnew and the other with the arraynew .

• Special syntaxmustbe used to call the corresponding deletion operation for
a variable or an array (any dimensions):

delete pvar; // basic delete : single element
delete [] parr; // array delete : multiple elements (any dimension)

CS 246 209

• If basicdelete is used on an array, only the first element is freed (memory
leak).

• If arraydelete is used on a variable, storage after the variable is also freed
(often failure).

• Never do this:

delete [] parr, pvar; // => (delete [] parr), pvar;

which is an incorrect use of a comma expression;pvar is not deleted.

• Declaration of a pointer to a matrix is complex in C/C++, e.g., int *m[5]
could mean:

. . .

. . .

. . .

. . .

. . .

9

8

1

2

3

...

m m 6 4 09 2

• Left: array of 5 pointers to an array of unknown number of integers.

CS 246 210

• Right: pointer to matrix of unknown number of rows with 5 columns of
integers.

• Dimension is higher priority so declaration is interpretedasint (*(m[5]))
(left).

• Right example cannot be generalized to a dynamically-sizedmatrix.

int R = 5, C = 4; // 5 rows, 4 columns
int (*m)[C] = new int[R][C]; // disallowed, C must be literal, e.g, 4

Compiler must know the stride (number of columns) to computerow.

• Left example can be generalized to a dynamically-sized matrix.

int main() {
int R = 5, C = 4; // or cin >> R >> C;
int *m[R]; // R rows
for (int r = 0; r < R; r += 1) {

m[r] = new int [C]; // C columns per row
for (int c = 0; c < C; c += 1) {

m[r][c] = r + c; // initialize matrix
}

}

CS 246 211

for (int r = 0; r < R; r += 1) { // print matrix
for (int c = 0; c < C; c += 1) {

cout << m[r][c] << ", ";
}
cout << endl;

}
for (int r = 0; r < R; r += 1) {

delete [] m[r]; // delete each row
}

} // implicitly delete array “m”

2.16 Overloading
•Overloading occurs when a name has multiple meanings in the same

context.

•Most languages have overloading, e.g., most built-in operators are
overloaded on both integral and real-floating operands, i.e., + operator is
different for1 + 2 than for1.0 + 2.0.

•Overloading requires disambiguating among identical names based on
some criteria.

• Normal criterion is type information.

CS 246 212

• In general, overloading is done on operations not variables:

int i; // disallowed : variable overloading
double i;
void r(int) { . . . } // allowed : routine overloading
void r(double) { . . . }

• Power of overloading occurs when programmer changes a variable’s
type: operations on the variable are implicitly reselectedfor new type.

• E.g., after changing a variable’s type fromint to double , all operations
implicitly change from integral to real-floating.

• Number andunique parameter typesbut not the return typeare used to
select among a name’s different meanings:

int r(int i, int j) { . . . } // overload name r three different ways
int r(double x, double y) { . . . }
int r(int k) { . . . }
r(1, 2); // invoke 1st r based on integer arguments
r(1.0, 2.0); // invoke 2nd r based on double arguments
r(3); // invoke 3rd r based on number of arguments

• Implicit conversions between arguments and parameters cancause
ambiguities:

CS 246 213

r(1, 2.0); // ambiguous, convert either argument to integer or double

◦ Use explicit cast to disambiguate:

r(1, (int)2.0) // 1st r
r((double)1, 2.0) // 2nd r

• Subtle cases:

int i; unsigned int ui; long int li;
void r(int i) { . . . } // overload name r three different ways
void r(unsigned int i) { . . . }
void r(long int i) { . . . }
r(i); // int
r(ui); // unsigned int
r(li); // long int

• Parameter types with qualifiers other thanshort /long /signed /unsigned are
ambiguous at definition:

int r(int i) {. . .} // rewritten: int r(signed int)
int r(signed int i) {. . .} // disallowed : redefinition of first r
int r(const int i) {. . .} // disallowed : redefinition of first r
int r(volatile int i) {. . .} // disallowed : redefinition of first r

• Reference parameter types with same base type are ambiguousat call:

CS 246 214

int r(int i) {. . .} // cannot be called
int r(int &i) {. . .} // cannot be called
int r(const int &i) {. . .} // cannot be called
int i = 3;
const int j = 3;
r(i); // disallowed : ambiguous
r(j); // disallowed : ambiguous

Cannot cast argument to selectr(int i), r(int &i) or r(const int &i).

•Overload/conversion confusion: I/O operator<< is overloaded withchar *
to print a C string andvoid * to print pointers.

char c; int i;
cout << &c << " " << &i << endl; // print address of variables

type of&c is char *, so printed as C string, which is undefined;type of&i
is int *, which is converted tovoid *, so printed as an address.

• Fix using coercion.

cout << (void *)&c << " " << &i << endl; // print address of variables

•Overlap between overloading and default arguments for parameters with
same type:

CS 246 215

Overloading Default Argument

int r(int i, int j) { . . . }
int r(int i) { int j = 2; . . . }
r(3); // 2nd r

int r(int i, int j = 2) { . . . }

r(3); // default argument of 2

If the overloaded routine bodies are essentially the same, use a default
argument, otherwise use overloaded routines.

2.17 Routine Pointer
• The flexibility and expressiveness of a routine comes from the

argument/parameter mechanism, which generalizes a routine across any
argument variables of matching type.

• However, the code within the routine is the same for all data in these
variables.

• To generalize a routine further, code can be passed as an argument, which is
executed within the routine body.

•Most programming languages allow a routine pointer for further
generalization and reuse.

CS 246 216

• Java only has routines contained in class definitions so routine pointers
must be accomplished indirectly via classes.

• As for data parameters, routine pointers are specified with atype (return
type, and number and types of parameters), and any routine matching this
type can be passed as an argument:

int f(int v, int (*p)(int)) { return p(v * 2) + 2; }
int g(int i) { return i - 1; }
int h(int i) { return i / 2; }
cout << f(4, g) << endl; // pass routines g and h as arguments
cout << f(4, h) << endl;

• Routinef is generalized to accept any routine argument of the form: returns
an int and takes anint parameter.

•Within the body off, the parameterp is called with an appropriateint
argument, and the result of callingp is further modified before it is returned.

• A routine pointer is passed as a constant reference in virtually all
programming languages; in general, it makes no sense to change or copy
routine code, like copying a data value.

• C/C++ require the programmer to explicitly specify the reference via a
pointer, while other languages implicitly create a reference.

CS 246 217

• Two common uses of routine parameters are fix-up and call-back routines.

• A fix-up routine is passed to another routine and called if an unusual
situation is encountered during a computation.

• E.g., a matrix is not invertible if its determinant is 0 (singular).

• Rather than halt the program for a singular matrix,invert routine calls a user
supplied fix-up routine to possibly recover and continue with a correction
(e.g., modify the matrix):

int singularDefault(int matrix[][10], int rows, int cols) { abort(); }
int invert(int matrix[][10], int rows, int cols,

int (*singular)(int matrix[][10], int rows, int cols) = singularDefault
. . .
if (determinant(matrix, rows, cols) == 0) {

correction = singular(matrix, rows, cols); // possible correction
}
. . .

}
int fixup(int matrix[][10], int rows, int cols) { return 0; }
invert(matrix, 10, 10, fixup); // fixup rather than abort

• A fix-up parameter generalizes a routine as the corrective action is specified
for each call, and the action can be tailored to a particular usage.

CS 246 218

•Giving the fix-up parameter a default value eliminates having to provide a
fix-up argument.

• A call-back routine is used in event programming.

•When an event occurs, one or more call-back routines are called (triggered)
and each one performs an action specific for that event.

• E.g., graphical user interface has interactive “widgets”:buttons, sliders and
scrollbars.

•When a user manipulates the widget, events are generated representing the
new state of the widget, e.g., button down or up.

• A program registers interest in transitions for different widgets by creating
and registering a call-back routine.

int closedown(/* info about event */) {
// close down because close button press
// return status of callback action

}
// inform when close button pressed for “widget”
registerCB(widget, closeButton, closedown);

• widget maintains list of registered callbacks.

CS 246 219

• A widget calls specific call-back routine(s) when the widgetchanges state,
passing new state of the widget to each call-back routine.

2.18 Object
•Object-oriented programming was developed in the mid-1960s by Dahl and

Nygaard and first implemented in SIMULA67.

•Object programming is based on structures, used for organizing logically
related data:

unorganized organized

int people age[30];
bool people sex[30];
char people name[30][50];

struct Person {
int age;
bool sex;
char name[50];

} people[30];

• Both approaches create an identical amount of information.

• Difference is solely in the information organization (and memory layout).

• Computer does not care as the information and its manipulation is largely
the same.

CS 246 220

• Structuring is an administrative tool for programmer understanding and
convenience.

•Objects extend organizational capabilities of a structureby allowing routine
members.

• C++ does not subscribe to the Java notion that everything is either a basic
type or an object, i.e., routines can exist without being embedded in a
struct /class .

structure form object form

struct Complex {
double re, im;

};
double abs(const Complex &This) {

return sqrt(This.re * This.re +
This.im * This.im);

}
Complex x; // structure
d = abs(x); // call abs

struct Complex {
double re, im;
double abs() const {

return sqrt(re * re +
im * im);

}
};
Complex x; // object
d = x.abs(); // call abs

• An object provides both data and the operations necessary tomanipulate
that data in one self-contained package.

CS 246 221

• Both approaches use routines as an abstraction mechanism tocreate an
interface to the information in the structure.

• Interface separates usage from implementation at the interface boundary,
allowing an object’s implementation to change without affecting usage.

• E.g., if programmers do not accessComplex’s implementation, it can
change from Cartesian to polar coordinates and maintain same interface.

• Developing good interfaces for objects is important.

◦ e.g., mathematical types (likecomplex) should use value semantics
(functional style) versus reference to prevent changing temporary values.

2.18.1 Object Member

• A routine member in a class is constant, and cannot be assigned (e.g.,const
member).

•What is the scope of a routine member?

• Structure creates a scope, and therefore, a routine member can access the
structure members, e.g.,abs member can refer to membersre andim.

• Structure scope is implemented via aT * const this parameter, implicitly
passed to each routine member (like left example).

CS 246 222

double abs() const {
return sqrt(this ->re * this ->re + this ->im * this ->im);

}

Since implicit parameter “this ” is a const pointer, it should be a
reference.

• Except for the syntactic differences, the two forms are identical.

• The use of implicit parameterthis , e.g.,this ->f, is seldom necessary.

•Member routine declaredconst is read-only, i.e., cannot change member
variables.

•Member routines are accessed like other members, using member selection,
x.abs, and called with the same form,x.abs().

• No parameter needed because of implicit structure scoping via this
parameter.

• Nesting of object types only allows static not dynamic scoping (Java allows
dynamic scoping).

CS 246 223

struct Foo {
int g;
int r() { . . . }
struct Bar { // nested object type

int s() { g = 3; r(); } // disallowed, dynamic reference
}; // to specific object

} x, y, z;

References ins to membersg andr in Foo disallowed because must know
the this for specificFoo object, i.e., whichx, y or z.

• Extend typeComplex by inserting an arithmetic addition operation:

struct Complex {
. . .
Complex add(Complex c) {

return (Complex){ re + c.re, im + c.im };
}

};

• To sumx andy, write x.add(y), which looks different from normal addition,
x + y.

• Because addition is a binary operation,add needs a parameter as well as the
implicit context in which it executes.

CS 246 224

• Like outside a type, C++ allows overloading members in a type.

2.18.2 Operator Member

• It is possible to use operator symbols for routine names:

struct Complex {
. . .
Complex operator +(Complex c) { // rename add member

return (Complex){ re + c.re, im + c.im };
}

};

• Addition routine is called+, andx andy can be added byx.operator +(y) or
y.operator +(x), which looks slightly better.

• Fortunately, C++ implicitly rewritesx + y asx.operator +(y).

Complex x = { 3.0, 5.2 }, y = { -9.1, 7.4 };
cout << "x:" << x.re << "+" << x.im << "i" << endl;
cout << "y:" << y.re << "+" << y.im << "i" << endl;
Complex sum = x + y; // rewritten as x.operator+(y)
cout << "sum:" << sum.re << "+" << sum.im << "i" << endl;

CS 246 225

2.18.3 Constructor

• A constructor is a special member used toimplicitly perform initialization
after object allocation to ensure the object is valid beforeuse.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
. . . // other members

};

• Constructor member-name is overloaded with structure name.

• Constructor without parameters is thedefault constructor, for initializing
a new object.

Complex x;
Complex *y = new Complex;

implicitly
rewritten as

Complex x; x.Complex();
Complex *y = new Complex;

y->Complex();

• Unlike Java, C++ does not initialize all object members to default values.

• Constructor normally initializes membersnot initialized via other
constructors, i.e., some members are objects with their own constructors.

• Because a constructor is a routine, arbitrary execution canbe performed

CS 246 226

(e.g., loops, routine calls, etc.) to perform initialization.

• A constructor may have parameters but no return type (not even void).

• Never put parentheses to invoke default constructor for declaration.

Complex x(); // routine prototype, no parameters returning a complex

•Once a constructor is specified, structure initialization is disallowed:

Complex x = { 3.2 }; // disallowed
Complex y = { 3.2, 4.5 }; // disallowed

• Instead use constructor(s) with parameters:

struct Complex {
double re, im;
Complex(double r = 0.0, double i = 0.0) { re = r; im = i; }
. . .

};

Note, use of default values for parameters.

• Unlike Java, constructor argument(s) can be specifiedafter a variable for
local declarations:

CS 246 227

Complex x, y(1.0), z(6.1, 7.2); implicitly
rewritten as

Complex x; x.Complex(0.0, 0.0);
Complex y; y.Complex(1.0, 0.0);
Complex z; z.Complex(6.1, 7.2);

• Dynamic allocation is same as Java:

Complex *x = new Complex(); // parentheses optional
Complex *y = new Complex(1.0);
Complex *z = new Complex(6.1, 7.2);

• Constructor may force dynamic allocation when initializating an array of
objects.

CS 246 228

Complex ac[10]; // complex array default initialized to 0.0+0.0i
for (int i = 0; i < 10; i += 1) {

ac[i] = (Complex){ i, 2.0 } // initialization disallowed
}
for (int i = 0; i < 10; i += 1) {

ac[i] = Complex(i, 2.0) // assignment, not initialization
}
Complex *ap[10]; // array of complex pointers
for (int i = 0; i < 10; i += 1) {

ap[i] = new Complex(i, 2.0); // initialization allowed
}

• If only non-default constructors are specified, i.e., ones with parameters,
an object cannot be declared without an initialization value:

struct Foo {
// no default constructor
Foo(int i) { . . . }

};
Foo x; // disallowed!!!
Foo x(1); // allowed

• Unlike Java, constructor cannot be called explicitly in another constructor,
so constructor reuse is done through a separate member:

CS 246 229

Java C++

class Foo {
int i, j;

Foo() { this (2); } // explicit call
Foo(int p) { i = p; j = 1; }

}

struct Foo {
int i, j;
void common(int p) { i = p; j = 1; }
Foo() { common(2); }
Foo(int p) { common(p); }

};

2.18.3.1 Literal

• Constructors can be used to create object literals (likeg++ type-constructor
literals):

Complex x, y, z;
x = Complex(3.2); // complex literal value 3.2+0.0i
y = x + Complex(1.3, 7.2); // complex literal 1.3+7.2i
z = Complex(2); // 2 widened to 2.0, complex literal value 2.0+0.0i

• Previous operator+ for Complex is changed because type-constructor
literals are disallowed for a type with constructors:

CS 246 230

Complex operator +(Complex c) {
return Complex(re + c.re, im + c.im); // create new complex value

}

2.18.3.2 Conversion

• Constructors are implicitly used for conversions:

int i;
double d;
Complex x, y;

x = 3.2;
y = x + 1.3;
y = x + i;
y = x + d;

implicitly
rewritten as

x = Complex(3.2);
y = x.operator +(Complex(1.3));
y = x.operator +(Complex((double)i);
y = x.operator +(Complex(d));

• Allows built-in literals and types to interact with user-defined types.

• Note, two implicit conversions are performed on variablei in x + i: int to
double and thendouble to Complex.

• Can require only explicit conversions with qualifierexplicit on constructor:

CS 246 231

struct Complex {
// turn off implicit conversion
explicit Complex(double r = 0.0, double i = 0.0) { re = r; im = i; }
. . .

};

• Problem: implicit conversion disallowed for commutative binary operators.

• 1.3 + x, disallowed because it is rewritten as(1.3).operator +(x), but
memberdouble operator +(Complex) does not exist in built-in typedouble .

• Solution, move operator+ out of the object type and made into a routine,
which can also be called in infix form:

struct Complex { . . . }; // same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters

return Complex(a.re + b.re, a.im + b.im);
}

x + y;
1.3 + x;
x + 1.3;

implicitly
rewritten as

operator +(x, y)
operator +(Complex(1.3), x)
operator +(x, Complex(1.3))

• Compiler first checks for an appropriate operator in object type, and if
found, applies conversions only on the second operand.

CS 246 232

• If no appropriate operator in object type, the compiler checks for an
appropriate routine (it is ambiguous to have both), and if found, applies
applicable conversions toboth operands.
• In general, commutative binary operators should be writtenas routines to

allow implicit conversion on both operands.
• I/O operators<< and>> often overloaded for user types:

ostream &operator <<(ostream &os, Complex c) {
return os << c.re << "+" << c.im << "i";

}
cout << "x:" << x; // rewritten as: <<(cout.operator<<(“x:”), x)

• Standard C++ convention for I/O operators to take and returna stream
reference to allow cascading stream operations.
• << operator in objectcout is used to first print string value, then overloaded

routine<< to print the complex variablex.
•Why write as a routine versus a member?

2.18.4 Destructor

• A destructor (finalize in Java) is a special member used to perform
uninitialization at object deallocation:

CS 246 233

Java C++

class Foo {
. . .
finalize() { . . . }

}

struct Foo {
. . .
~Foo() { . . . } // destructor

};

• An object type has one destructor; its name is the character “~” followed by
the type name (like a constructor).

• A destructor has no parameters nor return type (not evenvoid):

• A destructor is only necessary if an object isnon-contiguous, i.e.,
composed of multiple pieces within its environment, e.g., files,
dynamically allocated storage, etc.

• A contiguous object, like aComplex object, requires no destructor as it is
self-contained.

• A destructor is invokedbefore an object is deallocated, either implicitly at
the end of a block or explicitly by adelete :

CS 246 234

{
Foo x, y(x);
Foo *z = new Foo;
. . .
delete z;
. . .

}

implicitly
rewritten as

{ // allocate local storage
Foo x, y; x.Foo(); y.Foo(x);
Foo *z = new Foo; z->Foo();
. . .
z->~Foo(); delete z;
. . .
y.~Foo(); x.~Foo();

} // deallocate local storage

• For local variables in a block, destructorsmust becalled in reverse order to
constructors because of dependencies, e.g.,y depends onx.
• A destructor is more common in C++ than a finalize in Java due tothe lack

of garbage collection in C++.
• If an object type performs dynamic storage allocation, it is

non-contiguous and needs a destructor to free the storage:

struct Foo {
int *i; // think int i[]
Foo(int size) { i = new int [size]; } // dynamic allocation
~Foo() { delete [] i; } // must deallocate storage
. . .

};

CS 246 235

Exception is when the dynamic object is transfered to another object for
deallocation.

• C++ destructor is invoked at a deterministic time (block termination or
delete), ensuring prompt cleanup of the execution environment.

• Javafinalize is invoked at a non-deterministic time during garbage
collection ornot at all, so cleanup of the execution environment is
unknown.

2.18.5 Copy Constructor / Assignment

• There are multiple contexts where an object is copied.

1. declaration initialization (ObjType obj2 = obj1)
2. pass by value (argument to parameter)
3. return by value (routine to temporary at call site)
4. assignment (obj2 = obj1)

• Cases 1 to 3 involve a newly allocated object with undefined values.

• Case 4 involves an existing object that may contain previously computed
values.

• C++ differentiates between these situations: initialization and assignment.

CS 246 236

• Constructor with aconst reference parameter of class type is used for
initialization (declarations/parameters/return), called thecopy constructor:

Complex(const Complex &c) { . . . }

• Declaration initialization:

Complex y = x; implicitly rewritten as Complex y; y.Complex(x);

◦ “=” is misleading as copy constructor is called not assignmentoperator.
◦ value on the right-hand side of “=” is argument to copy constructor.
• Parameter/return initialization:

Complex rtn(Complex a, Complex b) { . . . return a; }
Complex x, y;
x = rtn(x, y); // creates temporary before assignment

◦ parameter is initialized by corresponding argument using its copy
constructor:

Complex rtn(Complex a, Complex b) {
a.Complex(arg1); b.Complex(arg2); // initialize parameters with arguments
. . .

◦ temporariesmay be created for arguments and return value, initialized
using copy constructor:

CS 246 237

x = rtn(. . .); implicitly rewritten as

Complex t1(x), t2(y);
Complex tr(rtn(t1, t2));
x.Complex(tr);

or
x.Complex(rtn(x, y));

◦ Note, assignment converted to initialization.

• Assignment routine is used for assignment:

Complex &operator =(const Complex &rhs) { . . . }

◦ usually most efficient to use reference for parameter and return type.
◦ value on the right-hand side of “=” is argument to assignment operator.

x = y; implicitly rewritten as x.operator =(y);

• If a copy constructor or assignment operator is not defined, an implicit one
is generated that does amemberwise copyof each subobject.

◦ basic type,bitwise copy
◦ class type, use class’s copy constructor
◦ array, each element is copied appropriate to the element type

CS 246 238

struct B {
B() { cout << "B() "; }
B(const B &c) { cout << "B(&) "; }
B &operator =(const B &rhs) { cout << "B= "; }

};
struct D { // implicit copy and assignment

int i; // basic type, bitwise
B b; // object type, memberwise
B a[5]; // array, element/memberwise

};
int main() {

D i; cout << endl; // B’s default constructor
D d = i; cout << endl; // D’s default copy-constructor
d = i; cout << endl; // D’s default assignment

}

outputs the following:

b a // member variables
B() B() B() B() B() B() // D i
B(&) B(&) B(&) B(&) B(&) B(&) // D d = i
B= B= B= B= B= B= // d = i

•Often only a bitwise copy as subobjects have no copy constructor or

CS 246 239

assignment operator.

• If D defines a copy-constructor/assignment, it overrides that in any
subobject.

struct D {
. . . // same declarations
D() { cout << "D() "; }
D(const D &c) : i(c.i), b(c.b), a(c.a) { cout << "D(&) "; }
D &operator =(const D &rhs) {

i = rhs.i; b = rhs.b;
for (int i = 0; i < 5; i += 1) a[i] = rhs.a[i]; // array copy
cout << "D= ";
return *this ;

}
};

outputs the following:

B() B() B() B() B() B() D() // D i
B(&) B(&) B(&) B(&) B(&) B(&) D(&) // D d = i
B= B= B= B= B= B= D= // d = i

Must copy each subobject to get same output.

•When an object type has pointers, it is often necessary to do adeep copy,

CS 246 240

i.e, copy the contents of the pointed-to storage rather thanthe pointers.

struct Shallow {
int *i;
Shallow(int v) { i = new int ; *i = v; }
~Shallow() { delete i; }

};
struct Deep {

int *i;
Deep(int v) { i = new int ; *i = v; }
~Deep() { delete i; }
Deep(Deep &d) { i = new int ; *i = *d.i; } // copy value
Deep &operator =(const Deep &rhs) {

*i = *rhs.i; return *this ; // copy value
}

};

CS 246 241

3

Shallow x(3), y = x; Deep x(3), y = x;

new x.i

xy x y

33

initialization

shallow copy
deep copy

3

Shallow x(3), y(7); y = x; Deep x(3), y(7); y = x;

assignment

7

shallow copy

xy

new x.inew y.i

xy

3
deep copy

37

memory leak dangling pointer

• For shallow copy:

CS 246 242

◦memory leak occurs on the assignment
◦ dangling pointer occurs afterx or y is deallocated; when the other object

is deallocated, it reuses this pointer to delete the same storage.

• Deep copy does not change the pointers only the values associated within
the pointers.

• Bewareself-assignmentfor variable-sized types:

CS 246 243

struct Varray { // variable-sized array
unsigned int size;
int *a;
Varray(unsigned int s) { size = s; a = new int [size]; }
. . . // other members
Varray &operator =(const Varray &rhs) { // deep copy

delete [] a; // delete old storage
size = rhs.size; // set new size
a = new int [size]; // create storage for new array
for (unsigned int i = 0; i < size; i += 1) a[i] = rhs.a[i]; // copy values
return *this ;

}
};
Varray x(5), y(10);
x = y; // works
y = y; // fails

• How can this problem be fixed?

•Which pointer problem is this, and why can it go undetected?

• For deep copy, it is often necessary to define a equality operator
(operator ==) performing a deep compare, i.e., compare values not pointers.

CS 246 244

2.18.6 Initialize const / Object Member

• C/C++const members and local objects of a structure must be initializedat
declaration:

Ideal (Java-like) Structure

struct Bar {
Bar(int i) {. . .}
// no default constructor

} bar(3);
struct Foo {

const int i = 3;
Bar * const p = &bar ;
Bar &rp = bar ;
Bar b(7);

} x;

struct Bar {
Bar(int i) {. . .}
// no default constructor

} bar(3);
struct Foo {

const int i;
Bar * const p;
Bar &rp;
Bar b;

} x = { 3, &bar, bar, 7 };

• Left: disallowed because fields cannot be directly initialized.

• Right: disallowed becauseBar has a constructor sob must use constructor
syntax.

• Try using a constructor:

CS 246 245

Constructor/assignment Constructor/initialize

struct Foo {
const int i;
Bar * const p;
Bar &rp;
Bar b;
Foo() {

i = 3; // after declaration
p = &bar ;
rp = bar ;
b(7); // not a statement

}
};

struct Foo {
const int i;
Bar * const p;
Bar &rp;
Bar b;
Foo() : // declaration order

i(3),
p(&bar),
rp(bar),
b(7) {

}
};

• Left: disallowed becauseconst has to be initialized at point of declaration.

• Right: special syntax to indicate initialized at point of declaration.

• Ensuresconst /object members are initialized before used in constructor
body.

•Must be initialized in declaration order to prevent use before
initialization.
• Syntax may also be used to initialize any local members:

CS 246 246

struct Foo {
Complex c;
int k;
Foo() : c(1, 2), k(14) { // initialize c, k

c = Complex(1, 2); // or assign c, k
k = 14;

}
};

Initialization may be more efficient versus default constructor and
assignment.

2.18.7 Static Member

• Static data-member creates a single instance for object type versus for
object instances.

struct Foo {
static int cnt; // one for all objects
int i; // one per object
. . .

};

◦ exist even if no instances of object exist

CS 246 247

◦must still be declared (versus defined in the type) in a.cc file.
◦ allocated in static block not in object.

• Static routine-member, used to access static data-members, has nothis
parameter (i.e., like a regular routine)

• E.g., count the number ofFoo objects created.

CS 246 248

int cnt;

void stats() {
cout << cnt;

}
struct Foo {

int i;
Foo() {

::cnt += 1;
::stats();

}
};

int main() {
Foo x, y;

}

struct Foo {
static int cnt;
int i;
static void stats() {

cout << cnt; // allowed
i = 3; // disallowed
mem(); // disallowed

}
Foo() {

cnt += 1; // allowed
stats(); // allowed

}
};
int Foo::cnt; // declaration (optional initialization)
int main() {

Foo x, y;
}

CS 246 249

staticcode stack

i
x

i

::F
oo

::s
ta

ts

m
ai

n

::F
oo

::c
nt

heap
memory

free

y

•Object membersmem can referencej andrtn in static block.
• Static memberrtn not logically nested in typefoo, so it cannot reference

membersi andmem.

2.19 Random Numbers
• Random numbersare values generated independently, i.e., new values do

not depend on previous values (independent trials).
• E.g., lottery numbers, suit/value of shuffled cards, value of rolled dice, coin

flipping.
•While programmers spend much time ensuring computed valuesare not

random, random values are useful:
◦ gambling, simulation, cryptography, games, etc.

CS 246 250

• Random-number generatoris an algorithm computing independent
values.

• If algorithm uses deterministic computation (predictablesequence), it
generatespseudo random-numbersversus “true” random numbers.

• All pseudo random-number generators (PRNG) involve some technique
that scrambles the bits of a value, e.g., multiplicative recurrence:

seed = 36969 * (seed & 65535) + (seed >> 16); // scramble bits

•Multiplication of large values adds new least-significant bits and drops
most-significant bits.

bits 63-32 bits 31-0
0 3e8e36
5f 718c25e1

ad3e 7b5f1dbe
bc3b ac69ff19
1070f 2d258dc6

• By dropping bits 63-32, bits 31-0 become scrambled after each multiply.

• E.g., classPRNG generates afixed sequence of LARGE random values that
repeats after 232 values (but might repeat earlier):

CS 246 251

class PRNG {
uint32 t seed ; // same results on 32/64-bit architectures

public :
PRNG(uint32 t s = 362436069) {

seed = s; // set seed
}
uint32 t seed() { // read seed

return seed ;
}
void seed(uint32 t s) { // reset seed

seed = s; // set seed
}
uint32 t operator ()() { // [0,UINT MAX]

seed = 36969 * (seed & 65535) + (seed >> 16); // scramble bits
return seed ;

}
uint32 t operator ()(uint32 t u) { // [0,u]

return operator ()() % (u + 1); // call operator()()
}
uint32 t operator ()(uint32 t l, uint32 t u) { // [l,u]

return operator ()(u - l) + l; // call operator()(uint32 t)
}

};

CS 246 252

• Creating a member with the function-call operator name,(), (functor)
allows these objects to behave like a routine.

PRNG prng; // often create single generator
prng(); // [0,UINT MAX]
prng(5); // [0,5]
prng(5, 10); // [5,10]

• Large values are scaled using modulus; e.g., generate 10 random number
between 5-21:

PRNG prng;
for (int i = 0; i < 10; i += 1) {

cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << endl;
cout << prng(5, 21) << endl;

}

• By initializing PRNG with a different “seed” each time the program is run,
the generated sequence is different:

PRNG prng(getpid()); // process id of program
prng.seed(time()); // current time

• #include <cstdlib> provides C random routinessrand andrand to set a seed

CS 246 253

and generate random values, respectively.

srand(getpid()); // seed random genrator
r = rand(); // obtain next random value

2.20 Declaration Before Use
• Declaration Before Use(DBU) means a variable declaration must appear

before its usage in a block.

• In theory, a compiler could handle some DBU situations:

{
cout << i << endl; // prints 4 ?
int i = 4; // declaration after usage

}
but ambiguous cases make this impractical:

int i = 3;
{

cout << i << endl; // which i?
int i = 4;
cout << i << endl;

}

CS 246 254

• C always requires DBU.

• C++ requires DBU in a block and among types but not within a type.

• Java only requires DBU in a block, but not for declarations inor among
classes.

• DBU has a fundamental problem specifyingmutually recursive references:

void f() { // f calls g
g(); // g is not defined and being used

}
void g() { // g calls f

f(); // f is defined and can be used
}

Caution: these calls cause infinite recursion as there is no base case.

• Cannot type-check the call tog in f to ensure matching number and type of
arguments and the return value is used correctly.

• Interchanging the two routines does not solve the problem.

• A forward declaration introduces a routine’s type (called a
prototype/signature) before its actual declaration:

CS 246 255

int f(int i, double); // routine prototype: parameter names optional
. . . // and no routine body
int f(int i, double d) { // type repeated and checked with prototype

. . .
}

• Prototype parameter names are optional (good documentation).

• Actual routine declaration repeats routine type, which must match
prototype.

• Routine prototypes also useful for organizing routines in asource file.

int main(); // forward declarations, any order
void g(int i);
void f(int i);
int main() { // actual declarations, any order

f(5);
g(4);

}
void g(int i) { . . . }
void f(int i) { . . . }

• E.g., allowingmain routine to appear first, and for separate compilation.

• Like Java, C++ does not always require DBU within a type:

CS 246 256

Java C++

class T {
void f() { c = Colour.R; g(); }
void g() { c = Colour.G; f(); }
Colour c;
enum Colour { R, G, B };

};

void g() {} // not selected by call in T::f
struct T {

void f() { c = R; g(); } // c, R, g not DBU
void g() { c = G; f(); } // c, G not DBU
enum Colour { R, G, B }; // type must be DBU
Colour c;

};

• Unlike Java, C++ requires a forward declaration for mutually-recursive
declarationsamongtypes:

Java C++

class T1 {
T2 t2;
T1() { t2 = new T2(); }

};
class T2 {

T1 t1;
T2() { t1 = new T1(); }

};
T1 t1 = new T1();

struct T1 {
T2 t2; // DBU failure, T2 size?

};
struct T2 {

T1 t1;

};
T1 t1;

CS 246 257

Caution: these types cause infinite expansion as there is no base case.
• Java version compiles becauset1/t2 are references not objects, and Java can

look ahead atT2; C++ version disallowed because DBU onT2 means it does
not know the size ofT2.
• An object declaration and usage requires the object’s size and members so

storage can be allocated, initialized, and usages type-checked.
• Solve using Java approach: break definition cycle using a forward

declaration and pointer.

Java C++

class T1 {
T2 t2;
T1() { t2 = new T2(); }

};
class T2 {

T1 t1;
T2() { t1 = new T1(); }

};

struct T2; // forward
struct T1 {

T2 &t2; // pointer, break cycle
T1() : t2(*new T2) {} // DBU failure, size?

};
struct T2 {

T1 t1;
};

• Forward declaration ofT2 allows the declaration of variableT1::t2.

CS 246 258

• Note, a forward type declaration only introduces the name ofa type.

•Given just a type name, only pointer/reference declarations to the type are
possible, which allocate storage for an address versus an object.

• C++’s solution still does not work as the constructor cannotuse typeT2.

• Use forward declaration and syntactic trick to move member definition
after both types are defined:

struct T2; // forward
struct T1 {

T2 &t2; // pointer, break cycle
T1(); // forward declaration

};
struct T2 {

T1 t1;
};
T1::T1() : t2(*new T2) {} // can now see type T2

• Use of qualified nameT1::T1 allows a member to be logically declared in
T1 but physically located later.

CS 246 259

2.21 Encapsulation
• Encapsulationhides implementation to support abstraction (access

control).
• Access control applies to types NOT objects, i.e., all objects of the same

type have identical levels of encapsulation.

• Abstraction and encapsulation are neither essential nor required to
develop software.

• E.g., programmers could follow a convention of not directlyaccessing the
implementation.

• However, relying on programmers to follow conventions is dangerous.

• Abstract data-type (ADT) is a user-defined type practicing abstraction and
encapsulation.

• Encapsulation is provided by a combination of C and C++ features.

• C features work largely among source files, and are indirectly tied into
separate compilation.

• C++ features work both within and among source files.

• C++ provides 3 levels of access control for object types:

CS 246 260

Java C++

class Foo {
private . . .
. . .
protected . . .
. . .
public . . .
. . .

};

struct Foo {
private : // within and friends

// private members
protected : // within, friends, inherited

// protected members
public : // within, friends, inherited, users

// public members
};

• Java requires encapsulation specification for each member.

• C++ groups members with the same encapsulation, i.e., all members after a
label,private , protected or public , have that visibility.

• Visibility labels can occur in any order and multiple times in an object type.

• Encapsulation supports abstraction by making implementation members
private and interface members public.

• Note, private/protected members are still visible to programmer but
inaccessible).

CS 246 261

struct Complex {
private :

double re, im; // cannot access but still visible
public :

// interface routines
};

• struct has an implicitpublic inserted at beginning, i.e., by default all
members are public.

• class has an implicitprivate inserted at beginning, i.e., by default all
members are private.

struct S {
// public:

int z;
private :

int x;
protected :

int y;
};

class C {
// private:

int x;
protected :

int y;
public :

int z;
};

• Use encapsulation to preclude object copying by hiding copyconstructor
and assignment operator:

CS 246 262

class Lock {
Lock(const Lock &); // definitions not required
Lock &operator =(Lock &);

public :
Lock() {. . .}
. . .

};
void rtn(Lock f) {. . .}
Lock x, y;
rtn(x); // disallowed, no copy constructor for pass by value
x = y; // disallowed, no assignment operator for assignment

• Prevent object forgery (lock, boarding-pass, receipt) or copying that does
not make sense (file, database).

• Encapsulation introduces problems when factoring for modularization, e.g.,
previously accessible data becomes inaccessible.

CS 246 263

class Complex {
double re, im;

public :
Complex operator +(Complex c);
. . .

};
ostream &operator <<(ostream &os,

Complex c);

class Cartesian { // implementation type
double re, im;

};
class Complex {

Cartesian impl;
public :

. . .
};
Complex operator +(Complex a, Complex b);
ostream &operator <<(ostream &os,

Complex c);

• Implementation is factored into a new typeCartesian, “+” operator is
factored into a routine outside and output “<<” operator must be outside.

• Both Complex and “+” operator need to accessCartesian implementation,
i.e., re andim.

• Creatingget andset interface members forCartesian provides no
advantage over full access.

• C++ provides a mechanism to state that an outside type/routine is allowed
access to its implementation, calledfriendship (similar to package
visibility in Java).

CS 246 264

class Complex; // forward
class Cartesian { // implementation type

friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
friend class Complex;
double re, im;

};
class Complex {

friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
Cartesian impl;

public :
. . .

};
Complex operator +(Complex a, Complex b) {

return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}
ostream &operator <<(ostream &os, Complex c) {

return os << c.impl.re << "+" << c.impl.im << "i";
}

• Cartesian makesre/im accessible to friends, andComplex makesimpl
accessible to friends.

CS 246 265

• Alternative design is to nest the implementation type inComplex and
remove encapsulation (usestruct).

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
struct Cartesian { // implementation type

double re, im;
} impl;

public :
Complex(double r = 0.0, double i = 0.0) {

impl.re = r; impl.im = i;
}

};
. . .

Complex makesCartesian, re, im andimpl accessible to friends.

2.22 System Modelling
• System modellinginvolves describing a complex system in an abstract way

to help understand, design and construct the system.

•Modelling is useful at various stages:

CS 246 266

◦ analysis : system function, services, requirements (outline for design)
◦ design : system parts/structure, interactions, behaviour(outline for

programming)
◦ programming : converting model into implementation

•Model grows from nothing to sufficient detail to be transformed into a
functioning system.

•Model provides high-level documentation of the system for understanding
(education) and for making changes in a systematic manner.

• Top-down successive refinement is a foundational mechanismused in
system design.

•Multiple design tools (past and present) for supporting system design, most
are graphical and all are programming-language independent:

◦ flowcharts (1920-1970)
◦ pseudo-code
◦Warnier-Orr Diagrams
◦ Hierarchy Input Process Output (HIPO)
◦ UML

• Design tools can be used in various ways:

CS 246 267

◦ sketchout high-level design or complex parts of a system,
◦ blueprint the system abstractly with high accuracy,
◦ generateinterfaces/code directly.

• Key advantage is design tool provides a generic, abstract model of a
system, which is transformable into different formats.

• Key disadvantage is design tool seldom linked to implementation
mechanism so two often differ.(CODE = TRUTH)
• Currently, UML is the most popular design tool.

2.22.1 UML

• Unified Modelling Language(UML) is a graphical notation for describing
and designing software systems, with emphasis on the object-oriented style.

• UML modelling has multiple viewpoints:

◦ class model: describes static structure of the system for creating objects
◦ object model : describes dynamic (temporal) structure of system objects
◦ interaction model : describes the kinds of interactions among objects

Focus on class and object modelling.

• Note / comment

CS 246 268

comment text target

• Classes diagramdefines class-based modelling, where a class is a type for
instantiating objects.
• Class has a name, attributes and operations, and may participate in

inheritance hierarchies.

class name Person
- name : String

attributes - age : Integer optional
(data) - sex : Boolean

- owns : Car [0..5]
+ getName : String

operations + getAge : Integer optional
(routines) + getCars : Car [0..5]

+ buy(in car : Car, inout card : CreditCard) : Boolean

• Attribute describes a property in a class.
[visibility] name [“:” [type] [“[” multiplicity “]”] [“=” d efault]]

CS 246 269

◦ visibility : access to property
+⇒ public,−⇒ private, #⇒ protected,∼⇒ package
◦ name : identifier for property (like field name in structure)
◦ type : kind of property

Boolean, Integer, Float, String, class-name
◦multiplicity : cardinality for instantiation of property

0..(N|∗), from 0 toN or unlimited,N short forN..N, ∗ short for 0..∗
Defaults to 1
◦ default : expression that evaluates to default value (or values) for property

• operation : action invoked in context of object from the class
[visibility] name [“(” [parameter-list] “)”] [“:” return-type] [“[”
multiplicity “]”]

◦ visibility : access to operation
+⇒ public,−⇒ private, #⇒ protected,∼⇒ package
◦ name : identifier for operation (like method name in structure)
◦ parameter-list : comma separated list of input/output types for operation

[direction] parameter-name “:” type [“[” multiplicity “]”]
[“=” default] [“ {” modifier-list “}”]]

CS 246 270

◦ direction : direction of parameter data flow
“in” (default) | “out” | “inout”
◦ return-type : output type from operation

•Only specify attributes/operations useful in modelling: no flags,
counters, temporaries, constructors, helper routines, etc.
• Attribute with type other than basic type has anassociation.

owns : Car [0..5]
. . .

Person Car
. . .

◦ Class Person has attributeowns with multiplicity constraint 0..5 forming
unidirectional association with classCar, i.e., person owns (has) 0 to 5
cars.

• Alternatively, association can be represented via a line (possibly named):

Person

. . .

ownership

owns
0..5

Car

. . .

CS 246 271

◦ ClassPersonhas attributeownswith multiplicity constraint0..5(at target
end) forming a unidirectional association with classCar and association
is named “ownership”.

• Association can also be bidirectional.

Person

. . .

owns : Car [0..5]
. . .

Person

ownership

0..5

Car

Car

. . .

. . .
owned : Person

ownsowned
0..1

◦ Association “ownership” also has classCarhaving attributeownedwith
multiplicity constraint0..1person, i.e., a car can be unowned or owned
by 1 person.

• If UML graph is cluttered with lines, create association in class rather than
using a line.
◦ E.g., if 20 classes associated with Car, replace 20 lines with attributes in

each class.

CS 246 272

• Alternatively, multiple lines to same aggregate may be merged into a single
segment.

◦ Any adornments on that segment apply to all of the aggregation ends.

•< (arrowhead)⇒ navigable:
◦ instances of association can be accessed efficiently at the association end

(arrowhead) (car is accessible from person)
◦ opposite association end “owns” the association’s implementation

(person has a car)

• X⇒ not navigable.

• Adornments options:

◦ show all arrows andXs (completely explicit)
◦ suppress all arrows andXs⇒ no inference about navigation

often convenient to suppress some of the arrows/Xs and only show
special cases
◦ show only unidirectional association arrows, and suppressbidirectional

associations
⇒ two-way navigability cannot be distinguished from no navigation at
all, but latter case occurs rarely in practice.

CS 246 273

• Navigability may be implemented in a number of ways:

◦ pointer/reference from one object to another
◦ elements in arrays

•Object diagram : is a snaphot of class instances at one moment during
execution.

•Object can specify values of class : “name : class-type” (underlined),
attribute values.

object name mary : Person
name=“Mary”

attribute age=29 optional
values sex=T

owns=(pointer)

Object may not have a name (dynamically allocated).

•Objects associated with “ownership” are linked.

CS 246 274

kind=”Honda”

: Car
ownsowned

fred: Person

name=”Fredrick”

mary: Person

name=”Mary”

peg:Person

name=”Margaret” kind=”Ford”

: Car

kind=”Toyota”

: Car

Which associations are valid/invalid/missing?

• Association Class: optional aspects of association (dashed line).

CS 246 275

Person

.

Car

Sale
dealership
serialno

: Car

kind=”Honda”

billof: Sale
Ted’s Honda
L345YH454

fred: Person

name=”Fredrick”

◦ cars sold through dealership (versus gift) need bill of sale
◦ association class cannot exist without association (no owner)

• Aggregation (♦) is an association between an aggregate attribute and its
parts.

CS 246 276

Car Tire
0..1 0..*

◦ car can have 0 or more tires and a tire can only be on 0 or 1 car
◦ aggregate may not create/destroy its parts, e.g., many different tires

during car’s lifetime and tires may exist after car’s lifetime (snow tires).

class Car {
Tires *tires[4]; // array of pointers to tires

• Composition (�) is a stronger aggregation where a part is included in at
most one composite at a time.

Car Brake
1 4

◦ car has 4 brakes and each brake is on 1 car
◦ composite aggregate often does create/destroy its parts, i.e., same brakes

for lifetime of car and brakes deleted when car deleted (unless brakes
removed at junkyard)

class Car {
DiscBrake brakes[4]; // array of brakes

CS 246 277

• UML has many more facilities, supporting very complex descriptions of
relationships among entities.

◦ VERY large visual mechanisms, with several confusing graphical
representations.

• UML diagram is too complex if it contains more than about 25 boxes.

CS 246 278

no charge
during sales

- start: Date
- end: Date

Contract

- make: String
- model: String

Vehicle Client
- name: String - company: String

- policy: String
- expiry: String

Insurance
11* 1

- colour: String
- phone: String
+ rate(): Double

SUV CarTruck 1 IndividualCorporate

SatelliteRadio

- surcharge: Double
+ surcharge(): Double

Accessory

GPSFloorMat

*

Classes Diagram

CS 246 279

name=”John F. Doe”
jfdoe:Individual

phone=”204 888-2020”

start=”2009/09/07”
end=”2012/09/07”

:Contract

:Insurance
company=”SUN Lite”
policy=”X-JAJ1567”
expiry=”2011/05/31”

:Insurance
company=”Pilote”
policy=”123-ABC”
expiry=”2010/12/01”

start=”2010/10/13”
end=”2013/10/13”

:Contract
start=”2008/01/25”
end=”2014/01/25”

:Contract

- surcharge=500
:GPS

- surcharge=50
:FloorMat

name=”IBM”
ibm:Corporate

phone=”519 744-3121”

:Car
make=”Honda”
model=”Civic”
colour=”silver”

:Truck
make=”Ford”
model=”F150”
colour=”red”

Object Diagram

:SUV
make=”Nissan”
model=”Quest”
colour=”black”

CS 246 280

name=”John F. Doe”
jfdoe:Individual

phone=”204 888-2020”

start=”2009/09/07”
end=”2012/09/07”

:Contract

:Insurance
company=”SUN Lite”
policy=”X-JAJ1567”
expiry=”2011/05/31”

:Insurance
company=”All Gate”
policy=”A012678BJK”
expiry=”2010/10/01”

start=”2010/10/13”
end=”2013/10/13”

:Contract
start=”2008/01/25”
end=”2014/01/25”

:Contract

- surcharge=500
:GPS

name=”IBM”
ibm:Corporate

phone=”519 744-3121”

:SUV
make=”Nissan”
model=”Quest”
colour=”black”

- surcharge=50
:FloorMat

:SUV
make=”Honda”
model=”CRV”
colour=”blue”

:Car
make=”Honda”
model=”Civic”
colour=”silver”

:Truck
make=”Ford”
model=”F150”
colour=”red”

Invalid Object Diagram

CS 246 281

2.23 Separate Compilation
• As program size increases, so does cost of compilation.

• Separate compilationdivides a program into units, where each unit can be
independently compiled.

• Advantage: saves time by recompiling only program unit(s) that change.

◦ In theory, if an expression is changed, only that expressionneeds to be
recompiled.
◦ In practice, compilation unit is coarser:translation unit (TU), which is a

file in C/C++.
◦ In theory, each line of code (expression) could be put in a separate file,

but impractical.
◦ So a TU should not be too big and not be too small.

• Disadvantage: TUs depend on each other because a program shares many
forms of information, especially types (done automatically in Java).

◦ Hence, need mechanism toimport information from referenced TUs and
export information needed to referencing TUs.

• For example, simple program in fileprog.cc using complex numbers:

CS 246 282

prog.cc
#include <iostream> // import
#include <cmath> // sqrt
using namespace std;
class Complex {

friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
static int objects; // shared counter
double re, im;

public :
Complex(double r = 0.0, double i = 0.0) { objects += 1; . . .}
double abs() const { return sqrt (re * re + im * im); };
static void stats() { cout << objects << endl; }

};
int Complex::objects; // declare
Complex operator +(Complex a, Complex b) {. . .}
. . . // other arithmetic and logical operators
ostream &operator <<(ostream &os, Complex c) {. . .}
const Complex C 1(1.0, 0.0);
int main() {

Complex a(1.3), b(2., 4.5), c(-3, -4);
cout << a + b + c + C 1 << c.abs() << endl;
Complex::stats();

}

CS 246 283

• TU prog.cc has references to items iniostream andcmath.

• As well, there are many references within the TU, e.g.,main references
Complex.

• Subdividing program into TUs in C/C++ is complicated because of
import/export mechanism.

CS 246 284

prog.cc

executable

exec

g++ prog.cc -o exec

program

unit1.cc

unit2.cc

unit1.o

unit2.o

program1

program2

executable

exec

g++ -c unitN.cc g++ unit*.o -o exec

monolithic

separate

TU1

TU2

• TUi is NOT a program; program formed by combining TUs.

• Compile each TUi with -c compiler flag to generate executable code in.o

CS 246 285

file (Java has.class file).

$ g++ -c unit1.cc . . . // compile only modified TUs

generates filesunit1.o containing a compiled version of source code.

• Combine TUi with -o compiler flag to generate executable program.

$ g++ unit*.o -o exec // create new excutable program “exec”

• Separate original program into two TUs in filescomplex.cc andprog.cc:

CS 246 286

complex.cc
#include <iostream> // import
#include <cmath>
using namespace std;
class Complex {

friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
static int objects; // shared counter
double re, im; // implementation

public :
Complex(double r = 0.0, double i = 0.0) { objects += 1; . . .}
double abs() const { return sqrt (re * re + im * im); }
static void stats() { cout << objects << endl; }

};
int Complex::objects; // declare
Complex operator +(Complex a, Complex b) {. . .}
. . . // other arithmetic and logical operators
ostream &operator <<(ostream &os, Complex c) {. . .}
const Complex C 1(1.0, 0.0);

TU complex.cc has references to items iniostream andcmath.

CS 246 287

prog.cc
int main() {

Complex a(1.3), b(2., 4.5), c(-3, -4);
cout << a + b + c + C 1 << c.abs () << endl ;
Complex::stats ();

}

TU prog.cc has references to items iniostream andcomplex.cc.

• How can TUprog.cc accessComplex? By importing description of
Complex.

• How are descriptions imported?
TU imports information using preprocessor#include .

•Why not includecomplex.cc into prog.cc?
Because all ofcomplex.cc is compiled each timeprog.cc is compiled so
there is no advantage to the separation (program is still monolithic).

• Hence, must separatecomplex.cc into interface for import and
implementation for code.

• Complex interface placed into filecomplex.h, for inclusion (import) into
TUs.

CS 246 288

complex.h
#ifndef COMPLEX H
#define COMPLEX H // protect against multiple inclusion
#include <iostream> // import
// NO “using namespace std”, use qualification to prevent polluting scope
class Complex {

friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);
static int objects; // shared counter
double re, im; // implementation

public :
Complex(double r = 0.0, double i = 0.0);
double abs() const ;
static void stats();

};
extern Complex operator +(Complex a, Complex b);
. . . // other arithmetic and logical operator descriptions
extern std::ostream &operator <<(std::ostream &os, Complex c);
extern const Complex C 1;
#endif // COMPLEX H

• (Usually) no code, just descriptions : preprecessor variables, C/C++ types
and forward declarations.

CS 246 289

• extern qualifier means variable or routine definition is located elsewhere
(not for types).
• Complex implementation placed in filecomplex.cc.

complex.cc
#include "complex.h" // do not copy interface
#include <cmath> // import
using namespace std; // ok to pollute implementation scope
int Complex::objects; // defaults to 0
void Complex::stats() { cout << Complex::objects << endl; }
Complex::Complex(double r, double i) { objects += 1; . . .}
double Complex::abs() const { return sqrt (re * re + im * im); }
Complex operator +(Complex a, Complex b) {

return Complex(a.re + b.re, a.im + b.im);
}
ostream &operator <<(ostream &os, Complex c) {

return os << c.re << "+" << c.im << "i";
}
const Complex C 1(1.0, 0.0);

• Implementation is composed of actual declarations and code.
• .cc file includes the.h file so that there is only one copy of the constants,

declarations, and prototype information.

CS 246 290

•Why is #include <cmath> in complex.cc instead ofcomplex.h?

• Compile TUcomplex.cc to generatecomplex.o.

$ g++ -c complex.cc

•What variables/routines are exported fromcomplex.o?

$ nm -C complex.o | egrep ’ T | B ’
C 1
Complex::stats()
Complex::objects
Complex::Complex(double, double)
Complex::Complex(double, double)
Complex::abs() const
operator<<(std::ostream&, Complex)
operator+(Complex, Complex)

• In general, type names are not in the.o file?

• To compileprog.cc, it must importcomplex.h

CS 246 291

prog.cc
#include "complex.h"
#include <iostream> // included twice!
using namespace std;

int main() {
Complex a(1.3), b(2., 4.5), c(-3, -4);
cout << a + b + c + C 1 << c.abs () << endl ;
Complex::stats ();

}

•Why is #include <iostream> in prog.cc when it is already imported by
complex.h?

• Compile TUprog.cc to generateprog.o.

$ g++ -c prog.cc

• Link together TUscomplex.o andprog.o to generateexec.

$ g++ prog.o complex.o -o exec

• All .o files MUST be compiled for the same hardware architecture, e.g.,
all x86.

CS 246 292

• To hide global variables/routines (but NOT class members) in TU, qualify
with static .

complex.cc
. . .
static Complex C 1(1.0, 0.0);
static Complex operator +(Complex a, Complex b) {. . .}
static ostream &operator <<(ostream &os, Complex c) {. . .}

◦ herestatic means linkage NOT allocation.

• These variables/routines are now only accessible in the TU!(not good for
users of complex)

• Encapsulation is provided by giving a user access to the include file(s) (.h)
and the compiled source file(s) (.o), but not the implementation in the
source file(s) (.cc).

• Note, while the.h file encapsulates the implementation, the implementation
is still visible.

• To completely hide the implementation requires a (more expensive)
reference:

CS 246 293

complex.h
#ifndef COMPLEX H
#define COMPLEX H // protect against multiple inclusion
#include <iostream> // import
// NO “using namespace std”, use qualification to prevent polluting scope
class Complex {

friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);
static int objects; // shared counter
struct ComplexImpl; // hidden implementation, nested class
ComplexImpl &impl; // indirection to implementation

public :
Complex(double r = 0.0, double i = 0.0);
Complex(const Complex &c); // copy constructor
~Complex(); // destructor
Complex &operator=(const Complex &c); // assignment operator
double abs() const ;
static void stats();

};
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::ostream &os, Complex c);
extern const Complex C 1;
#endif // COMPLEX H

CS 246 294

complex.cc
#include "complex.h" // do not copy interface
#include <cmath> // import
using namespace std; // ok to pollute implementation scope
int Complex::objects; // defaults to 0
struct Complex::ComplexImpl { double re, im; }; // implementation
Complex::Complex(double r, double i) : impl(*new ComplexImpl) {

objects += 1; impl .re = r; impl .im = i;
}
Complex::Complex(const Complex &c) : impl(*new ComplexImpl)

objects += 1; impl.re = c.impl.re; impl.im = c.impl.im;
}
Complex::~Complex() { delete &impl; }
Complex &Complex::operator=(const Complex &c) {

impl.re = c.impl.re; impl.im = c.impl.im; return *this;
}
double Complex::abs() { return sqrt(impl.re * impl.re + impl.im * impl.im
void Complex::stats() { cout << Complex::objects << endl; }
Complex operator +(Complex a, Complex b) {

return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}
ostream &operator <<(ostream &os, Complex c) {

return os << c.impl.re << "+" << c.impl.im << "i";
}

CS 246 295

• A copy constructor and assignment operator are used becausecomplex
objects now contain a reference pointer to the implementation.

2.24 Inheritance
•Object-orientedlanguages provideinheritance for writing reusable

program-components.

Java C++

class Base { . . . }
class Derived extends Base { . . . }

struct Base { . . . }
struct Derived : public Base { . . . };

• Inheritance has two orthogonal sharing concepts: implementation and type.

• Implementation inheritance provides reuse of codeinsidean object type;
type inheritance provides reuseoutsidethe object type by allowing existing
code to access the base type.

2.24.1 Implementation Inheritance

• Implementation inheritance reuses program components by composing a
new object’s implementation from an existing object, taking advantage of

CS 246 296

previously written and tested code.

• Substantially reduces the time to generate and debug a new object type.

•One way to understand implementation inheritance is to model it via
composition:

Composition Inheritance

struct Engine { // Base
int cyls;
int r(. . .) { . . . }
Engine() { . . . }

};
struct Car { // Derived

Engine e; // explicit composition
int s(. . .) { e.cyls = 4; e.r(. . .); . . . }
Car() { . . . }

} vw;
vw.e.cyls = 6; // composition reference
vw.e.r(. . .); // composition reference
vw.s(. . .); // direct reference

struct Engine { // Base
int cyls;
int r(. . .) { . . . }
Engine() { . . . }

};
struct Car : public Engine { // implicit

// composition
int s(. . .) { e.cyls = 4; e.r(. . .); . . . }
Car() { . . . }
Derived() { . . . }

} vw;
vw.cyls = 3; // direct reference
vw.r(. . .); // direct reference
vw.s(. . .); // direct reference

CS 246 297

• Composition explicitly creates an object member,e, to aid in the
implementation.

◦ A Car “has-a”Engine.
◦ A Car is not anEngine nor is anEngine a Car, i.e., they are not logically

interchangable.

• Inheritance, “public Engine” clause, implicitly:

◦ creates an anonymous base-class object-member,
◦ opensthe scope of anonymous member so its members are accessible

without qualification, both inside and outside the inheriting object type.

• E.g.,Car declaration first creates an invisibleEngine object in theCar
object, like composition, and allows direct access to variablesEngine::i and
Engine::r in Car::s.

• Constructors and destructors must be invoked for all implicitly declared
objects in the inheritance hierarchy as done for an explicitmember in the
composition.

CS 246 298

Car d;
. . .

implicitly
rewritten as

Engine b; b.Engine(); // implicit, hidden declaration
Car d; d.Car();
. . .
d.~Car(); b.~Engine(); // reverse order of construction

• If base type has members with the same name as derived type, itworks like
nested blocks: inner-scope name overrides outer-scope name.

• Still possible to access outer-scope names using “::” qualification to specify
the particular nesting level.

CS 246 299

Java C++

class Base1 {
int i;

}
class Base2 extends Base1 {

int i;
}
class Derived extends Base2 {

int i;
void s() {

int i = 3;
this .i = 3;
((Base2)this).i = 3; // super.i
((Base1)this).i = 3;

}
}

struct Base1 {
int i;

};
struct Base2 : public Base1 {

int i; // overrides Base1::i
};
struct Derived : public Base2 {

int i; // overrides Base2::i
void r() {

int i = 3; // overrides Derived::i
Derived::i = 3; // this.i
Base2::i = 3;
Base2::Base1::i = 3; // or Base1::i

}
};

• Friendship is not inherited.

CS 246 300

class C {
friend class Base;
. . .

};
class Base {

// access C’s private members
. . .

};
class Derived : public Base {

// not friend of C
};

• Unfortunately, having to inherit all of the members is not always desirable;
some members may be inappropriate for the new type (e.g, large array).

• As a result, both the inherited and inheriting object must bevery similar to
have so much common code.

2.24.2 Type Inheritance

• Type inheritance establishes an “is-a” relationship among types.

CS 246 301

class Employee {
. . . // personal info

};
class FullTime : public Employee {

. . . // wage & benefits
};
class PartTime : public Employee {

. . . // wage
};

◦ A FullTime “is-a” Employee; a PartTime “is-a” Employee.
◦ A FullTime andPartTime are logically interchangable with anEmployee.
◦ A FullTime andPartTime are not logically interchangable.

• Type inheritance extends name equivalence to allow routines to handle
multiple types, calledpolymorphism, e.g.:

CS 246 302

struct Foo { struct Bar {
int i; int i;
double d; double d;

. . .
} f; } b;
void r(Foo f) { . . . }
r(f); // allowed
r(b); // disallowed, name equivalence

• Since typesFoo andBar are structurally equivalent, instances of either type
should work as arguments to routiner.

• Even if typeBar has more members at the end, routiner only accesses the
common ones at the beginning as its parameter is typeFoo.

• However, name equivalence precludes the callr(b).

• Type inheritance relaxes name equivalence by aliasing the derived name
with its base-type names.

CS 246 303

struct Foo { struct Bar : public Foo { // inheritance
int i; // remove Foo members
double d;

. . .
} f; } b;
void r(Foo f) { . . . }
r(f); // valid call, derived name matches
r(b); // valid call because of inheritance, base name matches

• E.g., create a new typeMycomplex that counts the number of timesabs is
called for eachMycomplex object.

• Use both implementation and type inheritance to simplify building type
Mycomplex:

struct Mycomplex : public Complex {
int cntCalls; // add
Mycomplex() : cntCalls(0) {} // add
double abs() { // override, reuse complex’s abs routine

cntCalls += 1;
return Complex::abs();

}
int calls() { return cntCalls; } // add

};

CS 246 304

• Derived typeMycomplex uses the implementation of the base type
Complex, adds new members, and overridesabs to count each call.

•Why is the qualificationComplex:: necessary inMycomplex::abs?

• Allows reuse ofComplex’s addition and output operation forMycomplex
values, because of the relaxed name equivalence provided bytype
inheritance between argument and parameter.

• RedeclareComplex variables toMycomplex to get newabs, and member
calls returns the current number of calls toabs for anyMycomplex object.

• Two significant problems with type inheritance.

1. ◦ Complex routineoperator + is used to add theMycomplex values
because of the relaxed name equivalence provided by type inheritance:

int main() {
Mycomplex x;
x = x + x; // disallowed

}
◦ However, result type fromoperator + is Complex, notMycomplex.
◦ Assignment of acomplex (base type) toMycomplex (derived type)

disallowed because theComplex value is missing thecntCalls member!

CS 246 305

◦ Hence, aMycomplex can mimic aComplex but not vice versa.
◦ This fundamental problem of type inheritance is called

contra-variance.
◦ C++ provides various solutions, all of which have problems and are

beyond this course.
2. void r(Complex &c) {

c.abs();
}
int main() {

Mycomplex x;
x.abs(); // direct call of abs
r(x); // indirect call of abs
cout << "x:" << x.calls() << endl;

}

◦While there are two calls toabs on objectx, only one is counted!

• public inheritance means both implementation and type inheritance.

• private inheritance means only implementation inheritance.

class bus : private car { . . .

Use implementation fromcar, butbus is not acar.

CS 246 306

• No direct mechanism in C++ for type inheritance without implementation
inheritance.

2.24.3 Constructor/Destructor

• Constructors are executed top-down, from base to most derived type.

•Mandated by scope rules, which allow a derived-type constructor to use a
base type’s variables so the base type must be initialized first.

• Destructors are executed bottom-up, from most derived to base type.

•Mandated by the scope rules, which allow a derived-type destructor to use a
base type’s variables so the base type must be uninitializedlast.

• Javafinalize must beexplicitly called from derived to base type.

• Unlike Java, C++ disallows calls to other constructors at the start of a
constructor.

• To pass arguments to other constructors, use same syntax as for initializing
const members.

CS 246 307

Java C++

class Base {
Base(int i) { . . . }

};
class Derived extends Base {

Derived() { super (3); . . . }
Derived(int i) { super (i); . . . }

};

struct Base {
Base(int i) { . . . }

};
struct Derived : public Base {

Derived() : Base(3) { . . . }
Derived(int i) : Base(i) {. . .}

};

2.24.4 Copy Constructor / Assignment

• Each aggregate type has a default/copy constructor, assignment operator,
and destructor, so these members cannot be inherited as theyexist in the
derived type.

•Otherwise, copy-constructor/assignment work like composition

CS 246 308

struct B {
B() { cout << "B() "; }
B(const B &c) { cout << "B(&) "; }
B &operator =(const B &rhs) { cout << "B= "; }

};
struct D : public B {

int i; // basic type, bitwise
};
int main() {

D i; cout << endl; // B’s default constructor
D d = i; cout << endl; // D’s default copy-constructor
d = i; cout << endl; // D’s default assignment

}

outputs the following:

B() // D i
B(&) // D d = i
B= // d = i

• If D defines a copy-constructor/assignment, it overrides that in any
subobject.

CS 246 309

struct D : public B {
. . . // same declarations
D() { cout << "D() "; }
D(const D &c) : i(c.i), B(c) { cout << "D(&) "; }
D &operator =(const D &rhs) {

i = rhs.i; (B &) *this = rhs;
cout << "D= ";
return *this ;

}
};

outputs the following:

B() D() // D i
B(&) D(&) // D d = i
B= D= // d = i

Must copy each subobject to get same output.Note coercion!

2.24.5 Overloading

•Overloading a member routine in a derived class overrides all overloaded
routines in the base class with the same name.

CS 246 310

class Base {
public :

void mem(int i) {}
void mem(char c) {}

};
class Derived : public Base {

public :
void mem() {} // overrides both versions of mem in base class

};

• Hidden base-class members can still be accessed:

◦ Provide explicit wrapper members for each hidden one.

class Derived : public Base {
public :

void mem() {}
void mem(int i) { Base::mem(i); }
void mem(char c) { Base::mem(c); }

};

◦ Collectively provide implicit members for all of them.

CS 246 311

class Derived : public Base {
public :

void mem() {}
using Base::mem; // all base mem routines visible

};

◦ Use explicit qualification to call members (violates abstraction).

Derived d;
d.Base::mem(3);
d.Base::mem(’a’);
d.mem();

2.24.6 Virtual Routine

•When a member is called, it is usually obvious which one is invoked even
with overriding:

CS 246 312

struct Base {
void r() { . . . }

};
struct Derived : public Base {

void r() { . . . } // override Base::r
};
Base b;
b.r(); // call Base::r
Derived d;
d.r(); // call Derived::r

• However, it is not obvious for arguments/parameters and
pointers/references:

void s(Base &b) { b.r(); }
s(d); // inheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); // Base::r or Derived::r ?

• Inheritance masks the actual object type, but both calls should invoke
Derived::r because argumentb and referencebp point at an object of type
Derived.

• If variabled is replaced withb, the calls should invokeBase::r.

CS 246 313

• To invoke routine defined in referenced object, qualify member routine with
virtual .

• To invoke routine defined by type of pointer/reference, do not qualify
member routine withvirtual .

• C++ uses non-virtual as the default because it is more efficient.

• Javaalwaysuses virtual for all calls to objects.

•Once a base type qualifies a member as virtual,it is virtual in all derived
types regardless of the derived type’s qualification for that member.

• Programmer may want to access members inBase even if the actual object
is of typeDerived, which is possible becauseDerived contains a Base.

• C++ provides mechanism to override the default at the call site.

CS 246 314

Java C++

class Base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual

}
class Derived extends Base {

public void g() {} // virtual
public void h() {} // virtual
public void e() {} // virtual

}
final Base bp = new Derived();
bp.f(); // Base.f
((Base)bp).g(); // Derived.g
bp.g(); // Derived.g
((Base)bp).h(); // Derived.h
bp.h(); // Derived.h

struct Base {
void f() {} // non-virtual
void g() {} // non-virtual
virtual void h() {} // virtual

};
struct Derived : public Base {

void g() {}; // replace, non-virtual
void h() {}; // replace, virtual
void e() {}; // extension, non-virtual

};
Base &bp = *new Derived(); // polymorphic assignment
bp.f(); // Base::f, pointer type
bp.g(); // Base::g, pointer type
((Derived &)bp).g(); // Derived::g, pointer type
bp.Base::h(); // Base::h, explicit selection
bp.h(); // Derived::h, object type
// cannot access “e” through bp

• Java casting does not provide access to base-type’s member routines.

• Virtual members are only necessary to access derived members through a
base-type reference or pointer.

CS 246 315

• If a type is not involved in inheritance (final class in Java), virtual members
are unnecessary so use more efficient call to its members.

• C++ virtual members are qualified in base type as opposed to derived type.

• Hence, C++ requires the base-type definer to presuppose how derived
definers might want the call default to work.

•Good practice for inheritable types is to make all routine members virtual.

• Any type with virtual members and a destructor needs to make the
destructor virtual so the most derived destructor is calledthrough a
base-type pointer/reference.

• Virtual routines are normally implemented by routine pointers.

class Base {
int x, y; // data members
virtual void m1(. . .); // routine members
virtual void m2(. . .);

};

•May be implemented in a number of ways:

CS 246 316

m2

m1

y

x

copy

y

x

direct routine pointer

y

x

m1

m2

m1

m2

indirect routine pointer

Virtual Routine Table

2.24.7 Downcast

• Type inheritance can mask the actual type of an object through a
pointer/reference.

• A downcastdynamically determines the actual type of an object pointedto
by a polymorphic pointer/reference.

• The Java operatorinstanceof and the C++dynamic cast operator perform a
dynamic check of the object addressed by a pointer/reference (not
coercion):

CS 246 317

Java C++

Base bp = new Derived();

if (bp instanceof Derived)
((Derived)bp).rtn();

Base *bp = new Derived;
Derived *dp;
dp = dynamic cast<Derived *>(bp) ;
if (dp != 0) { // 0 => not Derived

dp->rtn(); // only in Derived

• To usedynamic cast on a type, the type must have at least one virtual
member.

2.24.8 Slicing

• Polymorphic copy or assignment can result in object truncation, called
slicing.

CS 246 318

struct B {
int i;

};
struct D : public B {

int j;
};
void f(B b) {. . .}
int main() {

B b;
D d;
f(d); // truncate D to B
b = d; // truncate D to B

}

• Avoid polymorphic value copy/assignment; use polymorphicpointers.

2.24.9 Protected Members

• Inherited object types can access and modify public and protected members
allowing access to some of an object’s implementation.

CS 246 319

class Base {
private :

int x;
protected :

int y;
public :

int z;
};
class Derived : public Base {

public :
Derived() { x; y; z; }; // x disallowed; y, z allowed

};
int main() {

Derived d;
d.x; d.y; d.z; // x, y disallowed; z allowed

}

2.24.10 Abstract Class

• Abstract classcombines type and implementation inheritance for
structuring new types.

• Contains at least one pure virtual member thatmustbe implemented by

CS 246 320

derived class.

class Shape {
int colour;

public :
virtual void move(int x, int y) = 0; // pure virtual member

};

• Strange initialization to 0 means pure virtual member.

• Define type hierarchy (taxonomy) of abstract classes movingcommon data
and operations are high as possible in the hierarchy.

CS 246 321

Java C++

abstract class Shape {
protected int colour = White;
public

abstract void move(int x, int y);
}
abstract class Polygon extends Shape {

protected int edges;
public abstract int sides();

}
class Rectangle extends Polygon {

protected int x1, y1, x2, y2;

public Rectangle(. . .) {. . .}
public void move(int x, int y) {. . .}
public int sides() { return 4; }

}
class Square extends Rectangle {

// check square
Square(. . .) { super (. . .); . . .}

}

class Shape {
protected : int colour;
public :

Shape() { colour = White; }
virtual void move(int x, int y) = 0;

};
class Polygon : public Shape {

protected : int edges;
public : virtual int sides() = 0;

};
class Rectangle : public Polygon {

protected : int x1, y1, x2, y2;
public :

Rectangle(. . .) {. . .} // init corners
void move(int x, int y) {. . .}
int sides() { return 4; }

};
struct Square : public Rectangle {

// check square
Square(. . .) : Rectangle(. . .) {. . .}

};

• Usepublic /protected to define interface and implementation access for

CS 246 322

derived classes.
• Provide (pure) virtual member to allow overriding and force

implementation by derived class.
• Provide default variable initialization and implementation for virtual

routine (non-abstract) to simplify derived class.
• Provide non-virtual routine toforce specific implementation;derived class

should not override these routines.
• Concrete classinherits from one or more abstract classes defining all pure

virtual members, i.e., can be instantiated.
• Cannot instantiate abstract class, but can declare pointer/reference to it.
• Pointer/reference used to write polymorphic data structures and routines:

void move3D(Shape &s) { . . . s.move(. . .); . . . }
Polygon *polys[10] = { new Rectangle(), new Square(), . . . };
for (unsigned int i = 0; i < 10; i += 1) {

cout << polys[i]->sides() << endl; // polymorphism
move3D(*polys[i]); // polymorphism

}

• To maximize polymorphism,write code to the highest level of abstraction,
i.e. useShape overPolygon, usePolygon overRectangle, etc.

CS 246 323

2.24.11 Multiple Inheritance

•Multiple inheritance allows a new type to apply type and implementation
inheritance multiple times.

class X : public Y, public Z, private P, private Q { . . . }

• X type is aliased to typesY andZ with implementation, and also uses
implementation fromP andQ.

• Interface class(pure abstract-class) provides only types and constants,
providing type inheritance.

• Java only allows multiple inheritance for interface class.

CS 246 324

Java C++

interface Polygon {
int sides();
void move(int x, int y);

}
interface Rectilinear {

final int angle = 90;
}
class Rectangle implements Rectilinear,

Polygon {
private int x1, y1, x2, y2;

public void move(int x, int y) {}
public int sides() { return 4; }

}
class Square extends Rectangle {

public void move(int x, int y) {}
}

struct Polygon {
virtual int sides() = 0;
virtual void move(int x, int y) = 0;

};
struct Rectilinear {

enum { angle = 90 };
};
class Rectangle : public Polygon,

public Rectilinear {
int x1, y1, x2, y2;

public :
void move(int x, int y) {}
int sides() { return 4; }

};
struct Square : public Rectangle {

void move(int x, int y) {}
};

•Multiple inheritance hasmanyproblems (beyond this course).

• Safe if restrict multiple inheritance to onepublic type and one or two
private types.

CS 246 325

2.24.12 UML

•Generalization : reuse through forms of inheritance.

Square

+move(...)

inheritancemultiple

Rectilinearabstract class

+move(in x : Integer, in y : Integer)
+sides : Integer

+angle : 90

Polygon

single inheritance

concrete class superclass
(base)

Rectangle Trapezoid

single inheritance

+move(...)
+sides : Integer

+move(...)
+sides : Integer

(derived)
subclass

CS 246 326

◦ Represent inheritance by arrowhead△ to establish is-a relationship on
type, and reuse of attributes and operations.
◦ Association class can be implemented with forms of multipleinheritance

(mixin).

• For abstract class, the class name and abstract operations are italicized.

• For concrete class, abstract operations that are implemented appear in the
class diagram.

2.25 Composition / Inheritance Design
• Duality between “has-a” (composition) and “is-a” (inheritance)

relationship.

• Types created from multiple composite classes; types created from multiple
superclasses.

Composition Inheritance

class A {. . .};
class B { A a; . . .};
class C {. . .};
class D { B b; C c; . . .};

class A {. . .};
class B : A {. . .};
class C {. . .};
class D : B, C {. . .};

CS 246 327

• Both approaches:

◦ remove duplicated code (variable/code sharing)
◦ have separation of concern into components/superclasses.

• Choose inheritance when evolving hierarchical types (taxonomy) needing
polymorphism.

Vehicle
Construction

Heavy Machinery
Crane, Grader, Back-hoe

Haulage
Semi-trailer, Flatbed

Passenger
Commercial

Bus, Fire-truck, Limousine, Police-motorcycle
Personal

Car, SUV, Motorcycle

• For maximum reuse and to eliminate duplicate code, place
variables/operations as high in the hierarchy as possible.

• Polymorphism requires derived class maintain base class’sinterface
(substitutability).

CS 246 328

◦ derived class should also havebehavioural compatibility with base class.

• However, all taxonomies are an organizational compromise:when is a car a
limousine and vice versa.

• Not all objects fit into taxonomy: flying-car, boat-car.

• Inheritance is rigid hierarchy.

• Choose composition when implementation can bedelegated.

class Car {
SteeringWheel s; // fixed
Donut spare;
Wheel *wheels[4]; // dynamic
Engine *eng;
Transmission *trany;

public :
Car(Engine *e = fourcyl, Transmission *t = manual) :

eng(e), trany(t) { wheels[i] = . . .}
rotate() {. . .} // rotate tires
wheels(Wheels *w[4]) {. . .} // change wheels
engine(Engine *e) {. . .} // change engine

};

• Composition may be fixed or dynamic (pointer/reference).

CS 246 329

• Composition still uses hierarchical types to generalize components.

◦ Engine is abstract class that is specialized to different kinds of engines,
e.g., 3,4,6,8 cylinder, gas/diesel/hybrid, etc.

2.26 Template
• Inheritance provides reuse for types organized into a hierarchy that extends

name equivalence.

• Template provides alternate kind of reuse with no type hierarchy and types
are not equivalent.

• E.g., overloading, where there is identical code but different types:

int max(int a, int b) { return a > b ? a : b; }
double max(double a, double b) { return a > b ? a : b; }

• Template routine eliminates duplicate code by using types as compile-time
parameters:

template <typename T> T max(T a, T b) { return a > b ? a : b; }

• template introduces type parameterT used to declare return and parameter
types.

CS 246 330

• Template routine is called with value forT, and compiler constructs a
routine with this type.

cout << max<int >(1, 3); // T -> int
cout << max<double >(1.1, 3.5); // T -> double

• In many cases, the compiler can infer typeT from argument(s):

cout << max(1, 3); // T -> int
cout << max(1.1, 3.5); // T -> double

• Inferred type must supply all operations used within the template routine.

◦ e.g., types used with template routinemax must supplyoperator >.

• Template typeprevents duplicating code that manipulates different types.

• E.g., collection data-structures (e.g., stack), have common code to
manipulate data structure, but type stored in collection varies:

CS 246 331

template <typename T=int , unsigned int N=10> // default type/value
struct Stack { // NO ERROR CHECKING

T elems[N]; // maximum N elements
unsigned int size; // position of free element after top
Stack() { size = 0; }
T top() { return elems[size - 1]; }
void push(T e) { elems[size] = e; size += 1; }
T pop() { size -= 1; return elems[size]; }

};
template <typename T, unsigned int N> // print stack

ostream &operator <<(ostream &os, const Stack<T, N> &stk) {
for (int i = 0; i < stk.size; i += 1) os << stk.elems[i] << " ";
return os;

}

• Type parameter,T, specifies the element type of arrayelems, and return and
parameter types of the member routines.

• Integer parameter,N, denotes the maximum stack size.

• Unlike template routines, type cannot be inferred by compiler because type
is created at declaration before any member calls.

CS 246 332

Stack<> si; // stack of int, 10
si.push(3); // si : 3
si.push(4); // si : 3 4
cout << si.top() << endl; // 4
int i = si.pop(); // i : 4, si : 3
Stack<double > sd; // stack of double, 10
sd.push(5.1); // sd : 5.1
sd.push(6.2); // sd : 5.1 6.2
cout << sd << endl; // 5.1 6.2
double d = sd.pop(); // d : 6.2, sd : 5.1
Stack<Stack<int >,20> ssi; // stack of (stack of int, 10), 20
ssi.push(si); // ssi : (3 4)
ssi.push(si); // ssi : (3 4) (3 4)
ssi.push(si); // ssi : (3 4) (3 4) (3 4)
cout << ssi << endl; // 3 4 3 4 3 4
si = ssi.pop(); // si : 3 4, ssi : (3 4) (3 4)

Why doescout << ssi << endl have 2 spaces between the stacks?

• Specified type must supply all operations used within the template type.

• There must be a space between the two ending chevrons or>> is parsed as
operator>> .

CS 246 333

template <typename T> struct Foo { . . . };
Foo<Stack<int >> foo; // syntax error (fixed C++11)
Foo<Stack<int > > foo; // space between chevrons

• Compiler requires a template definition for each usage so both the
interface and implementation of a template must be in a.h file,
precluding some forms of encapsulation and separate compilation.

2.26.1 Standard Library

• C++ Standard Library is a collection of (template) classes and routines
providing: I/O, strings, data structures, and algorithms (sorting/searching).

• Data structures are calledcontainers: vector, map, list (stack, queue,
deque).

• In general, nodes of a data structure are either in a container or pointed-to
from the container.

CS 246 334

node node node nodecontainer

container

node node node node

• To copy a node into a container requires its type have a default and/or copy
constructor so instances can be created without constructor arguments.

• Standard library containers use copying⇒ node type must have default
constructor.

• All containers are dynamic sized so nodes are allocated in the heap.

• To provide encapsulation, containers use a nestediterator typeto traverse
nodes.

◦ Knowledge about container implementation is completely hidden.

• Iterator capabilities often depend on kind of container:

◦ singly-linked list has unidirectional traversal
◦ doubly-linked list has bidirectional traversal

CS 246 335

◦ hashing list has random traversal

• Iterator operator “++” moves forward to the next node, untilpastthe end of
the container.

• For bidirectional iterators, operator “--” moves in the reverse direction to
“++”.

2.26.1.1 Vector

• vector has random access, length, subscript checking (at), and assignment
(like Java array).

CS 246 336

std::vector<T>
vector() create empty vector
vector(int N) create vector with N empty elements
int size() vector size
bool empty() size() == 0
T &operator [](int i) access ith element, NO subscript checking
T &at(int i) access ith element, subscript checking
vector &operator =(const vector &) vector assignment
void push back(const T &x) add x after last element
void pop back() remove last element
void resize(int n) add or erase elements at end so size() == n
void clear() erase all elements

0 21 43

push
pop

• vector is alternative to C/C++ arrays.

CS 246 337

#include <vector>
int i, elem;
vector<int > v; // think: int v[0]
for (;;) { // create/assign vector

cin >> elem;
if (cin.fail()) break ;

v.push back(elem); // add elem to vector
}
vector<int > c; // think: int c[0]
c = v; // array assignment
for (i = c.size() - 1; 0 <= i; i -= 1) {

cout << c.at(i) << " "; // subscript checking
}
cout << endl;
v.clear(); // remove ALL elements

• Vector declarationmayspecify an initial size, e.g.,vector<int > v(size), like
a dimension.

• To reduce dynamic allocation, it is more efficient to dimension, when the
size is known.

CS 246 338

int size;
cin >> size; // read dimension
vector<int > v(size); // think int v[size]

•Matrix declaration is a vector of vectors:

vector< vector<int > > m;

• Again, it is more efficient to dimension, when size is known.

#include <vector>
vector< vector<int> > m(5, vector<int>(4));
for (int r = 0; r < m.size(); r += 1) {

for (int c = 0; c < m[r].size(); c += 1) {
m[r][c] = r+c; // or m.at(r).at(c)

}
}
for (int r = 0; r < m.size(); r += 1) {

for (int c = 0; c < m[r].size(); c += 1) {
cout << m[r][c] << ", ";

}
cout << endl;

}

7

0 1 2 3

1 2 3

2 3 4

4

5

3 4 5

4 5

6

6

•Optional second argument is initialization value for each element, i.e., 5

CS 246 339

rows of vectors each initialized to a vector of 4 integers initialized to zero.

• All loop bounds use dynamic size of row or column (columns maybe
different length).

• Alternatively, each row is dynamically dimensioned to a specific size, e.g.,
triangular matrix.

vector< vector<int > > m(5); // 5 empty rows
for (int r = 0; r < m.size(); r += 1) {

m[r].resize(r + 1); // different length
for (int c = 0; c < m[r].size(); c += 1) {

m[r][c] = r+c; // or m.at(r).at(c)
}

}
7

0

1 2

2 3 4

3 4 5

4 5

6

6 8

• Iterator allows traversal in insertion order or random order.

CS 246 340

std::vector<T>::iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert(iterator posn, const T &x) insert x before posn
iterator erase(iterator posn) erase element at posn
++, --, +, +=, -, -= (insertion / random order)forward/backward operations

begin()

φ

rend()

0 21

φ

end()

4

rbegin()

3
- - ++

++ - -

• Iterator’s value is a pointer to its current vector element⇒ dereference to
access element.

CS 246 341

vector<int > v(3);
vector<int >::iterator it;
v[0] = 2; // initialize first element
it = v.begin(); // intialize iterator to first element
cout << v[0] << " " << *v.begin() << " " << *it << endl;

• If erase and insert took subscript argument, no iterator necessary!

• Use iterator like subscript by adding/subtracting frombegin/end.

v.erase(v.begin()); // erase v[0], first
v.erase(v.end() - 1); // erase v[N - 1], last (why “- 1”?)
v.erase(v.begin + 3); // erase v[3]

• Insert or erase during iteration using an iterator causes failure.

CS 246 342

vector<int > v;
for (int i = 0 ; i < 5; i += 1) // create

v.push back(2 * i); // values: 0, 2, 4, 6, 8

v.erase(v.begin() + 3); // remove v[3] : 6

int i; // find position of value 4 using subscript
for (i = 0; i < 5 && v[i] != 4; i += 1);
v.insert(v.begin() + i, 33); // insert 33 before value 4

// print reverse order using iterator (versus subscript)
vector<int >::reverse iterator r;
for (r = v.rbegin(); r != v.rend(); r ++) // ++ move towards rend

cout << *r << endl; // values: 8, 4, 33, 2, 0

2.26.1.2 Map

•map (dictionary) has random access, sorted, unique-key container of pairs
(Key, Val).

CS 246 343

std::map<Key,Val> / std::pair<const Key,Val>
map() create empty map
int size() map size
bool empty() size() == 0
Val &operator [](const Key &k) access pair with Key k
int count(Key key) 0⇒ no key, 1⇒ key (unique keys)
map &operator =(const map &) map assignment
insert(pair<const Key,Val>(k, v)) insert pair
erase(Key k) erase key k
void clear() erase all pairs

blue
green

red

2
1
0

first second

keys values

pair

CS 246 344

#include <map>
map<string, int > m, c; // Key => string, Val => int
m["green"] = 1; // create, set to 1
m["blue"] = 2; // create, set to 2
m["red"]; // create, set to 0 for int
m["green"] = 5; // overwrite 1 with 5
cout << m["green"] << endl; // print 5
c = m; // map assignment
m.insert(pair<string,int >("yellow", 3)); // m[“yellow”] = 3
if (m.count("black")) // check for key “black”
m.erase("blue"); // erase pair(“blue”, 2)

• First subscript for key creates an entry and initializes it to default or
specified value.

• Iterator can search and return values in key order.

CS 246 345

std::map<T>::iterator / std::map<T>::reverse iterator
iterator begin() iterator pointing to first pair
iterator end() iterator pointingAFTER last pair
iterator rbegin() iterator pointing to last pair
iterator rend() iterator pointingBEFORE first pair
iterator find(Key &k) find position of key k
iterator insert(iterator posn, const T &x) insert x before posn
iterator erase(iterator posn) erase pair at posn
++, -- (sorted order) forward/backward operations

• Iterator returns a pointer to apair, with fieldsfirst (key) andsecond (value).

CS 246 346

#include <map>
map<string,int >::iterator f = m.find("green"); // find key position
if (f != m.end()) // found ?

cout << "found " << f->first << ’ ’ << f->second << endl;

for (f = m.begin(); f != m.end(); f ++) // increasing order
cout << f->first << ’ ’ << f->second << endl;

map<string,int >::reverse iterator r;
for (r = m.rbegin(); r != m.rend(); r ++) // decreasing order

cout << r->first << ’ ’ << r->second << endl;
m.clear(); // remove ALL pairs

2.26.1.3 List

• In certain cases, it is more efficient to use a single (stack/queue/deque) or
double (list) linked-list container than random-access container.

• Examinelist (arbitrary removal);stack, queue, deque are similar (restricted
insertion/removal).

CS 246 347

std::list<T>
list() create empty list
list(int n) create list with n default nodes
int size() list size
bool empty() size() == 0
list &operator =(const list &) list assignment
T front() first node
T back() last node
void push front(const T &x) add x before first node
void push back(const T &x) add x after last node
void pop front() remove first node
void pop back() remove last node
void clear() erase all nodes

push
pop

back

node
push

pop
front

. . .

• Iterator returns a pointer to a node.

CS 246 348

std::list<T>::iterator / std::list<T>::reverse iterator
iterator begin() iterator pointing to first node
iterator end() iterator pointingAFTER last node
iterator rbegin() iterator pointing to last node
iterator rend() iterator pointingBEFORE first node
iterator insert(iterator posn, const T &x) insert x before posn
iterator erase(iterator posn) erase node at posn
++, -- (insertion order) forward/backward operations

CS 246 349

#include <list>
struct Node {

char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

};
list<Node> dl; // doubly linked list
for (int i = 0; i < 10; i += 1) { // create list nodes

dl.push back(Node(’a’+i, i, i+0.5)); // push node on end of list
}
list<Node>::iterator f;
for (f = dl.begin(); f != dl.end(); f ++) { // forward order

cout << "c:" << (*f).c << " i:" << f->i << " d:" << f->d << endl;
}
while (0 < dl.size()) { // destroy list nodes

dl.erase(dl.begin()); // remove first node
} // same as dl.clear()

2.26.1.4 for each

• Template routinefor each provides an alternate mechanism to iterate
through a container.

• An action routine is called for each node in the container passing the node

CS 246 350

to the routine for processing (Lispapply).

#include <iostream>
#include <list>
#include <vector>
#include <algorithm> // for each
using namespace std;
void print(int i) { cout << i << " "; } // print node
int main() {

list< int > int list;
vector< int > int vec;
for (int i = 0; i < 10; i += 1) { // create lists

int list.push back(i);
int vec.push back(i);

}
for each(int list.begin(), int list.end(), print); // print each node
for each(int vec.begin(), int vec.end(), print);

}

• Type of the action routine isvoid rtn(T), whereT is the type of the
container node.

• E.g.,print has anint parameter matching the container node-type.

•More complex actions are possible using a functor.

CS 246 351

• E.g., an action to print on a specified stream must store the stream and have
anoperator () allowing the object to behave like a function:

struct Print {
ostream &stream; // stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i << " "; }

};
int main() {

list< int > int list;
vector< int > int vec;
. . .
for each(int list.begin(), int list.end(), Print(cout));
for each(int vec.begin(), int vec.end(), Print(cerr));

}

• ExpressionPrint(cout) creates a constantPrint object, andfor each calls
operator ()(Node) in the object.

2.27 Namespace
• C++ namespaceis used to organize programs and libraries composed of

multiple types and declarationsto deal with naming conflicts.

CS 246 352

• E.g., namespacestd contains all the I/O declarations and container types.

• Names in a namespace form a declaration region, like the scope of block.

• Analogy in Java is a package, butnamespace does NOT provide
abstraction/encapsulation (use.h/.cc files).

• C++ allows multiple namespaces to be defined in a file, as well as among
files (unlike Java packages).

• Types and declarations do not have to be added consecutively.

Java source files C++ source file

package Foo; // file
public class X . . . // export one type
// local types / declarations

package Foo; // file
public enum Y . . . // export one type
// local types / declarations

package Bar; // file
public class Z . . . // export one type
// local types / declarations

namespace Foo {
// types / declarations

}
namespace Foo {

// more types / declarations
}
namespace Bar {

// types / declarations
}

• Contents of a namespace are accessed using full-qualified names:

CS 246 353

Java C++

Foo.T t = new Foo.T(); Foo::T *t = new Foo::T();

•Or by importing individual items or importing all of the namespace content.

Java C++

import Foo.T;
import Foo.*;

using Foo::T; // declaration
using namespace Foo; // directive

• using declarationunconditionally introduces an alias (liketypedef) into
the current scope for specified entity in namespace.

◦May appear in any scope.
◦ If name already exists in current scope,using fails.

namespace Foo { int i = 0; }
int i = 1;
using Foo::i; // i exists in scope, conflict failure

• using directiveconditionally introduces aliases to current scope for all
entities in namespace.

◦ If name already exists in current scope, alias is ignored; ifname already
exists fromusing directive in current scope,using fails.

CS 246 354

namespace Foo { int i = 0; }
namespace Bar { int i = 1; }
{

int i = 2;
using namespace Foo; // i exists in scope, alias ignored

}
{

using namespace Foo;
using namespace Bar; // i exists from using directive
i = 0; // conflict failure, ambiguous reference to ’i’

}

◦May appear in namespace and block scope, but not class scope.

CS 246 355

namespace Foo { // start namespace
enum Colour { R, G, B };
int i = 3;

}
namespace Foo { // add more

class C { int i; };
int j = 4;
namespace Bar { // start nested namespace

typedef short int shrint;
char j = ’a’;
int C();

}
}
int j = 0; // external
int main() {

int j = 3; // local
using namespace Foo; // conditional import: Colour, i, C, Bar (not j)
Colour c; // Foo::Colour
cout << i << endl; // Foo::i
C x; // Foo::C
cout << ::j << endl; // external
cout << j << endl; // local
cout << Foo::j << " " << Bar::j << endl; // qualification
using namespace Bar; // conditional import: shrint, C() (not j)
shrint s = 4; // Bar::shrint
using Foo::j; // disallowed : unconditional import
C(); // disallowed : ambiguous “class C” or “int C()”

}

CS 246 356

• Never put ausing declaration/directive in a header file (.h) (pollute local
namespace) or before#include (can affect names in header file).

3 Tools

3.1 C/C++ Composition
• C++ is composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edits) the programbefore
compilation .

2. The template (generic) language adds new types and routinesduring
compilation .

3. The C programming language specifying basic declarations and control
flow to be executedafter compilation.

4. The C++ programming language specifying advanced declarations and
control flow to be executedafter compilation.

• A programmer uses the four programming languages as follows:

user edits→ preprocessor edits→ templates expand→ compilation
(→ linking/loading→ execution)

• C is composed of languages 1 & 3.

• The compiler interface controls all of these steps.

357

CS 246 358

3.2 Compilation

cpp

preprocessed source code

cc1plus

assembly code

as

ld

object code

-o, -l, -L

-W, -v, -g, -S, -O1/2/3, -c

object./a.out

other object-code
files and libraries

-E, -D, -I

C/C++ source filesC/C++ header files

(preprocessor)

(linker)

(translator)

(assembler)

CS 246 359

• Compilation is the process of translating a program from human to
machine readable form.

• The translation is performed by a tool called acompiler.
• Compilation is subdivided into multiple steps, using a number of tools.

•Often a number of options to control the behaviour of each step.

•Option are presented forg++, but other compilers have similar options.

•General format:

g++ option-list *.cc *.o . . .

3.2.1 Preprocessor

• Preprocessor (cpp) takes a C++ source file, removes comments, and expands
#include , #define , and#if directives.

•Options:

◦ -E run only the preprocessor step and writes the preprocessor output to
standard out.

$ g++ -E *.cc . . .
... much output from the preprocessor

CS 246 360

◦ -D define and optionally initialize preprocessor variables from the
compilation command:

$ g++ -DDEBUG=2 -DASSN . . . *.cc *.o . . .
same as putting the following#define s in a program without changing
the program:

#define DEBUG 2
#define ASSN

• -Idirectory search directory for include files;

◦ files within the directory can now be referenced by relative name using
#include <file-name>.

3.2.2 Translator

• Translator takes a preprocessed file and converts the C++ language into
assembly language for the target machine.

•Options:

◦ -Wkind generate warning message for this “kind” of situation.
∗ -Wall print ALL warning messages.
∗ -Werror make warnings into errors so program does not compile.

CS 246 361

◦ -v show each compilation step and its details:

$ g++ -v *.cc *.o . . .
... much output from each compilation step

E.g., system include-directories wherecpp looks for system includes.

#include <. . .> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/i486-linux
/usr/include/c++/3.3/backward
/usr/local/include
/usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

◦ -g add symbol-table information to object file for debugger
◦ -S compile source file, writing assemble code to filesource-file.s
◦ -O1/2/3 optimize translation to different levels, where eachlevel takes

more compilation time and possibly more space in executable
◦ -c compile/assemble source file but do not link, writing objectcode to

file source-file.o

CS 246 362

3.2.3 Assembler

• Assembler (as) takes an assembly language file and converts it to object
code (machine language).

3.2.4 Linker

• Linker (ld) takes the implicit.o file from translated source and explicit.o
files from the command line, and combines them into a new object or
executable file.

• Linking options:

◦ -Ldirectory is a directory containing library files of precompiled code.
◦ -llibrary search in library directories for givenlibrary.
◦ -o gives the file name where the combined object/ executable is placed.
∗ If no name is specified, default namea.out is used.

• Look in library directory “/lib” for math library “m” containing precompiled
“sin” routine used in “myprog.cc” naming executable program “calc”.

$ gcc myprog.cc -L/lib -lm -o calc

CS 246 363

3.3 Compiling Complex Programs
• As number of TUs grow, so do the references to type/variables

(dependencies) among TUs.

•When one TU is changed, other TUs that depend on it must changeand be
recompiled.

• For a large numbers of TUs, the dependencies turn into a nightmare with
respect to recompilation.

3.3.1 Dependencies

• A dependenceoccurs when a change in one location (entity) requires a
change in another.

• Dependencies can be:

◦ loosely coupled, e.g., changing source code may require a corresponding
change in user documentation, or
◦ tightly coupled, changing source code may require recompiling of some

or all of the components that compose a program.

• Dependencies in C/C++ occur as follows:

◦ executable depends on.o files (linking)

CS 246 364

◦ .o files depend on.C files (compiling)
◦ .C files depend on.h files (including)

source code dependence graph

x.h #include "y.h"
x.C #include "x.h"

y.h #include "z.h"
y.C #include "y.h"

z.h #include "y.h"
z.C #include "z.h"

a.out

z.o z.C z.h

y.o y.C y.h

x.o x.C x.h

• Cycles in#include dependences are broken by#ifndef checks (see
page 191).

• The executable (a.out) is generated by compilation commands:

$ g++ -c z.C # generates z.o
$ g++ -c y.C # generates y.o
$ g++ -c x.C # generates x.o
$ g++ x.o y.o z.o # generates a.out

• However, it is inefficient and defeats the point of separate compilation to

CS 246 365

recompile all program components after a change.

• If a change is made toy.h, what is the minimum recompilation necessary?
(all!)

• Doesany change toy.h require these recompilations?

•Often no mechanism to know the kind of change made within a file, e.g.,
changing a comment, type, variable.

• Hence, “change” may be coarse grain, i.e., based onany change to a file.

•One way to denote file change is withtime stamps.

• UNIX stores in the directory the time a file is last changed, with second
precision.

• Using time to denote change means the dependency graph is a temporal
ordering where the root has the newest (or equal) time and theleafs the
oldest (or equal) time.

CS 246 366

a.out

z.o z.C z.h

1:00

1:00 12:30 12:15

y.o y.C y.h
12:35 12:40

x.o x.C x.h

a.out

z.o z.C z.h

1:00

1:00 12:30 12:15

y.o y.C y.h
12:35 12:40

x.o x.C x.h

1:01

1:00 12:30 12:00

3:01

3:00 2:002:30

◦ Filesx.o, y.o andz.o created at 1:00 from compilation of files created
before1:00.
◦ File a.out created at 1:01 from link ofx.o, y.o andz.o.
◦ Changes are subsequently made tox.h andx.C at 2:00 and 2:30.
◦Only filesx.o anda.out need to be recreated at 3:00 and 3:01. (Why?)

3.3.2 Make

•make is a system command that takes a dependence graph and uses file
change-times to trigger rules that bring the dependence graph up to date.

• A make dependence-graph expresses a relationship between a product and a
set of sources.

CS 246 367

•make does not understand relationships among sources, one that exists
at the source-code level and is crucial.
• Hence, make dependence-graph loses some of the relationships (dashed

lines):

y.o

x.o

a.out

x.h

x.C

y.C

y.h

z.h

z.o z.C
• E.g., sourcex.C depends on sourcex.h but x.C is not a product ofx.h like

x.o is a product ofx.C andx.h.
• Two most common UNIX makes are: make and gmake (on Linux,make is

gmake).
• Like shells, there is minimal syntax and semantics formake, which is

mostly portable across systems.

CS 246 368

•Most common non-portable features are specifying dependencies and
implicit rules.

• A basic makefile consists of string variables with initialization, and a list of
targets and rules.

• This file can have any name, butmake implicitly looks for a file called
makefile or Makefile if no file name is specified.

• Each target has a list of dependencies, and possibly a set of commands
specifying how to re-establish the target.

variable = value # variable
target : dependency1 dependency2 . . . # target / dependencies

command1 # rules
command2
. . .

• Commands must be indented by one tab character.

•make is invoked with a target, which is the root or subnode of a dependence
graph.

•make builds the dependency graph and decorates the edges with time
stamps for the specified files.

CS 246 369

• If any of the dependency files (leafs) is newer than the targetfile, or if the
target file does not exist, the commands are executed by the shell to update
the target (generating a new product).
•Makefile for previous dependencies:

a.out : x.o y.o z.o
g++ x.o y.o z.o -o a.out

x.o : x.C x.h y.h z.h
g++ -g -Wall -c x.C

y.o : y.C y.h z.h
g++ -g -Wall -c y.C

z.o : z.C z.h y.h
g++ -g -Wall -c z.C

• Check dependency relationship (assume source files just created):

$ make -n -f Makefile a.out
g++ -g -Wall -c x.C
g++ -g -Wall -c y.C
g++ -g -Wall -c z.C
g++ x.o y.o z.o -o a.out

All necessary commands are triggered to bring targeta.out up to date.
◦ -n builds and checks the dependencies, showing rules to be triggered

CS 246 370

(leave off to execute rules)
◦ -f Makefile is the dependency file (leave off if named[Mm]akefile)
◦ a.out target name to be updated (leave off if first target)

•Generalize and eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = x.o y.o z.o # object files forming executable
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

x.o : x.C x.h y.h z.h # targets / dependencies / commands
${CXX} ${CXXFLAGS} x.C

y.o : y.C y.h z.h
${CXX} ${CXXFLAGS} y.C

z.o : z.C z.h y.h
${CXX} ${CXXFLAGS} z.C

• Eliminate common rules:

◦make can deduce simple rules when dependency files have specific
suffixes.

CS 246 371

◦ E.g., given target with dependencies:

x.o : x.C x.h y.h z.h
make deduces the following rule:

${CXX} ${CXXFLAGS} -c -o x.o # special variable names
where-o x.o is redundant as it is implied by-c.
◦ This rule use variables${CXX} and${CXXFLAGS} for generalization.
◦ Therefore, all rules forx.o, y.o andz.o can be removed.

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.o y.o z.o # object files forming executable
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

x.o : x.C x.h y.h z.h # targets / dependencies
y.o : y.C y.h z.h
z.o : z.C z.h y.h

• Because dependencies are extremely complex in large programs,
programmers seldom construct them correctly or maintain them.

CS 246 372

•Without complete and update dependencies,make is useless.
• Automate targets and dependencies:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -MMD # compiler flags
OBJECTS = x.o y.o z.o # object files forming executable
DEPENDS = ${OBJECTS:.o=.d} # substitute “.o” with “.d”
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)

.PHONY : clean # not a file name
clean : # remove files that can be regenerated

rm -rf ${DEPENDS} ${OBJECTS} ${EXEC} # alternative *.d *.o

◦ Preprocessor traverses all include files, so it knows all source-file
dependencies.
◦ g++ flag-MMD writes out a dependency graph for user source-files to file

source-file.d

CS 246 373

file contents
x.d x.o: x.C x.h y.h z.h
y.d y.o: y.C y.h z.h
z.d z.o: z.C z.h y.h

◦ g++ flag-MD generates a dependency graph for user/system source-files.
◦ -include reads the.d files containing dependencies.
◦ .PHONY indicates a target that is not a file name and never created; itis a

recipe to be executed every time the target is specified.
∗ A phony target avoids a conflict with a file of the same name.
◦ Phony targetclean removes product files that can be rebuilt (save space).

$ make clean # remove all products (don’t create “clean”)

• Hence, it is possible to have a universalMakefile for a single or multiple
programs.

3.4 Source-Code Management
• As a program develops/matures, it changes in many ways.

◦ UNIX files do not support the temporal development of a program
(version control), i.e., history of program over time.

CS 246 374

◦ Access to older versions of a program is useful, e.g., backing out of
changes because of design problems.

• Program development is often performed by multiple developers each
making independent changes.

◦ Sharing using files can damage file content for simultaneous writes.
◦Merging changes from different developers is tricky and time consuming.

• To solve these problems, asource-code management-systemis used to
provide versioning and control cooperative work.

3.4.1 SVN

• Subversion(SVN 1.6) is a source-code management-system using the
copy-modify-merge model.
◦master copy of allproject files kept in arepository,
◦multiple versions of the project files managed in the repository,
◦ developerscheckouta working copy of the project for modification,
◦ developerscheckinchanges from working copy with helpful integration

usingtext merging.

SVN works on file content not file time-stamps.

CS 246 375

V1

V1

V2

V2

V3

working copies

programmer2

programmer3

programmer1

V3

V2

V2
checkout

repository

project1

project2

checkout

checkout

checkin

checkin

checkin

3.4.2 Repository

• The repository is a directory containing multiple projects.

CS 246 376

courses repository
cs246 meta-project

assn1 project
x.h, x.C, . . . project files

assn2 project
. . . project files

more meta-projects / projects

• svnadmin create command creates and initializes a repository.

$ svnadmin create courses

• svn mkdir command creates subdirectories for meta-projects and projects.

$ svn mkdir file:///u/jfdoe/courses/cs246 -m "create directory cs246 "
Committed revision 1.
$ svn mkdir file:///u/jfdoe/courses/cs246/assn1 -m "create subdirectory
Committed revision 2.

◦ files in repository are designated using URL, so must use absolute
pathname
◦ -m (message) flag documents repository change.
◦ if no -m (message) flag specified, prompts for documentation (using an

editor if shell environment variableEDITOR set).

CS 246 377

• svn ls command lists directories.

$ svn ls file:///u/jfdoe/courses/cs246
assn1/
$ svn ls file:///u/jfdoe/courses/cs246/assn1

• If project directoryassn1 already exists, it can be added directly to the
repository.

• svn import command copies an unversioned directory of files into a
repository.

$ svn import assn1 file:///u/jfdoe/courses/cs246/assn1
Adding assn1/z.h
Adding assn1/x.C
Adding assn1/y.C
Adding assn1/z.C
Adding assn1/Makefile
Adding assn1/x.h
Adding assn1/y.h
Committed revision 2.

CS 246 378

$ svn ls file:///u/jfdoe/courses/cs246/assn1
Makefile
x.C
x.h
y.C
y.h
z.C
z.h

• For students working together, the shared repository must be made
accessible in the file system.

$ chgrp -R cs246 75 courses # set group on directory and subfiles
$ chmod -R g+rwx courses # allow group members access to ALL files

and for the path to the repository.
•Group namecs246 75 is acquired on a per course basis for each team of

students.

3.4.3 Checking Out

• svn checkout command extracts a working copy of a project from the
repository.

CS 246 379

$ svn checkout file:///u/jfdoe/courses/cs246/assn1
Checked out revision 2.
$ ls -AF assn1
.svn/

• For first checkout, directoryassn1 is created in the current directory (unless
it already exists).

• Subdirectory.svn contains administrative information for SVN andmust
not be modified.

•Working copy is then modified before being merged back into the
repository.

•Other developers do not see each others working copy, and only see
modifications when committed.

• To create a working-copy off-campus, usessh URL:

$ svn checkout svn+ssh://jfdoe@student.cs.uwaterloo.ca/u/jfdoe/courses

(Replace file URL in subsequent commands withssh URL.)

3.4.4 Adding

• Introduce files into project directoryassn1.

CS 246 380

$ cd assn1
$. . . # create files: Makefile x.C x.h y.C y.h z.h z.C
$ ls -AF
.svn/ Makefile x.C x.h y.C y.h z.C z.h

• svn add commandschedulesaddition of files (in current directory) into the
repository.

$ svn add Makefile x.C x.h y.C y.h z.h z.C
A Makefile
A x.C
A x.h
A y.C
A y.h
A z.h
A z.C

Addition only occurs on next commit.

• Forgettingsvn add for new files is a common mistake.

• Add only project source-files into repository.

• Product files, e.g.,*.o, *.d, a.out, do not need to be versioned.

CS 246 381

3.4.5 Checking In

• svn commit command updates the repository with the changes in working
copy.

$ svn commit -m "initial project files "
Adding Makefile
Adding x.C
Adding x.h
Adding y.C
Adding y.h
Adding z.C
Adding z.h
Transmitting file data
Committed revision 3.

• if no -m (message) flag specified, prompts for commit documentation.

CS 246 382

$ svn ls file:///u/jfdoe/courses/cs246/assn1
Makefile
x.C
x.h
y.C
y.h
z.C
z.h

• Always make sure your code compiles and runs before committing; it is
unfair to pollute a project with bugs.

3.4.6 Modifying

• Editted files in working copy are implicitlyscheduledfor update on next
commit.

$ vi y.h y.C

• svn rm command removes files from working copy andschedulesremoval
of files from the repository.

CS 246 383

$ ls -AF
.svn/ Makefile x.C x.h y.C y.h z.C z.h
$ svn rm z.h z.C
D z.h
D z.C
$ ls -AF
.svn/ Makefile x.C x.h y.C y.h

• svn status command displays changes between working copy and
repository.

$ svn status
D z.h
M y.C
D z.C
M y.h

Filesy.h / y.C have local modifications “M”, andz.h / z.C are deleted “D”.

• Possible to undo scheduled changes by reverting to files fromrepository.

• svn revert command copies unchanged files from repository to working
copy.

CS 246 384

$ svn revert y.C z.h
Reverted ’y.C’
Reverted ’z.h’
$ ls -AF
.svn/ Makefile x.C x.h y.C y.h z.h

• Commit edits and removals.

$ svn commit -m "changes to y.h and remove z.C "
Sending y.h
Deleting z.C
Transmitting file data .
Committed revision 4.
$ svn ls file:///u/jfdoe/courses/cs246/assn1
Makefile
x.C
x.h
y.C
y.h
z.h

• Files in the repository can be renamed and copied.

• svn mv command renames file in working copy andschedulesrenaming in

CS 246 385

the repository.

$ svn mv x.h w.h
A w.h
D x.h
$ ls -AF
.svn/ Makefile w.h x.C y.C y.h

• svn cp command copies file in working copy andschedulescopying in the
repository:

$ svn cp w.h k.h
A k.h
$ ls -AF
.svn/ Makefile k.h w.h x.C y.C y.h

• Commit renaming and copying.

CS 246 386

$ svn commit -m "renaming and copying "
Adding k.h
Adding w.h
Deleting x.h
Committed revision 5.
$ svn ls file:///u/jfdoe/courses/cs246/assn1
Makefile
k.h
w.h
x.C
y.C
y.h

3.4.7 Revision Number

• Each commit receives a revision number (currently 5).
• Information in older versions is accessible using suffix@N on URL.
• E.g., print filez.C, which last existed in revision 3.
• svn cat command prints specified file from the repository.

$ svn cat file:///u/jfdoe/courses/cs246/assn1/z.C @3
#include "z.h"

CS 246 387

• Copy deleted filez.C from repository into working copy and modify.

$ svn copy file:///u/jfdoe/courses/cs246/assn1/z.C @3 z.C
A z.C
$ ls -AF
.svn/ Makefile k.h w.h x.C y.C y.h z.C z.h
$. . . # change z.C
$ svn commit -m "bring back z.C and modify "
Adding z.C
Transmitting file data .
Committed revision 6.
$ svn cat file:///u/jfdoe/courses/cs246/assn1/z.C @6
#include "z.h"
new text

3.4.8 Updating

• Synchronize working copy with commits in the repository from other
developers.

CS 246 388

jfdoe kdsmith
modify x.C modify x.C & y.C

removek.h
addt.C

• Assumekdsmith has committed changes.

• jfdoe attempts to committed changes.

$ svn commit -m "modify x.C "
Sending x.C
svn: Commit failed (details follow):
svn: File ’/cs246/assn1/x.C’ is out of date

• jfdoe must resolve differences between their working copy and thecurrent
revision in the repository.

• svn update command attempts to update working copy from most recent
revision.

CS 246 389

$ svn update
D k.h file k.h deleted
U y.C file y.C updated without conflicts
A t.C file t.C added
Conflict discovered in ’x.C’.
Select: (p) postpone, (df) diff-full, (e) edit,

(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: df

--- .svn/text-base/x.C.svn-base Sun May 2 09:54:08 2010
+++ .svn/tmp/x.C.tmp Sun May 2 11:28:42 2010
@@ -1 +1,6 @@
#include "x.h"

+<<<<<<< .mine
+jfdoe new text
+=======
+kdsmith new text
+>>>>>>> .r7
Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,

(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: tc

G x.C file x.C merGed with kdsmith version
Updated to revision 7.

CS 246 390

◦ (p) postpone : mark conflict to be resolved later
◦ (df) diff-full : show changes to merge file
◦ (e) edit : change merged file in an editor
◦ (r) resolved : after editing version
◦ (mc) mine-conflict : accept my version for conflicts
◦ (tc) theirs-conflict : accept their version for conflicts
◦ (mf) mine-full : accept my file (no conflicts resolved)
◦ (tf) theirs-full : accept their file (no conflicts resolved)

•Merge algorithm is generally very good if changes do not overlap.

•Overlapping changes result in a conflict, which must be resolved.

• If unsure about how to deal with a conflict, it can be postponedfor each file.

CS 246 391

$ svn update
D k.h file k.h deleted
U y.C file y.C updated without conflicts
A t.C file t.C added
Conflict discovered in ’x.C’.
Select: (p) postpone, (df) diff-full, (e) edit,

(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: p

C x.C file x.C conflict
Updated to revision 7.
Summary of conflicts:

Text conflicts: 1

•Working copy now contains the following files:

CS 246 392

x.C x.C.mine

#include "x.h"
<<<<<<< .mine
jfdoe new text
=======
kdsmith new text
>>>>>>> .r7

#include "x.h"
jfdoe new text

x.C.r3 x.C.r7

#include "x.h" #include "x.h"
kdsmith new text

◦ x.C : with conflicts
◦ x.C.mine : jfdoe version ofx.C
◦ x.C.r3 : previous jfdoe version ofx.C
◦ x.C.r7 : kdsmith version ofx.C in repository

• No further commits allowed until conflict is resolved.

• svn resolve --accept ARG command resolves conflict with version
specified byARG, for ARG options:

◦ base :x.C.r3 previous version in repository
◦ working : x.C current version in my working copy (needs modification)

CS 246 393

◦mine-conflict :x.C.mine accept my version for conflicts
◦ theirs-conflict :x.C.r7 accept their version for conflicts
◦mine-full : x.C.mine accept my file (no conflicts resolved)
◦ theirs-full : x.C.r7 accept their file (no conflicts resolved)

$ svn resolve --accept theirs -conflict x.C
Resolved conflicted state of ’x.C’

• Removes 3 conflict files,x.C.mine, x.C.r3, x.C.r7, and setsx.C to theARG
version.

$ svn commit -m "modified x.C"
Sending x.C
Transmitting file data .
Committed revision 8.

3.5 Debugger
• An interactive, symbolicdebuggereffectively allows debug print

statements to be added and removed to/from a program dynamically.

• Do not rely solely on a debugger to debug a program.

CS 246 394

• Some systems do not have a debugger or the debugger may not work for
certain kinds of problems.

• A good programmer uses a combination of debug print statements and a
debugger when debugging a complex program.

• A debugger does not debug a program, it merely helps in the debugging
process.

• Therefore, you must have some idea (hypothesis) about what is wrong with
a program before starting to look.

3.5.1 GDB

• The two most common UNIX debuggers are: dbx and gdb.

• File test.cc contains:

CS 246 395

1 int r(int a[]) {
2 int i = 100000000;
3 a[i] += 1; // really bad subscript error
4 return a[i];
5 }
6 int main() {
7 int a[10] = { 0, 1 };
8 r(a);
9 }

• Compile program using the-g flag to include names of variables and
routines for symbolic debugging:

$ g++ -g test.cc

• Start gdb:

$ gdb ./a.out
. . . gdb disclaimer
(gdb) ← gdb prompt

• Like a shell, gdb uses a command line to accept debugging commands.

• <Enter> without a command repeats the last command.

• run command begins execution of the program:

CS 246 396

(gdb) run
Starting program: /u/userid/cs246/a.out
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error

◦ If there are no errors in a program, running in GDB is the same as
running in a shell.
◦ If there is an error, control returns to gdb to allow examination.
◦ If program is not compiled with-g flag, only routine names given.

• backtrace command prints a stack trace of called routines.

(gdb) backtrace
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:8

◦ stack has 2 framesmain (#1) andr (#0) because error occurred in call tor.

• print command prints variables accessible in the current routine, object, or
external area.

(gdb) print i
$1 = 100000000

CS 246 397

• Can print any C++ expression:

(gdb) print a
$2 = (int *) 0xffbefa20
(gdb) p *a
$3 = 0
(gdb) p a[1]
$4 = 1
(gdb) p a[1]+1
$5 = 2

• set variable command changes the value of a variable in the current routine,
object or external area.

(gdb) set variable i = 7
(gdb) p i
$6 = 7
(gdb) set var a[0] = 3
(gdb) p a[0]
$7 = 3

Change the values of variables while debugging to:

◦ investigate how the program behaves with new values withoutrecompile
and restarting the program,

CS 246 398

◦ to make local corrections and then continue execution.
• frame [n] command moves thecurrent stack frame to thenth routine call

on the stack.

(gdb) f 0
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) f 1
#1 0x00010764 in main () at test.cc:8
8 r(a);

◦ If n is not present, prints the current frame
◦Once moved to a new frame, it becomes the current frame.
◦ All subsequent commands apply to the current frame.
• To trace program execution,breakpoints are used.
• break command establishes a point in the program where execution

suspends and control returns to the debugger.

(gdb) break main
Breakpoint 1 at 0x10710: file test.cc, line 7.
(gdb) break test.cc:3
Breakpoint 2 at 0x106d8: file test.cc, line 3.

CS 246 399

◦ Set breakpoint using routine name or source-file:line-number.
◦ info breakpoints command prints all breakpoints currently set.

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x00010710 in main at test.cc:7
2 breakpoint keep y 0x000106d8 in r(int*) at test.cc:3

• Run program again to get to the breakpoint:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /u/userid/cs246/a.out
Breakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };
(gdb) p a[7]
$8 = 0

•Once a breakpoint is reached, execution of the program can becontinued in
several ways.

• step [n] command executes the nextn lines of the program and stops, so
control enters routine calls.

CS 246 400

(gdb) step
8 r(a);
(gdb) s
r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;
(gdb) s
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) <Enter>
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) s
Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

◦ If n is not present, 1 is assumed.
◦ If the next line is a routine call, control enters the routineand stops at the

first line.

• next [n] command executes the nextn lines of the current routine and stops,
so routine calls are not entered (treated as a single statement).

CS 246 401

(gdb) run
. . .
Breakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };
(gdb) next
8 r(a);
(gdb) n
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) n
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error

• continue [n] command continues execution until the next breakpoint is
reached.

CS 246 402

(gdb) run
. . .
Breakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };
(gdb) c
Breakpoint 2, r (a=0x7fffffffe7d0) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) p i
$9 = 100000000
(gdb) set var i = 3
(gdb) c
Continuing.
Program exited normally.

• list command lists source code.

CS 246 403

(gdb) list
1 int r(int a[]) {
2 int i = 100000000;
3 a[i] += 1; // really bad subscript error
4 return a[i];
5 }
6 int main() {
7 int a[10] = { 0, 1 };
8 r(a);
9 }

◦ with no argument, list code around current execution location
◦ with argument line number, list code around line number

• quit command terminate gdb.

(gdb) run
. . .
Breakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };
1: a[0] = 67568
(gdb) quit
The program is running. Exit anyway? (y or n) y

4 Software Engineering
• Software Engineering(SE) is the social process of designing, writing, and

maintaining computer programs.

• SE attempts to find good ways to help people understand and develop
software.

• However, what is good for people is not necessarily good for the computer.

•Many SE approaches are counter productive in the development of
high-performance software.

1. The computer does not execute the documentation!
◦ Documentation is unnecessary to the computer, and significant amounts

of time are spent building it so it can be ignored (program comments).
◦ Remember, thetruth is always in the code.
◦ However, without documentation, developers have difficulty designing

and understanding software.
2. Designing by anthropomorphizing the computer is seldom agood

approach (desktops/graphical interfaces).
3. Compiler spends significant amounts of timeundoing SE design and

coding approaches to generate efficient programs.

404

CS 246 405

• It is important to know these differences to achieve a balance between
programs that are good for people and good for the computer.

4.1 Software Crisis
• Large software systems (> 100,000 lines of code) require many people and

months to develop.

• These projects too often emerge late, over budget, and do notwork well.

• Today, hardware costs are low, and people costs are high.

•While commodity software is available, someone still has towrite it.

• Since people produce software⇒ software cost is great.

• Coupled with a shortage of software personnel⇒ problems.

• Unfortunately, software is complex and precise, which requires time and
patience.

• Errors occur and cost money if not lives, e.g., Ariane 5, Therac–25, Intel
Pentium division error, Mars Climate Orbiter, UK Child Support Agency,
etc.

CS 246 406

4.2 Software Development
• Techniques for program development for small, medium, and large systems.

•Objectives:

◦ plan and schedule project (requirements documents, UML, time-lines)
◦ produce reliable, flexible, efficient programs
◦ produce programs that are easily maintained
◦ reduce the cost of software
◦ reduce program failure

• E.g., a typical software project:

◦ estimate 12 months of work
◦ hire 3 people for 4 months
◦make up milestones for the end of each month

• However, first milestone is reached after 2 months instead of1.

• To finish on time, hire 2 more people, but:

◦ new people require training
◦ work must be redivided

This takes at least 1 month.

CS 246 407

• Now 2 months behind with 9 months of work to be done in 1 month by5
people.

• To get the project done:

◦must reschedule
◦ trim project goals

•Often, adding manpower to a late software project makes it later.

• Illustrates the need for a methodology to aid in the development of software
projects.

4.3 Development Processes
• There are different conceptual approaches for developing software:

CS 246 408

F1/3/4 F2/3 F2/4/5 F4/6
DC DCT RADCTD

F1/3/4
RADC

F1/5/6
RADCTD TD

agile

Time

RequirementsAnalysis Design Coding Testing Debugging

F1 F2 F3 F4 F5 F6
RADCTD RADCTD RADCTD RADCTD RADCTD RADCTD

F1/2 F3/4 F5/6
CTD CTD CTD

RequirementsAnalysis Design

waterfall

iterative

staged

waterfall : break down project based on activities that flow (down stream)
across a timeline.
◦ activities : (cycle of) Requirements, Analysis, Design, Coding, Testing,

Debugging (RADCTD).
◦ timeline : assign time to accomplish each activity up to project

CS 246 409

completion time
iterative/spiral : break down project based on functionality and divide

functions across a timeline
◦ functions (Fi) : (cycle of) acquire/verify data, process data, generate

data reports
◦ timeline : assign time to perform software cycle on each function up to

project completion time
staged delivery: combination of waterfall and iterative
◦ start with waterfall for analysis/design, and finish with iterative for

coding/testing
agile/extreme: short, intense iterations focused largely on code (versus

documentation)
◦ often analysis and design are done iteratively
◦ often coding/testing done in pairs

• Pure waterfall is problematic because all coding/testing comes at end⇒
major problems can appear near project deadline.

• Pure agile can leave a project with “just” working code, and little or no
testing / documentation.

• Selecting a process depends on:

CS 246 410

◦ kind/size of system
◦ quality of system (mission critical?)
◦ hardware/software technology used
◦ kind/size of programming team
◦ working style of teams
◦ nature of completion risk
◦ consequences of failure
◦ culture of company

•Meta-processes specifying the effectiveness of processes:

◦ Capability Maturity Model Integration (CMMI)
◦ International Organization for Standardization (ISO) 9000

•Meta-requirements

◦ procedures cover key aspects of processes
◦monitoring mechanisms
◦ adequate records
◦ checking for defects, with appropriate and corrective action
◦ regularly reviewing processes and its quality
◦ facilitating continual improvement

CS 246 411

4.4 Software Methodology
• System Analysis (next year)

◦ Study the problem, the existing systems, the requirements,the feasibility.
◦ Analysis is a set of requirements describing the system inputs, outputs,

processing, and constraints.

• System Design

◦ Breakdown of requirements into modules, with their relationships and
data flows.
◦ Results in a description of the various modules required, and the data

interrelating these.

• Implementation

◦ writing the program

• Testing & Debugging

◦ get it working

•Operation & Review

◦ was it what the customer wanted and worth the effort?

• Feedback

CS 246 412

◦ If possible, go back to the above steps and augment the project as needed.

4.4.1 System Design

• Two basic strategies exist to systematically modularize a system:

◦ top-down or functional decomposition
◦ bottom-up

• Both techniques have much in common and so examine only one.

4.4.2 Top-Down

• Start at highest level of abstraction and break down probleminto cohesive
units, i.e., divide & conquer.

• Then refine each unit further generating more detail at each division.

• Each subunit is divided until a level is reached where the parts are
comprehensible, and can be coded directly.

• This recursive process is calledsuccessive refinementor factoring.

• Unit are independent of a programming language, but ultimately must be
mapped into constructs like:

◦ generics (templates)

CS 246 413

◦modules
◦ classes
◦ routines

• Details look at data and control flow within and among units.

• Implementation programming language is often chosen only after the
system design.

• Factoring goals:

◦ reduce module size :≈ 30-60 lines of code, i.e., 1-2 screens with
documentation
◦make system easier to understand
◦ eliminate duplicate code
◦ localize modifications

• Stop factoring when:

◦ cannot find a well defined function to factor out
◦ interface becomes too complex

• Avoid having the same function performed in more than one module (create
useful general purpose modules)

CS 246 414

• Separate work from management:

◦ Higher-level modules only make decisions (management) andcall other
routines to do the work.
◦ Lower-level modules become increasingly detailed and specific,

performing finer grain operations.

• In general:

◦ do not worry about little inefficiencies unless the code is executed a
LARGE number of times
◦ put thought into readability of program

4.5 Design Quality
• System design is a general plan for attacking a problem, but leads to

multiple solutions.

• Need the ability to compare designs.

• 2 measures: coupling and cohesion

• Low (loose) coupling is a sign of good structured and design;high cohesion
supports readability and maintainability.

CS 246 415

4.5.1 Coupling

• Coupling measures the degree of interdependence among programming
“modules”.
• Aim is to achieve lowest coupling or highest independence (i.e., each

module can stand alone or close to it).
• A module can be read and understood as a unit, so that changes have

minimal effect on other modules and possible to isolate it for testing
purposes (like stereo components).
• 5 types of coupling in order of loose to tight (low to high):

1.Data : modules communicate using arguments/parameters containing
minimal data.
◦ E.g.,sin(x), avg(marks)

2.Stamp : modules communicate using only arguments/parameters
containing extra data.
◦ E.g., pass aggregate data (array/structure) with some elements/fields

unused
◦ problem: accidentally change other data
◦modules may be less general (e.g., average routine passed anarray of

records)

CS 246 416

◦ stamp coupling is common because data grouping is more important
than coupling

3.Control : pass data using arguments/parameters to effect control flow.
◦ E.g., module calculate 2 different things depending on a flag
◦ bad when flag is passed down, worse when flag is passed up

4.Common : modules share global data.
◦ cannot control access since scope rule allows many modules to access

the global variables
◦ difficult to find all references reading/writing global variables

5.Content : modules share information about type, size and structure of
data, or methods of calculation
◦ changes effect many different modules (good/bad)
◦ avoid friend routine/class unless friend module is logically nested but

extracted for technical reasons.

4.5.2 Cohesion

• Cohesionmeasures degree of association among elements within a module
(how focused).

• Elements can be a statement, group of statements, or calls toother modules.

CS 246 417

• Alternate names for cohesion: binding, functionality, modular strength.

• Highly cohesive module has strongly and genuinely related elements.

• If modules have low cohesion (module elements are related)⇒ tight
coupling.

• If modules have high cohesion (module elements are NOT related)⇒ loose
coupling.

• 7 types of cohesion (high to low):

1.Functional : modules elements all contribute to computation of one and
only one problem related task (Single Responsibility Principle).
◦ E.g.,sin(x), avg(marks), Car {. . .}, Driver {. . .}
◦ coupling is excellent

2.Sequential: module elements interact as producer/consumer, i.e., output
data from one activity is input data to next.

print(process(getword(word))); // read -> process -> print (shell pipe)

◦ similar to functional, except possibly mandates sequencesof use
◦ coupling is good

3.Communicational : module elements contribute to activities that use the
same data.

CS 246 418

find(book, title);
find(book, price);
find(book, ISBN);
find(book, author);

◦ all have same input data
◦ like sequential but order is not important
◦ coupling is acceptable
◦ usually improve maintainability by splitting common module into

separate, functional ones
4.Procedural : module elements involved in different and possibly

unrelated activities, but which flow from one activity to thenext.

file = open(filename); // open connection to file name
read(file); // read file contents
close(file); // close connection to file name

◦ related by order of execution rather than by any single problem-related
function
◦ typically data sent to procedure modules is unrelated to data sent back
◦ procedural modules pass around partial results

5.Temporal : module elements involved in activities related in time.

CS 246 419

initialization
- turn things on
- turn things off
- set things to 0
- set things to 1
- set things to ’ ’

◦ unrelated except carried out at particular time
◦ each initialization is more closely related to the modules that make use

of it ⇒ tight coupling
◦ want to re-initialize only some of the entities in initialization routine
◦ like procedural, except order of execution is more important in

procedural
6.Logical : module elements contribute to same general category, where

activity is selected from outside the module.

#include <algorithms>
find . . .
swap . . .
search . . .
sort . . .
inner product . . .
◦modules contain number of activities of some general kind

CS 246 420

◦ to use, pick out just one of the pieces needed
◦ interface weak, and contains code sharing common lines of code and/or

data areas
7.Coincidental : module elements grouped arbitrarily.
◦ activities are related neither by flow of data nor control
◦ like logical, internal activity must be externally selected, but worse

since categories in the module are very weakly related

4.6 Design Principles
• low coupling, high cohesion (logical modularization)
• good interfaces (abstraction and encapsulation)
• type reuse (type inheritance)
• code reuse (implementation inheritance, physical modularization)
• indirection (data/routine pointers) to generalize objects

4.7 Design Patterns
• Design patternshave existed since people/trades developed formal

approaches.

CS 246 421

• E.g., chef’s cooking meals, musician’s writing/playing music, mason’s
building pyramid/cathedral.
• Pattern is a common/repeated issue; it can be a problem or a solution.
• Name and codify common patterns for educational and communication

purposes.
• Software pattern are solutions to problems:
◦ name : descriptive name
◦ problem : kind of issues pattern can solve
◦ solution : general elements composing the design, with relationships,

responsibilities, and collaborations
◦ consequences : results/trade-offs of pattern (alternative/implementation

issues)
• Patterns help:
◦ extend developers’ vocabulary

Squadron Leader: Top hole. Bally Jerry pranged his kite right in
the how’s your father. Hairy blighter, dicky-birdied, feathered back
on his Sammy, took a waspy, flipped over on his Betty Harper’s and
caught his can in the Bertie.
– RAF Banter, Monty Python

CS 246 422

◦ offer higher-level abstractions than routines or classes

4.7.1 Pattern Catalog

creational structural behavioural
class factory method adapter interpreter

template
object abstract factory adapter responsibility chain

builder bridge command
prototype composite iterator
singleton decorator mediator

facade memento
flyweight observer
proxy state

strategy
visitor

• Scope : applies to classes or objects
◦ class pattern– relationships among classes and subclasses (static

inheritance)
◦ object pattern – relationships among objects (dynamic creation and

association)

CS 246 423

• Purpose : what a pattern does

◦ creational : classes defer construction through inhertiance / objects defer
creation to other objects
◦ structural : composition via inherited classes or assembled objects
◦ behavioural : classes describes algorithm or control-flow /objects

cooperate to perform task

4.7.1.1 Class Patterns

factory method : generalize creation of product with multiple variants

struct Pizza {. . .}; // product
struct Pizzeria { // creator

enum Kind { It, Mg, Ch, Dd }; // styles
virtual Pizza *order(Kind p) = 0;

};
struct Italian : public Pizzeria { // concrete creator (factory)

Pizza *order(Kind p); // create italian/margarita style
};
struct Chicago : public Pizzeria { // concrete creator

Pizza *order(Kind p); // create chicago/deep-dish style
};

CS 246 424

Italian italian; Chicago chicago; // factories
enum Kind { It, Mg, Ch, Dd };
Pizza *dispatch(Kind pizza) { // parameterized creator

switch (pizza) {
case It: case Mg: return italian.order(Pizzeria::Mg);
case Ch: case Dd: return chicago.order(Pizzeria::Dd);
default : ; // error

}
}
Pizza *p = dispatch(It);
p = dispatch(Ch);

• product (Pizza) objects are consistent across all factories (could be
subclassed)
• clients get a concrete product (Pizza) from the creator (directly or

indirectly), but product type is unknown
• client interacts with product object through its abstract interface (Pizza)

CS 246 425

adapter/wrapper : convert interface into another

struct Stack { struct Vector {
virtual void push(. . .); virtual push back(. . .);
virtual void pop(. . .); virtual pop back(. . .);

}; };
struct VStack : public Stack, private Vector { // adapter/wrapper

void push(. . .) { . . . push back(. . .); . . . }
void pop(. . .) { pop back(. . .); }

};
void p(Stack &s) { . . . }
VStack vs; // use VStack code with Stack routine
p(vs);

• VStack is polymorphic withStack but implementspush/pop with
Vector::push back/ Vector::pop back.

CS 246 426

template method: provide algorithm but defer some details to subclass

class PriceTag { // template method
virtual string label() = 0; // details for subclass
virtual string price() = 0;
virtual string currency() = 0;

public :
string tag() { return label() + price() + currency(); }

};
class FurnitureTag : public PriceTag { // actual method

string label() { return "furniture "; }
string price() { return "$1000 "; }
string currency() { return "Cdn"; }

};
FurnitureTag ft;
cout << ft.tag() << endl;

• template-method routines are non-virtual, i.e., not overridden

CS 246 427

4.7.1.2 Object Patterns

abstract factory : generalize creation of family of products with multiple
variants

struct Food {. . .}; // abstract product
struct Pizza : public Food {. . .}; // concrete product
struct Burger : public Food {. . .}; // concrete product
struct Restaurant { // abstract factory product

enum Kind { Pizza, Burger };
virtual Food *order(Kind f) = 0;
virtual int staff() = 0;

};
struct Pizzeria : public Restaurant { // concrete factory product

Food *order(Kind f) {}
int staff() {. . .}

};
struct Burgers : public Restaurant { // concrete factory product

Food *order(Kind f) {}
int staff() {. . .}

};

CS 246 428

enum Type { PizzaHut, BugerKing };
struct RestaurantFactory { // abstract factory

Restaurant *create(Type t) {}
};
struct PizzeriaFactory : RestaurantFactory { // concrete factory

Restaurant *create(Type t) {}
};
struct BurgerFactory : RestaurantFactory { // concrete factory

Restaurant *create(Type t) {}
};
PizzeriaFactory pizzeriaFactory;
BurgerFactory burgerFactory;
Restaurant *pizzaHut = pizzeriaFactory.create(PizzaHut);
Restaurant *burgerKing = burgerFactory.create(BugerKing);
Food *dispatch(Restaurant::Kind food) { // parameterized creator

switch (food) {
case Restaurant::Pizza: return pizzaHut->order(Restaurant::Pizza);
case Restaurant::Burger: return burgerKing->order(Restaurant::Burger
default : ; // error

}
}

• use factory-method pattern to construct generated product(Food)

CS 246 429

• use factory-method pattern to construct generated factory(Restaurant)
• clients obtains a concrete product (Pizza, Burger) from a concrete factory

(PizzaHut, BugerKing), but product type is unknown
• client interacts with product object through its abstract interface (Food)

CS 246 430

singleton: single instance of class

.h file .cc file

class Singleton {
struct Impl {

int x, y;
Impl(int x, int y);

};
static Impl impl;

public :
void m();

};

#include "Singleton.h"
Singleton::Impl Singleton::impl(3, 4);
Singleton::Impl::Impl(int x, int y)

: x(x), y(y) {}
void Singleton::m() { . . . }

Singleton x, y, z; // all access same value

• Allow different users to have they own declaration but stillaccess same
value.

Database database; // user 1
Database db; // user 2
Database info; // user 3

• Alternative is global variable, which forces name and may violate
abstraction.

CS 246 431

composite: interface for complex composite object

struct Assembly { // composite type
string partNo();
string name();
double price();
void insert(Assembly assm);
void remove(string partNo);
struct Iterator {. . .};

};
class Engine : public Assembly {. . .};
class Transmission : public Assembly{. . .};
class Wheel : public Assembly {. . .};
class Car : public Assembly {. . .};
class Stove : public Assembly {. . .};
// create parts for car
Car c; // composite object
c.insert(engine);
c.insert(transmission);
c.insert(wheel);
c.insert(wheel);

• recursive assembly type creates arbitrary complex assembly object.

CS 246 432

• vertices are subassemblies; leafs are parts
• since composite type defines both vertices and leaf, all members may not

apply to both

CS 246 433

iterator : abstract mechanism to traverse composite object

double price = 0.0;
Assembly::Iterator c(car);
for (part = c.begin(engine); part != c.end(); ++part) { // engine cost

price += part->price();
}

• iteration control: multiple starting/ending locations;
depth-first/breath-first, forward/backward, etc.; level of traversal
• iterator may exist independently of a composite design-pattern

CS 246 434

adapter : convert interface into another

struct Stack { struct Vector {
virtual void push(. . .); virtual push back(. . .);
virtual void pop(. . .); virtual pop back(. . .);

}; };
struct VecToStack : public Stack { // adapter/wrapper

Vector &vec;
VectortoStack(Vector &vec) : vec(vec) {}
void push(. . .) { . . . vec.push back(. . .); . . . }
void pop(. . .) { vec.pop back(. . .); }

};
void p(Stack &s) { . . . }
Vector vec;
VecToStack vtos(vec); // any Vector
p(vtos);

• specific conversion fromVector to Stack

CS 246 435

proxy : frontend for another object to control access

struct DVD {
void play(. . .);
void pause(. . .);

};
struct SPVR : public DVD { // static

void play(. . .) { . . . DVD::play(. . .); . . . }
void pause(. . .) { . . . DVD::pause(. . .); . . . }

};
struct DPVR : public DVD { // dynamic

DVD *dvd;
DPVR() { dvd = NULL; }
~DPVR() { if (dvd != NULL) delete dvd; }
void play(. . .) { if (dvd == NULL) dvd = new T; dvd->play(. . .); . . . }
void pause(. . .) { . . . don’t need dvd, no pause . . . }

};

• proxy extends object’s type
• reverse structure of template method
• dynamic approach lazily creates control object

CS 246 436

decorator : attach additional responsibilities to an object dynamically

struct Window {
virtual void move(. . .) {. . .}
virtual void lower(. . .) {. . .}
. . .

}; };
struct Scrollbar : public Window { // specialize

enum Kind { Hor, Ver };
Window &window;
Scrollbar(Window &window, Kind k) : window(&window), . . . {}
void scroll(int amt) {. . .}

};
struct Title : public Window { // specialize

. . .
Title(Window &window, . . .) : window(window), . . . {}
setTitle(string t) {. . .}

};
Window w;
Title(Scrollbar(Scrollbar(w, Ver), Hor), "title") decorate;

• decorator only mimics object’s type through base class
• allows decorator to be dynamically associated with different object’s, or

CS 246 437

same object to be associated with multiple decorators

CS 246 438

observer: 1 to many dependency⇒ change updates dependencies

struct Fan { // abstract
Band &band;
Fan(Band &band) : band(band) {}
virtual void update(CD cd) = 0;

};
struct Band {

list<Fan *> fans; // list of fans
static void perform(Fan *fan) { fan->update(); }
void attach(Fan &fan) { fans.push back(&fan); }
void deattach(Fan &fan) { fans.remove(&fan); }
void notify() { for each(fans.begin(), fans.end(), perform); }

};
struct Groupie : public Fan { // specialize

Groupie(Band &band) : Fan(band) { band.attach(*this); }
~Groupie() { band.deattach(*this); }
void update(CD cd) { buy/listen new cd }

};
Band dust;
Groupie g1(dust), g2(dust); // register
dust.notify(); // inform fans about new CD

•manage list of interested objects, and push new events to each

CS 246 439

• alternative design has interested objects pull the events from the observer
◦⇒ observer must store events until requested

CS 246 440

visitor : perform operation on elements of heterogeneous container

struct PrintVisitor {
void visit(Wheel &w) { print wheel }
void visit(Engine &e) { print engine }
void visit(Transmission &t) { print transmission }
. . .

};
struct Part {

virtual void action(Visitor &v) = 0;
};
struct Wheel : public Part {

void action(Visitor &v) { v.visit(*this); } // overload
};
struct Engine : public Part {

void action(Visitor &v) { v.visit(*this); } // overload
};
. . .

CS 246 441

PrintVisitor pv;
list<Part *> ps;
for (int i = 0; i < 10; i += 1) {

ps.push back(add different car parts);
}
for (list<Part *>::iterator pi = ps.begin(); pi != ps.end(); ++pi) {

(*pi)->action(pv);
}

• each part has a generalaction that is specialized by visitor
• different visitors perform different actions or dynamically vary the action
• compiler statically selects appropriate overloaded version ofvisit in action

4.8 Testing
• A major phase in program development is testing (> 50%).

• This phase often requires more time and effort than design and coding
phases combined.

• Testing is not debugging.

• Testing is the process of “executing” a program with the intent of
determining differences between the specification and actual results.

CS 246 442

◦Good test is one with a high probability of finding a difference.
◦ Successful test is one that finds a difference.

• Debugging is the process of determining why a program does not have an
intended testing behaviour and correcting it.

4.8.1 Human Testing

• Human Testing : systematic examination of program to discover problems.

• Studies show 30–70% of logic design and coding errors can be detected in
this manner.

• Code inspectionteam of 3-6 people led by moderator (team leader)
looking for problems, often “grilling” the developer(s):

◦ data errors: wrong types, mixed mode, overflow, zero divide,bad
subscript, initialization problems, poor data-structure
◦ logic errors: comparison problems (== / !=, < / <=), loop initialization /

termination, off-by-one errors, boundary values, incorrect formula, end
of file, incorrect output
◦ interface errors: missing members or member parameters, encapsulation

/ abstraction issues

CS 246 443

•Walkthrough : less formal examination of program, possibly only 2-3
developers.

• Desk checking: single person “plays computer”, executing program by
hand.

4.8.2 Machine Testing

•Machine Testing : systematic running of program using test data designed
to discover problems.

◦ speed up testing, occur more frequently, improve testing coverage,
greater consistency and reliability, use less people-timetesting

• Commercial products are available.

• Should be done after human testing.

• Exhaustive testing is usually impractical (too many cases).

• Test-case designinvolves determining subset of all possible test cases with
the highest probability of detecting the greatest number oferrors.

• Two major approaches:

◦ Black-Box Testing : program’s design / implementation is unknown
when test cases are drawn up.

CS 246 444

◦White-Box Testing : program’s design / implementation is used to
develop the test cases.
◦Gray-Box Testing : only partial knowledge of program’s design /

implementation know when test cases are drawn up.

• Start with the black-box approach and supplement with white-box tests.

• Black-Box Testing

◦ equivalence partitioning : completeness without redundancy
∗ partition all possible input cases into equivalence classes
∗ select only one representative from each class for testing
∗ E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

∗ 3 equivalence classes, plus invalid hours
∗ Since there are many types of invalid data, invalid hours canalso be

partitioned into equivalence classes
◦ boundary value testing
∗ test cases which are below, on, and above boundary cases

CS 246 445

39, 40, 41 (hours) valid cases
44, 45, 46 ”
0, 1, 2 ”
-2, -1, 0 ” invalid cases
59, 60, 61 ”

◦ error guessing
∗ surmise, through intuition and experience, what the likelyerrors are

and then test for them

•White-Box (logic coverage) Testing

◦ develop test cases to cover (exercise) important logic paths through
program
◦ try to test every decision alternative at least once
◦ test all combinations of decisions (often impossible due tosize)
◦ test every routine and member for each type
◦ cannot test all permutations and combinations of execution

• Test Harness: a collection of software and test data configured to run a
program (unit) under varying conditions and monitor its outputs.

4.8.3 Testing Strategies

CS 246 446

• Unit Testing : test each routine/class/module separately before integrated
into, and tested with, entire program.

◦ requires construction of drivers to call the unit and pass ittest values
◦ requires construction of stub units to simulate the units called during

testing
◦ allows a greater number of tests to be carried out in parallel

• Integration Testing : test if units work together as intended.

◦ after each unit is tested, integrate it with tested system.
◦ done top-down or bottom-up : higher-level code is drivers, lower-level

code is stubs
◦ In practice, a combination of top-down and bottom-up testing is usually

used.
◦ detects interfacing problems earlier

•Once system is integrated:

◦ Functional Testing : test if performs function correctly.
◦ Regression Testing: test if new changes produce different effects from

previous version of the system (diff results of old / new versions).
◦ System Testing: test if program complies with its specifications.

CS 246 447

◦ Performance Testing: test if program achieves speed and throughput
requirements.
◦ Volume Testing : test if program handles difference volumes of test data

(small⇔ large), possibly over long period of time.
◦ Stress Testing: test if program handles extreme volumes of data over a

short period of time with fixed resources, e.g., can air-traffic
control-system handle 250 planes at same time?
◦ Usability Testing : test whether users have the skill necessary to operate

the system.
◦ Security Testing : test whether programs and data are secure, i.e., can

unauthorized people gain access to programs, files, etc.
◦ Acceptance Testing: checking if the system satisfies what the client

ordered.

• If a problem is discovered, make up additional test cases to zero in on the
issue and ultimately add these tests to the test suite for regression testing.

4.8.4 Tester

• A program should not be tested by its writer, but in practice this often
occurs.

CS 246 448

• Remember, the tester only tests whatthey think it should do.

• Any misunderstandings the writer had while coding the program are carried
over into testing.

• Ultimately, any system must be tested by the client to determine if it is
acceptable.

• Points to the need for a clear specification to protect both the client and
developer.

Index

!, 15, 85
!=, 85, 147
"", 190
", 12, 157
#, 2
#, 186
#define , 186
#elif , 191
#else , 191
#endif , 191
#if , 191
#ifdef , 191
#ifndef , 191
#include , 189
$, 2, 40
${}, 40

%, 2
&, 85, 87, 102, 125
&&, 85, 102
&=, 85
’, 12, 82
*, 85, 87, 125, 139
*/, 74
*=, 85
+, 85, 147
++, 90, 335
+=, 85, 90
,, 85, 90, 105
-, 85
--, 90, 335
-=, 85, 90
->, 85

449

CS 246 450

-L, 362
-MD, 373
-MMD, 372
-O, 361
-S, 361
-W, 360
-c, 284, 361
-g, 361, 395
-l, 362
-o, 285, 362
-v, 361
., 85
., 139
.C, 73
.c, 73
.cc, 73, 289
.cpp, 73
.h, 189, 287
.snapshot, 24
/, 5, 85, 88

\, 11, 82
/*, 74
//, 75
/=, 85
:, 116
::, 85, 154, 258, 298
;, 75
;;, 60
<, 35, 85, 147
<<, 85, 88, 169, 232
<<=, 85
<=, 85, 147
<>, 190
<ctrl>-c, 13
<ctrl>-d, 36, 173
=, 16, 40, 85, 147
==, 85, 147, 243
>, 12, 35, 85, 147
>&, 35, 37
>=, 85, 147

CS 246 451

>>, 85, 88, 169, 232
>>=, 85
?:, 85, 102, 103
[], 55, 147, 208
%, 85, 89
%=, 85
&, 87, 125
{ }, 75, 97
^, 85
^=, 85
8, 11
|, 35, 85, 102
|=, 85
||, 85, 102
——, 102
~, 7, 85

a.out, 182, 362
absolute pathname, 6, 376
abstract, 158
abstract class, 319

pure, 323
abstract data-type, 259
abstract factory, 427
abstraction, 221, 259

procedural, 158
routine, 158

acceptance testing, 447
access control, 259
adapter, 425, 434
add, 380
ADT, 259
aggregates, 134
aggregation, 275
agile, 409
alias, 152, 302, 353
alias , 16, 24
allocation

array, 136, 208
dynamic, 203
array, 208

CS 246 452

heap, 205, 207, 334
array, 208

matrix, 209
stack, 97, 207

argc, 181, 182
argument, 162
argv, 181, 183
array, 122, 134, 136, 155, 156, 166,

167, 176, 181, 208, 227
2-D, 209
deallocation, 208
dimension, 134–136, 157, 166,

208, 337
parameter, 166

as, 362
assembler, 362
assertion, 192
assignment, 86, 89, 153, 235, 307

array, 136, 335
cascade, 89

initializing, 78
operator, 261, 295

association, 270
unidirectional, 270

association class, 274
atoi, 183
attribute, 268

backquote, 11
backslash, 6, 11, 82
backspace key, 3
backtrace, 396
backward branch, 117, 121
bang, 15
bash, 2, 44, 54
bash, 20
basic types, 77, 121

bool , 77
char , 77
double , 77
float , 77

CS 246 453

int , 77
wchar t, 77

behavioural, 328
bit field, 141
bitwise copy, 237
black-box testing, 443
block, 72, 97, 156

{ }, 75, 97
blueprint, 267
bool , 77, 82
boolalpha, 170
boundary value testing, 444
break , 102, 106, 121

labelled, 116
break, 398
breakpoint, 398

continue, 401
next, 400
step, 399

C-c, 13

C-d, 36, 173
c str, 147
call-back routine, 218
cascade, 170
cascade assignment, 89
case , 60, 101

;;, 60
pattern, 60

case-sensitive, 40, 76
cast, 85, 90, 93, 124, 156, 179, 213,

316
cat, 25, 386
cd , 14
cerr, 169
char , 77, 79, 82
checkin, 374
checkout, 374
checkout, 378
chevron, 85, 169, 232, 332
chgrp, 34

CS 246 454

chmod, 34
chsh, 20
cin, 169
class , 220, 261
class model, 267
class pattern, 422
classes diagram, 268
clear, 175
cmp, 26
code inspection, 442
coercion, 92, 124, 179, 205, 214

cast, 179
explicit, 93, 179
reinterpret cast , 179

cohesion, 416
coincidental, 420
comma expression, 90, 105, 209
command options, 3
command-line arguments, 181

argc, 181, 182

argv, 181, 183
main, 181

command-line interface, 1
comment, 2, 73–75

#, 2
*/, 74
/*, 74
//, 75
nesting, 74, 75
out, 74, 191

commit, 381
common coupling, 416
communicational, 417
compilation, 73, 359

g++, 73
compiler, 73, 359

options
-D, 187, 360
-E, 359
-I, 360

CS 246 455

-L, 362
-MD, 373
-MMD, 372
-O, 361
-S, 361
-W, 360
-c, 284, 361
-g, 361, 395
-l, 362
-o, 285, 362
-v, 361

separate compilation, 192, 255
composite, 431
composition, 276, 296, 326

explicit, 296
concrete class, 322
conditional expression evaluation,

102
&&, 102
?:, 102

||, 102
partial evaluation, 102
short-circuit, 102

conditional inclusion, 190
const , 83, 131, 165, 188, 221
constant, 81, 84, 221, 289

initialization, 188
parameter, 165
variable, 84

construction, 297
constructor, 122, 225, 226, 297, 306

const member, 244
copy, 235, 261, 307
implicit conversion, 230
literal, 229
passing arguments to other

constructors, 306
type, 121

container, 333
deque, 333

CS 246 456

list, 333
map, 333
queue, 333
stack, 333
vector, 333, 335

content coupling, 416
contiguous object, 233
continue , 106

labelled, 116
continue, 401
contra-variance, 305
control coupling, 416
control structure, 96

block, 96, 97
{ }, 75, 97

conditional expression evaluation,
102

&&, 102
?:, 102
||, 102

partial evaluation, 102
short-circuit, 102

looping, 96, 103
break , 64
continue , 64
do , 104
for , 63, 104
while , 61, 103

selection, 96, 99
break , 102
case , 60, 101
dangling else, 99
default , 102
else , 99
if , 58, 99
pattern, 60
switch , 100, 183
test, 55

short-circuit expression evaluation,
102

CS 246 457

transfer, 96
conversion, 90, 124, 148, 230

cast, 85, 90
dynamic cast , 316
explicit, 90, 213
implicit, 90, 163, 212, 230
narrowing, 91
promotion, 91
static cast , 90
widening, 91

copy constructor, 236, 261, 295
copy-modify-merge model, 374
coupling, 415
cout, 169
cp, 22, 385
cpp, 359
create, 376
csh, 2, 45, 54
csh, 20
current directory, 6–8, 14, 15, 21

current stack frame, 398

dangling else, 99
dangling pointer, 206, 242
data coupling, 415
data member, 138
dbx, 394
debug print statements, 196
debugger, 393
Debugging, 195
debugging, 195, 442
dec, 170
declaration, 76

basic types, 77
const , 188
type constructor, 121
type qualifier, 78
variable, 77

Declaration Before Use, 255
declaration before use, 253
decorator, 436

CS 246 458

deep compare, 243
deep copy, 239, 243
default

parameter, 215
default , 102
default constructor, 225
default initialized, 156
default value, 166, 225

parameter, 166
delegation, 328
delete , 203

[], 208
delete key, 3
dependence, 363
deque, 333, 346
dereference, 40, 87, 125
dereferencing, 125
design patterns, 420
desk checking, 443
desktop, 1

destruction, 297
explicit, 233
implicit, 233
order, 234

destructor, 232, 297, 306
diff, 26
dimension, 134–136, 157, 166, 208,

337
do , 104
documentation, 73
double , 77, 82
double quote, 12, 47
downcast, 316
duplicate code, 158
dynamic allocation, 227
dynamic storage management, 203,

234
dynamic cast , 316

eager evaluation, 103
echo , 18

CS 246 459

egrep, 29
else , 99
encapsulation, 259, 334
end of file, 173
end of line, 72
endl, 72, 170
Enter key, 2
enum , 122, 188
enumeration, 122
enumerator, 122
eof, 173
equivalence

name, 152
structural, 152

equivalence partitioning, 444
error guessing, 445
escape, 11
escape sequence, 144
Escape sequence, 82
escaped, 55

evaluation
eager, 103
lazy, 102
partial, 102
short-circuit, 102, 113

event programming, 218
execute, 32
execution error, 201
exit

static multi-exit, 111
static multi-level, 115

exit , 19
exit, 72
exit status, 19, 20, 48
explicit coercion, 93, 179
explicit conversion, 90, 213
export, 281, 290
expression, 85
extreme, 409
Eye Candy, 109

CS 246 460

factoring, 158, 412
factory method, 423
fail, 169, 173
false , 91
feof, 176
file

.h, 189
opening, 169

file inclusion, 189
file management

file permission, 32
input/output redirection, 35
<, 35
>&, 35
>, 35
|, 35

file permission
execute, 32
group, 32
other, 32

read, 32
search, 32
user, 32
write, 32

file suffix
.C, 73
.c, 73
.cc, 73, 289
.cpp, 73
.h, 287
.o, 285

files, 4
input/output redirection, 35

find, 28, 147
find first not of, 147
find first of, 147
find last not of, 147
find last of, 147
fix-up routine, 217
fixed, 170

CS 246 461

flag variable, 112
float , 77, 81
for , 63, 104
for each, 349
format

I/O, 170
formatted I/O, 168, 169
forward branch, 117
forward declaration, 254
frame, 398
free, 203
free, 203
friend , 263
friendship, 263, 299
fstream, 169
function, 159
function member, 138
function-call operator, 252
functional, 417
functional testing, 446

functor, 252, 350

g++, 73, 135, 156, 229, 359
garbage collection, 203
gdb

backtrace, 396
break, 398
breakpoint, 398
continue, 401
next, 400
step, 399

continue, 401
frame, 398
info, 399
list, 402
next, 400
print, 396
run, 395
step, 399

gdb, 394
generalization, 325

CS 246 462

generate, 267
globbing, 7, 11, 28, 31, 60
gmake, 367
goto , 116, 120, 121

label, 116
graphical user interface, 1
gray-box testing, 444
group, 32

has-a, 297, 326
heap, 162, 205, 207, 334

array, 208
help , 13
heterogeneous values, 138, 142
hex, 170
hidden file, 9, 21, 24
history , 15
home directory, 6, 14
homogeneous values, 134
hot spot, 195
human testing, 442

I/O
cerr, 169
cin, 169
clear, 175
cout, 169
fail, 169
formatted, 169
fstream, 169
ifstream, 169
ignore, 176
iomanip, 170
iostream, 169
manipulators, 170
boolalpha, 170
dec, 170
endl, 170
fixed, 170
hex, 170
left, 170
noboolalpha, 170

CS 246 463

noshowbase, 170
noshowpoint, 170
noskipws, 170
oct, 170
right, 170
scientific, 170
setfill, 170
setprecision, 170
setw, 170
showbase, 170
showpoint, 170
skipws, 170

ofstream, 169
identifier, 76, 116
if , 58, 99

?:, 102
dangling else, 99
else , 99

ifstream, 169
ignore, 176

implementation, 287
implementation inheritance, 295
implicit conversion, 90, 163, 212,

230
import, 281, 287
import, 377
indirection, 128
info, 399
Inheritance, 329
inheritance, 295, 326

implementation, 295
type, 295, 300

initialization, 155, 225, 229, 235,
244, 297, 306, 307

array, 156
forward declaration, 258
string, 157
structure, 156

inline , 188
input, 72, 167, 171

CS 246 464

>>, 232
end of file, 173
eof, 173
fail, 173
feof, 176
formatted, 169
manipulators
iomanip, 170
noskipws, 170
skipws, 170

standard input
cin, 169

input/output redirection, 35
filter
|, 35

input
<, 35

output
>, 35
>&, 35

int , 77, 79, 82
INT16 MAX, 80, 81
INT16 MIN, 80, 81
int16 t, 80, 81
INT32 MAX, 80
INT32 MIN, 80
int32 t, 80
INT64 MAX, 80
INT64 MIN, 80
int64 t, 80
INT8 MAX, 80
INT8 MIN, 80
int8 t, 80
INT MAX, 79
INT MIN, 79
integral type, 141
integration testing, 446
interaction model, 267
interface, 158, 221, 287
interface class, 323

CS 246 465

interfaces, 158
iomanip, 170
iostream, 72, 169
is-a, 300, 301, 326
iteration statement

break , 106
continue , 106

iterative, 409
iterator, 334, 433

++, 335
--, 335
for each, 349

keyword, 76
keywords, 40
ksh, 2

label, 116
label variable, 116
language

preprocessor, 357
programming, 357

template, 357
lazy evaluation, 102
ld, 362
left, 170
less, 25
linker, 362
list, 333, 346, 402

back, 347
begin, 348
clear, 347
empty, 347
end, 348
erase, 348
front, 347
insert, 348
pop back, 347
pop front, 347
push back, 347
push front, 347
begin, 348

CS 246 466

end, 348
size, 347

literal, 81–83, 144, 155, 172
bool , 82
char , 82
double , 82
escape sequence, 82
initialization, 155
int , 82
string, 82, 144
type constructor, 155

literals, 122
LLONG MAX, 79
LLONG MIN, 79
logical, 419
login, 1, 4
login shell, 53
logout, 4
long , 79
LONG MAX, 79

LONG MIN, 79
loop

mid-test, 108
multi-exit, 108

looping statement, 103
break , 64
continue , 64
do , 104
for , 63, 104
while , 61, 103

lp, 25
lpstat, 25
ls, 21, 32, 377

machine testing, 443
macros, 188
main, 72, 181, 255
make, 366
make, 367
malloc, 203
man, 21

CS 246 467

managed language, 203
manipulators, 170
map, 333, 342

begin, 345
end, 345
erase, 345
find, 345
insert, 345
begin, 345
end, 345

math library, 362
matrix, 135, 167, 209, 338
member, 138

anonymous, 297
const , 244
constructor, 225
destruction, 232, 297, 306
initialization, 225, 297, 306
object, 221
operator, 224

overloading, 224
pure virtual, 319, 322
static member, 246
virtual, 313, 317

member selection, 139
memberwise copy, 237
memory leak, 206, 209, 242
mid-test loop, 108
mixin, 326
mkdir, 22, 376
modularization, 157
modularize, 412
module, 157, 158
more, 25
multi-exit

loop, 108
mid-test, 108

multi-level exit
static, 115

multiple inheritance, 323

CS 246 468

mutually recursive, 254, 256
mv, 22, 384

name equivalence, 152, 301, 302,
304, 329

namespace, 72, 351
std, 72

narrowing, 91
navigable, 272
nesting, 298

blocks, 97, 98
comments, 74, 75
initialization, 156
preprocessor, 190
routines, 161
type, 153

new , 203
next, 400
noboolalpha, 170
non-contiguous, 233, 234
noshowbase, 170

noshowpoint, 170
noskipws, 170
npos, 147
NULL, 155, 190
null address, 127
null character, 145

object, 219, 220
anonymous member, 297
assignment, 235, 307
const member, 244
constructor, 225, 297, 306
copy constructor, 235, 261, 307
default constructor, 225
destructor, 232, 297, 306
initialization, 225, 306
literal, 229
member, 221
pure virtual member, 319, 322
static member, 246
virtual member, 313, 317

CS 246 469

object code, 362
object diagram, 273
object model, 267
object pattern, 422
object-oriented, 219, 295
observer, 438
oct, 170
ofstream, 169
open, 169

file, 169
operation, 269
operators

*, 87, 125
<<, 169, 232
>>, 169, 232
&, 87, 125
arithmetic, 85
assignment, 85
bit shift, 85
bitwise, 85

cast, 85
comma expression, 85
control structures, 85
logical, 85
overloading, 169, 224
pointer, 85, 87, 125
priority, 86
relational, 85
selection, 154, 298
string, 147
struct , 85

selection, 258
other, 32
output, 72, 167, 177

<<, 232
endl, 72
formatted, 169
manipulators
boolalpha, 170
dec, 170

CS 246 470

endl, 170
fixed, 170
hex, 170
iomanip, 170
left, 170
noboolalpha, 170
noshowbase, 170
noshowpoint, 170
oct, 170
right, 170
scientific, 170
setfill, 170
setprecision, 170
setw, 170
showbase, 170
showpoint, 170

standard error
cerr, 169

standard output
cout, 72, 169

overflow, 87
overload, 181
overloading, 169, 211, 224, 225, 232
override, 298, 304, 311, 313
overriding, 98

paginate, 25
parameter, 162

array, 166
constant, 165
default value, 166
pass by reference, 163
pass by value, 163
prototype, 255

parameter passing
array, 166

pass by reference, 163
pass by value, 163
pattern, 60, 421
pattern matching, 7
performance testing, 447

CS 246 471

pointer, 122, 124, 155
0, 155
array, 136, 208
matrix, 209
NULL, 155, 190

pointer variable, 127
polymorphic, 316
polymorphism, 301
Polymorphism, 327
preprocessor, 186, 357, 359, 372

#define , 186
#elif , 191
#else , 191
#endif , 191
#if , 191
#ifdef , 191
#ifndef , 191
#include , 189
file inclusion, 189
macros, 188

variable, 187, 360
print, 396
priority, 86
private , 260
procedural, 418
procedural abstraction, 158
procedure, 159
program

structure, 73
program structure, 73

block, 72
main, 72

project, 374
promotion, 91
prompt, 1, 2

$, 2
%, 2
>, 12

protected , 260
prototype, 253, 254

CS 246 472

proxy, 435
pseudo random-number generator,

250
pseudo random-numbers, 250
public , 138, 260
pure abstract-class, 323
pure virtual member, 319, 322
pwd , 15

queue, 333, 346
quoting, 11

random number, 249
generator, 250
pseudo-random, 250
seed, 252

Random-number generator, 250
read, 32
real time, 19
recursive type, 140
reference, 87, 122, 124, 125

initialization, 130

reference parameter, 163
referencing, 125
regression testing, 446
regular expressions, 7
reinterpret cast , 179
relative pathname, 6
replace, 147
repository, 374, 375
resolve, 392
return , 72, 159
return code, 19
Return key, 2
return type, 159
reuse, 295
revert, 383
rfind, 147
right, 170
rm, 23, 382
routine, 158

argument/parameter passing, 162

CS 246 473

array parameter, 166
function, 159
member, 221
parameter, 160
pass by reference, 163
pass by value, 163

procedure, 159
prototype, 253
return , 159
return type, 159
routine overloading, 212
routine prototype
forward declaration, 254

scope, 221
routine abstraction, 158
routine member, 138
routine pointer, 215
routine prototype, 254
run, 395

scientific, 170

scope, 221, 258, 352
script, 45
search, 32
security testing, 447
sed, 39
selection operator, 154
selection statement, 99

break , 102
case , 60, 101
default , 102
else , 99
if , 58, 99
pattern, 60
switch , 100, 183

self-assignment, 242
semantic error, 201
semi-colon, 58
semicolon, 75, 97, 138
sentinel, 145
separate compilation, 192, 281

CS 246 474

-c, 284
sequential, 417
setfill, 170
setprecision, 170
setw, 170
sh, 2, 45
sh, 20
sha-bang, 45
shell, 1

bash, 2, 54
csh, 2, 54
ksh, 2
login, 53
prompt, 2
$, 2
%, 2
>, 12

sh, 2
tcsh, 2

shell program, 45

shift , 57
short , 79
short-circuit, 55, 102
short-circuit expression evaluation,

102
||, 102

showbase, 170
showpoint, 170
SHRT MAX, 79
SHRT MIN, 79
signature, 254
signed , 79
single quote, 12
singleton, 430
size type, 147
sizeof , 87
sketch, 267
skipws, 170
slicing, 317
software development

CS 246 475

.cc, 289

.h, 287

.o, 285
separate compilation, 281

software engineering, 157, 404
source , 52
source file, 255, 259
source-code management, 373
source-code management-system,

374
spiral, 409
ssh, 31
stack, 97, 162
stack, 333, 346
stack allocation, 207
staged delivery, 409
stamp coupling, 415
statement, 75
static , 292
static block, 161, 247

static exit
multi-exit, 111
multi-level, 115

static multi-level exit, 115
static cast , 90
status, 383
std, 72
stderr, 169
stdin, 169
stdout, 169
step, 399
strcat, 147
strcpy, 147
strcspn, 147
stream

cerr, 169
cin, 169
clear, 175
cout, 169
fail, 169

CS 246 476

formatted, 169
fstream, 169
ifstream, 169
ignore, 176
input, 72
cin, 169
end of file, 173
eof, 173
fail, 173

manipulators
boolalpha, 170
dec, 170
endl, 170
fixed, 170
hex, 170
iomanip, 170
left, 170
noboolalpha, 170
noshowbase, 170
noshowpoint, 170

noskipws, 170
oct, 170
right, 170
scientific, 170
setfill, 170
setprecision, 170
setw, 170
showbase, 170
showpoint, 170
skipws, 170

ofstream, 169
output, 72
cout, 72
endl, 72

stream file, 169
stress testing, 447
string, 82, 144

C++
!=, 147
+, 147

CS 246 477

<, 147
<=, 147
=, 147
==, 147
>, 147
>=, 147
[], 147
c str, 147
find, 147
find first not of, 147
find first of, 147
find last not of, 147
find last of, 147
npos, 147
replace, 147
rfind, 147
size type, 147
substr, 147

C
[], 147

strcat, 147
strcpy, 147
strcspn, 147
strlen, 147
strncat, 147
strncpy, 147
strspn, 147
strstr, 147

literal, 144
null termination, 145

stringstream, 183
strlen, 147
strncat, 147
strncpy, 147
strspn, 147
strstr, 147
struct , 220, 261
structurally equivalent, 152
structure, 122, 137, 138, 155, 156,

219, 220

CS 246 478

member, 138, 220
data, 138
function, 138
initialization, 138
routine, 138

visibility
default, 138
public , 138

struct , 85
structured programming, 106
subscript, 135
subshell, 20, 45, 54
substitutability, 327
substr, 147
subversion, 374
successive refinement, 412
suffix

.C, 73

.c, 73

.cc, 73

.cpp, 73
svn, 374

add, 380
cat, 386
checkout, 378
commit, 381
cp, 385
import, 377
ls, 377
mkdir, 376
mv, 384
resolve, 392
revert, 383
rm, 382
status, 383
update, 388

svnadmin
create, 376

switch , 100, 183
break , 102

CS 246 479

case , 101
default , 102

syntax error, 200
system command, 366
system modelling, 265
system testing, 446
system time, 19

tab key, 10
target value, 128
target variable, 128
tcsh, 2
tcsh, 20
template, 329, 357

routine, 329
type, 330

template method, 426
template routine, 329
template type, 330
temporal, 418
terminal, 2, 4

test , 55
test harness, 445
test-case design, 443
Testing

Integration, 446
testing, 441

acceptance, 447
black-box, 443
functional, 446
gray-box, 444
harness, 445
human, 442
machine, 443
performance, 447
regression, 446
security, 447
stress, 447
system, 446
unit, 446
usability, 447

CS 246 480

volume, 447
white-box, 444

text merging, 374
this , 221
time , 18
time stamp, 365
token, 186
translation unit, 281
translator, 360
true , 91
type , 17
type aliasing, 152
type coercion, 179
Type constructor, 121
type constructor

array, 134
enumeration, 122, 188
literal, 155
pointer, 124
reference, 124

structure, 137
type aliasing, 152
union, 142

type conversion, 90, 212, 230, 316
type equivalence, 301, 304
type inheritance, 295, 301
type nesting, 153
type qualifier, 78, 80, 131

const , 83, 131
long , 79
short , 79
signed , 79
static , 292
unsigned , 79

type-constructor literal
array, 155
pointer, 155
structure, 155

typedef , 152, 353

UINT16 MAX, 80

CS 246 481

uint16 t, 80
UINT32 MAX, 80
uint32 t, 80
UINT64 MAX, 80
uint64 t, 80
UINT8 MAX, 80, 81
uint8 t, 80, 81
UINT MAX, 79
ULLONG MAX, 79
ULONG MAX, 79
undefined, 128
unformatted I/O, 168, 178
unidirectional association, 270
unified modelling language, 267
uninitialization, 232
uninitialized variable, 78, 128, 202,

205
union, 142
unit testing, 446
unmanaged language, 203

unsigned , 79
update, 388
usability testing, 447
user, 32
user time, 18
USHRT MAX, 79
using

declaration, 353
directive, 353

value parameter, 163
variable declarations

type qualifier, 78, 80
variables

constant, 84
dereference, 87, 125
reference, 87, 125

vector, 333, 335
[], 336
at, 336
begin, 340

CS 246 482

clear, 336
empty, 336
end, 340
erase, 340
insert, 340
pop back, 336
push back, 336
rbegin, 340
rend, 340
resize, 336, 339
size, 336

version control, 373
virtual , 313, 317
virtual members, 313, 317, 319, 322
visibility, 153

default, 138
private , 260
protected , 260
public , 138, 260

visitor, 440

void , 159
void *, 205
volume testing, 447

walkthrough, 443
waterfall, 408
wchar t, 77
which, 17
while , 61, 103
white-box testing, 444
whitespace, 73, 172, 186
widening, 91
wildcard, 7, 31

qualifier, 31
working copy, 374
wrapper, 425
wrapper member, 310
write, 32

xterm, 2, 4

zero-filled, 156

