UNIVERSITY OF

WATERLOO
School of Computer Science

CS 246
Object-Oriented Software Development

Course Material*
Winter 2013

http: //www.student.cs.uwaterloo.ca/ ~s246

*Permission is granted to make copies for personal or edunzdtiise.

Contents

1 Shell 1
1.1 FileSystem e 4
1.2 PatternMatching 7
1.3 Quoting e 11
1.4 ShellCommands 13
1.5 SystemCommands 2(
1.6 FilePermission 32
1.7 Input/Output Redirection 35
1.8 Variables 40
1.9 Arithmetic. 43
1.10 Programming e e e e 45

1.10.1 Routine 49
1.10.2 Environment Variables 52
1.10.3 Control Structures 54

CS 246 3

1.10.3.1 Test, 55

1.10.3.2 Shift L 57

1.10.3.3 Selection 58

1.10.3.4 Looping 61

1.11 Cleanup Script 65
1.12 Regress Script, 6¢

2 C++ 71

2.1 FirstProgram 71
2.2 Program Structure Lo 13
221 Comment, /3
222 Statement o Lo 75
2.3 Declaration 0 s 76
2.3.1 ldentifier 0L 76
2.3.2 BasicTypes 77
2.3.3 \Variable Declaration 77
2.3.4 TypeQualifier 78
235 Literals 0. 81
2.4 EXpression. e e 85
241 Conversion 90

2.4.2 Coercion 92

CS 246 4

2.4.3 MathOperations 93
2.5 Control Structures L 96
251 Block 97
2.5.2 Selection 99
2.5.3 Conditional Expression Evaluation. 102
254 Looping., 103
2.6 Structured Programming, 10¢
2.6.1 Multi-ExitLoop, 108
2.6.2 Multi-LevelExit00, 115
2.7 Type Constructor, 121
2.7.1 Enumeration 122
2.7.2 Pointer/Reference. 124
2.7.3 Aggregates oo, 134
2.7.3.1 Array. 134
2.7.3.2 Structure 137
2.7.3.3 Union 142
2.7.4 SUiNg e e e 144
2.7.5 TypeEquivalence 152
276 TypeNesting 153

2.7.7 Type-Constructor Literal 155

CS 246 5

2.8 Modularization o 157
2.9 Routine 158
2.9.1 Argument/ParameterPassing 16
2.9.2 Array Parameter 166
2.10 Input/Output 167
2.10.1 Formatted /O 169
2.10.1.1 Formats 170

2.10.1.2 Input 171

2.10.1.3 Output 177

2.10.2 Unformattedl/O 178
2.11 Command-line Arguments 18]
2.12 Preprocessor. i e e e e e e 18t
2.12.1 Variables/Substitution 186
2.12.2 FilelInclusion 189
2.12.3 Conditional Inclusion 190
2.13 ASSertions e e e, 192
2.14 Debugging e e e e 195
2.14.1 Debug Print Statements. 19
2.14.2 EIrors e 200

2.15 Dynamic Storage Management 20

CS 246 6

2.16 Overloading 211
2.17 RoutinePointer 215
2.18 Object e 219
2.18.1 ObjectMember 221
2.18.2 OperatorMember. 224
2.18.3 Constructor o0 225
2.18.3.1 Literal 229

2.18.3.2 Conversion. 230

2.18.4 Destructor. Lo 232
2.18.5 Copy Constructor / Assignment 238
2.18.6 Initialize const/ Object Member 244
2.18.7 StaticMember 246
2.19 RandomNumbers, 24
2.20 DeclarationBeforeUse 253
2.21 Encapsulation oo 25€
2.22 SystemModelling 0., 265
2221 UML 267
2.23 Separate Compilation L. 28!
2.24 Inheritance o 295

2.24.1 Implementation Inheritance 29"

CS 246 7

2.24.2 Typelnheritance 300
2.24.3 Constructor/Destructor 30¢
2.24.4 Copy Constructor / Assignment 30"
2245 Qverloading. 309
2.24.6 VirtualRoutine00 311
2247 Downcast Lo 316
2.24.8 Slicing, 317
2.24.9 ProtectedMembers 0L 31¢
2.24.10 AbstractClass 31€
2.24.11 Multiple Inheritance 323
224.12UML e 325

2.25 Composition / Inheritance Design 32
226 Template e 329
2.26.1 Standard Library 333
2.26.1.1 Vector, 335

226.1.2 Map 342

226.1.3 List., 346

2.26.1.4 foreach 349

2.27 Namespace i i e e 35!

3 Tools 357

CS 246

3.1
3.2

3.3

3.4

3.5

8

C/C++ Composition. 357
Compilation 358
3.2.1 Preprocessor e 35¢
3.22 Translator, 360
3.23 Assembler 362
3.24 Linker. 362

Compiling Complex Programs 362
3.3.1 Dependencies 363
3.3.2 Make 366
Source-Code Management 37
341 SVN . . ., 374

3.4.2 Repository 375
343 CheckingOut 378
344 Adding 379

3.45 Checkingln., 381
346 Modifying 382

3.4.7 RevisionNumber 386
348 Updating, 387
Debugger e 393

351 GDB 394

CS 246 9
4 Software Engineering 404

4.1 SoftwareCrisis e 405
4.2 Software Development 40¢€
4.3 DevelopmentProcesses 40
4.4 Software Methodology 411
4.4.1 SystemDesign 412

442 Top-Down 412

45 DesignQuality o, 414
451 Coupling 415

452 Cohesion 0. .. 416

4.6 DesignPrinciples00 420
47 DesignPatterns e 42(
47.1 PatternCatalog 422
4.7.1.1 ClassPatterns 42:

4.7.1.2 ObjectPatterns. 427

4.8 Testing. e e 441
48.1 HumanTesting 442

4.8.2 MachineTesting 443

4.8.3 TestingStrategies 44~

4.8.4 Tester e 447

CS 246 10
Index 449

1 Shell

e After signing onto a computer (login), a mechanism musttdrislisplay
iInformation and perform operations.

e The two main approaches are graphical and command line.
e Graphical user interface (GUI) (desktop):

o use icons to represent actions (programs) and data (files),
o click on icon launches (starts) a program or displays data,
o program may pop up a dialog box for arguments to affect its@xen.

e Command-line interface(shell):

o use text strings to access programs (commands) and datag(fries),
o command is typed after a prompt in an interactive area toistar
o arguments follow the command to affect its execution.

e Graphical interface is convenient, but seldom programmabl
e Command-line interface requires more typing, but allowsypamming.
e A shellis a program that reads commands and interprets them.

e It provides a simple programming-language watihng variables and a few
statements.

1

CS 246 2

e Unix shells falls into two basic campsh) (ksh, bash) andcsh(tcsh), each
with slightly different syntax and semantics.

e Focus on bash with some tcsh.
e Area (window) where shell runs is calledeaminal or xterm.

e Shell line begins with @arompt denoted bys (sh) or% (csh) (often
customized).

e A command is typed after the prompt bt executed untiEnter /Return
key Is pressed.

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009

$ whoamiEnter # print userid

jfdoe

$ echo Hi There!Enter # print any string
Hi There!

e Comment begins with a hash)(and continues to the end of line.

e Multiple commands can be typed on the command line sepalgtdte
semi-colon.

CS 246 3

$ date, whoami;, echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009

jfdoe

Hi There!

e Commands can be editted on the command line (not sh):

o position cursor), with < andr> arrow keys,
o remove characters before cursor whtitkspace/delete key,
o type new characters before cursor,

o pressEnter at any point along the command line to execute modified
command.

e Most commands haveptions, specified with a minus followed by one or
more characters, which affect how the command operates.

$ uname -m # machine type

x86_64

$ uname -s # operating system
Linux

$ uname -a # all system information

Linux linux008.student.cs 2.6.31- 21- server #59- Ubuntu SMP x86_64 GNU/Linux
e Options are normally processed left to right; one option weycel another.
e No standardization for command option nhames and syntax.

CS 246 4
e Shell terminates with commarait .

$ exit # exit shell and possibly terminal
o when the shell of terminal/xterm terminates, the termxtatin
terminates.

o when the login terminal/xterm terminates, you sign off toeputer
(logout).

1.1 File System

e Shell commands interact extensively with the file system.
e Files are containers for data stored on persistent stotesyally disk).

¢ File names are organized in an N-ary tree: directories atees, files are
leaves.

e Information is stored at specific locations in the hierarchy

CS 246 5

/ root of the local file system

bin basic system commands

lib system libraries

usr
bin more system commands
lib more system libraries
Include system include files, .h files

tmp system temporary files

u or home user files
jfdoe home directory

oo current, parent directory
.bashrc, .emacs, .login,... hidden files
cs246 course files
al assignment 1 files
g1x.C, g2y.h, g2y.cc, q3z.cpp
other users

e Directory named/” is the root of the file system.

e bin, lib, usr, include : system commands, system library and include files.
e tmp : temporary files created by commandkdred among all usens

e U Or home : user files are located in this directory.

CS 246 6
e Directory for a particular user is called th&iome directory.

e Each file has a unique path-name in the file system, referemtiedn
absolute pathname.

e An absolute pathnameis a list of all the directory names from the root to
the file name separated by the backslash charatter “

/u/jfdoe/cs246/al/qlx.C # => file q1x.C

e Shell provides short names for a file using an implicit st@rtocation.

e At sign on, the shell createscarrrent directory variable set to the user’s
home directory.

e Any file name not starting with/” is automatically prefixed with the
current directory to create the necessary absolute patnam

¢ A relative pathnameis a list of all the directory names from the current
directory to the file name separated by the character “

e E.g., when usegffdoe signs on, home and current directory are set to
/u/jfdoe.

.bashrc # => /ul/jfdoe/.bashrc
cs246/al/qlx.C # => /ul/jfdoe/cs246/al/qlix.C

CS 246 7
e Shell special character” (tilde) expands to user’'s home directory.

~/cs246/al/qlx.C # => /ul/jfdoe/cs246/al/ql1x.C
e Every directory contains 2 special directories:

o “.” points to current directory.

Jcs246/al/qlx.C # => /ul/jfdoe/cs246/al/qlx.C
o “..” points to parent directory above the current directory.

..[. JJusr/include/limits.h # => [usr/include/limits.h

1.2 Pattern Matching

e Shells provide pattern matching of file namebbing (regular
expressions), to reduce typing lists of file names.

e Different shells and commands support slightly differemtis and syntax
for patterns.

e Pattern matching is provided by characters, {}, [], denoting different
wildcards (from card games, e.g., Joker is wild, i.e., can be any card)

e Patterns are composable: multiple wildcards joined intoglex pattern
(Aces, 2s and Jacks are wild).

CS 246 8
e E.g., if the current directory isi/jfdoe/cs246/al containing filesy1x.C,
g2y.h, g2y.cc, q3z.cpp
o » matches 0 or more characters

$ echo gx # shell globs “g+” to match file names, which echo prints
g1x.C g2y.h g2y.cc q3z.cpp

o ? matches 1 character

$ echo g=.?7?
g2y.cc

o {...} matches any alternative in the set

$ echo ={C,cc,cpp}
q1x.C g2y.cc g3z.cpp

o [...] matches 1 character in the set

$ echo g[12]«
g1x.C g2y.h g2y.cc

o[l...] (* csh) matches 1 characteot in the set

$ echo qg['1] «
g2y.h g2y.cc q3z.cpp

CS 246
o Create ranges using hyphen (dash)

[0- 3] #=>0123
[a- ZA- Z] # => lower or upper case letter
[la- zZA-Z] # => any character not a letter

o Hyphen is escaped by putting it at start or end of set
[- ?x]* # => matches file names starting with -, ?, or =

e If globbing pattern does not match any files, the patternadita name
(including wildcards).

$ echo g=.ww g[a-z].cc # files do not exist SO no expansion
g*.ww g[a- z].cc
csh prints: echo: No match.
e Hidden files contain administrative information and start with (dot).

o ignored by globbing patterns- « does not match all file names in a
directory.

e Pattern matches all hidden files:

o match “”, then zero or more characters, e.dpashrc, .login, etc.,and

CS 246 10

o matching “.”, “ ..” can be dangerous

$rm .« # remove hidden files, and current/parent directory!!!

e Pattern[!.]« matches all single.” hidden files buthot “ .” and
directories.

o match “”, then any character NOT a™ and zero or more characters

o = there must be at least 2 characters, the 2nd character damaalot

o “.” starts with dot but fails the 2nd pattern requiring anottiesracter

o “..” starts with dot but the second dot fails the 2nd pattern iretg
non-dot character

e On the command line, pressing tlad key after typing several characters of
a command/file name causes the shell to automatically caenle name.

$ ectab # cause completion of command name to echo
$ echo qltab # cause completion of file name to gi1x.C

e If the completion is ambiguous (i.e., more than one):

o shell “beeps’,
o prints all completions if tab is pressed again,
o then you type more characters to uniguely identify the name.

CS 246 11

$ datab # beep

$ datab # print completions

dash date

$ dattab # add “t” to complete command
1.3 Quoting

e Quoting controls how shell interprets strings of characters.
e Backslash(\) : escapeany character, including special characters.

$ echo .[l.]« # globbing pattern
.bashrc .emacs .login .vimrc
$ echo \\[\\\J\« # print globbing pattern

1]«
e Backquote (") : execute text as a command, and replace it with commanc
output.

$ echo ‘whoami' # $ whoami => jfdoe
jfdoe

e Globbing does NOT occur within a single/double quoted gtrin

CS 246 12

e Single quote(’) : protect everything (including newline) except single
guote.

$echo ' .[!.]* # no globbing
]«

$ echo "\.\[\I\.\]\«" # no escaping
VALVAA]

$ echo 'abc

> cdf’ # prompt “>" means current line is incomplete
abc

cdf
A single quote cannot appear inside a single quoted string.

o E.g., file name containing special characters
(blanks/wildcards/comment).

$ echo Book Report #2
Book Report

$ echo 'Book Report #2'
Book Report #2

e Double quote(”) : protect everything except double quote, backquote, ar
dollar sign (variables), which can be escaped.

CS 246 13

$echo ".[!.]* VUV[VIV N\« ‘whoam ¥ ${HOST} \"\\$"
L]+ \\MUA\\« ¢s246 linux032.student.cs "'$

e To stop prompting or output from any shell commantype<ctrl>- ¢
(C-c), I.e., pressctrl> thenc key, causing the shell to interrupt the current
command.

$ echo "abc
> CcC
$

1.4 Shell Commands

e A command typed after the prompt is executed by the shelll(she
command) or the shell calls a command program (system coghman

e Shell commands read/write shell information/state.
e help : display information about bash commands (not sh or csh).

CS 246 14

help [command-name]

$ help cd
cd: cd [-L|- P] [dir]
Change the shell working directory.

o without argument, lists all bash commands.
e cd : change the current directory (navigate file hierarchy).

cd [directory]

$ cd . # change to current directory
$cd .. # change to parent directory
$ cd cs246 # change to subdirectory

$ cd cs246/al # change to subsubdirectory

o argument must be a directory and not a file

o cd : move to home directory, same as ~

ocd - : move to previous current directory

o cd ~/cs246 . move tocs246 directory contained ijffdoe home directory
o cd /usr/include : move to/usr/include directory

CS 246

15

ocd ..: move up one directory level
o If path does not existd fails and current directory is unchanged.

e pwd : print the current directory.

$ pwd
/u/jfdoe/cs246

e history and “” (bang!) : print a numbered history of most recent
commands entered and access them.

$ history

OO WNPEF

o IN rerun commandl

date

whoami

echo Hi There
help

cd ..

pwd

$ 12 # rerun 2nd history command

whoami

jfdoe

$! # rerun last history command

whoami

jfdoe

$ lec # rerun last history command starting with “ec”
echo Hi There

Hi There

o !l rerun last command
o Ixyz rerun last command starting with the string?2”

CS 246 16

o Arrow keysA/v move forward/backward through history commands on
command line.

$ A pwd
$ Acd..
$ A help

e alias : substitution string for command name.

alias [command-name=string |

o No spaces before/after™ (csh does not have=").
o Providenickname for frequently used or variations of a command.

$ alias d=date

$d

Mon Oct 27 12:56:36 EDT 2008

$ alias off="cl ear; exit" # why quotes?

$ off # clear screen before terminating shell

o Always use quotes to prevent problems.
o Aliases are composable, i.e., one alias references another

CS 246 17

$ alias now="d"
$ now
Mon Oct 27 12:56:37 EDT 2008

o Without argument, print all currently defined alias names stnings.
$ alias
alias d="dat e’

alias now='d’ |
alias off="clear: exit’

o Alias CANNOT be command argument

$ alias cs246assn=/u/jffdoe/cs246/al
$ cd cs246assn # alias only expands for command
bash: cd: cs246assn: No such file or directory

o Alias entered on command line disappears when shell tetesna
o Two options for making aliases persist across sessions:

1. insert thaalias commands in the appropriate (hiddeshellrc file,

2. place a list okhlias commands in a file (ofteraliases) andsource that
file from the.shellrc file.

e type (cshwhich) : indicate how name is interpreted as command.

CS 246 18

$ type now

now is aliased to ‘d’

$ type d

d is aliased to ‘date’

$ type date

date is hashed (/bin/date) # hashed for faster lookup
$ type -p date # -p => only print command file- name
/bin/date

$ type fred # no “fred” command
bash: type: fred: not found

$ type -p fred # no output

e echo : write arguments, separated by spaces and terminated ewtine.

$ echo We like ice cream # 4 arguments
We like ice cream

$echo " W |like ice cream” # 1 argument
We like ice cream

e time : execute a command and print a time summary.

o program execution is composed of user and system time.
x user timeis the CPU time used during execution of a program.

CS 246 19
x system timeis the CPU time used by the operating system to support
execution of a program (e.g., file or network access).
o program execution is also interleaved with other programs:

[my
execution

u | S u |S u S uje**°* U

- r
x real time Is from start to end including interleavings: user + system
real-time
o different shells print these values differently.

$ time myprog |% time myprog
real 1.210.94u 0.22s 0:01.2
user 0.9

Sys 0.2

o test if program modification produces change in executiofopmance

x used to compare user (and possibly system) times beforefimnd a
modification

e exit . terminates shell, with optional integer exit status (netcode)N.
exit [N]

CS 246 20

o[N]is in range 0-255; larger values are truncated (250, 257= 1,
etc.) , negative values (if allowed) become unsigned<-255).

o exit status defaults to zero if unspecified, which usuallyansesuccess.

1.5 System Commands

e Command programs called by shell (versus executed by shell)
e sh / bash / csh/ tcsh : startsubshell

$... # bash commands

$ tcsh # start tcsh in bash

% ... # tcsh commands

% sh # start sh in tcsh

$... # sh commands

$ exit # exit sh

% exit # exit tcsh

$ exit # exit original bash and terminal

o Allows switching among shells for different purposes.
e chsh : set login shell (bash, tcsh, etc.).

CS 246 21

$ echo ${0} # what shell am | using ?
/bin/tcsh

$ chsh # change to different shell

Password: XXXXXX

Changing the login shell for jfdoe

Enter the new value, or press ENTER for the default
Login Shell [/bin/tcsh]: /bin/bash

e man : print information about command, option names and fumctio

$ man bash
Information about “bash” command
$ man chsh
information about “chsh” command
$ man man

information about “man” command
e Is : list the directories and files in the specified directory.

Is [-al][file or directory name-list]

o - a listsall files, including hidden files
o - | generates bong listing (details) for each file
o no file/directory name implies current directory

CS 246 22

$ls . # list current directory (non- hidden files)
glx.C qg2y.h g2y.cc g3z.cpp
$lIls-a # list current directory plus hidden files

bashrc .emacs .login gl1x.C q2y.h g2y.cc q3z.cpp
e mkdir : create a new directory at specified location in file hiergrch

mkdir directory-name-list

$ mkdir d d1 d2 d3 # create 4 directories in current directory
e cp . copy files; with the r option, copy directories.

cp [-1]source-file target-file

cp [-1] source-file-list target-directory

cp [-1] -r source-directory-list target-directory

o - i prompt for verification if a target file is being replaced.

o - r recursively copy contents of a source directory to a targettbry.

$ cp fl1 2 # copy file f1 to 2
$cpflf2f3d # copyfiles fl, f2, f3 into directory d
$ cp -r dl d2 d3 # copy directories d1, d2 recursively into directory d3

e mv . move files and/or directories to another location in theHigrarchy.

CS 246 23

mv [-1] source-file target-file
mv [-1] source-file-list/source-directory-list target-directory

o If the target-file does not exist, the source-file is renanogterwise the
target-file is replaced.
o - i prompt for verification if a target file is being replaced.

$ mv fl1 foo # rename file f1 to foo
$ mv 2 3 # delete file f3 and rename file f2 to 3
$ mv f3 d1 d2 d3 # move file f3 and directories d1, d2 into directory d3

e rm : remove (delete) files; with the option, remove directories.

rm [-ifr] file-list/directory-list

$rm fl f2 12 # file list

$rm-rdld2 # directory list, and all subfiles/directories
$rm-rfldlf2 #fileand directory list

o - i prompt for verification for each file/directory being remdve

o - f (default) do not prompt for verification for each file/direct being
removed.

o - r recursively delete the contents of a directory.

CS 246 24

o UNIX does not give a second chance to recover deleted files;dreful
when usingrm, especially with globbing, e.gimn < orrm .«

o UW has hidden directorynapshot in every directory containing
backups of all files in that directory (per hour for 8 hours, pght for 7
days, per week for 21 weeks)

$ Is .snapshot # directories containing backup files

hourly.0 hourly.6 nightly.4 weekly.11 weekly.17 weekly.3 weekly.9
hourly.1 hourly.7 nightly.5 weekly.12 weekly.18 weekly.4

hourly.2 nightly.0 nightly.6 weekly.13 weekly.19 weekly.5

hourly.3 nightly.1 weekly.0 weekly.14 weekly.2 weekly.6

hourly.4 nightly.2 weekly.1 weekly.15 weekly.20 weekly.7

hourly.5 nightly.3 weekly.10 weekly.16 weekly.21 weekly.8

$ cp .snapshot/hourly.0/ql.h gl.h # restore file from previous hour

e Usealias for setting command options for particular commands.

$ alias cp="¢cp -1 "
$ alias mv="nv -
$ alias rm="rm-1"

which always uses thda option on commandsp, mv andrm.
¢ Alias can be overridden by quoting or escaping the commantena

CS 246
$°rm -rxyz
$\rm -r xyz
which does not add the& option.
e cat/more/less : print files.

cat file-list

o cat shows the contents in one continuous stream.
o more/less paginate the contents one screen at a time.

$ cat gql.h

print file g1.h completely
$ more gl.h
. # print file g1.h one screen at a time

type “space” for next screen, “gq” to stop

e Ip/Ipstat/lprm : add, query and remove files from the printer queues.

Ip [-d printer-name | file-list
lpstat [-d] [-p [printer-name | |
lprm [- P printer-name] job-number

o If no printer is specified, use default print¢gp (3016 in MC3016).

CS 246 26

o Ipstat : - d prints default printer; p without printer-name lists all printers
o each job on a printer’'s queue has a unique number.
o use this number to remove a job from a print queue.

$Ip -dIljp_3016 uml.ps # print file to printer ljp_3016

$ Ipstat # check status, default printer ljp_3016

Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

2nd jfdoe 403 uml.ps 41262 bytes

$ lprm 403 # cancel printing

services203.math: cfA403servicesl6.student.cs dequeued

$ Ipstat # check if cancelled

Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes
e cmp/diff : compare 2 files and print differences.

cmp filel file2

diff filel file2

o return O if files equal (no output) and non-zero otherwisegou
difference)

CS 246 27

o cmp generates the first difference between the files.

file x| filey

1la\n |a\n $ cmp x y |
2/b\n |b\n x y differ: char 7, line 4
3ic\n |c\n

4/d\n |e\n

5/ g\n | h\n

6|h\n |[i\n

7 g\n

newline is counteds- 2 characters per line in files
o diff generates output describing how to change first file intorsefite.
$ diff x y

4,5c4 # replace lines 4 and 5 of 1st file
<d # with line 4 of 2nd file

<dg

> e

6a6,7 # after line 6 of 1st file

> | # add lines 6 and 7 of 2nd file
>0

CS 246 28
o Useful for checking output from previous program with cutrgrogram.
e find : search for names in the file hierarchy.

find [file/directory-list] [expr]

o If [file/directory-list] omitted, search current directory;,
o If [expr] omitted, match all file names; fiame "+"”
o recursively find file/directory names starting in curremedtory

matching patternts

$ find - name "t *
Jtest.cc
Jtestdata

o - name pattern restrict file names to globbing pattern
o-type f | d select files of typeile or drectory

o - maxdepth N recursively descend at mdstdirectory levels (0=
current directory)

o logical not, and andor (precedence order)

why quotes ?

- not expr
expr - a expr
expr - o expr

CS 246 29

- a assume if no operatogxpr expr = expr - a expr
o \(expr \) evaluation order

o recursively find only file names starting in current diregtoratching
pattern tx”

$ find . -type f -name "tx" # same as -type f -a - name “t+”
test.cc

o recursively find only file names in file list (excluding hiddi#ies) to a
maximum depth of 3 matching patterma®r «.C.

$ find » - maxdepth 3 -a -type f -a \(-name "t*" -0 -name "*.C")
test.cc

gl.C

testdata/data.C

e egrep : (extended ¢pbal regular &pression pnt) search & print lines
matching pattern in files (Google). (samegap - E)

egrep -irn pattern-string file-list

o list lines containing thain” in files with suffix “.cc”

CS 246 30

$ egrep main x.cc # why no quotes ?
gl.cc:int main() {
g2.cc:int main() {

o - ilgnore case In both pattern and input files
o - r recursively examine files in directories.
o - n prefix each matching line with line number
o returns O if one or more lines match and non-zero otherwizenter
Intuitive)
o list lines with line numbers containingrain” in files with suffix “.cc”
$ egrep - n main *.cc

gl.cc:33:int main() {
g2.cc:45:int main() {

o list lines containing fred” in any case in file hames.tex”

$ egrep - i fred names.txt
names.txt:Fred Derf
names.ixt:FRED HOLMES
names.txt:freddy jones

o list lines that match start of line**, match “#include”, match 1 or more
space or tab[“]+”, match either "” or “<”, match 1 or more characters

CS 246 31

“+”, match either " ” or “>”, match end of line $” in files with suffix

(11 .h” Or (11 .CC”
$egrep’ Minclude[[+["<].+[">]% ={h,cc} # why quotes ?
egrep: =.h: No such file or directory
gl.cc:#include <iostream>

gl.cc:i#include <iomanip>
gl.cc:#include “gl.h”

o egrep pattern is different from globbing pattern.
Most important difference is+" is a wildcard qualifier not a wildcard.
e ssh : (secure skll) safe, encrypted, remote-login between client/server
hosts.

ssh[-Y]][-luser] [user@] hosthame

o - Y allows remote computer (University) to create windows aalo
computer (home).

o - I login user on the server machine.

o To login from home to UW environment:

CS 246 32

$ ssh -Y -1 jfdoe linux.student.cs.uwaterloo.ca
enter password, run commands (editor, programs)
$ ssh Y jfdoe@linux.student.cs.uwaterloo.ca

1.6 File Permission

e UNIX supports security for each file or directory based onrilkiof users:

o user : owner of the file,

o group : arbitrary name associated with a set of userids,

o other : any other user.

e File or directory has permissions, read, write, and exéseiéech for the 3

sets of users.

o Read/write allow specified set of users to read/write a fileddtory.

o Executable/searchable:
x file : execute as a command, e.g., file contains a program orsshnipt,
x directory : search by certain system operations but notiregdneral.

e Usels - I command to print file-permission information.

CS 246 33

dr wxr-x--- 2jfdoejfdoe 4096 Oct 19 18: 19 cs246
drwxr-x--- 2jfdoejfdoe 4096 Oct 21 08:51 cs245
-TW------- 1jfdoe jfdoe 22714 Cct 21 08:50 test.cc
-TW--- - - - 1jfdoejfdoe 63332 Oct 21 08:50 notes.tex

e Columns are: permissions, #-of-directories (includiigahd “..”), owner,
group, file size, change date, file name.

e Permission information Is:
d = directory —— user permission

- =Tile group permissions
other permissions
l Y r v g

d | rwx | |r=x —_

eE.g.,drwx r-x---,indicates

o directory in which the user has read, write and execute [sions,
o group has only read and execute permissions,
o others have no permissions at all.

e In general, never allow “other” users to read or write your 8bs.
e Default permissions (usually) on:

CS 246 34

ofile:rw r-- --- , owner read/write, group only read, other none.
o directory:r wx - - - - - - , owner read/write/execute, group/other none.

e chgrp : change group-name associated with file.

chgrp [- R] group-name file/directory-list
o - R recursively modify the group of a directory.

$ chgrp cs246_05 cs246 # course directory
$ chgrp - R ¢s246_05 cs246/a5 # assignment directory/files

Must associate group along entire pathname and files.
e Creating/deleting group-names is done by system admiisr.
e chmod : add or remove from any of the 3 security levels.

chmod [-R] mode-list file/directory-list

o - R recursively modify the security of a directory.

o mode-list has the fornmsecurity-level operator permission.

o Security levels are denoted hyfor user,g for group,o for other,a for all
(ugo).

o Operator+ adds permission, removes permission.

CS 246 35

o Permissions are denoted bfor readabley for writable andx for
executable.

o Elements of thanode-list are separated by commas.

chmod g-r,o-r,g-w,0-w foo # long form, remove read/write for group/othe
chmod go- rw foo # short form

chmod g+rx cs246 # allow group users read/search

chmod - R g+rw cs246/a5 # allow group users read/write, recursively

To achieve desired access, must associate permissionextng pathname
and files.

1.7 Input/Output Redirection

e Every command has three standard files: input (0), outpudrfd)error (2).

e By default, these are connected to the keyboard (input) ereks
(output/error).

.......... —— command

CS 246 36

$sort-n #-n means numeric sort

7 sort reads unsorted values from keyboard
30

5

C-d close input file

5 sort prints sorted values to screen

-

30

e To close an input file from the keyboardype<ctri>- d (C- d), i.e., press
<ctrl> thend key, causing the shell to close the keyboard input file.

e Redirection allows:

o Input from a file (faster than typing at keyboard),
o saving output to a file for subsequent examination or pracgss

¢ Redirection performed using operaterfor input and> / >> for output
to/from other sources.

$ sort -n < input 1> output 2> errors

CS 246 37

1>
1>> output

I 0

sort

< 2>
2>>

Input

]

errors

o < means read input from file rather than keyboard.

o > (same ad>), 1>, 2> means (create If needed) file and write
output/errors to file rather than screen (destructive).

o >> (same ad>>), 1>>, 2>> means (create if needed) file and append
output/errors to file rather than screen.

e Command is (usually) unaware of redirection.

e Can tie standard error to output (and vice versa) usH&j ‘= both write to
same place.

$ sort -n < input 1> output 2>&1 # stderr (2) goes to stdout (1)
$ sort -n <input 1> output 1>&2 # stdout (1) goes to stderr (2)

CS 246 38

1 |
0 2>&1 | output
input sort X_I
< 1>&2 errors
2
e Order of tying redirection files is important.
$ sort 2>&1 > output # tie stderr to screen, redirect stdout to “output”
$ sort > output 2>&1 # redirect stdout to “output”, tie stderr to “output”

e To ignore output, redirect to pseudo-fitev/null.

$ sort data 2> /dev/null # ignore error messages
e Redirection requires explicit creation of intermediaen{porary) files.

$ sort data > sortdata # sort data and store in “sortdata”

$ egrep - v "abc” sortdata > temp # print lines without “abc”, store in “temp”
$trab <temp > result # translate a’ s to b’ s and store in “result”

$ rm sortdata temp # remove intermediate files

e Shell pipe operatgrmakes standard output for a command the standard

CS 246 39
Input for the next command, without creating intermedidee fi

$ sort data | grep -v "abc" | tr a b > result
e Standard error is not piped unless redirected to standdpadibu

$ sort data 2>&1 | grep -v "abc" 2>&1 | tr a b > result 2>&1
now both standard output and error go through pipe.

e Print file hierarchy using indentation.

$ find cs246 $ find cs246 | sed ' s| []+/]| |¢
cs246 cs246

cs246/al al

cs246/al/qlx.C qlx.C

cs246/al/q2y.h g2y.h

cs246/allqg2y.cc g2y.cc

cs246/all/q3z.cpp g3z.cpp

sed : Inline editor, pattern changes all occurrenapsof string[/]«/ (zero
or more characters not™and then ’, where “%” is a wildcard qualifier not
a wildcard) to 3 spaces.

CS 246

1.8 Variables

e Syntax :[_a- zA- Z][_a- zA- Z0- 9]x where %” is wildcard qualifier
e case-sensitive

VeryLongVariableName Pagel Income_Tax _75

e Some identifiers are reserved (eify.while), and hencekeywords.
e Variables ONLY hold string values (arbitrary length).
e Variable is declaredynamicallyby assigning a value with operatot™

$ cs246assn=/u/jfdoe/cs246/al # declare and assign
No spaces before or after=".
e A variable’s value is dereferenced using operat@'ot “ ${}".

$ echo $cs246assn ${cs246assn}
/u/jfdoe/cs246/al /u/jifdoe/cs246/al
$ cd $cs246assn # or ${cs246assn}

e Unlike alias, variable can be command or argument.

CS 246

$ alias d=date

$d # alias expands as command

Sun Apr 15 11:20:11 EDT 2012

$ d=date

$ $d # variable expands as command

Sun Apr 15 11:20:20 EDT 2012

$ echo d # alias does not expand as argument
d

$ echo ${d} # variable expands as argument

date

e Dereferencing undefined variable returns empty string.

$ echo $xxx # no output just newline
empty line

e Beware concatenation.

$ cd $cs246assndata # change to /u/jfdoe/cs246/aldata
Where does this move to?

e Always use braces to allow concatenation with other text.
$ cd ${cs246assn}data # cd /u/jfdoe/cs246/aldata

CS 246 42
e Beware commands/arguments composed in variables.

$ out=sortdata # output file
$dsls="Is| sort -r >3${out}’ # store files names in descending (- r) order
$ ${dsls} # execute command

Is: cannot access |: No such file or directory

Is: cannot access sort: No such file or directory
Is: cannot access >: No such file or directory

Is: cannot access ${out}: No such file or directory

e Behaviour results because the shell tokenizes, substtarmables, and
then executes.

e Shell sees only one tokerg{tisis}”, so the tokensvithin the variable are
not marked correctly, e.g.|*and ”>" not marked as pipe/redirection

tokens.

e Then variable substitution fo{dsls}”, giving tokens

"Is” | 'sort’ '-r" "> " ${out}’, solsisthe command and
remaining tokens are file names.

Why no “cannot access” message above far

e TOo make this work, shell needs to tokenize and substitute@setime
beforeexecution.

CS 246 43
e eval command causes its arguments to be processed by shell.

$ eval ${dsls} # tokenize/substitute then tokenize/substitute
$ cat sortdata # no errors, check results
list of file names in descending order

o 1st tokenize/substitute gives

eval 'Is” "’ "sort’ '-r’ > *$Hout}’
o 2nd tokenize/substitute givéss | sort -r > sortdata’ , which shell
executes

1.9 Arithmetic
e Shell variables have type string.

$ =3 # 1 has string value “3” not integer 3
e Arithmetic requires integers, + 7, not strings, 3" + "17".
e Arithmetic is performed by:

o converting a string to an integer (if possible),
o performing an integer operation,
o and converting the integer result back to a string.

CS 246 44
e bash performs these steps with shell-command opes§tpression)).

$ echo $((3+4 - 1))

6

g echo $((3 + ${i} * 2))

$ echo $((3 + 3{k})) # Kk is unset
bash: 3 + : syntax error: operand expected (error token is " ")

e Basic integer operations, -, *, /, % (modulus), with usual precedence,
and().

e For shells without arithmetic shell-command (e.g., sh),asbe system
commanckexpr.

$ echo expr3 +4 - 1 # for sh, csh

6
$ echo ‘expr 3 + ${i} \ » 2° # escape =
9
$ echo ‘expr 3 + ${k}° # k is unset

expr: non- numeric argument

CS 246 45
1.10 Programming

e A shell program or script is a file (scriptfile) containing shell commands to
be executed.

#!/bin/bash [-x]

date # shell and OS commands
whoami

echo Hi There

e First line should begin with magic comment!” (sha-bang) with shell
pathname for executing the script.

e It forces a specific shell to be used, which is run as a subshell

e If the “#!” line i1s missing, a subshell of the same kind as the invokimgjls
IS used for sh shelldbash) and sh is used for csh sheltsgh).

e Optional - x is for debugging and prints trace of the script during
execution.

e Script can be invoked directly using a specific shell:

CS 246

$ bash scriptfile # direct invocation
Sat Dec 19 07:36:17 EST 2009

jfdoe

Hi There!

or as a command if it has executable permissions.

$ chmod u+x scriptfile # make script file executable

$./scriptfile # command execution
Sat Dec 19 07:36:17 EST 2009

jfdoe

Hi There!

e Script can have parameters.

#!/bin/bash [-x]

date

whoami

echo ${1} # parameter for 1st argument

e Arguments are passed on the command line:

46

CS 246 47

$./scriptfile "Hel | o Wor | d”
Sat Dec 19 07:36:17 EST 2009
jfdoe

Hello World

$./scriptfile Hello World

Sat Dec 19 07:36:17 EST 2009
jfdoe

Hello

Why noWorld?
e Special parameter variables to access arguments/result.

o ${#} number of arguments, not including script name
o ${0} always name of shell script

echo ${0} # in scriptfile
prints scriptfile.

o ${1}, ${2}, ${3}, ... refers to arguments by position (not name), i.e., 1st,
2nd, 3rd, ... argument

o ${x} and${@} list all arguments, e.g${1} ${2} ..., not including script
name
Difference occurs inside double quotes:

CS 246 48

x"${+}" arguments as a single string string, €.¢{1} ${2} .. ."
*"${ @" arguments as separate strings, é${1}" "${2}" ...

o ${$} process id of executing script.

o ${?} exit status of the last command executed; O ofteexited normally.

$ cat scriptfile

#!/bin/bash

echo ${#} # number of command- line arguments
echo ${0} ${1} ${2} ${3} ${4} # some arguments

echo "${+}" # all arguments as a single string
echo "${@" # all arguments as separate strings
echo ${$} # process id of executing subshell
exit 21 # script exit status

$./scriptfile al a2 a3 a4 a5

5 # number of arguments

scriptfile al a2 a3 a4 # script-name / args 1-4

al a2 a3 a4 as # args 1-5, 1 string

al a2 a3 a4 a5 # args 1-5, 5 strings

27028 # process id of subshell

$ echo ${?} # print script exit status

21

CS 246 49

e Interactive shell session is just a script reading comméeas standard
Input.

$ echo ${0} # shell you are using (not csh)
bash

1.10.1 Routine
e A routine is defined as follows:

routine_name() { # number of parameters depends on call
commands
}
¢ Invoke like a command.

routine_name [args ...]
e E.9., create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g-einput-file[output-file]"
exit 1 # terminate script with non- zero exit code

}

usage # call, no arguments

CS 246

¢ Routine arguments are accessed the same as in the script.

$ cat scriptfile

number of command- line arguments

echo ${$O} ${1} ${2} ${3} ${4} # some arguments

#!/bin/bash
rtn() {
echo ${#}
echo
echo "${@"
echo ${$}
return 17
}
rtn al a2 a3 a4 ab
echo ${?}
exit 21

all arguments as a single string
all arguments as separate strings

process id of executing subshell
routine exit status

invoke routine
print routine exit status
script exit status

50

CS 246 51

$./scriptfile # run script

5 # number of arguments
scriptfile al a2 a3 a4 # script- name / args 1-5
al a2 a3 a4 as # args 1-5, 1 string

al a2 a3 a4 a5 # args 1-5, 5 strings
27028 # process id of subshell
17 # routine exit status

$ echo ${?} # print script exit status
21

e Routines/variables must be created before used, are tagevihroughout
the script, and can be removed.

renl() {
var=3 # new variable
rtn2 # call rtn2, see all routines
unset rtn2 # remove routine!l!
}
rtn2() {
echo ${var} # see all variables
unset var # remove variable!!!
}

rtnl # call

CS 246 52

e source filename : execute commands from a file in the current shell.
o For convenience or code sharing, a script may be subdivitted |
multiple files.
o E.g., put commonly used routines or set of commands intoraapfles.
o No “#!...” at top, because not invoked directly like a script.

o Sourcing a filancludesit into the current shell script angvaluateghe
lines.

source ./aliases # include/evaluate aliases into .shellrc file
source ./usage.bash # include/evaluate usage routine into scriptfile

o Created or modified variables/routines from sourced file ediaitely
affect current shell.

1.10.2 Environment Variables

e Each shell has a set of environment (global) and script fleaeameters)
variables.

e Shell has d\ sets of variables: environment, local, arguments for nauti
callsC._;.

CS 246 53

Shell (command)

Envir: $E0 $E1 $E2...
Local: LOLL $L2... [1
0 —= Args:: $0 $1 $2...
. (call stack) .
Args: $0 $1 $2...

e New variable declare on the local list.

$ var=3 # new local variable
e A variable is moved to environment list if exported.

$ export var # move from local to environment list
e Login shell starts with a number of useful environment \alag, e.g.:

$ set # print variables/routines (and values)
HOME=/u/[fdoe # home directory
HOSTNAME=linux006.student.cs # host computer

PATH=. .. # lookup directories for OS commands
SHELL=/bin/bash # login shell

CS 246 54

e A script executes in its own subshell witltapyof calling shell’'s
environment variables (works across different shells) not calling shell’s
locals or arguments.

$./scriptfile # execute script in subshell

Envir: $EO $E1 $E2... Shell

copied

!Envir: $EO $E1 $E2... Subshell(scriptfile)

e \When a (sub)shell ends, changes to its environment vasaaeot affect
Its containing shellénvironment variables only affect subshells

e Only put a variable in the environment list to make it accesla by
subshells.

1.10.3 Control Structures

e Shell provides control structures for conditional andatse execution;
syntax for bash is presented (csh is different).

CS 246
1.10.3.1 Test

55

e test ([]) command compares strings, integers and queries files.

e test expression is constructed using the following:

test operation priority
I expr not high
\(expr \) evaluation orderrfust be escapgd
exprl - a expr2 | logical and (ot short-circuit)
exprl - o expr2|logical or (hot short-circuit) low

e test comparison is performed using the following:

CS 246

test operation
stringl = string?2 equal (ot ==
stringl != string2 not equal
integerl - eq integer2 | equal
integerl - ne integer2 | not equal
integerl - ge integer2 | greater or equal
integerl - gt integer2 | greater
integerl - le integer2 |less or equal
integerl - It integer2 |less
-d file exists and directory
- e file exists
- f file exists and regular file
- 1 file exists with read permission
- w file exists with write permission
- X file exists with executable or searchable

e Logical operatorsa (and) and o (or) evaluate both operands.

e test returns 0 if expression is true and 1 otherwise (counterting).

56

CS 246

$ i=3
$test 3-1t4 # integer test
$ echo ${?} # true
0
$ test ‘whoami' = jfdoe # string test
$ echo ${?} # false
1
$ test 2 -1t ${i} - o ‘whoami' = jfdoe # compound test
$ echo ${?} # true
0
$[-eqglcc] # file test, using brackets [] with spaces
$ echo ${?} # true
0
1.10.3.2 Shift

e shift [N] : destructively shift parameters to the I&fpositions, i.e.,
${1}=${N+1}, ${2}=${N+2}, etc., ands{#} is reduced b\.

olfno N, 1is assumed.
o If N is O or greater thans{#}, there is no shift.

¥4

CS 246

$ cat scriptfile $./scriptfle 1234567
#!/bin/bash 1
echo ${1}; shift 1 2
echo ${1}; shift 2|4
echo ${1}; shift 3|

echo ${1}

1.10.3.3 Selection
e An if statement provides conditional control-flow.

If test-command If test-command :; then
then
commands commands
elif test-command elif test-command : then
then
commands commands
else else
commands commands
fi fi

Semi-colon is necessary to sepatate-command from keyword.

58

CS 246 59
e test-command IS evaluated; exit status of zero implies true, otherwissefa
e Check for different conditions:

if test " ‘whoam ' = "|fdoe" ; then
echo "valid userid"”

else
echo "invalid userid"

fi

If diff filel file2 > /dev/null ; then # ignore diff output
echo "same fil es”

else
echo "different files”

fi

If [-x /usr/bin/cat] ; then # alternate syntax for test
echo "cat command avai |l abl e"

else
echo "no cat conmand”

fi
e Beware unset variables or values with special characterg(gblanks).

CS 246 60

if [${var} ='yes’];then ... # var unset =>if [=" yes']

bash: [=: unary operator expected

if [${var} ='yes’];then ... #var="abc"=>if[abc="yes]
bash: [too many arguments

if ["${var}" ="'yes’];then ... # var unset =>if [“" = yes']

if ["${var}" ="yes’];then ... #var="fabc' =>if[“abc’ ="yes]

When dereferencing, always quote variabjexcept for safe variables
${#}, ${$}, ${?}, which generate numbers.

e A case statement selectively executes ondNodlternatives based on
matching a string expression with a series of patterns fghg)), e.g.:

case expression in

pattern | pattern | ...) commands ;;
x*) commands ;; # optional match anything
esac

e When a pattern is matched, the commands are executed yj ent
control exits thecase statement.

e If N0 pattern is matched, thmse statement does nothing.
e E.g., command with only one of these options:

CS 246

-h, --help, -v, --verbose, -f file, --file file
usecase statement to process option:

usage() { ... } # print message and terminate script
verbose=no
case "${1}" in # process single option
'-h’ | ' --help’) usage ;;
'-v' | '--verbose') verbose=yes ;;
-t -t e) # has additional argument
shift 1 # access argument
file="${1}"
x) usage ;; # default, has to be one argument
esac

if [${#} -ne 1] ; then usage ; fi # check only one argument remains
execute remainder of command

1.10.3.4 Looping
e While statement executes its commands zero or more times.

CS 246 62

while test-command while test-command ; do
do
commands commands
done done

e test-command IS evaluated; exit status of zero implies true, otherwissefa
e Check for different conditions:

search command- line parameters for “- x”

while ["${1}" 1="-x"]: do # string compare
shift # destructive

done

print parameters hard way, non- destructive

=1

while [${i} -le ${#}] : do
eval arg="\${${i}}" # 1st step ${1}, 2nd step argument 1
echo "${arg}” # process value

I=3((${i} + 1))

done

CS 246 63

process files datal, dataz, ...

=1

file=data%${i}

while [-f"${file}"]; do # file regular and exists?
process file
I=5((${i} + 1)) # advance to next file
file=data%${i}

done

e for statement is a specializadile statement for iterating with an index
over list of strings.

for index [in list] ; do
commands

done

for name in ric peter jo mike ; do
echo ${name}

done

for argin "${@" ; do # process parameters, why quotes?
echo ${arg}

done

If no “in list”, iterate over quoted parameters, i.6{ @ " .
e Or over a set of values:

CS 246

for ((init- expr; test- expr; incr- expr)); do # double parenthesis
commands
done

for ((i=1;i<=%${#};i+=1)); do
eval echo "\${${i}}" # ${1-#}
done

e Use directly on command line:
$ for file in «.C ; do cp "${file}" "${file}".old ; done

e A while /for loop may contaimbreak andcontinue to terminate loop or
advance to the next loop iteration.

64

CS 246

process files datal, dataz, ...
=1

while [0] ; do # while true, infinite loop
file=data${i} # create file name

if[! -f"${file}"]; then break ; fi

file not exist, stop ?

process file

If [. .$.{?} - ne 0] ; then continue ; fi

bad return, next file

process file
I=5((${i} + 1)) # advance to next file

done

1.11 Cleanup Script

65

CS 246 66

#1/bin/bash
#

List and remove unnecessary files in directories
#

Usage: cleanup [[-r|[R] [-i|f] directory- name]+

-r|- R clean specified directory and all subdirectories
-i|-f prompt or not prompt for each file removal

Examples:

$ cleanup jfdoe

$ cleanup -R .

$cleanup -r dirl -i dir2 -r -f dir3

Limitations:

* only removes files named: core, a.out, .0, *.d

x does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | -R] [-1 | -f] directory-nanme | +"
exit 1

}

defaults() { # defaults for each directory
prompt="-1" # do not prompt for removal
depth="- maxdept h 1" # not recursive

CS 246

remove() {

for file in find "${1}" ${depth} - type f -a \(-name ' core’

67

-0\

-name 'a.out’ -o-name '+.0 -0 -name ' *.d" \)

do

echo "${file}"

rm "${prompt}" "${file}"
done

i}f [${#} -eq 0] ; then usage ; fi
defaults
while [${#} -gt 0] ; do
case "${1}" in
"-h") usage ;;
1 _ r 11 | 1 _ RH) depth:ll 1 ;;
ll_i 11 | ll_fll) prompt:" ${ 1} 1 ;;
x)
remove "${1}"
defaults

esac
shift
done

print removed file

no arguments ?
set defaults for directory
process command- line arguments

help ?

recursive ?

prompt for deletion ?

directory name ?

remove files in this directory
set defaults for directory

remove argument

CS 246 68
1.12 Regress Script

#!/bin/bash

#

Compare output from two programs printing any differences.

e

Usage: regress programl ' programl- options’ program2 ' programz2- options’
e

Examples:

regressis '’ Is '’

regresslis’’ Is’’ "“abc”

regress cat' ' cat ' -n’ regress regress

regress regress “cat '’ cat ' -n’ " regress “cat '’ cat ' -n’ " regress regres:
regress myprog ' -w' samplesoln ' -w' 27 100 -2 -100

usage() {
echo "Usage: ${0} programndl \"prograntl-options\"" \
“progran? \ " progranR-options\" argunment-1|ist”
exit 1

CS 246 69

process() {

for parm in "${@" ; do # process parameters
must use eval to reevaluate parameters
eval ${progl} ${optsl} ${parm} > /tmp/tmpl_${$} 2>&1 # run programs
eval ${prog2} ${opts2} ${parm} > /tmp/tmp2_${$} 2>&1
diff /tmp/tmpl_${$} /tmp/tmp2_${$} # compare output from programs
if [${?} -eq 0] ; then # check return code

echo "identical output”

fi
rm /tmp/tmpl_${$} /tmp/tmp2_${$} # remove temporary files

done

}

if [${#} -1t 4] ; then usage ; fi # check command- line arguments
if [!-x"‘type -P ${1}"]; then echo "programl i s unexecut abl e" ; usag
if [!-x"‘type -P ${3}"]; then echo "progran? i s unexecut abl e" ; usag

progl=%${1} # copy first 4 parameters
opts1=%${2}

prog2=%${3}

opts2=%${4}

shift 4 # remove first 4 parameters

if [${#} -eq 0] ; then process "" # process empty argument- list

else process "${ @" ; fi # process argument- list

CS 246
e Withouteval:

regress Is '’ Is abc"
becomes$s a b c, ratherthans 'a b c'.

70

2 CH

2.1 First Program
e Java

import java.lang.x, // implicit
class Hello {
public static
void main(String[] args) {
System.out.printin(" Hel | o! *);
System.exit(0);

}
}
o C/CH
#include <stdio.h> #include <iostream> // access to output
using namespace std; // direct naming
int main() { int main() { // program starts here
printf(“Hel | o'\ n"); cout << "Hel | 0! " << endl;
\ return 0O; return O; // return O to shell, optional
}

71

CS 246 72

e #include <iostream> copies (imports) basic I/O descriptions (no equivalent
In Java).

e using namespace std allows imported I/O names to be accessed directly
(otherwise qualification is necessary).

e int main() Is the routine where execution starts.
e curly braces{ ... }, denote a block of code, i.e., routine bodynadin.

e cout << "Hell 0! " << endl prints”Hel | o! " to standard output, callembut
(System.out in Java,stdout in C).

e endl starts a newline afterHel | o! * (printin in Java, \ n’ in C).

e Optionalreturn 0 returns zero to the shell indicating successful completiol
of the program; non-zero usually indicates an error.

e main magic! If no value is returned, 0 is implicitly returned.

e Routineexit (JavaSystem.exit) terminates a program at any location and
returns a code to the shell, e.gxjt(0) (#include <cstdlib>).

o LiteralsEXIT_SUCCESS andEXIT_FAILURE indicate successful or
unsuccessful termination status.

o e.g.,return EXIT_SUCCESS or exit(EXIT_FAILURE).

CS 246 73

e Java/C/C+ program are transformed from human readabie (ftext) to
machine readable form (numbers) for execution, catl@apilation.

e Compilation is performed by @aompiler; several compilers exist for C+-.
e Compile withg++ command:

$ g++ firstprogram.cc # compile program, generate executable "a. out "
$./a.out # execute program; execution permission

C program-files use suffix; C+ program-files use suffixeS / .cpp / .cc.

2.2 Program Structure

e A C+ program is composed of comments for people, and statsnher
both people and the compiler.

e A source file contains a mixture of comments and statements.
e The C/C+ compiler only reads the statements and ignoresaimenents.

2.2.1 Comment

e Comments document what a program does and how it does it.
e Comment may appear where whitespace (space, tab, nevdiabgwed.

CS 246 74
e Two kinds of comments in C/C+ (same in Java):

Java/ C/ CH

/% ... %/
2|/l remainder of line

e First comment begins with the start symbe),and ends with the terminator
symbol,+/, and hence, can extend over multiple lines.

e Cannot be nested one within another

[« ... [« ... « ... =/

T 7
end comment treated as statements

e Be extremely careful in using this comment to elide/comnrmaritcode:

[+ attempt to comment- out a number of statements
while (...) {
I« ... nested comment causes errors »/

it (...) 1

[+ ... nested comment causes errors x/

CS 246 75

e Second comment begins with the start symlipand continues to the end
of the line, i.e., only one line long.

e Can be nested one within another:

/[l ... [l ... nested comment
So it can be used to comment-out code:
/[while (...){
/l [+ ... nested comment does not cause errors x/
/l if(...){
/l /l ... nested comment does not cause errors
/l }
I/}

2.2.2 Statement

e The syntax for a C/CH+ statement is a series of tokens s&ublst
whitespace and terminated by a semicolon (except for a b{Hck

CS 246 76
2.3 Declaration

¢ A declaration introduces names or redeclares names froviopee
declarations.

2.3.1 Identifier
e Name used to refer to a variable or type.

e syntax :[_a- zA- Z][_a- zA- Z0- 9]« where %" is wildcard qualifier
e case-sensitive:

VeryLongVariableName Pagel Income_Tax _75

e Some identifiers are reserved (eify.while), and hencekeywords.

CS 246

2.3.2 Basic Types

Java C/CH
boolean | bool (C <stdbool.h>)
char char / wchar _t
byte char / wchar _t
Int Int
float float
double | double

ASCII / unicode character
Integral types

real-floating types

label type, implicit

e C/C+H treafchar / wchar _t as character and integral type.
e Java typeshort andlong are created using type qualifiers.

2.3.3 Variable Declaration

77

e C/C+ declaration: type followed by list of identifiers, ext label with an
Implicit type (same in Java).

CS 246 /8

Java/C/C+
char a, b, c, d;
int i, |, K;
double X, vy, z;
1d :

e Declarations may have an initializing assignment (exceipfi¢lds in
struct /class):

int 1 = 3; int i =3, =4, k=5;
Int | = 4;
int k = 5;

e Value of anuninitialized variable is usually undefined.
Int 1,
cout << i << endl; //'i has undefined value
Some C/C+ compilers check for uninitialized variablese(U&/all option).

2.3.4 Type Qualifier

e Other integral types are composed with type qualifiers nyoufintegral
typeschar andint.

CS 246 79

e C/C+ provide sizeghort , long) and signed-nessigned =
positive/negativeynsigned =- positive only) qualifiers.

e int providesrelative machine-specific types: usualht > 2 bytes for
16-bit computer and 4 bytes for 32/64-bit compulerg > int, long long
> long .

e #include <climits> specifies names for lower/upper bounds of a type’s
range of values for a machine, e.g., a 32/64-bit computer:

Integral types range (lower/upper bound name)
char (signed char) SCHAR_MIN to SCHAR_MAX, e.g.,- 128 to 127
unsigned char 0 to UCHAR_MAX, e.g.0 to 255
short (signed short int) SHRT_MIN to SHRT_MAX, e.g.,- 32768 t0 32767
unsigned short (unsigned short int) 0 to USHRT_MAX, e.g.,0 to 65535
int (signed int) INT_MIN tOo INT_MAX, e.g.,- 2147483648 10 2147483647
unsigned int 0 toUINT_MAX, e.g.,0 t0 4294967295
long (signed long int) (LONG_MIN to LONG_MAX),

e.g.,- 2147483648 10 2147483647
unsigned long (unsigned long int) 0 to (ULONG_MAX, e.g.0 t0 4294967295
long long (signed long long int) LLONG_MIN to LLONG_MAX,

e.g.,- 9223372036854 775808 10 9223372036854775807
unsigned long long (unsigned long long int)| 0 to (ULLONG_MAX), e.g.,0 to 18446744073709551615

e #include <stdint.h> providesabsolutetypes[u]intN_t for signed /unsigned
N =8, 16, 32, 64 bits.

CS 246 30

Integral typesrange (lower/upper bound name)
INt8_t INT8_MIN tO INT8_MAX, e.g.,- 128 to 127
uint8_t 0 to UINT8_MAX, e.g.,0 to 255
INt16_t INT16_MIN 10 INT16_MAX, e.g.,- 32768 10 32767
uintl6._t O toUINT16_MAX, e.g.,0 to 65535
INt32_t INT32_MIN 10 INT32_MAX, e.g.,- 2147483648 10 2147483647
uint32_t O toUINT32_MAX, e.g.,0 t0 4294967295
INt64 _t INT64_MIN t0 INT64_MAX,
e.g.,- 9223372036854775808 t0 9223372036854775807
uinté4 _t O toUINT64_MAX, e.g.,0 t0 18446744073709551615

e C/C+ provide two basic real-floating typtisat anddouble , and one
real-floating type generated with type qualifier.

e #include <cfloat> specifies names for precision and magnitude of
real-floating values.

CS 246 81

real-float typesrange (precision, magnitude)

float FLT_DIG precision,FLT_MIN_10_EXP to FLT_MAX_10_EXP,
e.g,. 6+ digits over range 16° to 108, IEEE (4 bytes)
double DBL_DIG precision,DBL_MIN_10_EXP to DBL_MAX_10_EXP,

e.g., 15+ digits over range 182to 10°°8, IEEE (8 bytes)
long double LDBL_DIG precision,LDBL_MIN_10_EXP to LDBL_MAX_10_EXP,
e.g., 18-33+ digits over range 1°?to 10*%? |EEE (12-16 bytes)

float : £+1.17549435e- 38 to +-3.40282347e+38
double : +2.2250738585072014e- 308 to +1.7976931348623157e+308
long double : £3.36210314311209350626e- 4932 to +£1.18973149535723176502e+493~

2.3.5 Literals

¢ Variables contain values, and each value hasratant(C) orliteral (C+)
meaning.

e E.g., the integral value 3 is constant/literal, i.e., itwaihchange, it always
means 3.

3 =7, [/l disallowed
e Every basic type has a set of literals that define its values.

CS 246

¢ A variable’s value always starts with a literal, and changasanother
literal or computation.

e C/CH+ and Java share almost all the same literals for the bgses.

type literals

booleanfalse, true

character’a’ ,"\"’

Integral decimal :123, - 456, 123456789
octal, prefix0 : 0144, - 045, 04576132
hexadecimal, prefigX / 0x : Oxfe, - 0X1f, Oxe89abc3d

real-floating .1, 1., - 1., 0.52, - 7.3E3, - 6.6e- 2, E/e exponent

e Use the right literal for a variable’s type:

bool b = true; /l not 1
int 1 = 1; /l not 1.0
double d = 1.0 /l not 1
char c ='a’; /l not 97

e Escape sequence provides gquoting of special charactexhar diteral
using a backslash,

82

CS 246
"\ backslash
T\ single quote
"\t’,’\n’ | (special names) tab, newline, ...
"\ O Zero, string termination character
"\ 000’ octal valuepoo up to 3 octal digits
"\ xhh’ hexadecimal valuéhh up to 2 hexadecimal digits fahar,
up to 4 hexadecimal digits favchar _t (not Java)

cout << '\\'’ << endl

y
4

e C/C+H+ provide user named literals (write-once/read-owlyables) with

<< '\’ << endl

<< '\t’ <<'"\t’ <<’ X' <<’\n’ /I newline value 10
<<'y' << "\12" /] octal for 10

<< 'z << ’'\xa': [/l hexadecimal for 10

type qualifierconst (Javafinal).

83

CS 246

384

Java

C/C+H

final char Initial =’ D ;

final short int Size = 3, SupSize;
SupSize = Size + 7;

final double Pl = 3.14159;

const char |Initial = ' D ;

const short int Size = 3, SupSize = Size + 7;
disallowed

const double Pl = 3.14159;

e C/C+const variablemustbe assigned a value at declaration (or by a
constructor’s declaration); the value can be the resulhahgression.

e A constant variable can (only) appear in contexts wheresgaliican appear.

Size = 7: [/ disallowed

e Good practise is to name literals so all usages can be chamayéed

Initialization value.

const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;
e There are trillions of literals>- cannot all be stored in memory.
e Only the literals in a program use storage, some are embeqtied

computer instructions.

CS 246
2.4 EXpression

Java C/CH priority
postfix.,], call :, ., ->[], call, cast |high
prefix+, -, !, ~, cast, +, -, 1, ~, &, x, cast,

(unary)new new, delete, sizeof
binaryx, /, % x, 1, %
+ - +, -
bit shift<<, >>, >>> <<, >>
relationals, <=, >, >=, instanceof |<, <=, >, >=
equa“ty:: = == I=
bitwise& and &
A exclusive-or A
| or |
logical&& short-circuit &&
1 1
conditional?: ?:
assignment, +=, - =, «x=, /=, %= = 4=, -=, x=, [=, %=
<<=, >>=, >>>= &=, =, ==, >>=, &=, M=, |=
comma low

e Expression evaluation is like algebra:

CS 246 86
o operations exist and are called using name with parentusiz

argument(s).
abs(-3); -3
sqrt(X); VX
pow(X, Y); X/
o operators are prioritized and performed from high to low.
X +Yyxsqrt(z), /[call, multiple, add
o operators with same priority are done left to right
X+Yy- z // add, subtract
3.0/ V xw; /[divide, multiple
except for unary?, and assignment operators, which associate right to
left.
- ~X; /[complement, negate
*&; // address- of, dereference
X =Yy =2 Il ztoy to X

o parentheses control order of evaluation, i.e., overridgsru

X+ VY xZ /[multiple, add
(X +V) * Z; /[add, multiple

CS 246 87
e Subexpressions and argument evaluation is unspecified igfavo right)

(1+])+x(k+]); /I either + done first
(1=])+(]=1); /[either = done first
g(i)+f(k)+h(j);, /g, f orh called in any order

f(pt+, pt++, pt+); /[arguments evaluated in any order

e Beware ofoverflow.

unsigned int a = 4294967295, b = 4294967295, ¢ = 4294967295;
(a+b)/c /[=> 0 as a+b overflows leaving zero
alc+bl/c /[=> 2

Perform extra operations (2 divides) to keep numbers small.
e C+ relational/equality returfalse /true ; C return0/1.

e Referencing (address-of§, and dereference, operators do not exist in
Java because access to storage is restricted.

e Pseudo-routinsizeof returns the number of bytes for a type or variable
(not in Java):

long int I
sizeof (long int); /Il type, at least 4
sizeof (i); /l variable, at least 4

CS 246 38

Thesizeof a pointer (type or variable) is the size of the pointer on that
particular computer and not the size of the type the poimErences.

e Bit-shift operatorsg< (left), and>> (right) shift bits in integral variables
left and right.
o left shift is multiplying by 2, modulus variable’s size;
o right shift is dividing by 2 if unsigned or positive (like Jaw>>);
otherwise undefined.

Int x, vy, z;

X=y=2z=1,

cout << (x << 1) <<’ ' << (y<<2) <<’ ' << (z << 3) << endl;
X =y =12z=16;

cout << (x >> 1) <<’ ' << (y>>2) <<’ ' << (z >> 3) << endl;
248

842

Why are parenthesis necessary?
e Division operator/, accepts integral and real-float operands, but truncates
for integrals.

3/4 /I O not 0.75
3.0/4.0 /[l 0.75

CS 246 89

e Remainder (modulus) operatés, only accepts integral operands.

o If either operand is negative, the sign of the remainder gementation
defined, e.9g53 % 4,3 % -4,-3 % - 4 can be3 or - 3.

e Assignment is an operator; useful foascade assignmerto initialize
multiple variables of the same type:

a=b=c=0; /| cascade assignment
X=y=2z+4

o Other uses of assignment in an expression are discouragedk.,
assignments only on left side.

e General assignment operators, digs,+= rhs implicitly rewritten as:

temp = &(lhs); xtemp = xtemp + rhs;
not:
lhs = lhs + rhs;
hence, the left-hand sidixs, is evaluated only once:

v[1(3)] += 1; /[only calls f once
v i3 1 =v[f(3)] + 1; // calls f twice

CS 246 90
e Comma expression allows multiple expressions to be eveduata context
where only a single expression is allowed.
x, f+qg, sqrt(3)/2, m[i][j] <« value returned

o Expressions evaluated left to right with the value of rigasitnexpression
returned.

e Operators-+ / - - are discouraged because subsumed by gereral=.

| += 1; Versus i ++
| += 3: versus 1| ++ ++ ++: /| disallowed

2.4.1 Conversion

e Conversiontransforms a value to another type by changing the valuesto tf
new type’s representation.

e Conversions can occur implicitly by the compiler or exglicby the
programmer using aastoperator or CHstatic _cast operator.

Int 1; double d;

d =i /[implicit (compiler)

d = (double)i; /I explicit with cast (programmer)
d = static _cast<double >(i);

CS 246
e Two kinds of conversions:

o widening/promotion conversion, no information is lost:

bool — char — short int — long int — double
true 1 1 1 1.000000000000000

wherefalse — O;true — 1
o harrowing conversion, information can be lost:

double — long int — short int — char — bool
(7777.77777777777 77777 12241 209 true

where 0— false: non-zero— true

e C/CH+ have implicit widening and narrowing conversions/&Janly
implicit widening).

e Beware of implicit narrowing conversions:

Int 1 double d;
|:d—3.5; /| d->35
d=1i=35 //d-> 3.0 truncation

91

e Good practice is to perform narrowing conversions expiaitith cast as

documentation.

CS 246 92

int i; double dl1 =7.2, d2 = 3.5;

| = (int) di; /I explicit narrowing conversion

| = (int) d1 / (int) d2; // explicit narrowing conversions for integer division
| = static _cast<int>(d1 / d2); // alternative technique after integer division

e C/C+ supports casting among the basic types and user déyiesl

2.4.2 Coercion

e Coercionreinterprets a value to another type but the result is mapaot
meaningful in the new type’s representation.

e SOome narrowing conversions are considered coercions.

o E.g., when a value is truncated or converting non-zetaito, the result
IS nonsense in the new type’s representation.

e Also, having typechar represent ASCII characteasid integral (byte)
values allows:

char ch="2" - "a’; /| character arithmetic!

which may or may not be reasonable as it might generate alhdnva
character.

e But the most common coercion is through pointers:

CS 246 93

Int 1, xip = &i; /[1p Is a pointer to an integer
double d, xdp = &d; // dp is a pointer to a double
dp = (double x)ip; // lie, say dp points at double but really an integer

Using the explicit cast, programmer has lied to the comaibeyut the type
of ip.

e Good practice is to limit narrowing conversions and NEVERelabout a
variable’s type.

2.4.3 Math Operations

e #include <cmath> provides overloaded real-float mathematical-routines fc
typesfloat , double andlong double :

CS 246

operation routine | operation routine
1X| abs(x) | xmody |[fmod(x, y)
arccox |acos(x) || Inx log(x)
arcsirk |asin(x) | logx log10(x)
arctarx |atan(x) | X pow(X, V)
[X] ceil(x) | sinx sin(x)
COSX cos(X) sinhx sinh(x)
coshx cosh(x) | /X sgrt(x)

el exp(x) | tanx tan(X)

| X] floor(x) | tanhx tanh(X)

and math literals:

M_E
M_LOG2E
M_LOG10E
M_LN2
M_LN10
M_PI

M_PI_2
M_PI_4
M_1_P]
M_2_P]
M_2_SQRTPI
M_SQRT?2
M_SQRT1_2

2.7182818284590452354

1.4426950408889634074

0.43429448190325182765
0.69314718055994530942
2.30258509299404568402
3.14159265358979323846
1.57079632679489661923
0.78539816339744830962
0.31830988618379067154
0.63661977236758134308
1.12837916709551257390
1.41421356237309504880
0.7071067/8118654752440

Il e

/Il log_2 e

/l log_10 e
/Il log_e 2

/l log_e 10
Il pi

Il pil2

Il pil4

/Il 1/pi

Il 2/pi

Il 2/sqrt(pi)
Il sqrt(2)

Il 1/sqrt(2)

94

CS 246
e Some systems also provitteng double math literals.

e pow(x,y) (X¥) is computed using logarithms, 109 (versus repeated
multiplication), whery is non-integral value=>y > 0
pow(-2.0,3.0); —28=-2x-2x—-2=-8
pow(- 2.0, 3.1); —231=1031%199-20 — pan (not a number)
nan IS generated because le@ is undefined.

e Quadratic roots oéix* + bx+c arer = —b4+/b? — 4ac/2a

#include <iostream>
#include <cmath>
using namespace std;

int main() {
double a=35,b =21, ¢c=-1.2;
double dis=bxb- 4.0 xa*c, dem = 2.0 x a;
cout << "rootl: " << (-b + sgrt(dis)) / dem << endl;
cout << "root2: " << (-b - sgrt(dis))/ dem << endl;

}
e Must explicitly link in the math library:

$ g++ roots.cc - Im # link math library

95

CS 246
2.5 Control Structures

96

Java

C/C+H

block

{ intermixed decls/stmts }

{ intermixed decls/stmts }

selection

if (bool-exprl) stmtl
else if (bool-expr2) stmt2

else stmtN

if (bool-exprl) stmtl
else if (bool-expr2) stmt2

else stmtN

switch (integral-expr) {
case cl: stmtsl: break:

case cN: stmtsN: break:
default : stmtsO:;

}

switch (integral-expr) {
case cl: stmtsl: break:

case cN: stmtsN: break:
default : stmtsO:;

}

looping

while (bool-expr) stmt

while (bool-expr) stmt

do stmt while (bool-expr) ;

do stmt while (bool-expr) ;

for (init-expr;bool-expr;incr-expr) stmt

for (init-expr;bool-expr;incr-expr) stmt

transfer

break [label] break
continue [label] continue
goto label

return [expr]

return [expr]

throw [expr |

throw [expr |

label

label : stmt

label : stmt

CS 246 97
2.5.1 Block

e Block is a series of statements bracketed by brace$, which can be
nested.

¢ A block forms a complete statement but does not have to benated with
a semicolon.

e Block serves two purposes: bracket several statementa sitagle
statement and introduce local declarations.

e Good practice is to always use a block versus single stateimatow easy
Insertion and removal of statements to or from block.

if (x>vy) // no block
X = 0; /[cannot directly add statements

if (x>y){ // block
X = 0; // can directly add/remove statements
}

Does the shell have this problem?
e Declarations may be intermixed among executable statesmeatblock.

e Block variables are allocated first-in first-out (FIFO) frone stack
memory area.

CS 246 98

{ I/ block1 stack
/I variables free | QI
{ I/ block2 code | static heap == == 3| 38|°
/Il variables memory | o | 5| °
} } low address high address

e Localizing declarations in nested blocks reduces deataratutter at
beginning of a block.

int i, |, k; // global int i,
... /luse i, |, k ... 1l use |
{ int J; /] local
... 1/l use |, |
{ int k; /I local
... /luse i, |, k

However, it can also make locating declarations more difficu

¢ Variable names can be reused in different blocks, I.e.,iblyssverriding
(hiding) prior variables.

CS 246

int 1=1; ... Il first |
{ int k=1,1=2;... [/l k=firsti, second i overrides first
{ inti=3;... /[third 1 (overrides second)

2.5.2 Selection

e C/C+ selection statements af@ndswitch (same as Java).

e An if statement selectively executes one of two alternativescais a
comparison result:

if (Xx>y) max = x;
else max =y,

e For nestedf statementslse matches closedt, which results in the
dangling elseproblem.

e E.g., reward WIDGET salesperson who sold $10,000 or mor&wadr
WIDGETS and dock pay of those who sold less than $5,000.

CS 246

100

Dangling Else

Fix Using Null Else

Fix Using Block

if (sales < 10000)
If (sales < 5000)
income - = penalty;

else /I incorrect match!!!
Income += bonus;

if (sales < 10000)
If (sales < 5000)
Income - = penalty;
else : // null statement
else
Income += bonus;

if (sales < 10000) {
If (sales < 5000)
Income - = penalty;

} else
income += bonus;

e Unnecessary equality for boolean as value is alreadyor false .

bool b;
if (b==true) ...

/1'if (b)

e Conversions cause confusion.

If (-0.5<=x<=0.5)...

if (((-05<=x)<=05))...

What does this do?

/l looks right and compiles

e Common mistake to assigrto x and converts to bool (possible in Java

for one type).

if (x=vy)...

e A switch statement selectively executes ond\dadilternatives based on

CS 246 101
matching an integral value with a series of case clauses:

switch (day) { /l integral expression

case Mon: case Tue: case Wed: case Thu: /I case value list
cout << " PROGRAM' << endl:
break ; /I exit switch

case Fri:
wallet += pay;
/l FALL THROUGH

case Sat:
cout << "PARTY" << endl;
wallet - = party;

break : /] exit switch
case Sun:

cout << "REST" << endl;

break ; /I exit switch
default : /l optional

cerr << "ERROR bad day" << endl;
exit(EXIT_FAILURE); /[TERMINATE PROGRAM

}
e Only one label for eachase clause but a list ofase clauses is allowed.
e Once case label matches, the clauses statements are executeontrol

CS 246 102
continues to th@ext statement.

e If N0 case clause is matched and theredefault clause, its statements are
executed, and control continues to tiext statement.

e Unless there is Break statement to prematurely exit te@itch statement.
e It IS a common error to forget the break In a case clause.
e Otherwise, thewitch statement does nothing.

2.5.3 Conditional Expression Evaluation

e Conditional expression evaluationperforms partial ¢hort-circuit)
expression evaluation.

&& | only evaluates the right operand if the left operand is true
|| |only evaluates the right operand if the left operand is false
?. |only evaluates one of two alternative parts of an expression

e && and|| are similar to logica& and| for bitwise (boolean) operands, i.e.,
both produce a logical conjunctive or disjunctive result.

e However, short-circuit operators evaluate operandsylamitil a result is
determined, short circuiting the evaluation of other opdma

CS 246 103

d!=0&& n/d>5 // may not evaluate right operand, prevents division by
false and anything is?

e Hence, short-circuit operators are control structures@middle of an
expression becausad && e2 = &&(el, e2) (unless lazy evaluation).

e Logical & and| evaluate operands eagerly, evaluating both operands.

e Conditional?: evaluates one of two expressions, and returns the result of
the evaluated expression.

e Acts like anif statement in an expression and can eliminate temporary
variables.

flt(la<0?-a:a)+2) int temp;

f (a<0)temp = -a;
else temp = a;

f(temp + 2);

2.5.4 Looping

e C/C+ looping statements awdile , do andfor (same as Java).
e while statement executes its statemesito or more times

CS 246 104

while (x <5){
/| executes O or more times

}
e Beware of accidental infinite loops.
X = 0; X = 0;
while (x < 5),; // extra semicolon! while (x < 5) // missing block
X =X+ 1; y =Yy +X;
X=X+ 1,

e do statement executes its statemené or more times

do {
/| executes one or more times
} Whlle (Xx<5);

e for statement is a specializedhile statement for iterating with an index.

Init-expr;

while (bool-expr) { for (init-expr; bool-expr; incr-expr) {
stmts; stmts;
Incr-expr;

} }

e If init-expr IS a declaration, the scope of its variables is the remaiofire

CS 246 105
declaration, the other two expressions, and the loop body.

for (iInt 1=0,j=11<j;1+=1){//1and) declared
/[1 and | visible
} // 1 and | deallocated and invisible

e Many ways to use thfar statement to construct iteration:

for (1=1;1<=10;1+=1) { // count up
// loop 10 times

} /1 has value 11 on exit

for (1=10;1<=1;1-=1){ // count down
// loop 10 times

} /I 1 has value 0 on exit

for (p=s; p!=NULL; p=p->link) { /[pointer index
I/ loop through list structure

} /I p has the value NULL on exit

for (1=1,p=s;1<=10&& p!=NULL; i +=1, p=p->link) { // 2 indic
// loop until 10th node or end of list encountered

}

e Comma expression is used to initialize and increment 2 @xliic a context
where normally only a single expression is allowed.

CS 246 106
e Defaulttrue value inserted if no conditional is specifiedftm statement.

for (;;) /I rewritten as: for (; true ;)

e break statement terminates enclosing loop body.
e continue statement advances to the next loop iteration.

2.6 Structured Programming

e Structured programming Is about managing (restricting) control flow
using a fixed set of well-defined control-structures.

e A small set of control structures used with a particular paogming style
make programs easier to write and understand, as well agamain

e Most programmers adopt this approach so there is a uni@saimon)
approach to managing control flow (e.g., like traffic rules).

e Developed during late 1960’s to early 1970’s to overcome the
Indiscriminant use of the GOTO statement.

e GOTO leads to convoluted logic in programs (i.e., does NQipsut a
methodical thought process).

CS 246 107

e |.e., arbitrary transfer of control makes programs difficalunderstand and
maintain.

e Restricted transfer reduces the points where flow of contrahges, and
therefore, is easy to understand.

e There are 3 levels of structured programming:

classical
o sequence: series of statements
o If-then-else: conditional structure for making decisions
o While: structure for loops with test at top
Can write any program (actually only neatlile s or onewhile andifs).
extended
o use the classical control-structures and add:
x case/switch: conditional structure for making decisions
x for: while with initialization/test/increment
x repeat-until/do-while: structure for loops with test attbm
modified
o use the extended control-structures and add:
*x one or more exits from arbitrary points in a loop

CS 246 108

x exits from multiple nested control structures
x exits from multiple nested routine calls

2.6.1 Multi-Exit Loop

e Multi-exit loop (or mid-test loop) has one or more exit locatiamshin the
loop body.

e While-loop has 1 exit located at the top (Ada):

while 1 < 10 do loop - - Infinite loop
exit when i >= 10; -- loop exit
S . T reverse condition
end while end loop

e Repeat-loop has 1 exit located at the bottom:

do loop - - Infinite loop
| _ exi.t.\'/vhen | >= 10; -- loop exit
while (1 <10) end loop 1 reverse condition

e EXit should not be restricted to only top and bottom, i.en appear in the
loop body:

CS 246 109

loop
exi.t.\./vhen | >= 10;
endiébp
e Loop exit has ability to change kind of loop solely by movimg exit line.

e In general, your coding style should allow changes and tioseof new
code with minimal changes to existing code.

e Eliminate priming (duplicated) code necessary witiile :

read(input, d); loop

while ! eof(input) do read(input, d);

exit when eof(input);
read(input, d);

end while end loop

e Good practice Is to reduce or eliminate duplicate codghy?

e Loop exit is outdented or commented or boftyé Candy) = easy to find
without searching entire loop body.

e Same indentation rule as for thse of if-then-else (outdertise):

CS 246 110

if ...then if ... then

XXX XXX
else else // outdent
XXX XXX
end if end if
e A multi-exit loop can be written in C/C+ in the following way
for (;;){ while (true) { do {
if (i>=10) break: if (i>=10) break: if (i>=10) break:
b b } while (true):

e Thefor version is more general as easily modified to have a loop index
for (int 1=0;1<10;1+=1) {// loop index
e Eliminateelse on loop exits:

111

CS 246
BAD GOOD
for (;;){ for (;;) {
S1 S1
if (C1) { if (! C1) break;
S2 S2
} else {
break :
}
S3 S3
} }

BAD GOOD
for (;;){ for (;;) {

S1 S1

if (C1) { if (C1) break;
break :

} else {
S2 S2

}

S3 S3

}

S2 is logically part of loop bodyot part of anif.
e Allow multiple exit conditions:

CS 246 112

bool flagl = false, flag2 = false;

for (;;) { while (! flagl & ! flag2) {
S1 S1
if (1 >= 10) break; if (C1) flagl = true;
} else {
S2 S2
if (j>=10) break; if (C2) flag2 = true;
} else {
S3 S3
J }
}
}

e Eliminate flag variables necessary withile .

o flag variable is used solely to affect control flow, i.e., does not contain
data associated with a computation.

e Examine linear search such that:

o no invalid subscript for unsuccessful search
o Index points at the location of the key for successful search

e First approach: use only control-flow construi€tandwhile :

CS 246 113

int 1 = -1; bool found = false;

while (1 <size - 1 & ! found) { // rewrite: &(i<size- 1, !found)
| += 1;
found = key == list]i];

}

if (found) {... // found

}else {... // not found

}

Why must the program be written this way?
e Second approach: allow short-circuit control structures.

for (1 =0;1<size && key = list[i]; i += 1);
Il rewrite: if (1 < size) if (key != list[i])

if (1<size){... // found
}else {... /[not found
}

e How doest& prevent subscript error?

e Short-circuit&& does not exist in all programming languages, and require:
knowledge of Boolean algebra (false and anything is?).

e Third approach: use multi-exit loop (especially if && exits).

CS 246

for (1=0;;1+=21){//or for (1i=0;1<size;i1+=1)
If (1 >= size) break;
If (key == list[i]) break;

}

if (1<size){... // found
}else {... /[not found
}

e \When loop ends, it is known if the key is found or not found.

e Why is it necessary to re-determine this fact after the loop?

e Can it always be re-determined?

e Extra test after loop can be eliminated by moving it into |baoaly.

for (i=0;:i+=1)/{

if (1>=size){... // not found
break ;
} Il exit
if (key ==list[i]) {... /I found
break ;
} Il exit
} /] for

e E.g., an element is looked up in a list of items, if it is nothe list, it is

114

CS 246 115

added to the end of the list, if it exists in the list its asatedl list counter Is
Incremented.

for (Int 1=0;;1+=1){
if (i>=size) {
list[size].count = 1,
list[size].data = key;
size += 1; [/l needs check for array overflow
break ;
} Il exit
If (key == list[i].data) {
list[i].count += 1;
break ;
} Il exit
} /] for

e None of these approaches is best in all cases; select theaabpihat best
fits the problem.

2.6.2 Multi-Level Exit

e Multi-level exit transfers out of multiple control structures where exit
points areknown at compile time.

CS 246 116
e Labelled exit break/continue) provides this capabillity (Java):

L1: {
... declarations ...
L2: switch (...) {
L3: for (...){
... break L1: ... /I exit block
... break L2; ... /|l exit switch
... break L3; ... /] exit loop

}

e Labelledbreak/continue transfer control out of the control structure with
the corresponding label, terminating any block that it pagarough.

e C/CH+ do not have labelldateak /continue = simulate withgoto .

e goto label allows arbitrary transfer of contrelithin a routine from the
goto to statement marked with label variable.

e Label variable is declared by prefixing an identifier with d to a
statement.

CS 246 117

L1: 1 += 1 // associated with expression
L2:if (...) ... /[associated with if statement
L3: ; /[associated with empty statement

e Labels can only be declared in a routiménere the label has routine scope

o l.e., label identifier is unique within a routine boegy cannot be
overridden in local blocks.

int L1; /[identifier L1

L2: ; /[identifier L2

{
double L1; /[can override variable identifier
double L2; /[cannot override label identifier

}

e goto transfers control backwards/forwards to labelled stategme

L1: ;

.g.o.to L1, /I transfer backwards, up

goto L2; /l transfer forward, down

L2: ;

e Why is it good practice to associate a label with an emptestant?

CS 246 118
e Transforming labellethreak to goto :

{
... declarations ...
switch (...) {
for (...){
... goto L1; .../l exit block
... goto L2; .../l exit switch
... goto L3; .../l exit loop
}
L3: ; // empty statement
}
L2: ;
}
L1:;

e Why are labels at the end of control structures not as gootsiara?
e Why is it a good idea to put label on its own empty statement?
e Multi-level exits are commonly used with nested loops:

CS 246
int i, j:
for (i=0i<10:i+=1)/{

for (j=0;]<10;j+=1){

If (. ..) goto B2; /I outdent

... [l rest of loop
if (...) goto B1; // outdent

/l rest of loop

} B2: ;
// rest of loop

} B1: ;

119

int 1, J;
bool flagl = false;
for (1=0;,1<10&& !flagl;i+=1){
bool flag2 = false;
for (] =0;) <10 &&
| flagl && ! flag2 ; j += 1) {

if (...) flag2 = true;
else {

... [l rest of loop

if (...) flagl = true;

else {
... [l rest of loop
I f
I f
} /] for
if (! flagl) {
... [l rest of loop
J /A
} /] for

e Indentation matches with control-structure terminated.

CS 246

120

e Eliminate all flag variables with multi-level exit!

o Flag variables are the variable equivalent to a gdbecause they can be
set/reset/tested at arbitrary locations in a program.

e Simple case (exit 1 level) of multi-level exit is a multi-elaop.
e Why is it good practice to label all exits?
e Other uses of multi-level exit to remove duplicate code:

duplication no duplication
switch { // not allowed
if (C1){ if (C1){ case Cl1.
S1; S1; Sl
if (C2) { if (C2) { /I fall- through
S2; S2; case C2:
if (C3) { if (C3) { S2
S3; S3; // fall- through
} else goto C:| case Ca3:
S4; } S3
} else } break;
S4, } default :
} else S4; /I only once S4: I/ only once
S4; C:; }

CS 246 121

e If any conditions are false, the same code is executed f#igting an error
message), resulting in code duplication.

e Normal and labellethreak are agoto with restrictions:

o Cannot be used to create a loop (i.e., cause a backward braecice,
all repeated execution is clearly delineated by loop cocsdr

o Cannot be used to branafto a control structure.

e Only usegoto to perform static multi-level exit, e.g., simulate labellel
break and continue .

e return statements can simulate multi-exit loop and multi-level.ex

e Multi-level exits appear infrequently, but are extremetycise and
execution-time efficient.

2.7 Type Constructor
e Type constructor declaration builds more complex type from basic types.

CS 246

122

constructor

Java

C/CH

enumerationenum Colour { R, G, B}

enum Colour { R, G, B}

pointer

any-type «p;

reference (final) class-type r;

any-type &r; (C+ only)

array

any-type v[10];
any-type m[10][10];

structure

any-type v[] = new any-type[10];
any-type m[][] = new any-type[10][10];
class

struct or class

2.7.1 Enumeration

e An enumerationis a type defining a set of named literals with only
assignment, comparison, and conversion to integer:

enum Days {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering

Days day = Sat;
enum {Yes, No} vote = Yes;

/l variable declaration, initialization
/[anonymous type and variable declaration

enum Colour {R=0x1, G=0x2, B=0x4} colour; // typel/variable declaration, explicit nun

colour = B;

/[assighment

e |ldentifiers in an enumeration are calledumerators.

e First enumerator is implicitly numbered O; thereafter,lreagsumerator is
Implicitly numbered +1 the previous enumerator.

e ENnumerato

rs can be explicitly numbered.

CS 246 123

enum {A=3,B,C=A-5D=3,E},//34-2314
enum { Red="R , Green="G,Blue="B };// 82, 71, 66

e Enumeration in C+ denotes a new type; enumeration in Cas &dirint.

day = Sat; /[enumerator must match enumeration
day = 42; // disallowed C++, allowed C
day = R; // disallowed C++, allowed C
day = colour ; // disallowed C++, allowed C

e Alternative mechanism to create literalsshst declaration.

const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;
short int day = Sat;
days = 42; // assignment allowed

e C/C+H enumerators must be unique in block.

enum CarColour { Red, Green, Blue, Black };
enum PhoneColour { Red, Orange, Yellow, Black };

EnumeratorfKed andBlack conflict. (Java enumerators are always
qualified).

e In C, “enum” must also be specified for a declaration:

CS 246 124

enum Days day = Sat; // repeat “enum” on variable declaration
e Trick to count enumerators (if no explicit numbering):

enum Colour { Red, Green, Yellow, Blue, Black, No_Of_Colours };
No_Of_Colours is 5, which is the number of enumerators.
e Iterating over enumerators:

for (Colour ¢ = Red; ¢ < No_Of_Colours; ¢ = (Colour) (c + 1)) {
cout << ¢ << end;
}

Why Is the cast(Colour), necessary? Is it a conversion or coercion?

2.7.2 Pointer/Reference

e pointer/referenceis a memory address.

e Used to access the value stored in the memory location atihéesp
address.

e All variables have an address in memory, éng).x = 5,y = 7:

CS 246 125

value type int int
identifier/value x 5 y 7
address 100 200

e Two basic addressing operations:
1.referencing. obtain address of a variable; unary opera&an Ct:

100 < &x
200 < &y

2.dereferencing retrieve value at an address; unary operatorC+-:

5 < %(100) < %(&X)
7 < x(200) < *(&y)

Note, unary and binary use of operat&/s for reference/dereference and
conjunction/multiplication.
e S0 what does a variable name mean?>;o it 5 or 100? It depends!

e A variable name is a symbolic name for the pointer to its vadug.,x
meanstx, I.e., symbok is always replaced by pointer valaeo.

e \What happens in this expression so it can execute?

CS 246 126
X =X+ 1;
e First, each variable name is substituted (rewritten) ®painter value:
(&x) = (&x) + 1 where x = &x
(100) = (100) + 1
Assign into memory location 100 the value 101? Only pastiaedrrect!
e Second, when a variable name appears on the right-handfside o
assignment, it implies the variable’s value not its address

(&x) = %(&x) + 1
(100) = #(100) + 1
(100) = 5 + 1

Assign into memory location 100 the value 6? Correct!

e Hence, a variable name always means its address, and alearaabe is
alsoimplicitly dereferenced on the right side of assignment.

e Exception is&x, which just meangx not &(&x).

e Notice, identifierx (in a particular scope) is a literaddqnst) pointer
because it always means the same memory address (e.g., 100).

e Generalize notion of literal variable-name to variable eahat can point to
more than one memory location (like integer variable vehseisal).

CS 246 127

e A pointer variable is a (noneonst) variable that contains different
variable addressesstricted to a specific typm any storage location (i.e.,
static, stack or heap storage).

o Java references can only addrebgect types on theheap.

Int xpl = &X, xp2 = &y, xp3 = 0; // or p3 is uninitialized

int * int

30 < &pl

pl 100 —™> S X 40 <+ &p2
30 100 50 < &p3

v 100 < *&pl

A 200 < »&p2

p2 200 7 Y 0 <« «&p3
40 200 5 < x=&pl
nulllundefined 7 < iy

p3(0/ O>5<g4fe7 pointer : P

e Storage is needed for different address values, so a pemtable also has
an address!

e By convention, no variable is placed at thell address(pointer),null in
Java, 0 in C/C+.

CS 246 128

e Hence, an address value is another variable’s addrefissction) or null
address or an undefined address when uninitialized.

o null address often means pointer is unused.

e Multiple pointers may point to the same memory addre2s<(p1, dashed
line).

e Dereferencing null/undefined pointerusdefinedas no variable at address
(but not error).

e Variable pointed-at is thearget variable and its value is théarget value.
o e.g.,x Is the target variable qfl with target value 5.

e Can a pointer variable point to itself?

e Same implicit reference/dereference rules apply for poinariables.

pl = &X; /[pointer assignment
(&pl) < &x /Il no rewrite rule for x, why?
(30) <« 100

Assign to memory location 30 the value 100.

CS 246 129

p2 = pil; /I pointer assignment
(&p2) < x(&p1) // rewrite rules

(40) < *(30)

(40) <« 100

Assign to memory location 40 the value 100.
¢ Value assignment requires explicit dereferencing to accakles:

xp2 = «pl; // value assignment, y = X
x(&p2) < *(»(&pl)) /I rewrite rules

*(40) < *(*(30))

200 < x(100)

200 <+ 5

Assign to memory location 200 the value 5.
e Often the target value is used more than the pointer value.

xp2 = ((+xp1 + «p2) « (xp2 - +pl)) / (+xp1 - +p2);
Less tedious and error prone to write:
p2 = ((p1 + p2) » (P2 - p1)) / (P1 - p2);

e C+ reference pointer provides extra implicit dereferetocgccess target
value:

CS 246 130
Int &l = X, &2 =;
2 =((rl +r2) = (r2 - rl)) / (r1 - r2),
e Hence, difference between plain and reference pointer is agxtra
Implicit dereference.
o l.e., do you want to write thes", or let the compiler write the«"?

e However, extra implicit dereference generates a problamdomter
assignment.

2 =rl,
x(&r2) < «(x(&rl)) // value assignment
(&r2) < x(&rl) // not pointer assignment

e C+ solves the missing pointer assignment by making rebereointer a
literal (const), like a plain variable.

o Hence, a reference pointer cannot be assigned after itardéoh, so
pointer assignment is impossible.

o As a literal, initialization must occur at declaration, lutializing
expression has implicit referencing because addressvesysrequired.

Int &rl = &x: // error, should not have & before x

CS 246 131

e Java solves this problem by only using reference pointeig, ltaving
pointer assignment, and using a different mechanism farevassignment
(clone).

e IS there one more solution?

e Since reference means its target’s value, address of &nefemeans its
target’s address.

Int 1,
Int &r = i;
&f; *(&r) = &l not &r

e Hence, cannot initialize reference to reference or poiateeference.

int & &rr = r; /| reference to reference, rewritten &r
Int &«pr = &r; /I pointer to reference

e As well, an array of reference is disallowed (reason unknown
Int &ra[3] = {1, 1, 1 }; /I array of reference
e Type qualifiers can be used to modify pointer types.

CS 246 132

const short int w = 25; p4 300 [—— 25 |w

const short int «p4 = &w; 60 300

INt x const p5 = &X; |

Int &p5 = X; p> 100 O X
70 100

const long int z = 37;

const long int % const p6 = &z; p6 308 — 37 y4
80 308

e p4 may point atany short int variable ¢onst or nonconst) and may not
change its value.

Why canp4 point to a noneonst variable?

e p5 may only point at thént variablex and may change the valuexof
through the pointer.

o x const and& are literal pointers but const has no implicit
dereferencing like..

e p6 may only point at thdong int variablez and may not change its value.

e Pointer variable has memory address, so it is possible forrdgy to
address another pointer or object containing a pointer.

CS 246 133
INt xpX = &X, **PpPX = &PX,

&rX = X, xprx = &Irx; &pPrx <— x(&rx)
PPX PX
108 — > 100
124 108
5 X
prx I'X 100
100 100
132 116

e Pointer/reference type-constructor is not distributed acoss the
identifier list.
int x pl, p2; plis a pointer, p2 is an integerint «pl, =p2;
int & rx =i, ry = i; rxis areference, ry is an integémt &rx =i, &ry = i
e C+ idiom for declaring pointers/references is misleagdormy works for
single versus list of variables.
Nt I int+ 1, k;
double & x = d; double & x =d,y = d;
Gives false impression of distribution across the idemtifss.

CS 246 134
2.7.3 Aggregates

e Aggregates are a set of homogeneous/heterogeneous vatlias a
mechanism to access the values in the set.

2.7.3.1 Array
e Array is a set olhomogeneous values

int array[10]; // 10 int values

e Array type,int, is the type of each set value; arré@ynension, 10, is the
maximum number of values in the set.

e An array can be structured to have multiple dimensions.

Int matrix[10][20]; // 10 rows, 20 columns => 200 int values
char cube[5][6][7]; // 5 rows, 6 columns, 7 deep => 210 char values

Common dimension mistakeiatrix[10, 20]; meansnatrix[20] because
10, 20 is a comma expression not a dimension list.

e Number of dimensions is fixed at compile time, but dimensiaa may be:

o static (compile time),
o block dynamic (static in block),

CS 246 135
o or dynamic (change at any time).

e C+ only supports a compile-time dimension valget+ allows a runtime
expression.

Int r, c;

cin >>r >> c; I/l Input dimensions

Int array[r]; /[dynamic dimension, g++ only
Int matrix[r][c]; // dynamic dimension, g++ only

e Array values (elements) are accessedbyscripts, “[]” (look like
dimensions).

e A dimension is subscripted from O to dimension-1.

array[5] = 3; // location at column 5
| = matrix[0][2] + 1; // value at row O, column 2
c = cube[2][O][3]; /[value at row 2, column O, depth 3

Common subscript mistakenatrix[3, 4] meangnatrix[4], 4th row of matrix.
e An array name without a subscript means the first element.

array = array[O]
matrix = maitrix[0][0]
cube = cube[0][0][0]

CS 246 136

e C/C+ array is a contiguous set of elements not a referenitetelement
set as in Java.

Java C/CH
int X[] = new int [6] Int X[6]

X| —Tt=6/1|7,5 08 -1 x 1,7{5] 0] 8 -1

e C/CH+ do not store dimension information in the array!

e Hence, cannot query dimension sizes,subscript checkingand no array
assignment.

e Declaration of a pointer to an array is complex in C/C+ .
e Because no array-size information, the dimension valuararray pointer
IS unspecified.

int 1, arr[10];
Int xparr = arr, /[think parr[], pointer to array of N ints

e However, no dimension information results in the followegbiguity:

Int xpvar = &i; // think pvar[] and i[1]
Int xparr = arr, /I think parr][]

CS 246 137

e Variablespvar and parr have same type but one points at a variable and
other an array!

e Programmer decides if variable or array by not using or usuigscripting.

xpvar I/ variable

xparr // variable, arr[O]
parr[0], parr[3] /[array, many
pvar[3] /[array, but wrong

e ASIDE: Practise reading a complex declaration:

o parenthesize type qualifiers based on operator priority,
o read inside parenthesis outwards,

o start with variable name,

o end with type name on the left.

const long int « const a[5] = {0,0,0,0,0}; y | a
const long int % const (&x)[5] = a; l l l l l
const long int (= const ((&X)[5 = q,

g (((&x)[5])) 500 0 O

x . reference to an array of 5 constant pointers to constagtilttegers

2.7.3.2 Structure

CS 246 138
e Structure Is a set ofheterogeneous valuesncluding (nested) structures.

Java C/CH
class Foo { struct Foo {
Int 1 = 3; Int 1; // no initialization
... /I more fields ... /[more members
} }, I/ semi- colon terminated

e Components of a structure are calleémbers subdivided into data and
routine/function membetsn C+.

e All members of a structure are accessible (public) by défaul

¢ A structure member cannot be directly initialized (unlileea) .

e A structure is terminated with a semicolon

e Structure can be defined and instances declared in a siaggesnt.

struct Complex { double re, im; } s; // definition and declaration

e In C, “struct " must also be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration

1Java subdivides members into fields (data) and methodsr(esiit

CS 246 139
e Structures with the same type can be assigned but not cothpare

struct Student {
struct Name { /[nested structure
char first[20]; /[array
char last[20]; /[array

} name;
double age;
Int marks[10]; /[array
} sl, s2, xspl = &sl;
sl = s2; // allowed
sl == s2; // disallowed, no structure relational operations

Notice, arrays in the structures are copied, but there istay aopy. How?

e Structure members are accessedrimmber selection using selection
operator ©” (like Java).

sl.name.first[0] = ' a’;
sl.age = 34;
sl.marks[3] = 99;

e Pointers to structures have a problem:

o C/C+ are unigue in having the priority of selection operdtbhigher
than dereference operatof’

CS 246 140

o Hence xp.f executes agp.f), which is incorrect. Why?
o To get the correct effect, use parenthegig).f.

(xspl).name.first[0] = ' a’ ;
(»spl).age = 34;
(»spl).marks[5] = 95;

e Alternatively, use (special) selection operatorfor pointers to structures:

o performs dereference and member selection in correct,areep- >f is
rewritten agxp).f.

spl- >name.first[0] = ' a’ ;
spl- >age = 34;
spl- >marks[5] = 95;

o for reference pointers,> is unnecessary becausemeangsxr).f, sor.f
makes more sense thésr)- >f.

e Structuresnustbe compared member by member.

o comparing bits (e.gmemcmp) fails as alignment padding leaves
undefined values between members.

e Recursive types (lists, trees) are defined using a self-referential pointa
structure:

CS 246 141

struct Student {
/| data members
Student «link; /[pointer to another Student

}

e A bit field allows direct access to individual bits of memory:

struct S {
int i: 3; I/l 3 bits
int j:7; Il 7 bits
Int k : 6; /Il 6 bits

}s;

S.l = 2; /l 010

S.] = 5; /[0000101
s.kk =9: // 001001

¢ A bit field must be an integral type.

e Unfortunately allocation of bit-fields is implementatioafthed=- not
portable (maybe left to right or right to left!).

e Hence, the bit-fields in variabkabove must be reversed.

e While it is unfortunate C/C+ bit-fields lack portability)ey are the
highest-level mechanism to manipulate bit-specific infation.

CS 246 142
2.7.3.3 Union

e Union is a set oheterogeneous valuesncluding (nested) structures,
where all members overlay the same storage

union U {
char c; .
int i u C | d
double d:
}u;

e Used to access internal representation or save storageismgat for
different purposes at different times.

CS 246 143

union U {
float f;
struct { I/l |IEEE floating- point representation
unsigned int sign : 1; // may need to be reversed
unsigned int exp : 8§;
unsigned int frac : 23;

}s
int 1,
}u;
u.f = 3.5e3; cout << u.s.sign << '\t' << u.s.exp << '\t’ << u.s.frac << end
uf=-35e-3; cout<<u.s.sign <<’'\t' << u.s.exp <<’ \t’ << u.s.frac << end
u.f = 3.5; cout << u.f << "\t’ << hex << u.i << endl;
u.i=3; cout << u.i << ’'\t' << u.f << endl;
produces:

O 8a 5ac000 internal structure of 3.5e3

1 76 656042 Iinternal structure of - 3.5e-3
3.5 40600000 coerce double to int

3 4.2039e- 45 coerce int to double

e Reusing storage is dangerous and can usually be accomplisthia other
techniques.

CS 246 144
2.7.4 String

e A string is a sequence of characters with specialized operations to
manipulate the sequence.

e Strings are provided in C by an arrayabfar, string literals, and library
facilities.

char s[10]; /[string of at most 10 characters
e String literal is a double-quoted sequence of characters.

“abc”
"a b c"

e Pointer to a string literal must ®nst .

const char xcs = "abc”;
Why?
e Juxtaposed string literals are concatenated.

"] ohndoe";
"john™ "doe"; // divide literal for readability

e Character escape sequences may appear in string literal.

const char *nl
const char xnh2

CS 246 145

WWAVT AT AT An V12V xa”

e Sequence of octal digits is terminated by length (3) or finstracter not an
octal digit; sequence of hex digits is arbitrarily long, batue truncated to
fit character type.

"\ 0123\ 128\ xaaa\ xaw'
How many characters?

e Techniques for preventing escape ambiguity.
o Octal escape can be written with 3 digits.

"\ 01234"
o Octal/hex escape can be written as concatenated strings.

"\ 12" "34" "\xa" "abc" "\x12" "34"

e Every string literal is implicitly terminated with a chatac’ \ 0’ .

o e.g., string literal abc” is actually 4 charactersa’ ,’ b’ ,’ ¢’ , and
'\ 0’ , which occupies 4 bytes of storage.

e Zero value is asentinelused by C-string routines to locate the string end.
e Drawbacks:

CS 246 146

o A string cannot contain a character with the valu@’ .

o To find string length, must linearly search far0’ , which is expensive
for long strings.

e Because C-string variable is fixed-sized array, manageofent
variable-sized strings is the programmer’s responsybiigquiring complex
storage management.

e C+ solves these problems by providingsarthg” type using a length
member and managing all of the storage for the variabledsiangs
(#include <string>).

e Set of powerful operations that perform actions on groupshafacters.

CS 246 147

Java String C char [] CH string
strcpy, strncpy |=
+, concat strcat, strncat |+
equal, compareTo strcmp, strncmp | ==, 1=, <, <=, >, >=
length strlen length
charAt [] []
substring substr
replace replace
IndexOf, lastindexOf | strstr find, rfind
strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of
c_str

e All of the C+ stringfind members return values of type&ing::size_type
and valuestring::npos If a search is unsuccessful.

CS 246 148

string a, b, c; /I declare string variables

cin >> c; I/l read white- space delimited sequence of characters
cout << ¢ << endl; // print string

a="abc"; /I set value, a is “abc”

b = a; I/l copy value, b is “abc”

c=a+b; // concatenate strings, c is “abcabc”

f (a==Db) /[compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; I/ subscript, ch is ' b’ , zero origin

c[4] =" X' ; I/ subscript, ¢ is “abcaxc”, must be character literal

string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length 3,
c.replace(2, 1, d); /I replace starting at position 2 for length 1 and insert d, c is *
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is
p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5

p = c.find_first_of("aei ou"); // search for first vowel, p is O

p = c.find_first_not_of("aei ou"); // search for first consonant (not vowel), p is 1

p = c.find_last_of("aei ou"); // search for last vowel, p is 5

p = c.find_last_not_of("ael ou"); // search for last consonant (not vowel), p is 7

e Note different call syntax.substr(2, 3) versus substr(c, 2, 3).

e Memberc_str converts a string to ehar « pointer (\ 0’ terminated).
e Count and print words in string-variabdiee containing words separated by

CS 246
whitespace.

unsigned int count = O;
string line, alpha = "abcdef ghi j kl rmopqgr st uvwxyz"
" ABCDEFGH JKLMNOPORSTUVWNKYZ" ;
... Il line is initialized with text
line += "\ n"; // add newline as sentinel
for (;;){ /[scan words off line
/[find position of 1st alphabetic character
string::size _type posn = line.find _first _of(alpha);
If (posn == string::npos) break; // any characters left ?
line = line.substr(posn); /l remove leading whitespace
I/ find position of 1st non- alphabetic character
posn = line.find _first _not _of(alpha);
Il extract word from start of line
cout << line.substr(0, posn) << endl; // print word
count += 1; // count words
line = line.substr(posn); /I delete word from line
} /] for

149

CS 246

line

0123456789 ...

Thie| | lquidk b 0
Thie| | lauldk o win| in
qluli ¢ k b in
qluli ¢ k b rlo

b{r o w n\n

150

CS 246 151

e It Is seldom necessary to iterate through the characters atang
variable!

e Contrast C and C+ style strings (note, management of ststorgge):

#include <string> /[C++ string routines
using namespace std;

#include <string.h> /[C string routines
iInt main() {

/[C++ string

const string X = "abc", Y ="def", Z="ghi ";
string S =X +Y + Z

/[C string

const char xx = "abc", xy = "def", »z = "ghi ";

char sjstrlen(x)+strlen(y)+strlen(z)+1]; // pre- compute size
strepy('s, "); // initialize to null string

strcat(strcat(strcat(s, X), y), z2);

}

Why “+1” for dimension ofs?

CS 246 152
2.7.5 Type Equivalence

e In Java/C/C+, two types are equivalent if they have the saanee, called
name equivalence

struct T1 { struct T2 { // identical structure
int i, j, k; int i, , k;
double x, vy, z; double x, vy, z;

% %

T1 t1, t11 = t1; // allowed, t1, t11 have compatible types

T2 t2 = 11, /[disallowed, t2, t1 have incompatible types

T2 12 = (T2)t1; /I disallowed, no conversion from type T1 to T2

e TypesT1 andT2 arestructurally equivalent, but have different names so
they are incompatible, i.e., initialization of variah#is disallowed.

e An aliasis a different name for same type, so alias types are equivale
e C/CH+ providegypedef to create a alias for an existing type:

CS 246 153

typedef short int shrintl; /[shrintl => short int
typedef shrintl shrint2; I/l shrint2 => short int
typedef short int shrint3; I/l shrint3 => short int
shrintl si; /I implicitly rewritten as: short int sl
shrint2 s2; /I implicitly rewritten as: short int s2
shrint3 s3; /I implicitly rewritten as: short int s3

¢ All combinations of assignments are allowed amenhgs2 ands3, because
they have the same type nanshdrt int ”.

e Java provides no mechanism to alias types.

2.7.6 Type Nesting

e Type nesting is useful for organizing and controlling vikstiyp for type
names:

CS 246 154

enum Colour { R, G, B, Y, C, M };
struct Foo {
enum Colour { R, G, B }; /[nested type

struct Bar { /[nested type
Colour c[5]; I/l type defined outside (1 level)
I3
::Colour c[5]; Il type defined outside (top level)
Colour cc; /Il type defined same level
Bar bars[10]; Il type defined same level
I
Colour cl1 = R; /[type/enum defined same level
Foo::Colour c2 = Foo:R; /Il type/enum defined inside
Foo::Bar bar; /Il type defined inside

e Variables/types at top nesting-level are accessible wittualified “:”.

e References to types inside the nested type do not requitdicatzon (like
declarations in nested blocks).

e References to types nested inside another type must béiegiahth type
operator %",

e With nested typesColour (and its enumerators) am@o in top-level scope;
without nested types need:

CS 246 155

enum Colour { R, G, B, Y, C, M };
enum Colour2 { R2, G2, B2 }; I/l prevent name clashes
struct Bar {

Colour2 c[5];

struct Foo {
Colour c[5];
Colour2 cc;
Bar bars[10];

éolour cl = R;
Colour2 c2 = R2;
Bar bar:

e Do not pollute lexical scopes with unnecessary names (nanasites).

2.7.7 Type-Constructor Literal

enumerationenumerators

pointer 0 or NULL indicates a null pointer
structure struct { double r,1;} ¢c ={3.0, 2.1 };
array int v[3] ={ 1, 2, 3}

e C/CH+ useD to initialize pointers (Javaull).

CS 246 156

e System include-file defines the preprocessor varisbleL aso.
e Structure and array initialization can occur as part of dataton.

struct {int i; struct { double r,i;}s;}d={1,{3.0,21}}, // nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

¢ A nested structure or multidimensional array is createdgisested braces.

e Initialization values are placed into a variable startihgeginning of the
structure or array.

e Not all the members/elements must be initialized.

o If not explicitly initialized, a variable islefault initialized, which means
zero-filled for basic types.

Int b[10]; // uninitialized
int b[10] = {}; /[zero initialized

e g++ has a cast extension allowing construction of structuresaray literals
In executable statements not just declarations:

void rtn(const int m[2][3]);

struct Complex { double r, i; } c;

rin((int [2][3D{ {93, 67, 72}, {77, 81, 86} }); // g++ only
c = (Complex){ 2.1, 3.4 };, [/l g++ only

CS 246 157
¢ In both cases, a cast indicates the type and structure aféna |
e String literals can be used as a shorthand array initialiakre:
char s[6] = "abcde"; rewrittenaSchar s[]={'a’,’'b’,'c’,'d ,’e,’'\0 }

e It IS possible to leave out the first dimension, and its vasuafierred from
the number of literals in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 67?)
int v[]={0,1, 2, 3,4}/l 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

2.8 Modularization

e Modularization is the division of a system into interconnecting parts
(components), using some systematic basis, and is the daoncbf
software engineering.

e Medium and large systems must be modularized so people charsiand
them.

e Essentially any contiguous block of code or group of vagaldan be
factored into a routine or structureand given a name (orwecsa).

e Module

CS 246 158

o separates usage from implementation by enforcing logwahbaries
among components,

o eliminates duplicate code Wigictoring common code/declarations into
single location.

e Interfaces provide the boundaries through various programming-laggu
mechanisms.

e Hence, modularization provides a mechanisralietract algorithms and
data structures through interfaces.

2.9 Routine

e Like algebra, arbitrary operations can be define and invoke,
f (X) = 3x%+ 2.5x — 17, wheref (4.5) = 55.

double f(double x) {return 3.0 x X x X + 25 x x - 17.0; }
f(4.5); /[returns 55

e A routine is the simplest module for factoring code (routine/procatu
abstraction).

e Input and output parameters define a routine’s interface.

CS 246 159
C CH

[inline] void p(OR T f(|[inline] void p(OR T f(
Tl a // pass by value T1 a, /[pass by value
T2 &b, I/l pass by reference
) T3c=3 /[optional, default value
)
{ /[routine body { I/ routine body
/I iIntermixed decls/stmts /| intermixed decls/stmts
} }

e Routine is either @rocedure or afunction based on the return type.

e Procedure does NOT return a value that can be use in an express
Indicated with return type ofoid :

void usage() {
cout << "Usage: " << ... << endl; /I some usage message
exit(EXIT_FAILURE); /Il TERMINATE PROGRAM

}

e Procedure can return values via the argument/parametdranison.

e Procedure terminates when control runs off the end of itimeubody or a
return statement is executed:

CS 246 160

void proc() {
... return; ...
... Il run off end => return

}

e Function returns a value that can be used in an expressidrhence must
execute aeturn statement specifying a value:

Int func() {
.. return 3; ...
return a + b;

}

e A return statement can appear anywhere in a routine body, and naeultipl
return statements are possible.

e Routine with no parameters has parametét in C and empty parameter
list in C+:

.rn(void) { ...} /[C. no parameters
.rn() { ...} /[C++. no parameters

o In C, empty parameters mean no information about the numitgpes
of the parameters is supplied.

CS 246 161

e If a routine is qualified withnline , the routine is expanded (maybe) at the
call site, i.e., unmodularize, to increase speed at theoda$brage (no call).

e Routine cannot be nested in another routine (possilkdedh
e Java requires all routines to be defined kiess .

e Each routine call creates a new block on the stack contaitsm@arameters
and local variables, and returning removes the block.

e Variables declared outside of routines are defined in aniempgtatic
block.

Int i /[static block, global
const double Pl = 3.14159;
Int rtn(double d) // code block

{ ... return 4; /I create stack block
} I/l remove stack block
Int main() // code block
{ int | /[create stack block
{ Int k; /I create stack block
rtn(3.0);
} /Il remove stack block

} /[remove stack block

CS 246

162
code static stack
_| < B free
o © | -— 0 heap - - | X | =
S ol 3.1 memory
low address high address

Where is the program executing?

e Static block is a separate memory area from stack and heap anels
always zero filled

e Good practise is to ONLY use static block for literals/vates accessed
throughout program.
2.9.1 Argument/Parameter Passing

e Modularization without communication is useless; infotimia needs to
flow from call to routine and back to call.

e Communication is achieved by passing arguments from acaktameters
In a routine and back to arguments or return values.

CS 246 163

o value parameter. parameter is initialized by copying argument (input

only).
o reference parameter parameter is a reference to the argument and is
Initialized to the argument’s address (input/output).

pass by value pass by reference

argument 5 100 ! 104
copy, ¥ address-of (&)
parameter 5 200 104 | 204

e Java/C, parameter passing is by value, i.e., basic typeslgadt references
are copied.

e C+, parameter passing is by value or reference dependitigedype of
the parameter.

e Argument expressions are evaluate@ny order.

e For value parameters, each argument-expression resobiscinto the
corresponding parameter in the routine’s block on the stablch may
Involve an implicit conversion

e For reference parameters, each argument-expressiohisaferenced
(address of) and this address is pushed on the stack as teemamding

CS 246 164
reference parameter.

struct S { double d; };
void r1(S's, S &rs, S = const ps) {
s.d = rs.d = ps- >d = 3.0;

}
Int main() {
S sl ={1.0}, s2 = {2.0}, s3 = {7.5};
rl(si1, s2, &s3);
/l s1.d = 1.0, s2.d = 3.0, s3.d = 3.0
}
sl S2 s3 sl S2 s3
argument 1.0 2.0 7.5 1.0 3.0 3.0
100 200 300 100 200 300
parameter 1.0 200 300 3.0 200 300
S rs pPS S rs pPS
call return

e C-style pointer-parameter simulates the reference paesneit requires
on argument and use of with parameter.

e Value passing is most efficient for small values or for largeigs with high

CS 246 165
referencing because the values are accessed directiyh(oagh pointer).

e Reference passing is most efficient for large values withroedium
referencing because the values are not duplicated in thmedout
accessed via pointers.

e Problem: cannot change a literal or temporary variable srameter!

void r2(int &I, Complex &c, int v[]);
r2(i + j, (Complex){ 1.0, 7.0 }, (int [3]){ 3, 2, 7}); [/ disallowed!

e Use type qualifiers to create read-only reference paramstethe
corresponding argument is guaranteed not to change:

void r2(const int &I, const Complex &c, const int Vv[]) {
| = 3; /I disallowed, read only!
c.re = 3.0;
v[0] = 3;

}
r2(1+ |, (Complex){ 1.0, 7.0}, (int [5D{ 3, 2,7, 9, 0});

e Provides efficiency of pass by reference for large varialsiesurity of pass
by value as argument cannot change, and allows literalseanpdrary
variables as arguments.

CS 246 166

e C+ parameter can havedafault value, which is passed as the argument
value if no argument is specified at the call site.

void r3(int i, double g, char c ="' *', double h=35){...}

r3(1, 2.0, b, 9.3); /I maximum arguments
r3(1, 2.0,' b); /I h defaults to 3.5
r3(1, 2.0); // ¢ defaults to " »' , h defaults to 3.5

e In a parameter list, once a parameter has a default valysar@meters to
the right must have default values.

e In a call, once an argument is omitted for a parameter withfautlevalue,
Nno more arguments can be specified to the right of it.

2.9.2 Array Parameter

e Array copy is unsupported so arrays cannot be passed by.value

e Instead, array argument is a pointer to the array that isecopito the
corresponding array parameter (pass by value).

¢ A formal parameter array declaration can specify the finstagision with a

dimension value[10] (which is ignored), an empty dimension lig}, or a
pointer,x:

CS 246 167

double sum(double v[5]); double sum(double v[]); double sum(double xv);
double sum(double ~m[5]); double sum(double xm[]); double sum(double xxm);

e Good practice uses the middle form as it clearly indicates/driable can
be subscripted.

e An actual declaration cannot uge it must use:

double sum(double v[]) { // formal declaration
double =xcv; /I actual declaration, think cv[]
CV =V, /[address assignment

¢ Routine to add up the elements of an arbitrary-sized arrawyadrix:

double sum(int cols, double v[]) { double sum(int rows, int cols, double m[]) {

double total = 0.0; double total = 0.0;
for (iInt c=0;c<cols;c+=1) for (Int r=0;r<rows;r+=1)
total += v|c]; for (int c=0;c<cols;c+=1)
return total, total += mir][c];
} return total;
}

2.10 Input/Output
e Input/Output (1/0) is divided into two kinds:

CS 246 168
1. Formatted I/O transfers data with implicit conversion of internal values
to/from human-readable form.

2. Unformatted I/O transfers data without conversion, e.g., internal intege
and real-floating values.

CS 246
2.10.1 Formatted I/O

169

Java

C

CH

import java.io.x;
import java.util.Scanner;

#include <stdio.h>

#include <iostream>

File, Scanner, PrintStream

FILE

ifstream, ofstream

Scanner in = new
Scanner(new File("f"))

in = fopen("f", "r");

ifstream in("f");

PrintStream out = new

PrintStream(g)

out = fopen("g", "W)

ofstream out(¢)

In.close() close(in) scope endsn.close()
out.close() close(out) scope endsyut.close()
nextint() fscanf(in, "%, &i) in>>T
nextFloat() fscanf(in, "% ", &f)
nextByte() fscanf(in, "%", &c)
next() fscanf(in, " %", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()
In.clear()

skip(" regexp) fscanf(in, "% [regexd”) |in.ignore(n, c)
out.print(String) forintf(out, " %l", i) out << T

forintf(out, "% ",)

forintf(out, "%", c)

forintf(out, "%", s)

CS 246

170

e Both I/O libraries can cascade multiple I/O operations, irgut or output
multiple values in a single expression.

2.10.1.1 Formats

e Format of input/output values is controlled vianipulators defined in

#include <iomanip>.

oct

dec

hex

left / right (default)

boolalpha / noboolalpha (default)
showbase / noshowbase (default)
showpoint / noshowpoint (default)
fixed (default) /scientific
setprecision(N)

setfill(ch')

setw(N)

end|

skipws (default) /noskipws

Integral values In octal

integral values in decimal

integral values in hexadecimal

values with padding after / before values

bool values as false/true instead of 0/1

values with / without prefix O for octal & Ox for hex
print decimal point if no fraction

float-point values without / with exponent

fraction of float-point values in maximum of N colum
padding character before/after value (default blank)
NEXT VALUE ONLY in minimum of N columns
flush output buffer and start new lineytput only)
skip whitespace charactensgut only)

I

CS 246 171

e Manipulators are not variables for input/output , but control I/O
formatting for all literals/variables after it, contingrio the next I/0O
expression for a specific stream file.

e Except manipulator setw, which only applies to the next value in the
/O expression.

e endl IS notthe same dan’ ,as’ \n' does not flush buffered data.

e During input,skipsw/noskipws toggle between ignoring whitespace
between input tokens and reading the whitespace chardceersokenize
versus raw input).

2.10.1.2 Input

e C/CH+ formatted input hasnplicit character conversion for all basic types
and is extensible to user-defined types (Java uses@rcit Scanner).

CS 246

172

Java

C

C+H

import java.io.x;
import java.util.Scanner;
Scanner in =

new Scanner(new File("f"));
PrintStream out =

new PrintStream("g");
int i, J;
while (in.hasNext()) {

| = in.nextInt();] = in.nextInt();

out.printin("i: " +i+" | "+);
}
in.close();
out.close();

#include <stdio.h>
FILE «in = fopen("f", "r"):

FILE xout = fopen("g", "W');

int i, |;
for (5){
fscanf(in, "%%l" , &i, &);
if (feof(in)) break;
fprintf(out,” 1 : %@ | : %@\ n" ,i,j);
}
close(in);
close(out);

#include <fstream>
ifstream in("f");

ofstream out(g);

int i, j;
for () {
in >>i>>j;
if (in.fail()) break;
out << "i 1" <<
<<" | :"<<j<<end
}

/I infout closed implicitly

e Input values for a stream file are C/C+ literads3.5e- 1, etc., separated by

whitespace.

e EXxcept for characters and character stringsich are not in quotes

e Type of operand indicates the kind of literal expected indinream, e.g., an
Integer operand means an integer literal is expected.

e Input starts reading where the last input left off, and sdines to obtain
necessary number of literals.

CS 246 173

e Hence, placement of input values on lines of a file is oftemany.

e To read strings containing white spaces use routine
getline(stream, string, char), which allows different delimiting characters
on input:

string s;

getline(cin, s,); I/ read characters until
getline(cin, s, ' @); // read characters until * @’

getline(cin, s, "\ n’); // read characters until newline (default)

e C/C+H must attempt to redueforeend-of-file is set and can be tested.

e End of file is the detection of the physical end of a fileere is no
end-of-file character.

e From a shell, typingcctri>- d (C- d), I.e., pressctrl> andd keys
simultaneously, causes the shell to close the current ipuharking its
physical end.

e In C+, end of file can be explicitly detected in two ways:

o stream membezof returnstrue If the end of file I1s reached arfdise
otherwise.

o stream membédhil returnstrue for invalid literal OR no literal if end of
file 1s reached, anthlse otherwise.

=> cin >> C

CS 246 174
e Safer to checkail and then checkof.

for (;) {
cin >> |;
If (cin.eof()) break; // should use “fail()”
cout << | << end];
}

e If "abc” is entered (invalid integer literalfpil becomesrue buteof is false..
e Generates infinite loop as invalid data is not skipped foseghent reads.

e Streams also have coercionvad «: if fail(), null pointer; otherwise
non-null pointer.

cout << cin; /[print fail() status of stream cin
while (cin >>1i) ... /l read and check pointer to != 0

e When bad data is readtream must be reset and bad data cleared

CS 246 175

#include <iostream>

#include <limits> /[numeric_limits
using namespace std;
Int main() {
Int n;
cout << showbase; Il prefix hex with 0x
cin >> hex; /[input hex literals
for (55) {
cout << "Ent er hexadeci mal number: ";
cin >> n;
if (cin.fail()) { /[problem ?
If (cin.eof()) break; /Il eof ?
cout << "I nval i d hexadeci mal nunber” << endl;
cin.clear(); Il reset stream failure
cin.ignore(numeric_limits<int>::max(), '\ n’); // skip until newlin
} else {

cout << hex << "hex:" << n << dec << " dec:" << n << endl:

}
}
cout << endl;

}

e After an unsuccessful reacdlear() resets the stream.

CS 246 176

e ignore skipsn characters, e.gcjn.ignore(5) or until a specified character.
e Read in file-names, which may contain spaces, and proceldgileac

#include <fstream>

using namespace std;

iInt main() {
ifstream fileNames("fi | eNanes"); /I requires char « argument
string fileName,;

for (;;){ I/l process each file
getline(fileNames, fileName); /[may contain spaces
If (fleNames.fail()) break; // handle no terminating newline

Ifstream file(fleName.c _str()); // access char *
I/l read and process file

}
}

e In C, routinefeof returnstrue when eof is reached ariscanf returnseOF.

e Parameters in C are always passed by value, so argumdstabmust be
preceded witl& (except arrays) so they can be changed.

CS 246 177
2.10.1.3 Output

e Java output style converts values to strings, concatesttags, and prints
final long string:

System.out.printin(1 +

e C/CH+ output style has a list of formats and values, and dwpearation
generates strings:

+]); // build a string and print it

cout << j << " " << j << endl; /I print each string as formed

e No implicit conversion from the basic types to string in Chtif{one can be
constructed).

e While it Is possible to use the Java string-concatenation gle in C+, it
IS Incorrect style.

e Use manipulators to generate specific output formats:

CS 246 178

#include <iostream> /[cin, cout, cerr
#include <iomanip> /[manipulators
using namespace std;

int i = 7; double r = 2.5; char c ="'z’ ; const char s = "abc";

cout << "1 :" << setw(2) << i

<< " r:" << fixed << setw(7) << setprecision(2) << r

<<" ;" <<c<<" 5:" << s << endl

#include <stdio.h>
forintf(stdout, "1:%2d r: %. 2f ¢c:% s:%\n", i, r, c, s);

. 7 r. 2.50 c:z s:abc

2.10.2 Unformatted I/O

e EXxpensive to convert from internal (computer) to exterhahgan) forms
(bits < characters).

e \When data does not have to be seen by a human, use efficientnatted
/O so no conversions.

e Uses same mechanisms as formatted |/O to connect variafle to
(open/close).

CS 246 179

e read andwrite routines directly transfer bytes from/to a file, where each
takes a pointer to the data and number of bytes of data.

read(char xdata, streamsize num);
write(char xdata, streamsize num);

e Read/write of types other than characters requires a @ecastor C+
reinterpret _cast.

CS 246 180

#include <iostream>
#include <fstream>
using namespace std;

iInt main() {
ofstream outfile("nmyfile"); // open output file “myfile”
If (outfile.fail()) ... // unsuccessful open ?
double d = 3.0;
outfile.write((char x)&d, sizeof(d)); // coercion
outfile.close(); // close file before attempting read
ifstream infile("nmyfile"); /I open input file “myfile”
if (infile.fail()) ... /[unsuccessful open ?
double e;
Infile.read(reinterpret _cast<char *>(&e), sizeof(e)); /I coercion
f (d!=e) ... /I problem
infile.close();
}

e Coercion would be unnecessary if buffer type waig .

CS 246 181
2.11 Command-line Arguments

e Starting routinenain has two overloaded prototypes.
iInt main(); // C: int main(void);
Int main(int argc, char xargv[]); // parameter names may be different

e Second form is used to receive command-line arguments fnershell,
where the command-line string-tokens are transformed0n@+
parameters.

e argc Is the number of string-tokens on the command line, inclgdine
command name.

e Java does not include command name, so number of tokens islese

e argv IS an array of pointers to C character strings that make ugrntok
arguments.

CS 246 182

% ./a.out - option infile.cc outfile.cc

0 1 2 3
argc =4 // number of command- line tokens
argv[0] = ./a.out\0 /[not included in Java
argv[l] = -option\0
argv[2] = infile.cc\O
argv[3] = outfile.cc\O
argvid] =0 /l mark end of variable length list

e Because shell only has string variables, a shell argumer&2f does not
mean integer 32, and may have to converted.

e Routinemain usually begins by checkingrgc for command-line
arguments.

CS 246

183

Java

C/C+H

class Prog {

public static void main(String[] args) {

switch (args.length) {

case O: ... /Il no args
break ;

case 1: ... args[0] .../l 1 arg
break ;

case ... /l others args
break ;

default : ... // usage message

System.exit(1);

int main(int argc, char sargv[]) {
switch (argc) {

case 1. ... /l no args
break ;

case 2. ... args[1l] ... /[1 arg
break ;

case ... // others args
break ;

default : ... /[usage message

exit(EXIT_FAILURE);

e Arguments are processed in the raagg/[1] throughargv[argc - 1] (one

greater than Java).

e Process following arguments from shell command line for c@mnd:

cmd [size (> 0) [code (> 0) [input-file [output-file]]]]

e Note, dynamic allocatiorstringstream (atoi does not indicate errors), and

no duplicate code.

CS 246

#include <iostream>
#include <fstream>
#include <sstream>
#include <cstdlib>
using namespace std,

bool convert(int &val, char xbuffer) {
std::stringstream ss(buffer);
ss >> dec >> val,
return ! ss.fail() &&

184

/] exit
/I direct access to std

/[convert C string to integer
/I connect stream and buffer
/[convert integer from buffer
/I conversion successful ?

/I characters after conversion all blank ?

string(buffer).find_first_not_of(

} /I convert

enum { sizeDeflt = 20, codeDeflt = 5 };

void usage(char sargv[]) {

cerr << "Usage: " << argv|[0] << "

, ss.tellg()) == string::npos;

I/l global defaults

[size (>=0: " << sizeDeflt << ") [cod

<< codeDeflt << ") [input-file[output-file]]]]" << endi;

exit(EXIT_FAILURE);
} /] usage

int main(int argc, char xargv[]) {

Int size = sizeDeflt, code = codeDeflt;

Istream «infile = &cin;

/I TERMINATE PROGRAM

/I default value
/I default value

CS 246 185

ostream xoutfile = &cout; /I default value
switch (argc) {
case 9:
outfile = new ofstream(argv[4]);
If (outfile- >fail()) usage(argv); // open failed ?
// FALL THROUGH
case 4:
Infile = new ifstream(argv[3]);
If (infile- >fail()) usage(argv); // open failed ?
/l FALL THROUGH
case 3:
If (! convert(code, argv[2]) || code < 0) usage(argv) ; // invalid integer
// FALL THROUGH
case 2:
If (! convert(size, argv[l]) || size < 0) usage(argv); // invalid integer ?
// FALL THROUGH

case 1. /I all defaults
break;
default : /[wrong number of options
usage(argv);
}
I/l program body
if (infile '= &cin) delete infile; /Il close file, do not delete cin!
if (outfile != &cout) delete outfile; /Il close file, do not delete cout!

} // main

CS 246 186
2.12 Preprocessor

e Preprocessor is a text editor that modifies the programbieixire
compilation.

e Program you see is not what the compiler sees!

e A preprocessor statement starts with eharacter, followed by a series of
tokens separated by whitespace, which is usually a singgeaind not
terminated by punctuation.

e The three most commonly used preprocessor facilities drstisution, file
Inclusion, and conditional inclusion.

2.12.1 Variables/Substitution

e #define statement declares a preprocessor string variable, avaluts is
all the text after the name up to the end of line.

CS 246 187

#define Integer int
#define begin {
#define end }
#define gets =
#define set

#define with = /I transformed
Integer main() begin Int maln()_{ |
Integer x gets 3, y; Int X =3, Y,
X gets 5; X =95,
set y with x; } y =X

end
e Preprocessor can transform the syntax of C/C+ prograscguraged.

e Preprocessor variables can be defined and initialized oodimgpilation
command with option D.

% g++ - DDEBUG="2" - DASSN ... source-files
Initialization value is text aftet.
e Same as putting the followingdefine s in a program without changing the
program:

#define DEBUG 2
#define ASSN 1

CS 246 188

e Cannot have both- D and #define for the same variable.

e Predefined preprocessor-variables exist identifyingward and software
environment, e.gmcpu is kind of CPU.

e Replacetdefine with enum for integral types; otherwise usenst
declarations (Javiinal).

enum { arraySize = 100 }, #define arraySize 100

enum { PageSize = 4 « 1024 }; #define PageSize (4 » 1024)
const double Pl = 3.14159; #define Pl 3.14159

Int array[arraySize], pageSize = PageSize;

double x = PI;
enum uses no storage whimnst declarations might.

e #define can declare macros with parameters, which expand during
compilation, textually substituting arguments for paréeng e.g.:

#define MAX(a, b) ((a>Db) ?a: b
z = MAX(X, Y), /Il rewritten as: z = (X >y) ? X :Y)

e Useinline routines in C/CH rather thatlefine macros.

Inline int MAX(int a,int b)) {return a>b?a:b;}

CS 246 189
2.12.2 File Inclusion

e File inclusion copies text from a file into a C/C+ program.
¢ An included file may contain anything.

e An include file normally imports preprocessor and C/C+
templates/declarations for use in a program.

¢ All included text goes through every compilation step, peeprocessor,
compiler, etc.

e Java implicitly includes by matching class names with filenera in
CLASSPATH directories, then extracting and including declarations.

e The#include statement specifies the file to be included.

e C convention uses suffixii” for include files containing C declarations.

e C+ convention drops suffixi” for its standard libraries and has special
file names for equivalent C files, e.gstdio versusstdio.h.

#include <stdio.h> /[C style
#include <cstdio> /[C++ style
#include "user.h"

e A file name can be enclosed4» or"".

CS 246 190

e <> means preprocessor only looks in the system include diesto

"" means preprocessor starts looking for the file in the saneetoiry as
the file being compiled, then in the system include direem(usr/include).

e System filedimits.h (climit) andstddef.h (cstddef) contain many useful
#define s.

o e.g., hull pointer literaNULL and min/max values for types (e.g.,
see/usr/include/limits.h).

2.12.3 Conditional Inclusion

e Preprocessor has #rstatement, which may be nested, to conditionally
add/remove code from a program.

e Conditionalif uses the same relational and logical operators as C/C+, but
operands can only be integer or character values.

CS 246 191

#define DEBUG 0O // declare and initialize preprocessor variable
#if DEBUG == 1 /I level 1 debugging

include "debugl. h"

#.e.lif DEBUG == /Il level 2 debugging

include "debug2.h"

#.e.lse // non- debugging code

#endif

e By changing value of preprocessor variableBUG, different parts of the
program are included for compilation.

e To exclude code (comment-out), useonditional a® implies false.
#if O
// code commented out
#endif
e Possible to check if a preprocessor variable is defined odefirted using
#ifdef or #ifndef :

CS 246 192

#ifndef __MYDEFS_H__ /I If not defined
#define __MYDEFS_H__1 [// make it so

#tendif
e Used in artinclude file to ensure its contents are only expanded once.

e Note difference between checking if a preprocessor varisdlefined and
checking the value of the variable.

e The former capability does not exist in most programminglayes, i.e.,
checking if a variable is declared before trying to use it.

2.13 Assertions

e Assertions document program assumptions:
o pre-conditions — things true before a computation (e.gvadlies are
positive),
o Invariants — things true across the computation (e.g. alles during the
computation are positive, because only,/ operations),

o post-conditions — things true after the computation (@lgresults are
positive).

CS 246 193
e Assumptions cannot reflect external usage, where thereasmtool.

o E.g., at interface points, a routine call can be made witbhnmct values.
o Checking interface parameters is not an assumption abogtam
behaviour, rather about user behaviour.

e Assertions occuafter usage checks when a program has control over its
computation.

o E.qg., after checking a “car” is passed to a routine to cateudaaking
distance, an assumption of correct behaviour is a positakiig
distance.

o Therefore, routine can assert post-condition “brakingpaise is greater
than zero” before returning.

e Macroassert tests a boolean expression representing a logical assanmpti

CS 246 194

#include <cassert>
unsigned int stopping_distance(Car car) {

If (car!=...) exit(EXIT_FAILURE); // check parameter
brakes = ... ;
assert(brakes > 0); /[pre- condition

distance = brakes ... ;

assert(distance > 0); // invariant
distance = ... ;

assert(distance > 0); /I invariant

distance = ... ;
assert(distance > 0); /I post- condition
return distance;

}

e If assert fails (false result), it aborts program and prexsression:

a.out: test.cc:19: unsigned int stopping_distance(Car):
Assertion ' di stance > 0’ failed.

e Use comma expression to add documentation to assertioragess

CS 246 195

assert(("I nternal error, pleasereport”, distance > 0));
a.out: test.cc:19: unsigned int stopping_distance(Car): _
Assertion ("I nternal error, pleasereport”, distance

e Assertions irot spot, I.e., point of high execution, can significantly
Increase program cost.

e Compiling a program with preprocessor variaRIlREBUG defined removes
all asserts.

% g++ - DNDEBUG ... # all asserts removed
e Therefore, never put computations needed by a program massertion.

assert(needed _computation(...) > 0); // may not be executed

2.14 Debugging

e Debuggingis the process of determining why a program does not have ar
iIntended behaviour.

e Often debugging is associated with fixing a program afterlaria

e However, debugging can be applied to fixing other kinds obf@ms, like
poor performance.

CS 246 196

e Before using debugger tools it is important to understandtwhbu are
looking for and if you need them.

2.14.1 Debug Print Statements

e An excellent way to debug a program isdart by inserting debug print
statements (i.e., as the program is written).

e It takes more time, but the alternative is wasting hourstgyto figure out
what the program is doing.

e The two aspects of a program that you need to know are: where th
program is executing and what values it is calculating.

e Debug print statements show the flow of control through a anogand
print out intermediate values.

e E.g., every routine should have a debug print statemenedig¢ginning and
end, as in:

CS 246 197

int p(...){
/I declarations

cerr << "Enter p " << parameter variables << endl;

cerr << "Exit p " << return value(s) << endl;
return r;

}

e Result is a high-level audit trail of where the program isceeng and what
values are being passed around.

e Finer resolution requires more debug print statements pontant control
structures:

if (a>Db){
cerr << "a > Db" << endl; /I debug print
for (...){
cerr << "X=" << x << ", y=" <<y << endl; // debug print
} else {
cerr << "a <= b" << endl // debug print

CS 246 198

e By examining the control paths taken and intermediate gagi@merated, it
IS possible to determine if the program is executing colyect

e Unfortunately, debug print statements can generate enm@mounts of
output.

It is of the highest importance in the art of detection to be able to
recognize out of a number of facts which are incidental and which
vital. (Sherlock Holmes, The Reigate Squires)

e Gradually comment out debug statements as parts of thegmolgegin to
work to remove clutter from the output, but do not delete thel the
program works.

e \When you go for help, your program should contain debug {@tatements
to indicate some attempted at understanding the problem.

e Use a preprocessor macro to simplify debug prints:

#define DPRT(title, expr) \
{ std::cerr << #title "\ t\"" << __PRETTY_FUNCTION__ << "\" " <<\
expr << " in" << __FILE__ << " at line" << __LINE__ << std::er

for printing entry, intermediate, and exit locations anthda

CS 246 199

#include <iostream>
#include " DPRT. h"
Int test(int a, int b)) {
DPRT(ENTER, "a:" << a<<" b:" << b);
if (a<b)/{
DPRT(a<b, "a:" <<a<<" b:" <<b);
}

DPRT(,a + b); Il empty title
DPRT(HERE, ""); /I empty expression
DPRT(EXIT, a);

return a;

}

which generates debug output:

ENTER “int test(int, int)" a:3 b:4 in test.cc at line 14

a<b "int test(int, int)" a:3 b4 in test.cc at line 16
“Int test(int, int)" 7 in test.cc at line 18

HERE "int test(int, int)" in test.cc at line 19

EXIT "int test(int, int)" 3 in test.cc at line 20

CS 246 200
2.14.2 Errors

e Debug print statements do not prevent errors, they simplynaiinding
errors.

e What you do about an error depends on the kind of error.
e Errors fall into two basic categories: syntax and semantic.

e Syntax error Is in the arrangement of the tokens in the programming
language.

e These errors correspond to spelling or punctuation errbeswwriting in a
human language.

e Fixing syntax errors is usually straight forward espegidlthe compiler
generates a meaningful error message.

e Alwaysreadthe error message carefully addeckthe statement in error.

You see (Watson), but do not observe. (Sherlock Holmes, A Scandal in
Bohemia)

e Difficult syntax errors are:

o missing closing or «/, as the remainder of the progranmsigallowed as
part of the character string or comment.

CS 246 201

o missing{ or}, especially if the program is properly indented (editons ca
help here)

o missing semi-colon at end of structure
e Semantic error Is incorrect behaviour or logic in the program.

e These errors correspond to incorrect meaning when writirsghuman
language.

e Semantic errors are harder to find and fix than syntax errors.

e A semantic or execution error message only tells why thenarmgtopped
not what caused the error.

¢ In general, when a program stops with a semantic error, #tersent in
error is often not the one that must be fixed.

e Must work backwards from the error to determine the causheptoblem.

In solving a problem of this sort, the grand thing is to be able to reason
backwards. That is a very useful accomplishment, and a very easy one,
but people do not practise it much. In the everyday affairs of lifeit is
more useful to reason forward, and so the other comes to be neglected.
(Sherlock Holmes, A Sudy in Scarlet)

e Reason from the particular (error symptoms) to the generabi(cause).

CS 246 202

o locate pertinent data : categorize as correct or incorrect

o look for contradictions

o list possible causes

o devise a hypothesis for the cause of the problem

o use data to find contradictions to eliminate hypotheses

o refine any remaining hypotheses

o prove hypothesis is consistent with both correct and immmesults, and
accounts for all errors

e E.g., an infinite loop with nothing wrong with the loop.
| = 10;
while (i!=5) {
I+: 2;
}

The initialization is wrong.
e Difficult semantic errors are:

o uninitialized variable
o Invalid subscript or pointer value
o off-by-one error

CS 246 203

e Finally, if a statement appears not to be working propeny,|doks correct,
check the syntax.

if (a=b){
cerr << "a == b" << endl:
}

When you have eiminated the impossible whatever remains, however
Improbable must be the truth. (Sherlock Holmes, Sgn of Four)

2.15 Dynamic Storage Management

e Java/Scheme areanaged languags because the language controls all
memory management, e.garbage collectionto free dynamically
allocated storage.

e C/C+H areunmanaged languags because the programmer is involved in
memory management, e.g., no garbage collection so dynaonage must
be explicitly freed.

e C+ provides dynamic storage-management operatiensdelete and C
providesmalloc/free.

e Do not mix the two forms in a C+ program.

CS 246

204

Java

C

CH

class Foo { char cl, c2; }

Foo r = new Foo();

rcl ="X:

/Il r garbage collected

struct Foo { char cl, c2; }
struct Foo »p =
(struct Foo *) // coerce
malloc(// allocate

)

sizeof (struct Foo) // size

struct Foo { char cl, c2; };
Foo «p = new Foo();

p->c1 =" X ;

delete p; // explicit free
Foo &r = xnew Foo();
rcl="X;

p- Scl = X : delete &r; // explicit free
free(p); /I explicit free
heap stack
0 8< free o
. LL 1
code | static LL| ¢ .
- g
memory
low address high address

Unallocated memory in heap is also free.
¢ Allocation has 3 steps:

1. determine size of allocation,
2. allocate heap storage of correct size/alignment,

CS 246 205
3. coerce undefined storage to correct type.

e C+ operatonew performs all 3 steps implicitly; each step is explicit in C.

e Coercion cast is required in C+ faralloc but optional in C.

o C has implicit cast fronvoid « (pointer to anything) to specific pointer
(dangerous).

o Good practise in C is to use a cast so compiler can verify type
compatibility on assignment.
e Parenthesis after the type name in tle& operation are optional.
e For reference, why is there a+” beforenew and an &” in the delete ?
e Storage for dynamic allocation comes from a memory areaddfieheap.

e If heap is full (i.e., no more storage availablmpglloc returns O, antew
terminates program with an error.

e Before storage can be usedptistbe allocated.

Foo *p; /[forget to initialize pointer with “new”
p->cl1 =" R ; // places ' R’ at some random location in memory

Called an uninitialized variable.
e After storage is no longer neededntstbe explicitly deleted.

CS 246 206

Foo *p = new FOO;
p = new Foo; /I forgot to free previous storage

Called amemory leak
e After storage is deleted, mustnot be used:

delete p;
p->c1 ="'R; /I result of dereference is undefined

Called adangling pointer.

e Unlike Java, C/C+ allovall types to be dynamically allocated not just
object types, e.gnew int .

e As well, C/C+ allowall types to be allocated on the stack, i.e., local
variables of a block:

CS 246 207
Java CH
{ /] basic & reference stack heap |{ // all types stack heap
int 1I; A . int i A :
double d; ! double d; !
AggrType agr = d AggrType agr; d
new AggrType();
agr > } /I implicit delete agr
} /I garbage collected
Y Y

e Stack allocation eliminates explicit storage-managernt@ntpler) and is
more efficient than heap allocation "se it whenever possible.

{ /Il good, use stack { // bad, unnecessary dynamic allocation

}

int 1;
... Il use |

Int xip = new Int;
... Il use +ip
delete ip;

}

¢ Dynamic allocation in C+ should be used only when a variabls
storage must outlive the block in which it is allocated

CS 246 208

Type =rtn(...) {
Type tp = new Type; /[l MUST USE HEAP

/I Initialize/compute using tp
return tp; I/ storage outlives block
} Il tp deleted later

e Declaration of a pointer to an array is complex in C/C+ .
e Because no array-size information, no dimension for arygroanter.

Int xparr = new int [10]; I/ think parr[], pointer to array of 10 ints
e No dimension information results in the following ambiguit

Int xpvar = new int; // basic “new”

int xparr = new int [10]; /I parr[], array “new”

e Variablespvar andparr have the same type but one is allocated with the
basicnew and the other with the arrayew.

e Special syntaxnustbe used to call the corresponding deletion operation fc
a variable or an array (any dimensions):

delete pvar; // basic delete : single element
delete [] parr; /I array delete : multiple elements (any dimension)

CS 246 209

e If basicdelete Is used on an array, only the first element is freed (memory
leak).

e If array delete Is used on a variable, storage after the variable is alsd free
(often failure).

e Never do this:

delete [] parr, pvar; /[=> (delete [] parr), pvar,
which is an incorrect use of a comma expressmay is not deleted.

e Declaration of a pointer to a matrix is complex in C/C+, girg. m[5]
could mean:

m |19 ;_J m L ——926/40
- = | |
+ 1] - | |
___| L _ _ _
t = -
-
T8

e Left: array of 5 pointers to an array of unknown number ofgetes.

CS 246 210

¢ Right: pointer to matrix of unknown number of rows with 5 colns of
Integers.

e Dimension is higher priority so declaration is interpregestht (x(m[5]))
(left).

¢ Right example cannot be generalized to a dynamically-suzaulix.

int R =5, C =4, Il'5 rows, 4 columns
int (x+m)[C] = new Int[R][C]; /I disallowed, C must be literal, e.g, 4

Compiler must know the stride (number of columns) to compowe
e Left example can be generalized to a dynamically-sizediratr

iInt main() {
int R =5, C =4, /[or cin >> R >> C;
int «m[R]; Il R rows
for (Nt r=0;r<R;r+=1){
m[r] = new Iint [C]; /[C columns per row
for (nt c=0;¢c<C;c+=1){
mr][c] = r + c; /[initialize matrix

CS 246 211

for (iInt r=0;r<R;r+=1){/ print matrix
for (ntc=0;c<C;c+=1)
cout << m[r][c] <<, ;

}
cout << endl;
}
for (Nt r=0;r<R;r+=1){
delete [] m]r]; I/l delete each row
} /[implicitly delete array “m”

2.16 Overloading

e Overloading occurs when a name has multiple meanings in the same
context.

e Most languages have overloading, e.g., most built-in dpesare
overloaded on both integral and real-floating operands;+H @perator is
different for1 + 2 than for1.0 + 2.0.

e Overloading requires disambiguating among identical reelp@sed on
some criteria.

e Normal criterion is type information.

CS 246 212
¢ In general, overloading is done on operations not variables

Int i; /I disallowed : variable overloading
double 1i;

void r(int) { ...} /I allowed : routine overloading
void r(double) { ...}

e Power of overloading occurs when programmer changes a viales
type: operations on the variable are implicitly reselected new type.

e E.g., after changing a variable’s type framn to double , all operations
Implicitly change from integral to real-floating.

e Number andunique parameter typelsut not the return typeare used to
select among a name’s different meanings:

Int rCint 1, int) {...} // overload name r three different ways
Int r(double x, double y){...}
int r(int k) {...}

r(1, 2); // invoke 1st r based on integer arguments
r(1.0, 2.0); // invoke 2nd r based on double arguments
r(3); // invoke 3rd r based on number of arguments

e Implicit conversions between arguments and parametersaizse
ambiguities:

CS 246 213

r(1, 2.0); // ambiguous, convert either argument to integer or double
o Use explicit cast to disambiguate:

r(1, (int)2.0) /[1str
r((double)1, 2.0) /I 2ndr

e Subtle cases:

Int 1; unsigned int ui; long int i

void r(int i) { ...} /I overload name r three different ways
void r(unsigned int 1) { ...}

void r(longint 1) {...}

r(1); /I int
r(ui); // unsigned int
r(Ii); // long int

e Parameter types with qualifiers other trsdort /long /signed /unsigned are
ambiguous at definition:

int r(int 1) {...} /[rewritten: int r(signed int)
Int r(signed inti) {...} /l disallowed : redefinition of first r
Int r(const int i) {...} /I disallowed : redefinition of first r

int r(volatile int 1) {...} /I disallowed : redefinition of first r
e Reference parameter types with same base type are ambigucals

CS 246 214

int r(int 1) {...} I/l cannot be called
int r(int &) {...} /[cannot be called
Int r(const int &i) {...} // cannot be called
Int 1 = 3;

constint | = 3;
r(1), /I disallowed : ambiguous
r(j); /I disallowed : ambiguous

Cannot cast argument to selegtnt i), r(int &) orr(const int &i).
e Overload/conversion confusion: 1/O operataris overloaded witlthar «
to print a C string andoid « to print pointers.
char c; Int i
cout << &c << << &i << endl; /I print address of variables

type of&c is char x, so printed as C string, which is undefinedype of&i
ISint %, which is converted t@oid *, SO printed as an address.

e Fix using coercion.

cout << (void %)&Cc <<

e Overlap between overloading and default arguments fompeaters with
same type:

<< &i << endl; // print address of variables

CS 246 215

Overloading Default Argument

int rCint i, int j){...} nt r(inti, intj=2){...}
nt r(int 1) {int j=2;...}

r(3);// 2nd r r(3); // default argument of 2

If the overloaded routine bodies are essentially the samsg a default
argument, otherwise use overloaded routines.

2.17 Routine Pointer

e The flexibility and expressiveness of a routine comes froen th
argument/parameter mechanism, which generalizes a eoatiross any
argument variables of matching type.

e However, the code within the routine is the same for all dathese
variables.

e To generalize a routine further, code can be passed as amanguvhich is
executed within the routine body.

e Most programming languages allow a routine pointer forfert
generalization and reuse.

CS 246 216

¢ Java only has routines contained in class definitions san®pbinters
must be accomplished indirectly via classes.

e As for data parameters, routine pointers are specified wiybea (return
type, and number and types of parameters), and any routitehma this
type can be passed as an argument:

Int f(int v, int («p)(int)) {return p(vs+2)+2;}

Int g(int 1) {retun i- 1;}

Int h(int 1) { return 1/ 2;}

cout << f(4, g) << endl; // pass routines g and h as arguments
cout << f(4, h) << endl;

e Routinef is generalized to accept any routine argument of the fortorme
anint and takes aimt parameter.

e Within the body off, the parametay is called with an appropriatiet
argument, and the result of callipgs further modified before it is returned.

e A routine pointer is passed as a constant reference in ihrtailh
programming languages; in general, it makes no sense t@el@rcopy
routine code, like copying a data value.

e C/C+ require the programmer to explicitly specify the refece via a
pointer, while other languages implicitly create a refesen

CS 246 217

e Two common uses of routine parameters are fix-up and cak-matines.

e A fix-up routine iIs passed to another routine and called if an unusual
situation is encountered during a computation.

e E.g., a matrix is not invertible if its determinant is O (Sirhay).

¢ Rather than halt the program for a singular matirixert routine calls a user
supplied fix-up routine to possibly recover and continudnaicorrection
(e.g., modify the matrix):

Int singularDefault(int matrix[][10], int rows, int cols) { abort(); }
Int invert(int matrix[][10], int rows, int cols,
iInt (xsingular)(int matrix[][10], int rows, int cols) = singularDefault

If (determinant(matrix, rows, cols) == 0) {
correction = singular(matrix, rows, cols); // possible correction

}
_

Int fixup(int matrix[][10], int rows, int cols) { return O; }
invert(matrix, 10, 10, fixup); // fixup rather than abort

e A fix-up parameter generalizes a routine as the correctitreracs specified
for each call, and the action can be tailored to a particidaga.

CS 246 218

e Glving the fix-up parameter a default value eliminates hgitmprovide a
fix-up argument.

e A call-back routine is used Iin event programming.

e \When an event occurs, one or more call-back routines aredcd@higgered)
and each one performs an action specific for that event.

e E.g., graphical user interface has interactive “widgebsittons, sliders and
scrollbars.

e When a user manipulates the widget, events are generatessegting the
new state of the widget, e.g., button down or up.

e A program registers interest in transitions for differemigets by creating
and registering a call-back routine.

Int closedown(/« info about event %/) {
/I close down because close button press
/l return status of callback action

}

/[inform when close button pressed for “widget”
registerCB(widget, closeButton, closedown);

e widget maintains list of registered callbacks.

CS 246 219

e A widget calls specific call-back routine(s) when the widgednges state,
passing new state of the widget to each call-back routine.

2.18 Object

e Objectoriented programming was developed in the mid-1960s by Bxath
Nygaard and first implemented in SIMULAG7Y.

e ODbject programming is based on structures, used for orgniagically
related data:

unorganized organized
struct Person {
Int people_age[30]; Int age;
bool people_sex[30]; bool sex;
char people_name[30][50]; char name[50];

} people[30];

e Both approaches create an identical amount of information.
e Difference Is solely in the information organization (andmory layout).

e Computer does not care as the information and its manipulailargely
the same.

CS 246 220

e Structuring is an administrative tool for programmer uisteending and
convenience.

e ODbjects extend organizational capabilities of a structiyrallowing routine
members.

e C+ does not subscribe to the Java notion that everythinighsrea basic
type or an object, i.e., routines can exist without being edded in a
struct /class..

structure form object form

struct Complex { struct Complex {
double re, im; double re, im;

|3 double abs() const {

double abs(const Complex &This) { return sqrt(re = re +
return sqrt(This.re = This.re + im x im);

This.im * This.im); }

} I}

Complex x; /[structure Complex x; I/l object

d = abs(x); // call abs d = x.abs(); /[call abs

e An object provides both data and the operations necessampémipulate
that data in one self-contained package.

CS 246 221

e Both approaches use routines as an abstraction mechangeate an
Interface to the information in the structure.

e Interface separates usage from implementation at thdantboundary,
allowing an object’s implementation to change without etffey usage.

e E.qg., If programmers do not accedsmplex’s implementation, it can
change from Cartesian to polar coordinates and maintaie saerface.

e Developing good interfaces for objects is important.

o e.d., mathematical types (likemplex) should use value semantics
(functional style) versus reference to prevent changingpterary values.

2.18.1 Object Member

e A routine member in a class is constant, and cannot be ask(groe,const
member).

e \What is the scope of a routine member?

e Structure creates a scope, and therefore, a routine membaccess the
structure members, e.ghs member can refer to membeaesandim.

e Structure scope is implemented vid & const this parameter, implicitly
passed to each routine member (like left example).

CS 246 222

double abs() const {
return sqrt(this - >re « this - >re + this - >Iim « this - >Iim);
}

Since implicit parameter this " is a const pointer, it should be a
reference.

e Except for the syntactic differences, the two forms aretidah
e The use of implicit parametethis, e.g.,this - >f, Is seldom necessary.

e Member routine declaregbnst Is read-only, i.e., cannot change member
variables.

e Member routines are accessed like other members, using erealection,
x.abs, and called with the same form.abs().

e NO parameter needed because of implicit structure scopaitis
parameter.

e Nesting of object types only allows static not dynamic scapiJava allows
dynamic scoping).

CS 246 223

struct Foo {

Int g;
nt r() { ...}
struct Bar { I/l nested object type
Int s() { g =3;r(); } /l disallowed, dynamic reference
h /[to specific object
}X0Y, 7,

References i8 to memberg andr in Foo disallowed because must know
thethis for specificFoo object, i.e., whiclx, y or z.

e Extend typeComplex by inserting an arithmetic addition operation:

struct Complex {

66mplex add(Complex c) {
return (Complex){ re + c.re, im + c.im };
}

I3
e To sumx andy, write x.add(y), which looks different from normal addition,
X + .

e Because addition is a binary operatiadd needs a parameter as well as the
Implicit context in which it executes.

CS 246 224
e Like outside a type, C+ allows overloading members in a.type

2.18.2 Operator Member
e It IS possible to use operator symbols for routine names:

struct Complex {

66mplex operator +(Complex c) { // rename add member
return (Complex){ re + c.re, im + c.im };
}

3

e Addition routine is called, andx andy can be added by.operator +(y) or
y.operator +(x), which looks slightly better.

e Fortunately, C+ implicitly rewriteg + y asx.operator +(y).
Complex x ={3.0,52}y={-91,74};

cout << "X:" << xre << "+" << x.im << """ << endl;

cout << "y:" <<yre << "+" <<yim << "1" << endl

Complex sum = x +y; // rewritten as Xx.operator+(y)

cout << "sum " << sum.re << "+" << sum.im << "1 " << endl:

CS 246 225
2.18.3 Constructor

e A constructor is a special member useditaplicitly perform initialization
after object allocation to ensure the object is valid befme.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
... Il other members

3
e Constructor member-name is overloaded with structure name

e Constructor without parameters is tiiefault constructor, for initializing
a new object.

Complex x; x.Complex();
Complex xy = new Complex;
y- >Complex();

Complex x; implicitly
Complex xy = new Complex; rewritten as

e Unlike Java, C+ does not initialize all object members tfadk values.

e Constructor normally initializes membaearst initialized via other
constructors I.e., some members are objects with their own constructors

e Because a constructor is a routine, arbitrary executiorbegrerformed

CS 246 226
(e.g., loops, routine calls, etc.) to perform initializati

e A constructor may have parameters but no return type (not wie).

e Never put parentheses to invoke default constructor foladaion.

Complex x(); // routine prototype, no parameters returning a complex
e Once a constructor is specified, structure initializat®disallowed:

Complex x ={ 3.2}, [/l disallowed
Complex y ={3.2,45 }, [/l disallowed

e Instead use constructor(s) with parameters:

struct Complex {
double re, im;
Complex(double r = 0.0, double i =0.0){re=r Im=1,}

I3
Note, use of default values for parameters.

e Unlike Java, constructor argument(s) can be specditt a variable for
local declarations:

CS 246 227

imolicitl Complex x; x.Complex(0.0, 0.0);
Complex x, y(1.0), z(6.1, 7.2); P it y Complex y; y.Complex(1.0, 0.0);
rewnten as Complex z; z.Complex(6.1, 7.2);

e Dynamic allocation is same as Java:

Complex »x = new Complex(); // parentheses optional
Complex xy = new Complex(1.0);
Complex »z = new Complex(6.1, 7.2);

e Constructor may force dynamic allocation when initialiagtan array of
objects.

CS 246

Complex ac[10]; // complex array default initialized to 0.0+0.0i
for (inti=0;i<10;i+=1){
acli] = (Complex){ i, 2.0 } /[initialization disallowed

for (int i=0;1<10;1+=1) {
ac[i] = Complex(i, 2.0) /[assignment, not initialization

Complex xap[10]; /[array of complex pointers
for (int 1=0;1<10;1+=1) {
apli] = new Complex(i, 2.0); /I initialization allowed

228

e If only non-default constructors are specified, i.e., oneghvwarameters,

an object cannot be declared without an initialization vadu

struct Foo {
/I no default constructor
Foo(inti){...}

F’oo x; /I disallowed!!!
Foo x(1); // allowed

e Unlike Java, constructor cannot be called explicitly int#eo constructor,

SO constructor reuse is done through a separate member:

229

CS 246
Java CH
class Foo { struct Foo {
int i, j; int 1, J;
void common(int p) {i=p;j=1;}

Foo() { this(2); } /I explicit call
Foo(int p){i=p;j=1}

Foo() { common(2); }
Foo(int p) { common(p); }

2.18.3.1 Literal

e Constructors can be used to create object literals ¢hketype-constructor

literals):

Complex x, vy, z;
X = Complex(3.2);
y = x + Complex(1.3, 7.2),

/[complex literal value 3.2+0.0i
/[complex literal 1.3+7.2i

z = Complex(2); // 2 widened to 2.0, complex literal value 2.0+0.0i

e Previous operator for Complex is changed because type-constructor
literals are disallowed for a type with constructors:

CS 246 230

Complex operator +(Complex ¢) {
return Complex(re + c.re, im + c.im); /I create new complex value
}

2.18.3.2 Conversion
e Constructors are implicitly used for conversions:

Int i;

double d;

Complex x, ;

X = 3.2: X = Complex(3.2);

y = x + 1.3; implicitly y = x.operator +(Complex(1.3));

y =X+ 1 rewritten as Y = X.operator +(Complex((double)i);
y =X + d; y = X.operator +(Complex(d));

¢ Allows built-in literals and types to interact with userfuhed types.

e Note, two implicit conversions are performed on variabiex + i: int to
double and therdouble to Complex.

e Can require only explicit conversions with qualifexplicit on constructor:

CS 246 231

struct Complex {
/[turn off implicit conversion
explicit Complex(double r = 0.0, double 1 =0.0){re=r,im=1;}

I3
e Problem: implicit conversion disallowed for commutativadry operators.

e 1.3 + x, disallowed because it is rewritten @s3).operator +(x), but
membermouble operator +(Complex) does not exist in built-in typdouble .

e Solution, move operator out of the object type and made into a routine,
which can also be called in infix form:

struct Complex { ... }; // same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters
return Complex(a.re + b.re, a.im + b.im);

}

X +V; : . operator +(x, y)

1.3 + X; Irgvl?llrll(t:tlg?]/ as operator +(Complex(1.3), X)
X + 1.3 operator +(x, Complex(1.3))

e Compiler first checks for an appropriate operator in objgeet and if
found, applies conversions only on the second operand.

CS 246 232

e If N0 appropriate operator in object type, the compiler &sdor an
appropriate routine (it is ambiguous to have both), anduhfih applies
applicable conversions tmth operands.

¢ In general, commutative binary operators should be wrdieroutines to
allow implicit conversion on both operands.

¢ /O operators< and>> often overloaded for user types:

ostream &operator <<(ostream &os, Complex ¢) {
return os << c.re << "+" << c.im << "1 ";
}
cout << "X:" << x; /I rewritten as: <<(cout.operator<<(“x:"), X)
e Standard C+ convention for I/O operators to take and retigineam
reference to allow cascading stream operations.

e << operator in objectout is used to first print string value, then overloaded
routine<< to print the complex variable.

e Why write as a routine versus a member?

2.18.4 Destructor

e A destructor (finalize in Java) is a special member used to perform
uninitialization at object deallocation:

CS 246 233

Java CH
class Foo { struct Foo {
finalize() { ... }| ~Foo() { ...} // destructor

e An object type has one destructor; its name is the charaetdollowed by
the type name (like a constructor).

e A destructor has no parameters nor return type (not ewien):

e A destructor is only necessary if an objectm®n-contiguous i.e.,
composed of multiple pieces within its environmemtg., files,
dynamically allocated storage, etc.

e A contiguous object like aComplex object, requires no destructor as it is
self-contained.

e A destructor is invokedbefore an object is deallocated, either implicitly at
the end of a block or explicitly by aelete :

CS 246 234

{ { /I allocate local storage
Foo X, y(X); Foo X, y; X.Foo(); y.Foo(x);
Foo xz = new Foo; Foo xz = new Foo; z- >Foo();
. implicitly .
delete z; rewritten as z- >~Foo(); delete z;

y.~F00(); x.~Foo();
} } /I deallocate local storage

e For local variables in a block, destructomnsist becalled in reverse order to
constructors because of dependencies, gappends oR.

e A destructor is more common in CH than a finalize in Java dubddack
of garbage collection in C+.

e If an object type performs dynamic storage allocation, it is
non-contiguous and needs a destructor to free the storage:

struct Foo {
int =i; // think int i[]
Foo(int size) { I = new Int [size]; } // dynamic allocation
~Foo() { delete [] 1I; } /[must deallocate storage

CS 246 235

Exception is when the dynamic object is transfered to amatbgect for
deallocation.

e C+ destructor is invoked at a deterministic time (blockteation or
delete), ensuring prompt cleanup of the execution environment.

e Javafinalize is invoked at a non-deterministic time during garbage
collection ornot at all, so cleanup of the execution environment is
unknown.

2.18.5 Copy Constructor / Assignment
e There are multiple contexts where an object is copied.

1. declaration initialization@bjType obj2 = objl)

2. pass by value (argument to parameter)

3. return by value (routine to temporary at call site)
4. assignmentobj2 = objl)

e Cases 1 to 3 involve a newly allocated object with undefinddesm

e Case 4 involves an existing object that may contain prelyoz@mputed
values.

e C+ differentiates between these situations: initial@atnd assignment.

CS 246 236

e Constructor with a&onst reference parameter of class type is used for
Initialization (declarations/parameters/return), edlthecopy constructor.

Complex(const Complex &c) { ... }
e Declaration initialization:

Complex y = x; Implicitly rewritten as Complex y; y.Complex(x);

o “="1s misleading as copy constructor is called not assignropatator.
o value on the right-hand side of™is argument to copy constructor.

e Parameter/return initialization:

Complex rtn(Complex a, Complex b) { ... return a; }
Complex x, v;

X =rtn(X,y), // creates temporary before assignment
o parameter is initialized by corresponding argument ussgopy
constructor:

Complex rtn(Complex a, Complex b) {
a.Complex(argl); b.Complex(arg2); // initialize parameters with arc

o temporariesnay be created for arguments and return value, initialized
using copy constructor:

CS 246 237

Complex t1(x), t2(y);
Complex tr(rtn(t1, t2));
x = rtn(...); implicitly rewritten as x.Complex(tr);
or
x.Complex(rtn(x, y));

o Note, assignment converted to initialization.
e Assignment routine is used for assignment:

Complex &operator =(const Complex &rhs) { ... }
o usually most efficient to use reference for parameter analréype.
o value on the right-hand side of™is argument to assignment operator.
x =vy; Implicitly rewritten as x.operator =(y);

e If a copy constructor or assignment operator is not definednalicit one
IS generated that doesy@emberwise copyof each subobject.

o basic typehitwise copy
o class type, use class’s copy constructor
o array, each element is copied appropriate to the elemeat typ

CS 246

struct B {
B() { cout << "B() ";}
B(const B &c) { cout << "B(&) "; }
B &operator =(const B &rhs) { cout << "B="; }

I3

struct D { // implicit copy and assignment
Int i /[basic type, bitwise
B b; /[object type, memberwise
B a[5]; /[array, element/memberwise

int main() {
D i cout << endl; // B’ s default constructor
D d - cout << endl; // D' s default copy- constructor
d = cout << endl; /I D' s default assignment

}

outputs the following:

b a // me_mber variables

B() B() B() B() B() B() nor

B(&) B(&) B(&) B(&) B(&) B(&) [/ Dd=i

B= B= B= B= B= B= Ild=

e Often only a bitwise copy as subobjects have no copy cortsiroc

238

CS 246 239
assignment operator.

e If D defines a copy-constructor/assignment, it overrides thany
subobject.

struct D {
... /I same declarations
D() { cout << "I() "; }
D(const D &c) :i(c.i), b(cb) a(ca) {cout<<"D(& ";}
D &operator =(const D &rhs) {

| = rhs.i; b = rhs.b;
for (iInti =0;1<5;i1+=1) ali] =rhs.ali]; [/ array copy
cout << "D=";
return xthis;
}
I3
outputs the following:

B() B(O) B() B() B() B() D() hor

B(&) B(&) B(&) B(&) B(&) B(&) D(&) // D d =

B= B= B= B= B= B= D= [/ d =

Must copy each subobject to get same output.
e \WWhen an object type has pointers, it is often necessary toddep copy,

CS 246 240
l.e, copy the contents of the pointed-to storage rathertiapointers.

struct Shallow {
Int *i;
Shallow(int v) {i=newint; «l = v; }
~Shallow() { delete i; }

struct Deep {
int *i;
Deep(int v){i=newint; « =v;}
~Deep() { delete 1i; }
Deep(Deep &d) {1 = new int; =l = xd.I; } I/l copy value
Deep &operator =(const Deep &rhs) {
«l = xrhs.l; return =xthis; I/l copy value
}

3

CS 246 241

Initialization
Shallow x(3), y = Xx; Deep x(3), y = X;

L™ "L 4 "L
shallcm\ l l l
new x.i| 3 3 = deep copy 3

assignment
Shallow x(3), y(7); y=X; Deep x(3), y(7); Yy =X;
L™ "L 4 "L
shallow copy—_ | ¢ ¢
newvyi| 7 newx.i| 3 K 3= deep copy 3

memory leak dangling pointer

e For shallow copy:

CS 246 242

o memory leak occurs on the assignment

o dangling pointer occurs afterory is deallocated; when the other object
IS deallocated, it reuses this pointer to delete the sannagso

e Deep copy does not change the pointers only the values assdevithin
the pointers.

e Bewareself-assignmenfor variable-sized types:

CS 246 243

struct Varray { /[variable- sized array
unsigned int size;
It *a;
Varray(unsigned int s) { size = s; a = new Int [size]; }
... Il other members
Varray &operator =(const Varray &rhs) { // deep copy

delete [] a; I/l delete old storage

size = rhs.size; I/l set new size

a = new Int [size]; I/l create storage for new array

for (unsigned int 1 =0;1<size; 1 += 1) ali] = rhs.ali]; // copy ve

return =*this;

}
I3
Varray x(5), y(10);
X =Yy, [l works
y =y, [/l fails

e How can this problem be fixed?
¢ \Which pointer problem is this, and why can it go undetected?

e For deep copy, it is often necessary to define a equality tmpera
(operator ==) performing a deep compare, i.e., compare values not peinte

CS 246
2.18.6

244

Initialize const / Object Member

e C/C+const members and local objects of a structure must be initialated

declaration:
ldeal (Java-like)

Structure

struct Bar {
Bar(int 1) {...}

/I no default constructor

} bar(3);
struct Foo {
const int 1 = 3;
Bar » const p = &bar;
Bar &rp = bar;
Bar b(7);
X

struct Bar {
Bar(int 1) {...}
// no default constructor
} bar(3);
struct Foo {
const int I;
Bar » const p;
Bar &rp;
Bar Db;
} x ={ 3, &bar, bar, 7 };

e Left: disallowed because fields cannot be directly inizedl.
¢ Right: disallowed becaudgar has a constructor Somust use constructor

syntax.
e Try using a constructor:

CS 246

245
Constructor/assignment Constructor/initialize
struct Foo { struct Foo {

const int i; const int i;
Bar = const p; Bar » const p;
Bar &rp; Bar &rp;
Bar b; Bar b;
Foo() { Foo() : // declaration order

| = 3; [/ after declaration I(3),

p = &bar; p(&bar),

rp = bar; rp(bar),

b(7); /I not a statement b(7) {

}

J

J

e Left: disallowed becaussnst has to be initialized at point of declaration.
¢ Right: special syntax to indicate initialized at point ottaation.
e Ensuresonst /object members are initialized before used in constructor

body.

e Must be initialized in declaration order to prevent use bedo
Initialization.
e Syntax may also be used to initialize any local members:

CS 246 246

struct Foo {

Complex c;

Int K;

Foo() : c(1,2), k(14) { Il initialize c, k
c = Complex(1, 2); /[or assign c, k
k = 14,

}

I3
Initialization may be more efficient versus default constion and
assignment.

2.18.7 Static Member

e Static data-member creates a single instance for objeetvgrsus for
object instances.

struct Foo {
static int cnt; // one for all objects
Int i; // one per object

I3

o exist even if no instances of object exist

CS 246 247

o must still be declared (versus defined in the type) irca file.
o allocated in static block not in object.

e Static routine-member, used to access static data-menmarachis
parameter (i.e., like a regular routine)

e E.g., count the number &bo objects created.

CS 246

Int cnt;

void stats() {

cout << cnt;
}
struct Foo {
Int 1,
Foo() {
went += 1;
..stats();
}
I3
iInt main() {
Foo X, V;
}

248

struct Foo {
static Int cnt;

Int 1,
static void stats() {
cout << cnt; // allowed
| = 3; /I disallowed
mem(); /I disallowed
}
Foo() {
cnt += 1; // allowed
stats(); /[allowed
\ }
iInt Foo::.cnt; // declaration (optional initialization)
Int main() {
Foo X, V;

}

CS 246 249

code static stack
[=

S < o free

5| S o| heap = = - |«
o > X
S = 7 memory

e Object membersmem can referencgandrtn in static block.

e Static membertn not logically nested in typ#o, so it cannot reference
members andmem.

2.19 Random Numbers

e Random numbersare values generated independently, i.e., new values di
not depend on previous values (independent trials).

e E.g., lottery numbers, suit/value of shuffled cards, valuslbed dice, coin
flipping.

e While programmers spend much time ensuring computed vahgasot
random, random values are useful:

o gambling, simulation, cryptography, games, etc.

CS 246 250

e Random-number generatoris an algorithm computing independent
values.

e If algorithm uses deterministic computation (predictas®@guence), it
generategpseudo random-numbersversus “true” random numbers.

e All pseudo random-number generatos (PRNG) involve some technique
that scrambles the bits of a value, e.g., multiplicativairesnce:

seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble bits

e Multiplication of large values adds new least-significaim$ Bnd drops
most-significant bits.

bits 63-32 bits 31-0
0| 3e8e36

5f | 718c25el

ad3e | 7b5f 1dbe
bc3b|ac69ff 19
1070f | 2d258dc6

e By dropping bits 63-32, bits 31-0 become scrambled aften eadltiply.

e E.9., clasRNG generates &xed sequence of LARGE random values that
repeats after? values (but might repeat earlier):

CS 246 251

class PRNG {
uint32_t seed_: /I same results on 32/64- bit architectures
public :

PRNG(uint32_t s = 362436069) {
seed_ = s; /| set seed

1

uint32_t seed() { /l read seed
return seed_:

}

void seed(uint32_t s) { /Il reset seed
seed_ = s; /| set seed

}

uint32_t operator ()() { /[[0,UINT_MAX]
seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble b
return seed_:

1

uint32_t operator ()(uint32_t u) { // [0,u]
return operator ()() % (u + 1); /[call operator()()

1

1

uint32_t operator ()(uint32_t |, uint32_t u) { // [l,u]

}

return operator ()J(u- 1) + I; /[call operator()(uint32_t)

CS 246 252

e Creating a member with the function-call operator nafhe€functor)
allows these objects to behave like a routine.

PRNG prng; /I often create single generator
prng(); /Il [0,UINT_MAX]
prng(5); /1'[0,3]

prng(5, 10); /Il [5,10]

e Large values are scaled using modulus; e.g., generate dGmanumber
between 5-21.:

PRNG prng;

for (inti=0;i<10;i+=1){
cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << endi;
cout << prng(5, 21) << endl;

}

¢ By initializing PRNG with a different “seed” each time the program is run,
the generated sequence is different:

PRNG prng(getpid()); // process id of program
prng.seed(time()); /I current time

e #include <cstdlib> provides C random routinesand andrand to set a seed

CS 246 253
and generate random values, respectively.

srand(getpid()); I/l seed random genrator
r = rand(); /[obtain next random value

2.20 Declaration Before Use

e Declaration Before Usg(DBU) means a variable declaration must appear
before its usage in a block.

e In theory, a compiler could handle some DBU situations:

{
cout << i << endl; [/l prints 4 ?
Int 1 = 4; /[declaration after usage
}
but ambiguous cases make this impractical:
Int 1 = 3;
{
cout << I << endl; /I which 1?
Int i = 4;

cout << | << endl:

CS 246 254
e C always requires DBU.
e C+ requires DBU in a block and among types but not within a&typ

e Java only requires DBU in a block, but not for declarationsnamong
classes.

e DBU has a fundamental problem specifyimgitually recursive references:

void f() { /[T calls g
90); /I g is not defined and being used

void g(){ [/l gcallsf
f0); /I T is defined and can be used
}

Caution: these calls cause infinite recursion as there is nade case.

e Cannot type-check the call tpin f to ensure matching number and type of
arguments and the return value is used correctly.

e Interchanging the two routines does not solve the problem.

e A forward declaration introduces a routine’s type (called a
prototype/signature) before its actual declaration:

CS 246 255

Int f(int 1, double); // routine prototype: parameter names optional
// and no routine body
|nt f(Int 1, double d) { // type repeated and checked with prototype

}
e Prototype parameter names are optional (good documemyatio

e Actual routine declaration repeats routine type, whichtmastch
prototype.
e Routine prototypes also useful for organizing routines soarce file.

Int main(); // forward declarations, any order
void g(int 1);
void f(int i);
iInt main() { /[actual declarations, any order
f(5);
9(4);

void g(int i) {...}
void f(int i) {...}

e E.g., allowingmain routine to appear first, and for separate compilation.
e Like Java, C+ does not always require DBU within a type:

CS 246 256

Java CH

void g() {3 // not selected by call in T::f
class T { struct T {
void f() { ¢ = Colour.R; g(); } void f) {¢c = R; g(); } // ¢, R, g not DBU
void g() { c = Colour.G; 1(); } void g) {c=G;f();} /l c, G not DBU
Colour c; enum Colour { R, G, B }; /I type must be DBU
enum Colour { R, G, B } Colour c;

5 J

e Unlike Java, C+ requires a forward declaration for muiuedicursive
declaration@mongtypes:

Java CH
class T1 { struct T1 {
T2 t2; T2 t2; // DBU failure, T2 size?
T1() { t2 = new T2(); }
; %
class T2 { struct T2 {
T1 t1; T1 t1;
T2() { t1 = new T1(); } \
T1 t1 = new T1(); T1 t1;

CS 246 257

Caution: these types cause infinite expansion as there is asdcase.

e Java version compiles becausé2 are references not objects, and Java cal
look ahead at2; C+ version disallowed because DBU o2 means it does
not know the size of 2.

e An object declaration and usage requires the object’s sidar@embers so
storage can be allocated, initialized, and usages typekelde

e Solve using Java approach: break definition cycle usingvasiat
declaration and pointer.

Java CH
struct T2; // forward
class T1 { struct T1 {
T2 12; T2 &t2; // pointer, break cycle
T1() { t2 = new T2(); } T1() : t2(xnew T2) {} // DBU failure, size?
c’lass T2 { s’truct T2 {
T1 t1; T1 t1;

T2(0) {t1 = new T1(); } | };
¥

e Forward declaration of2 allows the declaration of variablel::t2.

CS 246 258
e Note, a forward type declaration only introduces the naneetgpe.

e Given just a type name, only pointer/reference declaratiorihe type are
possible, which allocate storage for an address versusjaatob

e C+’'s solution still does not work as the constructor canusas typer2.

e Use forward declaration and syntactic trick to move memieéndion
after both types are defined

struct T2; // forward

struct T1 {
T2 &t2; /I pointer, break cycle
T1(); /[forward declaration

I3

struct T2 {
T1 t1;

%

T1::T1() : t2(xnew T2) {} // can now see type T2

e Use of qualified nam&1::T1 allows a member to be logically declared in
T1 but physically located later.

CS 246 259
2.21 Encapsulation

e Encapsulationhides implementation to support abstractiandess
control).

e Access control applies to types NOT objects, i.e., all disje€the same
type have identical levels of encapsulation.

e Abstraction and encapsulation are neither essential noqrered to
develop software.

e E.g., programmers could follow a convention of not direeitgessing the
Implementation.

e However, relying on programmers to follow conventions isgkrous.

e Abstract data-type (ADT) is a user-defined type practicing abstraction anc
encapsulation.

e Encapsulation is provided by a combination of C and C+ festu

e C features work largely among source files, and are indyrdiettl into
separate compilation.

o C+ features work both within and among source files.
e C+ provides 3 levels of access control for object types:

260

CS 246
Java CH-
class Foo { struct Foo {
private ... private : /I within and friends
/[private members
protected protected : /I within, friends, inherited
cee /I protected members
public ... public : /I within, friends, inherited, users
1 /I public members
’ },

e Java requires encapsulation specification for each member.

e C+ groups members with the same encapsulation, i.e., allbees after a

label, private , protected or public , have that visibility.

e Visibility labels can occur in any order and multiple timasan object type.

e Encapsulation supports abstraction by making implemematembers
private and interface members public.

¢ Note, private/protected members are still visible to pragrmer but

Inaccessiblé

CS 246 201

struct Complex {
private :
double re, im; // cannot access but still visible
public :
/I Interface routines
J

e struct has an implicitpublic inserted at beginning, i.e., by default all
members are public.

e class has an implicifprivate inserted at beginning, i.e., by default all
members are private.

struct S{ |class C{
Il public: /[private:
int z; Int X;
private : protected :
int X; int y;
protected :| public :
Int v; int z;
% %

e Use encapsulation to preclude object copying by hiding aamstructor
and assignment operator:

CS 246

class Lock {

Lock(const Lock &); /[definitions not required
Lock &operator =(Lock &);

262

public :
Lock() {...}
y
void rtn(Lock f) {...}
Lock X, ;

rtn(x); // disallowed, no copy constructor for pass by value
x =vy; [/l disallowed, no assignment operator for assignment

e Prevent object forgery (lock, boarding-pass, receipt)omymng that does
not make sense (file, database).

e Encapsulation introduces problems when factoring for nartaation, e.g.,
previously accessible data becomes inaccessible.

CS 246 263

class Cartesian { // implementation type
double re, im;

¥
class Complex { class Complex {
double re, Im; Cartesian impl;
public : public :
Complex operator +(Complex c); ..
I
|3 Complex operator +(Complex a, Complex b);
ostream &operator <<(ostream &0S, ostream &operator <<(ostream &os,
Complex c); Complex c);

e Implementation is factored into a new ty@artesian, “+” operator Is
factored into a routine outside and outpyk” operator must be outside.

e Both Complex and “+” operator need to acceSartesian implementation,
l.e.,re andim.

e Creatingget andset interface members faCartesian provides no
advantage over full access.

e C+ provides a mechanism to state that an outside typeheigiallowed
access to its implementation, calliggndship (similar to package
visibility in Java).

CS 246

class Complex; // forward

class Cartesian { // implementation type
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &o0s, Complex c);
friend class Complex;
double re, im;

I3

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
Cartesian impl;

public :

%

Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &os, Complex ¢) {
return os << c.impl.re << "+" << c.impl.im << "1 ";
}
e Cartesian makese/im accessible to friends, am@bmplex makesmpl
accessible to friends.

264

CS 246 265

e Alternative design is to nest the implementation typ€amplex and
remove encapsulation (useuct).

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &o0s, Complex c);
struct Cartesian { // implementation type
double re, Im;

} impl;
public :
Complex(double r = 0.0, double 1 =0.0) {
impl.re = r; impl.im = i;
}
I3

Complex makesCartesian, re, im andimpl accessible to friends.

2.22 System Modelling

e System modellinginvolves describing a complex system in an abstract wa
to help understand, design and construct the system.

e Modelling is useful at various stages:

CS 246 266

o analysis : system function, services, requirements (wifbr design)

o design : system parts/structure, interactions, behavyauthne for
programming)

o programming : converting model into implementation

e Model grows from nothing to sufficient detail to be transfexamnto a
functioning system.

e Model provides high-level documentation of the system fuderstanding
(education) and for making changes in a systematic manner.

e Top-down successive refinement is a foundational mechamssa in
system design.

e Multiple design tools (past and present) for supportingesysdesign, most
are graphical and all are programming-language indepénden
o flowcharts (1920-1970)
o pseudo-code
o Warnier-Orr Diagrams
o Hierarchy Input Process Output (HIPO)
o UML

e Design tools can be used in various ways:

CS 246 267

o sketchout high-level design or complex parts of a system,
o blueprint the system abstractly with high accuracy,
o generateinterfaces/code directly.

e Key advantage is design tool provides a generic, abstradehad a
system, which is transformable into different formats.

e Key disadvantage is design tool seldom linked to implententa
mechanism so two often diffefCODE = TRUTH)

e Currently, UML is the most popular design tool.

2.22.1 UML

e Unified Modelling Language (UML) is a graphical notation for describing
and designing software systems, with emphasis on the ebjesited style.

e UML modelling has multiple viewpoints:

o class model describes static structure of the system for creatingoidje
o object model: describes dynamic (temporal) structure of system object
o interaction model : describes the kinds of interactions among objects

Focus on class and object modelling.
e Note / comment

CS 246 268

commenttext----- target

e Classes diagrandefines class-based modelling, where a class is a type fc
Instantiating objects.

e Class has a name, attributes and operations, and may par&an
Inheritance hierarchies.

class name Person

- name : String
attributes |- age : Integer optional
(data) - sex : Boolean

-owns : Car[0..5]
+ getName : String
operations| + getAge : Integer optional

(routines) + getCars : Car[0..5]
+ buy(in car : Car, inout card : CreditCard) : Boolean

e Attribute describes a property in a class.
[visibility] name [“.” [type] [“[" multiplicity “]”] ['="d efault]]

CS 246 269
o Visibility : access to property
+ = public, — = private, #= protected,~ = package
o name : identifier for property (like field name in structure)
o type : kind of property
Boolean, Integer, Float, String, class-name

o multiplicity : cardinality for instantiation of property
0..(N|x), from O toN or unlimited,N short forN..N, % short for 0.x
Defaults to 1

o default : expression that evaluates to default value (aresjlfor property

e Operation : action invoked in context of object from the class
[visibility] name [“(" [parameter-list] “)"] [*:” return-type] [“[”
multiplicity “]” |
o Visibility : access to operation
+ = public, — = private, #=- protected,~ =- package
o name : identifier for operation (like method name in strugtur
o parameter-list : comma separated list of input/output $\fjpe operation
[direction | parameter-name “:” type [“[" multiplicity “]"]
[“=" default] [“ {” modifier-list “}"]]

CS 246 270

o direction : direction of parameter data flow
“In” (default) | “out” | “inout”

o return-type : output type from operation

e Only specify attributes/operations useful in modelling: ro flags,
counters, temporaries, constructors, helper routines, &t

e Attribute with type other than basic type hasaasociation

Person Car

owns : Car [0..5]

o Class Person has attributens with multiplicity constraint 0..5 forming
unidirectional association with clagsar, i.e., person owns (has) 0to 5
cars.

e Alternatively, association can be represented via a lioggibly named):

Person ownership Car

owns
0..5

CS 246 271

o ClassPersorhas attributeownswith multiplicity constraintO..5 (at target
end) forming a unidirectional association with cl&ss and association
IS named “ownership”.

e Association can also be bidirectional.

Person Car
owns :. 6ar [0..5] owned.:. Persor
Person ownership Car
owned owns
0..1 0..5

o Association “ownership” also has claSarhaving attributeownedwith
multiplicity constraintO..1person, i.e., a car can be unowned or owned
by 1 person.

e If UML graph is cluttered with lines, create association lass rather than
using a line.

o E.q., If 20 classes associated with Car, replace 20 lingsatitibutes in
each class.

CS 246 2172

e Alternatively, multiple lines to same aggregate may be meigto a single
segment.

o Any adornments on that segment apply to all of the aggregainals.
e < (arrowhead}= navigable
o Instances of association can be accessed efficiently assoeiation end
(arrowhead) (car is accessible from person)
o opposite association end “owns” the association’s implaaten
(person has a car)
e X = not navigable.
e Adornments options:

o show all arrows ands (completely explicit)

o suppress all arrows ant = no inference about navigation
often convenient to suppress some of the arrows/Xs and aoly s
special cases

o show only unidirectional association arrows, and suppoelsectional
associations

= two-way navigability cannot be distinguished from no naign at
all, but latter case occurs rarely in practice.

CS 246

273

e Navigability may be implemented in a number of ways:
o pointer/reference from one object to another

o elements in arrays

e Object diagram : is a snaphot of class instances at one moment during

execution.

e ODbject can specify values of class : “name : class-type” ¢uinted),

attribute values.

object name

mary : Person

attribute
values

name="Mary”
age=29
sex=T

owns=(pointer]

)

optional

Object may not have a name (dynamically allocated).
e Objects associated with “ownership” are linked.

CS 246

fred: Person

name="Fredrick’

owned owns

- Car

mary: Person

name="Mary”

peg:Person

name="Margaret

kind="Honda’

. Car

kind="Toyota’

: Car

kind="Ford’

Which associations are valid/invalid/missing?

e Association Class optional aspects of association (dashed line).

274

CS 246 275

Person Car
Sale
dealership
serialno
fred: Person - Car
name="Fredrick’ I kind="Honda’|
billof: Sale
Ted’s Honda
L345YH454

o cars sold through dealership (versus gift) need bill of sale
o association class cannot exist without association (naown

e Aggregation () is an association between an aggregate attribute and its
parts.

CS 246 276

Car < Tire
0..1 0.7
o car can have 0 or more tires and a tire can only be on O or 1 car

o aggregate may not create/destroy its parts, e.g., margreiit tires
during car’s lifetime and tires may exist after car’s life@ (snow tires).

class Car {
Tires «tires[4]; /I array of pointers to tires

e Composition (¢) is a stronger aggregation where a part is included in at
most one composite at a time.

Car > Brake
1 4

o car has 4 brakes and each brake is on 1 car

o composite aggregate often does create/destroy its partssame brakes
for lifetime of car and brakes deleted when car deleted @sleakes
removed at junkyard)

class Car {
DiscBrake brakes[4]; // array of brakes

CS 246 2177

e UML has many more facilities, supporting very complex dggmns of
relationships among entities.

o VERY large visual mechanisms, with several confusing giegh
representations.

e UML diagram is too complex if it contains more than about 25 boes.

CS 246
Classes Diagram

\Vehicle

- make: String

- model: String
- colour: String

Client

1 - name: String

- phone: String

278

Insurance

1 1| - company: String

+ rate(): Double

- policy: String
- expiry: String

/\ Contract I
- start: Date
- end: Date
Truck| |SUV|| Car 1 Corporate| | Individual
*
Accessory \
- surcharge: Double | _____ no charge
+ surcharge(): Double during sales
A\
FloorMat GPS SatelliteRadio

CS 246

Object Diagram

‘Contract

start="2009/09/07"
end="2012/09/07

.Car i
make="Honda”__.

jfdoe:Individual

model="Civic”
colour="silver’

name="John F. Doe”
phone="204 888-202

‘Insurance

)H

company="SUN Lite”

policy="X-JAJ1567"
expiry="2011/05/31"

uest’

:Truck lom:Corporate .SUV
make="Ford" | name="IBM" | make="Nissan’
model="F150’ | phone="519 744-3121" | model="Q
colour="red” i i colour="black”

:Contract | ‘lnsurance | :Contract

start="2010/10/13
end="2013/10/13’

company="Pilote”
policy="123-ABC”

expiry="2010/12/01"

‘GPS

:FloorMat

- surcharge=500

- surcharge=50

start="2008/01/25

end="2014/01/25

279

CS 246

Invalid Object Diagram

‘Contract

start="2009/09/0°7"
end="2012/09/077

:Car

make="Honda”

jfdoe:Individual

model="Civic”
colour="silver?

‘Truck

make="Ford”

name="John F. Doe”

phone="204 888-202f

‘Insurance

company="All Gate”

policy="A012678BJK
expiry="2010/10/01"

‘Insurance

3\ company="SUN Lite”

iIbm:Corporate

model="F150’
colour="red”

T
I
I
I
I

‘Contract

start="2010/10/13
end="2013/10/13]

‘GPS

- surcharge=500

name="IBM”

policy="X-JAJ1567"
expiry="2011/05/31"

SUV
make="Nissan{

l”

phone="519 744-312

:SUV

make="Honda”
model="CRV"

‘FloorMat

- surcharge=50

| model="Quest’
| colour="black”

‘Contract

start="2008/01/25"
end="2014/01/257

colour="blue” /

280

CS 246 281
2.23 Separate Compilation

e As program size increases, so does cost of compilation.

e Separate compilationdivides a program into units, where each unit can be
iIndependently compiled.

e Advantage: saves time by recompiling only program unit{aj thange.
o In theory, if an expression is changed, only that expressesus to be

recompiled.

o In practice, compilation unit is coarsédranslation unit (TU), which is a
file in C/CH+.

o In theory, each line of code (expression) could be put in arsep file,
but impractical.

o S0 a TU should not be too big and not be too small.

e Disadvantage: TUs depend on each other because a progress giemny
forms of information, especially types (done automaticadlJava).

o Hence, need mechanismitoport information from referenced TUs and
export information needed to referencing TUSs.

e For example, simple program in filgog.cc using complex numbers:

CS 246 282

prog.cc
#include <iostream> /Il import
#include <cmath> /Il sqrt

using namespace std;

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);

static int objects; I/l shared counter
double re, im;
public :

Complex(double r = 0.0, double | = 0.0) { objects +=1; ...}
double abs() const { return sqrt(re = re + iIm x im); };
static void stats() { cout << objects << endl; }

I3

Int Complex::.objects; /I declare

Complex operator +(Complex a, Complex b) {...}

... Il other arithmetic and logical operators

ostream &operator <<(ostream &os, Complex c) {...}

const Complex C_1(1.0, 0.0);

Int main() {
Complex a(1.3), b(2., 45),c(-3, -4);
cout<<a+b+c+ C_1 << c.abs() << endi;
Complex::stats();

CS 246 283

e TU prog.cc has references to itemsiwstream andcmath.

e As well, there are many references within the TU, exgiin references
Complex.

e Subdividing program into TUs in C/C+ is complicated be@aok
Import/export mechanism.

CS 246 284

prog.cc
exec
ithi program
monolithic |] - |executable
g++ prog.cc -0 exec
unitl.cc _
unitl.o
TU, program exec
separate unit2.cc _ executable
unit2.o
TU> progran
g++ -c unitN.cc g++ unit*.o -0 exec

e TU; Is NOT a program; program formed by combining TUS.
e Compile each Twith - c compiler flag to generate executable codein

CS 246 285
file (Java hasclass file).

$ g++ -c unitl.cc ... // compile only modified TUs
generates filesnitl.o containing a compiled version of source code.
e Combine TYwith - o compiler flag to generate executable program.
$ g++ unitx.0 -0 exec /I create new excutable program “exec”

e Separate original program into two TUs in filesmplex.cc andprog.cc:

CS 246 286

complex.cc
#include <iostream> /[import
#include <cmath>
using namespace std;
class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);

static int objects; /[shared counter
double re, Im; /[implementation
public :

Complex(double r = 0.0, double | = 0.0) { objects +=1; ...}
double abs() const { return sqrt(re = re + im %= im); }
static void stats() { cout << objects << endl; }

I3

iInt Complex::objects; I/l declare

Complex operator +(Complex a, Complex b) {...}

... Il other arithmetic and logical operators

ostream &operator <<(ostream &os, Complex c) {...}

const Complex C_1(1.0, 0.0);

TU complex.cc has references to itemsiwstream andcmath.

CS 246 287

prog.cc
iInt main() {
Complex a(1.3), b(2.,45),c(-3,-4);
cout << a+ b +c+ C_1 << c.abs() << endl;
Complex::stats ();

}

TU prog.cc has references to itemsiwstream andcomplex.cc.

e How can TUprog.cc accessomplex? By importing description of
Complex.

e How are descriptions imported?
TU imports information using preprocess#iiclude .

e Why not includecomplex.cc Iinto prog.cc?
Because all o€omplex.cc is compiled each timprog.cc is compiled so
there is no advantage to the separation (program is stillofitare).

e Hence, must separatemplex.cc into interface for import and
Implementation for code.

e Complex interface placed into fileomplex.h, for inclusion (import) into
TUs.

CS 246 288

complex.h
#itndef __COMPLEX_H__
#define __COMPLEX_H__ // protect against multiple inclusion
#include <iostream> /[import

/[NO “using namespace std”, use qualification to prevent polluting scof
class Complex {

friend Complex operator +(Complex a, Complex b);

friend std::ostream &operator <<(std:..ostream &o0s, Complex c)

static int objects; I/l shared counter
double re, im; // Implementation
public :

Complex(double r = 0.0, double i = 0.0);
double abs() const ;
static void stats();
¢
extern Complex operator +(Complex a, Complex b);
... /I other arithmetic and logical operator descriptions
extern std::ostream &operator <<(std::ostream &os, Complex c);
extern const Complex C_1;
#endif // __COMPLEX_H__

¢ (Usually) no code, just descriptions : preprecessor vesle/CH types
and forward declarations.

CS 246 289

e extern qualifier means variable or routine definition is locate@wlsere
(not for types).

e Complex implementation placed in fileomplex.cc.

complex.cc
#include "conpl ex. h” // do not copy interface
#include <cmath> /Il import
using namespace std; I/l ok to pollute implementation scope
iInt Complex::.objects; /[defaults to O

void Complex::stats() { cout << Complex::objects << endl; }
Complex::Complex(double r, double i) { objects +=1; ...}
double Complex::abs() const { return sqgrt(re = re + im = im); }
Complex operator +(Complex a, Complex b) {

return Complex(a.re + b.re, a.im + b.im);
}

ostream &operator <<(ostream &os, Complex c) {
return 0s << c.re << "+ << c.im << "1 ";
}
const Complex C_1(1.0, 0.0);
e Implementation is composed of actual declarations and.code

e .cc file includes the.h file so that there is only one copy of the constants,
declarations, and prototype information.

CS 246 290

e Why is#include <cmath> Iin complex.cc instead ofcomplex.h?
e Compile TUcomplex.cc to generateomplex.o.

$ g++ - c complex.cc

e \What variables/routines are exported froomplex.o?

$ nm -C complex.o | egrep’ T| B’
C_1

Complex::stats()

Complex::objects
Complex::Complex(double, double)
Complex::Complex(double, double)
Complex::abs() const
operator<<(std::ostreamé&, Complex)
operator+(Complex, Complex)

e In general, type names are not in thdile?
e To compileprog.cc, it must importcomplex.h

CS 246 291

prog.cc
#include "conpl ex. h”
#include <iostream> /l Included twice!

using namespace std;

iInt main() {
Complex a(1.3), b(2.,45),c(-3,-4);
cout << a+ b +c+ C_1 << c.abs() << endl;
Complex::stats ();

}

e Why is#include <iostream> in prog.cc when it is already imported by
complex.h?

e Compile TUprog.cc to generatgrog.o.
$ g++ - c prog.cc

e Link together TUsomplex.o andprog.o to generatexec.
$ g++ prog.o complex.o - 0 exec

e All .o files MUST be compiled for the same hardware architecturey.e.
all x86.

CS 246 292

¢ To hide global variables/routines (but NOT class memba&r3)u, qualify
with static .

complex.cc

.sltétic Complex C_1(1.0, 0.0);
static Complex operator +(Complex a, Complex b) {...}
static ostream &operator <<(ostream &os, Complex ¢) {...}

o herestatic means linkage NOT allocation.

e These variables/routines are now only accessible in the(iiat!good for
users of complex)

e Encapsulation is provided by giving a user access to thedectile(s) (h)
and the compiled source file(sp), but not the implementation in the
source file(s) .cc).

e Note, while theh file encapsulates the implementation, the implementatio
IS still visible.

e To completely hide the implementation requires a (more espe)
reference:

CS 246 293

complex.h
#itndef __COMPLEX_H__
#define __COMPLEX_H__ // protect against multiple inclusion
#include <iostream> /[import
/[NO “using namespace std”, use qualification to prevent polluting scof
class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &o0s, Complex c);

static int objects; I/l shared counter
struct Compleximpl; // hidden implementation, nested class
Compleximpl &impl; /[indirection to implementation

public :

Complex(double r = 0.0, double i = 0.0);
Complex(const Complex &c); /[copy constructor
~Complex(); /[destructor
Complex &operator=(const Complex &c); /[assignment operat
double abs() const ;
static void stats();
I3
extern Complex operator +(Complex a, Complex b);
extern std:.ostream &operator <<(std::ostream &os, Complex ¢);
extern const Complex C_1;
#endif // __COMPLEX_H__

CS 246 294
complex.cc
#include "conpl ex. h” // do not copy interface
#include <cmath> /[import
using namespace std; I/l ok to pollute implementation scope
iInt Complex::.objects; I/l defaults to O
struct Complex::Compleximpl { double re, im; }; /[implementation

Complex::Complex(double r, double i) : impl(xnew Compleximpl) {
objects += 1; impl.re = r; impl.im = i;
}

Complex::Complex(const Complex &c) : impl(xnew Compleximpl)
objects += 1; impl.re = c.impl.re; impl.im = c.impl.im;
}

Complex::~Complex() { delete &impl; }

Complex &Complex:.operator=(const Complex &c) {
Impl.re = c.impl.re; impl.im = c.impl.im; return xthis;

}

double Complex::abs() { return sqrt(impl.re = impl.re + impl.im « impl.i
void Complex::stats() { cout << Complex::objects << endl; }
Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &o0s, Complex c) {

}

return os << c.impl.re << "+" << c.impl.im << " ";

CS 246 295

e A copy constructor and assignment operator are used becangaex
objects now contain a reference pointer to the implementatsi

2.24 Inheritance

e Objectorientedlanguages providanheritance for writing reusable
program-components.

Java CH
class Base { ...} struct Base { ... }
class Derived extends Base { ... } | struct Derived : public Base { ... };

e Inheritance has two orthogonal sharing concepts: impléatien and type.

e Implementation inheritance provides reuse of codale an object type;
type inheritance provides reusatsidethe object type by allowing existing
code to access the base type.

2.24.1 Implementation Inheritance

e Implementation inheritance reuses program componentsimpasing a
new object’s implementation from an existing object, tgkatvantage of

CS 246

296

previously written and tested code.
e Substantially reduces the time to generate and debug a newat type.
e One way to understand implementation inheritance is to mbdea

composition:
Composition Inheritance
struct Engine { // Base struct Engine { // Base
Int cyls; Int cyls;
int r(...) { ...} int r(...) { ...}
Engine() { ...} Engine() { ...}

struct Car { // Derived
Engine e; // explicit composition
Int s(...){ecyls=4;er(...), ...}
Car() { ...}
} vw;
vw.e.cyls = 6; // composition reference
vw.e.r(...); // composition reference
vw.s(...); // direct reference

struct Car : public Engine { // implicit
/[composition
Int s(...){ecyls=4;er(...); ...}
Car() { ...}
Derived() { ... }

b vw;
vw.cyls = 3; // direct reference
vw.r(...); /I direct reference
vw.s(...); /I direct reference

CS 246 297

e Composition explicitly creates an object memlggito aid in the
Implementation.
o A Car “has-a”’Engine.
o A Car is not anEngine nor is anEngine aCar, I.€., they are not logically
Interchangable.
e Inheritance, public Engine” clause, implicitly:

o Creates an anonymous base-class object-member,

o opensthe scope of anonymous member so its members are accessible
without qualification, both inside and outside the inhagtobject type.

e E.g.,Car declaration first creates an invisili#agine object in theCar
object, like composition, and allows direct access to \eisEngine::i and
Engine::r in Car::s.

e Constructors and destructors must be invoked for all intpfideclared

objects in the inheritance hierarchy as done for an expheinber in the
composition.

CS 246 298

_ o Engine b; b.Engine(); // implicit, hidden declaration
Car d; implicitly ~ Car d; d.Car();
rewritten as - ..
d.~Car(); b.~Engine(); // reverse order of constructi

e If base type has members with the same name as derived typmki like
nested blocks: inner-scope name overrides outer-scope.nam

e Still possible to access outer-scope names usthgdalification to specify
the particular nesting level.

CS 246 299
Java CH
class Basel { struct Basel {
int i; Int 1,
} It .
class Base2 extends Basel { struct Base2 : public Basel {
int i; Int 1, /[overrides Basel::i
} 3
class Derived extends Base2 { struct Derived : public Base2 {
int i; Int I, I/l overrides Base2::i
void s() { void r() {
Int 1 = 3; int 1 = 3; /[overrides Derived::i
this .i = 3; Derived::i = 3; // this.i
((Base2)this).i = 3; // super.i Base2::i = 3;
((Basel)this).i = 3; Base2::Basel::i = 3; // or Basel:
} }
} 3

e Friendship is not inherited.

CS 246 300

class C {
friend class Base;

I3
class Base {
/| access C' s private members

I3

class Derived : public Base {
// not friend of C

I3

e Unfortunately, having to inherit all of the members is natays desirable;
some members may be inappropriate for the new type (e.@ &rqy).

e As a result, both the inherited and inheriting object mustdry similar to
have so much common code.

2.24.2 Type Inheritance
e Type inheritance establishes ar-a’ relationship among types.

CS 246 301

class Employee {
... Il personal info
I3

class FullTime : public Employee {
... /I wage & benefits

J§

class PartTime : public Employee {
... Il wage

I3

o A FullTime “is-a” Employee; a PartTime “is-a” Employee.
o A FullTime andPartTime are logically interchangable with &loyee.
o A FullTime andPartTime are not logically interchangable.

e Type inheritance extends name equivalence to allow rositméandle
multiple types, callegholymorphism, e.g.:

CS 246 302

struct Foo { struct Bar {
Int i Int i
double d; double d;
} 1, b

void r(Foof){...}
r(f);, [/ allowed
r(b); /I disallowed, name equivalence

e Since type$oo andBar are structurally equivalent, instances of either type
should work as arguments to routine

e Even If typeBar has more members at the end, routimaly accesses the
common ones at the beginning as its parameter isfkgpe

e However, name equivalence precludes ther¢dll).

e Type inheritance relaxes name equivalence by aliasing tlegiged name
with its base-type names.

CS 246 303

struct Foo { struct Bar : public Foo { // inheritance
Int 1, /Il remove Foo members
double d;

T, bb,

void r(Foo f) { ...}
r(f); /I valid call, derived nhame matches
r(b); /I valid call because of inheritance, base name matches

e E.g., create a new typdycomplex that counts the number of timabs is
called for eactMycomplex object.

e Use both implementation and type inheritance to simplifydnog type
Mycomplex:

struct Mycomplex : public Complex {
iInt cntCalls; // add
Mycomplex() : cntCalls(0) {} /[add

double abs() { // override, reuse complex’ s abs routine
cntCalls += 1,

return Complex::abs();

}
Int calls() { return cntCalls; } /l add

CS 246 304

e Derived typeMycomplex uses the implementation of the base type
Complex, adds new members, and overrids to count each call.

e Why is the qualificatiorComplex:: necessary iMycomplex::abs?

e Allows reuse ofComplex’s addition and output operation fétycomplex
values, because of the relaxed name equivalence providsgéy
Inheritance between argument and parameter.

e RedeclareComplex variables taMycomplex to get newabs, and member
calls returns the current number of callsabs for any Mycomplex object.

e Two significant problems with type inheritance.

1. o Complex routineoperator + is used to add th®lycomplex values
because of the relaxed name equivalence provided by tyeeitanhce:

Int main() {

Mycomplex X;

X =X + x; [/l disallowed
}

o However, result type fromperator + is Complex, hot Mycomplex.

o Assignment of @&omplex (base type) tdvycomplex (derived type)
disallowed because ti@mplex value is missing thentCalls member!

CS 246 305

o Hence, avlycomplex can mimic aComplex but not vice versa.

o This fundamental problem of type inheritance is called
contra-variance.

o C+ provides various solutions, all of which have problemd are
beyond this course.

2. void r(Complex &c) {
c.abs();
}
Int main() {
Mycomplex X;
x.abs(); /[direct call of abs
r(x); /I indirect call of abs
cout << "X:" << x.calls() << endl;
}

o While there are two calls tabs on objectx, only one is counted!
e public inheritance means both implementation and type inhemanc
e private inheritance means only implementation inheritance.

class bus : private car { ...
Use implementation froroar, butbus is not acar.

CS 246 306

e No direct mechanism in C+ for type inheritance without iemkntation
Inheritance.

2.24.3 Constructor/Destructor

e Constructors are executed top-down, from base to mostatetype.

e Mandated by scope rules, which allow a derived-type con&iruo use a
base type’s variables so the base type must be initializetd fir

e Destructors are executed bottom-up, from most derived $e bage.

e Mandated by the scope rules, which allow a derived-typerdetsir to use a
base type’s variables so the base type must be uninitiasztd

e Javafinalize must beexplicitly called from derived to base type.

e Unlike Java, C+ disallows calls to other constructors atdtart of a
constructor.

e TO pass arguments to other constructors, use same syntaxiagiélizing
const members.

CS 246 307

Java CH
class Base { struct Base {
Base(inti){...} Base(inti){...}
5 3
class Derived extends Base { struct Derived : public Base {
Derived() { super(3); ... } Derived() : Base(3) { ...}
Derived(int 1) { super(1); ...} Derived(int 1) : Base(i) {...}
} 3

2.24.4 Copy Constructor / Assignment

e Each aggregate type has a default/copy constructor, assigfroperator,
and destructor, so these members cannot be inherited asxis¢yn the
derived type.

e Otherwise, copy-constructor/assignment work like contpmrs

CS 246 308

struct B {
B() { cout << "B() ";}
B(const B &c) { cout << "B(&) "; }
B &operator =(const B &rhs) { cout << "B="; }

3

struct D : public B {
Int I; /l basic type, bitwise

3

Int main() {
D i; cout << endl; /| B’ s default constructor
D d : cout << endl; /| D' s default copy- constructor
d = cout << endl; // D' s default assignment

}

outputs the following:

B() /[l D i

B(&) [Dd=i

B= /[l d =1

e If D defines a copy-constructor/assignment, it overrides thany
subobject.

CS 246 309

struct D : public B {
... /I same declarations
D() { cout << "I() "; }
D(const D &c) :i(c.i),B(c){cout<<"D& ";}
D &operator =(const D &rhs) {
| = rhs.i; (B &) xthis = rhs;
cout << "D=";
return xthis;

}
I3
outputs the following:
BOD() [/ Di
B(& D@&) //Dd =i
B= D= Ild=1i

Must copy each subobject to get same outpldte coercion!

2.24.5 QOverloading

e Overloading a member routine in a derived class overridessatloaded
routines in the base class with the same name.

CS 246 310

class Base {
public :
void mem(int 1) {}
void mem(char c) {}

I3
class Derived : public Base {
public :
void mem() {} // overrides both versions of mem in base class
I3

e Hidden base-class members can still be accessed:
o Provide explicit wrapper members for each hidden one.

class Derived : public Base {
public :
void mem() {}
void mem(int i) { Base::mem(i); }
void mem(char ¢) { Base::mem(c); }
I3

o Collectively provide implicit members for all of them.

CS 246 311

class Derived : public Base {
public :
void mem() {}
using Base::mem; // all base mem routines visible

I3
o Use explicit qualification to call members (violates absicn).
Derived d;
d.Base::mem(3);
d.Base:mem(' a’');
d.mem();

2.24.6 Virtual Routine

e When a member is called, it is usually obvious which one iskex even
with overriding:

CS 246 312

struct Base {

void r) { ...}
s’truct Derived : public Base {
void r() { ...} /[override Base::r
I?;ase b;
b.r(); // call Base::r
Derived d;

d.r(); /[call Derived::r

e However, it is not obvious for arguments/parameters and
pointers/references:

void s(Base &b) { b.r(); }

s(d); I/l inheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); /[Base::r or Derived::r ?

¢ Inheritance masks the actual object type, but both callsldhovoke
Derived::r because argumehtand referencep point at an object of type
Derived.

e If variabled is replaced withb, the calls should invokBase::r.

CS 246 313

¢ To invoke routine defined in referenced object, qualify mentoutine with
virtual .

¢ To invoke routine defined by type of pointer/reference, doqualify
member routine witlvirtual .

e CH uses non-virtual as the default because it is more gfficie
e Javaalwaysuses virtual for all calls to objects.

e Once a base type qualifies a member as virttiad,virtual in all derived
types regardless of the derived type’s qualification for timember

e Programmer may want to access membeBase even if the actual object
IS of typeDerived, which is possible becau®®rived contains a Base.

e C+ provides mechanism to override the default at the dall si

CS 246 314
Java CH

class Base { struct Base {
public void f() {} // virtual void f() {} /[non- virtual
public void g() {} // virtual void g() {} /[non- virtual
public void h() {} // virtual virtual void h() {} // virtual

} 3

class Derived extends Base { | struct Derived : public Base {
public void g() {} // virtual void g() {}; I/ replace, non- virtual
public void h() {} // virtual void h() {}; /I replace, virtual
public void e() {} // virtual void e() {}; /I extension, non- virtual

}

final Base bp = new Derived();
bp.f(); // Base.f
(Base)bp).g(); // Derived.g
bp.g(); /[Derived.g
(Base)bp).h(); /I Derived.h
bp.h(); /[Derived.h

Base &bp = xnew Derived(); // polymorphic assi

bp.f(); /| Base::f, pointer type
bp.g(); /| Base:.g, pointer type
((Derived &)bp).g(); // Derived:.g, pointer type
bp.Base::h(); /[Base::h, explicit selection
bp.h(); /[Derived::h, object type

// cannot access “e” through bp

e Java casting does not provide access to base-type’s meauteres.

¢ Virtual members are only necessary to access derived mestteough a
base-type reference or pointer.

CS 246 315

e If a type is not involved in inheritancdifal class in Java), virtual members
are unnecessary so use more efficient call to its members.

e C+ virtual members are gualified in base type as opposedieddype.

e Hence, CH requires the base-type definer to presuppose éroved
definers might want the call default to work.

e Good practice for inheritable types is to make all routine mbers virtual.

e Any type with virtual members and a destructor needs to miade t
destructor virtual so the most derived destructor is cdledugh a
base-type pointer/reference.

e Virtual routines are normally implemented by routine penst

class Base {
Int X, vy, I/l data members
virtual void m1(...); // routine members
virtual void m2(...);

%

e May be implemented in a number of ways:

CS 246 316

X X X

y y y Virtual Routine Table
ml - ml - - ml

m2 [T m2 —t—=m2
copy direct routine pointer indirect routine pointer

2.24.7 Downcast

¢ Type inheritance can mask the actual type of an object tliraug
pointer/reference.

e A downcastdynamically determines the actual type of an object poitted
by a polymorphic pointer/reference.

e The Java operatanstanceof and the CHdynamic _cast operator perform a
dynamic check of the object addressed by a pointer/refer@rat
coercion):

CS 246

317

Java

C+H

Base bp = new Derived();

If (bp instanceof Derived
((Derived)bp).rtn();

)

Base bp = new Derived,;

Derived xdp;

dp = dynamic _cast<Derived x>(bp);

if (dp!=0) {// 0=>not Derived
dp->rtn(); // only in Derived

e 10O usedynamic _cast on a type,

member.

2.24.8 Slicing

the type must have at least one virtual

e Polymorphic copy or assignment can result in object truonatalled

slicing.

CS 246 318

struct B {
Int i
I3
struct D : public B {
Int j;
I3
void f(Bb) {..}
Int main() {
B b;
D d;
f(d); // truncate D to B
b = d; /[truncate D to B
}

¢ Avoid polymorphic value copy/assignment; use polymorppainters.

2.24.9 Protected Members

e Inherited object types can access and modify public aneépred members
allowing access to some of an object’s implementation.

CS 246 319

class Base {
private :

Int X;
protected :
Int v;
public :

int z;
I3

class Derived : public Base {
public :
Derived() { x; y; z; }; /I x disallowed; y, z allowed

int main() {
Derived d;
d.x; d.y; d.z; Il X, y disallowed; z allowed

}

2.24.10 Abstract Class

e Abstract classcombines type and implementation inheritance for
structuring new types.

e Contains at least one pure virtual member tnattbe implemented by

CS 246 320
derived class.

class Shape {
Int colour;
public :
virtual void move(int x, int y) = 0; /[pure virtual member
I3

e Strange initialization to O means pure virtual member.

e Define type hierarchy (taxonomy) of abstract classes mosomgmon data
and operations are high as possible in the hierarchy.

CS 246 321

Java CH
abstract class Shape { class Shape {
protected int colour = White; protected : int colour;
public public :
| | _ Shape() { colour = White; }
abstract void move(int x, int y); virtual void move(int x, int y) = 0;
} 3
abstract class Polygon extends Shape { | class Polygon : public Shape {
protected int edges; protected : int edges;
public abstract int sides(); public : virtual int sides() = O;
} 3
class Rectangle extends Polygon { class Rectangle : public Polygon {
protected int x1, y1, x2, y2; protected : int x1, y1, x2, y2;
_ public :
public Rectangle(...) {...} Rectangle(...) {...} // init corners
public void move(int X, int y) {...} void move(int x, int y) {...}
\ public int sides() { return 4; } int sides() { return 4;}
I3
class Square extends Rectangle { struct Square : public Rectangle {
/I check square /I check square
\ Square(...) { super(...); ...} Square(...) : Rectangle(...) {...}
I3

e Usepublic /protected to define interface and implementation access for

CS 246 322

derived classes.

e Provide (pure) virtual member to allow overriding and force
Implementation by derived class.

e Provide default variable initialization and implemenpatfor virtual
routine (non-abstract) to simplify derived class.

e Provide non-virtual routine torce specific implementatiorgerived class
should not override these routines

e Concrete clasganherits from one or more abstract classes defining all pure
virtual members, i.e., can be instantiated.

e Cannot instantiate abstract class, but can declare pointeference to it.
e Pointer/reference used to write polymorphic data strestand routines:

void move3D(Shape &s) { ... s.move(...); ... }
Polygon xpolys[10] = { new Rectangle(), new Square(), ... };
for (unsignedint i =0;i<10;i+=1){
cout << polysJi]- >sides() << endl; // polymorphism
move3D(=polys[i]); // polymorphism
}

e To maximize polymorphismyrite code to the highest level of abstractipn
l.e. useShape overPolygon, usePolygon overRectangle, etc.

CS 246 323
2.24.11 Multiple Inheritance

e Multiple inheritance allows a new type to apply type and implementation
Inheritance multiple times.

class X : public Y, public Z, private P, private Q { ...}

e X type is aliased to types andz with implementation, and also uses
Implementation fronP andQ.

e Interface class(pure abstract-clasg provides only types and constants,
providing type inheritance.

e Java only allows multiple inheritance for interface class.

CS 246

324

Java

C+H

interface Polygon {

Int sides();

void move(int X, int y);
}
interface Rectilinear {

final int angle = 90;

}
class Rectangle implements Rectilinear,
Polygon {
private int x1, yl1, x2, y2;
public void move(int X, int y) {}
public int sides() { return 4, }
}

class Square extends Rectangle {
public void move(int X, int y) {}
}

struct Polygon {

virtual int sides() = 0;

virtual void move(int X, int y) = O;
3
struct Rectilinear {

enum { angle = 90 };
¢

class Rectangle : public Polygon,
public Rectilinear {
int x1, y1, x2, y2;
public :

void move(int X, int y) {}
int sides() { return 4, }

¢

struct Square : public Rectangle {
void move(int x, int y) {}

1§

e Multiple inheritance hasiany problems (beyond this course).
e Safe if restrict multiple inheritance to ongublic type and one or two

private types.

CS 246 325
2.24.12 UML
e Generalization : reuse through forms of inheritance.

Polygon

abstract class | Rectilinear | || ¢ yas- Integer

+angle: 90 #+move(inXx: Integer, iny : Integer)

1]

multiple | inheritance single inheritance

concrete class Rectangle Trapezoid| gyperclass
+sides ; Integer +sides ; Integar (base)
+move(...) +move(...)

Zrsingle Inheritance

Square subclass
(derived)

+move(...)

CS 246 326

o Represent inheritance by arrowheado establish is-a relationship on
type, and reuse of attributes and operations.

o Association class can be implemented with forms of multipkeritance
(mixin).

e For abstract class, the class name and abstract operaitena iai zed.

e For concrete class, abstract operations that are impletampear in the
class diagram.

2.25 Composition / Inheritance Design

e Duality between “has-a” (composition) and “is-a” (inhante)
relationship.

e Types created from multiple composite classes; typesendedm multiple
superclasses.

Composition Inheritance
class A {...}; class A {...};
class B{ A a; ...}; class B : A {...};
class C {...}; class C {...};
class D{Bb; Cc; ...};/class D: B, C{..}

CS 246 327
e Both approaches:

o remove duplicated code (variable/code sharing)
o have separation of concern into components/superclasses.

e Choose inheritance when evolving hierarchical types (taroy) needing
polymorphism.

Vehicle
Construction
Heavy Machinery
Crane, Grader, Back- hoe
Haulage
Semi- trailer, Flatbed
Passenger
Commercial
Bus, Fire-truck, Limousine, Police- motorcycle
Personal
Car, SUV, Motorcycle

e For maximum reuse and to eliminate duplicate code, place
variables/operations as high in the hierarchy as possible.

e Polymorphism requires derived class maintain base classtsrface
(substitutability).

CS 246 328
o derived class should also havehavioural compatibility with base class.

e However, all taxonomies are an organizational compronvgen is a car a
limousine and vice versa.

e Not all objects fit into taxonomy: flying-car, boat-car.
e Inheritance is rigid hierarchy.
e Choose composition when implementation canlbegated

class Car {
SteeringWheel s; /Il fixed
Donut spare;
Wheel xwheels[4]; I/l dynamic
Engine *eng;
Transmission xtrany;
public :
Car(Engine xe = fourcyl, Transmission «t = manual) :
eng(e), trany(t) { wheels[i] = ...}
rotate() {...} /[rotate tires
wheels(Wheels «w[4]) {...} // change wheels
engine(Engine »e) {...} /Il change engine

3

e Composition may be fixed or dynamic (pointer/reference).

CS 246 329
e Composition still uses hierarchical types to generalizeponents.

o Engine is abstract class that is specialized to different kindswjirees,
e.g., 3,4,6,8 cylinder, gas/diesel/hybrid, etc.

2.26 Template

e Inheritance provides reuse for types organized into a fubyathat extends
name equivalence.

e Template provides alternate kind of reuse with no type hierarchy gpéeg
are not equivalent.

e E.9., overloading, where there is identical code but cgifetypes:

Int max(int a, int b) {return a>b ?a: b;}
double max(double a, double b) {return a>b ? a: b;}

e Template routine eliminates duplicate code by using types as compile-tim
parameters:

template <typename T> T max(Ta, Tb){return a>b ?a: b; }

e template Introduces type paramet€mused to declare return and parameter
types.

CS 246 330

e Template routine is called with value for and compiler constructs a
routine with this type.

cout << max<int>(1, 3); I['T ->Int
cout << max<double >(1.1, 3.5); // T -> double

e In many cases, the compiler can infer typ&om argument(s):

cout << max(1, 3); Il T ->Int
cout << max(1.1, 3.5); /[T -> double

e Inferred type must supply all operations used within thegiaite routine.
o e.g., types used with template routimeax must supplyoperator >.
e Template typeprevents duplicating code that manipulates differentsype

e E.g., collection data-structures (e.g., stack), have comoode to
manipulate data structure, but type stored in collectiaresa

CS 246 331

template <typename T=int, unsigned int N=10> // default type/value

struct Stack { /[NO ERROR CHECKING
T elems[N]; /[maximum N elements
unsigned int size; /[position of free element after top

Stack() { size = 0; }
T top() { return elems|size - 1]; }
void push(T e) { elems][size] = e; size += 1; }
T pop() { size - = 1; return elems[size]; }
I3
template <typename T, unsigned int N> // print stack
ostream &operator <<(ostream &o0s, const Stack<T, N> &stk) {

for (int i=0;i<stksize; i += 1) os << stk.elems]i] << :
return os;

}

e Type parametefl, specifies the element type of arr@lgms, and return and
parameter types of the member routines.

e Integer parametelN, denotes the maximum stack size.

e Unlike template routines, type cannot be inferred by coerdkcause type
IS created at declaration before any member calls.

CS 246 332

Stack<> si; /l stack of int, 10

si.push(3); /Il si:3

si.push(4); Il si:34

cout << si.top() << endl; Il 4

Int 1 = si.pop(); I 4,si:3
Stack<double > sd; // stack of double, 10
sd.push(5.1); /l sd : 5.1

sd.push(6.2); /l sd : 5.1 6.2

cout << sd << endl; /[l 5.1 6.2

double d = sd.pop(); /ld:6.2 sd:5.1
Stack<Stack<int>,20> ssi; /[stack of (stack of int, 10), 20
ssi.push(si); Il ssi: (3 4)

ssi.push(si); /Il ssi: (3 4)(34)
ssi.push(si); Il'ssi:(34)(34) (34
cout << ssi << end!: I/ 34 34 34

si = ssi.pop(); Il'si .34, ssi:(34)(34)

Why doescout << ssi << endl have 2 spaces between the stacks?
e Specified type must supply all operations used within theptata type.

e There must be a space between the two ending chevrons-as parsed as
operator>> .

CS 246 333

template <typename T> struct Foo { ... };
Foo<Stack<int>> foo; // syntax error (fixed C++11)
Foo<Stack<int> > foo; // space between chevrons

e Compiler requires a template definition for each usage solbtie
Interface and implementation of a template must be inrefile,
precluding some forms of encapsulation and separate coraoan.

2.26.1 Standard Library

e C+ Standard Library is a collection of (template) classesrautines
providing: 1/O, strings, data structures, and algorithsmting/searching).

e Data structures are calledntainers: vector, map, list (stack, queue,
deque).

¢ In general, nodes of a data structure are either in a comtarminted-to
from the container.

CS 246 334

containen node| node node nodee® ® °

container | | | | © oo

T

node | node | nodel nodee ¢ e

e TO copy a node into a container requires its type have a defadlor copy
constructor so instances can be created without constraiaments.

e Standard library containers use copying- node type must have default
constructor.

¢ All containers are dynamic sized so nodes are allocateceindiap.

e TO provide encapsulation, containers use a nagtealor typeto traverse
nodes.

o Knowledge about container implementation is completetiglan.
e Iterator capabilities often depend on kind of container:

o singly-linked list has unidirectional traversal
o doubly-linked list has bidirectional traversal

CS 246 335
o hashing list has random traversal

e Iterator operator++” moves forward to the next node, ungibstthe end of
the container.

e For bidirectional iterators, operator-” moves in the reverse direction to

++",

2.26.1.1 \ector

e vector has random access, length, subscript checkit)gdnd assignment
(like Java array).

CS 246

336

std::vector<T>

vector() create empty vector
vector(int N) create vector with N empty elements
int size() vector size

bool empty()
T &operator [](int i)
T &at(int 1)

size() ==

access ith element, NO subscript checki

access ith element, subscript checking

—

vector &operator =(const vector &)
void push_back(const T &x)

void pop_back()

void resize(int n)

void clear()

vector assignment

add x after last element

remove last element

add or erase elements at end so size() :
erase all elements

-~ push—
__ .= pop

0O 1 2

3 4

e vector IS alternative to C/C+ arrays.

CS 246 337

#include <vector>

int 1, elem;
vector<int> v; I/ think: int v[O]
for (;;) { /I create/assign vector
cin >> elem;
If (cin.fail()) break;
v.push_back(elem); // add elem to vector
}
vector<int> c; /[think: int c[O]
C =V, /[array assignment
for (i=csize()- 1;0<=1i;i-=1){
cout << c.at(i) << " "; /I subscript checking
}
cout << endl;
v.clear(); I/l remove ALL elements

¢ \Vector declaratiommay specify an initial size, e.gvector<int> v(size), like
a dimension.

e To reduce dynamic allocation, it is more efficient to dimenswhen the
size is known.

CS 246 338

Int size;
cin >> size; /I read dimension
vector<int> v(size); Il think int v[size]

e Matrix declaration is a vector of vectors:

vector< vector<int> > m;
e Again, it is more efficient to dimension, when size is known.

#include <vector>
vector< vector<int> > m(5, vector<int>(4)); —=0[123
for (int r=0;r<m.size);r +=1){ 111544

for (int ¢ =0; ¢ < mjr].size(); c += 1) {

mlr][c] = r+c; /[or m.at(r).at(c) +—=2(3 45

} 3456
for (int r=0;r<msize);r +=1){

for (int ¢ =0; ¢c <m[r].size(); c += 1) { T4/56/7

cout << mJr][c] << 7, ;

}

cout << endl;

}

e Optional second argument is initialization value for ealdment, i.e., 5

CS 246 339
rows of vectors each initialized to a vector of 4 integersahzed to zero.

¢ All loop bounds use dynamic size of row or column (columns rnay
different length).

¢ Alternatively, each row is dynamically dimensioned to achesize, e.g.,
triangular matrix.

vector< vector<int> > m(5); // 5 empty rows

for (int r=0;r<m.size();r+=1){ - 0
m[r].resize(r + 1); // different length 1|2
for (int ¢ =0; ¢c <mjr]l.size(); c += 1) { ___,2 34
m[r][c] = r+c; /[or m.at(r).at(c) -
13(4/96
} 1 -4l56/78

e Iterator allows traversal in insertion order or random orde

CS 246 340

std::vector<T>::iterator

iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last elemet
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first elem
iterator insert(iterator posn, const T &) |insert X before posn
iterator erase(iterator posn) erase element at posn
++, - -, +, +=, -, - = (insertion / random orderjorward/backward operations

begin() end()

l ++ — - -- l
¢ ¢
o 1 2 3 4
rend() - —*= -— *t rbegin()

e Iterator’s value is a pointer to its current vector elementlereference to
access element.

CS 246 341

vector<int> v(3);

vector<int >::iterator it;

v[0] = 2; Il initialize first element

it = v.begin(); /[intialize iterator to first element
cout << V[0] << " " << xv.begin() << " " << «it << end;

o If erase andinsert took subscript argument, no iterator necessary!
e Use iterator like subscript by adding/subtracting frbegin/end.

v.erase(v.begin()); /| erase v[0], first
v.erase(v.end() - 1); /[erase V[N - 1], last (why “- 1"?)
v.erase(v.begin + 3); /I erase Vv[3]

e Insert or erase during iteration using an iterator causesifare.

CS 246 342

vector<int> v;
for (Int 1=0;1<5;1+=1)/ create

v.push_back(2 =1); /l values: O, 2, 4, 6, 8
v.erase(v.begin() + 3); I/l remove V[3] : 6
Int I; // find position of value 4 using subscript
for (1I=0;,1<5&& V[i]!=4;,i+=1);
v.insert(v.begin() + i, 33); /Il Insert 33 before value 4

Il print reverse order using iterator (versus subscript)

vector<int >::reverse_.iterator r;

for (r = v.rbegin(); r !'= v.rend(); r ++) // ++ move towards rend
cout << «r << endl; /l values: 8, 4, 33, 2, 0

2.26.1.2 Map

e map (dictionary) has random access, sorted, unigue-key awrttaf pairs
(Key, Val).

CS 246 343
std::map<Key,Val> / std::pair<const Key,Val>
map() create empty map
int size() map size
bool empty() size() ==

Val &operator [](const Key &k)
Int count(Key key)

access pair with Key k
0 = no key, 1= key (unique keys

N’

map &operator =(const map &)

map assignment

insert(pair<const Key,Val>(k, v))|insert pair
erase(Key k) erase key k
void clear() erase all pairs
pair
first second
blue 2
keys/9€€N | 1 | values
red 0

CS 246

#include <map>

map<string, int> m, c;

m[' green”] = 1;
m[" bl ue"] = 2;
m[red"];

m[green’] = 5;

344

Il Key => string, Val => int
/| create, set to 1

/| create, set to 2

/| create, set to O for int

/I overwrite 1 with 5

cout << m[' green”] << endl; // print 5

C=m,

// map assignment

m.insert(pair<string, int>("yel low', 3)); // m[“yellow”] = 3

if (m.count("bl ack”))

m.erase(" bl ue");

/] check for key “black”
/[erase pair(“blue”, 2)

e First subscript for key creates an entry and initializes défault or

specified value.

e Iterator can search and return values in key order.

CS 246 345

std::map<T>::iterator / std::map<T>::reverse_iterator

iterator begin() iterator pointing to first pair
iterator end() iterator pointingAFTER last pair
iterator rbegin() iterator pointing to last pair
iterator rend() iterator pointingBEFORE first pair
iterator find(Key &k) find position of key k

iterator insert(iterator posn, const T &x)|insert x before posn

iterator erase(iterator posn) erase pair at posn

++, - - (sorted order) forward/backward operations

e Iterator returns a pointer togir, with fieldsfirst (key) andsecond (value).

CS 246 346

#include <map>
map<string,int>::iterator f = m.find("green”); // find key position

if (f!=m.end()) I/l found ?
cout << "found " << f- >first <<’ ' << f- >second << endl;
for (f = m.begin(); f = m.end(); f ++) /I increasing order

cout << f- >first << << f- >second << endl;

map<string,int >::reverse_iterator r;

for (r = m.rbegin(); r '= m.rend(); r ++) // decreasing order
cout << r->first <<’ ' << r->second << endl;
m.clear(); /l remove ALL pairs

2.26.1.3 List

e In certain cases, it is more efficient to use a single (staekig/deque) or
double (list) linked-list container than random-accessamer.

e Examinelist (arbitrary removal)stack, queue, deque are similar (restricted
Insertion/removal).

\v

CS 246
std::list<T>
list() create empty list
list(int n) create list with n default node
int size() list size
bool empty() size() ==
list &operator =(const list &) |list assignment
T front() first node
T back() last node

void push_front(const T &x)
void push_back(const T &x)
void pop_front()
void pop_back()

add x before first node
add x after last node
remove first node
remove last node

erase all nodes

e Iterator returns a pointer to a node.

void clear()
node
=— pushr - - | PR
pop — :_ . _:—> L
front

- -~ 7 push—
— —»ll____:<— pop
back

347

CS 246 348

std::list<T>::iterator / std::list<T>::reverse_.iterator

iterator begin() iterator pointing to first node
iterator end() iterator pointingAFTER last node
iterator rbegin() iterator pointing to last node
iterator rend() iterator pointingBEFORE first node
iterator insert(iterator posn, const T &x)|Insert x before posn

iterator erase(iterator posn) erase node at posn

++, - - (Insertion order) forward/backward operations

CS 246 349

#include <list>
struct Node {
char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

I

list<Node> dI; /I doubly linked list

for (int 1=0;1<10;1+=1){ /I create list nodes
dl.push_back(Node(" a’ +i, i, i+0.5)); // push node on end of list

}

list<Node>::iterator f;
for (f = dl.begin(); f != dl.end(); f ++) { // forward order

cout << "C:" << (xf).c << " 1" << f->i << " A" << f->d << end];
}
while (0 < dl.size()) { /I destroy list nodes

dl.erase(dl.begin()); /I remove first node

} /I same as dl.clear()

2.26.1.4 for _each

e Template routindor_each provides an alternate mechanism to iterate
through a container.

e An action routine is called for each node in the containesipgsthe node

CS 246

to the routine for processing (Lisgpply).

#include
#include
#include
#include

<jostream>

<list>

<vector>

<algorithm> /[for_each

using namespace std;
void print(inti) {cout<<i<<"™";} // print node
Int main() {

list< int > int_list;

vector< int > int_vec;

for (int 1 =0;1<10;i1+=1){ /I create lists

}

int_list.push_back(i);
int_vec.push_back(i);

for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}

e Type of the action routine iid rtn(T), whereT is the type of the
container node.

e E.g.,print has annt parameter matching the container node-type.
e More complex actions are possible using a functor.

350

CS 246 351

e E.g., an action to print on a specified stream must store tBarstand have
anoperator () allowing the object to behave like a function:

struct Print {

ostream &stream; /[stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i<<" ";}
I3
int main() {
list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));
}

e EXpressiorPrint(cout) creates a constaRtint object, andor_each calls
operator ()(Node) in the object.

2.2/ Namespace

e CH namespacas used to organize programs and libraries composed of
multiple types and declarations deal with naming conflicts

CS 246 352
e E.g., namespacsd contains all the 1/O declarations and container types.
e Names in a namespace form a declaration region, like theesaioplock.

e Analogy in Java is a package, m#mespace does NOT provide
abstraction/encapsulation (usécc files).

e C+ allows multiple namespaces to be defined in a file, as welhaong
files (unlike Java packages).

e Types and declarations do not have to be added consecutively

Java source files C+ source file
package Foo; // file namespace Foo {
public class X ... // export one type Il types / declarations
Il local types / declarations }

_ namespace Foo {
package Foo; // file /I more types / declarations
public enum Y ... // export one type }

/I local types / declarations namespace Bar {
oackage Bar: // file /Il types / declarations
public class Z ... /] export one type J

/Il local types / declarations

e Contents of a namespace are accessed using full-qualifredsa

CS 246 393
Java CH
Foo.T t = new Fo0o0.T(); | Foo::T st = new Foo::T();

e Or by importing individual items or importing all of the naspace content.

Java CH
Import Foo.T; | using Foo::T; /I declaration
Import Foo.x; |using namespace Foo; // directive

e using declaratiorunconditionally introduces an alias (likepedef) into
the current scope for specified entity in namespace.
o May appear in any scope.
o If name already exists in current scopeing fails.
namespace Foo {int |1 = 0; }
Int 1 = 1;
using Foo::i; /I i exists in scope, conflict failure

e using directiveconditionally introduces aliases to current scope for all
entities in namespace.

o If name already exists in current scope, alias is ignoragaihe already
exists fromusing directive in current scopeasing fails.

CS 246 354

namespace Foo {int I = 0; }
namespace Bar {int i =1; }
{
Int 1 = 2;
using namespace Foo; // | exists in scope, alias ignored
}
L
using namespace Foo;
using namespace Bar; // i exists from using directive
| = 0; /I conflict failure, ambiguous reference to ' 1’
}

o May appear in namespace and block scope, but not class scope.

CS 246 355

namespace Foo { I/l start namespace
enum Colour { R, G, B };
int 1 = 3;
}
namespace Foo { /[add more
class C {int i; };
int | = 4;
namespace Bar { /[start nested namespace
typedef short int shrint;
char j="a’;
int C();
}
}
int | = 0; /Il external
int main() {
int | = 3; Il local
using namespace Foo; // conditional import: Colour, i, C, Bar (not)
Colour c; // Foo::Colour
cout << i << end]; I/l Foo::i
C Xx; /Il Foo::C
cout << :ij << endl; /I external
cout << j << endl; // local

cout << Foo:;j << << Bar::j << endl; // qualification

using namespace Bar; // conditional import: shrint, C() (not j)

shrint s = 4; /[Bar::shrint

using Foo::j; // disallowed : unconditional import

C(); // disallowed : ambiguous “class C” or “int C()”

CS 246 356

e Never put ausing declaration/directive in a header filé) (pollute local
namespace) or befotinclude (can affect names in header file).

3 Tools

3.1 C/C+H Composition
e C+ Is composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edigsprbgranbefore
compilation .

2. The template (generic) language adds new types and esdtiming
compilation .

3. The C programming language specifying basic declarstama control
flow to be executedfter compilation.

4. The C+H programming language specifying advanced demas and
control flow to be executedfter compilation.

e A programmer uses the four programming languages as fallows

user edits— preprocessor edits— templates expand— compilation
(— linking/loading— execution)

e C is composed of languages 1 & 3.
e The compiler interface controls all of these steps.

357

CS 246 358

3.2 Compilation

C/C++ header files C/C++ source files
— =

(preprocessor)cpp
I -E, -D, -
e

preprocessed source cof
(translator) cclplus

| - -W, -v, -g, -S, -0O1/2/3, -c

assembly code |

(assembler)as

object code
other object-cod ¢ : } -0, -, -L
“flee ant libraries ~ !d (linker)

Ja.out object

CS 246 359

e Compilation is the process of translating a program from human to
machine readable form.

e The translation is performed by a tool calledamnpiler.

e Compilation is subdivided into multiple steps, using a nemdi tools.

e Often a number of options to control the behaviour of each. ste

e Option are presented fgr+, but other compilers have similar options.
e General format:

g++ option- list x.cc *.0 ...

3.2.1 Preprocessor

e Preprocessor (cpp) takes a C+ source file, removes comna@ntexpands
#include , #define , and#if directives.

e Options:

o - E run only the preprocessor step and writes the preprocesfoutao
standard out.

$ g++ -E «.cC ...
... much output from the preprocessor

CS 246 360

o - D define and optionally initialize preprocessor variablesfithe
compilation command:

$ g++ - DDEBUG=2 - DASSN ... %.CcC %.0 ...

same as putting the followingdefine s in a program without changing
the program:

#define DEBUG 2
#define ASSN

e -Idirectory search directory for include files;

o files within the directory can now be referenced by relatiaee using
#include <file- name>.

3.2.2 Translator

e Translator takes a preprocessed file and converts the Gitidge into
assembly language for the target machine.

e Options:
o - Wkind generate warning message for thksttd” of situation.

x - Wall print ALL warning messages.
x - Werror make warnings into errors so program does not compile.

CS 246 361
o - v show each compilation step and its details:

$ g++ -V x.CC *.0 ...
... much output from each compilation step

E.g., system include-directories wheg looks for system includes.

#include <...> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/1486- linux
/usr/include/c++/3.3/backward
/usr/local/include

{fusr/lib/gcc- lib/i486- linux/3.3.5/include
/usr/include

o - g add symbol-table information to object file for debugger
o - S compile source file, writing assemble code to $ibairce-file.s

o - 01/2/3 optimize translation to different levels, where ebxsiel takes
more compilation time and possibly more space in executable

o - ¢ compile/assemble source file but do not link, writing obemde to
file source-file.o

CS 246 362
3.2.3 Assembler

e Assembler (as) takes an assembly language file and converishject
code (machine language).

3.2.4 Linker

e Linker (Id) takes the implicito file from translated source and expliait
files from the command line, and combines them into a new bbjec
executable file.

e Linking options:

o - Ldirectory is a directory containing library files of precompiled code.
o - llibrary search in library directories for givdrbrary.
o - 0 gives the file name where the combined object/ executablaceg.

x If no name Is specified, default nara@ut is used.

e Look in library directory 7lib” for math library “m” containing precompiled
“sin” routine used in fyprog.cc” naming executable progranedic”.

$ gcc myprog.cc - L/lib -Im -0 calc

CS 246 363
3.3 Compiling Complex Programs

e As number of TUs grow, so do the references to type/variables
(dependencies) among TUS.

e When one TU is changed, other TUs that depend on it must cheamjbe
recompiled.

e [For a large numbers of TUs, the dependencies turn into a nigkdre with
respect to recompilation.

3.3.1 Dependencies

e A dependenceoccurs when a change in one location (entity) requires a
change in another.

e Dependencies can be:

o loosely coupled, e.g., changing source code may requireraspmnding
change in user documentation, or

o tightly coupled, changing source code may require recangpdf some
or all of the components that compose a program.

e Dependencies in C/CH+ occur as follows:
o executable depends anmfiles (linking)

CS 246 364

o .0 files depend oncC files (compiling)
o .C files depend orh files (including)
source code dependence graph
X.h #include "Y.
X.C #include " X.

h X.0—X.C—Xx.h

h
y.h #include "z.h" aouty Y0 =yC—=yh
y.C #include h

h

_ z0o—>z2.C—>1zh
z.h #include

z:C #include "z.h"

e Cycles in#include dependences are broken#fndef checks (see
page 191).

e The executablea(out) is generated by compilation commands:

$g++ -c z.C # generates z.0
$g++ -cy.C # generates y.0
$ g++ -c x.C # generates X.o

$ g++ X.0 y.0 Z.0 # generates a.out
e However, it is inefficient and defeats the point of separatamlation to

CS 246 365
recompile all program components after a change.
e If a change is made tph, what is the minimum recompilation necessary?

(all!)

e Doesany change tg.h require these recompilations?

e Often no mechanism to know the kind of change made within aditg,
changing a comment, type, variable.

e Hence, “change” may be coarse grain, i.e., basedmythange to a file.
e One way to denote file change is witlne stamps.

e UNIX stores in the directory the time a file is last changedhwecond
precision.

e Using time to denote change means the dependency graphngpartd
ordering where the root has the newest (or equal) time ani@#he the
oldest (or equal) time.

CS 246 366

1:00 12:30 12:00 /3:00 2:30 2:00
X.0—™X.C—Xx.h X.0—™X.C—Xx.h

1:01/ 1:00 12:35 12:4 3:01/ 1:00 12:35 12:4
aout\ YO TYCTTyh > aouts YO TyCyh >

1:00 12:30 12: 1:00 12:30 12:
z.0—>z2.C—>1z.h Zz.0—>z.C—>2z.h

o Filesx.o, y.0 andz.o created at 1:00 from compilation of files created
beforel:00.

o File a.out created at 1:01 from link of.o, y.0o andz.o.

o Changes are subsequently made.boandx.C at 2:00 and 2:30.

o Only filesx.o anda.out need to be recreated at 3:00 and 3:01. (Why?)

3.3.2 Make

e Makeis a system command that takes a dependence graph and uses file
change-times to trigger rules that bring the dependengehgrpa to date.

e A make dependence-graph expresses a relationship between apandia
set of sources.

CS 246 367

e make does not understand relationships among sources, one thatists
at the source-code level and is crucial.

e Hence, make dependence-graph loses some of the relaper{giashed
lines):

e E.g., source.C depends on sourceh butx.C is not a product ok.h like
X.0 IS a product ok.C andx.h.

e Two most common UNIX makes are: make and gmake (on Limake IS
gmake).

e Like shells, there is minimal syntax and semanticafiake, which is
mostly portable across systems.

CS 246 368

e Most common non-portable features are specifying depemneieand
Implicit rules.

¢ A basic makefile consists of string variables with initialibn, and a list of
targets and rules.

e This file can have any name, hutke implicitly looks for a file called
makefile or Makefile if no file name is specified.

e Each target has a list of dependencies, and possibly a setrohands
specifying how to re-establish the target.

variable = value # variable

target . dependencyl dependency?2 ... # target / dependencies
commandl # rules
command?2

e Commands must be indented by one tab character.

e make IS invoked with a target, which is the root or subnode of a depace
graph.

e make builds the dependency graph and decorates the edges wéh tim
stamps for the specified files.

CS 246 369

e If any of the dependency files (leafs) is newer than the tdigebr if the
target file does not exist, the commands are executed by éleslipdate
the target (generating a new product).

e Makefile for previous dependencies:

a.out : X.0 y.0 z.0
g++ X.0 y.0 2.0 - 0 a.out

X.0 : X.C x.n y.h z.h

g++ -g -Wall -c x.C
y.0 : y.C y.h z.h

g++ -g -Wall -c y.C
z.0 : z.C z.hy.h

g++ -g -Wall -c z.C

e Check dependency relationship (assume source files jusieche
$ make - n - f Makefile a.out
g++ -g -Wall -c x.C
g++ -g -Wall -c y.C

g++ -g -Wall -c z.C
g++ X.0 y.0 Z.0 -0 a.out

All necessary commands are triggered to bring tasageftt up to date.
o - n builds and checks the dependencies, showing rules to lgetad

CS 246 370

(leave off to execute rules)
o - f Makefile is the dependency file (leave off if namdim]akefile)
o a.out target name to be updated (leave off if first target)

e Generalize and eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS =-g -Wall -c # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJIECTS} - 0 ${EXEC}
X.0 : X.C x.n y.h z.h # targets / dependencies / commands

FH{CXX} ${CXXFLAGS} x.C
y.0 : y.C y.h z.h

FH{CXX} H{CXXFLAGS} y.C
z.0 : z.C z.hy.h

FH{CXX} H{CXXFLAGS} z.C

e Eliminate common rules:

o make can deduce simple rules when dependency files have specific
suffixes.

CS 246 371
o E.g., given target with dependencies:

X.0 : X.C x.n y.h z.h
make deduces the following rule:

${CXX} ${CXXFLAGS} -c -0 x.0 # special variable names
where- o x.o is redundant as it is implied byc.
o This rule use variables{CXX} and${CXXFLAGS} for generalization.
o Therefore, all rules fox.o, y.o andz.o can be removed.

CXX = g++ # compiler
CXXFLAGS = -g - Wall # compiler flags, remove -c
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJIECTS} # link step

${CXX} ${OBJIECTS} - 0 ${EXEC}
X.0 : X.C x.n y.h z.h # targets / dependencies

y.0 : y.C y.h z.h
z.0:2.Czhy.h

e Because dependencies are extremely complex in large pnggra
programmers seldom construct them correctly or maintaamth

CS 246 372

e Without complete and update dependenciesnake is useless.
e Automate targets and dependencies:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -MMD # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
DEPENDS = ${OBJECTS:.0=.d} # substitute “.0” with “.d”
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} - 0 ${EXEC}
-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)
.PHONY : clean # not a file name
clean : # remove files that can be regenerated

rm - rf ${DEPENDS} ${OBJECTS} ${EXEC} # alternative =.d %.0
o Preprocessor traverses all include files, so it knows alicsntile
dependencies.

o g++ flag- MMD writes out a dependency graph for user source-files to fil
source-file.d

CS 246 373

file contents
X.d | Xx.0: X.C x.h y.h z.h
y.d |y.0o: y.C y.h z.h
z.d|z.0: z.C z.h y.h

o g++ flag - MD generates a dependency graph for user/system source-fil

o - include reads thed files containing dependencies.

o .PHONY indicates a target that is not a file name and never creatsd it
recipe to be executed every time the target is specified.
x A phony target avoids a conflict with a file of the same name.

o Phony targetlean removes product files that can be rebuilt (save space

$ make clean # remove all products (don’ t create “clean”)

e Hence, it is possible to have a univers&kefile for a single or multiple
programs.

3.4 Source-Code Management

e As a program develops/matures, it changes in many ways.

o UNIX files do not support the temporal development of a progra
(version control), I.e., history of program over time.

CS 246 374

o Access to older versions of a program is useful, e.g., bgabut of
changes because of design problems.

e Program development is often performed by multiple dev@isgach
making independent changes.
o Sharing using files can damage file content for simultaneaussy
o Merging changes from different developers is tricky anceticonsuming.

e To solve these problemssaurce-code management-systers used to
provide versioning and control cooperative work.

3.4.1 SVN

e Subversion(SVN 1.6) is a source-code management-system using the
copy-modify-merge model
o master copy of alproject files kept in arepository,
o multiple versions of the project files managed in the repogit
o developersheckoutaworking copy of the project for modification,
o developersheckin changes from working copy with helpful integration
usingtext merging.
SVN works on file content not file time-stamps.

CS 246 375
working copies repository

\/2
rogramm <—>CheCkOUt V;/ :
Prog = checkin

project

oaramm V2 checkout
Prog < checkin V1
\/2

V3

rojec
oaramm V3 checkout project
Prog = checkin

3.4.2 Repository
e The repository Is a directory containing multiple projects

CS 246 376

courses repository
cs246 meta-project
assnl project
x.h, x.C, ... project files
assn2 project

. project files
more meta-projects / projects

e svnadmin create command creates and initializes a repository.

$ svnadmin create courses

e svn mkdir command creates subdirectories for meta-projects andqisoj

$ svn mkdir file:///u/jffdoe/courses/cs246 - m " create directory cs246 "
Committed revision 1.
$ svn mkdir file:///u/jfdoe/courses/cs246/assnl - m " create subdirectory

Committed revision 2.

o files in repository are designated using URL, so must uselatieso
pathname

o - m (message) flag documents repository change.

o If no - m (message) flag specified, prompts for documentation (using a
editor if shell environment variabIEDITOR set).

CS 246 377
e svn Is command lists directories.

$ svn Is file:///u/jffdoe/courses/cs246
assnl/
$ svn Is file:///u/jffdoe/courses/cs246/assnl

e If project directoryassnl already exists, it can be added directly to the
repository.

e svn import command copies an unversioned directory of files into a
repository.

$ svn import assnl file:///u/jfdoe/courses/cs246/assnl

Adding assnl/z.h
Adding assnl/x.C
Adding assnl/y.C
Adding assnl/z.C
Adding assnl/Makefile
Adding assnl/x.h
Adding assnl/y.h

Committed revision 2.

CS 246 378

$ svn Is file:///u/jffdoe/courses/cs246/assnl
Makefile

X.C

X.h

y.C

y.h
z.C

Z.h

e For students working together, the shared repository neigtdde
accessible in the file system.

$ chgrp - R ¢s246_75 courses # set group on directory and subfiles
$ chmod - R g+rwx courses # allow group members access to ALL file

and for the path to the repository.

e Group names246_75 Is acquired on a per course basis for each team of
students.

3.4.3 Checking Out

e svn checkout command extracts a working copy of a project from the
repository.

CS 246 379

$ svn checkout file:///u/jffdoe/courses/cs246/assnl
Checked out revision 2.

$ Is - AF assnl

.svn/

e For first checkout, directorgssnl is created in the current directory (unless
It already exists).

e Subdirectory.svn contains administrative information for SVN antlst
not be modified

¢ \Working copy is then modified before being merged back ingo th
repository.

e Other developers do not see each others working copy, agdeal
modifications when committed.

e To create a working-copy off-campus, ush URL.:

$ svn checkout svn+ssh://ffdoe@student.cs.uwaterloo.ca/u/jfdoe/courses
(Replace file URL in subsequent commands wih URL.)

3.4.4 Adding
e Introduce files into project directomlssnl.

CS 246 380

$ cd assnil

$... # create files: Makefile x.C x.h y.C y.h z.h z.C
$Is - AF

.svn/ Makefile x.C x.h y.C y.h z.C z.h

e svn add commandschedulesaddition of files (in current directory) into the
repository.

$ svn add Makefile x.C x.h y.C y.h z.h z.C
Makefile

x.C

X.h

y.C

y.h
z.h

z.C
Addition only occurs on next commit.

e Forgettingsvn add for new files is a common mistake.
e Add only project source-files into repository.
e Product files, e.gx.0, +.d, a.out, do not need to be versioned.

>>>>>> P

CS 246 381
3.4.5 Checking In

e svn commit command updates the repository with the changes in working
copy.

$ svn commit - m "initial project files

Adding Makefile
Adding X.C
Adding X.h
Adding y.C
Adding y.h
Adding z.C
Adding z.h

Transmitting file data
Committed revision 3.

e if N0 - m (message) flag specified, prompts for commit documentation.

CS 246 382

$ svn Is file:///u/jffdoe/courses/cs246/assnl
Makefile

X.C

X.h

y.C

y.h
z.C

z.h
e Always make sure your code compiles and runs before comnmttit is

unfair to pollute a project with bugs.
3.4.6 Modifying

e Editted files in working copy are implicitlgcheduledor update on next
commit.

$viy.hyC

e svn rm command removes files from working copy awhedulegemoval
of files from the repository.

CS 246 383

$Is - AF

.svn/ Makefile x.C x.h y.C y.h z.C z.h
$svnrm z.h z.C

D Z.h
D z.C
$Is - AF

.svn/ Makefile x.C x.h y.C y.h

e svn status command displays changes between working copy and
repository.

$ svn status

D z.h
M y.C
D z.C
M y.h

Filesy.h / y.C have local modificationsM”, andz.h / z.C are deletedD”.
e Possible to undo scheduled changes by reverting to files fepsitory.

e svn revert command copies unchanged files from repository to working
copy.

CS 246 384

$ svn revert y.C z.h

Reverted ' y.C’

Reverted ' z.h’

$Is - AF

.svn/ Makefile x.C x.h y.C y.h z.h

e Commit edits and removals.

$ svn commit - m " changes to y.h and remove z.C
Sending y.h

Deleting z.C

Transmitting file data .

Committed revision 4.

$ svn Is file:///u/jffdoe/courses/cs246/assnl

Makefile

e Files in the repository can be renamed and copied.
¢ svn mv command renames file in working copy asthedulegenaming in

CS 246 385
the repository.

$ svn mv x.h w.h

A w.h
D X.h
$Is - AF

.svn/ Makefile w.h x.C y.C y.h

e svn cp command copies file in working copy asdhedulesopying in the
repository:

$ svn cp w.h k.h

A k.h

$Is - AF

.svn/ Makefile k.h w.h x.C y.C y.h

e Commit renaming and copying.

CS 246 386

$ svn commit - m " renaming and copying

Adding K.h
Adding w.h
Deleting X.h

Committed revision 5.

$ svn Is file:///u/jfdoe/courses/cs246/assnl
Makefile

K.h

w.h

x.C

y.C

y.h

3.4.7 Revision Number

e Each commit receives a revision number (currently 5).

e Information in older versions is accessible using suéX on URL.
e E.g., print filez.C, which last existed in revision 3.

e svn cat command prints specified file from the repository.

$ svn cat file:///u/jfdoe/courses/cs246/assnl/z.C @3
#include " z.h"

CS 246 387
e Copy deleted file.C from repository into working copy and modify.

$ svn copy file:///u/jfdoe/courses/cs246/assnl/z.C @3 z.C
A z.C

$Is - AF

svn/ Makefile k.h wh x.C y.C y.h z.C z.nh
$... # change z.C

$ svn commit - m " bring back z.C and modify
Adding z.C

Transmitting file data .

Committed revision 6.

$ svn cat file:///u/jffdoe/courses/cs246/assnl/z.C @6

#include " z.h"
new text

3.4.8 Updating

e Synchronize working copy with commits in the repositorynfrother
developers.

CS 246 388

jfdoe kdsmith
modify x.C | modify x.C & y.C
removek.h
addt.C

e Assumekdsmith has committed changes.
e jfdoe attempts to committed changes.

$ svn commit - m " modify x.C "

Sending X.C

svn: Commit failed (details follow):

svn: File ' /cs246/assn1/x.C’ is out of date

e jfdoe must resolve differences between their working copy anatineent
revision in the repository.

e svn update command attempts to update working copy from most recent
revision.

CS 246 389

$ svn update

D k.h file k.h deleted
Uu vy.C file y.C updated without conflicts
A tC file t.C added

Conflict discovered in ' x.C’ .
Select: (p) postpone, (df) diff- full, (e) edit,
(mc) mine- conflict, (tc) theirs- conflict,
(mf) mine- full, (tf) theirs- full,
(s) show all options: df
- - - .svn/text- base/x.C.svn- base Sun May 2 09:54:08 2010
+++ .svn/tmp/x.C.tmp Sun May 2 11:28:42 2010
@@ -1+16 @@
#include " x.h"
+<<<<<<< mine

+jfdoe new text

+kdsmith new text
+>>>>>>> 17
Select: (p) postpone, (df) diff- full, (e) edit, (r) resolved,
(mc) mine- conflict, (tc) theirs- conflict,
(mf) mine- full, (tf) theirs- full,
(s) show all options: tc
G xC file x.C merGed with kdsmith version
Updated to revision 7.

CS 246 390

o (p) postpone : mark conflict to be resolved later

o (df) diff-full : show changes to merge file

o (e) edit : change merged file in an editor

o (r) resolved : after editing version

o (mc) mine-conflict : accept my version for conflicts

o (tc) theirs-conflict : accept their version for conflicts
o (mf) mine-full : accept my file (no conflicts resolved)
o (tf) theirs-full : accept their file (no conflicts resolved)

e Merge algorithm is generally very good if changes do not layer
e Overlapping changes result in a conflict, which must be wesbl
e If unsure about how to deal with a conflict, it can be postpdioeaach file.

CS 246 391

$ svn update

D k.h file k.h deleted
Uu vy.C file y.C updated without conflicts
A tC file t.C added

Conflict discovered in ' x.C’ .

Select: (p) postpone, (df) diff- full, (e) edit,
(mc) mine- conflict, (tc) theirs- conflict,
(mf) mine- full, (tf) theirs- full,
(s) show all options: p

C xC file x.C conflict

Updated to revision 7.

Summary of conflicts:

Text conflicts: 1

¢ \Working copy now contains the following files:

CS 246 392

X.C xX.C.mine

#include "X.h" |#include "Xx.h"
<<<<<<< .mine |jfdoe new text
jfdoe new text

kdsmith new text
>>S>S>S>>S> 17

X.C.r3 X.C.r7

#include "Xx.h" |#include "Xx.h"
kdsmith new text

o X.C : with conflicts

o x.C.mine : jfdoe version of.C

o X.C.r3 : previous jfdoe version of.C

o X.C.r7 : kdsmith version ok.C in repository

e No further commits allowed until conflict is resolved.

e svn resolve - - accept ARG command resolves conflict with version
specified byARG, for ARG options:

o base x.C.r3 previous version in repository
o working : x.C current version in my working copyhéeds modificatioh

CS 246 393

o mine-conflict :x.C.mine accept my version for conflicts
o theirs-conflict :x.C.r7 accept their version for conflicts
o mine-full : x.C.mine accept my file (no conflicts resolved)
o theirs-full : x.C.r7 accept their file (no conflicts resolved)

$ svn resolve - - accept theirs - conflict x.C
Resolved conflicted state of ' X. C

e Removes 3 conflict filex.C.mine, x.C.r3, x.C.r7, and setx.C to theARG
version.

$ svn commit -m "nodi fied x. C'
Sending X.C

Transmitting file data .

Committed revision 8.

3.5 Debugger

¢ An interactive, symboliclebuggereffectively allows debug print
statements to be added and removed to/from a program dyakynic

e Do not rely solely on a debugger to debug a program.

CS 246 394

e Some systems do not have a debugger or the debugger may roftowor
certain kinds of problems.

e A good programmer uses a combination of debug print statenaerl a
debugger when debugging a complex program.

e A debugger does not debug a program, it merely helps in thegig
process.

e Therefore, you must have some idea (hypothesis) about wkabing with
a program before starting to look.

3.5.1 GDB

e The two most common UNIX debuggers are: dbx and gdb.
e File test.cc contains:

CS 246 395

1 int r(int af]) {

2 int i = 100000000;

3 afi] += 1, /[really bad subscript error
4 return ali;

5 }

6 Int main() {

7 int a[10] = {0, 1 };

8 r(a);

o }

e Compile program using thgy flag to include names of variables and
routines for symbolic debugging:

$ g++ - g test.cc
e Start gdb:

$ gdb ./a.out
... gdb disclaimer
(gdb) <— gdb prompt

e Like a shell, gdb uses a command line to accept debugging amusm
e <Enter> without a command repeats the last command.
e r'un command begins execution of the program:

CS 246 396

(gdb) run

Starting program: /u/userid/cs246/a.out

Program received signal SIGSEGV, Segmentation fault.
0x00010618 Iin r (a=0xffbefa20) at test.cc:3

3 ali] += 1, /[really bad subscript error

o If there are no errors in a program, running in GDB Is the sase a
running in a shell.
o If there is an error, control returns to gdb to allow examorat

o If program is not compiled withg flag, only routine names given.
e backtrace command prints a stack trace of called routines.

(gdb) backtrace
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:8

o stack has 2 frameasain (#1) andr (#0) because error occurred in callrto

e print command prints variables accessible in the current roudibect, or
external area.

(gdb) print |
$1 = 100000000

CS 246 397
e Can print any C+ expression:

(gdb) print a

$2 = (int) Oxffbefa20
(gdb) p *a

$3 =0

(gdb) p a[1]

$4 =1

(gdb) p a[1]+1

$5 =2

e set variable command changes the value of a variable in the current mutin
object or external area.

(gdb) set variable i = 7
(gdb) p i
$6 =7
(gdb) set var a[0] = 3
(gdb) p al[0]
$7 =3
Change the values of variables while debugging to:

o Investigate how the program behaves with new values witremdampile
and restarting the program,

CS 246 398
o to make local corrections and then continue execution.

e frame [N] command moves theurrent stack frame to thenth routine call
on the stack.

(gdb) f O

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3

3 afi] += 1, // really bad subscript error
(gdb) f 1

#1 0x00010764 in main () at test.cc:8

8 r(a);

o If nis not present, prints the current frame
o Once moved to a new frame, it becomes the current frame.

o All subsequent commands apply to the current frame.
e TO trace program executionreakpoints are used.

e break command establishes a point in the program where execution
suspends and control returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 7.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

CS 246 399

o Set breakpoint using routine name or source-file:line-remmb
o Iinfo breakpoints command prints all breakpoints currently set.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00010710 in main at test.cc:7
2 breakpoint keep y 0x000106d8 in r(intx) at test.cc:3

e Run program again to get to the breakpoint:

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /u/userid/cs246/a.out

Breakpoint 1, main () at test.cc:7

7 int a[10] = { 0, 1 };
(gdb) p a[7]
$8 =0

e Once a breakpoint is reached, execution of the program caordaued In
several ways.

e Step [N] command executes the nexlines of the program and stops, so
control enters routine calls.

CS 246 400

(gdb) step

8 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 ali] += 1, /[really bad subscript error

(gdb) <Enter>

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 In r (a=0xffbefa20) at test.cc:3

3 afi] += 1, // really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

o If nis not present, 1 is assumed.
o If the next line Is a routine call, control enters the routamel stops at the
first line.

e Next [N] command executes the nexlines of the current routine and stops,
so routine calls are not entered (treated as a single statgme

CS 246 401
(gdb) run

Breakpoint 1, main () at test.cc:7

7 int a[10] ={ 0, 1 };

(gdb) next

8 r(a);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1, // really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x00010618 Iin r (a=0xffbefa20) at test.cc:3

3 afi] += 1, // really bad subscript error

e continue [n] command continues execution until the next breakpoint is
reached.

CS 246 402
(gdb) run

Breakpoint 1, main () at test.cc:7

7 int a[10] ={ 0, 1 };

(gdb) ¢

Breakpoint 2, r (a=0x7fffffffe7d0) at test.cc:3
3 afi] += 1, // really bad subscript error
(gdb) p |

$9 = 100000000

(gdb) set var 1 = 3

(gdb) c

Continuing.

Program exited normally.

e list command lists source code.

CS 246 403

(gdb) list
1 intr(intaf]) {

2 int i = 100000000;

3 afi] += 1, // really bad subscript error
4 return afij;

5 |}

6 int main() {

7 int a[10] = { 0, 1 };

8 r(a);

9 }

o With no argument, list code around current execution |locati
o with argument line number, list code around line number

e (uit command terminate gdb.

(gdb) run

i?;r.eakpoint 1, main () at test.cc:7
7 int a[10] ={ 0, 1 };

1: a[0] = 67568

(gdb) quit

The program is running. EXxit anyway? (y or n) y

4 Software Engineering

e Software Engineering(SE) Is the social process of designing, writing, and
maintaining computer programs.

e SE attempts to find good ways to help people understand armatiogev
software.

e However, what is good for people is not necessarily goodrifercomputer.

e Many SE approaches are counter productive in the develdpofien
high-performance software.

1. The computer does not execute the documentation!

o Documentation is unnecessary to the computer, and sigmifesaounts
of time are spent building it so it can be ignored (program ic@nts).

o Remember, th&uth is always in the code.

o However, without documentation, developers have diffjcdésigning
and understanding software.

2. Designing by anthropomorphizing the computer is seld@guoa
approach (desktops/graphical interfaces).

3. Compiler spends significant amounts of timm&loing SE design and
coding approaches to generate efficient programs.

404

CS 246 405

e It IS Important to know these differences to achieve a badostween
programs that are good for people and good for the computer.

4.1 Software Crisis

e Large software systems-(100,000 lines of code) require many people and
months to develop.

e These projects too often emerge late, over budget, and dear&twell.
e Today, hardware costs are low, and people costs are high.

e While commodity software is available, someone still hawiibe it.

e Since people produce softwase software cost is great.

e Coupled with a shortage of software personseproblems.

e Unfortunately, software is complex and precise, which neputime and
patience.

e Errors occur and cost money if not lives, e.g., Ariane 5, dbek5, Intel
Pentium division error, Mars Climate Orbiter, UK Child SappAgency,
etc.

CS 246 406
4.2 Software Development

e Techniques for program development for small, medium, amgel systems.
e Objectives:

o plan and schedule project (requirements documents, UMie-tines)
o produce reliable, flexible, efficient programs

o produce programs that are easily maintained

o reduce the cost of software

o reduce program failure

e E.g., a typical software project:

o estimate 12 months of work
o hire 3 people for 4 months
o make up milestones for the end of each month

e However, first milestone iIs reached after 2 months instedd of
e To finish on time, hire 2 more people, but:

o new people require training
o work must be redivided

This takes at least 1 month.

CS 246 407

e Now 2 months behind with 9 months of work to be done in 1 month by
people.

e TO get the project done:

o must reschedule
o trim project goals
e Often, adding manpower to a late software project makesait.la

e lllustrates the need for a methodology to aid in the develmof software
projects.

4.3 Development Processes
e There are different conceptual approaches for develomftg/are:

CS 246 408
Time
waterfall | | | | |
Requiremerlnsz@\nalysisI Design | Coding| Testingl; Debugging

iterative | | | | |
R F F F Fs Fg
RADCTD RADCTD RADCTD RADCTD RADCTD RADCTD
staged I I I I I _
Requirement&\nalysis Design Fy/; F3/4 Fs/6
CTD CTD CTD
agile | | | | | -
F1/3/4 Fo/3 Fi/34a Foas Fusre Fa/6
DC DCT RADCTD RADC RADCTD D

waterfall : break down project based on activities that flow (down strea
across a timeline.
o activities : (cycle of) Requirements, Analysis, Designd®g, Testing,
Debugging (RADCTD).
o timeline : assign time to accomplish each activity up to @coj

CS 246 409

completion time

iterative/spiral : break down project based on functionality and divide
functions across a timeline

o functions (F) : (cycle of) acquire/verify data, process data, generate
data reports

o timeline : assign time to perform software cycle on each tionaup to
project completion time

staged delivery. combination of waterfall and iterative

o start with waterfall for analysis/design, and finish witbrétive for
coding/testing

agile/lextreme: short, intense iterations focused largely on code (versus
documentation)

o often analysis and design are done iteratively
o often coding/testing done in pairs

e Pure waterfall is problematic because all coding/testommes at end-
major problems can appear near project deadline.

e Pure agile can leave a project with “just” working code, attéelor no
testing / documentation.

e Selecting a process depends on:

CS 246 410

o kind/size of system

o quality of system (mission critical?)
o hardware/software technology used
o kind/size of programming team

o working style of teams

o hature of completion risk

o consequences of failure

o culture of company

e Meta-processes specifying the effectiveness of processes

o Capability Maturity Model Integration (CMMI)
o International Organization for Standardization (ISO) @00

e Meta-requirements

o procedures cover key aspects of processes

o monitoring mechanisms

o adequate records

o checking for defects, with appropriate and correctiveoscti
o regularly reviewing processes and its quality

o facilitating continual improvement

CS 246 411
4.4 Software Methodology

e System Analysis (next year)

o Study the problem, the existing systems, the requiremdradgeasibility.

o Analysis Is a set of requirements describing the systemsputputs,
processing, and constraints.

e System Design

o Breakdown of requirements into modules, with their reladgimps and
data flows.

o Results in a description of the various modules required the data
Interrelating these.

e Implementation
o writing the program
e Testing & Debugging
o get it working
e Operation & Review
o was it what the customer wanted and worth the effort?
e Feedback

CS 246 412
o If possible, go back to the above steps and augment the pegewxeded.

4.4.1 System Design

e TWO basic strategies exist to systematically modularizgstem:

o top-down or functional decomposition
o bottom-up

e Both technigues have much in common and so examine only one.

4.4.2 Top-Down

e Start at highest level of abstraction and break down prolaeoncohesive
units, i.e., divide & conquer.

e Then refine each unit further generating more detail at eac$iah.

e Each subunit is divided until a level is reached where thé&sae
comprehensible, and can be coded directly.

e This recursive process is calledccessive refinemenar factoring.

e Unit are independent of a programming language, but ulehgahust be
mapped into constructs like:

o generics (templates)

CS 246 413

o modules
o classes
o routines

¢ Details look at data and control flow within and among units.

e Implementation programming language is often chosen digy the
system design.

e Factoring goals:

o reduce module size~: 30-60 lines of code, i.e., 1-2 screens with
documentation

o make system easier to understand

o eliminate duplicate code

o localize modifications

e Stop factoring when:

o cannot find a well defined function to factor out
o Interface becomes too complex

¢ Avoid having the same function performed in more than oneute(treate
useful general purpose modules)

CS 246 414
e Separate work from management:

o Higher-level modules only make decisions (managementrahdther
routines to do the work.

o Lower-level modules become increasingly detailed andipgec
performing finer grain operations.

e In general:

o do not worry about little inefficiencies unless the code isoeited a
LARGE number of times

o put thought into readability of program

4.5 Design Quality

e System design is a general plan for attacking a problem galdsl to
multiple solutions.

e Need the ability to compare designs.
e 2 measures: coupling and cohesion

e Low (loose) coupling is a sign of good structured and dedwgh cohesion
supports readability and maintainability.

CS 246 415
4.5.1 Coupling

e Coupling measures the degree of interdependence among programming
“modules”.

e Aim is to achieve lowest coupling or highest independeneg, @ach
module can stand alone or close to it).

e A module can be read and understood as a unit, so that chaages h
minimal effect on other modules and possible to isolateritdésting
purposes (like stereo components).

e 5 types of coupling in order of loose to tight (low to high):

1. Data : modules communicate using arguments/parameters corgain
minimal data.
o E.g.,sin(x), avg(marks)

2. Stamp : modules communicate using only arguments/parameters
containing extra data.
o E.g., pass aggregate data (array/structure) with somesaksffields

unused

o problem: accidentally change other data

o modules may be less general (e.g., average routine passechsrof
records)

CS 246 416
o stamp coupling iIs common because data grouping is more tangor
than coupling
3. Control : pass data using arguments/parameters to effect contnol flo

o E.g., module calculate 2 different things depending on a flag
o bad when flag is passed down, worse when flag is passed up

4. Common : modules share global data.

o cannot control access since scope rule allows many modubescess
the global variables

o difficult to find all references reading/writing global valles

5. Content : modules share information about type, size and structiure o
data, or methods of calculation

o changes effect many different modules (good/bad)

o avoidfriend routine/class unless friend module is logically nested but
extracted for technical reasons.

4.5.2 Cohesion

e Cohesionmeasures degree of association among elements within alenodt
(how focused).

e Elements can be a statement, group of statements, or caliséomodules.

CS 246 417
¢ Alternate names for cohesion: binding, functionality, miada strength.
e Highly cohesive module has strongly and genuinely relakexahents.
e If modules have low cohesion (module elements are relatetght
coupling.
e If modules have high cohesion (module elements are NOTew@)lat loose
coupling.
e 7 types of cohesion (high to low):
1. Functional : modules elements all contribute to computation of one anc
only one problem related task (Single Responsibility Rpieg.
o E.g.,sin(x), avg(marks), Car {.. .}, Driver {.. .}
o coupling is excellent

2. Sequential: module elements interact as producer/consumer, i.gubut
data from one activity is input data to next.

print(process(getword(word))); // read - > process - > print (shell pipe
o similar to functional, except possibly mandates sequeotase
o coupling is good
3. Communicational : module elements contribute to activities that use the
same data.

CS 246 418

find(book, title);
find(book, price);
find(book, ISBN);
find(book, author);
o all have same input data
o like sequential but order is not important
o coupling is acceptable
o usually improve maintainability by splitting common moduto
separate, functional ones

4.Procedural : module elements involved in different and possibly
unrelated activities, but which flow from one activity to thext.

file = open(filename); // open connection to file name
read(file); // read file contents
close(file); // close connection to file name
o related by order of execution rather than by any single gmobielated
function

o typically data sent to procedure modules is unrelated ta skt back
o procedural modules pass around partial results

5. Temporal : module elements involved in activities related in time.

CS 246 419
Initialization
- turn things on
turn things off
set things to O
set things to 1
set things to '’
o unrelated except carried out at particular time
o each initialization is more closely related to the moduled thake use
of it = tight coupling
o want to re-initialize only some of the entities in initiadizon routine
o like procedural, except order of execution is more impdrtian
procedural
6. Logical : module elements contribute to same general category.evher
activity is selected from outside the module.

#include <algorithms>
find ...

swap ...

search ...

sort ...

inner_product ...

o modules contain number of activities of some general kind

CS 246 420

o to use, pick out just one of the pieces needed

o Interface weak, and contains code sharing common linesd# and/or
data areas

7. Coincidental : module elements grouped arbitrarily.

o activities are related neither by flow of data nor control
o like logical, internal activity must be externally seledt®ut worse
since categories in the module are very weakly related

4.6 Design Principles

¢ low coupling, high cohesion (logical modularization)

¢ good interfaces (abstraction and encapsulation)

e type reuse (type inheritance)

e code reuse (implementation inheritance, physical mocaaon)
e indirection (data/routine pointers) to generalize olgect

4.7 Design Patterns

e Design patternshave existed since people/trades developed formal
approaches.

CS 246 421

e E.g., chef’s cooking meals, musician’s writing/playing $sraj mason’s
building pyramid/cathedral.

e Pattern is a common/repeated issue; it can be a problem or a solution.

e Name and codify common patterns for educational and comratian
purposes.

e Software pattern are solutions to problems:

o name : descriptive name

o problem : kind of issues pattern can solve

o solution : general elements composing the design, withiogiships,
responsibilities, and collaborations

o consequences : results/trade-offs of pattern (altemyaimplementation
ISsues)

e Patterns help:

o extend developers’ vocabulary

Squadron Leader: Top hole. Bally Jerry pranged his kite right in
the how’s your father. Hairy blighter, dicky-birdied, féated back
on his Sammy, took a waspy, flipped over on his Betty Harpa&rds a
caught his can in the Bertie.

— RAF Banter, Monty Python

CS 246

o offer higher-level abstractions than routines or classes

4.7.1 Pattern Catalog

422

creational structural behavioural
class factory method |adapter | interpreter
template
object| abstract factory | adapter |responsibility chair
builder bridge command
prototype composite iterator
singleton decorator | mediator
facade memento
flyweight |observer
proxy State
strategy
visitor

—

e Scope : applies to classes or objects
o class pattern— relationships among classes and subclasses (static

Inheritance)

o object pattern — relationships among objects (dynamic creation and
association)

CS 246 423
e Purpose : what a pattern does

o creational : classes defer construction through inhex@dmbjects defer
creation to other objects

o structural : composition via inherited classes or asseantibgects

o behavioural : classes describes algorithm or control-flolécts
cooperate to perform task

4.7.1.1 Class Patterns
factory method : generalize creation of product with multiple variants

struct Pizza {...}; /[product
struct Pizzeria { /[creator

enum Kind { It, Mg, Ch, Dd }; /] styles
virtual Pizza *order(Kind p) = 0O;

J§

struct Italian : public Pizzeria { /[concrete creator (factory)
Pizza »order(Kind p); // create italian/margarita style

I3

struct Chicago : public Pizzeria { /[concrete creator

Pizza sorder(Kind p); // create chicago/deep- dish style
I3

CS 246 424

Italian italian; Chicago chicago; // factories
enum Kind { It, Mg, Ch, Dd };
Pizza xdispatch(Kind pizza) { /| parameterized creator

switch (pizza) {
case It: case Mg: return italian.order(Pizzeria::Mg);
case Ch: case Dd: return chicago.order(Pizzeria::Dd);
default : ; // error

}
}
Pizza «p = dispatch(It);
p = dispatch(Ch);
e product (Pizza) objects are consistent across all fast¢ceuld be
subclassed)

e Clients get a concrete product (Pizza) from the creatoetly or
indirectly), but product type is unknown

e client interacts with product object through its abstrattiface (Pizza)

CS 246 425
adapter/wrapper : convert interface into another

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
I3 :

struct VStack : public Stack, privat’e Vector { // adapter/wrapper
void push(...) { ... push_back(...); ...}

void pop(...) { pop_back(...); }

void p(Stack &s) { ...}
VStack vs; // use VStack code with Stack routine

p(vs);

e VVStack IS polymorphic withStack but implementgush/pop with
Vector::push_back/ Vector::pop_back.

CS 246 426
template method: provide algorithm but defer some details to subclass

class PriceTag { /I template method
virtual string label() = O; /[details for subclass
virtual string price() = O;
virtual string currency() = 0;
public :
string tag() { return label() + price() + currency(); }

class FurnitureTag : public PriceTag { // actual method
string label() { return "furniture ";}
string price() { return "$1000 "; }
string currency() { return "Cdn"; }

I}

FurnitureTag ft;

cout << ft.tag() << endi;

e template-method routines are non-virtual, i.e., not addan

CS 246 427
4.7.1.2 Object Patterns

abstract factory : generalize creation of family of products with multiple
variants

struct Food {...}; /[abstract product
struct Pizza : public Food {...}; // concrete product
struct Burger : public Food {...}; /[concrete product
struct Restaurant { /[abstract factory product

enum Kind { Pizza, Burger };
virtual Food xorder(Kind f) = O;
virtual int staff() = O;
I3
struct Pizzeria : public Restaurant { // concrete factory product
Food xorder(Kind) {}
int staff() {...}

s,truct Burgers : public Restaurant { // concrete factory product
Food xorder(Kind) {}

int staff() {...}

CS 246 428

enum Type { PizzaHut, BugerKing };

struct RestaurantFactory { /I abstract factory
Restaurant «create(Type t) {}

3

struct PizzeriaFactory : RestaurantFactory { // concrete factory
Restaurant screate(Type t) {}
I3

struct BurgerFactory : RestaurantFactory { // concrete factory
Restaurant screate(Type t) {}
J§

PizzeriaFactory pizzeriaFactory;

BurgerFactory burgerFactory;

Restaurant xpizzaHut = pizzeriaFactory.create(PizzaHut);

Restaurant «burgerKing = burgerFactory.create(BugerKing);

Food xdispatch(Restaurant::Kind food) { // parameterized creator

switch (food) {

case Restaurant::Pizza: return pizzaHut- >order(Restaurant::Pizza);
case Restaurant::Burger: return burgerKing- >order(Restaurant::Burg
default : ; // error

}
}

e Use factory-method pattern to construct generated prdéiood)

CS 246 429

e Use factory-method pattern to construct generated fa¢Regtaurant)

e clients obtains a concrete product (Pizza, Burger) frommeiegie factory
(PizzaHut, BugerKing), but product type is unknown

e client interacts with product object through its abstrattiface (Food)

CS 246

430
singleton: single instance of class
h file .cc file
class Singleton { #include "Singleton. h”
struct Impl { Singleton::Impl Singleton::impl(3, 4);
Int X, vy, Singleton::Impl::Impl(int X, int y)
Impl(int X, int y); :X(X), y(y) {}

: void Singleton:m() { ... }
static Impl impl;

public :
) void m();

Singleton x, vy, z; /[all access same value

e Allow different users to have they own declaration but stdtess same
value.

Database database: // user 1
Database db; /| user 2
Database info; /l user 3

¢ Alternative is global variable, which forces name and majate
abstraction.

CS 246 431
composite: interface for complex composite object

struct Assembly { /[composite type
string partNo();
string name();
double price();
void insert(Assembly assm);
void remove(string partNo);
struct Iterator {...};
I3
class Engine : public Assembly {...};
class Transmission : public Assembly{...};
class Wheel : public Assembly {...};
class Car : public Assembly {...};
class Stove : public Assembly {...};
/[create parts for car
Car c; /[composite object
c.insert(engine);
c.insert(transmission);
c.insert(wheel);
c.insert(wheel);

e recursive assembly type creates arbitrary complex asyewbgct.

CS 246 432

e vertices are subassemblies; leafs are parts

e since composite type defines both vertices and leaf, all neemrhay not
apply to both

CS 246 433
iterator : abstract mechanism to traverse composite object

double price = 0.0;

Assembly::lterator c(car);

for (part = c.begin(engine); part !'= c.end(); ++part) { // engine cost
price += part- >price();

}

e iteration control: multiple starting/ending locations;
depth-first/breath-first, forward/backward, etc.; levielraversal

e iterator may exist independently of a composite desigtepat

CS 246
adapter : convert interface into another
struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
I3 I3

struct VecToStack : public Stack { // adapter/wrapper
Vector &vec;
VectortoStack(Vector &vec) : vec(vec) {}
void push(...) { ... vec.push_back(...); ...}
void pop(...) { vec.pop_back(...); }

void p(Stack &s) { ...}

Vector vec;

VecToStack vtos(vec); I/l any Vector
p(vtos);

e specific conversion frordector to Stack

434

CS 246 435
proxy : frontend for another object to control access

struct DVD {
void play(...);
void pause(...);

I3
struct SPVR : public DVD { /[static
void play(...) { ... DVD:play(...); ... }
void pause(...) { ... DVD:pause(...); ... }
I3
struct DPVR : public DVD { /[dynamic
DVD xdvd;
DPVR() { dvd = NULL; }
~DPVR() { if (dvd '= NULL) delete dvd; }
void play(...) { if (dvd == NULL) dvd = new T, dvd->play(...); ... }
void pause(...) { ... don’'t need dvd, no pause ... }
I3

e proxy extends object’s type
e reverse structure of template method
e dynamic approach lazily creates control object

CS 246 436
decorator : attach additional responsibilities to an object dynaithyca

struct Window {
virtual void move(...) {...}
virtual void lower(...) {...}

% J
struct Scrollbar : public Window { Il specialize
enum Kind { Hor, Ver };
Window &window;
Scrollbar(Window &window, Kind k) : window(&window), ... {}
void scroll(int amt) {...}

I3

struct Title : public Window { Il specialize
Title(Window &window, ...) : window(window), ... {}
setTitle(string t) {...}

I3

Window w;

Title(Scrollbar(Scrollbar(w, Ver), Hor), "title") decorate;

e decorator only mimics object’s type through base class
e allows decorator to be dynamically associated with diffiébject’s, or

CS 246 437
same object to be associated with multiple decorators

CS 246 438
observer: 1 to many dependency change updates dependencies

struct Fan { /[abstract
Band &band,;
Fan(Band &band) : band(band) {}
virtual void update(CD cd) = 0;

I3
struct Band {
list<Fan x> fans; /I list of fans
static void perform(Fan xfan) { fan- >update(); }
void attach(Fan &fan) { fans.push_back(&fan); }
void deattach(Fan &fan) { fans.remove(&fan); }
void notify() { for_each(fans.begin(), fans.end(), perform); }
I3
struct Groupie : public Fan { Il specialize
Groupie(Band &band) : Fan(band) { band.attach(xthis); }
~Groupie() { band.deattach(xthis); }
void update(CD cd) { buy/listen new cd }
I}
Band dust;
Groupie g1(dust), g2(dust); Il reqgister
dust.notify(); I/l inform fans about new CD

e manage list of interested objects, and push new events ko eac

CS 246 439

e alternative design has interested objects pull the eveons the observer
o = observer must store events until requested

CS 246 440
visitor : perform operation on elements of heterogeneous container

struct PrintVisitor {
void visit(Wheel &w) { print wheel }
void visit(Engine &e) { print engine }
void visit(Transmission &t) { print transmission }

I3
struct Part {

virtual void action(Visitor &v) = 0O;
I3

struct Wheel : public Part {
void action(Visitor &v) { v.visit(«this); } // overload
I3

struct Engine : public Part {
void action(Visitor &v) { v.visit(«this); } // overload

3

CS 246 441

PrintVisitor pv;

list<Part +> ps;

for (int i=0;1<10;1+=1) {
ps.push_back(add different car parts);

}

for (list<Part «>:.iterator pi = ps.begin(); pi '= ps.end(); ++pi) {
(xpi)- >action(pv);

e each part has a geneatdtion that is specialized by visitor
e different visitors perform different actions or dynamigalary the action
e compiler statically selects appropriate overloaded warsf visit in action

4.8 Testing

e A major phase in program development is testingg0%).

e This phase often requires more time and effort than desidrcading
phases combined.

e Testing is not debugging.

e Testingis the process of “executing” a program with the intent of
determining differences between the specification anchhotgults.

CS 246 442

o Good test is one with a high probability of finding a differenc
o Successful test is one that finds a difference.

e Debugging is the process of determining why a program doebawe an
Intended testing behaviour and correcting it.

4.8.1 Human Testing

e Human Testing: systematic examination of program to discover problem:s

e Studies show 30-70% of logic design and coding errors carteztkd in
this manner.

e Code inspectionteam of 3-6 people led by moderator (team leader)
looking for problems, often “grilling” the developer(s):

o data errors: wrong types, mixed mode, overflow, zero diviae,
subscript, initialization problems, poor data-structure

o logic errors: comparison problems=/ !=, </ <=), loop initialization /
termination, off-by-one errors, boundary values, incorfermula, end
of file, incorrect output

o Interface errors: missing members or member parametargpsulation
/ abstraction issues

CS 246 443

e Walkthrough : less formal examination of program, possibly only 2-3
developers.

e Desk checking: single person “plays computer”, executing program by
hand.

4.8.2 Machine Testing

e Machine Testing: systematic running of program using test data designe
to discover problems.

o speed up testing, occur more freguently, improve testingrame,
greater consistency and reliability, use less people-tewtng

e Commercial products are available.
e Should be done after human testing.
e Exhaustive testing is usually impractical (too many cases)

e Test-case desigimvolves determining subset of all possible test cases witl
the highest probability of detecting the greatest numberafrs.

e TWO major approaches:

o Black-Box Testing: program’s design / implementation is unknown
when test cases are drawn up.

CS 246 444
o White-Box Testing : program’s design / implementation is used to
develop the test cases.
o Gray-Box Testing: only partial knowledge of program’s design /
Implementation know when test cases are drawn up.
e Start with the black-box approach and supplement with wibabe tests.
e Black-Box Testing

o equivalence partitioning : completeness without redundancy
x partition all possible input cases into equivalence classe
x select only one representative from each class for testing
x E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

x 3 equivalence classes, plus invalid hours

x Since there are many types of invalid data, invalid hoursatam be
partitioned into equivalence classes

o boundary value testing
x test cases which are below, on, and above boundary cases

CS 246 445

39, 40, 41 (hours) valid cases
44, 45, 46 ’

0, 1, 2

-2,-1, O ” iInvalid cases
59, 60, 61

o error guessing

x surmise, through intuition and experience, what the lileglprs are
and then test for them
e White-Box (logic coverage) Testing

o develop test cases to cover (exercise) important logicsgatiough
program

o try to test every decision alternative at least once

o test all combinations of decisions (often impossible dugize)

o test every routine and member for each type

o cannot test all permutations and combinations of execution

e Test Harness: a collection of software and test data configured to run a
program (unit) under varying conditions and monitor itspous.

4.8.3 Testing Strategies

CS 246 446

e Unit Testing : test each routine/class/module separately before mtedr
Into, and tested with, entire program.
o requires construction of drivers to call the unit and pasgssit values

o requires construction of stub units to simulate the uniledaluring
testing

o allows a greater number of tests to be carried out in parallel
e Integration Testing : test if units work together as intended.

o after each unit is tested, integrate it with tested system.

o done top-down or bottom-up : higher-level code is drivera,dr-level
code Is stubs

o In practice, a combination of top-down and bottom-up testsnusually
used.

o detects interfacing problems earlier
e Once system is integrated:

o Functional Testing: test if performs function correctly.

o Regression Testing test if new changes produce different effects from
previous version of the system (diff results of old / new a1s).

o System Testing test if program complies with its specifications.

CS 246 447
o Performance Testing: test if program achieves speed and throughput
requirements.

o Volume Testing: test if program handles difference volumes of test date
(small< large), possibly over long period of time.

o Stress Testing test if program handles extreme volumes of data over a
short period of time with fixed resources, e.g., can aiffitraf
control-system handle 250 planes at same time?

o Usability Testing : test whether users have the skill necessary to operat
the system.

o Security Testing: test whether programs and data are secure, i.e., can
unauthorized people gain access to programs, files, etc.

o Acceptance Testing checking if the system satisfies what the client
ordered.

e If a problem is discovered, make up additional test casesrioin on the
Issue and ultimately add these tests to the test suite foessmn testing.

4.8.4 Tester

¢ A program should not be tested by its writer, but in practigs dften
occurs.

CS 246 448
e Remember, the tester only tests wilagdy think it should do.

e Any misunderstandings the writer had while coding the piogare carried
over into testing.

¢ Ultimately, any system must be tested by the client to dateemit is
acceptable.

¢ Points to the need for a clear specification to protect badlchient and
developer.

Index

1,15, 85

1=, 85, 147
1190

" 12, 157
#, 2

#, 186
#define , 186
#elif, 191
#else, 191
#endif , 191
#if, 191
#ifdef , 191
#ifndef , 191
#include , 189
$, 2,40

${}, 40

%, 2

&, 85, 87, 102, 125
&&, 85, 102

&=, 85

' 12,82

«, 8b, 87,125, 139
«, 14

«=, 85

+, 85, 147

++, 90, 335

+=, 85, 90

., 85, 90, 105

-, 85

--,90, 335

. 85, 90

. 85

Vol

449

CS 246

-L, 362

- MD, 373

- MMD, 372

-0, 361

- S, 361

-W, 360

-¢c, 284, 361
-g, 361, 395
-1, 362

- 0, 285, 362
-v, 361

., 85

., 139

.C, 73

.c, /3

.cc, 73, 289

.cpp, 73

.h, 189, 287
.snapshot, 24
/, 5, 85, 88

450

\, 11, 82

[%, 14

/I, 75

/=, 85

, 116

.., 85, 154, 258, 298
A

7, 60

<, 35, 85, 147

<<, 85, 88, 169, 232
<<=, 85

<=, 85, 147

<> 190

<ctrl>-c, 13

<ctrl>-d, 36, 173

=, 16, 40, 85, 147
==, 85, 147, 243

> 12, 35, 85, 147
>&, 35, 37

>= 85, 147

CS 246

>> 85, 88, 169, 232
>>= 85

?:, 85,102, 103
[1, 55, 147, 208
%, 85, 89

%=, 85

&, 87, 125

{1}, 75,97

N, 85

=, 85

Y11

|, 35, 85, 102
|=, 85

|, 85, 102
—, 102
~, [, 85

a.out, 182, 362

absolute pathname, 6, 376
abstract, 158

abstract class, 319

pure, 323
abstract data-type, 259
abstract factory, 427
abstraction, 221, 259
procedural, 158
routine, 158
acceptance testing, 447
access control, 259
adapter, 425, 434
add, 380
ADT, 259
aggregates, 134
aggregation, 275
agile, 409
alias, 152, 302, 353
alias, 16, 24
allocation
array, 136, 208
dynamic, 203
array, 208

451

CS 246 452

heap, 205, 207, 334 Initializing, 78
array, 208 operator, 261, 295
matrix, 209 association, 270
stack, 97, 207 unidirectional, 270
argc, 181, 182 association class, 274
argument, 162 atoi, 183
argv, 181, 183 attribute, 268
array, 122, 134, 136, 155, 156, 166,

167, 176, 181, 208, 227 gggiggﬁ ’61111 -
2-D, 209 . backspace key, 3
deallocation, 208

. . backtrace, 396
dimension, 134-136, 157, 166, backward branch. 117. 121
208, 337 bang, 15 ’ ’
parameter, 166 bash. 2 44. 54
as, 362 'on
bler. 362 bash, 20
assembiet, basic types, 77, 121
assertion, 192 bool . 77
assignment, 86, 89, 153, 235, 307 char. 77

array, 136, 335 double . 77
cascade, 89 float, 77

CS 246

int, 7/
wchar _t, 7/
behavioural, 328
bit field, 141
bitwise copy, 237
black-box testing, 443
block, 72, 97, 156
{1}, 75,97
blueprint, 267
bool , 77, 82
boolalpha, 170
boundary value testing, 444
break, 102, 106, 121
labelled, 116
break, 398
breakpoint, 398
continue, 401
next, 400
step, 399

C-c, 13

453

C-d, 36,173
c_str, 147
call-back routine, 218
cascade, 170
cascade assignment, 89
case, 60, 101

7, 60

pattern, 60
case-sensitive, 40, 76
cast, 85, 90, 93, 124, 156, 179, 213,

316

cat, 25, 386
cd, 14
cerr, 169
char, 77, 79, 82
checkin, 374
checkout, 374
checkout, 378
chevron, 85, 169, 232, 332
chgrp, 34

CS 246

chmod, 34

chsh, 20

cin, 169

class, 220, 261

class model, 267

class pattern, 422

classes diagram, 268

clear, 175

cmp, 26

code inspection, 442

coercion, 92, 124, 179, 205, 214
cast, 179
explicit, 93, 179
reinterpret _cast, 179

cohesion, 416

coincidental, 420

comma expression, 90, 105, 209

command options, 3

command-line arguments, 181
argc, 181, 182

argv, 181, 183
main, 181
command-line interface, 1
comment, 2, /3—75
#, 2
«, 14
[%, 14
/I, 75
nesting, 74, 75
out, 74, 191
commit, 381
common coupling, 416
communicational, 417
compilation, 73, 359
g++, 73
compiler, 73, 359
options
-D, 187, 360
- E, 359
-1, 360

454

CS 246 455

-L, 362 ||, 102
- MD, 373 partial evaluation, 102
- MMD, 372 short-circuit, 102
-0, 361 conditional inclusion, 190
- S, 361 const, 83, 131, 165, 188, 221
- W, 360 constant, 81, 84, 221, 289
-¢c, 284, 361 Initialization, 188
-g, 361, 395 parameter, 165
-1, 362 variable, 84
- 0, 285, 362 construction, 297
-v, 361 constructor, 122, 225, 226, 297, 306
separate compilation, 192, 255 const member, 244
composite, 431 copy, 235, 261, 307
composition, 276, 296, 326 Implicit conversion, 230
explicit, 296 literal, 229
concrete class, 322 passing arguments to other
conditional expression evaluation, constructors, 306
102 type, 121
&&, 102 container, 333

?:, 102 deque, 333

CS 246 456

list, 333 partial evaluation, 102
map, 333 short-circuit, 102
queue, 333 looping, 96, 103
stack, 333 break, 64
vector, 333, 335 continue , 64
content coupling, 416 do, 104
contiguous object, 233 for, 63, 104
continue , 106 while , 61, 103
labelled, 116 selection, 96, 99
continue, 401 break, 102
contra-variance, 305 case, 60, 101
control coupling, 416 dangling else, 99
control structure, 96 default , 102
block, 96, 97 else, 99
{1}, 75,97 if, 58, 99
conditional expression evaluation, pattern, 60
102 switch , 100, 183
&&, 102 test, 55
?:, 102 short-circuit expression evaluation,

I, 102 102

CS 246

transfer, 96
conversion, 90, 124, 148, 230
cast, 85, 90
dynamic _cast, 316
explicit, 90, 213
Implicit, 90, 163, 212, 230
narrowing, 91
promotion, 91
static _cast, 90
widening, 91
copy constructor, 236, 261, 295
copy-modify-merge model, 374
coupling, 415
cout, 169
cp, 22, 385
cpp, 359
create, 376
csh, 2,45, 54
csh, 20
current directory, 6-8, 14, 15, 21

457
current stack frame, 398

dangling else, 99
dangling pointer, 206, 242
data coupling, 415
data member, 138
dbx, 394
debug print statements, 196
debugger, 393
Debugging, 195
debugging, 195, 442
dec, 170
declaration, 76
basic types, 77
const , 188
type constructor, 121
type qualifier, 78
variable, 77
Declaration Before Use, 255
declaration before use, 253
decorator, 436

CS 246 458

deep compare, 243 destruction, 297
deep copy, 239, 243 explicit, 233
default implicit, 233
parameter, 215 order, 234
default , 102 destructor, 232, 297, 306
default constructor, 225 diff, 26
default initialized, 156 dimension, 134-136, 157, 166, 208,
default value, 166, 225 337
parameter, 166 do, 104
delegation, 328 documentation, 73
delete, 203 double , 77, 82
[1, 208 double quote, 12, 47
delete key, 3 downcast, 316
dependence, 363 duplicate code, 158
deque, 333, 346 dynamic allocation, 227
dereference, 40, 87, 125 dynamic storage management, 203,
dereferencing, 125 234
design patterns, 420 dynamic _cast, 316

desk checking, 443 eager evaluation, 103
desktop, 1 echo, 18

CS 246

egrep, 29
else, 99
encapsulation, 259, 334
end of file, 173
end of line, 72
endl, 72, 170
Enter key, 2
enum, 122, 188
enumeration, 122
enumerator, 122
eof, 173
equivalence

name, 152

structural, 152
equivalence partitioning, 444
error guessing, 445
escape, 11
escape sequence, 144
Escape sequence, 82
escaped, 55

459

evaluation
eager, 103
lazy, 102
partial, 102
short-circuit, 102, 113
event programming, 218
execute, 32
execution error, 201
exit
static multi-exit, 111
static multi-level, 115
exit, 19
exit, 72
exit status, 19, 20, 48
explicit coercion, 93, 179
explicit conversion, 90, 213
export, 281, 290
expression, 85
extreme, 409
Eye Candy, 109

CS 246

factoring, 158, 412
factory method, 423
fail, 169, 173
false, 91
feof, 176
file
h, 189
opening, 169
file inclusion, 189
file management
file permission, 32
Input/output redirection, 35
<, 35
>&, 35
> 35
|, 35
file permission
execute, 32
group, 32
other, 32

read, 32

search, 32

user, 32

write, 32
file suffix

.C, 73

.c, /3

.cc, 73, 289

.cpp, 73

h, 287

.0, 285
files, 4

iInput/output redirection, 35
find, 28, 147
find_first_not_of, 147
find_first_of, 147
find_last_not_of, 147/
find_last_of, 147
fix-up routine, 217
fixed, 170

460

CS 246

flag variable, 112
float, 77, 81
for, 63, 104
for_each, 349
format

/0, 170
formatted I/O, 168, 169
forward branch, 117
forward declaration, 254
frame, 398
free, 203
free, 203
friend , 263
friendship, 263, 299
fstream, 169
function, 159
function member, 138
function-call operator, 252
functional, 417
functional testing, 446

461
functor, 252, 350

g++, 73, 135, 156, 229, 359
garbage collection, 203
gdb
backtrace, 396
break, 398
breakpoint, 398
continue, 401
next, 400
step, 399
continue, 401
frame, 398
Info, 399
list, 402
next, 400
print, 396
run, 395
step, 399
gdb, 394
generalization, 325

CS 246

generate, 267
globbing, 7, 11, 28, 31, 60
gmake, 367
goto, 116, 120, 121

label, 116
graphical user interface, 1
gray-box testing, 444
group, 32

has-a, 297, 326

heap, 162, 205, 207, 334
array, 208

help, 13

heterogeneous values, 138, 142

hex, 170

hidden file, 9, 21, 24

history , 15

home directory, 6, 14

homogeneous values, 134

hot spot, 195

human testing, 442

462

/0O

cerr, 169
cin, 169
clear, 175
cout, 169
fail, 169
formatted, 169
fstream, 169
ifstream, 169
ignore, 176
iomanip, 170
jostream, 169
manipulators, 170
boolalpha, 170
dec, 170
endl, 170
fixed, 170
hex, 170
left, 170
noboolalpha, 170

CS 246

noshowbase, 170
noshowpoint, 170
noskipws, 170
oct, 170
right, 170
scientific, 170
setfill, 170
setprecision, 170
setw, 170
showbase, 170
showpoint, 170
skipws, 170
ofstream, 169
identifier, 76, 116
if, 58, 99
?:, 102
dangling else, 99
else, 99
ifstream, 169
ignore, 176

463

Implementation, 287
Implementation inheritance, 295
Implicit conversion, 90, 163, 212,
230
Import, 281, 287
import, 377
Indirection, 128
info, 399
Inheritance, 329
Inheritance, 295, 326
Implementation, 295
type, 295, 300
Initialization, 155, 225, 229, 235,
244, 297, 306, 307
array, 156
forward declaration, 258
string, 157
structure, 156
inline , 188
iInput, 72, 167, 171

CS 246

>> 232
end of file, 173
eof, 173
fail, 173
feof, 176
formatted, 169
manipulators
iomanip, 170
noskipws, 170
skipws, 170
standard input
cin, 169
Input/output redirection, 35
filter
|, 35
iInput
<, 35
output
> 35
>&, 35

464

int, 77,79, 82
INT16_MAX, 80, 81
INT16_MIN, 80, 81
int16_t, 80, 81
INT32_MAX, 80
INT32_MIN, 80

int32_t, 80

INT64_MAX, 80
INT64_MIN, 80

inté4_t, 80

INTS_MAX, 80
INTS_MIN, 80

int8_t, 80

INT_MAX, 79

INT_MIN, 79

Integral type, 141
Integration testing, 446
Interaction model, 267
Interface, 158, 221, 287
Interface class, 323

CS 246

Interfaces, 158
iomanip, 170
jostream, 72, 169
Is-a, 300, 301, 326
iteration statement

break, 106

continue , 106
iterative, 409
iterator, 334, 433

++, 335

--,335

for_each, 349

keyword, 76
keywords, 40
ksh, 2

label, 116

label variable, 116

language
preprocessor, 357
programming, 357

template, 357
lazy evaluation, 102
ld, 362
left, 170
less, 25
linker, 362
list, 333, 346, 402

back, 347

begin, 348

clear, 347

empty, 347

end, 348

erase, 348

front, 347

insert, 348

pop_back, 347

pop_front, 347

push_back, 347

push_front, 347

begin, 348

465

CS 246

end, 348
size, 347
literal, 81-83, 144, 155, 172
bool , 82
char, 82
double , 82
escape sequence, 82
Initialization, 155
int, 82
string, 82, 144
type constructor, 155
literals, 122
LLONG_MAX, 79
LLONG_MIN, 79
logical, 419
login, 1, 4
login shell, 53
logout, 4
long, 79
LONG_MAX, 79

LONG_MIN, 79
loop
mid-test, 108
multi-exit, 108
looping statement, 103
break, 64
continue , 64
do, 104
for, 63, 104
while , 61, 103
Ip, 25
Ipstat, 25
s, 21, 32, 377

machine testing, 443
macros, 188

main, 72, 181, 255
make, 366

make, 367

malloc, 203

man, 21

466

CS 246

managed language, 203
manipulators, 170
map, 333, 342
begin, 345
end, 345
erase, 345
find, 345
insert, 345
begin, 345
end, 345
math library, 362
matrix, 135, 167, 209, 338
member, 138
anonymous, 297
const , 244
constructor, 225
destruction, 232, 297, 306
Initialization, 225, 297, 306
object, 221
operator, 224

overloading, 224

pure virtual, 319, 322

static member, 246

virtual, 313, 317
member selection, 139
memberwise copy, 237
memory leak, 206, 209, 242
mid-test loop, 108
mixin, 326
mkdir, 22, 376
modularization, 157
modularize, 412
module, 157, 158
more, 25
multi-exit

loop, 108

mid-test, 108
multi-level exit

static, 115
multiple inheritance, 323

467

CS 246

mutually recursive, 254, 256
mv, 22, 384

name equivalence, 152, 301, 302,
304, 329
namespace, 72, 351
std, 72
narrowing, 91
navigable, 272
nesting, 298
blocks, 97, 98
comments, 74, /5
Initialization, 156
preprocessor, 190
routines, 161
type, 153
new, 203
next, 400
noboolalpha, 170
non-contiguous, 233, 234
noshowbase, 170

468

noshowpoint, 170
noskipws, 170
npos, 147

NULL, 155, 190
null address, 127
null character, 145

object, 219, 220
anonymous member, 297
assignment, 235, 307
const member, 244
constructor, 225, 297, 306
copy constructor, 235, 261, 307
default constructor, 225
destructor, 232, 297, 306
Initialization, 225, 306
literal, 229
member, 221
pure virtual member, 319, 322
static member, 246
virtual member, 313, 317

CS 246

object code, 362
object diagram, 273
object model, 267
object pattern, 422
object-oriented, 219, 295
observer, 438
oct, 170
ofstream, 169
open, 169
file, 169
operation, 269
operators
x, 87,125
<<, 169, 232
>> 169, 232
&, 87,125
arithmetic, 85
assignment, 85
bit shift, 85
bitwise, 85

469

cast, 85

comma expression, 85
control structures, 85
logical, 85
overloading, 169, 224
pointer, 85, 87, 125
priority, 86

relational, 85
selection, 154, 298
string, 147

struct , 85

selection, 258
other, 32
output, 72, 167, 177

<<, 232

endl, 72

formatted, 169
manipulators
boolalpha, 170
dec, 170

CS 246

endl, 170

fixed, 170

hex, 170
iomanip, 170

left, 170
noboolalpha, 170
noshowbase, 170
noshowpoint, 170
oct, 170

right, 170
scientific, 170
setfill, 170
setprecision, 170
setw, 170
showbase, 170
showpoint, 170
standard error
cerr, 169
standard output
cout, 72, 169

overflow, 87
overload, 181

overloading, 169, 211, 224, 225, 232
override, 298, 304, 311, 313

overriding, 98

paginate, 25
parameter, 162
array, 166
constant, 165
default value, 166
pass by reference, 163
pass by value, 163
prototype, 255
parameter passing
array, 166
pass by reference, 163
pass by value, 163
pattern, 60, 421
pattern matching, 7
performance testing, 447

CS 246

pointer, 122, 124, 155

0, 155

array, 136, 208

matrix, 209

NULL, 155, 190
pointer variable, 127
polymorphic, 316
polymorphism, 301
Polymorphism, 327
preprocessor, 186, 357, 359, 372

#define , 186

#elif, 191

#else, 191

#endif , 191

#if, 191

#ifdef, 191

#ifndef , 191

#include , 189

file inclusion, 189

macros, 188

471

variable, 187, 360
print, 396
priority, 86
private , 260
procedural, 418
procedural abstraction, 158
procedure, 159
program

structure, 73
program structure, 73

block, 72

main, 72
project, 374
promotion, 91
prompt, 1, 2

$, 2

%, 2

> 12
protected , 260
prototype, 253, 254

CS 246

proxy, 435

pseudo random-number generator,
250

pseudo random-numbers, 250

public , 138, 260

pure abstract-class, 323

pure virtual member, 319, 322

pwd, 15

queue, 333, 346
guoting, 11

random number, 249
generator, 250
pseudo-random, 250
seed, 252

Random-number generator, 250

read, 32

real time, 19

recursive type, 140

reference, 87, 122, 124, 125
Initialization, 130

reference parameter, 163

referencing, 125
regression testing, 446
regular expressions, 7
reinterpret _cast, 179
relative pathname, 6
replace, 147
repository, 374, 375
resolve, 392

return, 72, 159

return code, 19
Return key, 2

return type, 159
reuse, 295

revert, 383

rfind, 147

right, 170

rm, 23, 382

routine, 158

472

argument/parameter passing, 162

CS 246

array parameter, 166
function, 159
member, 221
parameter, 160
pass by reference, 163
pass by value, 163
procedure, 159
prototype, 253
return , 159
return type, 159
routine overloading, 212
routine prototype
forward declaration, 254
scope, 221
routine abstraction, 158
routine member, 138
routine pointer, 215
routine prototype, 254
run, 395

scientific, 170

scope, 221, 258, 352
script, 45
search, 32
security testing, 447
sed, 39
selection operator, 154
selection statement, 99

break, 102

case, 60, 101

default , 102

else, 99

if, 58, 99

pattern, 60

switch , 100, 183
self-assignment, 242
semantic error, 201
semi-colon, 58
semicolon, 75, 97, 138
sentinel, 145

473

separate compilation, 192, 281

CS 246 474

-¢c, 284 shift , 57
sequential, 417 short , 79
seftfill, 170 short-circuit, 55, 102
setprecision, 170 short-circuit expression evaluation,
setw, 170 102
sh, 2, 45 ||, 102
sh, 20 showbase, 170
sha-bang, 45 showpoint, 170
shell, 1 SHRT_MAX, 79
bash, 2, 54 SHRT_MIN, 79
csh, 2, 54 signature, 254
ksh, 2 signed , 79
login, 53 single quote, 12
prompt, 2 singleton, 430
$, 2 size_type, 147
%, 2 sizeof , 87
> 12 sketch, 267
sh, 2 skipws, 170
tcsh, 2 slicing, 317

shell program, 45 software development

CS 246 475

.cc, 289 static exit

h, 287 multi-exit, 111

.0, 285 multi-level, 115

separate compilation, 281 static multi-level exit, 115
software engineering, 157, 404 static _cast, 90
source , 52 status, 383
source file, 255, 259 std, 72
source-code management, 373 stderr, 169
source-code management-system, stdin, 169

374 stdout, 169

spiral, 409 step, 399
ssh, 31 strcat, 147
stack, 97, 162 strcpy, 147
stack, 333, 346 strcspn, 147
stack allocation, 207 stream
staged delivery, 409 cerr, 169
stamp coupling, 415 cin, 169
statement, 75 clear, 175
static , 292 cout, 169

static block, 161, 247 fail, 169

CS 246 476

formatted, 169 noskipws, 170
fstream, 169 oct, 170
ifstream, 169 right, 170
ignore, 176 scientific, 170
Input, 72 seffill, 170

cin, 169 setprecision, 170

end of file, 173 setw, 170

eof, 173 showbase, 170
fail, 173 showpoint, 170
manipulators skipws, 170

boolalpha, 170 ofstream, 169

dec, 170 output, 72

endl, 170 cout, 72

fixed, 170 endl, 72

hex, 170 stream file, 169

iomanip, 170 stress testing, 447

left, 170 string, 82, 144

noboolalpha, 170 Cr

noshowbase, 170 1= 147

noshowpoint, 170 + 147

CS 246 477

<, 147 strcat, 147

<=, 147 strcpy, 147

=, 147 strcspn, 147

==, 147 strlen, 147

> 147 strncat, 147

>=_147 strncpy, 147

[1, 147 strspn, 147

c_str, 147 strstr, 147

find, 147 literal, 144
find_first_not_of, 147 null termination, 145
find_first_of, 147 stringstream, 183
find_last_not_of, 147 strlen, 147

find_last_of, 147 strncat, 147

npos, 147 strncpy, 147

replace, 147 strspn, 147

rfind, 147 strstr, 147

size_type, 147 struct , 220, 261

substr, 147 structurally equivalent, 152
C structure, 122, 137, 138, 155, 156,

[1, 147 219, 220

CS 246

member, 138, 220
data, 138
function, 138
Initialization, 138
routine, 138
visibility
default, 138
public , 138
struct , 85
structured programming, 106
subscript, 135
subshell, 20, 45, 54
substitutability, 327
substr, 147
subversion, 374
successive refinement, 412
suffix
.C, 73
.c, /3
.cc, 73

.cpp, 73

svn, 374

add, 380
cat, 386
checkout, 378
commit, 381
cp, 385
import, 377
s, 377
mkdir, 376
mv, 384
resolve, 392
revert, 383
rm, 382
status, 383
update, 388

svnadmin

create, 376

switch , 100, 183

break, 102

478

CS 246

case, 101
default , 102
syntax error, 200

system command, 366

system modelling, 265
system testing, 446
system time, 19

tab key, 10
target value, 128
target variable, 128
tcsh, 2
tcsh, 20
template, 329, 357
routine, 329
type, 330
template method, 426
template routine, 329
template type, 330
temporal, 418
terminal, 2, 4

479

test, 55

test harness, 445

test-case design, 443

Testing
Integration, 446

testing, 441
acceptance, 447
black-box, 443
functional, 446
gray-box, 444
harness, 445
human, 442
machine, 443
performance, 447
regression, 446
security, 447
stress, 447
system, 446
unit, 446
usability, 447

CS 246 480

volume, 447 structure, 137
white-box, 444 type aliasing, 152
text merging, 374 union, 142
this , 221 type conversion, 90, 212, 230, 316
time, 18 type equivalence, 301, 304
time stamp, 365 type inheritance, 295, 301
token, 186 type nesting, 153
translation unit, 281 type qualifier, 78, 80, 131
translator, 360 const , 83, 131
true, 91 long, 79
type, 17 short , 79
type aliasing, 152 signed , 79
type coercion, 179 static , 292
Type constructor, 121 unsigned , 79
type constructor type-constructor literal
array, 134 array, 155
enumeration, 122, 188 pointer, 155
literal, 155 structure, 155
pointer, 124 typedef , 152, 353

reference, 124 UINT16_MAX, 80

CS 246

uintl6_t, 80

UINT32_MAX, 80

uint32_t, 80

UINT64_MAX, 80

uint64_t, 80

UINT8_MAX, 80, 81

uint8_t, 80, 81

UINT_MAX, 79

ULLONG_MAX, 79

ULONG_MAX, 79

undefined, 128

unformatted 1/O, 168, 178

unidirectional association, 270

unified modelling language, 267

uninitialization, 232

uninitialized variable, 78, 128, 202,
205

union, 142

unit testing, 446

unmanaged language, 203

481

unsigned , 79
update, 388
usability testing, 447
user, 32
user time, 18
USHRT_MAX, 79
using
declaration, 353
directive, 353

value parameter, 163
variable declarations

type qualifier, 78, 80
variables

constant, 84

dereference, 87, 125

reference, 87, 125
vector, 333, 335

[1, 336

at, 336

begin, 340

CS 246

clear, 336
empty, 336
end, 340
erase, 340
insert, 340
pop_back, 336
push_back, 336
rbegin, 340
rend, 340
resize, 336, 339
size, 336
version control, 373
virtual , 313, 317
virtual members, 313, 317, 319, 322
visibility, 153
default, 138
private , 260
protected , 260
public , 138, 260
visitor, 440

482

void , 159
void «, 205
volume testing, 447

walkthrough, 443
waterfall, 408
wchar _t, 77
which, 17
while , 61, 103
white-box testing, 444
whitespace, 73, 172, 186
widening, 91
wildcard, 7, 31
gualifier, 31
working copy, 374
wrapper, 425
wrapper member, 310
write, 32

xterm, 2, 4
zero-filled, 156

