UNIVERSITY OF

WATERLOO

School of Computer Science

CS 246
Object-Oriented Software Development

Course Notes
Winter 2013

http: //www.student.cs.uwaterloo.ca/ ~Cs246

November 19, 2012

Outline

Introduction to basic UNIX software development tools abgeot-oriented program-

ming in C+ to facilitate designing, coding, debuggingitegg and documenting of

medium-sized programs. Students learn to read a speaficatid design software
to implement it. Important skills are selecting approm@idata structures and control
structures, writing reusable code, reusing existing codéerstanding basic perfor-
mance issues, developing debugging skills, and learnitesta program.

“Permission is granted to make copies for personal or edurtiise.

http://www.student.cs.uwaterloo.ca/~cs246

Contents

1 Shell

11
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
1.10

1.11
1.12

2 C++
2.1
2.2

2.3

2.4

1

File System. e 2
Pattern Matching. 4
QUOLING 6
Shell Commands. e e e e e 7
SystemCommands 10
File Permission. e 15
Input/Output Redirection 17
Variables e e e e e 19
Arithmetic. e e 20
Programming. e 21
1.10.1 Routine. e 23
1.10.2 EnvironmentVariables 25
1.10.3 Control Structures. 25

1.10.3.1 Test. e 26

1.10.3.2 Shift. 27

1.10.3.3 Selection 27

1.10.3.4 LOOPING. . . . v v v i e e e e 28
Cleanup Script. 31
Regress Script. 32

33

First Program. e e e e 33
Program Structure. 34
2.2. 1 Comment. e e e e e e 34
2.2.2 Statement e e 35
Declaration. e e 35
2.3.1 dentifier e 35
2.3.2 BaSiCTYPES o e 35
2.3.3 \Variable Declaration. e 36
2.3.4 TypeQualifier 36
2.3.5 Literals. e e 37
EXPression 39
2.4.1 CONVersion. o i e e e 41
2.4.2 COEICION e e e e 42

CONTENTS

243 MathOperations. 43

2.5 Control Structures e 44
251 Block. 44
2.5.2 Selection. 45
2.5.3 Conditional Expression Evaluation 47
254 LOOPING. o 47

2.6 Structured Programming 49
2.6.1 Multi-ExitLoop 50
2.6.2 Multi-Level Exit 53

2.7 Type ConstruCtor. o e 56
271 Enumeration. 56
2.7.2 Pointer/Reference. 57
2.7.3 Aggregates. 61
2.7.3.1 Array.o e 62

2.7.3.2 Structure 63

2.7.3.3 UNioN 65

2.7.4 SHiNg. e e e 66
275 TypeEquivalence. 70
27.6 TypeNesting. 70
2.7.7 Type-ConstructorLiteral 71

2.8 Modularization 72
29 RoOUtiNE e 72
2.9.1 Argument/ParameterPassing. 74
2.9.2 Array Parameter. 76
2.10 Input/Output e 77
2.10.1 Formatted /O e 77
2.10.1.1 Formats. 79

2.10.1.2 Input. 79

2.10.1.3 Output. 81

2.10.2 Unformatted I/O. 82
2.11 Command-line Arguments 83
2.12 PreproCessor. o o e e 85
2.12.1 Variables/Substitution. L o oo 85
2.12.2 FilelInclusion. 87
2.12.3 Conditional Inclusion 87
2.13 ASSErtioNS e e 88
2.14 Debugging e 90
2.14.1 DebugPrintStatements, 90
2.14.2 EITOIS. 91
2.15 Dynamic Storage Management Lo 93
2.16 Overloading. e 97
2.17 Routine Pointer. 98
2.18 Object. e 100
2.18.1 ObjectMember 101

2.18.2 OperatorMember. e 102

CONTENTS %

2.18.3 Constructor e e 103
2.18.3.1 Literal 105

2.18.3.2 Conversion 105

2.18.4 Destructor e 106
2.18.5 Copy Constructor/Assignment. 107
2.18.6 Initialize const/ Object Member. 111
2.18.7 StaticMember. 112
2.19 Random Numbers. 113
2.20 DeclarationBeforeUse 115
2.21 Encapsulation 118
2.22 SystemModelling 121
2.22.1 UML e 122
2.23 Separate Compilation. 127
2.24 Inheritance e 134
2.24.1 Implementation Inheritance 134
2.24.2 Typelnheritance. 136
2.24.3 Constructor/Destructar. 138
2.24.4 Copy Constructor/Assignment. 139
2.24.5 Overloading e 139
2.24.6 Virtual Routine. 140
2.24.7 Downcast e 142
2.24.8 SIiCiNg 143
2.24.9 Protected Members. 143
2.24.10Abstract Class. 143
2.24.11 Multiple Inheritance. Lo 145
224.12UML 145
2.25 Composition/ Inheritance Design Lo 146
2.26 Template e 148
2.26.1 Standard Library. 149
2.26.1.1 Vector. e 150

2.26.1.2 Map e 153

2.26.1.3 List. 154

2.26.1.4 foreach 155

2.27 NaMESPACE. o e e e e e e e e 156

3 Tools 159

3.1 C/C++Composition 159
3.2 Compilation. 159
3.2.1 PreproCessSor o i i e e e 160
3.22 Translator 160
3.23 Assembler. 161
3.24 Linker. 161

3.3 CompilingComplexPrograms 161
3.3.1 Dependencies. e e 162

3.3.2 Make 163

Vi

CONTENTS

3.4 Source-Code Management. 166
341 SVN . e e 167
3.4.2 RepoSItory 168
3.4.3 CheckingOut e 169
344 AddIng 170
3.45 CheckinglIn 170
346 Modifying 171
3.4.7 RevisionNumber 172
3.4.8 Updating. 173

3.5 Debugger. e e 176
351 GDB 176

4 Software Engineering 183

4.1 Software CriSiS. 183

4.2 Software Development 184

4.3 DevelopmentProcesses 184

4.4 Software Methodology. 186
4.4.1 SystemDesign 187
4.4.2 Top-Down 187

45 DesignQuality 188
451 Coupling 188
452 Cohesion. 189

4.6 DesignPrinciples. 190

4.7 DesignPatterns 191
471 PatternCatalog 191

4711 ClassPatternso 192
4.7.1.2 ObjectPatterns. 193

4.8 Testing 198
481 HumanTesting 199
4.8.2 MachineTesting. 199
4.8.3 TestingStrategies. 200
4.8.4 Tester. 201

Index 203

1 Shell

e After signing onto a computer (login), a mechanism musttewiglisplay information and
perform operations.

e The two main approaches are graphical and command line.
e Graphical user interface (GUI) (desktop):

o use icons to represent actions (programs) and data (files),
o click onicon launches (starts) a program or displays data,
o program may pop up a dialog box for arguments to affect its@txen.

e Command-line interface (shell):

o use text strings to access programs (commands) and datag(files),
o command is typed after a prompt in an interactive area toistar
o arguments follow the command to affect its execution.

e Graphical interface is convenient, but seldom programmabl

e Command-line interface requires more typing, but allowsgpamming.

e A shellis a program that reads commands and interprets them.

e It provides a simple programming-language wsthing variables and a few statements.

e Unix shells falls into two basic campsh (ksh, bash) andcsh (tcsh), each with slightly
different syntax and semantics.

e Focus on bash with some tcsh.
e Area (window) where shell runs is calledeaminal or xterm.
e Shell line begins with @arompt denoted by (sh) or% (csh) (often customized).

e A command is typed after the prompt buit executed untiEnter /Return key is pressed.

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009

$ whoamiEnter # print userid

jfdoe

$ echo Hi TherelEnter # print any string
Hi There!

e Comment begins with a hash)(and continues to the end of line.

(© Peter A. Buhr

2 CHAPTER 1. SHELL

e Multiple commands can be typed on the command line sepabgtédte semi-colon.
$ date, whoami; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009

jfdoe
Hi There!

e Commands can be editted on the command line (not sh):

position cursorl,], with < andr> arrow keys,

@)

o

remove characters before cursor wititkspace/delete key,

@)

type new characters before cursor,

@)

pressEnter at any point along the command line to execute modified condman

e Most commands haveptions, specified with a minus followed by one or more characters,
which affect how the command operates.

$ uname -m # machine type
x86_64

$ uname -s # operating system
Linux

$ uname -a # all system information

Linux linux008.student.cs 2.6.31- 21- server #59- Ubuntu SMP x86_64 GNU/Linux
e Options are normally processed left to right; one option weycel another.
e No standardization for command option names and syntax.

e Shell terminates with commaredtit .

$ exit # exit shell and possibly terminal

o when the shell of terminal/xterm terminates, the termiiatm terminates.

o when the login terminal/xterm terminates, you sign off tbenputer (logout).

1.1 File System

e Shell commands interact extensively with the file system.
e Files are containers for data stored on persistent stotesgally disk).
e File names are organized in an N-ary tree: directories ateces, files are leaves.

¢ Information is stored at specific locations in the hierarchy

1.1. FILE SYSTEM 3

/ root of the local file system

bin basic system commands

lib system libraries

usr
bin more system commands
lib more system libraries
include system include files, .h files

tmp system temporary files

u or home user files
jfdoe home directory

oo current, parent directory
.bashrc, .emacs, .login,... hidden files
€s246 course files
al assignment 1 files
g1x.C, g2y.h, g2y.cc, q3z.cpp
other users

Directory named/” is the root of the file system.

bin, lib, usr, include : system commands, system library and include files.

tmp : temporary files created by commandbdred among all usefs

u or home : user files are located in this directory.

Directory for a particular user is called théiome directory.

Each file has a unique path-name in the file system, referemitbén absolute pathname.

An absolute pathnameis a list of all the directory names from the root to the file mam
separated by the backslash charactér “

/uljfdoe/cs246/al/qlx.C # => file q1x.C

Shell provides short names for a file using an implicit staytocation.

At sign on, the shell createscairrent directory variable set to the user’'s home directory.

Any file name not starting with/” is automatically prefixed with the current directory to
create the necessary absolute pathname.

A relative pathnameis a list of all the directory names from the current diregtimrthe file
name separated by the charactéer “

E.g., when usefdoe signs on, home and current directory are sdtifiédoe.

.bashrc # => [uljfdoe/.bashrc
cs246/al/qlx.C # => Juljffdoe/cs246/al/qlx.C

Shell special character” (tilde) expands to user’s home directory.

~/cs246/allqlx.C # => /uljfdoe/cs246/al/qlx.C

4 CHAPTER 1. SHELL

e Every directory contains 2 special directories:
o “.” points to current directory.
Jcs246/allglix.C # => /uljfdoe/cs246/al/qlx.C

o “..” points to parent directory above the current directory.

..I. Jusrfinclude/limits.h # => [usr/include/limits.h

1.2 Pattern Matching

e Shells provide pattern matching of file namegbbing (regular expressions), to reduce
typing lists of file names.

Different shells and commands support slightly differemtris and syntax for patterns.

Pattern matching is provided by charactersy, {}, [], denoting differentvildcards (from
card games, e.g., Joker is wild, i.e., can be any card).

Patterns are composable: multiple wildcards joined intolex pattern (Aces, 2s and Jacks
are wild).

E.g., ifthe current directory is/jfdoe/cs246/al containing fileg1x.C, g2y.h, q2y.cc, g3z.cpp

o x» matches 0 or more characters

$ echo g« # shell globs “g«" to match file names, which echo prints
g1x.C g2y.h g2y.cc g3z.cpp

o ? matches 1 character

$ echo g«.??
g2y.cc

o {...} matches any alternative in the set

$ echo «.{C,cc,cpp}
g1x.C g2y.cc q3z.cpp

o [...] matches 1 character in the set
$ echo q[12]«
g1x.C g2y.h g2y.cc
o ['...] (* csh) matches 1 characteot in the set
$ echo q['1] *
g2y.h g2y.cc gq3z.cpp
o Create ranges using hyphen (dash)
[0- 3] #=>0123

[a- zA- Z] # => lower or upper case letter
['la- zZA-Z] # => any character not a letter

1.2. PATTERN MATCHING 5

o Hyphen is escaped by putting it at start or end of set

[?+]* # => matches file names starting with -, ?, or *

¢ If globbing pattern does not match any files, the patterradita name (including wildcards).

$ echo g+ww g[a- z].cc # files do not exist so no expansion
g*.ww g[a- z].cc

csh prints:echo: No match.
e Hidden files contain administrative information and start with (dot).
o ignored by globbing patterns- « does not match all file names in a directory.

e Patterns matches all hidden files:

o match “”, then zero or more characters, e.gashrc, .login, etc.,and“.”, * ..
o matching “.”, “ ..” can be dangerous

$rm » # remove hidden files, and current/parent directory!!!

e Pattern[!.]» matches all single.” hidden files buthot“.” and “..” directories.

o match “”, then any character NOT a™, and zero or more characters

o = there must be at least 2 characters, the 2nd character damaadot

o “.” starts with dot but fails the 2nd pattern requiring anottiearacter

o “..” starts with dot but the second dot fails the 2nd pattern irgggnon-dot character

e Onthe command line, pressing tlag key after typing several characters of a command/file
name causes the shell to automatically complete the name.

$ ectab # cause completion of command name to echo
$ echo qltab # cause completion of file name to q1x.C

¢ If the completion is ambiguous (i.e., more than one):

o shell “beeps”,
o prints all completions if tab is pressed again,

o then you type more characters to uniquely identify the name.

$ datab # beep
$ datab # print completions
dash date

$ dattab # add “t” to complete command

6 CHAPTER 1. SHELL

1.3 Quoting

e Quoting controls how shell interprets strings of characters.

Backslash(\) : escapeany character, including special characters.

$ echo .[l]« # globbing pattern
.bashrc .emacs .login .vimrc
$ echo \\\\\J\« # print globbing pattern

1]«

Backquote (V) : execute text as a command, and replace it with commandibutp

$ echo ‘whoami' # $ whoami => jfdoe
jfdoe

Globbing does NOT occur within a single/double quoted gtrin

Single quote(’) : protect everything (including newline) except singletgl

$echo ".[!.]* # no globbing

JL]+

$ echo "\.\[\!\.\]\«" # no escaping

VAL

$ echo " abc

> cdf’ # prompt “>" means current line is incomplete
abc

cdf

A single quote cannot appear inside a single quoted string.

o E.g., file name containing special characters (blankséaiids/comment).

$ echo Book Report #2
Book Report

$ echo ' Book Report #2’
Book Report #2

e Double quote (") : protect everything except double quote, backquote, aili@rdsign
(variables, see Sectidn8), which can be escaped.

$echo ".[!.]« \VUV[VIVA]V+ ‘whoami ¥ ${HOST} \"\\$"
L]+ \\\\\\« ¢s246 linux032.student.cs "'$

e To stop prompting or output from any shell commantype<ctrl>- ¢ (C- c), i.e., press:ctrl>
thenc key, causing shell to interrupt current command.

$ echo "abc
>Cc
$

1.4. SHELL COMMANDS

1.4 Shell Commands

e A command typed after the prompt is executed by the shelll(sbemmmand) or the shell
calls a command program (system command, see Seciop. 10.

e Shell commands read/write shell information/state.

e help : display information about bash commands (not sh or csh).

help [command-name]

$ help cd
cd: cd [-L|- P] [dir]
Change the shell working directory.

o without argument, lists all bash commands.

e cd : change the current directory (navigate file hierarchy).

cd [directory]

$cd .

$cd ..

$ cd cs246

$ cd cs246/al

o
o
o

e}

o

e}

e pwd

change to current directory
change to parent directory
change to subdirectory

change to subsubdirectory

argument must be a directory and not a file
cd : move to home directory, same as ~

cd - : move to previous current directory

cd ~/cs246 : move tocs246 directory contained iffdoe home directory

cd /usr/include : move to/usr/include directory

cd ..: move up one directory level

If path does not existd fails and current directory is unchanged.

. print the current directory.

$ pwd
/uljfdoe/cs246

e history and “” (bang!) : print a numbered history of most recent commarndsred and
access them.

$ history

date

whoami

echo Hi There
help

cd ..

pwd

OO, WN B

$ 12 # rerun 2nd history command

whoami

jfdoe

$! # rerun last history command

whoami

jfdoe

$ lec # rerun last history command starting with “ec”
echo Hi There

Hi There

CHAPTER 1. SHELL

@)

IN rerun commanal

Il rerun last command

o

o

Ixyz rerun last command starting with the string2”

@)

Arrow keysA/v move forward/backward through history commands on comrinad

$ A pwd
$Acd..
$ A help

e alias : substitution string for command name.

alias [command-name=string]

o

No spaces before/after™ (csh does not have=").

Providenicknameor frequently used or variations of a command.

@)

$ alias d=date

$d

Mon Oct 27 12:56:36 EDT 2008

$ alias off="clear; exit" # why quotes?

$ off # clear screen before terminating shell

@)

Always use quotes to prevent problems.

o

Aliases are composable, i.e., one alias references another

$ alias now="d"
$ now
Mon Oct 27 12:56:37 EDT 2008

o

Without argument, print all currently defined alias named stnings.

$ alias

alias d="dat e’

alias now="d’

alias off="clear; exit’

Alias CANNOT be command argumelrfsee pagd9).

@)

$ alias cs246assn=/u/jfdoe/cs246/al
$ cd cs246assn # alias only expands for command
bash: cd: cs246assn: No such file or directory

o

Alias entered on command line disappears when shell tetesna

o

Two options for making aliases persist across sessions:

1. insert thealias commands in the appropriate (hiddeshellrc file,

2. place a list otllias commands in a file (ofteraliases) andsource (see page4)
that file from theshellrc file.

e type (cshwhich) : indicate how name is interpreted as command.

1.4. SHELL COMMANDS 9

$ type now

now is aliased to ‘d’

$ type d

d is aliased to ‘date’

$ type date

date is hashed (/bin/date) # hashed for faster lookup
$ type -p date # -p => only print command file- name
/bin/date

$ type fred # no “fred” command
bash: type: fred: not found

$ type - p fred # no output

e echo : write arguments, separated by spaces and terminated ewtlne.

$ echo We like ice cream # 4 arguments
We like ice cream

$echo " W like ice cream" # 1 argument
We like ice cream

e time : execute a command and print a time summary.

o program execution is composed of user and system time.

x user timeis the CPU time used during execution of a program.

x system timeis the CPU time used by the operating system to support exacnit
a program (e.g., file or network access).

o program execution is also interleaved with other programs:

my
execution. Y |'S u |s uisf uj*e*e*|u

-+ r L
x real time is from start to end including interleavings: user + systemeal-time

o different shells print these values differently.

$ time myprog | % time myprog

real 1.2 | 0.94u 0.22s 0:01.2
user 0.9
Sys 0.2

o test if program modification produces change in executiofopmance
x used to compare user (and possibly system) times beforefi@narendification

e exit : terminates shell, with optional integer exit status (netcode)N.
exit [N]

o [N]isinrange 0-255; larger values are truncated (256, 257= 1, etc.) , negative
values (if allowed) become unsigned &1 255).

o exit status defaults to zero if unspecified (see p&fend27 for status usage), which
usually means success.

10 CHAPTER 1. SHELL

1.5 System Commands

e Command programs called by shell (versus executed by shell)

e sh/bash/csh/tcsh : startsubshell

$... # bash commands

$ tcsh # start tcsh in bash

% ... # tcsh commands

% sh # start sh in tcsh

$... # sh commands

$ exit # exit sh

% exit # exit tcsh

$ exit # exit original bash and terminal

o Allows switching among shells for different purposes.

e chsh : set login shell (bash, tcsh, etc.).

$ echo ${0} # what shell am | using ?

/bin/tcsh

$ chsh # change to different shell

Password: XXXXXX

Changing the login shell for jfdoe

Enter the new value, or press ENTER for the default
Login Shell [/bin/tcsh]: /bin/bash

e man : print information about command, option names (see @x@ad function.

$ man bash
information about “bash” command
$ man chsh
information about “chsh” command
$ man man

information about “man” command

e Is: list the directories and files in the specified directory.

Is [-al][file or directory name-list]

o -alistsall files, including hidden files (see page
o -1 generates bnglisting (details) for each file (see paé)

o no file/directory name implies current directory

$ls. # list current directory (non- hidden files)
g1x.C g2y.h qg2y.cc q3z.cpp
$ls-a # list current directory plus hidden files

.bashrc .emacs .login gqi1x.C q2y.h q2y.cc g3z.cpp

1.5. SYSTEM COMMANDS 11

e mkdir : create a new directory at specified location in file hiergrch

mkdir directory-name-list

$ mkdir d d1 d2 d3 # create 4 directories in current directory

e cp: copy files; with the r option, copy directories.

cp [-i]source-file target-file

cp [-i] source-file-list target-directory

cp [-i] -r source-directory-list target-directory

o -iprompt for verification if a target file is being replaced.

o -rrecursively copy contents of a source directory to a targettbry.
$cpflf2 # copy file f1 to f2

$cpflf2f3d # copyfiles fl, f2, f3 into directory d
$ cp -r d1 d2 d3 # copy directories d1, d2 recursively into directory d3

e mv : move files and/or directories to another location in thetierarchy.

mv [-i] source-file target-file
mv [-i] source-file-list/source-directory-list target-directory

o if the target-file does not exist, the source-file is renanmderwise the target-file is
replaced.

o -iprompt for verification if a target file is being replaced.

$ mv f1 foo # rename file f1 to foo

$ mv f2 f3 # delete file f3 and rename file f2 to f3
$ mv f3 d1 d2 d3 # move file f3 and directories d1, d2 into directory d3

e rm : remove (delete) files; with ther option, remove directories.
rm [-ifr] file-list/directory-list

$rm fl f2 f2 # file list
$rm-rdld2 # directory list, and all subfiles/directories
$rm-rfldlf2 #fileand directory list

o -iprompt for verification for each file/directory being remdve
o -f (default) do not prompt for verification for each file/direct being removed.
o -rrecursively delete the contents of a directory.

o UNIX does not give a second chance to recover deleted files;dreful when using
rm, especially with globbing, e.grm = or rm .«

12 CHAPTER 1. SHELL

o UW has hidden directorgnapshot in every directory containing backups of all files in
that directory (per hour for 8 hours, per night for 7 days,\week for 21 weeks)

$ Is .snapshot # directories containing backup files

hourly.0 hourly.6 nightly.4 weekly.11 weekly.17 weekly.3 weekly.9
hourly.1 hourly.7 nightly.5 weekly.12 weekly.18 weekly.4

hourly.2 nightly.0 nightly.6 weekly.13 weekly.19 weekly.5

hourly.3 nightly.1 weekly.0 weekly.14 weekly.2 weekly.6

hourly.4 nightly.2 weekly.1 weekly.15 weekly.20 weekly.7

hourly.5 nightly.3 weekly.10 weekly.16 weekly.21 weekly.8

$ cp .snapshot/hourly.0/ql.h gl.h # restore file from previous hour

e Usealias for setting command options for particular commands.

$ alias cp="cp -i"
$ alias mv="nmv -i"
$ alias rm="rm-i"

which always uses thd option (see pag#l) on commandsp, mv andrm.

e Alias can be overridden by quoting or escaping the commantena
$"rmt -rxyz
$\rm -r xyz
which does not add the option.

e cat/more/less : print files.

cat file-list

o cat shows the contents in one continuous stream.

o more/less paginate the contents one screen at a time.

$ cat gl.h
print file gl.h completely

$ more gl.h

print file g1.h one screen at a time

type “space” for next screen, “q”’ to stop

e Ip/lpstat/lprm : add, query and remove files from the printer queues.

Ip [-d printer-name] file-list
Ipstat [-d] [-p [printer-name]]
Iprm [- P printer-name] job-number

@)

if no printer is specified, use default printgp (3016 in MC3016).

@)

Ipstat : - d prints default printer; p without printer-name lists all printers
each job on a printer’s queue has a unique number.

@)

@)

use this number to remove a job from a print queue.

1.5. SYSTEM COMMANDS 13

$Ip -d ljp_3016 uml.ps # print file to printer ljp_3016

$ Ipstat # check status, default printer ljp_3016
Spool queue: Ip (Ijp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes
2nd jfdoe 403 uml.ps 41262 bytes

$ lprm 403 # cancel printing
services203.math: cfA403servicesl16.student.cs dequeued

$ Ipstat # check if cancelled

Spool queue: Ip (Ijp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

e cmp/diff : compare 2 files and print differences.

cmp filel file2
diff filel file2

o return O if files equal (no output) and non-zero otherwisedoudifference)
o cmp generates the first difference between the files.

file x | filey
$cmpxy
1lan |awn x y differ: char 7, line 4
2| b\n b\n
3| c\n c\n
4 | d\n e\n
5| g\n h\n
6 | h\n i\n
7 g\n

newline is counted> 2 characters per line in files
o diff generates output describing how to change first file intorse:&ice.

$ diff x y
4,5c4 # replace lines 4 and 5 of 1st file
<d # with line 4 of 2nd file

<dg

> e

6a6,7 # after line 6 of 1st file

> # add lines 6 and 7 of 2nd file
>d

o Useful for checking output from previous program with catrprogram.
e find : search for names in the file hierarchy.

find [file/directory-list] [expr]

o if [file/directory-list] omitted, search current directory; “
o if [expr] omitted, match all file names; hame "+"”

14 CHAPTER 1. SHELL

o recursively find file/directory names starting in curremedtory matching patterrt”

$ find - name "t +" # why quotes ?
Jtest.cc
Jtestdata

o -name pattern restrict file names to globbing pattern

o -type f | d select files of typeile or directory

o - maxdepth N recursively descend at mastdirectory levels (C=- current directory)
o logical not, andandor (precedence order)

- not expr
expr - a expr
expr - o expr
- a assume if no operatogxpr expr = expr - a expr
o \(expr \) evaluation order

o recursively find only file names starting in current diregtoratching patternts

$ find . -type f -name "t+" # same as -type f -a - name “t«”
test.cc

o recursively find only file names in file list (excluding hidd@es) to a maximum depth
of 3 matching patterns or «.C.

$ find « - maxdepth 3 -a -type f -a \(-name "t+" -0 -name "x.C")
test.cc

ql.C

testdata/data.C

e egrep : (extended ¢pbal regular xpression pint) search & print lines matching pattern in
files (Google). (same agep - E)

egrep - irn pattern-string file-list

o list lines containing fhain” in files with suffix “.cc”

$ egrep main x.cc # why no quotes ?
gl.cc:int main() {
g2.cc:int main() {

o -iignore case in both pattern and input files

o -rrecursively examine files in directories.

o - n prefix each matching line with line number

o returns O if one or more lines match and non-zero otherwiseni@r intuitive)
o list lines with line numbers containingrain” in files with suffix “.cc”

$ egrep - n main *.cc
ql.cc:33:int main() {
g2.cc:45:int main() {

1.6. FILE PERMISSION 15

o list lines containing fred” in any case in file hames.tex”

$ egrep - i fred names.txt
names.txt:Fred Derf
names.txt:FRED HOLMES
names.txt:freddy jones

o list lines that match start of line*”, match “#include”, match 1 or more space or tab
“[1+, match either "” or “<”, match 1 or more characters:r match either *” or
“>” match end of line $” in files with suffix “.h” or “

$egrep’ "#include[[+["<].+[">]%$" ={hcc} # why quotes ?
egrep: =.h: No such file or directory
gl.cc:#include <iostream>

gl.cc:#include <iomanip>
gl.cc:#include “gl.h”

o egrep pattern is different from globbing pattern (seeman egrep).
Most important difference is<" is a wildcard qualifier not a wildcard.

e ssh: (secure skll) safe, encrypted, remote-login between client/senosts.

ssh[-Y][-luser] [user@] hosthame

o -Y allows remote computer (University) to create windows aral@omputer (home).
o -Ilogin user on the server machine.

o To login from home to UW environment:

$ ssh -Y -1 jfdoe linux.student.cs.uwaterloo.ca

enter password, run commands (editor, programs)
$ ssh Y jfdoe@linux.student.cs.uwaterloo.ca

1.6 File Permission

e UNIX supports security for each file or directory based onr8lkiof users:

o user : owner of the file,
o group : arbitrary name associated with a set of userids,
o other : any other user.

e File or directory has permissions, read, write, and exéseiéech for the 3 sets of users.

o Read/write allow specified set of users to read/write a fileddory.
o Executable/searchable:

« file : execute as a command, e.g., file contains a program &trsshipt,
x directory : search by certain system operations but notiregdneral.

CHAPTER 1. SHELL

e Usels - | command to print file-permission information.

drwxr-x--- 2jfdoejfdoe 4096 Cct 19 18:19 cs246
drwxr-x--- 2jfdoejfdoe 4096 Cct 21 08:51 cs245
“STW------ 1jfdoejfdoe 22714 Cct 21 08:50 test.cc
STW------ 1jfdoejfdoe 63332 Cct 21 08: 50 notes. tex

e Columns are: permissions, #-of-directories (includitiggéhd “..”), owner, group, file size,
change date, file name.

e Permission information is:
d = directory —— user permission

- =file group permissions
v l(. other permissions

d|rwx | |[r—x —

e E.g.,drwxr-x---,indicates

o directory in which the user has read, write and execute ssions,
o group has only read and execute permissions,
o others have no permissions at all.

¢ In general, never allow “other” users to read or write your 8k.
e Default permissions (usually) on:

o file:rw r----- , owner read/write, group only read, other none.
o directory:r wx - - - - - - , owner read/write/execute, group/other none.

e chgrp : change group-name associated with file.
chgrp [- R] group-name file/directory-list

o - R recursively modify the group of a directory.

$ chgrp cs246_05 cs246 # course directory
$ chgrp - R ¢s246_05 cs246/a5 # assignment directory/files

Must associate group along entire pathname and files.
e Creating/deleting group-names is done by system admiaitsir.
e chmod : add or remove from any of the 3 security levels.

chmod [-R] mode-list file/directory-list

o - R recursively modify the security of a directory.

1.7. INPUT/OUTPUT REDIRECTION 17

o mode-listhas the fornsecurity-level operator permission

o

Security levels are denoted hyfor user,g for group,o for other,a for all (ugo).

o

Operator+ adds permission, removes permission.

o

Permissions are denoted bfor readablew for writable andx for executable.

o

Elements of thenode-listare separated by commas.

chmod g-r,0-r,g-w,0-w foo # long form, remove read/write for group/others users
chmod go- rw foo # short form

chmod g+rx cs246 # allow group users read/search

chmod - R g+rw cs246/a5 # allow group users read/write, recursively

To achieve desired access, must associate permissionexting pathname and files.

1.7 Input/Output Redirection
e Every command has three standard files: input (0), outpur{d)error (2).

e By default, these are connected to the keyboard (input) ars (output/error).

1
LE R R NN NNNN] O
semmsaaaas commang
2
$ sort -n # -n means numeric sort
7 sort reads unsorted values from keyboard
30
5
C-d close input file
5 sort prints sorted values to screen
-
30

e To close an input file from the keyboardype<ctri>- d (C- d), i.e., pressctrl> thend key,
causing the shell to close the keyboard input file.

e Redirection allows:

o input from a file (faster than typing at keyboard),

o saving output to a file for subsequent examination or praegss

e Redirection performed using operater®r input and>/ >> for output to/from other sources.

$ sort -n < input 1> output 2> errors

18 CHAPTER 1. SHELL

1>L

1>> output

input sort —

< 2>
2>>

errors

o < means read input from file rather than keyboard.

o >(same ag>), 1>, 2> means (create if needed) file and write output/errors todilear
than screen (destructive).

o >> (same ad>>), 1>>, 2>> means (create if needed) file and append output/errors to
file rather than screen.

e Command is (usually) unaware of redirection.

e Can tie standard error to output (and vice versa) usigj ‘= both write to same place.

$ sort -n < input 1> output 2>&1 # stderr (2) goes to stdout (1)
$ sort -n < input 1> output 1>&2 # stdout (1) goes to stderr (2)

1 —
2>&1 | output

— 7
input = sort —
< 1>&2 1 errors
2
e Order of tying redirection files is important.
$ sort 2>&1 > output # tie stderr to screen, redirect stdout to “output”
$ sort > output 2>&1 # redirect stdout to “output”, tie stderr to “output”

To ignore output, redirect to pseudo-fiteev/null.

$ sort data 2> /dev/null # ignore error messages

Redirection requires explicit creation of intermediatan{porary) files.

$ sort data > sortdata # sort data and store in “sortdata”

$ egrep - v "abc" sortdata > temp # print lines without “abc”, store in “temp”
$trab <temp > result # translate @’ s to b’ s and store in “result”

$ rm sortdata temp # remove intermediate files

Shell pipe operatof makes standard output for a command the standard inputdanehkt
command, without creating intermediate file.

$ sort data | grep -v "abc" | tr a b > result

1.8. VARIABLES 19

1.8

Standard error is not piped unless redirected to standdpdibu

$ sort data 2>&1 | grep -v "abc" 2>&1 | tr a b > result 2>&1
now both standard output and error go through pipe.

Print file hierarchy using indentation (see p&jye

$ find cs246 $ find cs246 | sed "s| [~/]+/] |g
€s246 cs246

cs246/al al

cs246/al/lqlx.C q1x.C

cs246/allg2y.h g2y.h

cs246/allq2y.cc g2y.cc

€s246/al/q3z.cpp q3z.cpp

sed : inline editor, pattern changes all occurrenagof string[*/]«/ (zero or more characters
not “/” and then 1”, where “” is a wildcard qualifier not a wildcard) to 3 spaces.

Variables
syntax :[_a- zA- Z][_a- zA- Z0- 9] where %" is wildcard qualifier
case-sensitive

VeryLongVariableName Pagel Income_Tax _75

Some identifiers are reserved (eify.while), and hencekeywords.

Variables ONLY hold string values (arbitrary length).

Variable is declaredynamicallyby assigning a value with operator™
$ cs246assn=/u/jffdoe/cs246/al # declare and assign

No spaces before or after=".

A variable’s value is dereferenced using operat@'sot “ ${}".

$ echo $cs246assn ${cs246assn}
/uljffdoe/cs246/al /uljffdoe/cs246/al
$ cd $cs246assn # or ${cs246assn}

Unlike alias, variable can be command or argument (see §age

$ alias d=date

$d # alias expands as command

Sun Apr 15 11:20:11 EDT 2012

$ d=date

$ $d # variable expands as command

Sun Apr 15 11:20:20 EDT 2012

$ echo d # alias does not expand as argument
d

$ echo ${d} # variable expands as argument

date

20 CHAPTER 1. SHELL

Dereferencing undefined variable returns empty string.

$ echo $xxx # no output just newline
empty line

Beware concatenation.

$ cd $cs246assndata # change to /u/jfdoe/cs246/aldata

Where does this move to?

Always use braces to allow concatenation with other text.

$ cd ${cs246assn}data # cd /u/jffdoe/cs246/aldata

Beware commands/arguments composed in variables.

$ out=sortdata # output file
$ dsls="Is | sort -r >${out}’ # store files names in descending (- r) order
$ ${dsls} # execute command

Is: cannot access |: No such file or directory

Is: cannot access sort: No such file or directory
Is: cannot access >: No such file or directory

Is: cannot access ${out}: No such file or directory

Behaviour results because the shell tokenizes, substiatéables, and then executes.

Shell sees only one tokens${tisls}’, so the tokensvithin the variable are not marked cor-
rectly, e.g., {” and ">" not marked as pipe/redirection tokens.

Then variable substitution fos{dsls}’, givingtokens I s* ' |" "sort’ "-r’ "> "${out}’,
sols is the command and remaining tokens are file names.

Why no “cannot access” message above f@r

To make this work, shell needs to tokenize and substitute@nsktimebeforeexecution.

eval command causes its arguments to be processed by shell.

$ eval ${dsls} # tokenize/substitute then tokenize/substitute
$ cat sortdata # no errors, check results
list of file names in descending order

o 1sttokenize/substitute givesal 'I's’ '|’ "sort’ '-r’ '> ' ${out}’
o 2nd tokenize/substitute givéss | sort -r > sortdata’, which shell executes

1.9 Arithmetic
e Shell variables have type string.

$i=3 # i has string value “3” not integer 3

e Arithmetic requires integers, + 7, not strings, 3" + "17".

1.10. PROGRAMMING 21

Arithmetic is performed by:

o converting a string to an integer (if possible),
o performing an integer operation,
o and converting the integer result back to a string.

bash performs these steps with shell-command opegtipression)).
$ echo $((3 +4 - 1))
6
$ echo $((3 + ${i} « 2))
9

$ echo $((3 + ${k})) # k is unset
bash: 3 + : syntax error: operand expected (error token is " ")

Basic integer operations, -, x, /, % (modulus), with usual precedence, afd

For shells without arithmetic shell-command (e.g., sh),asbe system commaredpr.

$ echo ‘expr3 +4 - 1' # for sh, csh

6
$ echo ‘expr 3 + ${i} \ « 2 # escape
9
$ echo ‘expr 3 + ${k} # k is unset

expr: non- numeric argument

1.10 Programming

e A shell program or script is a file (scriptfile) containing shell commands to be executed.
#/bin/bash [-x]
date # shell and OS commands

whoami
echo Hi There

e First line should begin with magic comment#!* (sha-bang) with shell pathname for exe-
cuting the script.

e It forces a specific shell to be used, which is run as a subshell

e If the “#!” line is missing, a subshell of the same kind as the invokimngjlss used for sh
shells pash) and sh is used for csh sheltsgh).

e Optional- x is for debugging and prints trace of the script during execoi.

e Script can be invoked directly using a specific shell:

$ bash scriptfile # direct invocation
Sat Dec 19 07:36:17 EST 2009
jfdoe

Hi There!

22

CHAPTER 1. SHELL

or as a command if it has executable permissions.

$ chmod u+x scriptfile # make script file executable

$./scriptfile # command execution
Sat Dec 19 07:36:17 EST 2009

jfdoe

Hi There!

e Script can have parameters.

#l/bin/bash [-x]

date

whoami

echo ${1} # parameter for 1st argument

e Arguments are passed on the command line:

$./scriptfile " Hel | o Wor | d"
Sat Dec 19 07:36:17 EST 2009
jfdoe

Hello World

$./scriptfile Hello World

Sat Dec 19 07:36:17 EST 2009
jfdoe

Hello

Why noworld?
e Special parameter variables to access arguments/result.

o ${#} number of arguments, excluding script name
o ${0} always name of shell script
echo ${0} # in scriptfile
printsscriptfile.

o ${1}, ${2}, ${3}, ... refers to arguments by position (not name), i.e., 1st, 2ndi, .3
argument

o ${x} and${@} list all arguments, e.g&{1} ${2} ..., excluding script name
Difference occurs inside double quotes:

x "${+}" arguments as a single string string, '§{,1} ${2} .. ."
* "${@" arguments as separate strings, € ${1}" "${2}" ...

o ${$} process id of executing script.

o ${?} exit status of the last command executed; O ofteexited normally.

1.10. PROGRAMMING 23

$ cat scriptfile

#!/bin/bash

echo ${#} # number of command- line arguments
echo ${0} ${l} ${2} ${3} ${4} # some arguments

echo "${x}" # all arguments as a single string
echo "${@" # all arguments as separate strings
echo ${$} # process id of executing subshell

exit 21 # script exit status

$./scriptfile al a2 a3 a4 a5

5 # number of arguments
scriptfile al a2 a3 a4 # script- name / args 1-4
al a2 a3 a4 a5 # args 1-5, 1 string

al a2 a3 a4 a5 # args 1- 5, 5 strings
27028 # process id of subshell
$ echo ${?} # print script exit status
21

e Interactive shell session is a script reading commands $tamdard input.
$ echo ${0} # shell you are using (not csh)
bash

1.10.1 Routine

e A routine is defined as follows:

routine_name() { # number of parameters depends on call
commands
}

e Invoke like a command.

routine_name [args ... |

e E.g., create aroutine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g-einput-file[output-file]"
exit 1 # terminate script with non- zero exit code

}

usage # call, no arguments

e Routine arguments are accessed the same as in the script.

CHAPTER 1. SHELL

$ cat scriptfile

#!/bin/bash

rtn() {
echo ${#} # number of command- line arguments
echo ${O} ${1} ${2} ${3} ${4} # some arguments
echo "${*}" # all arguments as a single string
echo "${@" # all arguments as separate strings
echo ${$} # process id of executing subshell
return 17 # routine exit status

}

rtn al a2 a3 a4 a5 # invoke routine

echo ${?} # print routine exit status

exit 21 # script exit status

$ /scriptfile # run script

5 # number of arguments

scriptfile al a2 a3 a4 # script- name / args 1-5

al a2 a3 a4 a5 # args 1- 5, 1 string

al a2 a3 a4 a5 # args 1- 5, 5 strings

27028 # process id of subshell

17 # routine exit status

$ echo ${?} # print script exit status

21

e Routines/variables must be created before used, are tedmevihroughout the script, and
can be removed.

rinl() {
var=3 # new variable
rtn2 # call rtn2, see all routines
unset rtn2 # remove routine!!!
}
rtn2() {
echo ${var} # see all variables
unset var # remove variable!!!
}
rtnl # call

e source filename : execute commands from a file in the current shell.

o For convenience or code sharing, a script may be subdividednultiple files.
o E.g., put commonly used routines or set of commands intoragpéles.

o No “#!...” attop, because not invoked directly like a script.

@)

Sourcing fileincludesit into current shell script andvaluatedines.

source ./aliases # include/evaluate aliases into .shellrc file
source ./usage.bash # include/evaluate usage routine into scriptfile

@)

Created or modified variables/routines from sourced file @adiately affect current
shell.

1.10. PROGRAMMING 25

1.10.2 Environment Variables

e Each shell has a set of environment (global) and script (joaeameters) variables.
e Shell has & sets of variables: environment, local, arguments for neutiallsC; ;.

Shell (command)

Envir: $E0 $E1 $E2...
Local: $LO $L1 $L2...
0 —= Args:: $0 $1 $2...

: (call stack) -
Args: $0 $1 $2...

al

e New variable declare on the local list.

$ var=3 # new local variable

e A variable is moved to environment list if exported.

$ export var # move from local to environment list

e Login shell starts with a number of useful environment Jalga, e.qg.:

$ set # print variables/routines (and values)
HOME=/ul/jffdoe # home directory
HOSTNAME=linux006.student.cs # host computer
PATH=... # lookup directories for OS commands
SHELL=/bin/bash # login shell

e A script executes in its own subshell withcapy of calling shell’s environment variables
(works across different shells), but not calling shell'sdts or arguments.

$./scriptfile # execute script in subshell

~ Envir: $E0 $E1 $E2... Shell

copied

e When a (sub)shell ends, changes to its environment vasaenot affect its containing
shell environment variables only affect subshells

e Only put a variable in the environment list to make it accelsk by subshells.

1.10.3 Control Structures

e Shell provides control structures for conditional andat®e execution; syntax for bash is
presented (csh is different).

26

1.10.3.1 Test

e test expression is constructed using the following:

test | operation | priority
I expr not high
\(expr\) evaluation orderrfiust be escapg
exprl - a expr2 | logical and (ot short-circuit)
exprl - o expr2 | logical or (hot short-circuit) low

e test comparison is performed using the following:

test | operation
stringl = string2 equal ot ==
stringl != string2 not equal
integerl - eq integer2 | equal
integerl - ne integer2 | not equal
integerl - ge integer2 | greater or equal
integerl - gt integer2 | greater
integerl - le integer2 | less or equal
integerl - It integer2 | less

- d file
- e file
- f file
- r file
-w file
- x file

$ i=3

$test 3-1t4
$ echo ${?}
0

$ test ‘whoami' = jfdoe

$ echo ${?}
1

exists and directory
exists

exists and regular file
exists with read permission

exists with write permission

exists with executable or searchable

integer test
true

string test
false

$ test 2 - It ${i} - o ‘whoami' = jfdoe # compound test

$ echo ${?}

[-eglcc]
echo ${?}

o & O

true

CHAPTER 1. SHELL

e test ([]) command compares strings, integers and queries files.

e Logical operatorsa (and) and o (or) evaluate both operands (see Secdn3, p. 47.

e test returns O if expression is true and 1 otherwise (counterting).

file test, using brackets [] with spaces

true

1.10. PROGRAMMING 27

1.10.3.2 Shift

e shift [N]: destructively shift parameters to the I&fpositions, i.e.${1}=${N+1}, ${2}=${N+2},
etc., andb{#} is reduced by.

o IfnoN, 1is assumed.
o If N is O or greater thars{#}, there is no shift.

$ cat scriptfile $ Iscriptfile 1234567
#!/bin/bash 1
echo ${1}; shift 1| 2
echo ${1}; shift 2 | 4
echo ${1}; shift 3 |7

echo ${1}

1.10.3.3 Selection
e An if statement provides conditional control-flow.

if test-command if test-command ; then
then
commands commands
elif test-command elif test-command ; then
then
commands commands
else else
commands commands
fi fi

Semi-colon is necessary to sepatat@-command from keyword.
e test-command is evaluated; exit status of zero implies true, otherwissefa

e Check for different conditions:

if test "‘whoam ™ ="jfdoe" ; then
echo "valid userid"

else
echo "invaliduserid"

fi

if diff filel file2 > /dev/null ; then # ignore diff output
echo "sane files"

else
echo "different files"

fi

if [-x /usr/bin/cat] ; then # alternate syntax for test
echo "cat comand avai |l abl "

else
echo "no cat command"

fi

28 CHAPTER 1. SHELL

e Beware unset variables or values with special characterg)(gblanks).

if [${var} ="yes’]; then ... # var unset =>if [='yes']

bash: [=: unary operator expected

if [${var} ="yes’];then ... #var=fabc"=>if[abc="yes]
bash: [: too many arguments

if ["${var}" ="yes’];then ... # var unset =>if [" = yes']

if ["${var}" ="yes’];then ... #var=tabc'=>if[“abc’="yes]

When dereferencing, always quote variablesxcept for safe variables{#}, ${$}, ${?},
which generate numbers.

e A case statement selectively executes oneNbfalternatives based on matching a string
expression with a series of patterns (globbing), e.g.:

case expression in

pattern | pattern | ...) commands ;;
*) commands ;; # optional match anything
esac

e When a pattern is matched, the commands are executed yj) Bntl control exits thease
statement.

¢ If no pattern is matched, thmase statement does nothing.
e E.g., command with only one of these options:
-h, --help, -v, --verbose, -f file, --file file

usecase statement to process option:

usage() { ...} # print message and terminate script
verbose=no
case "${1}" in # process single option
"-h" | "--help’) usage ;;
"-v' | ' --verbose’) verbose=yes ;;
- --file) # has additional argument
shift 1 # access argument
file="${ 1} "
*) usage ;; # default, has to be one argument
esac

if [${#} -ne 1] ; then usage ; fi # check only one argument remains
execute remainder of command

1.10.3.4 Looping
e while statement executes its commands zero or more times.

while test-command while test-command ; do
do
commands commands
done done

1.10. PROGRAMMING 29

e test-command is evaluated; exit status of zero implies true, otherwissefa

e Check for different conditions:

search command- line parameters for “- x”

while ["${1}" '="-x"]; do # string compare
shift # destructive
done

print parameters hard way, non- destructive

i=1

while [${i} -le ${#}] ; do
eval arg="\${${i }}" # 1st step ${1}, 2nd step argument 1
echo "${arg}" # process value
I=$((${i} + 1))

done

process files datal, data2, ...

i=1

file=data${i}

while [-f"${file}"],; do # file regular and exists?
process file
i=$((${i} + 1)) # advance to next file
file=data${i}

done

o for statement is a specializedhile statement for iterating with an index over list of strings.

for index [in list] ; do
commands

done

for name in ric peter jo mike ; do
echo ${name}

done

for argin "${@" ; do # process parameters, why quotes?
echo ${arg}

done

If no “in list”, iterate over quoted parameters, i.eb{ @ " .

e Or over a set of values:
for ((init- expr; test- expr; incr- expr)); do # double parenthesis

commands
done

for ((i=1;i<=$#:i+=1)) do
eval echo "\${${i}}" # ${1-#}
done

e Use directly on command line:

$ for file in «.C ; do cp "${file}" "${file}".old ; done

30 CHAPTER 1. SHELL

e A while /for loop may contairbreak andcontinue to terminate loop or advance to the next
loop iteration.

process files datal, data2, ...
i=1
while [0] ; do # while true, infinite loop
file=data${i} # create file name
if[! -f"${file}"];then break ; fi # file not exist, stop ?
process file

if [I ${?} -ne 0] ; then continue ; fi # bad return, next file
process file
i=$((${i} + 1)) # advance to next file

done

1.11. CLEANUP SCRIPT

1.11 Cleanup Script

#!/bin/bash
#

List and remove unnecessary files in directories

#

Usage: cleanup [[-r|R] [-i|f] directory- name]+
-r|]- R clean specified directory and all subdirectories
-i|-f prompt or not prompt for each file removal

Examples:
$ cleanup jfdoe
$ cleanup -R .

$ cleanup -r dirl -i dir2 -r - f dir3

Limitations:

« only removes files named: core, a.out, *.0, *.d
« does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${O0} [[-r | -R] [-i | -f] directory-name]+"
exit 1

}

defaults() {
prompt="-i"
depth="- maxdept h 1"

remove() {

defaults for each directory
do not prompt for removal
not recursive

for file in “ind "${1}" ${depth} -type f-a \(-name 'core’ -o\

-name 'a.out’ -o -name ’ *

do

echo "${file}"

rm "${pronpt}" "${file}"
done

i}f [${#} -eq 0] ; then usage ; fi
defaults
while [${#} -gt 0] ; do
case "${1}" in
"-h") usage ;;
ar" 1 "-R") depth="" ;;
it -1 prompt="${1}" ;
*)
remove "${1}"
defaults
esac
shift
done

.0 -o-name’'*.d \)

print removed file

no arguments ?
set defaults for directory
process command- line arguments

help ?

recursive ?

prompt for deletion ?

directory name ?

remove files in this directory
set defaults for directory

remove argument

31

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/cleanup

32 CHAPTER 1. SHELL

1.12 Regress Script

#!/bin/bash

#

Compare output from two programs printing any differences.

#

Usage: regress programl ' programl- options’ program2 ' program2- options’

[argument- list]

#

Examples:

regressls’’ Is’’

regresslils’'’ Is’’ "“abc”

regress cat’’ cat’-n’ regress regress

regress regress “cat '’ cat’-n’' " regress “cat’’ cat’'-n’" regress regress
regress myprog ' -w' samplesoln ' -w' 27 100 -2 - 100

usage() {

echo "Usage: ${0} programl \"progranml-options\"" \
“progran? \ " progran2-options\" argunent-1list"
exit 1

|}orocess() {
for parm in "${@" ; do # process parameters
must use eval to reevaluate parameters
eval ${progl} ${optsl} ${parm} > /tmp/tmpl_${$} 2>&1 # run programs
eval ${prog2} ${opts2} ${parm} > /tmp/tmp2_${$} 2>&1 # and save output
diff /tmp/tmpl_${$} /tmp/tmp2_${$} # compare output from programs
if [${?}-eq0]; then # check return code
echo "identical output”
fi
rm /tmp/tmpl_${$} tmp/tmp2_${$} # remove temporary files
done
}
if [${#} -1t 4] ; then usage ; fi # check command- line arguments
if [!-x"‘type -P${1}"]; then echo "prograntl i s unexecut abl e" ; usage ; fi
if [!-x"‘type -P${3}"];then echo "progran? i s unexecutabl e" ; usage ; fi

progl=${1} # copy first 4 parameters
opts1=${2}

prog2=%${3}

opts2=${4}

shift 4 # remove first 4 parameters

if [${#} -eq 0] ; then process "" # process empty argument- list

else process "${@" ; fi # process argument- list

e \Withouteval:

regress Is '’ Is abc"

becomess a b c, ratherthars "a b ¢’ .

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/regress

2 CH+

2.1 First Program

Java | C | C+ |
import java.lang.x; // implicit #include <stdio.h> #include <iostream> // access to output
class Hello { using namespace std; // direct naming

public static
void main(String[] args) { int main() { int main() { // program starts here
System.out.printin(" Hel | o! "); printf("Hel I ol'\' n"); cout << "Hel | o!" << endl;
System.exit(0); return O; return 0O; // return O to shell, optional
} } }
}

e #include <iostream> copies (imports) basic I/O descriptions (no equivalentwva).

e using namespace std allows imported I/0O names to be accessed directly (othergisli-
fication is necessary, see Sect7, p. 158.

e int main() is the routine where execution starts.
e curly braces{ ... }, denote a block of code, i.e., routine bodynhadin.

e cout << "Hell o!" << endl prints"Hel | 0! * to standard output, callesbut (System.out in
Javastdout in C).

e endl starts a newline aftérHel | 0! " (printin in Java, \ n’ in C).

e Optionalreturn 0 returns zero to the shell indicating successful compleaticthe program;
non-zero usually indicates an error.

e main magic! If no value is returned, 0 is implicitly returned.

e Routineexit (JavaSystem.exit) terminates a program at any location and returns a code to
the shell, e.g.exit(0) (#include <cstdlib>).

o LiteralsEXIT_SUCCESS andEXIT_FAILURE indicate successful or unsuccessful ter-
mination status.

o e.g.,return EXIT_SUCCESS or exit(EXIT_FAILURE).

e Java/C/C+ program are transformed from human readahie (figxt) to machine readable
form (numbers) for execution, calledmpilation.

e Compilation is performed by @ompiler; several compilers exist for C+.

(© Peter A. Buhr

33

34 CHAPTER 2. C++

e Compile withg++ command:

$ g++ firstprogram.cc # compile program, generate executable "a. out "
$.Ja.out # execute program; execution permission

C program-files use suffix; C+ program-files use suffixeS / .cpp / .cc.

2.2 Program Structure

e A C+ program is composed of comments for people, and statesnia both people and the
compiler.

e A source file contains a mixture of comments and statements.

e The C/C+ compiler only reads the statements and ignoresoiimenents.

2.2.1 Comment
e Comments document what a program does and how it does it.

e Comment may appear where whitespace (space, tab, nevdiakdwed.

Two kinds of comments in C/CH (same in Java):

| Java/C/CH |

1| /x ...«
2 | /l remainder of line

First comment begins with the start symbel,and ends with the terminator symbgl,and
hence, can extend over multiple lines.

Cannot be nested one within another

S Y A

end comment treated as statements

Be extremely careful in using this comment to elide/comnrmaritcode:

[+ attempt to comment- out a number of statements
while (...) {
I ... nested comment causes errors «/

it (...){

I« ... nested comment causes errors x/

}
+l

e Second comment begins with the start symbiplnd continues to the end of the line, i.e.,
only one line long.

2.3. DECLARATION 35

e Can be nested one within another:
/I ... [/l ... nested comment

so it can be used to comment-out code;:

Il while (...){

Il [+ ... nested comment does not cause errors /
/! if (...){

/! /l ... nested comment does not cause errors
/! }

11}

(page88 presents another way to comment-out code.)

2.2.2 Statement

e The syntax for a C/C+ statement is a series of tokens segpHgitwhitespace and terminated
by a semicolon (except for a bloc§).

2.3 Declaration

e A declaration introduces names or redeclares names fronopedeclarations.

2.3.1 Identifier
e name used to refer to a variable or type.

e syntax :[_a- zA- Z][_a- zA- Z0- 9]« where %" is wildcard qualifier
e case-sensitive:

VeryLongVariableName Pagel Income_Tax _75
e Some identifiers are reserved (eify.while), and hencekeywords.

2.3.2 Basic Types

Java C/CH
boolean || bool (C <stdbool.h>)
char char / wchar _t ASCII / unicode character
byte char / wchar _t integral types
int int
float float real-floating types
double double
label type, implicit

e C/CH+ treatchar / wchar _t as character and integral type.

e Javatypeshort andlong are created using type qualifiers (see Seci@¥).

36 CHAPTER 2. C++

2.3.3 Variable Declaration

e C/CH declaration: type followed by list of identifiers, ext label with an implicit type
(same in Java).

| Java/C/CH |
char a, b, c, d;
int i, j, k;
double x, v, z;
id :
e Declarations may have an initializing assignment (exceptiélds instruct /class , see Sec-
tion2.7.7, p. 7X
int i = 3; inti=3,j=4,k=5;
int j =4
int k =5;

e Value of anuninitialized variable is usually undefined (see pagé).

int i
cout << i << endl; /I i has undefined value

Some C/C+ compilers check for uninitialized variablegfwall option, Sectior8.2.2, p. 16)

2.3.4 Type Qualifier
e Other integral types are composed with type qualifiers nyadifintegral typeshar andint.

e C/C+ provide sizeghort, long) and signed-nessifjned = positive/negativeynsigned
= positive only) qualifiers.

e int providesrelative machine-specific types: usualht > 2 bytes for 16-bit computer and
4 bytes for 32/64-bit computenng > int, long long > long .

e #include <climits> specifies names for lower/upper bounds of a type’s rangeloésdor a
machine, e.g., a 32/64-bit computer:

| integral types | range (lower/upper bound name)
char (signed char) SCHAR_MIN to SCHAR_MAX, e.g.,- 128 to 127
unsigned char 0 toUCHAR_MAX, e.g.0 to 255
short (signed short int) SHRT_MIN to SHRT_MAX, e.g.,- 32768 t0 32767
unsigned short (unsigned short int) 0 to USHRT_MAX, e.g.,0 to 65535
int (signed int) INT_MIN to INT_MAX, e.g.; 2147483648 t0 2147483647
unsigned int 0 toUINT_MAX, e.g.,0 to 4294967295
long (signed long int) (LONG_MIN to LONG_MAX),
e.g.,- 2147483648 t0 2147483647
unsigned long (unsigned long int) 0 to (ULONG_MAX, €.g.0 to 4294967295
long long (signed long long int) LLONG_MIN to LLONG_MAX,
€.g.; 9223372036854775808 t0 9223372036854775807
unsigned long long (unsigned long long int) | O to (ULLONG_MAX), e.g.,0 t0 18446744073709551615

2.3. DECLARATION 37

e #include <stdint.h> providesabsolutetypes[u]intN_t for signed /unsigned N =8, 16, 32,
64 bits.

integral types\ range (lower/upper bound name) \

int8_t INT8_MIN to INT8_MAX, e.g.,- 128 to 127
uint8_t 0 toUINT8_MAX, e.g.,0 to 255
intl6_t INT16_MIN to INT16_MAX, e.g.,- 32768 to 32767
uintl6_t 0 toUINT16_MAX, e.g.,0 to 65535
int32_t INT32_MIN to INT32_MAX, e.9.,- 2147483648 t0 2147483647
uint32_t 0 toUINT32_MAX, e.g.,0 t0 4294967295
int64 _t INT64_MIN to INT64_MAX,
€.9.,- 9223372036854775808 t0 9223372036854775807
uint64 _t 0 toUINT64_MAX, e.g.,0 to 18446744073709551615

e C/CH provide two basic real-floating typéisat and double , and one real-floating type
generated with type qualifier.

e #include <cfloat> specifies names for precision and magnitude of real-floatahges.

real-float types range (precision, magnitude)

float FLT_DIG precisionFLT_MIN_10_EXP to FLT_MAX_10_EXP,
e.g,. 6+ digits over range 18 to 10°, IEEE (4 bytes)
double DBL_DIG precision DBL_MIN_10_EXP to DBL_MAX_10_EXP,

e.g., 15+ digits over range 18’ to 10°°8, IEEE (8 bytes)
long double LDBL_DIG precisionLDBL_MIN_10_EXP to LDBL_MAX_10_EXP,
e.g., 18-33+ digits over range 1#%?to 10°%%2 |EEE (12-16 bytes

float : +1.17549435e- 38 to +3.40282347e+38
double : £2.2250738585072014e- 308 to +£1.7976931348623157e+308
long double : 4+3.36210314311209350626e- 4932 to +1.18973149535723176502e+4932

2.3.5 Literals
e Variables contain values, and each value hasrestant(C) or literal (C+) meaning.

e E.g., the integral value 3 is constant/literal, i.e., itimainchange, it always means 3.

3 =7; [/l disallowed

Every basic type has a set of literals that define its values.

A variable’s value always starts with a literal, and changasnother literal or computation.

C/C+ and Java share almost all the same literals for the bgses.

38 CHAPTER 2. C++

| type | literals |
boolean| false, true
character) "a’,"\"’
integral | decimal :123, - 456, 123456789
octal, prefix0 : 0144, - 045, 04576132
hexadecimal, prefiRX / 0x : Oxfe, - 0X1f, Oxe89abc3d
real-floating| .1, 1., - 1., 0.52, - 7.3E3, - 6.6e- 2, E/e exponent

e Use the right literal for a variable’s type:

bool b = true; /l not 1
int i =1; /Il not 1.0
double d = 1.0 /Il not 1
char c ="a’ ; /I not 97

e Escape sequence provides quoting of special characterhin #iteral using a backslash,

W\ backslash

T\ single quote

"\t","\n" | (special names) tab, newline, ...

"\ O zero, string termination character

"\ 000’ octal valuepoo up to 3 octal digits

"\ xhh’ hexadecimal valuéh up to 2 hexadecimal digits fahar,
up to 4 hexadecimal digits favchar _t (not Java)

cout << "\\' << endl
<< "\’ << endl
<< '"\t’ <<"\t’ << "X’ <<’'\n" /I newline value 10
<<’y <<’'\12" |/l octal for 10
<< 'z’ <<'\xa'; |/l hexadecimal for 10

X

y

yA

e C/CH provide user named literals (write-once/read-omlables) with type qualifiezonst

(Javafinal).

| Java | C/C+ |
final char Initial = ' D ; const char Initial =' D ;
final short int Size = 3, SupSize; || const short int Size = 3, SupSize = Size + 7;
SupSize = Size + 7; disallowed
final double PI = 3.14159; const double PI = 3.14159;

e C/C+-const variablemustbe assigned a value at declaration (or by a constructorlaidec
tion); the value can be the result of an expression.

2.4. EXPRESSION 39

e A constant variable can (only) appear in contexts wheresgalictan appear.

Size = 7; [/ disallowed

e Good practise is to name literals so all usages can be chaméd initialization value.

const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;
e There are trillions of literals>- cannot all be stored in memory.

e Only the literals in a program use storage, some are embedttecomputer instructions.

2.4 Expression

| Java | C/CH | priority
postfix., [], call 2, ., ->], call, cast |high
prefix|+, -, !, ~, cast, +, -, !, ~ &, *, cast,
(unary)new new, delete, sizeof
binary|«, /, % *, 1, %
+, - +, -
bit shift|<<, >>, >>> <<, >>
relational<, <=, >, >=, instanceof <, <=, >, >=
equality==, != ==, I=
bitwise & and &
A exclusive-or N
| or |
logicall&& short-circuit &&
[[l
conditional?: ?:
assignmene, +=, - =, x=, /=, %= =, 4=, -, 2=, /=, %=
<<=, S>>z, >35>z, &=, M=, =K<=, >>=, &=, M=, |=
comma : low

e Expression evaluation is like algebra:

o operations exist and are called using name with parenggsigument(s).

abs(-3); |3
sqrt(x); VX
pow(X, y); XY

o operators are prioritized and performed from high to low.
X +vyxsgrt(z); /I call, multiple, add
o operators with same priority are done left to right

X+y- z /I add, subtract
3.0/v+w, /I divide, multiple

except for unary?, and assignment operators, which associate right to left.

40 CHAPTER 2. C++

- ~X; /I complement, negate
*&p; /I address- of, dereference
X =y =z Il ztoytox

o parentheses control order of evaluation, i.e., overritsru

X+ Yz /I multiple, add
x+y) =z /I add, multiple

e Subexpressions and argument evaluation is unspecified lgfvo right)

I+

i k+j); /I either + done first
i j=1)

(i)« (

(i=])+(; I either = done first
g(i)+f(k)+h(j), /g f orh caled in any order

f(p++, pt+, p++); /I arguments evaluated in any order

e Beware ofoverflow.
unsigned int a = 4294967295, b = 4294967295, ¢ = 4294967295;
(a+b)/c; /I => 0 as a+b overflows leaving zero
alc+b/c /I => 2

Perform extra operations (2 divides) to keep numbers small.
e C+ relational/equality returfalse /true ; C returno/1.

e Referencing (address-08, and dereference, operators (see Sectiéh7.2, p. 57 do not
exist in Java because access to storage is restricted.

e Pseudo-routineizeof returns the number of bytes for a type or variable (not in Java

long int i;
sizeof (long int); /I type, at least 4
sizeof (i); /I variable, at least 4

Thesizeof a pointer (type or variable) is the size of the pointer on gaaticular computer
and not the size of the type the pointer references.

e Bit-shift operatorss< (left), and>> (right) shift bits in integral variables left and right.

o left shift is multiplying by 2, modulus variable’s size;

o right shift is dividing by 2 if unsigned or positive (like Jav>>); otherwise undefined.

int x, vy, z;

X=y=2z=1

cout << (x << 1) <<’ ' << (y << 2) <<’ ' << (z << 3) << end];
X=y=1z=16;

cout << (x >> 1) <<’ ' << (y>>2) <<’ ' << (z >> 3) << end];
248

842

Why are parenthesis necessary?

2.4. EXPRESSION 41

¢ Division operator/, accepts integral and real-float operands, but truncatestégrals.

3/4 /I 0 not 0.75
3.0/4.0 /l 0.75

e Remainder (modulus) operateés, only accepts integral operands.

o If either operand is negative, the sign of the remainder [gementation defined, e.g.,
-3% 4,3 % -4,-3 % -4canbe3or-3.

e Assignment is an operator; useful fmscade assignmeno initialize multiple variables of
the same type:

: /I cascade assignment

o Other uses of assignment in an expression are discouragedke., assignments only
on left side.

e General assignment operators, elgs,+= rhs implicitly rewritten as:
temp = &(lhs); xtemp = «temp + rhs;
not:
Ihs = Ihs + rhs;
hence, the left-hand sidias, is evaluated only once:

v[f(3)] += 1; /I only calls f once
v[f(3)] =Vv[f(3)] + 1; Il calls f twice

e Comma expression allows multiple expressions to be ewveduata context where only a
single expression is allowed (see pa@e.

Xy f+g, sart(3)/2, mfi][j] < valuereturned
o Expressions evaluated left to right with the value of rigbstnexpression returned.

e Operators-+/ - - are discouraged because subsumed by gereral=.

i += 1; versus i ++
i += 3; versus i ++ ++ ++; // disallowed

2.4.1 Conversion
e Conversion transforms a value to another type by changing the valuedméw type’s
representation (see Secti@ri8.3.2, p. 10p

e Conversions can occur implicitly by the compiler or explicby the programmer using a
castoperator or CHstatic _cast operator.

42 CHAPTER 2. C++

int i; double d;

d=1i /I implicit (compiler)

d = (double)i; /I explicit with cast (programmer)
d = static _cast<double >(i);

e Two kinds of conversions:

o widening/promotion conversion, no information is lost:

bool — char — shortint — long int — double
true 1 1 1 1.000000000000000

wherefalse — 0O;true — 1

o narrowing conversion, information can be lost:

double — long int — short int — char — bool
17777 77777777777 77777 12241 209 true

where 0— false ; non-zero— true
e C/CH have implicit widening and narrowing conversiony@anly implicit widening).
e Beware of implicit narrowing conversions:
int i; double d;

d 35, //d->35
i =3.5; //d-> 3.0 truncation

i

d
e Good practice is to perform narrowing conversions expieiith cast as documentation.

int i; double dl1 = 7.2, d2 = 3.5;

i = (int) di; /I explicit narrowing conversion

i = (int) d1 / (int) d2; /I explicit narrowing conversions for integer division
i = static _cast<int>(d1 / d2); // alternative technique after integer division

e C/CH supports casting among the basic types and user défipesi(see Sectidh 18, p. 100.

2.4.2 Coercion

e Coercionreinterprets a value to another type but the result is maypawoheaningful in the
new type’s representation.

e Some narrowing conversions are considered coercions.

o E.g., when a value is truncated or converting non-zetouto, the result is nonsense in
the new type’s representation.

e Also, having typechar represent ASCII characteesid integral (byte) values allows:

char ch="2" - 'a; /I character arithmetic!

which may or may not be reasonable as it might generate ahdmfearacter.

2.4. EXPRESSION 43

e But the most common coercion is through pointers (see Se2tib2, p. 57
int i, xip = &i; /I ip is a pointer to an integer
double d, »dp = &d; // dp is a pointer to a double
dp = (double x)ip; /I lie, say dp points at double but really an integer
Using the explicit cast, programmer has lied to the comgiteyut the type oip.

e Good practice is to limit narrowing conversions and NEVERelabout a variable’s type.

2.4.3 Math Operations

e #include <cmath> provides overloaded real-float mathematical-routinet/joesfloat , double
andlong double :

operation| routine operation| routine

|X| abs(x) xmody | fmod(x, y)

arccox | acos(x) Inx log(x)

arcsirnx asin(x) logx log10(x)

arctarx | atan(x) xY pow(X, y)

[X] ceil(x) sinx sin(x)

COSX cos(X) sinhx sinh(x)

coshx cosh(x) VX sqrt(x)

el exp(X)) tanx tan(x)

| X] floor(x) tanhx tanh(x)

and math literals:

M_E 2.7182818284590452354 Il e
M_LOG2E 1.4426950408889634074 /I log_2 e
M_LOG10E 0.43429448190325182765 /l log_10 e
M_LN2 0.69314718055994530942 /l log_e 2
M_LN10 2.30258509299404568402 /I log_e 10
M_PI 3.14159265358979323846 Il pi
M_PI_2 1.57079632679489661923 Il pif2
M_PI_4 0.78539816339744830962 Il pil4
M_1_PI 0.31830988618379067154 /I 1/pi
M_2_PI 0.63661977236758134308 Il 2/pi
M_2_SQRTPI 1.12837916709551257390 // 2/sqrt(pi)
M_SQRT2 1.41421356237309504880 // sqrt(2)
M_SQRT1_2 0.70710678118654752440 /I 1/sqrt(2)

e Some systems also proviteg double math literals.

e pow(x,y) (¥) is computed using logarithms, 189 (versus repeated multiplication), when
yis non-integral value> y > 0

pow(-2.0,3.0); —282=-2x-2x-2=-8
pow(- 2.0, 3.1); —231 — 1031x10g-20 _ pap (not a number)

nan is generated because leg@ is undefined.

44 CHAPTER 2. C++

e Quadratic roots o&x? + bx+c arer = —b+/b? — 4ac/2a

#include <iostream>
#include <cmath>
using namespace std;

int main() {
double a=35,b=21,¢c=-1.2;
double dis=b b - 4.0 +axc, dem = 2.0 * a
cout << "rootl: " << (-b + sqgrt(dis)) / dem << endl;
cout << "root2: " << (-b - sqrt(dis))/ dem << endl;

}
e Must explicitly link in the math library:

$ g++ roots.cc - Im # link math library

2.5 Control Structures

| Java | C/ICH
block | { intermixed decls/stmts } { intermixed decls/stmts }
selection| it (bool-exprl) stmtl if (bool-exprl) stmtl
else if (bool-expr2) stmt2 else if (bool-expr2) stmt2
éllée stmtN éllée stmtN
switch (integral-expr) { switch (integral-expr) {
case cl: stmtsl; break case cl: stmtsl; break;
;:.a.se cN: stmtsN; break; ;:.a.se cN: stmtsN; break;
default : stmtsO; default : stmtsO;
} }
looping | while (bool-expr) stmt while (bool-expr) stmt
do stmt while (bool-expr) ; do stmt while (bool-expr) ;
for (init-expr;bool-expr;incr-expr) stmt || for (init-expr;bool-expr;incr-expr) stmt
transfer| break [label] break
continue [label] continue
goto label
return [expr] return [expr]
throw [expr] throw [expr]
label | label : stmt label : stmt
2.5.1 Block

e Block is a series of statements bracketed by brace$, which can be nested.
e A block forms a complete statement but does not have to benated with a semicolon.

e Block serves two purposes: bracket several statementa isitqyle statement and introduce
local declarations.

2.5. CONTROL STRUCTURES 45

e Good practice is to always use a block versus single statetoetlow easy insertion and
removal of statements to or from block.

if (x>y) /I no block
X = 0; /I cannot directly add statements

if (x>y){ /I block
x = 0; /I can directly add/remove statements
}

Does the shell have this problem?
e Declarations may be intermixed among executable statenmeatblock.

e Block variables are allocated first-in first-out (FIFO) frahe stack memory area.

{ /I blockl stack
Il variables free NI
{ /I block2 code | static| heap [~= == 8| g
/I variables memory | 5| 5| °
} I low address high address

e Localizing declarations in nested blocks reduces dedtaratutter at beginning of a block.

int i, j, k; // global int i
... /lusei, j, k .../l use i
{ int j; // local
... Il use i, |
{ int k; // local
... /lusei, j, k

However, it can also make locating declarations more difficu

e Variable names can be reused in different blocks, i.e.,iplyssverriding (hiding) prior

variables.
inti=1;... /I first i
{ intk=ii=2;... [/l k=firsti, second i overrides first
{ inti=3... /I third i (overrides second)

2.5.2 Selection

e C/CH+ selection statements af@ndswitch (same as Java).

e An if statement selectively executes one of two alternativesthas a comparison result:

if (x>y) max = x;
else max =vy;

e For nestedf statementslse matches closedt, which results in thelangling elseproblem.

46 CHAPTER 2. C++

e E.g., reward WIDGET salesperson who sold $10,000 or mor&vadWIDGETS and dock
pay of those who sold less than $5,000.

| Dangling Else | Fix Using Null Else | Fix Using Block |
if (sales < 10000) if (sales < 10000) if (sales < 10000) {
if (sales < 5000) if (sales < 5000) if (sales < 5000)
income - = penalty; income - = penalty; income - = penalty;
else ; /I null statement
else [/ incorrect match!!! else } else
income += bonus; income += bonus; income += bonus;

Unnecessary equality for boolean as value is alreagyor false .

bool b;
if (b==true)... Il'if(b)

Conversion causes problems.

if (-0.5<=x<=05)... /I looks right and compiles
if (((-05<=x)<=0.5)).../ what does this do?

Assign in expressions causes problems (possible in Jawéotype).

if (x=y).../l what does this do?

A switch statement selectively executes onéNadlternatives based on matching an integral
value with a series of case clauses:

switch (day) { /I integral expression

case Mon: case Tue: case Wed: case Thu: // case value list
cout << " PROGRAM' << endl;
break ; /I exit switch

case Fri:
wallet += pay;
/I FALL THROUGH

case Sat:
cout << "PARTY" << end!;
wallet - = party;

break; /I exit switch
case Sun:

cout << "REST" << endl;

break; /I exit switch
default : /I optional

cerr << "ERROR bad day" << endl;
exit(EXIT_FAILURE); /I TERMINATE PROGRAM

}

e Only one label for eachase clause but a list ofase clauses is allowed.

e Once case label matches, the clauses statements are exemdecontrol continues to the
next statement.

2.5. CONTROL STRUCTURES a7

e If no case clause is matched and there iefault clause, its statements are executed, and
control continues to theext statement.

e Unless there is Areak statement to prematurely exit th@itch statement.
e Itis a common error to forget the break in a case clause.

e Otherwise, thawitch statement does nothing.

2.5.3 Conditional Expression Evaluation
e Conditional expression evaluatiorperforms partialghort-circuit) expression evaluation.

&& | only evaluates the right operand if the left operand is trye
|| | only evaluates the right operand if the left operand is false
?: | only evaluates one of two alternative parts of an expression

e && and|| are similar to logicak and| for bitwise (boolean) operands, i.e., both produce a
logical conjunctive or disjunctive result.

e However, short-circuit operators evaluate operands amébult is determinedzzily), short
circuiting evaluation of other operands.

d!=0&&n/d>5 // may not evaluate right operand => no division by 0

false and anything is?

e Hence, short-circuit operators are control structurefénmiddle of an expression because
el && e2 # &&(el, e2) (unless lazy evaluation).

e Logical & and| evaluate operands eagerly, evaluating both operands.

e Conditional?: evaluates one of two expressions, and returns the resuied\aluated ex-
pression.

e Acts like anif statement in an expression and can eliminate temporargblas.
f(la<0?-a:a)+2);|int temp;
if (a<0)temp = -a;

else temp = a;
f(temp + 2);

2.5.4 Looping
e C/CH+ looping statements andnile , do andfor (same as Java).

e while statement executes its statemesito or more times

while (x<5){
.. /I executes O or more times
}

48

CHAPTER 2. C++

Beware of accidental infinite loops.

X = 0; X =0;
while (x < 5), // extra semicolon! while (x < 5) // missing block
X=Xx+1; y =y + X
X=X+1;

do statement executes its statement or more times

do {
/I executes one or more times
} while (x<5);

for statement is a specializedhile statement for iterating with an index.

init-expr;

while (bool-expr) { for (init-expr; bool-expr; incr-expr) {
stmts; stmts;
incr-expr;

} }

If init-expr is a declaration, the scope of its variables is the remaiafigre declaration, the
other two expressions, and the loop body.

for (inti=0,j=ii<ji+=1){/liand]j declared
/l'i and j visible
} //'i and j deallocated and invisible

Many ways to use thfar statement to construct iteration:

for (i=1;i<=10;i+=1){ /I count up
/I loop 10 times
} //'i has value 11 on exit

for (i=10;1<=1ii-=1){ /I count down
/I loop 10 times
} //'i has value 0 on exit

for (p=s; p!=NULL;, p = p->link) { /I pointer index
/I loop through list structure
} // p has the value NULL on exit

for (i=1, p=s; i <= 10 && p != NULL; i += 1, p=p->link) { // 2 indices
/I loop until 10th node or end of list encountered
}

e Comma expression (see pag® is used to initialize and increment 2 indices in a context
where normally only a single expression is allowed.

e Defaulttrue value inserted if no conditional is specifiedftm statement.

for () Il rewritten as: for (; true ;)

2.6. STRUCTURED PROGRAMMING 49

break statement terminates enclosing loop body.

continue statement advances to the next loop iteration.

Structured Programming
Structured programming is about managing (restricting) control flow using a fixeddfet
well-defined control-structures.

A small set of control structures used with a particular paogming style make programs
easier to write and understand, as well as maintain.

Most programmers adopt this approach so there is a univ@sa@mon) approach to man-
aging control flow (e.qg., like traffic rules).

Developed during late 1960’s to early 1970’s to overcomeitiggscriminant use of the
GOTO statement.

GOTO leads to convoluted logic in prograrfi®., does NOT support a methodical thought
process).

l.e., arbitrary transfer of control makes programs diffitalunderstand and maintain.

Restricted transfer reduces the points where flow of cootiahges, and therefore, is easy
to understand.

There are 3 levels of structured programming:

classical

o sequence: series of statements
o if-then-else: conditional structure for making decisions
o while: structure for loops with test at top

Can write any programagtually only neeavhile s or onewhile andifs).
extended
o use the classical control-structures and add:
x case/switch: conditional structure for making decisions
« for: while with initialization/test/increment
x repeat-until/do-while: structure for loops with test attom
modified
o use the extended control-structures and add:
x one or more exits from arbitrary points in a loop

x exits from multiple nested control structures
x exits from multiple nested routine calls

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362947&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17962264&CFTOKEN=40004382
http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=365646&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17493625&CFTOKEN=51955079

50

CHAPTER 2. C++

2.6.1 Multi-Exit Loop

Multi-exit loop (or mid-test loop) has one or more exit locatiavighin the loop body.

While-loop has 1 exit located at the top (Ada):
while i < 10 do loop - - infinite loop
exit when i >= 10; -- loop exit
e . 1 reverse condition
end while end loop

Repeat-loop has 1 exit located at the bottom:

do loop - - infinite loop
exit when i >= 10; -- loop exit
while (i< 10) end loop 1 reverse condition

Exit should not be restricted to only top and bottom, i.en, appear in the loop body:

loop
exi.t'\'/vhen i >= 10;
endibbp
Loop exit has ability to change kind of loop solely by movihg exit line.

In general, your coding style should allow changes and iimgeof new code with minimal
changes to existing code.

Eliminate priming (duplicated) code necessary wittile :

read(input, d); loop

while ! eof(input) do read(input, d);

exit when eof(input);
read(input, d);

end while end loop

Good practice is to reduce or eliminate duplicate codghy?

Loop exit is outdented or commented or baftyé Candy) = easy to find without searching
entire loop body.

Same indentation rule as for thse of if-then-else (outderdlse):

if ... then if ... then
XXX XXX
else else /I outdent
XXX XXX

end if end if

A multi-exit loop can be written in C/C+ in the following way

2.6. STRUCTURED PROGRAMMING 51

for (;;){ while (true) { do {
if (i>=10)break: if (i>=10)break; if (i>= 10) break:
y y } while (true):

e Thefor version is more general as easily modified to have a loop index

for (int i =0;i<10;i+=1){// loop index

e Eliminateelse on loop exits:

BAD GOOD BAD GOOD
for (;;){ for (;;){ for (;;){ for (;;){
S1 S1 S1 S1
if (C1){ if (!C1) break; if (C1){ if (C1) break;
S2 S2 break ;
} else { } else {
break ; S2 S2
} }
S3 S3 S3 S3
} } } }

S2 is logically part of loop bodyot part of anif.

e Allow multiple exit conditions:

bool flagl = false, flag2 = false;

for (;;){ while (! flagl & ! flag2) {
S1 S1
if (i>=10) break; if (C1) flagl = true;
} else {
S2 S2
if (j>=10) break; if (C2) flag2 = true;
} else {
S3 S3
} }
}
}

e Eliminate flag variables necessary withile .

o flag variable is used solely to affect control flow, i.e., does not contatachssociated
with a computation.

e Examine linear search such that:

o no invalid subscript for unsuccessful search

o index points at the location of the key for successful search

e First approach: use only control-flow construi€tandwhile :

52

CHAPTER 2. C++

int i =-1; bool found = false;

while (i< size- 1 & ! found) { // rewrite: &(i<size- 1, !found)
i +=1;
found = key == list][i];

}

if (found) {... /I found

}else {... /I not found

}

Why must the program be written this way?

Second approach: allow short-circuit control structusee (Sectior2.5.3, p. 47.

for (i =0;i< size && key !=list[i]; i += 1);
/I rewrite: if (i < size) if (key != list[i])

if (i<size){... // found
}else { ... /I not found
}

How does&.& prevent subscript error?

Short-circuit&& does not exist in all programming languages, and requiresviadge of
Boolean algebra (false and anything is?).

Third approach: use multi-exit loop (especially if && exits).

for (i=0;;i+=1){//or for(i=0;i<size;i+=1)
if (i >= size) break;
if (key == list[i]) break;

}

if (i<size){... /I found
}else { ... /I not found
}

When loop ends, it is known if the key is found or not found.
Why is it necessary to re-determine this fact after the loop?
Can it always be re-determined?

Extra test after loop can be eliminated by moving it into Idaaly.

for (i=0;;i+=1){

if (i>=size){... /I not found
break;
} I exit
if (key ==list[i]) {... // found
break ;
} /I exit

} /I for

2.6. STRUCTURED PROGRAMMING 53

e E.g., an element is looked up in a list of items, if it is nothe tist, it is added to the end of
the list, if it exists in the list its associated list countemcremented.

for (inti=0;;i+=1){
if (i>=size){
list[size].count = 1;
list[size].data = key;
size += 1; /I needs check for array overflow
break ;
} 11 exit
if (key == list[i].data) {
list[i].count += 1;
break ;
} Il exit
} /I for

e None of these approaches is best in all cases; select theaapypthat best fits the problem.

2.6.2 Multi-Level Exit

e Multi-level exit transfers out of multiple control structures where exitnp®iareknownat
compile time.

e Labelled exit break/continue) provides this capability (Java):

L1:{
... declarations ...
L2: switch (...){
L3: for (...){
... break L1; .../l exit block
... break L2; ... /I exit switch
... break L3; ... /I exit loop

}

Labelledbreak/continue transfer control out of the control structure with the cepending
label, terminating any block that it passes through.

C/C+ do not have labelldareak /continue =- simulate withgoto .

goto label allows arbitrary transfer of contretlithin a routine from theyoto to statement
marked with label variable.

Label variable is declared by prefixing an identifier with & to a statement.

L1:i += 1; /I associated with expression
L2:if (...) .. /I associated with if statement
L3:; /I associated with empty statement

54 CHAPTER 2. C++

e Labels can only be declared in a routinehere the label has routine scopfsee Sec-
tion 2.3.3, p. 36.

o i.e., label identifier is unique within a routine body cannot be overridden in local

blocks.
int L1; /I identifier L1
L2: ; /I identifier L2
double L1; /I can override variable identifier
double L2; /I cannot override label identifier
}

e goto transfers control backwards/forwards to labelled statéme

L1: ;

Q.o.to L1; /I transfer backwards, up
goto L2; /I transfer forward, down
L2: ;

e Why is it good practice to associate a label with an emptestant?

e Transforming labelleéhreak to goto :

{
... declarations ...
switch (...){
for (...){
... goto L1; .../l exit block
... goto L2; .../l exit switch
... goto L3; ... /I exit loop
}
L3: ; // empty statement
}
L2: ;
}
L1:;

e Why are labels at the end of control structures not as gootsiard?
e Why is it a good idea to put label on its own empty statement?

e Multi-level exits are commonly used with nested loops:

2.6. STRUCTURED PROGRAMMING

int i, j;
for (i=0;i<10;i+=1){

for (j=0;j<10;j+=1){

if (I ..) goto B2; /I outdent

... I rest of loop
if (...) goto B1; // outdent

. Il rest of loop

} B2: ;
. Il rest of loop

} BL: ;

55

int i, j;
bool flagl = false;
for (i=0;i<10 && !flagl;i+=1){
bool flag2 = false;
for (j=0;)<10 &&
I flagl && ! flag2 ; j+=1){

if (...) flag2 = true;
else {

... Il rest of loop

if (...) flagl = true;

else {
... [l rest of loop
ILif
Y if
} /I for
if (! flagl) {
... Il rest of loop
Y Iif
} Il for

Indentation matches with control-structure terminated.

Eliminate all flag variables wittmulti-level exit

o Flag variables are the variable equivalent to a gdéecause they can be set/reset/tested
at arbitrary locations in a program.

Simple case (exit 1 level) of multi-level exit is a multi-eloop.

Why is it good practice to label all exits?

Other uses of multi-level exit to remove duplicate code:

[]
duplication no duplication
switch { // not allowed
if (C1l){ if (C1l){ case Cl:
S1; S1; S1
if (C2){ if (C2)/{ /I fall- through
S2; S2; case C2:
if (C3){ if (C3){ S2
S3; S3; /I fall- through
} else goto C: case C3:
S4; } S3
} else } break;
S4; } default :
} else S4; I/ only once S4; Il only once
S4; C.; }

e If any conditions are false, the same code is executed (griting an error message),
resulting in code duplication.

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362337&type=pdf&coll=ACM&dl=ACM&CFID=19394860&CFTOKEN=33044646

56 CHAPTER 2. C++

e Normal and labelletireak are agoto with restrictions:

o Cannot be used to create a loop (i.e., cause a backward hrdmesice, all repeated
execution is clearly delineated by loop constructs.

o Cannot be used to branatito a control structure.
e Only usegoto to perform static multi-level exit, e.g., simulate labelle break and continue .
e return statements can simulate multi-exit loop and multi-leved.ex

e Multi-level exits appear infrequently, but are extremedncise and execution-time efficient.

2.7 Type Constructor
e Type constructor declaration builds more complex type from basic types.

constructor| Java | C/C+ |
enumeration enum Colour { R, G, B} enum Colour { R, G, B}
pointer any-type p;
reference| (final) class-type r; any-type &r; (C+ only)
array | any-type v[] = new any-type[10]; any-type v[10];
any-type m[][] = new any-type[10][10]; || any-type m[10][10];
structure| class struct or class

2.7.1 Enumeration

e Anenumerationis a type defining a set of named literals with only assigniprearhparison,
and conversion to integer:

enum Days {Mon,Tue,Wed, Thu,Fri,Sat,Sun}; // type declaration, implicit numbering

Days day = Sat; /l variable declaration, initialization

enum {Yes, No} vote = Yes; /I anonymous type and variable declaration

enum Colour {R=0x1,G=0x2,B=0x4} colour; // type/variable declaration, explicit numbering
colour = B; /I assignment

Identifiers in an enumeration are calledumerators.

First enumerator is implicitly numbered O; thereafter,lreaaumerator is implicitly num-
bered +1 the previous enumerator.

Enumerators can be explicitly numbered.

enum {A=3,B,C=A-5D=3,E};//34-234
enum { Red ="R, Green="G , Blue="B }; // 82, 71, 66

Enumeration in C+ denotes a new type; enumeration in Cas &brint .

day = Sat; /I enumerator must match enumeration
day = 42; /I disallowed C++, allowed C
day = R; /I disallowed C++, allowed C

day = colour ; /I disallowed C++, allowed C

2.7. TYPE CONSTRUCTOR 57

¢ Alternative mechanism to create literalsehst declaration (see pads).

const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;
short int day = Sat;
days = 42; /I assignment allowed

C/C+ enumerators must be unique in block.

enum CarColour { Red, Green, Blue, Black };
enum PhoneColour { Red, Orange, Yellow, Black };

Enumerator®ed andBlack conflict. (Java enumerators are always qualified).

e In C, “enum” must also be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

Trick to count enumerators (if no explicit numbering):
enum Colour { Red, Green, Yellow, Blue, Black, No_Of_Colours };

No_Of_Colours is 5, which is the number of enumerators.

Iterating over enumerators:

for (Colour ¢ = Red; ¢ < No_Of_Colours; ¢ = (Colour) (c + 1)) {
cout << ¢ << endl;
}

Why is the cast(Colour), necessary? Is it a conversion or coercion?

2.7.2 Pointer/Reference
e pointer/referenceis a memory address.

e Used to access the value stored in the memory location ainhéep address.

e All variables have an address in memory, éng.x = 5,y = 7:

value type int int
identifier/value x 5 y 7
address 100 200

e Two basic addressing operations:

1. referencing: obtain address of a variable; unary operatan C+:

100 + &x
200 « &y

2. dereferencing retrieve value at an address; unary operatorC+:

5 + %(100) <+ *(&x)
7 < %(200) < *(&Yy)

58

CHAPTER 2. C++

Note, unary and binary use of operat&rsfor reference/dereference and conjunction/multiploati
So what does a variable name mean?§as it 5 or 100? It depends!

A variable name is a symbolic name for the pointer to its vadug. x meanx, i.e., symbol
x is always replaced by pointer valaeo.

What happens in this expression so it can execute?

X=X+ 1;

First, each variable name is substituted (rewritten) ®piinter value:

(&x)
(100)

(&x) + 1 where x = &x
(200) + 1

Assign into memory location 100 the value 101? Only pastiedirrect!

Second, when a variable name appears on the right-hand fsedsignment, it implies the
variable’s value not its address.

(&X) = #(&x) + 1
(100) = «(100) + 1
(100) =5 + 1

Assign into memory location 100 the value 67 Correct!

Hence, a variable name always means its address, and aleanabe isalso implicitly
dereferenced on the right side of assignment.

Exception is&x, which just meangx not &(&x).

Notice, identifierx (in a particular scope) is a literaldnst) pointer because it always means
the same memory address (e.g., 100).

Generalize notion of literal variable-name to variable eahmat can point to more than one
memory location (like integer variable versus literal).

A pointer variable is a (noneonst) variable that contains different variable addresses
stricted to a specific typm any storage location (i.e., static, stack or heap stQrage

o Java references can only addrebgect type®on theheap

int xpl = &X, *p2 = &y, *p3 = 0; // or p3 is uninitialized

2.7. TYPE CONSTRUCTOR 59

int * int

30 < &pl

pl 100 5 X 40 <+ &p2
30 //’ 100 50 < &p3
K 100 < *&pl
p2 200 7 y 200 + *&p2
20 500 0 < «&p3
Wundefined 5+ ebs
null/undetine 7 < =&p2
p3 [0 / Ox34fe7 pointer ? < w=&p3

50

Storage is needed for different address values, so a pemtable also has an address!

By convention, no variable is placed at thell address (pointer),null in Java, 0 in C/C+.

Hence, an address value is another variable’s addnessection) or null address or an
undefined address when uninitialized.

o null address often means pointer is unused.

Multiple pointers may point to the same memory addregs<(p1, dashed line).

Dereferencing null/undefined pointernisdefinedas no variable at addressut not error).

Variable pointed-at is therget variable and its value is théarget value.

o e.g.,x is the target variable qf1 with target value 5.

Can a pointer variable point to itself?

Same implicit reference/dereference rules apply for poinariables.

pl = &x; /I pointer assignment
(&pl) ¢+ &x /I no rewrite rule for x, why?
(30) « 100

Assign to memory location 30 the value 100.

p2 = pl,; /I pointer assignment
(&p2) < *(&pl) /I rewrite rules

(40) < «(30)

(40) < 100

Assign to memory location 40 the value 100.

¢ Value assignment requires explicit dereferencing to aceakles:

*p2 = «pl; /I value assignment, y = x
*(&p2) < *(x(&pl)) /I rewrite rules

200 < %(100)

200 <+ 5

Assign to memory location 200 the value 5.

60

CHAPTER 2. C++

Often the target value is used more than the pointer value.
*p2 = ((»pl + *p2) * (xp2 - *pl)) / (xpl - *p2);
Less tedious and error prone to write:
p2 = ((p1 + p2) = (p2 - p1)) / (p1 - p2);
C+ reference pointer provides extra implicit dereferetacaccess target value:

int &l = x, &2 =y,
r2=(l+r2)«(@2-rl)/(rl- r2);

Hence, difference between plain and reference pointer is agxtra implicit dereference.
o l.e., do you want to write thes", or let the compiler write the<"?

However, extra implicit dereference generates a problemdmter assignment.

r2 = ri,
*(&r2) <— x(x(&rl)) // value assignment
(&r2) < x(&rl) // not pointer assignment

C+ solves the missing pointer assignment by making retergointer a literaldonst), like
a plain variable.

o Hence, a reference pointer cannot be assigned after itardéoh, so pointer assign-
ment is impossible.

o As a literal, initialization must occur at declaration, Imitializing expression has im-
plicit referencing because addressiiwaysrequired.

int &rl = &Xx; // error, should not have & before x

Java solves this problem by only using reference pointeny, ltaving pointer assignment,
and using a different mechanism for value assignment (lone

Is there one more solution?

Since reference means its target’s value, address of &nefemeans its target’s address.
int i
int & = i;
&r; *(&r) = &i not &r

Hence, cannot initialize reference to reference or poiateeference.

int & &Ir =r; /I reference to reference, rewritten &r
int &«pr = &r; /I pointer to reference

As well, an array of reference is disallowed (reason unkrjown

int &ra[3] ={ i, 1,1} /I array of reference

2.7. TYPE CONSTRUCTOR 61

e Type qualifiers (see Sectid3.4, p. 3% can be used to modify pointer types.

const short int w = 25; p4| 300 ~ 25 |w
const short int xp4 = &w; 60 300

int « const p5 = &x; p5 100 - 5 X
int &p5 = x; 70 100
const long int z = 37; p6 308 - 37 z
const long int « const p6 = &z; 80 308

e p4 may point atany short int variable €onst or non€onst) and may not change its value.
Why canp4 point to a noneonst variable?

e p5 may only point at thént variablex and may change the valuexthrough the pointer.
o » const and& are literal pointers but const has no implicit dereferencing like.
e p6 may only point at théong int variablez and may not change its value.

¢ Pointer variable has memory address, so it is possible foirdgy to address another pointer
or object containing a pointer.

int +pX = &X, *xppX = &pX,

&rX = X, *prx = ℞ &prx < x(&rx)
ppX pX
108 - 100
124 108
5 X
Pprx X 100
100 100
132 116
e Pointer/reference type-constructor is not distributed acoss the identifier list.
int « p1, p2; plis a pointer, p2 is an integer int spl, «p2;
int & rx =i, ry = i; rxis areference, ry is an integeint &rx =i, &ry = i;
e C+ idiom for declaring pointers/references is misleagdimgy works for single versus list
of variables.
int« i; intx i, k;

double & x = d; double & x =d,y =d;

Gives false impression of distribution across the idemtifi.

2.7.3 Aggregates

e Aggregates are a set of homogeneous/heterogeneous vatlas@echanism to access the
values in the set.

62 CHAPTER 2. C++

2.7.3.1 Array
e Array is a set ohomogeneous values

int array[10]; /l 10 int values

e Array type,int, is the type of each set value; arrdynension, 10, is the maximum number
of values in the set.

e An array can be structured to have multiple dimensions.

int matrix[10][20]; /I 10 rows, 20 columns => 200 int values
char cube[5][6][7]; // 5 rows, 6 columns, 7 deep => 210 char values

Common dimension mistakenatrix[10, 20]; meansmatrix[20] becausel0, 20 is a comma
expression not a dimension list.

e Number of dimensions is fixed at compile time, but dimensiaa may be:

o static (compile time),
o block dynamic (static in block),
o or dynamic (change at any time, seetor Section2.26.1.1, p. 150

e C+ only supports a compile-time dimension valget allows a runtime expression.

int r, c;

cin >>r >> c; /I input dimensions

int array][r]; /I dynamic dimension, g++ only
int matrix[r][c]; /I dynamic dimension, g++ only

e Array values (elements) are accessedblyscripts, “[]” (look like dimensions).

e A dimension is subscripted from 0 to dimension-1.

array[5] = 3; /l location at column 5
i = matrix[0][2] + 1; // value at row O, column 2
c = cube[2][0][3]; /l value at row 2, column 0, depth 3

Common subscript mistakenatrix[3, 4] meansmatrix[4], 4th row of matrix.

e An array name without a subscript means the first element.

array = array[0]
matrix = matrix[0][0]
cube = cube[0][0][0]

e C/C+ array is a contiguous set of elements not a referentteetelement set as in Java.

Java | C/C+
int X[] = new int [6] int x[6]

x| +—~6[1]7] 5] 0] 8[-1| x 175/ 0|8

-1

=

2.7. TYPE CONSTRUCTOR 63

e C/CH+ do not store dimension information in the array!
e Hence, cannot query dimension sizes,subscript checkingand no array assignment.
e Declaration of a pointer to an array is complex in C/CH (dee pagedb).

e Because no array-size information, the dimension valuaricarray pointer is unspecified.

int i, arr[10];
int «parr = arr; /l think parr[], pointer to array of N ints

e However, no dimension information results in the followengbiguity:

int spvar = &i; Il think pvar[] and i[1]
int «parr = arr; /I think parr[]

e Variablespvar andparr have same type but one points at a variable and other an array!

e Programmer decides if variable or array by not using or usuigscripting.

*pvar Il variable

*parr /I variable, arr[0]
parr[0], parr[3] /I array, many
pvar[3] /I array, but wrong

e ASIDE: Practise reading a complex declaration:

@)

parenthesize type qualifiers based on operator priority §&etior2.4, p. 39,

@)

read inside parenthesis outwards,

start with variable name,

o

@)

end with type name on the left.

const long int =« const a[5] = {0,0,0,0,0}; X -
const long int = const (&X)[5] = a; l l l l
const long int (= const ((&X)[5])) = a; 00 0 0

x : reference to an array of 5 constant pointers to constagtittegers

2.7.3.2 Structure

e Structure is a set oheterogeneous valugsncluding (nested) structures.

| Java | C/CH |
class Foo { struct Foo {
int i =3; int i; // no initialization
... Il more fields ... Il more members
} }; /I semi- colon terminated

64 CHAPTER 2. C++

e Components of a structure are callegmbers subdivided into data and routine/function
member$in C+.

e All members of a structure are accessible (public) by défaul

e A structure member cannot be directly initialized (unlikevd) (see SectioR.7.7, p. 71
and2.18.3, p. 108

e A structure is terminated with a semicolon

e Structure can be defined and instances declared in a siadgdersnt.

struct Complex { double re, im; } s; // definition and declaration

e In C, “struct ” must also be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration

e Structures with the same type can be assigned but not cothpare

struct Student {
struct Name { /I nested structure
char first[20]; /I array
char last[20]; Il array

} name;
double age;
int marks[10]; /I array
} s1, s2, sspl = &sl;
sl = s2; /I allowed
sl == s2; /I disallowed, no structure relational operations

Notice, arrays in the structures are copied, but there igmay @opy. How?

e Structure members are accessedniymber selection using selection operator™(like
Java).

sl.name.firstf0] = ' a’;
sl.age = 34;
sl.marks[3] = 99;

e Pointers to structures have a problem:

o C/CH are unique in having the priority of selection operatohigher than dereference

operator %”.
o Hencep.f executes agp.f), which is incorrect. Why?
o To get the correct effect, use parenthegig).f.

(xspl).name.firstf0] =" a’;
(»spl).age = 34,
(»spl).marks[5] = 95;

LJava subdivides members into fields (data) and methodsr{esit

2.7. TYPE CONSTRUCTOR 65

o Alternatively, use (special) selection operatorfor pointers to structures:

o performs dereference and member selection in correct,ardelp- >f is rewritten as

(*p)f
spl- >name.firstf0] = ' a’ ;
spl- >age = 34;

spl- >marks[5] = 95;

o for reference pointers,> is unnecessary becausé means(sr).f, sor.f makes more
sense thafgr)- >f.

e Structuresnustbe compared member by member.

o comparing bits (e.gmemcmp) fails as alignment padding leaves undefined values be-
tween members.

e Recursive types (lists, trees) are defined using a self-referential pointa structure:

struct Student {
/I data members
Student xlink; /I pointer to another Student

}

e A bit field allows direct access to individual bits of memory:

struct S {
int i:3; /I 3 bits
int j:7; /I 7 bits
int k: 6; /I 6 bits

}s;

S.i=2; /I 010
s.j=05; // 0000101
sk =09; // 001001

A bit field must be an integral type.

Unfortunately allocation of bit-fields is implementatioafthed=- not portable (maybe left
to right or right to left!).

Hence, the bit-fields in variabkabove must be reversed.

While it is unfortunate C/C+- bit-fields lack portabilithey are the highest-level mechanism
to manipulate bit-specific information.

2.7.3.3 Union

e Union is a set ofheterogeneous valugancluding (nested) structureshere all members
overlay the same storage

66 CHAPTER 2. C++

union U {
char c;
int i;
double d;
Hy;

e Used to access internal representation or save storageisngeat for different purposes at
different times.

union U {
float f;
struct { /I |[EEE floating- point representation
unsigned int sign : 1; // may need to be reversed
unsigned int exp : 8;
unsigned int frac : 23;

}s;
int i
Hy;
u.f = 3.5e3; cout << u.s.sign << "\t’' << u.s.exp << '\t’ << u.s.frac << endl;
uf=-35e-3; cout<<us.sign <<’'\t' << u.s.exp <<’'\t’ << u.s.frac << endl;
u.f = 3.5; cout << u.f << '\t' << hex << u.i << endl;
u.i= 3; cout << u.i << '\t' << u.f << endl;
produces:

0 8a 5ac000 internal structure of 3.5e3

1 76 656042 internal structure of - 3.5e- 3
3.5 40600000 coerce double to int

3 4.2039e- 45 coerce int to double

e Reusing storage is dangerous and can usually be accomplistia other techniques.

2.7.4 String
e A string is a sequence of characters with specialized operationatgpmlate the sequence.
e Strings are provided in C by an arraydafar, string literals, and library facilities.

char s[10]; /I string of at most 10 characters

e String literal is a double-quoted sequence of characters.

e Pointer to a string literal must b®nst .

const char xcs = "abc":

Why?

. TYPE CONSTRUCTOR 67

Juxtaposed string literals are concatenated.

const char «nl ="johndoe";
const char «n2 ="john" "doe

; Il divide literal for readability

Character escape sequences (see Bagmay appear in string literal.

WA A An V12 \ xa”

Sequence of octal digits is terminated by length (3) or fitsdracter not an octal digit;
sequence of hex digits is arbitrarily long, but value truadao fit character type.

"\ 0123\ 128\ xaaa\ xaw'

How many characters?
Techniques for preventing escape ambiguity.

o Octal escape can be written with 3 digits.
"101234"

o Octal/hex escape can be written as concatenated strings.
"\12" "34" "\xa" "abc" "\x12" "34"

Every string literal is implicitly terminated with a chatac’ \ 0’ .

o e.g., string literal'abc” is actually 4 characters:a’, 'b’, 'c¢’, and’\ 0", which
occupies 4 bytes of storage.

Zero value is aentinelused by C-string routines to locate the string end.
Drawbacks:

o A string cannot contain a character with the valué’ .

o To find string length, must linearly search far0’ , which is expensive for long strings.

Because C-string variable is fixed-sized array, manageoferdriable-sized strings is the
programmer’s responsibility, requiring complex storagenagement.

C+ solves these problems by providingsaithg” type using a length member and managing
all of the storage for the variable-sized stringi®¢lude <string>).

Set of powerful operations that perform actions on groupshafacters.

CHAPTER 2. C++

| JavasString | Cchar [] | C+ string |

strcpy, strncpy =

+, concat strcat, strncat

equal, compareTo strcmp, strncmp | ==, 1=, <, <=, >, >=

length strlen length

charAt [1 [1

substring substr

replace replace

indexOf, lastindexOf || strstr find, rfind
strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of

c_str

e All of the C+ stringfind members return values of typting::size_type and valuestring::npos
if a search is unsuccessful.

string a, b, c; /I declare string variables

cin >> ¢; /I read white- space delimited sequence of characters
cout << ¢ << endl; /I print string

a="abc"; / set value, a is “abc”

b =a; /I copy value, b is “abc”

c=a-+b; /I concatenate strings, c is “abcabc”

if (a==Db) /I compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; /I subscript, ch is ' b’ , zero origin

c[4] ="' x"; /I subscript, ¢ is “abcaxc”, must be character literal

”

string d = c.substr(2,3); // extract starting at position 2 (zero origin) for length 3, d is “cax
c.replace(2,1,d); // replace starting at position 2 for length 1 and insert d, ¢ is “abcaxaxc”
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is 3

p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5

p = c.find_first_of("aei ou"); // search for first vowel, p is O

p = c.find_first_not_of("aei ou"); // search for first consonant (not vowel), p is 1

p = c.find_last_of("aei ou"); // search for last vowel, p is 5

p = c.find_last_not_of("aei ou"); / search for last consonant (not vowel), p is 7

¢ Note different call syntak.substr(2, 3) versus substr(c, 2, 3) (see Secta8, p. 100.

e Memberc_str converts a string to ehar « pointer (\ 0’ terminated).

e Count and print words in string-variabliee containing words separated by whitespace.

2.7. TYPE CONSTRUCTOR

unsigned int count = O;
string line, alpha = "abcdef ghi j kl mopqr st uvwxyz"
" ABCDEFGHI JKLMNOPQRSTUVWKYZ";
... Il line is initialized with text
line += "\ n"; /I add newline as sentinel
for (;;){ /I scan words off line
/I find position of 1st alphabetic character
string::size _type posn = line.find _first _of(alpha);
if (posn == string::npos) break; // any characters left ?
line = line.substr(posn); /I remove leading whitespace
/I find position of 1st non- alphabetic character
posn = line.find _first _not _of(alpha);
/I extract word from start of line
cout << line.substr(0, posn) << endl; // print word

count += 1; /I count words
line = line.substr(posn); /I delete word from line
} 1l for
0123456789 ...
line Tihle| | (qluli [c|k bir jojwnin
Tihle| | |gluli [clk b{r jojwn\n
qluli [c|k bir [ojwnin
qluli |c|k bir jojwnin
bir jownin
br jown{n
n
npos

e Itis seldom necessary to iterate through the characters afteng variable!

e Contrast C and C+ style strings (note, management of sitorgge):

#include <string> /I C++ string routines
using namespace std;

#include <string.h> /I C string routines
int main() {

/I C++ string

const string X = "abc", Y ="def", Zz="ghi ";
string S = X + Y + Z;

/I C string

const char «x = "abc", xy = "def", xz ="ghi ";

char s[strlen(x)+strlen(y)+strlen(z)+1]; // pre- compute size
strepy('s, ""); // initialize to null string

strcat(strcat(strcat(s, X),y), z);

69

70 CHAPTER 2. C++

Why “+1” for dimension ofs?

2.7.5 Type Equivalence

e In Java/C/C+, two types are equivalent if they have the saamee, callechame equiva-

lence
struct T1 { struct T2 { // identical structure
int i, j, k; int i, j, k;
double X, vy, z; double x, vy, z;
h ;
T1t1, t11 =t1; // allowed, t1, t11 have compatible types
T2 12 = t1; /I disallowed, t2, t1 have incompatible types

T2 t2 = (T2)t1; /I disallowed, no conversion from type T1 to T2

TypesT1 andT2 arestructurally equivalent, but have different names so they are incom-
patible, i.e., initialization of variable is disallowed.

An aliasis a different name for same type, so alias types are equivale

C/C+ providegypedef to create a alias for an existing type:

typedef short int shrintl; /I shrintl => short int
typedef shrintl shrint2; /I shrint2 => short int
typedef short int shrint3; /I shrint3 => short int
shrintl s1; /I implicitly rewritten as: short int s1
shrint2 s2; /I implicitly rewritten as: short int s2
shrint3 s3; /I implicitly rewritten as: short int s3

All combinations of assignments are allowed amangs2 ands3, because they have the
same type nameshort int ”.

e Java provides no mechanism to alias types.

2.7.6 Type Nesting

e Type nesting is useful for organizing and controlling vikip for type names (see Sec-
tion2.21, p. 11§

enum Colour { R, G, B, Y, C, M}
struct Foo {
enum Colour { R, G, B }; I/l nested type

struct Bar { /I nested type
Colour c[5]; /I type defined outside (1 level)
2
::Colour c[5]; /I type defined outside (top level)
Colour cc; Il type defined same level
Bar bars[10]; Il type defined same level
3
Colour cl1 = R; /I type/lenum defined same level
Foo::Colour c2 = Foo::R; /I type/lenum defined inside

Foo::Bar bar; /I type defined inside

2.7. TYPE CONSTRUCTOR 71

e Variables/types at top nesting-level are accessible witfualified “:”.

e References to types inside the nested type do not requitdicatzon (like declarations in
nested blocks, see Secti@rB.3, p. 36.

e References to types nested inside another type must béiedialith type operator:*'.

¢ With nested typesColour (and its enumerators) arrbo in top-level scope; without nested
types need:

enum Colour { R, G, B, Y, C, M}
enum Colour2 { R2, G2, B2 }; /I prevent name clashes
struct Bar {

Colour2 c[5];

3

struct Foo {
Colour c[5];
Colour2 cc;
Bar bars[10];

I3

Colour cl1 = R;
Colour2 c2 = R2;
Bar bar;

e Do not pollute lexical scopes with unnecessary hames (natasites).

2.7.7 Type-Constructor Literal

enumeration enumerators

pointer 0 or NULL indicates a null pointer
structure struct { double r,i;}c={3.0, 21}
array int v[3] ={1, 2,3}

C/C+ useD to initialize pointers (Javaull).

System include-file defines the preprocessor varislblel aso (see Sectio2.12, p. 83.

Structure and array initialization can occur as part of dataton.

struct { int i; struct { double r, i;}s;}d={1,{3.0,21}} / nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; /I multidimensional array

A nested structure or multidimensional array is createdgisested braces.

Initialization values are placed into a variable startihQeginning of the structure or array.

Not all the members/elements must be initialized.
o If not explicitly initialized, a variable islefault initialized (see also Sectia2.18.3, p. 108
which means zero-filled for basic types.

int b[10]; /I uninitialized
int b[10] = {}; /I zero initialized

72

2.8

2.9

CHAPTER 2. C++

g++ has a cast extension allowing construction of structureaarely literals in executable
statements not just declarations:

void rtn(const int m[2][3]);

struct Complex { double r, i; } c;

rin((int [2][3])1{ {93, 67, 72}, {77, 81, 86} }); // g++ only
¢ = (Complex){ 2.1, 3.4 }; /Il g++ only

In both cases, a cast indicates the type and structure ateinai |

String literals can be used as a shorthand array initialiakere:

char s[6] = "abcde"; rewrittenas char s[g]={'a’,’'b’,’c’,’d ,’¢e,"\0 }

It is possible to leave out the first dimension, and its vatumierred from the number of

literals in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 67?)
int v[]={0,1, 2,3, 4}/l 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

Modularization

Modularization is the division of a system into interconnecting parts (comgnts), using
some systematic basis, and is the foundation of softwari@eegng (see Sectioh4.1, p. 187.

Medium and large systems must be modularized so people acirsiand them.

Essentially any contiguous block of code or group of vagaldan be factored into a routine
or structure (see Sectidhl18, p. 109 and given a name (or vice versa).

Module

o separates usage from implementation by enforcing logicahtaries among compo-
nents,

o eliminates duplicate code ligictoring common code/declarations into single location.
Interfaces provide the boundaries through various programming-laggunechanisms.
Hence, modularization provides a mechanisnmabstract algorithms and data structures

through interfaces.

Routine

Like algebra, arbitrary operations can be define and invokeg, f (x) = 3x* 4 2.5x — 17,
wheref (4.5) = 55.

double f(double x) {return 3.0 x x » X + 2.5 « x - 17.0; }
f(4.5); Il returns 55

A routine is the simplest module for factoring code (routine/procadabstraction).

2.9. ROUTINE 73

¢ Input and output parameters define a routine’s interface.

| C | C+
[inline] void p(OR T f(| [inline] void p(OR T f(
Tl a // pass by value T1 a, /I pass by value
T2 &b, Il pass by reference
T3c=3 /I optional, default value
))
{ /I routine body { /I routine body
/I intermixed decls/stmts /I intermixed decls/stmts
} }

e Routine is either @rocedure or afunction based on the return type.

e Procedure does NOT return a value that can be use in an expresslicated with return
type ofvoid :

void usage() {
cout << "Usage: " << ... <<endl; // some usage message
exit(EXIT_FAILURE); /I TERMINATE PROGRAM

}
e Procedure can return values via the argument/parametéramismm (see Sectidh9.]).

e Procedure terminates when control runs off the end of itsmeuody or aeturn statement
is executed:

void proc() {
.return; ...
... Il run off end => return

}

e Function returns a value that can be used in an expressidienrte mustexecute aeturn
statement specifying a value:

int func() {
. return 3; ...
return a + b;

}

e A return statement can appear anywhere in a routine body, and neutgplirn statements
are possible.

e Routine with no parameters has parametid in C and empty parameter list in C+:

.rin(void) {...} /I C: no parameters
.rtn() { ...} /I C++: no parameters

o In C, empty parameters mean no information about the numtigpes of the param-
eters is supplied.

74 CHAPTER 2. C++

If a routine is qualified withinline , the routine is expanded (maybe) at the call site, i.e.,
unmodularize, to increase speed at the cost of storage (o ca

Routine cannot be nested in another routine (possikdedh

Java requires all routines to be defined itleas (see Sectio2.18.1, p. 101

Each routine call creates a new block on the stack contaitsngarameters and local vari-
ables, and returning removes the block.

Variables declared outside of routines are defined in aniamgtatic block.

int i /I static block, global
const double Pl = 3.14159;
int rtn(double d) // code block

{ ...return 4; /I create stack block
} /I remove stack block
int main() /I code block
{ intj; /I create stack block
{ int k; /I create stack block
rtn(3.0);
} /I remove stack block
} /I remove stack block
code static stack
- free
é ‘| — o heap l— -— T| X| —
=1 031 memory
low address high address

Where is the program executing?
e Static block is a separate memory area from stack and heap anels always zero filled
e Good practise isto ONLY use static block for literals/vates accessed throughout program.

2.9.1 Argument/Parameter Passing

e Modularization without communication is useless; infotima needs to flow from call to
routine and back to call.

e Communication is achieved by passing arguments from acathtameters in a routine and
back to arguments or return values.
o value parameter. parameter is initialized by copying argument (input only)

o reference parameter parameter is a reference to the argument and is initiatizéuke
argument’s address (input/output).

2.9. ROUTINE 75

pass by value pass by reference

argument 100 7 104

copy address-of (&)

parameter 200 104 | 204

Java/C, parameter passing is by value, i.e., basic typeslgadt references are copied.

C+, parameter passing is by value or reference dependitigedype of the parameter.

Argument expressions are evaluatedny order(see Sectior2.4, p. 39.

For value parameters, each argument-expression resulpisctinto the corresponding pa-
rameter in the routine’s block on the staekjich may involve an implicit conversion

For reference parameters, each argument-expressiohisagfiérenced (address of) and this
address is pushed on the stack as the corresponding refgrarameter.

struct S { double d; };
void rl(S's, S &rs, S = const ps) {
s.d =rs.d = ps->d = 3.0;

}
int main() {
S s1 ={1.0}, s2 = {2.0}, s3 = {7.5};
ri(si, s2, &s3);
// s1.d = 1.0, s2.d = 3.0, s3.d = 3.0
}
sl s2 s3 sl s2 s3
argument 10 || 20 || 75 ||| 10 | [30 || 3.0 |
100 200 300 100 200 300
parametef 1.0 | | 200 | | 300 | | | 3.0 | [200 | | 300 |
s rs ps s rs ps
call return

e C-style pointer-parameter simulates the reference pdeanteit requireg on argument and
use of- > with parameter.

e Value passing is most efficient for small values or for largéugs with high referencing
because the values are accessed directly (not througheppint

e Reference passing is most efficient for large values withoedium referencing because
the values are not duplicated in the routine but accesseubuders.

e Problem: cannot change a literal or temporary variable arameter!

void r2(int &, Complex &c, int v[]);
r2(i +j, (Complex){ 1.0, 7.0 }, (int [3]){ 3, 2, 7}); /I disallowed!

76

CHAPTER 2. C++

Use type qualifiers to create read-only reference paramstethe corresponding argument
is guaranteed not to change:

void r2(const int &i, const Complex &c, const int Vv[]) {
i = 3; [/ disallowed, read only!
c.re = 3.0;
v[0] = 3;

}

r2(i +j, (Complex){ 1.0, 7.0 }, (int [5]){3,2,7,9,01});

Provides efficiency of pass by reference for large varialdesurity of pass by value as
argument cannot change, and allows literals and tempogaighbles as arguments.

C+ parameter can havedafault value, which is passed as the argument value if no argu-
ment is specified at the call site.

void r3(int i, double g, char c =’ *’, double h=35){...}

r3(1,20, b, 9.3); /I maximum arguments
r3(1,20,'b) /I h defaults to 3.5
r3(1, 2.0); /I ¢ defaults to ' ', h defaults to 3.5

In a parameter list, once a parameter has a default valupaedimeters to the right must
have default values.

In a call, once an argument is omitted for a parameter withfaultevalue, no more argu-
ments can be specified to the right of it.

2.9.2 Array Parameter

Array copy is unsupported (see Sectid, p. 5§ so arrays cannot be passed by value.

Instead, array argument is a pointer to the array that isecbipito the corresponding array
parameter (pass by value).

A formal parameter array declaration can specify the firstaision with a dimension value,
[10] (which is ignored), an empty dimension ligL, or a pointers:

double sum(double v[5]); double sum(double V[]); double sum(double =*v);
double sum(double sm[5]); double sum(double sm[]); double sum(double #m);

Good practice uses the middle form as it clearly indicates/tiriable can be subscripted.

An actual declaration cannot ugeit must use:
double sum(double v[]) { /I formal declaration

double =xcv; /I actual declaration, think cv[]
CcV = V; /I address assignment

Routine to add up the elements of an arbitrary-sized arrayadrix:

2.10. INPUT/OUTPUT 77

double sum(int cols, double v[]){ double sum(int rows, int cols, double ~m[]) {

double total = 0.0; double total = 0.0;
for (int c=0;c<cols;c+=1) for (int r=0;r<rows;r+=1)
total += v[c]; for (int c=0;c<cols;c+=1)
return total, total += m[r][c];
} return total;
}

2.10 Input/Output
¢ Input/Output (1/0) is divided into two kinds:

1. Formatted I/O transfers data with implicit conversion of internal valt@$rom human-
readable form.

2. Unformatted 1/O transfers data without conversion, e.g., internal integet real-
floating values.

2.10.1 Formatted I/O

| Java | C | C+ |
import java.io.x; #include <stdio.h> #include <iostream>
import java.util. Scanner;
| File, Scanner, PrintStream | FILE | ifstream, ofstream |
Scanner in = new in = fopen("f", "r"); ifstream in("f");
Scanner(new File("f"))
PrintStream out = new out = fopen("g", "W') ofstream out("g")
PrintStream(" g")
in.close() close(in) scope endsn.close()
out.close() close(out) scope endsyut.close()
nextint() fscanf(in, " %", &i) in>>T
nextFloat() fscanf(in, "% ", &f)
nextByte() fscanf(in, " %", &c)
next() fscanf(in, "9%6", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()
in.clear()

skip("regexp) fscanf(in, " %[regexd") | in.ignore(n, c)
out.print(String) fprintf(out, " %", i) out << T

forintf(out, "% ", f)

fprintf(out, "%", c)

fprintf(out, "9%", s)

e Formatted I/O occurs to/from stream file, and values are conversed based on the type of

variables and format codes.

e C+ has three implicit stream filesin, cout andcerr, which are implicitly declared and
opened (Java has, out anderr).

78

CHAPTER 2. C++

C hasstdin, stdout andstderr, which are implicitly declared and opened.
#include <iostream> imports all necessary declarations to ace@sscout andcerr.
cin reads input from the keyboard (unless redirected by shell).

cout writes to the terminal screen (unless redirected by shell).

cerr writes to the terminal screen even whemnit output is redirected.

Error and debugging messages should always be writtendo :

o normally not redirected by the shell,

o unbuffered so output appears immediately.

Stream files other than 3 implicit ones require declarindghdée object.

#include <fstream> // required for stream- file declarations
ifstream infile("nmyinfile"); /I input file
ofstream outfile("nyoutfile"); /I output file

File types,fstream/ofstream, indicate whether the file can be read or written.
File-name type,nyi nfil e"/"myoutfile",ischar «(not string , see pag8l).
Declarationopers an operating-system file making it accessible through d@hnialvie name:

o infile reads from filenyi nfil e

o outfile writes to filenyoutfil e
where both files are located in the directory where the pragsarun.

Check for successful opening of a file using the stream mefalbee.qg.,infile.fail(), which
returnstrue if the open failed anéalse otherwise.

if (infile.fail()) ... // open failed, print message and exit
if (outfile.fail()) ... // open failed, print message and exit

C+ 1/O library overloads (see Secti@il6, p. 97 the bit-shift operators< and>> to per-
form 1/O.

C 1/O library usedscanf(outfile,...) andfprintf(infile,...), which have short formscanf(...)
andprintf(. . .) for stdin andstdout.

Both I/O libraries can cascade multiple I/O operations, irgput or output multiple values
in a single expression.

2.10. INPUT/OUTPUT 79

2.10.1.1 Formats
e Format of input/output values is controlled vieanipulators defined ir#include <iomanip>.

oct integral values in octal

dec integral values in decimal

hex integral values in hexadecimal

left / right (default) values with padding after / before values

boolalpha / noboolalpha (default) | bool values as false/true instead of 0/1
showbase / noshowbase (default) | values with / without prefix O for octal & Ox for hex
showpoint / noshowpoint (default) | print decimal point if no fraction

fixed (default) /scientific float-point values without / with exponent
setprecision(N) fraction of float-point values in maximum of N columns
setfill’ ch') padding character before/after value (default blank)
setw(N) NEXT VALUE ONLY in minimum of N columns

endl flush output buffer and start new lineu(tput only)

skipws (default) /noskipws skip whitespace charactetisgut only)

Manipulators are not variables for input/output, but control I/0O formatting for all liter-
als/variables after it, continuing to the next I/O expreador a specific stream file.

Except manipulator setw, which only applies to the next value in the I/O expression.

endl is notthe same d3 n’', as’' \n’ does not flush buffered data.

During input, skipsw/noskipws toggle between ignoring whitespace between input tokens
and reading the whitespace characters (i.e., tokenizeseasv input).
2.10.1.2 Input

e C/CH formatted input hasnplicit character conversion for all basic types and is extensible
to user-defined types (Java usesaplicit Scanner).

| Java | C | C+ |
import java.io.x, #include <stdio.h> #include <fstream>
import java.util.Scanner; FILE «in = fopen("f", "r"); |ifstream in("f");

Scanner in =
new Scanner(new File("f"));||FILE «out = fopen("g", "W'); |ofstream out("g");
PrintStream out =

new PrintStream("g"); int i, j; int i, j;
int i, for (5;) { for (1) {
while (in.hasNext()) { fscanf(in, "%d%" , &i, &j); in>>i>>j
i = in.nextint(); j = in.nextInt(); || if (feof(in)) break; if (in.fail()) break:
out.printin("i: " +i+" j: "+); fprintf(out,"i : % j : %@\ n",ij);| out<<"i:" <<i
} <<" | " <<j<<endl;
in.close(); close(in); }

out.close(); close(out); /I infout closed implicitly

80

CHAPTER 2. C++

Input values for a stream file are C/C+ litera8s3.5e- 1, etc., separated by whitespace.
Except for characters and character stringsich are not in quotes

Type of operand indicates the kind of literal expected indfneam, e.g., an integer operand
means an integer literal is expected.

Input starts reading where the last input left off, and sdames to obtain necessary number
of literals.

Hence, placement of input values on lines of a file is ofteritray.

To read strings containing white spaces use rougisténe(stream, string, char), which
allows different delimiting characters on input:

string s;

getline(cin, s, ” "); // read characters until
getline(cin, s, " @); // read characters until * @’

getline(cin, s, "\'n’); // read characters until newline (default)

=> cin >> ¢

C/C+ must attempt to reaukforeend-of-file is set and can be tested.
End of file is the detection of the physical end of a filbere is no end-of-file character

From a shell, typingsctrl>- d (C- d), i.e., press:ctrl> andd keys simultaneously, causes the
shell to close the current input file marking its physical.end

In C+, end of file can be explicitly detected in two ways:

o stream membezof returnstrue if the end of file is reached arfdise otherwise.

o stream membédail returnstrue for invalid literal OR no literal if end of file is reached,
andfalse otherwise.

Safer to checkail and then checkof.

for () {
cin >> i
if (cin.eof()) break; /I should use “fail()”
cout << i << endl;
}

If “abc" is entered (invalid integer literalfgil becomesrue buteof is false.

Generates infinite loop as invalid data is not skipped fossghent reads.

Streams also have coercionvmd «: if fail(), null pointer; otherwise non-null pointer.

cout << cin; /I print fail() status of stream cin
while (cin >>1i) ... I/l read and check pointer to = 0

2.10. INPUT/OUTPUT 81

e When bad data is readiream must be reset and bad data cleared

#include <iostream>

#include <limits> /I numeric_limits
using namespace std;
int main() {
int n;
cout << showbase; /I prefix hex with 0x
cin >> hex; /I input hex literals
for (5;){
cout << "Ent er hexadeci mal nunmber: "*;
cin >> n;
if (cin.fail()) { /I problem ?
if (cin.eof()) break; /I eof ?
cout << "I nval i d hexadeci mal nunber" << endl;
cin.clear(); /I reset stream failure
cin.ignore(numeric_limits<int>::max()," \ n’); // skip until newline
} else {
cout << hex << "hex:" << n << dec << " dec:" << n << endl;
}
}
cout << endl;

}

e After an unsuccessful readear() resets the stream.
e ignore skipsn characters, e.gcjn.ignore(5) or until a specified character.

e Read in file-names, which may contain spaces, and procesdgikac

#include <fstream>

using namespace std;

int main() {
ifstream fileNames("fil eNames"); // requires char » argument
string fileName;

for (;;){ /I process each file
getline(fileNames, fileName); /[may contain spaces
if (fleNames.fail()) break; /I handle no terminating newline

ifstream file(fileName.c _str()); // access char =
/I read and process file

}

e In C, routinefeof returnstrue when eof is reached arstanf returnseOF.

e Parameters in C are always passed by value (see S@c8idn p. 74, so arguments tfscanf
must be preceded with (except arrays) so they can be changed.

2.10.1.3 Output

e Java output style converts values to strings, concatestitags, and prints final long string:

82

CHAPTER 2. C++

System.out.printin(i + +]); /[build a string and print it

C/C+ output style has a list of formats and values, and dutperation generates strings:

cout << j << << j << endl; /I print each string as formed

No implicit conversion from the basic types to string in Chti{one can be constructed).

While it is possible to use the Java string-concatenation gke in C+, it is incorrect style.

Use manipulators to generate specific output formats:

#include <iostream> /I cin, cout, cerr
#include <iomanip> /I manipulators
using namespace std;
int i = 7; double r =2.5; char ¢ ='2’; const char s = "abc";
cout << "i:" << setw(2) << i
<< " r:" << fixed << setw(7) << setprecision(2) << r
<" " <<c<<" 5" << s << endl;
#include <stdio.h>
fprintf(stdout, "i:9%d r: %. 2f c: % s: %\n", i, r, c, s);

i 7r. 250 c:z s:abc

2.10.2 Unformatted I/O

Expensive to convert from internal (computer) to exterhahgan) forms (bits= characters).

When data does not have to be seen by a human, use efficientnattied /0O so no conver-
sions.

Uses same mechanisms as formatted 1/O to connect variafile topen/close).

read andwrite routines directly transfer bytes from/to a file, where eaaltes a pointer to
the data and number of bytes of data.

read(char xdata, streamsize num);
write(char xdata, streamsize num);

Read/write of types other than characters requires a areoast (see Sectidh4.2, p. 42
or CH+reinterpret _cast.

2.11. COMMAND-LINE ARGUMENTS 83

#include <iostream>
#include <fstream>
using namespace std;

int main() {
ofstream outfile("nyfile"); /I open output file “myfile”
if (outfile.fail()) ... /I unsuccessful open ?
double d = 3.0;
outfile.write((char x)&d, sizeof (d)); // coercion
outfile.close(); /I close file before attempting read
ifstream infile(“nmyfile"); /I open input file “myfile”
if (infile.fail()) ... /I unsuccessful open ?
double e;
infile.read(reinterpret _cast<char =>(&e), sizeof(e)); // coercion
if (d!=e) ... /I problem
infile.close();
}

e Coercion would be unnecessary if buffer type waigl «.

2.11 Command-line Arguments
e Starting routinenain has two overloaded prototypes.

int main(); // C: int main(void);
int main(int argc, char »argv[]); // parameter names may be different

Second form is used to receive command-line arguments fiersitell, where the command-
line string-tokens are transformed into C/C+ parameters.

argc is the number of string-tokens on the command line, inclgdie command name.

Java does not include command name, so number of tokens isless

e argv is an array of pointers to C character strings that make ugnt@kguments.

% ./a.out - option infile.cc outfile.cc

0 1 2 3
argc =4 /l number of command- line tokens
argv[0] = ./a.out\O /l not included in Java
argv[l] = -option\0
argv[2] = infile.cc\O
argv[3] = oultfile.cc\O
argv[4] =0 /Il mark end of variable length list

e Because shell only has string variables, a shell argumeriasf does not mean integer 32,
and may have to converted.

e Routinemain usually begins by checkingrgc for command-line arguments.

CHAPTER 2. C++

| Java | CIC+
class Prog {
public static void main(String[] args) { || int main(int argc, char xargv[]) {
switch (args.length) { switch (argc) {
case O: ... /I no args case 1: ... /I no args
break ; break ;
case 1. ... args[0] ... // 1 arg case 2: ... args[1l] ... // 1 arg
break; break;
case ... /I others args case ... /I others args
break ; break ;
default: ... /I usage message default: ... /I usage message
System.exit(1); exit(EXIT_FAILURE);
} }

e Arguments are processed in the raagg/[1] throughargvlargc - 1] (one greater than Java).

e Process following arguments frosiell command linéor command:

cmd [size (> 0) [code (> 0) [input-file [output-file] 1] 1]

¢ Note, dynamic allocatiorstringstream (atoi does not indicate errors), and no duplicate code.

<jostream>
<fstream>
#include <sstream>
#include <cstdlib>
using namespace std;

#include
#include

/I exit
/I direct access to std

bool convert(int &val, char =buffer) {
std::stringstream ss(buffer);
ss >> dec >> val, /I convert integer from buffer
return ! ss.fail() && /I conversion successful ?
/I characters after conversion all blank ?
string(buffer).find_first_not_of(" ", ss.tellg()) == string::npos;
} I convert

/I convert C string to integer
/I connect stream and buffer

enum { sizeDeflt = 20, codeDeflt = 5 }; /I global defaults
void usage(char xargv[]) {
cerr << "Usage: " << argv[0] << " [size (>=0: " << sizeDeflt <<
") [code (>=0: " << codeDeflt <<") [input-file[output-file]]17]]"
<< endl;
exit(EXIT_FAILURE);
} // usage

/I TERMINATE PROGRAM

int main(int argc, char »argv[]) {
int size = sizeDeflt, code = codeDeflt;
istream xinfile = &cin;

/I default value
/I default value

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/IO.cc

2.12. PREPROCESSOR 85

ostream xoutfile = &cout; /I default value
switch (‘argc) {
case 5:
outfile = new ofstream(argv[4]);
if (outfile- >fail()) usage(argv); // open failed ?
/Il FALL THROUGH
case 4:
infile = new ifstream(argv[3]);
if (infile- >fail()) usage(argv); // open failed ?
/I FALL THROUGH
case 3:
if (! convert(code, argv[2]) || code < 0) usage(argv) ; // invalid integer ?
/Il FALL THROUGH
case 2:
if (! convert(size, argv[l]) || size < 0) usage(argv); // invalid integer ?
/I FALL THROUGH

case 1: /I all defaults
break;
default : /I wrong number of options
usage(argv);
}
/I program body
if (infile 1= &cin) delete infile; /I close file, do not delete cin!
if (outfile = &cout) delete outfile; /I close file, do not delete cout!
} // main

2.12 Preprocessor

e Preprocessor is a text editor that modifies the progranbieixirecompilation.

e Program you see is not what the compiler sees!

e A preprocessor statement starts with eharacter, followed by a series of tokens separated
by whitespace, which is usually a single line and not termeiddy punctuation.

e The three most commonly used preprocessor facilities dvstisution, file inclusion, and
conditional inclusion.

2.12.1 Variables/Substitution

e #define statement declares a preprocessor string variable, andlis is all the text after
the name up to the end of line.

CHAPTER 2. C++

#define Integer int
#define begin {
#define end }
#define gets =

#define set

#define with = /I transformed

Integer main() begin int main() {
Integer x gets 3, v; int x =3,;
X gets 5; X = 5;
set y with x; y = X;

end }

Preprocessor can transform the syntax of C/C+ prograse@uraged.

Preprocessor variables can be defined and initialized oocampilation command with op-
tion - D.

% g++ - DDEBUG="2" - DASSN ... source-files
Initialization value is text aftet.
Same as putting the followingefine s in a program without changing the program:

#define DEBUG 2
#define ASSN 1

Cannot have both- D and #define for the same variable.

Predefined preprocessor-variables exist identifyingward and software environment, e.g.,
mcpu is kind of CPU.

Replacetdefine with enum (see SectioR.7.1, p. 5¢for integral types; otherwise usenst
declarations (see Secti@x3.4, p. 3¢ (Javafinal).

enum { arraySize = 100 }; #define arraySize 100

enum { PageSize = 4 « 1024 }; #define PageSize (4 » 1024)
const double PI = 3.14159; #define PI 3.14159

int array[arraySize], pageSize = PageSize;

double x = PI;

enum uses no storage whitmnst declarations might.

#define can declare macros with parameters, which expand duringitation, textually
substituting arguments for parameters, e.g.:

#define MAX(a, b) (a>b)?a:h)
z = MAX(X, ¥); I/l rewritten as: z = (X >y) ? X :Y)

Useinline routines in C/C+ rather thatlefine macros (see padet8).

inline int MAX(int a,int b) {return a>b ?a:b;}

2.12. PREPROCESSOR 87

2.12.2 File Inclusion

e File inclusion copies text from a file into a C/C+ program.
e An included file may contain anything.

e An include file normally imports preprocessor and C/C+ tltgs/declarations for use in a
program.

¢ Allincluded text goes through every compilation step, peeprocessor, compiler, etc.

e Javaimplicitly includes by matching class names with filsnea inCLASSPATH directories,
then extracting and including declarations.

e Thet#include statement specifies the file to be included.
e C convention uses suffixi” for include files containing C declarations.

e C+ convention drops suffix.” for its standard libraries and has special file names for
equivalent C files, e.gcstdio versusstdio.h.

#include <stdio.h> /I C style

#include <cstdio> /I C++ style
#include "user.h"

e A file name can be enclosed«» or"".

e <> means preprocessor only looks in the system include diiesto

° means preprocessor starts looking for the file in the sanextdiry as the file being
compiled, then in the system include directoriesi{include).

e System filegimits.h (climit) andstddef.h (cstddef) contain many usefutdefine s.

o e.g., null pointer literaNULL and min/max values for types (e.g., $e/include/limits.h).

2.12.3 Conditional Inclusion
e Preprocessor has dinstatement, which may be nested, to conditionally add/rentode
from a program.

e Conditionalif uses the same relational and logical operators as C/C+opauands can only
be integer or character values.

88 CHAPTER 2. C++

#define DEBUG 0 /I declare and initialize preprocessor variable
#lf DEBUG == Il level 1 debugging

include "debugl.h"

#elif DEBUG == I/ level 2 debugging

include "debug2.h"

#.élse /I non- debugging code

#rendif

e By changing value of preprocessor variableBUG, different parts of the program are in-
cluded for compilation.

e To exclude code (comment-out), useonditional a® implies false.
#if O
/I code commented out
#endif
e Possible to check if a preprocessor variable is defined adefoted usingifdef or #ifndef :

#ifndef __MYDEFS_H__ /I if not defined
#define __MYDEFS_H__1 // make it so

#rendif
e Used inartinclude file to ensure its contents are only expanded once (see 82c28, p. 127.

e Note difference between checking if a preprocessor vaiabdefined and checking the
value of the variable.

e The former capability does not exist in most programmingyleages, i.e., checking if a
variable is declared before trying to use it.

2.13 Assertions

e Assertions document program assumptions:

o pre-conditions — things true before a computation (e.fvadlies are positive),

o invariants — things true across the computation (e.g.alles during the computation
are positive, because onby, / operations),

o post-conditions — things true after the computation (@lgjresults are positive).
e Assumptions cannot reflect external usage, where theredgemtool.

o E.g., atinterface points, a routine call can be made withnmect values.

2.13. ASSERTIONS 89

o Checking interface parameters is not an assumption abogtan behaviour, rather
about user behaviour.

e Assertions occuafter usage checks when a program has control over its computation

o E.g., after checking a “car” is passed to a routine to cateubaaking distance, an
assumption of correct behaviour is a positive braking dista

o Therefore, routine can assert post-condition “brakingatise is greater than zero”
before returning.

e Macroassert tests a boolean expression representing a logical assampti

#include <cassert>
unsigned int stopping_distance(Car car) {

if (car!=...) exit(EXIT_FAILURE); // check parameter
brakes = ... ;
assert(brakes > 0); /I pre- condition

distance = brakes ... ;

assert(distance > 0); // invariant
distance = ... ;

assert(distance > 0); // invariant

distance = ... ;
assert(distance > 0); /[post- condition
return distance;

}

If assert fails (false result), it aborts program and prexgression:

a.out: test.cc:19: unsigned int stopping_distance(Car):
Assertion ' di stance > 0’ failed.

Use comma expression (see pddieto add documentation to assertion message.

assert(("I nternal error, pleasereport"”, distance > 0));
a.out: test.cc:19: unsigned int stopping_distance(Car):
Assertion (" "I nternal error, pleasereport”, distance >0)’ failed.

Assertions irot spot, i.e., point of high execution, can significantly increasegoam cost.

Compiling a program with preprocessor varialIREBUG defined removes all asserts.

% g++ - DNDEBUG ... # all asserts removed

Therefore, never put computations needed by a program imassertion.

assert(needed _computation(...) > 0); // may not be executed

90 CHAPTER 2. C++

2.14 Debugging

e Debuggingis the process of determining why a program does not havetandad be-
haviour.

e Often debugging is associated with fixing a program afterlaréa
e However, debugging can be applied to fixing other kinds obfams, like poor performance.

e Before using debugger tools it is important to understandtwiou are looking for and if
you need them.

2.14.1 Debug Print Statements

e An excellent way to debug a program isdtart by inserting debug print statements (i.e., as
the program is written).

¢ |t takes more time, but the alternative is wasting hourstyyto figure out what the program
is doing.

e The two aspects of a program that you need to know are: wherprtigram is executing
and what values it is calculating.

e Debug print statements show the flow of control through agamgand print out intermediate
values.

e E.g., every routine should have a debug print statemenedielyinning and end, as in:

int p(...){
/I declarations

cerr << "Enter p " << parameter variables << endl;

cerr << "Exit p" << return value(s) << endl;
return T;

}

e Resultis a high-level audit trail of where the program isexeg and what values are being
passed around.

e Finer resolution requires more debug print statements pomant control structures:

it (a>b){

cerr << "a > b" << endl ; /I debug print

for (...){ .))

cerr << "x=" << x <<", y=" <<y <<endl; // debug print

} else {
cerr << "a <= pb" << endl; /I debug print

2.14.

DEBUGGING 91

By examining the control paths taken and intermediate wagenerated, it is possible to
determine if the program is executing correctly.

Unfortunately, debug print statements can generate engig@mounts of output.

It is of the highest importance in the art of detection to bé&edb recognize out
of a number of facts which are incidental and which vital. ¢8ck Holmes, The
Reigate Squires)

Gradually comment out debug statements as parts of thegolgegin to work to remove
clutter from the output, but do not delete them until the paogworks.

When you go for help, your program should contain debug fgtiatements to indicate some
attempted at understanding the problem.

Use a preprocessor macro to simplifgbug prints

#define DPRT(title, expr) \
{ std::cerr << #title "\ t\"" << __PRETTY_FUNCTION__ << "\" " <<\
expr << " in" << __FILE__ << " at |ine" << __LINE__ << std::endl; }

for printing entry, intermediate, and exit locations anthda

#include <iostream>
#include "DPRT. h"
int test(int a, int b)) {
DPRT(ENTER, "a:" << a<<" b:" <<b);
if (a<b){
DPRT(a<b, "a:" <<a<<" b:" <<b);
}

DPRT(,a + b); /I empty title
DPRT(HERE, ""); /I empty expression
DPRT(EXIT, a);

return a;

}

which generates debug output:

ENTER "int test(int, int)" a3 b:4 in test.cc at line 14

a<b "inttest(int, int)" a:3 b:4 in test.cc at line 16
“int test(int, int)" 7 in test.cc at line 18

HERE "int test(int, int)" in test.cc at line 19

EXIT "int test(int, int)" 3in test.cc at line 20

2.14.2 Errors

Debug print statements do not prevent errors, they simplyrgiinding errors.
What you do about an error depends on the kind of error.
Errors fall into two basic categories: syntax and semantic.

Syntax error is in the arrangement of the tokens in the programming laggua

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/DPRT.h

CHAPTER 2. C++

These errors correspond to spelling or punctuation errbeswriting in a human language.

Fixing syntax errors is usually straight forward espeygidlthe compiler generates a mean-
ingful error message.

Always readthe error message carefully addeckthe statement in error.
You see (Watson), but do not observe. (Sherlock Holmes,l&da Bohemia)
Difficult syntax errors are:
o missing closing' or «/, as the remainder of the programswallowedas part of the
character string or comment.

o missing{ or}, especially if the program is properly indented (editons kalp here)
o missing semi-colon at end of structure

Semantic error is incorrect behaviour or logic in the program.
These errors correspond to incorrect meaning when writirghuman language.
Semantic errors are harder to find and fix than syntax errors.

A semantic or execution error message only tells why thenaragtopped not what caused
the error.

In general, when a program stops with a semantic error, #teraent in error is often not
the one that must be fixed.

Must work backwards from the error to determine the causheptoblem.

In solving a problem of this sort, the grand thing is to be ableeason backwards.
That is a very useful accomplishment, and a very easy onegpdmyle do not
practise it much. In the everyday affairs of life it is morefus to reason forward,
and so the other comes to be neglected. (Sherlock Holmesdi fBtScarlet)

Reason from the particular (error symptoms) to the generabi(cause).

o locate pertinent data : categorize as correct or incorrect
o look for contradictions

o list possible causes

o devise a hypothesis for the cause of the problem

o use data to find contradictions to eliminate hypotheses
o refine any remaining hypotheses

o prove hypothesis is consistent with both correct and immmesults, and accounts for
all errors

2.15. DYNAMIC STORAGE MANAGEMENT 93

e E.g., aninfinite loop with nothing wrong with the loop.

i = 10;
while (i!=5) {

i ',;: 2;
}

The initialization is wrong.
e Difficult semantic errors are:

o uninitialized variable
o invalid subscript or pointer value

o off-by-one error

e Finally, if a statement appears not to be working propedy)doks correct, check the syntax
(see pagd6).

if (a=b){
cerr << "a == b" << endl;
}

When you have eliminated the impossible whatever remaimge\Ver improbable
must be the truth. (Sherlock Holmes, Sign of Four)

2.15 Dynamic Storage Management

e Java/Scheme amanaged languags because the language controls all memory manage-
ment, e.g.garbage collectionto free dynamically allocated storage.

e C/CH areunmanaged languags because the programmer is involved in memory manage-
ment, e.g., ho garbage collection so dynamic storage muestieitly freed.

e CH+ provides dynamic storage-management operatienglelete and C providesalloc/free.

e Do not mix the two forms in a C+ program.

Java | C | C+ |

class Foo { char cl, c2;}
Foo r = new Foo();
rcl="X;

/I r garbage collected

struct Foo { char c1, c2; };
struct Foo #p =
(struct Foo #) // coerce

malloc(/I allocate
sizeof (struct Foo) // size
)i
p->1="X;

free(p); // explicit free

struct Foo { char cl1, c2; };
Foo *p = new Foo();
p->1="X;

delete p; // explicit free
Foo &r = snew Foo();
rcl="X;

delete &r; /I explicit free

CHAPTER 2. C++

heap stack
3 S free o
code | static pes -
1 | memory
low address high address

Unallocated memory in heap is also free.

Allocation has 3 steps:

1. determine size of allocation,
2. allocate heap storage of correct size/alignment,
3. coerce undefined storage to correct type.

C+ operatonew performs all 3 steps implicitly; each step is explicit in C.
Coercion cast is required in C+ foralloc but optional in C.

o C has implicit cast fronvoid = (pointer to anything) to specific pointetgngerous).

o Good practise in C is to use a cast so compiler can verify tgpepatibility on assign-
ment.

Parenthesis after the type name in tleev operation are optional.
For reference, why is there a+” beforenew and an &” in the delete ?
Storage for dynamic allocation comes from a memory aread#fieheap

If heap is full (i.e., no more storage availablepglloc returns 0, andew terminates program
with an error.

Before storage can be usedpitistbe allocated.

Foo *p; /I forget to initialize pointer with “new”
p->1="R; /Il places ' R’ at some random location in memory

Called an uninitialized variable.

After storage is no longer neededntustbe explicitly deleted.

Foo +p = new Foo;
p = new Foo; Il forgot to free previous storage

Called amemory leak.

After storage is deleted, ihustnot be used:

delete p;
p->1="R; /I result of dereference is undefined

Called adangling pointer.

2.15. DYNAMIC STORAGE MANAGEMENT 95

e Unlike Java, C/C+ allovall types to be dynamically allocated not just object types., e.g
new int.

e As well, C/C+ allowall types to be allocated on the stack, i.e., local variablesbbek:

| Java | C+ |
{ Il basic & reference stack heap { /I all types stack heap
int i;) int i; :
double d; ' double d; !
AggrType agr = d AggrType agr; d

new AggrType();

agr— "] } // implicit delete ||_29"
} // garbage collected : :

e Stack allocation eliminates explicit storage-manager(smipler) and is more efficient than
heap allocation —tise it whenever possible.

{ /Il good, use stack { /I bad, unnecessary dynamic allocation
int i int «ip = new int;
.../l use i ... 1l use =ip
delete ip;
} }

e Dynamic allocation in C+ should be used only when a variable storage must outlive
the block in which it is allocated (see also pag&04).

Type #rtn(...) {
Type *tp = new Type; /I MUST USE HEAP

/I initialize/compute using tp
return tp; /I storage outlives block
} /I tp deleted later

e Declaration of a pointer to an array is complex in C/CH (dee pages3).

e Because no array-size information, no dimension for arygoanter.

int xparr = new int [10]; /I think parr[], pointer to array of 10 ints

¢ No dimension information results in the following ambiguit

int «pvar = new int; Il basic “new”
int «parr = new int [10]; Il parr[], array “new”

e Variablespvar andparr have the same type but one is allocated with the basicand the
other with the arrayew.

e Special syntaxnustbe used to call the corresponding deletion operation foriamg or an
array (any dimensions):

delete pvar; /I basic delete : single element
delete [] parr; // array delete : multiple elements (any dimension)

96

CHAPTER 2. C++

If basicdelete is used on an array, only the first element is freed (memok).lea
If array delete is used on a variable, storage after the variable is alsd fi@iten failure).
Never do this:
delete [] parr, pvar; // => (delete [] parr), pvar;
which is an incorrect use of a comma expresspar is not deleted.

Declaration of a pointer to a matrix is complex in C/C+, grg. sm[5] could mean:

1
|
|
J

m

[w[N [P [o[O]

Left: array of 5 pointers to an array of unknown number of gjetes.

Right: pointer to matrix of unknown number of rows with 5 calas of integers.
Dimension is higher priority so declaration is interpreseiht («(m[5])) (left).
Right example cannot be generalized to a dynamically-sizetix.

int R=5, C = 4; /' 5 rows, 4 columns
int (¥m)[C] = new Int[R][C]; /I disallowed, C must be literal, e.g, 4

Compiler must know the stride (number of columns) to compoxe
Left example can be generalized to a dynamically-sizediraatr

int main() {
int R=5, C =4; /l or cin >> R >> C;
int sm[R]; /I R rows
for (intr=0;r<R;r+=1){
m[r] = new int [C]; /I C columns per row
for (int c=0;¢c<C;c+=1){
m[r][c] = r + c; /I initialize matrix

}

for (int r=0;r<R;r+=1) {// print matrix
for (intc=0;c<C;c+=1){

cout << mlr][c] << ", *;

}

cout << endl;
}
for (intr=0;r<R;r+=1){

delete [] m[r]; /I delete each row
}

} /I implicitly delete array “m”

2.16. OVERLOADING 97

2.16 Overloading

Overloading occurs when a name has multiple meanings in the same context.

Most languages have overloading, e.g., most built-in dpesare overloaded on both inte-
gral and real-floating operands, i.e.gperator is different fot + 2 than for1.0 + 2.0.

Overloading requires disambiguating among identical relp@sed on some criteria.
Normal criterion is type information.

In general, overloading is done on operations not variables

int i; /I disallowed : variable overloading
double i;

void r(int) { ...} // allowed : routine overloading
void r(double) { ...}

Power of overloading occurs when programmer changes a vhlés type: operations on
the variable are implicitly reselected for new type.

E.g., after changing a variable’s type fram to double , all operations implicitly change
from integral to real-floating.

Number andunique parameter typebut not the return typeare used to select among a
name’s different meanings:

int r(int i,int j){...} // overload name r three different ways
int r(double x, double y){...}
int r(int k) {...}

r(1, 2); /I invoke 1st r based on integer arguments
r(1.0, 2.0); /I invoke 2nd r based on double arguments
r(3); /[invoke 3rd r based on number of arguments

Implicit conversions between arguments and parametersaase ambiguities:

r(1, 2.0); // ambiguous, convert either argument to integer or double

o Use explicit cast to disambiguate:

r(1, (int)2.0) /I 1str
r((double)1, 2.0) /[2ndr

Subtle cases:

int i; unsigned int ui; long int i

void r(int i) {...} /I overload name r three different ways
void r(unsigned int i) {...}

void r(longint i){...}

r(i); /Il int

r(ui); /I unsigned int

r(li); /I long int

98 CHAPTER 2. C++

e Parameter types with qualifiers other thetort /long /signed /unsigned are ambiguous at

definition:
int r(int i) {..} /I rewritten: int r(signed int)
int r(signed inti) {...} /I disallowed : redefinition of first r
int r(constinti) {...} /I disallowed : redefinition of first r

int r(volatile int i) {...} /I disallowed : redefinition of first r

e Reference parameter types with same base type are ambigucals

int r(int i) {..} /I cannot be called
int r(int &) {...} /I cannot be called
int r(const int &i) {...} // cannot be called
int i = 3;

const int j = 3;

r(i); /I disallowed : ambiguous
r(j); /I disallowed : ambiguous

Cannot cast argument to selectnt i), r(int &) orr(const int &i).

e Overload/conversion confusion: 1/O operataris overloaded witlthar « to print a C string
andvoid =« to print pointers.

char c; int i;
cout << &c <<

<< &i << endl; // print address of variables

type of&c ischar x, so printed as C string, which is undefinedype of&i isint «, which is
converted tovoid «, SO printed as an address.

e Fix using coercion.

cout << (void #)&c << << &i << endl; // print address of variables

e Overlap between overloading and default arguments fompaters with same type:

| Overloading | Default Argument |
int r(int i,intj){...} int rCinti,intj=2){...}
int r(inti){intj=2;...}

r(3);//2ndr r(3); // default argument of 2

If the overloaded routine bodies are essentially the samge & default argument, other-
wise use overloaded routines.

2.17 Routine Pointer

e The flexibility and expressiveness of a routine comes froenaifyument/parameter mecha-
nism, which generalizes a routine across any argumentbtasiaf matching type.

e However, the code within the routine is the same for all dathése variables.

2.17. ROUTINE POINTER 99

e To generalize a routine further, code can be passed as amanguvhich is executed within
the routine body.

e Most programming languages allow a routine pointer fortfertgeneralization and reuse.

e Java only has routines contained in class definitions san@yttointers must be accom-
plished indirectly via classes.

e As for data parameters, routine pointers are specified wiyipa (return type, and number
and types of parameters), and any routine matching thisdgpédre passed as an argument:

int f(int v, int (xp)(int)) {return p(vs+2)+2;}

int g(int i) {retun i- 1;}

int h(int i) {return i/2;}

cout << f(4, g) << endl; // pass routines g and h as arguments
cout << f(4, h) << endl;

e Routinef is generalized to accept any routine argument of the fortnrme anint and takes
anint parameter.

e Within the body off, the parametep is called with an appropriatiat argument, and the
result of callingp is further modified before it is returned.

e A routine pointer is passed as a constant reference in ilytath programming languages;
in general, it makes no sense to change or copy routine dedesdpying a data value.

e C/CH require the programmer to explicitly specify the refece via a pointer, while other
languages implicitly create a reference.

e Two common uses of routine parameters are fix-up and cak-matines.

e A fix-up routine is passed to another routine and called if an unusual ssttuetiencountered
during a computation.

e E.g., a matrix is not invertible if its determinant is O (sitar).

e Rather than halt the program for a singular mairixert routine calls a user supplied fix-up
routine to possibly recover and continue with a correctmg.(modify the matrix):

int singularDefault(int matrix[][10], int rows, int cols) { abort(); }
int invert(int matrix[][10], int rows, int cols,
int (xsingular)(int matrix[][10], int rows, int cols) = singular Default) {

if (determinant(matrix, rows, cols) == 0) {
correction = singular(matrix, rows, cols); // possible correction

}
_

int fixup(int matrix[][10], int rows, int cols) { return O; }
invert(matrix, 10, 10, fixup); // fixup rather than abort

100 CHAPTER 2. C++

e A fix-up parameter generalizes a routine as the correctitieracs specified for each call,
and the action can be tailored to a particular usage.

e Giving the fix-up parameter a default value eliminates hgwtprovide a fix-up argument.
e A call-back routine is used in event programming.

e When an event occurs, one or more call-back routines aredcélliggered) and each one
performs an action specific for that event.

e E.g., graphical user interface has interactive “widgetsittons, sliders and scrollbars.

e When a user manipulates the widget, events are generatebeating the new state of the
widget, e.g., button down or up.

e A program registers interest in transitions for differemdgets by creating and registering a
call-back routine.

int closedown(/x info about event /) {
/I close down because close button press
/I return status of callback action

}

/I inform when close button pressed for “widget”
registerCB(widget, closeButton, closedown);

e widget maintains list of registered callbacks.

e A widget calls specific call-back routine(s) when the widgetnges state, passing new state
of the widget to each call-back routine.

2.18 Object

e Objectoriented programming was developed in the mid-1960s byl Bati Nygaard and
first implemented in SIMULAG7.

e Object programming is based on structures, used for orgarizgically related data (see Sec-

tion2.7.3, p. 6X:
| unorganized | organized |
struct Person {
int people_age[30]; int age;
bool people_sex[30]; bool sex;
char people_name[30][50]; char name[50];

} people[30];

e Both approaches create an identical amount of information.
¢ Difference is solely in the information organization (andmmory layout).

e Computer does not care as the information and its manipul&tilargely the same.

2.18. OBJECT

101

e Structuring is an administrative tool for programmer ustiending and convenience.

e Objects extend organizational capabilities of a strudhyrallowing routine members.

e C+ does not subscribe to the Java notion that everythinghisrea basic type or an object,
i.e., routines can exist without being embedded stract /class (see Sectio.9, p. 73.

| structure form

| object form

struct Complex {
double re, im;

struct Complex {
double re, im;

% double abs() const {
double abs(const Complex &This) { return sqrt(re = re +

return sqrt(This.re = This.re + im % im);
This.im x This.im); }
} 5
Complex x; /I structure Complex x; /I object
d = abs(x); /l call abs d = x.abs(); /I call abs

e An object provides both data and the operations necessamémipulate that data in one
self-contained package.

e Both approaches use routines as an abstraction mechanseate an interface to the in-
formation in the structure.

¢ Interface separates usage from implementation at thefaoteboundary, allowing an ob-
ject’'s implementation to change without affecting usage.

e E.g., if programmers do not accedsmplex’s implementation, it can change from Cartesian
to polar coordinates and maintain same interface.

e Developing good interfaces for objects is important.

o e.g., mathematical types (likemplex) should use value semantics (functional style)
versus reference to prevent changing temporary values.

2.18.1 Object Member
e Aroutine member in a class is constant, and cannot be ask{gree,const member).
e What is the scope of a routine member?

e Structure creates a scope, and therefore, a routine memubaccess the structure members,
e.g.,abs member can refer to membetsandim.

e Structure scope is implemented viara const this parameter, implicitly passed to each
routine member (like left example).

double abs() const {
return sqrt(this - >re * this - >re + this->im « this->im);
}

Since implicit parameter this ” is a const pointer, it should be a reference.

102 CHAPTER 2. C++

e Except for the syntactic differences, the two forms are tidah
e The use of implicit parametethis , e.g.,this - >f, is seldom necessary.
e Member routine declarecbnst is read-only, i.e., cannot change member variables.

e Member routines are accessed like other members, using ereglectionx.abs, and called
with the same formx.abs().

e No parameter needed because of implicit structure scopaityis parameter.

e Nesting of object types only allows static not dynamic scap{see Sectior2.7.6, p. 70
(Java allows dynamic scoping).

struct Foo {

int g;
intr){...}
struct Bar { /I nested object type
int s) {g=3;r(); } /I disallowed, dynamic reference
h /I to specific object
Xy, z;

References is to memberg andr in Foo disallowed because must know the for specific
Foo object, i.e., whiclx, y or z.

e Extend typeComplex by inserting an arithmetic addition operation:

struct Complex {

66mplex add(Complex c) {
return (Complex){ re + c.re, im + c.im };
}

%
e To sumx andy, write x.add(y), which looks different from normal additior,+ y.

e Because addition is a binary operatiadd needs a parameter as well as the implicit context
in which it executes.

e Like outside a type, C+ allows overloading members in a.type

2.18.2 Operator Member

e Itis possible to use operator symbols for routine names:

struct Complex {

Complex operator +(Complex ¢) { // rename add member
return (Complex){ re + c.re, im + c.im };
}

h

2.18. OBJECT 103

e Addition routine is called-, andx andy can be added by.operator +(y) Or y.operator +(x),
which looks slightly better.

e Fortunately, CH implicitly rewriteg + y asx.operator +(y).

Complex x ={3.0,52} y={-91,741}

cout << "X:" << xre << "+" << x.im << "i" << endl;
cout << "y:" << yre << "+" << yim << "i" << endl
Complex sum = x +y; [/ rewritten as Xx.operator+(y)

cout << "sum" << sum.re << "+" << sum.im << "i" << endl;

2.18.3 Constructor

e A constructor is a special member useditoplicitly perform initialization after object allo-
cation to ensure the object is valid before use.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
... Il other members

|5
e Constructor member-name is overloaded with structure name

e Constructor without parameters is thiefault constructor, for initializing a new object.

Complex x; x.Complex();
Complex xy = new Complex;
y- >Complex();

Complex x; implicitly
Complex =y = new Complex; rewritten as

e Unlike Java, C+ does not initialize all object members tfadk values.

e Constructor normally initializes membenmst initialized via other constructorsi.e., some
members are objects with their own constructors.

e Because a constructor is a routine, arbitrary executiorbegrerformed (e.g., loops, routine
calls, etc.) to perform initialization.

e A constructor may have parameters but no return type (noteie).

e Never put parentheses to invoke default constructor folladeton.

Complex x(); // routine prototype, no parameters returning a complex

e Once a constructor is specified, structure initializatodisallowed:

Complex x = { 3.2 }; /I disallowed
Complexy ={3.2,45%} /I disallowed

104 CHAPTER 2. C++

e Instead use constructor(s) with parameters:
struct Complex {
double re, im;
Complex(double r = 0.0, double i=0.0){re=r,im=1i;}
%
Note, use of default values for parameters (see géye
e Unlike Java, constructor argument(s) can be specditat a variable for local declarations:
Complex x; x.Complex(0.0, 0.0);

Complex x, y(1.0), z(6.1, 7.2); impli.Citly Complex y; y.Complex(1.0, 0.0);
rewritten as Complex z; z.Complex(6.1, 7.2);

(see declaring stream files pad®

e Dynamic allocation is same as Java:

Complex »x = new Complex(); // parentheses optional
Complex xy = new Complex(1.0);
Complex xz = new Complex(6.1, 7.2);

e Constructor may force dynamic allocation when initializgtan array of objects.

Complex ac[10]; /I complex array default initialized to 0.0+0.0i
for (int i=0;i<10;i+=1){
ac[i] = (Complex){ i, 2.0 } /l initialization disallowed

}
for (inti=0;i<10;i+=1){
ac[i] = Complex('i, 2.0) /I assignment, not initialization
}
Complex =ap[10]; /I array of complex pointers

for (inti=0;i<10;i+=1){
ap[i] = new Complex(i, 2.0); // initialization allowed
}

¢ If only non-default constructors are specified, i.e., oneghlvparameters, an object cannot
be declared without an initialization value:

struct Foo {
/I no default constructor
Foo(inti){...}

5

Foo x; /I disallowed!!!

Foo x(1); /I allowed

e Unlike Java, constructor cannot be called explicitly in @0 constructor, so constructor
reuse is done through a separate member:

2.18. OBJECT 105

| Java | CH |
class Foo { struct Foo {
int i, j; int i, j;
void common(int p){i=p;j=1;}
Foo() { this(2); } /I explicit call Foo() { common(2); }
Foo(int p){i=p;j=1;} Foo(int p) { common(p); }
} 2

2.18.3.1 Literal

e Constructors can be used to create object literals Jietype-constructor literals in Sec-
tion2.4.1, p. 4}

Complex X, vy, z;

x = Complex(3.2); /I complex literal value 3.2+0.0i

y = x + Complex(1.3, 7.2); /I complex literal 1.3+7.2i

z = Complex(2); // 2 widened to 2.0, complex literal value 2.0+0.0i

e Previous operator for Complex (see pagéd02) is changed because type-constructor literals
are disallowed for a type with constructors:

Complex operator +(Complex ¢) {
return Complex(re + c.re, im + c.im); // create new complex value
}

2.18.3.2 Conversion
e Constructors are implicitly used for conversions (seeiSe@.4.1, p. 4}

int i

double d;

Complex X, vy;

X = 3.2; X = Complex(3.2);

y =X+ 1.3; implicitly y = x.operator +(Complex(1.3));

y =X+ i rewritten as y = x.operator +(Complex((double)i);
y =X + d; y = x.operator +(Complex(d));

Allows built-in literals and types to interact with userfihed types.

Note, two implicit conversions are performed on varialilex + i: int to double and then
double to Complex.

Can require only explicit conversions with qualifexplicit on constructor:

struct Complex {
/I turn off implicit conversion
explicit Complex(double r = 0.0, double i =0.0){re=r; im=1i;}

Problem: implicit conversion disallowed for commutativedry operators.

106 CHAPTER 2. C++

e 1.3 + x, disallowed because it is rewritten agl.3).operator +(x), but member
double operator +(Complex) does not exist in built-in typdouble .

e Solution, move operator out of the object type and made into a routine, which can aéso b
called in infix form (see SectioR.16, p. 97:

struct Complex { ... }; // same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters
return Complex(a.re + b.re, a.im + b.im);

}

X+, . .. operator +(X, y)

1.3 + x; |mpI|.C|tIy operator +(Complex(1.3), x)
X + 1.3; rewritten as operator +(x, Complex(1.3))

e Compiler first checks for an appropriate operator in objggét and if found, applies con-
versions only on the second operand.

¢ If no appropriate operator in object type, the compiler &sdor an appropriate routine (it
is ambiguous to have both), and if found, applies applicablerersions ttoth operands.

¢ In general, commutative binary operators should be wriggmoutines to allow implicit
conversion on both operands.

¢ |/O operators< and>> often overloaded for user types:

ostream &operator <<(ostream &o0s, Complex c) {

return os << c.re << "+" << c.im << "i";
}
cout << "Xx:" << x; /I rewritten as: <<(cout.operator<<(“x:"), X)
e Standard C+ convention for I/O operators to take and redustream reference to allow

cascading stream operations.

e << operator in objectout is used to first print string value, then overloaded routineo
print the complex variablg.

e Why write as a routine versus a member?

2.18.4 Destructor

e A destructor (finalize in Java) is a special member used to perform uninitialineitobject

deallocation:
| Java | CH |
class Foo { struct Foo {
finalize() { ... } ~Foo() { ... } /I destructor
} %

2.18. OBJECT 107

e An object type has one destructor; its name is the charactdoliowed by the type name
(like a constructor).

e A destructor has no parameters nor return type (not evier):

e A destructor is only necessary if an object i®n-contiguous i.e., composed of multiple
pieces within its environmente.g., files, dynamically allocated storage, etc.

e A contiguous object like a Complex object, requires no destructor as it is self-contained
(see Sectiorz.23, p. 127or a version ofComplex requiring a destructor).

e A destructor is invoketheforean object is deallocated, either implicitly at the end ofachl
or explicitly by adelete :

{ { /I allocate local storage
Foo X, y(X); Foo x, y; x.Foo(); y.Foo(x);
Foo «z = new Foo; Foo *z = new Foo; z- >Foo();
= implicitly =

S/I.;Foo(); x.~Foo();
} } /I deallocate local storage

e For local variables in a block, destructorsist becalled in reverse order to constructors
because of dependencies, eygdepends onm.

e A destructor is more common in C+ than a finalize in Java dubedack of garbage col-
lection in C+.

e If an object type performs dynamic storage allocation, itm®n-contiguous and needs a
destructor to free the storage:
struct Foo {
int «i; // think int i[]
Foo(int size) { i = new int [size]; } // dynamic allocation
~Foo() { delete []i; } /I must deallocate storage

¥
Exception is when the dynamic object is transfered to amathgct for deallocation.

e C+ destructor is invoked at a deterministic time (blockrteration ordelete), ensuring
prompt cleanup of the execution environment.

e Javdfinalize is invoked at a non-deterministic time during garbage ctilb& ornot at all, so
cleanup of the execution environment is unknown.

2.18.5 Copy Constructor / Assignment
e There are multiple contexts where an object is copied.

1. declaration initialization@bjType obj2 = obj1)

108 CHAPTER 2. C++

2. pass by value (argument to parameter)
3. return by value (routine to temporary at call site)
4. assignmentopj2 = obj1)

e Cases 1 to 3 involve a newly allocated object with undefinddes
e Case 4 involves an existing object that may contain prelWammnputed values.
o C+ differentiates between these situations: initial@atand assignment.

e Constructor with aonst reference parameter of class type is used for initialireftecla-
rations/parameters/return), called thley constructor.

Complex(const Complex &c) { ...}

e Declaration initialization:
Complex y = x; implicitly rewritten as Complex y; y.Complex(x);

o is misleading as copy constructor is called not assignropatator.

o value on the right-hand side of™is argument to copy constructor.

e Parameter/return initialization:

Complex rtn(Complex a, Complex b) { ... return a; }
Complex X, v;
X =rtn(X, y); /I creates temporary before assignment

o parameter is initialized by corresponding argument ussgapy constructor:

Complex rtn(Complex a, Complex b) {
a.Complex(argl); b.Complex(arg2); // initialize parameters
.. /[with arguments

o temporariesnaybe created for arguments and return value, initializedgusapy con-

structor:
Complex t1(x), t2(y);
Complex tr(rtn(t1, t2));
x=rn(..); implicitly rewritten as ~ x.Complex(tr);

or
x.Complex(rtn(x, y));

o Note, assignment converted to initialization.
e Assignment routine is used for assignment:

Complex &operator =(const Complex &rhs) { ...}

o usually most efficient to use reference for parameter andrréype.
o value on the right-hand side of™is argument to assignment operator.
x =vy; implicitly rewritten as x.operator =('y);

2.18. OBJECT 109

e If a copy constructor or assignment operator is not definednalicit one is generated that
does anemberwise copyof each subobject.

o basic typebitwise copy
o class type, use class’s copy constructor
o array, each element is copied appropriate to the elemeat typ

struct B {
B() { cout << "B() ";}
B(const B &c) { cout << "B(&) ";}
B &operator =(const B &rhs) { cout << "B="; }

2

struct D { /I implicit copy and assignment
int i /I basic type, bitwise
B b; /I object type, memberwise
B a[5]; /I array, element/memberwise

3

int main() {
D i; cout << endl; /l B’ s default constructor
D d = i; cout << endl; /I D' s default copy- constructor
d=1i; cout<<endl; /D s default assignment

}

outputs the following:

b a /I member variables

B(B() B() B() B() B() D i

B(&) B(&) B(&) B(&) B(&) B(&) IDd=i

B= B= B= B= B= B= INd=i

e Often only a bitwise copy as subobjects have no copy cortstroc assignment operator.

e If D defines a copy-constructor/assignment, it overrides thanhy subobject.

struct D {
... /I same declarations
D() { cout << "I() "; }
D(const D &c) :i(c.i), b(cb) a(ca){cout<<"D(& ";}
D &operator =(const D &rhs) {

i = rhs.i; b = rhs.b;
for (inti=0;i<5;i+=1) ali] =rhs.afi]; [/ array copy
cout << "D=";
return «this;
}
¥
outputs the following:

B() B() B() B() B() B() D)) II'D i

B(&) B(&) B(&) B(&) B(&) B(&) D(&) // Dd =i

B= B= B= B= B= B= D= d=i

Must copy each subobject to get same output.

110 CHAPTER 2. C++

e When an object type has pointers, it is often necessary to deep copy, i.e, copy the
contents of the pointed-to storage rather than the poi(dessalso SectioR.23, p. 127.

struct Shallow {
int «i;
Shallow(int v) {i=newint; «s =v;}
~Shallow() { delete i; }

struct Deep {
int *i;
Deep(int v){i=newint; s =v;}
~Deep() { delete i; }
Deep(Deep &d) {i = new int; «i = «d.i; } /I copy value
Deep &operator =(const Deep &rhs) {

xi = «rhs.i; return sthis; /I copy value
}
%
initialization
Shallow x(3), y = X; Deep x(3), y = x;
y —~ X Yy X
shallow cop ! ! !
deep co
newx.i| 3 3= b Eopy 3
assignment
Shallow x(3), y(7); y=X; Deep x(3), y(7); y =X
y —~ X y X
shallow cop ! ! !
deep co
newvy.i| 7 newx.i| 3 X 3= b Eopy 3
memory leak dangling pointer

e For shallow copy:

o memory leak occurs on the assignment

o dangling pointer occurs afterory is deallocated; when the other object is deallocated,
it reuses this pointer to delete the same storage.

e Deep copy does not change the pointers only the values assevithin the pointers.

e Bewareself-assignmenfor variable-sized types:

2.18. OBJECT

struct Varray {
unsigned int size;
int «a;

111

/I variable- sized array

Varray(unsigned int s) { size = s; a = new int [size]; }

/I other members

Varray &operator =(const Varray &rhs) { // deep copy

delete [] a;
size = rhs.size;
a = new int [size];

/I delete old storage
/Il set new size
/I create storage for new array

for (unsigned int i =0; i< size;i+= 1) // copy values

afi] = rhs.alif;
return «this ;

}
3
Varray x(5), y(10);
X =vy; [/l works
y =vy; [l fails

e How can this problem be fixed?

e Which pointer problem is this, and why can it go undetected?

e For deep copy, it is often necessary to define a equality tpeferator ==) performing a
deep compare, i.e., compare values not pointers.

2.18.6 Initialize const / Object Member

e C/C+const members and local objects of a structure must be initial&eteclaration:

Ideal (Java-like)

Structure

struct Bar {
Bar(int i) {..}
/Il no default constructor
} bar(3);
struct Foo {
const int i = 3;
Bar x+ const p = &bar;
Bar &rp = bar;
Bar b(7);
}x

struct Bar {
Bar(int i) {..}
/I no default constructor
} bar(3);
struct Foo {
const int i
Bar = const p;
Bar &rp;
Bar b;
} x ={ 3, &bar, bar, 7 };

e Left: disallowed because fields cannot be directly initiedi.

¢ Right: disallowed becaudgar has a constructor somust use constructor syntax (see Sec-

tion 2.18.3, p. 108

e Try using a constructor:

112

CHAPTER 2.

C++

Constructor/assignment Constructor/initialize
struct Foo { struct Foo {
const int i; const int i;
Bar = const p; Bar = const p;
Bar &rp; Bar &rp;
Bar b; Bar b;
Foo() { Foo() : /I declaration order
i = 3; /I after declaration i(3),
p = &bar; p(&bar),
rp = bar; rp(bar),
b(7); // not a statement b(7)
} }
3 %

Left: disallowed becausspnst has to be initialized at point of declaration.

Right: special syntax to indicate initialized at point ottiation.

Ensuregonst /object members are initialized before used in construmbaoly.

Must be initialized in declaration order to prevent use beganitialization.

Syntax may also be used to initialize any local members:

struct Foo {
Complex c;
int k;
Foo() : c(1,2),k(14) {
¢ = Complex(1, 2);
k = 14;

/ initialize c, k
/I or assign c, k

2
Initialization may be more efficient versus default constion and assignment.
2.18.7 Static Member
e Static data-member creates a single instance for objeetMgrsus for object instances.

struct Foo {
static int cnt; // one for all objects
int i /I one per object

3

o exist even if no instances of object exist

o must still be declared (versus defined in the type) irca file.
o allocated in static block not in object.

e Static routine-member, used to access static data-mentfi@rsiathis parameter (i.e., like
a regular routine)

2.19. RANDOM NUMBERS 113

e E.g., count the number ®oo objects created.
struct Foo {

int cnt; static int cnt;
int i
void stats() { static void stats() {
cout << cnt; cout << cnt; // allowed
} i = 3; /I disallowed
struct Foo { mem(); /I disallowed
int i }
Foo() { Foo() {
ent += 1; cnt += 1, /I allowed
.:stats(); stats(); /I allowed
}
3 ¥
int Foo::cnt; // declaration (optional initialization)
int main() { int main() {
Foo X, v; Foo X, v;
} }
code static stack
0 -
8 3 free
D ®© o -~ - - -
L?L) = 2 heap memory | ~ |

e Object membermem can referencgandrtn in static block.

e Static membertn not logically nested in typf®o, so it cannot reference membéeasnidmem.

2.19 Random Numbers

e Random numbersare values generated independently, i.e., new values ddep&nd on
previous values (independent trials).

e E.g., lottery numbers, suit/value of shuffled cards, valueked dice, coin flipping.

e While programmers spend much time ensuring computed vatesot random, random
values are useful:

o gambling, simulation, cryptography, games, etc.
e Random-number generatoris an algorithm computing independent values.

¢ If algorithm uses deterministic computation (predictabégiuence), it generatgseudo
random-numbers versus “true” random numbers.

e All pseudo random-number generatos (PRNG) involve some technique that scrambles
the bits of a value, e.g., multiplicative recurrence:

seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble bits

114 CHAPTER 2. C++

e Multiplication of large values adds new least-significaits Bnd drops most-significant bits.

bits 63-32| bits 31-0
0 3e8e36

5f | 718c25el

ad3e | 7b5f 1dbe
bc3b | ac69ff 19
1070f | 2d258dc6

e By dropping bits 63-32, bits 31-0 become scrambled afteln eadtiply.

e E.g.,classPRNG generates fixed sequence of LARGE random values that repeats affer 2
values (but might repeat earlie?):

class PRNG {
uint32_t seed_; /I same results on 32/64- bit architectures
public :

PRNG(uint32_t s = 362436069) {
seed_ = s; /| set seed

}

uint32_t seed() { /I read seed
return seed_;

void seed(uint32_t s) { Il reset seed
seed_ = s; /| set seed

}

uint32_t operator ()() { /I [0,UINT_MAX]

seed_ = 36969x(seed_ & 65535)+(seed_ >> 16); // scramble bits
return seed_;

}
uint32_t operator ()(uint32_t u) { /1 [0,u]
return operator ()() % (u + 1); /I call operator()()
}
uint32_t operator ()(uint32_t I, uint32_t u) { // [l,u]
return operator)(u - |) + I; /I call operator()(uint32_t)
}

|

e Creating a member with the function-call operator nagqhegfunctor) allows these objects
to behave like a routine.

PRNG prng; /I often create single generator
prng(); /I [0,UINT_MAX]
prng(5); /1 [0,5]

prng(5, 10); // [5,10]

e Large values are scaled using modulus; e.g., generate d0manumber between 5-21:

2http://www.bobwheeler.com/statistics/Password/Marsa gliaPost.txt

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/PRNG.h
http://www.bobwheeler.com/statistics/Password/MarsagliaPost.txt

2.20. DECLARATION BEFORE USE 115

PRNG prng;

for (inti=0;i<10;i+=1){
cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << endl;
cout << prng(5, 21) << endl;

}

e By initializing PRNG with a different “seed” each time the program is run, the getesl
sequence is different:

PRNG prng(getpid()); // process id of program
prng.seed(time()); /I current time

e #include <cstdlib> provides C random routinesand andrand to set a seed and generate
random values, respectively.

srand(getpid()); /I seed random genrator
r = rand(); /I obtain next random value

2.20 Declaration Before Use

e Declaration Before Use(DBU) means a variable declaration must appear before égaus
in a block.

¢ In theory, a compiler could handle some DBU situations:

{
cout << i << endl; /I prints 4 ?
int i = 4; /I declaration after usage
}
but ambiguous cases make this impractical:
int i = 3;
{
cout << i << endl; /I which i?
int i = 4;

cout << i << endl;

}

C always requires DBU.

C+ requires DBU in a block and among types but not within a&typ

Java only requires DBU in a block, but not for declarationsriamong classes.

DBU has a fundamental problem specifyimgitually recursive references:

void f) { // fcallsg
g(); /I g is not defined and being used

}
void g){ // gcallsf

fO; /I fis defined and can be used
}

116 CHAPTER 2. C++

Caution: these calls cause infinite recursion as there is nade case.

e Cannot type-check the call tpin f to ensure matching number and type of arguments and
the return value is used correctly.

¢ Interchanging the two routines does not solve the problem.

e A forward declaration introduces a routine’s type (calledbaototype/signature) before its
actual declaration:

int f(int i, double); // routine prototype: parameter names optional
/I and no routine body
int f(int i, double d) { // type repeated and checked with prototype

}
e Prototype parameter names are optional (good documemgatio
e Actual routine declaration repeats routine type, whichtmatch prototype.

e Routine prototypes also useful for organizing routines soarce file.

int main(); /I forward declarations, any order
void g(int i);
void f(int i);
int main() { /I actual declarations, any order
f(5);
g(4);
}

void g(inti){...}
void f(inti){...}

e E.g., allowingmain routine to appear first, and for separate compilation (see@®e2.23, p. 127.

e Like Java, CH does not always require DBU within a type:

| Java | CH+
void g() {} // not selected by call in T::f

class T { struct T {
void f() { ¢ = Colour.R; g(); } void f) {c =R; g(;} // ¢, R, g not DBU
void g() { ¢ = Colour.G; f(); } void g) {c=G;f();} /Il c, G not DBU
Colour c; enum Colour { R, G, B }; // type must be DBU
enum Colour { R, G, B }; Colour c;

} h

e Unlike Java, C+ requires a forward declaration for muguadicursive declarationsmong
types:

2.20. DECLARATION BEFORE USE 117

| Java | CH

class T1 { struct T1 {
T2 t2; T2 t2; /l DBU failure, T2 size?
T1() {t2 = new T2(); }

; k

class T2 { struct T2 {
T1 t1; T1 t1;
T2() { t1 = new T1(); }

|3 3

T1tl = new T1(); T1 t1;

Caution: these types cause infinite expansion as there is agsdcase.

e Java version compiles becaudé? are references not objects, and Java can look ahead at
T2; C+ version disallowed because DBU o2 means it does not know the sizeT.

e An object declaration and usage requires the object’s sideneembers so storage can be
allocated, initialized, and usages type-checked.

e Solve using Java approach: break definition cycle usingvadiat declaration and pointer.

| Java | C+ |
struct T2; // forward
class T1 { struct T1 {
T2 t2; T2 &t2; /I pointer, break cycle
T1() {t2 = new T2(); } T1() : t2(»new T2) {} // DBU failure, size?
c’Iass T2 { s'truct T2 {
T1 t1; T1 t1;

T2() {tl = new T1(; } || %
3

e Forward declaration of2 allows the declaration of variabied::t2.
¢ Note, a forward type declaration only introduces the nanetgpe.

e Given just a type name, only pointer/reference declarattorthe type are possible, which
allocate storage for an address versus an object.

e CH+’s solution still does not work as the constructor canrsa typer2.

e Use forward declaration and syntactic trick to move memleéindion after both types are
defined

118 CHAPTER 2. C++

struct T2; // forward

struct T1 {
T2 &t2; // pointer, break cycle
T1(); [/l forward declaration

%

struct T2 {
T1 t1;

H

T1:T1() : t2(»new T2) {} // can now see type T2

e Use of qualified nam&1::T1 allows a member to be logically declaredTin but physically
located later (see Secti@i23, p. 127.

2.21 Encapsulation

e Encapsulationhides implementation to support abstractiendgess contrgl.

e Access control applies to types NOT objects, i.e., all disje€the same type have identical
levels of encapsulation.

e Abstraction and encapsulation are neither essential nogrered to develop software.

e E.g., programmers could follow a convention of not direettgessing the implementation.
e However, relying on programmers to follow conventions iegkrous.

e Abstract data-type (ADT) is a user-defined type practicing abstraction and psgtation.

e Encapsulation is provided by a combination of C and C+ festu

e C features work largely among source files, and are indyréiettl into separate compilation
(see Sectior.23, p. 127.

e C+ features work both within and among source files.

e C+ provides 3 levels of access control for object types:

| Java | C+

class Foo { struct Foo {
private ... private : /I within and friends
/I private members
protected ... protected : /I within, friends, inherited
/I protected members
public ... public : /I within, friends, inherited, users
/I public members

h I3

e Java requires encapsulation specification for each member.

2.21. ENCAPSULATION 119

e C+ groups members with the same encapsulation, i.e., atibaes after a labeprivate ,
protected or public , have that visibility.

e Visibility labels can occur in any order and multiple timesain object type.

e Encapsulation supports abstraction by making implememahembers private and inter-
face members public.

e Note, private/protected members are still visible to pragrmer but inaccessiblésee pagé 32
for invisible implementation).

struct Complex {
private :
double re, im; /I cannot access but still visible
public :
/I interface routines
h

e struct has an implicipublic inserted at beginning, i.e., by default all members areipubl

e class has an impliciprivate inserted at beginning, i.e., by default all members aregpeiv

struct S { class C {
/I public: Il private:
int z; int x;
private : protected :
int x; int y;
protected : public :
int y; int z;
% I3

e Use encapsulation to preclude object copying by hiding capystructor and assignment
operator:

class Lock {
Lock(const Lock &); /I definitions not required
Lock &operator =(Lock &);

public :
Lock() {...}
\
void rtn(Lock f) {...}
Lock X, vy;

rin(x); // disallowed, no copy constructor for pass by value
x =vy; [/l disallowed, no assignment operator for assignment

e Prevent object forgery (lock, boarding-pass, receipt)apymng that does not make sense
(file, database).

e Encapsulation introduces problems when factoring for nextization, e.g., previously ac-
cessible data becomes inaccessible.

120 CHAPTER 2. C++

class Cartesian { // implementation type
double re, im;

h
class Complex { class Complex {
double re, im; Cartesian impl;
public : public :
Complex operator +(Complex c);
h
h Complex operator +(Complex a, Complex b);
ostream &operator <<(ostream &o0s, ostream &operator <<(ostream &0s,
Complex c); Complex c);

Implementation is factored into a new ty@artesian, “+” operator is factored into a routine
outside and outputd<” operator must be outside (see Sectih8.3.2, p. 10b

Both Complex and “+” operator need to acceSartesian implementation, i.ere andim.

Creatingget andset interface members faZartesian provides no advantage over full access.

C+ provides a mechanism to state that an outside typef®igiallowed access to its im-
plementation, calle@fiendship (similar to package visibility in Java).

class Complex; // forward

class Cartesian { // implementation type
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
friend class Complex;
double re, im;

%

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
Cartesian impl;

public :

I3
Complex operator +(Complex a, Complex b) {

return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &o0s, Complex c) {

return os << c.impl.re << "+" << c.impl.im << "i ";

e Cartesian makese/im accessible to friends, artbmplex makesmpl accessible to friends.

e Alternative design is to nest the implementation typ€amplex and remove encapsulation
(usestruct).

2.22. SYSTEM MODELLING 121

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
struct Cartesian { // implementation type
double re, im;

} impl;
public :
Complex(double r = 0.0, double i =0.0) {
impl.re = r; impl.im = i
}

Complex makesCartesian, re, im andimpl accessible to friends.

2.22 System Modelling

e System modellinginvolves describing a complex system in an abstract way i tneder-
stand, design and construct the system.

e Modelling is useful at various stages:

o analysis : system function, services, requirements (oatbr design)
o design : system parts/structure, interactions, behayautine for programming)
o programming : converting model into implementation

e Model grows from nothing to sufficient detail to be transfedhinto a functioning system.

e Model provides high-level documentation of the system foderstanding (education) and
for making changes in a systematic manner.

e Top-down successive refinement is a foundational mechamssa in system design.

e Multiple design tools (past and present) for supportingesysdesign, most are graphical
and all are programming-language independent:
o flowcharts (1920-1970)
o pseudo-code
o Warnier-Orr Diagrams
o Hierarchy Input Process Output (HIPO)
o UML

e Design tools can be used in various ways:

o sketchout high-level design or complex parts of a system,
o blueprint the system abstractly with high accuracy,
o generateinterfaces/code directly.

122 CHAPTER 2. C++

e Key advantage is design tool provides a generic, abstradehud a system, which is trans-
formable into different formats.

e Key disadvantage is design tool seldom linked to implenteritanechanism so two often
differ. (CODE = TRUTH)

e Currently, UML is the most popular design tool.

2.221 UML

e Unified Modelling Language (UML) is a graphical notation for describing and designing
software systems, with emphasis on the object-orientde. sty

e UML modelling has multiple viewpoints:

o class model describes static structure of the system for creatingabbje
o object model: describes dynamic (temporal) structure of system objects
o interaction model : describes the kinds of interactions among objects

Focus on class and object modelling.

comment texr ””” target

e Classes diagramdefines class-based modelling, where a class is a type ftaniisting
objects.

e Note / comment

e Class has a name, attributes and operations, and may paréi¢n inheritance hierarchies
(see SectiorR.24.12, p. 14b

class name Person
- name : String
attributes | - age : Integer optional
(data)| - sex : Boolean
-owns: Car[0..5]
+ getName : String
operations | + getAge : Integer optional
(routines)| + getCars: Car[0..5]
+ buy(in car : Car, inout card : CreditCard) : Boolegn

e Attribute describes a property in a class.
[visibility] name [*:” [type] [“[” multiplicity “]”] [*="d efault]]

o visibility : access to property
+ = public, — = private, #= protected~ = package

2.22. SYSTEM MODELLING 123

o name : identifier for property (like field name in structure)
o type : kind of property
Boolean, Integer, Float, String, class-name

o multiplicity : cardinality for instantiation of property
0..(N|x), from 0 toN or unlimited,N short forN..N, x short for 0.x
Defaults to 1

o default : expression that evaluates to default value (areslfor property

e operation : action invoked in context of object from the class
[visibility] name [“(" [parameter-list] “)"] [“:” return-type] [“[” multiplicity “]”]
o Visibility : access to operation
+ = public, — = private, #= protected~ = package
o name : identifier for operation (like method name in strugfur

o parameter-list : comma separated list of input/outputsyfpe operation
[direction] parameter-name “:” type [“[" multiplicity “]"]
[“=" default] [“ {" modifier-list“}"]]
o direction : direction of parameter data flow
“in” (default) | “out” | “inout”

o return-type : output type from operation

¢ Only specify attributes/operations useful in modelling: ro flags, counters, temporaries,
constructors, helper routines, etc.

e Attribute with type other than basic type hasaasociation

Person Car

owns :' éar [0..5]

o Class Person has attribut@ns with multiplicity constraint 0..5 forming unidirectional
association with clasSar, i.e., person owns (has) 0 to 5 cars.

e Alternatively, association can be represented via a linsgjbly named):

Person ownership Car

owns
0.5

o ClassPersorhas attributewnswith multiplicity constraint0..5(at target end) forming
a unidirectional association with claSar and association is named “ownership”.

124 CHAPTER 2. C++

e Association can also be bidirectional.

Person Car
owns :' 6ar [0..5 owned':' Person
Person ownership Car
owned owns
0.1 0.5

o Association “ownership” also has cla€ar having attributeownedwith multiplicity
constrain®..1person, i.e., a car can be unowned or owned by 1 person.

If UML graph is cluttered with lines, create associationliass rather than using a line.

o E.g., if 20 classes associated with Car, replace 20 lindsatitibutes in each class.

Alternatively, multiple lines to same aggregate may be meigto a single segment.

o Any adornments on that segment apply to all of the aggregaitnals.

< (arrowhead)= navigable

o instances of association can be accessed efficiently astueiation end (arrowhead)
(car is accessible from person)

o opposite association end “owns” the association’s implaaten (person has a car)

X = not navigable.

Adornments options:

o show all arrows an&s (completely explicit)

o suppress all arrows ants = no inference about navigation
often convenient to suppress some of the arrows/Xs and boly special cases

o show only unidirectional association arrows, and supdvelisectional associations

= two-way navigability cannot be distinguished from no natign at all, but latter
case occurs rarely in practice.

¢ Navigability may be implemented in a number of ways:

o pointer/reference from one object to another
o elements in arrays

e Object diagram : is a snaphot of class instances at one moment during egacuti

e Object can specify values of class : “name : class-type” édinted), attribute values.

2.22. SYSTEM MODELLING 125

object name | mary : Person
name="Mary”
attribute | age=29 optional
values| sex=T

owns=(pointer)

Object may not have a name (dynamically allocated).

e Objects associated with “ownership” are linked.

owned owns
fred: Person : Car
name="Fredrick’ kind="Honda’
mary: Person >< : Car
name="Mary” kind="Toyota’
peg:Person : Car
name="Margaret’ kind="Ford’

Which associations are valid/invalid/missing?

e Association Class optional aspects of association (dashed line).

Person Car
Sale
dealership
serialno
fred: Person : Car
name="Fredrick’ kind="Honda’
billof: Sale
Ted’s Honda
L345YH454

o cars sold through dealership (versus gift) need bill of sale
o association class cannot exist without association (neown

e Aggregation (Q) is an association between an aggregate attribute andrits pa

Car = Tire
0.1 0..*

126 CHAPTER 2. C++

o car can have 0 or more tires and a tire can only be on O or 1 car

o aggregate may not create/destroy its parts, e.g., margrelif tires during car’s life-
time and tires may exist after car’s lifetime (snow tires).

class Car {
Tires xtires[4]; [/ array of pointers to tires

e Composition(#) is a stronger aggregation where a part is included in at orestomposite
at a time.

Car D Brake

o car has 4 brakes and each brake is on 1 car

o composite aggregate often does create/destroy its partsame brakes for lifetime of
car and brakes deleted when car deleted (unless brakesedrabjunkyard)

class Car {
DiscBrake brakes[4]; /I array of brakes

e UML has many more facilities, supporting very complex dggans of relationships among
entities.

o VERY large visual mechanisms, with several confusing gieghepresentations.

e UML diagram is too complex if it contains more than about 25 bxes.

Classes Diagram

Vehicle Client Insurance
- make: String | * 1 -name: String |1 1| - company: String
- model: String ! - phone: String - policy: String
- colour: String ! + rate(): Double - expiry: String
Contract :
’7—‘ - start: Date
- end: Date
Truck| |SUV|| Car 1 Corporate| | Individual

*

Accessory
- surcharge: Double | = | no charg
+ surcharge(): Double during sales

I |
FloorMat GPS SatelliteRadio

2.23. SEPARATE COMPILATION 127

Object Diagram

:Contract

start="2009/09/07"
end="2012/09/07’

:Car i jfdoe:Individual :Insurance
make="Honda” . name="John F. Doe” company="SUN Lite”
model="Civic” phone="204 888-2020" policy="X-JAJ1567"
colour="silver explry:”2011/05/31”

:Truck ibm:Corporate :SUV
make="Ford” ‘ name="IBM” ‘ make="Nissan
model="F150" phone="519 744-3121" model="Quest’
colour="red” | | colour="black”

.Contract :Insurance ~:Contract
start="2010/10/13" | company="Pilote” start="2008/01/25"
end="2013/10/13 | policy="123-ABC” end="2014/01/25
expiry="2010/12/01"
:GPS :FloorMat
- surcharge=500 | | - surcharge=50

Invalid Object Diagram

t t:(igggg%9/07" dnsurance

start= — -
o company="All Gate

end="2012/09/07 Dol A1 26 6K
Car | ffdoe:Individual EXpIY=

make="Hondg"__. name="John F. Doe” .

model="Civic" phone="204 888-2020°_ dnsurance

colour="silver’ company="SUN Lite

policy="X-JAJ1567"
expiry="2011/05/31"

:Truck ibm:Corporate :SUV
make="Ford” | | name="IBM” | make="Nissan/
model="F1507 | phone="519 744-3121" | model="Quest’
colour="red” N R ! colour="black”

‘Contract SUV "~ Contract
start="2010/10/13" make="Honda" start="2008/01/25"
end="2013/10/13 model="CRV”" end="2014/01/25

colour="blue”

:GPS :FloorMat

- surcharge=500 - surcharge=50

2.23 Separate Compilation
e As program size increases, so does cost of compilation.

e Separate compilationdivides a program into units, where each unit can be indepahd
compiled.

128 CHAPTER 2. C++

e Advantage: saves time by recompiling only program unit{a} thange.

@)

In theory, if an expression is changed, only that expressesus to be recompiled.

o

In practice, compilation unit is coarseranslation unit (TU), which is a file in C/C+-.

@)

In theory, each line of code (expression) could be put in arsge file, but impractical.

o

So a TU should not be too big and not be too small.

e Disadvantage: TUs depend on each other because a progrees steny forms of informa-
tion, especially types (done automatically in Java).

o Hence, need mechanismitoport information from referenced TUs amdport infor-
mation needed to referencing TUs.

e For example, simple program in filgog.cc using complex numbers:

prog.cc
#include <iostream> /I import
#include <cmath> Il sqrt

using namespace std;

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);

static int objects; /I shared counter
double re, im;
public :

Complex(double r = 0.0, double i = 0.0) { objects += 1, ...}
double abs() const { return sqgrt(re = re + im % im); };
static void stats() { cout << objects << endl; }

¥

int Complex::objects; /I declare

Complex operator +(Complex a, Complex b) {...}

... Il other arithmetic and logical operators

ostream &operator <<(ostream &os, Complex c) {...}

const Complex C_1(1.0, 0.0);

int main() {
Complex a(1.3), b(2., 45),c(-3,-4);
cout << a+ b +c+ C_1 << c.abs() << endl;
Complex::stats();

e TU prog.cc has references to itemsiwstream andcmath.
e As well, there are many references within the TU, ergin reference€omplex.

e Subdividing program into TUs in C/C+ is complicated be@ofmport/export mechanism.

2.23. SEPARATE COMPILATION 129

prog.cc
exec
lithi program
monolitnic L~ - |executable
g++ prog.cc -o exec
unitl.cc]
unitl.o
TUy program exec
separate unit2.cc _ executable
unit2.0
TU» program
g++ -c unitN.cc g++ unit*.o0 -0 exec

TU; is NOT a program; program formed by combining TUs.

Compile each Twith - c compiler flag to generate executable codsifile (Java hasclass
file).

$ g++ -c unitl.cc ... // compile only modified TUs

generates filesnitl.o containing a compiled version of source code.

Combine TY with - o compiler flag to generate executable program.

$ g++ unit~.0 - 0 exec // create new excutable program “exec”

Separate original program into two TUs in filesmplex.cc andprog.cc:

complex.cc
#include <iostream> /I import
#include <cmath>
using namespace std;
class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);

static int objects; /I shared counter
double re, im; /I implementation
public :

Complex(double r = 0.0, double i = 0.0) { objects += 1, ...}
double abs() const { return sqgrt(re = re + im * im); }
static void stats() { cout << objects << endl; }

¥

int Complex::.objects; /I declare

Complex operator +(Complex a, Complex b) {...}

... Il other arithmetic and logical operators

ostream &operator <<(ostream &os, Complex c) {...}

const Complex C_1(1.0, 0.0);

130 CHAPTER 2. C++

TU complex.cc has references to itemsiwstream andcmath.

prog.cc
int main() {
Complex a(1.3), b(2.,45),¢c(-3,-4);
cout << a+ b+ c+ C_1 << c.abs() << endl;
Complex::stats ();

}

TU prog.cc has references to itemsiwstream andcomplex.cc.
e How can TUprog.cc accesomplex? By importing description o€omplex.

e How are descriptions imported?

TU imports information using preprocesstinclude (see SectioR.12.2, p. 87.

e Why not includecomplex.cc into prog.cc?

Because all ofomplex.cc is compiled each timprog.cc is compiled so there is no advantage
to the separation (program is still monolithic).

e Hence, must separatemplex.cc into interface for import and implementation for code.

e Complex interface placed into fileomplex.h, for inclusion (import) into TUs.

complex.h
#ifndef __COMPLEX_H__
#define __COMPLEX_H__ // protect against multiple inclusion
#include <iostream> /I import
/I NO “using namespace std”, use qualification to prevent polluting scope
class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);

static int objects; /I shared counter
double re, im; /I implementation
public :

Complex(double r = 0.0, double i = 0.0);
double abs() const;
static void stats();
¥
extern Complex operator +(Complex a, Complex b);
... Il other arithmetic and logical operator descriptions
extern std::ostream &operator <<(std::ostream &os, Complex c);
extern const Complex C_1;
#endif // __COMPLEX_H__

e (Usually) no code, just descriptions : preprecessor vieslC/C+ types and forward dec-
larations (see Sectidh20, p. 11%.

e extern qualifier means variable or routine definition is locate@elsere (not for types).

2.23. SEPARATE COMPILATION 131

e Complex implementation placed in fileomplex.cc.

complex.cc
#include "conpl ex. h" /I do not copy interface
#include <cmath> /I import
using namespace std; /I ok to pollute implementation scope
int Complex::objects; /I defaults to 0

void Complex::stats() { cout << Complex::objects << endl; }
Complex::Complex(double r, double i) { objects +=1; ...}
double Complex::abs() const { return sqrt(re = re + im = im); }
Complex operator +(Complex a, Complex b) {

return Complex(a.re + b.re, a.im + b.im);
}

ostream &operator <<(ostream &o0s, Complex ¢) {
return os << c.re << " i
}

+" << cim << "i
const Complex C_1(1.0, 0.0);

Implementation is composed of actual declarations and.code

.cc file includes the.h file so that there is only one copy of the constants, declasas, and
prototype information.

Why is#include <cmath> in complex.cc instead ofcomplex.h?

Compile TUcomplex.cc to generateomplex.o.

$ g++ - c complex.cc

What variables/routines are exported froamplex.o?

$ nm - C complex.o | egrep’ T| B’
c_1

Complex::stats()

Complex::objects
Complex::Complex(double, double)
Complex::Complex(double, double)
Complex::abs() const
operator<<(std::ostreamé&, Complex)
operator+(Complex, Complex)

¢ In general, type names are not in thdile?

e To compileprog.cc, it must importcomplex.h

132 CHAPTER 2. C++

prog.cc
#include "conpl ex. h"
#include <iostream> /I included twice!

using namespace std;

int main() {
Complex a(1.3), b(2.,45),¢c(-3,-4);
cout << a+ b+ c+ C_1 << c.abs() << endl;
Complex::stats ();

e Why is#include <iostream> in prog.cc when it is already imported bgomplex.h?

e Compile TUprog.cc to generaterog.o.

$ g++ - c prog.cc

e Link together TUscomplex.o andprog.o to generatexec.

$ g++ prog.o complex.o - 0 exec

e All .o files MUST be compiled for the same hardware architectureg.eall x86.

e To hide global variables/routines (but NOT class member3)d, qualify withstatic .

complex.cc

static Complex C_1(1.0, 0.0);
static Complex operator +(Complex a, Complex b) {...}
static ostream &operator <<(ostream &os, Complex ¢) {...}

o herestatic means linkage NOT allocation (see Sectibh8.7, p. 112
e These variables/routines are now only accessible in the(ffat!good for users of complex)

e Encapsulation is provided by giving a user access to thadedile(s) (h) and the compiled
source file(s) .p), but not the implementation in the source file(st).

¢ Note, while theh file encapsulates the implementation, the implementasiatili visible.

e To completely hide the implementation requires a (more Bgpe) reference:

2.23. SEPARATE COMPILATION 133

complex.h
#ifndef __COMPLEX_H__
#define __COMPLEX_H__ /I protect against multiple inclusion
#include <iostream> /I import
/I NO *“using namespace std”, use qualification to prevent polluting scope
class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);

static int objects; /I shared counter
struct Compleximpl; /I hidden implementation, nested class
Compleximpl &impl; /l indirection to implementation

public :

Complex(double r = 0.0, double i = 0.0);
Complex(const Complex &c); /I copy constructor
~Complex(); /I destructor
Complex &operator=(const Complex &c); /I assignment operator
double abs() const;
static void stats();
¥
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::ostream &os, Complex ¢);
extern const Complex C_1;
#endif // __COMPLEX_H__

complex.cc
#include "conpl ex. h" /I do not copy interface
#include <cmath> /I import
using namespace std; /I ok to pollute implementation scope
int Complex::objects; /I defaults to 0
struct Complex::Compleximpl { double re, im; }; /I implementation

Complex::Complex(double r, double i) : impl(xnew Compleximpl) {
objects += 1; impl.re = r; impl.im = i;
}

Complex::Complex(const Complex &c) : impl(snew Compleximpl) {
objects += 1; impl.re = c.impl.re; impl.im = c.impl.im;
}

Complex::~Complex() { delete &impl; }

Complex &Complex::operator=(const Complex &c) {
impl.re = c.impl.re; impl.im = c.impl.im; return xthis;

}

double Complex::abs() { return sqrt(impl.re = impl.re + implLim = implim); }
void Complex::stats() { cout << Complex::objects << endl; }
Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &o0s, Complex c) {

}

return os << c.impl.re << "+" << c.implLim << "i";

e A copy constructor and assignment operator are used becamg#ex objects now contain
a reference pointer to the implementation (see [

134 CHAPTER 2. C++

2.24 Inheritance
e Objectorientedlanguages provideheritance for writing reusable program-components.

| Java | CH |

class Base { ...} struct Base { ...}
class Derived extends Base { ... } || struct Derived : public Base { ... };

¢ Inheritance has two orthogonal sharing concepts: imple¢atiem and type.

e Implementation inheritance provides reuse of cotede an object type; type inheritance
provides reuseutsidethe object type by allowing existing code to access the bhgse t

2.24.1 Implementation Inheritance

e Implementation inheritance reuses program component®imposing a new object’s im-
plementation from an existing object, taking advantagee¥ipusly written and tested code.

e Substantially reduces the time to generate and debug a rjewat type.

e One way to understand implementation inheritance is to iibd& composition:

| Composition | Inheritance
struct Engine { // Base struct Engine { // Base
int cyls; int cyls;
int r(..){...} int r(..){...}
Engine() { ... } Engine() { ... }
h h
struct Car { // Derived struct Car : public Engine { // implicit
Engine e; // explicit composition /I composition
int s(...) {ecyls=4;er(.), ...} int s(...){ecyls=4;er(.), ...}
Car() { ... } Car() { ... }
} vw; Derived() { ... }
vw.e.cyls = 6; // composition reference | } vw;
vw.e.r(...); // composition reference vw.cyls = 3; // direct reference
vw.s(...); // direct reference vw.r(...); // direct reference
vw.s(...); // direct reference

e Composition explicitly creates object memberto aid in implementation.

o A Car “has-a”Engine.
o A Caris not anEngine nor is anEngine aCar, i.e., they are not logically interchangable.

¢ Inheritance, public Engine” clause, implicitly:

o creates an anonymous base-class object-member,

o opensthe scope of anonymous member so its members are accesghmetvgualifi-
cation, both inside and outside the inheriting object type.

2.24. INHERITANCE 135

e E.g., Car declaration creates invisibEengine object in Car object, like composition, and
allows direct access to variableagine::i andEngine::r in Car::s.

e Constructors and destructors must be invoked for all intpfideclared objects in inheri-
tance hierarchy as done for an explicit member in compasitio

Engine b; b.Engine(); // implicit, hidden declaration
Car d; implicitly Car d; d.Car();

rewritten as - _ _
d.~Car(); b.~Engine(); // reverse order of construction

¢ If base type has members with the same name as derived typerks like nested blocks:
inner-scope name overrides outer-scope name (see S2A3idnp. 36.

e Sitill possible to access outer-scope names usifigjtialification (see Sectio.7.6, p. 70
to specify the particular nesting level.

| Java | C+ |
class Basel { struct Basel {
int i; int i
} h
class Base2 extends Basel { struct Base2 : public Basel {
int i int i; /I overrides Basel::i
} h
class Derived extends Base2 { struct Derived : public Base2 {
int i; int i Il overrides Base2::i
void s() { void r() {
int i = 3; int i =3; /I overrides Derived::i
this .i = 3; Derived::i = 3; // this.i
((Base2)this).i = 3; // super.i Base2::i = 3;
((Basel)this).i = 3; Base2::Basel::i = 3; // or Basel:i
} }
} %

e Friendship is not inherited.

class C{
friend class Base;

%
class Base {
/I access C’ s private members

%

class Derived : public Base {
/I not friend of C

%

¢ Unfortunately, having to inherit all of the members is navays desirable; some members
may be inappropriate for the new type (e.g, large array).

136

CHAPTER 2. C++

e As a result, both the inherited and inheriting object musvéey similar to have so much

common code.

2.24.2 Type Inheritance

e Type inheritance establishes an-&” relationship among types.

class Employee {
... Il personal info
%

class FullTime : public Employee {
... I wage & benefits

3

class PartTime : public Employee {
... Il wage

%

o A FullTime “is-a” Employee; aPartTime “is-a” Employee.
o A FullTime andPartTime are logically interchangable with @&mployee.
o A FullTime andPartTime are not logically interchangable.

e Type inheritance extends name equivalence (see Sexfiop. 56 to allow routines to han-

dle multiple types, calledolymorphism, e.qg.:

struct Foo { struct Bar {
int i int i
double d; double d;
M, bb

void r(Foof) {...}
r(f); /I allowed
r(b); /I disallowed, name equivalence

Since typedg-oo andBar are structurally equivalent, instances of either type khawrk as
arguments to routine(see SectioR.7.5, p. 70.

Even if typeBar has more members at the end, routirmaly accesses the common ones at
the beginning as its parameter is typm.

However, name equivalence precludes ther¢all).

Type inheritance relaxes name equivalence by aliasing tleeided name with its base-type
names.

struct Foo { struct Bar : public Foo { // inheritance
int i; /I remove Foo members
double d;

HE } b;

void r(Foo f) {...}
r(f); // valid call, derived name matches
r(b); /I valid call because of inheritance, base name matches

2.24. INHERITANCE 137

e E.g., create a new typdycomplex that counts the number of timess is called for each
Mycomplex object.

e Use both implementation and type inheritance to simplifydang type Mycomplex:

struct Mycomplex : public Complex {

int cntCalls; /I add
Mycomplex() : cntCalls(0) {} /l add
double abs() { // override, reuse complex’ s abs routine

cntCalls += 1;
return Complex::abs();

int calls() { return cntCalls; } /l add

Derived typeMycomplex uses the implementation of the base t@eenplex, adds new mem-
bers, and overridesbs to count each call.

Why is the qualificatiorComplex:: necessary iMycomplex::abs?

Allows reuse ofComplex’s addition and output operation fétycomplex values, because of
the relaxed name equivalence provided by type inheritaatveden argument and parameter.

RedeclareComplex variables toMycomplex to get newabs, and membetalls returns the
current number of calls tabs for any Mycomplex object.

Two significant problems with type inheritance.

1.

o Complex routineoperator + is used to add th&ycomplex values because of thg

relaxed name equivalence provided by type inheritance:

int main() {
Mycomplex x;
x =x + x; /I disallowed

}

However, result type fromperator + is Complex, not Mycomplex.

Assignment of aomplex (base type) tdvycomplex (derived type) disallowed beH
cause the&omplex value is missing thentCalls member!

Hence, avlycomplex can mimic aComplex but not vice versa.
This fundamental problem of type inheritance is caltedtra-variance.

C+ provides various solutions, all of which have problemd are beyond this
course.

138 CHAPTER 2. C++

2. void r(Complex &c) {

c.abs();
int main() {
Mycomplex Xx;
x.abs(); /I direct call of abs
r(x); /I indirect call of abs

cout << "Xx:" << x.calls() << endl;

}

o While there are two calls tabs on objectx, only one is counted! (see Sec-
tion 2.24.6, p. 149

e public inheritance means both implementation and type inhergtanc

e private inheritance means only implementation inheritance.
class bus : private car{ ...

Use implementation fromar, butbus is not acar.
e No direct mechanism in C+ for type inheritance without ierpentation inheritance.
2.24.3 Constructor/Destructor
e Constructors are executed top-down, from base to mostatktype.

e Mandated by scope rules, which allow a derived-type congirio use a base type’s vari-
ables so the base type must be initialized first.

e Destructors are executed bottom-up, from most derivedse bge.

e Mandated by the scope rules, which allow a derived-typerdetstr to use a base type’s
variables so the base type must be uninitialized last.

¢ Javafinalize must beexplicitly called from derived to base type.

e Unlike Java, C+ disallows calls to other constructors atdtart of a constructor (see Sec-
tion2.18.6, p. 111

e To pass arguments to other constructors, use same syntaiagiélizing const members.

| Java | C+ |

class Base { struct Base {
Base(int i) {...} Base(int i) {...}

¥ J§

class Derived extends Base { struct Derived : public Base {
Derived() { super(3); ...} Derived() : Base(3){ ...}
Derived(int i) { super(i); ...} Derived(int i) : Base(i) {...}

} ¢

2.24. INHERITANCE 139

2.24.4 Copy Constructor / Assignment

e Each aggregate type has a default/copy constructor, assignoperator, and destructor
(see pagd09), so these members cannot be inherited as they exist in thedeype.

e Otherwise, copy-constructor/assignment work like contpms(see Sectio2.18.5, p. 10y

struct B {
B() { cout << "B() ";}
B(const B &c) { cout << "B(&) ";}
B &operator =(const B &rhs) { cout << "B="; }

5

struct D : public B {
int i /I basic type, bitwise

int main() {
D i; cout << endl; /l B’ s default constructor
D d ; cout << endl; /I D' s default copy- constructor
d= cout << endl; /I D' s default assignment

}

outputs the following:

B() /I Di

B(&) /I D d

B= /I d=i

e If D defines a copy-constructor/assignment, it overrides thanhy subobject.

struct D : public B {
. /I same declarations

D() { cout << "I() "; }
D(const D &c) :i(c.i), B(c) {cout<<"D(& "
D &operator =(const D &rhs) {

i = rhs.i; (B &) «this = rhs;

cout << "D=";

return «this;

%

outputs the following:
B() D() /I Di
B(& D@&) // Dd=i
B= D= /ld=i

Must copy each subobject to get same outplatte coercion!

2.24.5 Overloading

e Overloading a member routine in a derived class overridesatloaded routines in the base
class with the same name.

140

CHAPTER 2.

class Base {
public :
void mem(int i) {}
void mem(char ¢) {}

%
class Derived : public Base {
public :
void mem() {} // overrides both versions of mem in base class
3

e Hidden base-class members can still be accessed:

o Provide explicit wrapper members for each hidden one.

class Derived : public Base {
public :
void mem() {}
void mem(int i) { Base:mem(i); }
void mem(char c) { Base:mem(c); }

k

o Collectively provide implicit members for all of them.

class Derived : public Base {
public :
void mem() {}
using Base::mem; // all base mem routines visible

h

o Use explicit qualification to call members (violates absticn).

Derived d;
d.Base::mem(3);
d.Base:mem(’a’);
d.mem();

2.24.6 \Virtual Routine

C++

e When a member is called, it is usually obvious which one isked even with overriding:

struct Base {

void r) { ...}
J#
struct Derived : public Base {
void r() { ...} /I override Base::r
|
Base b;
b.r(); /I call Base::r
Derived d;

d.r(); /I call Derived::r

e However, it is not obvious for arguments/parameters andtprs/references:

2.24. INHERITANCE

void s(Base &b) { b.r(); }

141

s(d); /I inheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); /I Base::r or Derived::ir ?

¢ Inheritance masks the actual object type, but both callsildhiovoke Derived::r because
argumenb and referencép point at an object of typPerived.

e If variabled is replaced wittb, the calls should invokBase::r.

e To invoke routine defined in referenced object, qualify mentbutine withvirtual .

e To invoke routine defined by type of pointer/reference, doqualify member routine with

virtual .

e C+ uses non-virtual as the default because it is more gfficie

e Javaalwaysuses virtual for all calls to objects.

e Once a base type qualifies a member as virtiia, virtual in all derived types regardless
of the derived type’s qualification for that member

e Programmer may want to access membeBaie even if the actual object is of tyeerived,
which is possible becaugrived containsa Base.

e C+ provides mechanism to override the default at the dall si

| Java | CH

class Base { struct Base {

public void f() {} // virtual void f() {} /I non- virtual

public void g() {} // virtual void g() {} /I non- virtual

public void h() {} // virtual virtual void h() {} // virtual
} %
class Derived extends Base { struct Derived : public Base {

public void g() {} // virtual void g() {}; /I replace, non- virtual

public void h() {} // virtual void h() {}; Il replace, virtual

public void e() {} // virtual void e() {}; /I extension, non- virtual
} %
final Base bp = new Derived(); || Base &bp = snew Derived(); // polymorphic assignment
bp.f(); /I Base.f bp.f(); /I Base::f, pointer type
((Base)bp).g(); // Derived.g bp.g(); /I Base::g, pointer type
bp.g(); /I Derived.g ((Derived &)bp).g(); // Derived:.g, pointer type
((Base)bp).h(); /I Derived.h bp.Base::h(); /I Base::h, explicit selection
bp.h(); /I Derived.h bp.h(); /I Derived::h, object type

/I cannot access “e” through bp

e Java casting does not provide access to base-type’s meauieres.

¢ Virtual members are only necessary to access derived memthgough a base-type refer-

ence or pointer.

142

CHAPTER 2. C++

If a type is not involved in inheritancdifal class in Java), virtual members are unnecessary
so use more efficient call to its members.

C+ virtual members are qualified in base type as opposediweddype.

Hence, C+ requires the base-type definer to presuppose @&ved definers might want
the call default to work.

Good practice for inheritable types is to make all routine meers virtual.

Any type with virtual members and a destructor needs to mia&eléstructor virtual so the
most derived destructor is called through a base-type @dieterence.

Virtual routines are normally implemented by routine pemst(see SectioR.17, p. 93.

class Base {

int x,v; /| data members
virtual void m1(...); /I routine members
virtual void m2(...);
%
e May be implemented in a number of ways:
X X X
y y y Virtual Routine Table
ml — T ml — 1= ml
m2 — 1= m2 — T m2
copy direct routine pointer indirect routine pointer

2.24.7 Downcast
e Type inheritance can mask the actual type of an object thraygpinter/reference (see Sec-

tion2.24.2, p. 13k

e A downcastdynamically determines the actual type of an object poitdadxy a polymorphic

pointer/reference.

e The Java operatamstanceof and the CHdynamic _cast operator perform a dynamic check

of the object addressed by a pointer/reference (not ca®tcio

| Java | C+ |
Base bp = new Derived(); Base *bp = new Derived;
Derived *dp;
if (bp instanceof Derived) || dp = dynamic _cast<Derived *>(bp);
((Derived)bp).rtn(); if (dp!=0){//0=>not Derived
dp->rtn(); // only in Derived

e To usedynamic _cast on a type, the type must have at least one virtual member.

2.24. INHERITANCE 143

2.24.8 Slicing
e Polymorphic copy or assignment can result in object truonatalledslicing.

struct B {
int i
2

struct D : public B {
int j;

h
void f(B b)) {..}

int main() {
B b;
D d;
f(d); /I truncate D to B
b =d; /l truncate D to B
}

¢ Avoid polymorphic value copy/assignment; use polymorppanters.

2.24.9 Protected Members

¢ Inherited object types can access and modify public anaépred members allowing access
to some of an object’s implementation.

class Base {
private :
int x;
protected :
int y;
public :
int z;
3

class Derived : public Base {
public :
Derived() { x; y; z; }; /I x disallowed; y, z allowed

int main() {
Derived d;
d.x; d.y; d.z; /I X, y disallowed; z allowed

}
2.24.10 Abstract Class
e Abstract classcombines type and implementation inheritance for strumgunew types.

e Contains at least one pure virtual member thattbe implemented by derived class.

class Shape {
int colour;
public :
virtual void move(int x, inty) = 0; // pure virtual member
2

144

CHAPTER 2. C++

e Strange initialization to 0 means pure virtual member.

e Define type hierarchy (taxonomy) of abstract classes mostmgmon data and operations

are high as possible in the hierarchy.

| Java | CH |
abstract class Shape { class Shape {
protected int colour = White; protected : int colour;
public public :
Shape() { colour = White; }
abstract void move(int x, int y); virtual void move(int x, int y) = 0;
} %
abstract class Polygon extends Shape { || class Polygon : public Shape {
protected int edges; protected : int edges;
public abstract int sides(); public : virtual int sides() = 0;
} %
class Rectangle extends Polygon { class Rectangle : public Polygon {
protected int x1, y1, x2, y2; protected : int x1, yl, X2, y2;
public :
public Rectangle(...) {...} Rectangle(...) {...} // init corners
public void move(int x, int y) {...} void move(int x, int y) {...}
public int sides() { return 4, } int sides() { return 4; }
} %
class Square extends Rectangle { struct Square : public Rectangle {
/I check square /I check square
Square(...) { super(...); ...} Square(...) : Rectangle(...) {...}
} 2

Usepublic /protected to define interface and implementation access for derivaskels.

Provide (pure) virtual member to allow overriding and foiogplementation by derived
class.

Provide default variable initialization and implemendatifor virtual routine (non-abstract)
to simplify derived class.

Provide non-virtual routine ttorce specific implementatiorgerived class should not over-
ride these routines

Concrete clasgnherits from one or more abstract classes defining all pireal members,
i.e., can be instantiated.

Cannot instantiate abstract class, but can declare poiriteference to it.

Pointer/reference used to write polymorphic data strestand routines:

void move3D(Shape &s) { ... s.move(...); ...}
Polygon xpolys[10] = { new Rectangle(), new Square(), ... };
for (unsigned int i=0;i<10;i+=1){
cout << polys[i]- >sides() << endl; // polymorphism
move3D(=polys|i]); // polymorphism

2.24. INHERITANCE 145

¢ To maximize polymorphismyrite code to the highest level of abstracti$jri.e. useShape
overPolygon, usePolygon overRectangle, etc.

2.24.11 Multiple Inheritance

e Multiple inheritance allows a new type to apply type and implementation inheciéamul-
tiple times.

class X : public Y, public Z, private P, private Q {...}

e X type is aliased to types andz with implementation, and also uses implementation from
P andQ.

e Interface class(pure abstract-clas9 provides only types and constants, providing type
inheritance.

e Java only allows multiple inheritance for interface class.

| Java | C+ |
interface Polygon { struct Polygon {
int sides(); virtual int sides() = 0;
void move(int X, int y); virtual void move(int x, int y) = 0;
} %
interface Rectilinear { struct Rectilinear {
final int angle = 90; enum { angle = 90 };
} h
class Rectangle implements Rectilinear, || class Rectangle : public Polygon,
Polygon { public Rectilinear {
private int x1, y1, x2, y2; int x1, y1, x2, y2;
public :
public void move(int x, int y) {} void move(int x, int y) {}
public int sides() { return 4; } int sides() { return 4, }
} %
class Square extends Rectangle { struct Square : public Rectangle {
public void move(int x, int y) {} void move(int x, int y) {}
} h

e Multiple inheritance hashanyproblems (beyond this course).

e Safe if restrict multiple inheritance to ong@ublic type and one or twrivate types.

2.24.12 UML

e Generalization: reuse through forms of inheritance.

3Also called “program to an interface not an implementatjaviiich does not indicate the highest level of abstrac-
tion.

146 CHAPTER 2. C++

Polygon

abstract class | Rectilinear

+sides : Integer
+angle: 90 #move(inx: Integer, iny : Integer

t 9

multiple | inheritance single inheritance

concrete class Rectangle Trapezoid| gperclass

+sides ; Intege +sides ; Integar (Dase)
+move(...) +move(...)

=

Zrsingle inheritance

Square subclass
(derived)

+move(...)

o Represent inheritance by arrowheado establish is-a relationship on type, and reuse
of attributes and operations.

o Association class can be implemented with forms of multipkeritance (mixin).

e For abstract class, the class name and abstract operateiteiaized

e For concrete class, abstract operations that are impletapipear in the class diagram.

2.25 Composition / Inheritance Design

e Duality between “has-a” (composition) and “is-a” (inharite) relationship (see pata4).

e Types created from multiple composite classes; typesendadm multiple superclasses.

Composition | Inheritance
class A {...}; class A {...};
class B{ A a; ...} class B: A{...}
class C {...} class C {...};

class D{Bb;Cc;...};|class D:B, C{..}

e Both approaches:

o remove duplicated code (variable/code sharing)

o have separation of concern into components/superclasses.

e Choose inheritance when evolving hierarchical types (tarwy) needing polymorphism.

2.25. COMPOSITION /INHERITANCE DESIGN 147

Vehicle
Construction
Heavy Machinery
Crane, Grader, Back- hoe
Haulage
Semi- trailer, Flatbed
Passenger
Commercial
Bus, Fire- truck, Limousine, Police- motorcycle
Personal
Car, SUV, Motorcycle

e For maximum reuse and to eliminate duplicate code, placahlas/operations as high in
the hierarchy as possible.

e Polymorphism requires derived class maintain base clagsterface (Substitutability).
o derived class should also havehavioural compatibility with base class.

e However, all taxonomies are an organizational compromigeen is a car a limousine and
vice versa.

e Not all objects fit into taxonomy: flying-car, boat-car.
¢ Inheritance is rigid hierarchy.

e Choose composition when implementation canmibkegated

class Car {
SteeringWheel s; /I fixed
Donut spare;
Wheel swheels[4]; /I dynamic
Engine xeng;
Transmission =trany;
public :
Car(Engine e = fourcyl, Transmission «t = manual) :
eng(e), trany(t) { wheels[i] = ...}
rotate() {...} /I rotate tires
wheels(Wheels sw[4]) {...} // change wheels
engine(Engine xe) {...} // change engine

%
e Composition may be fixed or dynamic (pointer/reference).
e Composition still uses hierarchical types to generalizaponents.

o Engine is abstract class that is specialized to different kindsngfiees, e.g., 3,4,6,8
cylinder, gas/diesel/hybrid, etc.

148 CHAPTER 2. C++

2.26 Template

¢ Inheritance provides reuse for types organized into a tubyathat extends name equiva-
lence.

e Template provides alternate kind of reuse with no type hierarchy gpes are not equiva-
lent.

e E.g., overloading (see Secti@nl6, p. 97, where there is identical code but different types:

int max(int a,int b){return a>b?a:b;}
double max(double a, double b) {return a>b ? a: b;}

e Template routine eliminates duplicate code by using types as compile-timamaters:
template <typename T> T max(Ta, Th){return a>b?a:b;}
e template introduces type paramet€rused to declare return and parameter types.

e Template routine is called with value for and compiler constructs a routine with this type.

cout << max<int>(1, 3); /I T->int
cout << max<double >(1.1, 3.5); // T -> double

¢ In many cases, the compiler can infer typ&om argument(s):

cout << max(1, 3); /' T ->int
cout << max(1.1, 3.5); /I T -> double

¢ Inferred type must supply all operations used within thegiate routine.
o e.g., types used with template routimex must supplyoperator >.
e Template typeprevents duplicating code that manipulates differentsype

e E.g., collection data-structures (e.g., stack), have comoode to manipulate data structure,
but type stored in collection varies:

template <typename T=int, unsigned int N=10> // default type/value

struct Stack { I/ NO ERROR CHECKING
T elems|N]; /I maximum N elements
unsigned int size; /I position of free element after top

Stack() { size = 0; }
T top() { return elems[size - 1]; }
void push(T e) { elems[size] = e; size += 1, }
T pop() { size - = 1; return elemsJsize]; }

¥

template <typename T, unsigned int N> // print stack

ostream &operator <<(ostream &o0s, const Stack<T, N> &stk) {

for (int i =0;i < stk.size; i += 1) os << stk.elems[i] << " ";
return os;

2.26. TEMPLATE 149

e Type parametef, specifies the element type of arralgms, and return and parameter types
of the member routines.

e Integer parametel, denotes the maximum stack size.

e Unlike template routines, type cannot be inferred by coergilecause type is created at
declaration before any member calls.

Stack<> si; /I stack of int, 10

si.push(3); /l'si:3

si.push(4); Il'si:34

cout << si.top() << endl; 14

int i = si.pop(); /i 4,si:3
Stack<double > sd; /I stack of double, 10
sd.push(5.1); /l sd : 5.1

sd.push(6.2); /l sd :516.2

cout << sd << endl; /1'5.16.2

double d = sd.pop(); //d:6.2 sd:5.1
Stack<Stack<int>,20> ssi; /I stack of (stack of int, 10), 20
ssi.push(si); I/l ssi: (3 4)

ssi.push(si); /I ssi: (34)(34)
ssi.push(si); /I 'ssi:(34)(34) (34
cout << ssi << endl; /134 34 34

si = ssi.pop(); /l'si:34,ssi:((34) (34

Why doescout << ssi << endl have 2 spaces between the stacks?
e Specified type must supply all operations used within theptata type.

e There must be a space between the two ending chevrons>-as parsed a®perator>> .
template <typename T> struct Foo { ... };

Foo<Stack<int>> foo; // syntax error (fixed C++11)
Foo<Stack<int> > foo; // space between chevrons

e Compiler requires a template definition for each usage solbtie interface and imple-
mentation of a template must be in & file, precluding some forms of encapsulation and
separate compilation.

2.26.1 Standard Library

e C+ Standard Library is a collection of (template) classebrautines providing: 1/0, strings,
data structures, and algorithms (sorting/searching).

e Data structures are calledntainers: vector, map, list (stack, queue, deque).

¢ In general, nodes of a data structure are either in a comtaip®inted-to from the container.

150 CHAPTER 2. C++

container, node| nodeg nodeé nodee ° °

container LRI

node | node | node| nodee © ¢

To copy a node into a container requires its type have a dedadlor copy constructor so
instances can be created without constructor arguments.

Standard library containers use copying- node type must have default constructor.

All containers are dynamic sized so nodes are allocateceindap.

To provide encapsulation (see Sectd21, p. 118 containers use a nestédrator type
(see SectiorR.7.6, p. 7 to traverse nodes.

o Knowledge about container implementation is completetigai.

Iterator capabilities often depend on kind of container:

o singly-linked list has unidirectional traversal
o doubly-linked list has bidirectional traversal
o hashing list has random traversal

Iterator operator++" moves forward to the next node, unpibstthe end of the container.

[13L)

e For bidirectional iterators, operator-” moves in the reverse direction ta+”".

2.26.1.1 Vector

e vector has random access, length, subscript checkit)ggnd assignment (like Java array).

std::vector<T>
vector() create empty vector
vector(int N) create vector with N empty elements
int size() vector size
bool empty() size() ==
T &operator [](int i) access ith element, NO subscript checking
T &at(int i) access ith element, subscript checking
vector &operator =(const vector &) | vector assignment
void push_back(const T &x) add x after last element
void pop_back() remove last element
void resize(int n) add or erase elements at end so size() 3=n
void clear() erase all elements

2.26. TEMPLATE 151

-~ push—
- -2~ pop

e vector is alternative to C/C+ arrays (see Sectin.3.1, p. 62

#include <vector>

int i, elem;
vector<int> v; / think: int v[0O]
for (;;){ /I createl/assign vector
cin >> elem;
if (cin.fail()) break;
v.push_back(elem); /I add elem to vector
}
vector<int> c; / think: int c[0O]
cC =V /I array assignment
for (i=csize()- 1;0<=1i;i-=1){
cout << c.at(i) << " "; // subscript checking
}
cout << endl,
v.clear(); /I remove ALL elements

Vector declaratioomay specify an initial size, e.gvector<int> v(size), like a dimension.

e To reduce dynamic allocation, it is more efficient to dimensiwhen the size is known.
int size;
cin >> size; /I read dimension
vector<int> v(size); /I think int v[size]

Matrix declaration is a vector of vectors (see also pade

vector< vector<int> > m;

Again, it is more efficient to dimension, when size is known.
#include <vector> —

vector< vector<int> > m(5, vector<int>(4)); 0123

for (int r=0;r <msize();r+=1){ i 1/2/34
for (int ¢ =0; ¢ < m[r]l.size(); c += 1) { —

m[r][c] = r+c; /I or m.at(r).at(c) 2/3/45

}) 31456

for (int r=0;r < m.size(); r += 1) { 4/56|7

for (int c=0; c< m[r].siz"e(); c+=1){
}

cout << m[r][c] << ", ";
cout << endl;

}

e Optional second argument is initialization value for edelment, i.e., 5 rows of vectors each
initialized to a vector of 4 integers initialized to zero.

152 CHAPTER 2. C++

¢ Allloop bounds use dynamic size of row or column (columns maylifferent length).

¢ Alternatively, each row is dynamically dimensioned to acsfiesize, e.g., triangular matrix.

vector< vector<int> > m(5); // 5 empty rows 6
for (int r=0;r<m.size();r+=1){ -
m[r].resize(r + 1); // different length 12
for (int ¢ =0; c <m[r]l.size();c+=1){ [] PED
m[r][c] = r+c; /I or m.at(r).at(c) -
} | T™3/4/56
I ~45678
e lterator allows traversal in insertion order or random orde
std::vector<T>::iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert(iterator posn, const T &x) insert x before posn
iterator erase(iterator posn) erase element at posn
++,--,+, +=, - - =(insertion / random order) forward/backward operations
begin() end()
i ++ — - -- i
Y Q
o 1 2 3 af
rend) -- —= —=— *++ rbegin()

Iterator’s value is a pointer to its current vector elementlereference to access element.

vector<int> v(3);

vector<int >::iterator it;

v[0] = 2; /l initialize first element

it = v.begin(); /I intialize iterator to first element
cout << v[0] << " " << xv.begin() << " " << #it << endl;

If erase andinsert took subscript argument, no iterator necessary!

Use iterator like subscript by adding/subtracting froegin/end.

v.erase(v.begin()): Il erase v[0], first
v.erase(v.end() - 1); /[erase V[N - 1], last (why “- 1"?)
v.erase(v.begin + 3); // erase V[3]

Insert or erase during iteration using an iterator causesifare.

2.26. TEMPLATE 153

vector<int> v;
for (inti=0;i<5;i+=1)/ create

v.push_back(2 = i); /l values: 0O, 2, 4, 6, 8
v.erase(v.begin() + 3); /I remove V[3] : 6
int i /I find position of value 4 using subscript
for (i=0;i<5&& V[i]!=4;i+=1);
v.insert(v.begin() + i, 33); /I insert 33 before value 4

/I print reverse order using iterator (versus subscript)

vector<int >::reverse_iterator r;

for (r = v.rbegin(); r '= v.rend(); r ++) // ++ move towards rend
cout << «r << endl; /l values: 8, 4, 33, 2, 0

2.26.1.2 Map
e map (dictionary) has random access, sorted, unique-key auattaf pairs Key, Val).

std::map<Key,Val> / std::pair<const Key,Val>

map() create empty map

int size() map size

bool empty() size() ==

Val &operator [](const Key &k) access pair with Key k

int count(Key key) 0 = no key, 1= key (unique keys

map &operator =(const map &) map assignment
insert(pair<const Key,Val>(k, v)) | insert pair

erase(Key k) erase key k
void clear() erase all pairs
pair
first second
bl ue 2
keys|9r€€N| 1 | values
red 0

#include <map>

map<string, int> m, c; /I Key => string, Val => int
m['green"] = 1; /I create, set to 1

m[" bl ue"] = 2; /Il create, set to 2
m['red"]; /I create, set to O for int
m['green"] = 5; /I overwrite 1 with 5

cout << m["green"] << endl; // print 5

c=m; /I map assignment

m.insert(pair<string,int>("yel ow', 3)); // m[“yellow"] = 3
if (m.count("bl ack")) Il check for key “black”
m.erase(" bl ue"); Il erase pair(“blue”, 2)

154 CHAPTER 2. C++

e First subscript for key creates an entry and initializes diéfault or specified value.

e lterator can search and return values in key order.

std::map<T>:iterator / std::map<T>::reverse_iterator
iterator begin() iterator pointing to first pair
iterator end() iterator pointingAFTER last pair
iterator rbegin() iterator pointing to last pair
iterator rend() iterator pointingBEFORE first pair
iterator find(Key &k) find position of key k
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase pair at posn
++, - - (sorted order) forward/backward operations

e lterator returns a pointer togair, with fieldsfirst (key) andsecond (value).

#include <map>

map<string,int >::iterator f = m.find(" green"); // find key position

if (f!=m.end()) /I found ?
cout << "found " << f->first <<’ ' << f- >second << endl;

for (f= m.begin(); f = m.end(); f ++) /I increasing order
cout << f- >first <<’ ' << f- >second << endl;

map<string,int>::reverse_iterator r;

for (r = m.rbegin(); r = m.rend(); r ++) /I decreasing order
cout << r->first <<’ ' << r->second << endl;
m.clear(); /I remove ALL pairs

2.26.1.3 List

e In certain cases, itis more efficient to use a single (staskig/deque) or double (list) linked-
list container than random-access container.

e Examindist (arbitrary removal)stack, queue, deque are similar (restricted insertion/removal).

std::list<T>
list() create empty list
list(int n) create list with n default nodes
int size() list size
bool empty() size() ==
list &operator =(const list &) | list assignment
T front() first node
T back() last node

void push_front(const T &x) | add x before first node
void push_back(const T &x) | add x after last node
void pop_front() remove first node

void pop_back() remove last node

void clear() erase all nodes

2.26. TEMPLATE 155

node
=— pushr - -1, .« -] <~ -7 push—
pop »L,,J‘a - — a‘L,,J“i pop
front back

e lterator returns a pointer to a node.

std::list<T>::iterator / std::list<T>::reverse_iterator
iterator begin() iterator pointing to first node
iterator end() iterator pointingAFTER last node
iterator rbegin() iterator pointing to last node
iterator rend() iterator pointingBEFORE first node
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase node at posn
++, - - (insertion order) forward/backward operations

#include <list>
struct Node {
char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

3

list<Node> dl; /I doubly linked list

for (inti=0;i<10;i+=1){ /I create list nodes
dl.push_back(Node(' @’ +i, i, i+0.5)); // push node on end of list

}

list<Node>::iterator f;
for (f = dl.begin(); f != dl.end(); f ++) { // forward order

cout << "¢:" << (+f)c << " 1" << f->i << A" << f->d << end];
}
while (0 < dl.size()) { /I destroy list nodes

dl.erase(dl.begin()); /I remove first node

} I/ same as dl.clear()

2.26.1.4 for _each

e Template routindor_each provides an alternate mechanism to iterate through a cuentai

e An action routine is called for each node in the containesipgsthe node to the routine for
processing (Lisapply).

156

#include
#include
#include
#include

CHAPTER 2. C++

<iostream>

<list>

<vector>

<algorithm> /I for_each

using namespace std;
void print(inti) {cout<<i<<"";} /I print node
int main() {

list< int > int_list;

vector< int > int_vec;

for (inti=0;i<10;i+=1){ /I create lists

}

int_list.push_back(i);
int_vec.push_back(i);

for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print),

}

Type of the action routine igid rtn(T), whereT is the type of the container node.
E.g.,print has anint parameter matching the container node-type.

More complex actions are possible using a functor (see pade

e E.g., an action to print on a specified stream must store tharstand have aoperator ()
allowing the object to behave like a function:

struct Print {

ostream &stream; /I stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream <<i<<" ";}
3
int main() {
list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));
}

e ExpressiorPrint(cout) creates a constartint object, andfor_each calls operator ()(Node)

in the object.

2.27 Namespace

e CH namespacds used to organize programs and libraries composed of preiliypes and
declarationso deal with naming conflicts

e E.g., namespaced contains all the I/O declarations and container types.

e Names in a namespace form a declaration region, like theeszidplock.

2.27. NAMESPACE 157

e Analogy in Java is a package, lm#mespace does NOT provide abstraction/encapsulation
(use.h/.cc files).

e C+ allows multiple namespaces to be defined in a file, as wednaong files (unlike Java
packages).

e Types and declarations do not have to be added consecutively

| Java source files | C+ source file
package Foo; // file namespace Foo {
public class X ... // export one type /I types / declarations
/Il local types / declarations }

namespace Foo {

package Foo; // file /I more types / declarations

public enum Y ... // export one type }

/Il local types / declarations namespace Bar {

package Bar; // file Il types / declarations
public class Z ... // export one type }
/Il local types / declarations

e Contents of a namespace are accessed using full-qualifredsa

| Java | T |

Foo.T t = new Fo00.T(); || Foo::T «t = new Foo::T();

e Or by importing individual items or importing all of the naspace content.

| Java | CH

import Foo.T; || using Foo::T; /I declaration
import Foo.x; || using namespace Foo; // directive

e using declaratiorunconditionallyintroduces an alias (likgpedef , see SectioR.7.5, p. 70
into the current scope for specified entity in namespace.

o May appear in any scope.
o If name already exists in current scopeing fails.
namespace Foo {int i =0; }

int i =1;
using Foo:i; // i exists in scope, conflict failure

e using directiveconditionally introduces aliases to current scope for all entities in reme
pace.

158 CHAPTER 2. C++

o If name already exists in current scope, alias is ignoredarhe already exists from
using directive in current scopeising fails.

namespace Foo {int i = 0; }
namespace Bar {int i =1;}
.
int 1 = 2;
using namespace Foo; // i exists in scope, alias ignored
}
L
using namespace Foo;
using namespace Bar; // i exists from using directive
i =0; // conflict failure, ambiguous reference to ' i’
}
o May appear in namespace and block scope, but not class scope.
namespace Foo { /I start namespace
enum Colour { R, G, B };
int i = 3;
}
namespace Foo { /I add more
class C {int i; }
int j = 4;
namespace Bar { /I start nested namespace
typedef short int shrint;
char j="a’;
int C();
}
}
int j =0; Il external
int main() {
int j = 3; /I local
using namespace Foo; // conditional import: Colour, i, C, Bar (not j)
Colour c; /| Foo::Colour
cout << i << endl; Il Foo::i
C x; /Il Foo::C
cout << :j << endl; /I external
cout << j << endl; /I local

cout << Foo:;j << << Bar:j << endl; // qualification
using namespace Bar; // conditional import: shrint, C() (not j)

shrint s = 4; /I Bar::shrint
using Foo::j; /I disallowed : unconditional import
C(; /I disallowed : ambiguous “class C” or “int C()”

}

e Never put ausing declaration/directive in a header filen) (pollute local namespace) or
before#include (can affect names in header file).

3 Tools

3.1 C/C+ Composition
e C+is composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edigsptogranbeforecompilation
(see Sectior.12, p. 83.

2. The template (generic) language adds new types and esdtiming compilation (see
Section2.26, p. 143

3. The C programming language specifying basic declaratiom control flow to be ex-
ecutedafter compilation.

4. The CH programming language specifying advanced deadas and control flow to
be executedfter compilation.

e A programmer uses the four programming languages as fallows

user edits— preprocessor edits— templates expand— compilation
(— linking/loading— execution)

e Cis composed of languages 1 & 3.

e The compiler interface controls all of these steps.

3.2 Compilation
C/C++ header filesC/C++ source files

— =
(preprocessor)cpp
'

preprocessed source ¢

-E, -D, -l
e

(translator) cclplus
W, -v, -g, -S, -O1/2/3, -c
assembly code

(assembler)as

object code
o%iherobjeﬁt-codL, Iil (linker) }-o, -, -L

les and libraries

Ja.out object

e Compilation is the process of translating a program from human to macksxable form.

(© Peter A. Buhr

159

160 CHAPTER 3. TOOLS

e The translation is performed by a tool calledanpiler.

Compilation is subdivided into multiple steps, using a nemdi tools.

Often a number of options to control the behaviour of eacp. ste

Option are presented fgr-+, but other compilers have similar options.

General format:

g++ option- list x.cc %.0 ...

3.2.1 Preprocessor
e Preprocessor (cpp) takes a C+ source file, removes compmaedtexpandginclude , #define ,
and#if directives (see Sectidh12, p. 85.
e Options:

o - E run only the preprocessor step and writes the preprocesoutdo standard out.

$ g++ -E x.cC ...
... much output from the preprocessor

o - D define and optionally initialize preprocessor variabl@srfrthe compilation com-
mand:

$ g++ - DDEBUG=2 - DASSN ... %.CC %.0 ...
same as putting the followinggefine s in a program without changing the program:

#define DEBUG 2
#define ASSN

e -ldirectorysearch directory for include files;

o files within the directory can now be referenced by relat@me usingtinclude <file- name>.

3.2.2 Translator
e Translator takes a preprocessed file and converts the Cgtdge into assembly language
for the target machine.
e Options:

o - Wkind generate warning message for thksd” of situation.

x - Wall print ALL warning messages.
x - Werror make warnings into errors so program does not compile.

o -v show each compilation step and its details:

$ g++ -V .CC %.0 ...
... much output from each compilation step

E.g., system include-directories wheyp looks for system includes.

3.3. COMPILING COMPLEX PROGRAMS 161

#include <...> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/i486- linux
/usr/include/c++/3.3/backward
{usr/local/include

{usr/lib/gcc- lib/i486- linux/3.3.5/include
/usr/include

o - g add symbol-table information to object file for debugger
o - S compile source file, writing assemble code to fib@rce-file.s

o - 01/2/3 optimize translation to different levels, where ebastel takes more compila-
tion time and possibly more space in executable

o - c compile/assemble source file but do not link, writing obade to filesource-file.o

3.2.3 Assembler

e Assembler (as) takes an assembly language file and convedabject code (machine
language).

3.2.4 Linker

e Linker (Id) takes the implicito file from translated source and expliait files from the
command line, and combines them into a new object or exeleufiéd

e Linking options:

o - Ldirectoryis a directory containing library files of precompiled code.
o -llibrary search in library directories for givdibrary.
o - o gives the file name where the combined object/ executabladceg.

x If no name is specified, default nara@ut is used.

e Look in library directory 7lib” for math library “m” containing precompiledsin” routine
used in ‘myprog.cc” haming executable progranedic”.

$ gcc myprog.cc - L/lib -Im -0 calc

3.3 Compiling Complex Programs

e As number of TUs grow, so do the references to type/varigbliggendencies) among TUs.
e When one TU is changed, other TUs that depend on it must chemdjbe recompiled.

e For a large numbers of TUs, the dependencies turn into a nigtdre with respect to re-
compilation.

162 CHAPTER 3. TOOLS

3.3.1 Dependencies
e A dependenceoccurs when a change in one location (entity) requires aggnamanother.

e Dependencies can be:

o loosely coupled, e.g., changing source code may requiraraspmnding change in
user documentation, or
o tightly coupled, changing source code may require recangpdf some or all of the
components that compose a program.
e Dependencies in C/C+ occur as follows:

o executable depends amfiles (linking)
o .o files depend orc files (compiling)
o .C files depend orh files (including)

source code dependence graph
x.h #include "y. h" X.0—=x.C—=x.h
x.C #include "x.h"

y.h #include

' hn a.out yoﬂycﬂyh
y.C #include >

IIZ

y zo—=z.C—=z.h
z.h #include "y. h"
z.C #include "z

Cycles in#include dependences are broken#ifndef checks (see pads).

The executablea(out) is generated by compilation commands:

$ g++ -c z.C # generates z.0
$g++ -cy.C # generates y.o
$ g++ -c x.C # generates x.0

$ g++ x.0 y.0 z.0 # generates a.out

However, it is inefficient and defeats the point of separatamlation to recompile all pro-
gram components after a change.

If a change is made tph, what is the minimum recompilation necessary? (all)

Doesany change tg.h require these recompilations?

Often no mechanism to know the kind of change made within adilg, changing a com-
ment, type, variable.

Hence, “change” may be coarse grain, i.e., basedgrchange to a file.

One way to denote file change is witme stamps.

3.3. COMPILING COMPLEX PROGRAMS 163

e UNIX stores in the directory the time a file is last changedhwecond precision (see Sec-
tion 1.6, p. 15.

e Using time to denote change means the dependency graphngparia ordering where the
root has the newest (or equal) time and the leafs the oldestg(al) time.

1:00 12:30 12:00 3:00 2:30 2:00
X.0—=X.C—=x.h X.0—=X.C—=x.h

1:0 1:00 12:35 12:4 3:0 1:00 12:35 12:4

aout. ~ Y0 ~yC—=yh > aout. ~ Y0 ~yC—=yh >

1:00 12:30 12 1:00 12:30 12
z.0—=z.C—=1z.h z.0—=z.C—=1z.h

o

Filesx.o, y.0 andz.o created at 1:00 from compilation of files created befoge®.
File a.out created at 1:01 from link of.o, y.0o andz.o.

Changes are subsequently made.boandx.C at 2:00 and 2:30.

Only filesx.o anda.out need to be recreated at 3:00 and 3:01. (Why?)

@)

@)

o

3.3.2 Make

e make is a system command that takes a dependence graph and usdsfite-times to
trigger rules that bring the dependence graph up to date.

e A make dependence-graph expresses a relationship between apamdia set of sources.

e make does not understand relationships among sources, one thatists at the source-
code level and is crucial.

e Hence, make dependence-graph loses some of the relapsr{gihashed lines):

e E.g., source.C depends on sourceh butx.C is not a product ok.h like x.o is a product of
x.C andx.h.

e Two most common UNIX makes are: make and gmake (on Limake is gmake).

e Like shells, there is minimal syntax and semanticsiiake, which is mostly portable across
systems.

e Most common non-portable features are specifying depeneeand implicit rules.

164 CHAPTER 3. TOOLS

A basic makefile consists of string variables with initialibn, and a list of targets and rules.

This file can have any name, hutke implicitly looks for a file calledmakefile or Makefile
if no file name is specified.

Each target has a list of dependencies, and possibly a sehahands specifying how to
re-establish the target.

variable = value # variable

target : dependencyl dependency? ... # target / dependencies
commandl # rules
command2

Commands must be indented by one tab character.

make is invoked with a target, which is the root or subnode of a depace graph.

make builds the dependency graph and decorates the edges watlstamps for the specified
files.

If any of the dependency files (leafs) is newer than the tdiigetor if the target file does
not exist, the commands are executed by the shell to updattatbet (generating a new
product).

Makefile for previous dependencies:

a.out : x.0 y.0 z.0

g++ X.0 y.0 z.0 - 0 a.out
X.0 : X.C x.h y.h z.h

g++ -g -Wall -c x.C
y.0 : y.C y.h z.h

g++ -g -Wall -c y.C
z.0:z2.C zhy.h

g++ -g -Wall -c z.C

e Check dependency relationship (assume source files jused)e

$ make - n - f Makefile a.out
g++ -g -Wall -c x.C

g++ -g -Wall -c y.C

g++ -g -Wall -c z.C

g++ X.0 y.0 2.0 - 0 a.out

All necessary commands are triggered to bring taageft up to date.
o -n builds and checks the dependencies, showing rules to kgetad (leave off to
execute rules)
o -f Makefile is the dependency file (leave off if namgim]akefile)
o a.out target name to be updated (leave off if first target)

3.3. COMPILING COMPLEX PROGRAMS 165

e Generalize and eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${OBIECTS} - 0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets / dependencies / commands

${CXX} ${CXXFLAGS} x.C
y.0 : y.C y.h z.h

${CXX} ${CXXFLAGS} y.C
z.0:z2.C zhy.h

${CXX} ${CXXFLAGS} z.C

e Eliminate common rules:

make can deduce simple rules when dependency files have spedifiesu

@)

E.g., given target with dependencies:

@)

Xx.0 : X.C x.h y.h z.h
make deduces the following rule:
${CXX} ${CXXFLAGS} -c -0 x.0 # special variable names
where- o x.0 is redundant as it is implied byc.

This rule use variable®{CXX} and${CXXFLAGS} for generalization.

@)

@)

Therefore, all rules fox.o, y.o andz.o can be removed.

CXX = g++ # compiler
CXXFLAGS = -g - Wall # compiler flags, remove -c
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step

${CXX} ${OBIECTS} - 0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets / dependencies

y.0 :y.Cy.h zh
z.0:2.C zhy.h

e Because dependencies are extremely complex in large pnegmogrammers seldom con-
struct them correctly or maintain them.

e Without complete and update dependenciesyake is useless.

e Automate targets and dependencies:

166 CHAPTER 3. TOOLS

CXX = g++ # compiler
CXXFLAGS = -g - Wall -MMD # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
DEPENDS = ${OBJECTS:.0=.d} # substitute “.0” with “.d”
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${OBIECTS} - 0 ${EXEC}
-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)
.PHONY : clean # not a file name
clean : # remove files that can be regenerated

rm - rf ${DEPENDS} ${OBJECTS} ${EXEC} # alternative +.d .0

o Preprocessor traverses all include files, so it knows alicsstile dependencies.
o g++ flag- MMD writes out a dependency graph for user source-files tadilece-file.d

file | contents
x.d | x.0: Xx.C x.h y.h z.h
y.d | y.0: y.C y.h z.h
zd | z.0: z.C zh y.h

o g++ flag- MD generates a dependency graph for user/system source-files.
o -include reads thed files containing dependencies.

o .PHONY indicates a target that is not a file name and never createoa itecipe to be
executed every time the target is specified.

x A phony target avoids a conflict with a file of the same name.
o Phony targetlean removes product files that can be rebuilt (save space).

$ make clean # remove all products (don’ t create “clean”)

e Hence, itis possible to have a universtlkefile for a singleor multiple programs.

3.4 Source-Code Management

e As a program develops/matures, it changes in many ways.

o UNIX files do not support the temporal development of a prog(aersion control),
i.e., history of program over time.

o Access to older versions of a program is useful, e.g., bgciut of changes because
of design problems.

e Program development is often performed by multiple devalsgach making independent
changes.

o Sharing using files can damage file content for simultaneaitesy

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/Makefile.1
http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/Makefile.2

3.4. SOURCE-CODE MANAGEMENT

o Merging changes from different developers is tricky andeticonsuming.

e To solve these problemssaurce-code management-systers used to provide versioning
and control cooperative work.

3.41 SVN

e Subversion(SVN 1.6) is a source-code management-system usingoine- modify-merge

model.

@)

@)

o

o

merging.

master copy of albroject files kept in arepository,
multiple versions of the project files managed in the repogit
developersheckoutaworking copy of the project for modification,

developerscheckin changes from working copy with helpful integration usiregt

SVN works on file content not file time-stamps.

working copies

V2

programmey

V2
programmey

V3
programmey

repository
checkout 1
: V2
checkin project
checkout
checkin
2
V3 :
rojec
checkout project

checkin

168

SVN Command

CHAPTER 3. TOOLS

Action

mkdir repository-dir-name m " string"
Is repository-name

import directory-name repository-nam
checkout repository-name

add file/dir-list

commit - m " string"

rm file/dir-list

status
revert file/dir-list
mv file/dir-list

cp file/dir-list

cat file
update

resolve - - accept ARG file

3.4.2 Repository

make new directory in repository
list files in repository

ecopies unversioned directory into repository
extract working copy from the repository
schedules files for addition to repository
update the repository with changes in working copy
remove files from working copy and schedule removal from
repository
displays changes between working copy and repository
undo scheduled operations on repository
rename file in working copy and schedule renaming in
repository
copy file in working copy and schedule copying in reposi-
tory
print file in repository
update working copy from repository
resolve conflict for file as specified ARG

e The repository is a directory containing multiple projects

courses
cs246
assnl
x.h, x.C, ...
assn2

more meta-projects / proje

repository
meta-project
project
project files
project
project files

cts

e svnadmin create command creates and initializes a repository.

$ svnadmin create courses

e svn mkdir command creates subdirectories for meta-projects andqisoj

$ svn mkdir file:///u/jfdoe/courses/cs246

Committed revision 1.

$ svn mkdir file:///u/jfdoe/courses/cs246/assnl

Committed revision 2.

- m " create directory cs246

- m " create subdirectory assnl

o files in repository are designated using URL, so must uselaiespathname

o -m (message) flag documents repository change.

o if no - m (message) flag specified, prompts for documentation (usirepdor if shell
environment variabl€DITOR set).

3.4. SOURCE-CODE MANAGEMENT 169

e svn Is command lists directories.

$ svn Is file:///u/jfdoe/courses/cs246
assnl/
$ svn Is file:///uljfdoe/courses/cs246/assnl

e If project directoryassnl already exists, it can be added directly to the repository.

e svn import command copies an unversioned directory of files into a liepys

$ svn import assnl file:///u/jffdoe/courses/cs246/assnl

Adding assnl/z.h
Adding assnl/x.C
Adding assnlly.C
Adding assnl/z.C
Adding assnl/Makefile
Adding assnl/x.h
Adding assnlly.h

Committed revision 2.

$ svn Is file:///uljfdoe/courses/cs246/assnl
Makefile

x.C

x.h

e For students working together, the shared repository meishade accessible in the file
system (see padk).

$ chgrp - R ¢s246 _75 courses # set group on directory and subfiles
$ chmod - R g+rwx courses # allow group members access to ALL files

and for the path to the repository.
e Group names246_75 is acquired on a per course basis for each team of students.

3.4.3 Checking Out
e svn checkout command extracts a working copy of a project from the repogit

$ svn checkout file:///u/jfdoe/courses/cs246/assnl
Checked out revision 2.

$ Is - AF assnl

.svn/

e For first checkout, directoryssnlis created in the current directory (unless it already sxist
e Subdirectorysvn contains administrative information for SVN andist not be modified

e Working copy is then modified before being merged back inéorépository.

170

CHAPTER 3. TOOLS

e Other developers do not see each others working copy, arydseel modifications when

committed.

e To create a working-copy off-campus, us® URL:

$ svn checkout svn+ssh://jfdoe@student.cs.uwaterloo.ca /uljfdoe/courses/cs246/assnl

(Replace file URL in subsequent commands with URL.)

3.4.4 Adding

¢ Introduce files into project directomrssnil.

$ cd assnl
$... # create files: Makefile x.C x.h y.C y.h zh z.C

$Is - AF

.svn/ Makefile x.C x.h y.C y.h z.C zh

e svn add commandschedulesaddition of files (in current directory) into the repository

$ svn add Makefile x.C x.h y.C y.h z.h z.C
Makefile

>>>>>>>

x.C
x.h
y.C
y.h
z.h
z.C

Addition only occurs on next commit.

e Forgettingsvn add for new files is a common mistake.

e Add only project source-files into repository.

e Product files, e.gx.0, .d, a.out, do not need to be versioned.

3.4.5 Checking In

e svn commit command updates the repository with the changes in worlapg.c

$ svn commit - m "initial project files

Adding
Adding
Adding
Adding
Adding
Adding
Adding

Makefile
Xx.C
x.h
y.C
y.h
z.C
z.h

Transmitting file data
Committed revision 3.

3.4. SOURCE-CODE MANAGEMENT 171

¢ if no - m (message) flag specified, prompts for commit documentation.

$ svn Is file:///uljfdoe/courses/cs246/assnl
Makefile

x.C

x.h

y.C

y.h
z.C
z.h

e Always make sure your code compiles and runs before comnmitit is unfair to pollute a
project with bugs.

3.4.6 Modifying
e Editted files in working copy are implicitlgcheduledfor update on next commit.
$viyhyC
e svn rm command removes files from working copy asuhedulegemoval of files from the
repository.
$1Is - AF

.svn/ Makefile x.C x.h y.C y.h z.C z.h
$ svn rm z.h z.C

D z.h
D z.C
$Is - AF

.svn/ Makefile x.C x.h y.C y.h

e svn status command displays changes between working copy and reppsito

$ svn status

D z.h
M y.C
D z.C
M y.h

Filesy.h / y.C have local modificationsM”, andz.h / z.C are deletedD".
e Possible to undo scheduled changes by reverting to files fepsitory.

e svn revert command copies unchanged files from repository to workirny.co

$ svn revert y.C z.h

Reverted ' y.C’

Reverted ’ z.h’

$Is - AF

.svn/ Makefile x.C x.h y.C y.h zh

172

e Commit edits and removals.

$ svn commit - m " changes to y.h and remove z.C
Sending y.h

Deleting z.C

Transmitting file data .

Committed revision 4.

$ svn Is file:///uljfdoe/courses/cs246/assnl

Makefile

x.C

x.h

Files in the repository can be renamed and copied.

$ svn mv x.h w.h

A w.h
D x.h
$Is - AF

.svn/ Makefile w.h x.C y.C y.h

$ svn cp w.h k.h

A k.h

$Is - AF

.svn/ Makefile k.h wh x.C y.C y.h

Commit renaming and copying.

$ svn commit - m "renaming and copying

Adding k.h
Adding w.h
Deleting x.h

Committed revision 5.

$ svn Is file:///uljfdoe/courses/cs246/assnl
Makefile

k.h

w.h

x.C

y.C

y.h

3.4.7 Revision Number

e Each commit receives a revision number (currently 5).

CHAPTER 3.

e Information in older versions is accessible using sughiX on URL.

TOOLS

svn mv command renames file in working copy asthedulegenaming in the repository.

svn cp command copies file in working copy asdheduleopying in the repository:

3.4. SOURCE-CODE MANAGEMENT

E.g., print filez.C, which last existed in revision 3.

e svn cat command prints specified file from the repository.

$ svn cat file:///u/jfdoe/courses/cs246/assnl/z.C @3
#include " z.h"

Copy deleted file.C from repository into working copy and modify.

$ svn copy file:///u/jffdoe/courses/cs246/assnl/z.C @3 z.C
A z.C

$1Is - AF

.svn/ Makefile k.h wh x.C y.C y.h z.C zh

$... # change z.C

$ svn commit - m "bring back z.C and modify "
Adding z.C

Transmitting file data .

Committed revision 6.

$ svn cat file:///u/jffdoe/courses/cs246/assnl/z.C @6
#include " z.h"

new text

3.4.8 Updating

e Synchronize working copy with commits in the repositorynfrother developers.

jfdoe | kdsmith
modify x.C | modify x.C & y.C
removek.h
addt.Cc

Assumekdsmith has committed changes.

jfdoe attempts to committed changes.

$ svn commit - m " modify x.C "

Sending x.C

svn: Commit failed (details follow):

svn: File ’ /cs246/assnl/x.C’ is out of date

173

jfdoe must resolve differences between their working copy andcthreent revision in the

repository.

svn update command attempts to update working copy from most receigicgw

174

CHAPTER 3.

$ svn update

D kh file k.h deleted
Uu vycC file y.C updated without conflicts
A tC file t.C added

Conflict discovered in ’ x.C’ .
Select: (p) postpone, (df) diff- full, (e) edit,
(mc) mine- conflict, (tc) theirs- conflict,
(mf) mine- full, (tf) theirs- full,
(s) show all options: df
- - - .svn/text- base/x.C.svn-base Sun May 2 09:54:08 2010
+++ .svn/tmp/x.C.tmp Sun May 2 11:28:42 2010
@@ -1+1,6 @@
#include " x.h"
+<LLL LKL mine
+jfdoe new text

+kdsmith new text
+>>>>>>> 17
Select: (p) postpone, (df) diff- full, (e) edit, (r) resolved,
(mc) mine- conflict, (tc) theirs- conflict,
(mf) mine- full, (tf) theirs- full,
(s) show all options: tc
G xC file x.C merGed with kdsmith version
Updated to revision 7.

o (p) postpone : mark conflict to be resolved later

o (df) diff-full : show changes to merge file

o (e) edit: change merged file in an editor

o (r) resolved : after editing version

o (mc) mine-conflict : accept my version for conflicts
o (tc) theirs-conflict : accept their version for conflicts
o (mf) mine-full : accept my file (no conflicts resolved)

o (tf) theirs-full : accept their file (no conflicts resolved)

e Merge algorithm is generally very good if changes do not layer

e Overlapping changes result in a conflict, which must be wesbl

e If unsure about how to deal with a conflict, it can be postpdoeeach file.

TOOLS

3.4. SOURCE-CODE MANAGEMENT 175

$ svn update

D kh file k.h deleted
Uu vycC file y.C updated without conflicts
A tC file t.C added

Conflict discovered in ’ x.C’ .

Select: (p) postpone, (df) diff- full, (e) edit,
(mc) mine- conflict, (tc) theirs- conflict,
(mf) mine- full, (tf) theirs- full,
(s) show all options: p

C xC file x.C conflict

Updated to revision 7.

Summary of conflicts:

Text conflicts: 1

e Working copy now contains the following files:

x.C x.C.mine

#include "x.h" | #include "x.h"
<<<<<<< .mine | jfdoe new text
jfdoe new text

kdsmith new text
>S>S>S>5>>> 17

X.C.r3 X.C.r7

#include "x.h" | #include "x.h"
kdsmith new text

x.C : with conflicts

x.C.mine : jfdoe version ok.C

x.C.r3 : previous jfdoe version of.C

x.C.r7 : kdsmith version ok.C in repository

o O O O

o No further commits allowed until conflict is resolved.

e svn resolve - - accept ARG command resolves conflict with version specifiedARG, for
ARG options:

base x.C.r3 previous version in repository

working : x.C current version in my working copyéeds modificatioh
mine-conflict :x.C.mine accept my version for conflicts
theirs-conflict :x.C.r7 accept their version for conflicts

mine-full : x.C.mine accept my file (no conflicts resolved)

theirs-full : x.C.r7 accept their file (no conflicts resolved)

o O O O O O

$ svn resolve - - accept theirs - conflict x.C
Resolved conflicted state of ' x. C

176 CHAPTER 3. TOOLS

e Removes 3 conflict filex.C.mine, x.C.r3, x.C.r7, and setx.C to theARG version.

$ svn commit -m "nodi fi ed x. C"'
Sending x.C

Transmitting file data .

Committed revision 8.

3.5 Debugger

e An interactive, symbolicebuggereffectively allows debug print statements to be added and
removed to/from a program dynamically.

e Do not rely solely on a debugger to debug a program.

e Some systems do not have a debugger or the debugger may nofovaertain kinds of
problems.

e A good programmer uses a combination of debug print statesreerd a debugger when
debugging a complex program.

e A debugger does not debug a program, it merely helps in thegighg process.

e Therefore, you must have some idea (hypothesis) about whabing with a program before
starting to look.

3.5.1 GDB
e The two most common UNIX debuggers are: dbx and gdb.

e File test.cc contains:

1 int rCint a[]) {

2 int i = 100000000;

3 afi] += 1, /I really bad subscript error
4 return a[i];

5}

6 int main() {

7 int a[10] = {0, 1}

8 r(a);

o }

e Compile program using theg flag to include names of variables and routines for symbolic
debugging:

$ g++ - g test.cc

e Start gdb:

$ gdb ./a.out
... gdb disclaimer
(gdb) < gdb prompt

3.5. DEBUGGER 177

e Like a shell, gdb uses a command line to accept debugging emuis

GDB Command Action
<Enter> repeat last command
run [shell-arguments] start program with shell arguments
backtrace print current stack trace
print variable-name print value in variable-name
frame [N] go to stack frame n
break routine / file-name:line-na set breakpoint at routine or line in file
info breakpoints list all breakpoints
delete [Nn] delete breakpoint n
step [n] execute next n lines (into routines)
next [n] execute next n lines of current routine
continue [n] skip next n breakpoints
list list source code
quit terminate gdb

e <Enter> without a command repeats the last command.

e run command begins execution of the program:

(gdb) run

Starting program: /u/userid/cs246/a.out

Program received signal SIGSEGV, Segmentation fault.

0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 ali] += 1; /l really bad subscript error

o If there are no errors in a program, running in GDB is the sasyeianing in a shell.
o If there is an error, control returns to gdb to allow examorat

o If program is not compiled withg flag, only routine names given.

e backtrace command prints a stack trace of called routines.
(gdb) backtrace

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:8

o stack has 2 frameasain (#1) andr (#0) because error occurred in callito

e print command prints variables accessible in the current roudibect, or external area.

(gdb) print i
$1 = 100000000

e Can print any C+ expression:

178

CHAPTER 3. TOOLS

(gdb) print a

$2 = (int) Oxffbefa20
(gdb) p *a

$3 =0

(9db) p a[l]

$4 =1

(gdb) p a[1]+1

$5 =2

e set valiable command changes the value of a variable in the current @utinject or exter-

nal area.

(gdb) set variable i = 7
(gdb) p i

$6 =7

(gdb) set var a[0] = 3
(gdb) p a[0]

$7 =3

Change the values of variables while debugging to:

o investigate how the program behaves with new values wittematmpile and restarting
the program,

o to make local corrections and then continue execution.

e frame [n] command moves theurrent stack frame to thenth routine call on the stack.

(gdb) f O

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3

3 ali] += 1, /l really bad subscript error
(gdb) f 1

#1 0x00010764 in main () at test.cc:8

8 rca);

o If nis not present, prints the current frame
o Once moved to a new frame, it becomes the current frame.

o All subsequent commands apply to the current frame.

e To trace program executiohreakpoints are used.

e break command establishes a point in the program where execuligmesds and control
returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 7.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

o Set breakpoint using routine name or source-file:line-nemmb

3.5. DEBUGGER 179

o info breakpoints command prints all breakpoints currently set.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00010710 in main at test.cc:7
2 breakpoint keep y 0x000106d8 in r(intx) at test.cc:3

e Run program again to get to the breakpoint:

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /u/userid/cs246/a.out

Breakpoint 1, main () at test.cc:7

7 int a[10] = {0, 1 };
(gdb) p a[7]
$8=0

e Once a breakpoint is reached, execution of the program caordgued in several ways.

e step [n] command executes the nextlines of the program and stops, so control enters
routine calls.

(gdb) step

8 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 ali] += 1, /Il really bad subscript error

(gdb) <Enter>

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 ali] += 1, /l really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

o If nis not present, 1 is assumed.

o If the next line is a routine call, control enters the routamel stops at the first line.

e next [n] command executes the nextines of the current routine and stops, so routine calls
are not entered (treated as a single statement).

180

CHAPTER 3.

(gdb) run

Breakpoint 1, main () at test.cc:7

7 inta[10]={0, 1}

(gdb) next

8 r(a);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 ali] += 1; /Il really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 ali] += 1; /l really bad subscript error

e continue [n] command continues execution until the next breakpointashred.

(gdb) run

Breakpoint 1, main () at test.cc:7

7 inta[10]={0, 1}

(gdb) c

Breakpoint 2, r (a=0x7fffffffe7d0) at test.cc:3

3 ali] += 1, /Il really bad subscript error
(gdb) p i

$9 = 100000000

(gdb) set var i = 3

(gdb) c

Continuing.

Program exited normally.

e list command lists source code.

(gdb) list

int r(int af]) {

int i = 100000000;

ali] += 1; /l really bad subscript error
return alif;

int main() {

int a[10] = {0, 1 };

1

2

3

4

5 1}
6

7

8 r(a);
9

o with no argument, list code around current execution locati

o with argument line number, list code around line number

e quit command terminate gdb.

TOOLS

3.5. DEBUGGER 181

(gdb) run

i3.r.eakpoint 1, main () at test.cc:7
7 inta[10]={0, 1}

1: a[0] = 67568

(gdb) quit

The program is running. Exit anyway? (y or n) y

182 CHAPTER 3. TOOLS

4 Software Engineering

4.1

Software Engineering (SE) is the social process of designing, writing, and maiirg
computer programs.

SE attempts to find good ways to help people understand aredogesoftware.
However, what is good for people is not necessarily goodifercomputer.

Many SE approaches are counter productive in the developohéngh-performance soft-
ware.
1. The computer does not execute the documentation!

o Documentation is unnecessary to the computer, and sigmifamaounts of time
are spent building it so it can be ignored (program comments)

o Remember, theuth is always in the code.

o However, without documentation, developers have difficd#signing and under-
standing software.

2. Designing by anthropomorphizing the computer is seldogoad approach (desk-
tops/graphical interfaces).

3. Compiler spends significant amounts of tiomeloing SE design and coding approaches
to generate efficient programs.

It is important to know these differences to achieve a badmetween programs that are
good for people and good for the computer.

Software Crisis

Large software systems-(100,000 lines of code) require many people and months to de-
velop.

These projects too often emerge late, over budget, and dear&twell.

Today, hardware costs are low, and people costs are high.

While commodity software is available, someone still hawtibe it.

Since people produce software software cost is great.

Coupled with a shortage of software personaeproblems.

Unfortunately, software is complex and precise, which nexputime and patience.

Errors occur and cost money if not lives, e.g., Ariane 5, abeR5, Intel Pentium division
error, Mars Climate Orbiter, UK Child Support Agency, etc.

(© Peter A. Buhr

183

184 CHAPTER 4. SOFTWARE ENGINEERING

4.2 Software Development

e Techniques for program development for small, medium, argkl systems.
e Objectives:

o plan and schedule project (requirements documents, Ute-tines)
o produce reliable, flexible, efficient programs

o produce programs that are easily maintained

o reduce the cost of software

o reduce program failure
e E.g., atypical software project:

o estimate 12 months of work
o hire 3 people for 4 months

o make up milestones for the end of each month
e However, first milestone is reached after 2 months instedd of
¢ To finish on time, hire 2 more people, but:

o new people require training

o work must be redivided
This takes at least 1 month.
e Now 2 months behind with 9 months of work to be done in 1 montb ipgople.
e To get the project done:

o must reschedule

o trim project goals
e Often, adding manpower to a late software project makessit.la

¢ lllustrates the need for a methodology to aid in the devekapiof software projects.

4.3 Development Processes

e There are different conceptual approaches for develomfigare:

4.3. DEVELOPMENT PROCESSES 185

Time
waterfall 1 1 1 1 1 N
Requiremeﬁtﬁ\nalysis | Design | Coding‘ Testiné Debugging

iterative 1 1 1 1 N
R R F | R Fs Fs
RADCTD RADCTD RADCTD RADCTD RADCTD RADCTD
staged | | | | | _
Requirement#\nalysis ~ Design Fy/» Fa/a Fs/6
CTD CTD CTD
agle | | | | | -
F1/3/4 F2/3 F1/3/4 F2/4/5 F1/5/6 Fa/e
DC DCT RADCTD RADC RADCTD D

waterfall : break down project based on activities that flow (down stescross a timeline.

o activities : (cycle of) Requirements, Analysis, Designd®g, Testing, Debug-
ging (RADCTD).
o timeline : assign time to accomplish each activity up to @cogompletion time

iterative/spiral : break down project based on functionality and divide fior across a
timeline

o functions (F) : (cycle of) acquire/verify data, process data, generata teports

o timeline : assign time to perform software cycle on each fiwmcup to project
completion time

staged delivery : combination of waterfall and iterative
o start with waterfall for analysis/design, and finish witkrétive for coding/testing
agilelextreme : short, intense iterations focused largely on code (veldsgamentation)

o often analysis and design are done iteratively
o often coding/testing done in pairs

e Pure waterfall is problematic because all coding/testorges at enés- major problems can
appear near project deadline.

e Pure agile can leave a project with “just” working code, atttelor no testing / documenta-
tion.

e Selecting a process depends on:
o kind/size of system
o quality of system (mission critical?)
o hardware/software technology used
o kind/size of programming team

186 CHAPTER 4. SOFTWARE ENGINEERING

@)

working style of teams
nature of completion risk
consequences of failure
culture of company

@)

o

@)

e Meta-processes specifying the effectiveness of processes

o Capability Maturity Model Integration (CMMI)
o International Organization for Standardization (ISO) @00

e Meta-requirements

o procedures cover key aspects of processes

o monitoring mechanisms

o adequate records

o checking for defects, with appropriate and correctiveoacti
o regularly reviewing processes and its quality

o facilitating continual improvement

4.4 Software Methodology
e System Analysis (next year)

o Study the problem, the existing systems, the requiremtradeasibility.

o Analysis is a set of requirements describing the systent&putputs, processing, and
constraints.

System Design

o Breakdown of requirements into modules, with their relasioips and data flows.

o Results in a description of the various modules required, the data interrelating
these.

Implementation

o writing the program

Testing & Debugging

o get it working

Operation & Review
o was it what the customer wanted and worth the effort?

Feedback

o If possible, go back to the above steps and augment the pegeweded.

4.4. SOFTWARE METHODOLOGY 187

4.4.1 System Design

e Two basic strategies exist to systematically modularizgstesn:

o top-down or functional decomposition
o bottom-up

e Both techniques have much in common and so examine only one.

4.4.2 Top-Down

e Start at highest level of abstraction and break down proleoncohesive units, i.e., divide
& conquer.

e Then refine each unit further generating more detail at eatsiah.

e Each subunit is divided until a level is reached where théspe comprehensible, and can
be coded directly.

e This recursive process is calledccessive refinementr factoring.

e Unit are independent of a programming language, but ulehgaihust be mapped into con-
structs like:

o generics (templates)
o modules
o classes
o routines

e Details look at data and control flow within and among units.
e Implementation programming language is often chosen dtdy the system design.
e Factoring goals:

o reduce module sizex: 30-60 lines of code, i.e., 1-2 screens with documentation
o make system easier to understand

o eliminate duplicate code

o localize modifications

e Stop factoring when:

o cannot find a well defined function to factor out
o interface becomes too complex

¢ Avoid having the same function performed in more than oneute(treate useful general
purpose modules)

188 CHAPTER 4. SOFTWARE ENGINEERING

e Separate work from management:

o Higher-level modules only make decisions (managementtahdther routines to do
the work.

o Lower-level modules become increasingly detailed andiSpggerforming finer grain
operations.

e In general:

o do not worry about little inefficiencies unless the code iseerted a LARGE number
of times

o put thought into readability of program

4.5 Design Quality
e System design is a general plan for attacking a problemgaatd to multiple solutions.

¢ Need the ability to compare designs.
e 2 measures: coupling and cohesion

e Low (loose) coupling is a sign of good structured and desiggh cohesion supports read-
ability and maintainability.

4.5.1 Coupling
Coupling measures the degree of interdependence among programmduyiles”.

Aim is to achieve lowest coupling or highest independenee, @ach module can stand alone
or close to it).

A module can be read and understood as a unit, so that chaagesimimal effect on other
modules and possible to isolate it for testing purposes @iereo components).

5 types of coupling in order of loose to tight (low to high):

1. Data: modules communicate using arguments/parameters corgamnimal data.
o E.g.,sin(x), avg(marks)
2. Stamp: modules communicate using only arguments/parametetaioarg extra data.

o E.g., pass aggregate data (array/structure) with someeetsffields unused

o problem: accidentally change other data

o modules may be less general (e.g., average routine passechgrof records)

o stamp coupling is common because data grouping is more targgdhan coupling

3. Control : pass data using arguments/parameters to effect contmol flo

o E.g., module calculate 2 different things depending on a flag
o bad when flag is passed down, worse when flag is passed up

4.5. DESIGN QUALITY 189

4. Common: modules share global data.

o cannot control access since scope rule allows many moduksscess the global
variables

o difficult to find all references reading/writing global valoles

5. Content: modules share information about type, size and strucfittata, or methods
of calculation

o changes effect many different modules (good/bad)

o avoid friend routine/class unless friend module is logically nestedextacted
for technical reasons.

4.5.2 Cohesion
e Cohesionmeasures degree of association among elements within alen@auw focused).

e Elements can be a statement, group of statements, or callseéomodules.

Alternate names for cohesion: binding, functionality, miad strength.

Highly cohesive module has strongly and genuinely relatechents.

If modules have low cohesion (module elements are relatetiyht coupling.

If modules have high cohesion (module elements are NOTad)a$ loose coupling.

7 types of cohesion (high to low):

1. Functional : modules elements all contribute to computation of one amg one
problem related task (Single Responsibility Principle).
o E.g.,sin(x), avg(marks), Car {...}, Driver {...}
o coupling is excellent

2. Sequential: module elements interact as producer/consumer, i.epubuiata from
one activity is input data to next.

print(process(getword(word))); // read - > process - > print (shell pipe)

o similar to functional, except possibly mandates sequeotase
o coupling is good
3. Communicational : module elements contribute to activities that use the Shate

find(book, title);
find(book, price);
find(book, ISBN);
find(book, author);
o all have same input data
o like sequential but order is not important

o coupling is acceptable

190 CHAPTER 4. SOFTWARE ENGINEERING

o usually improve maintainability by splitting common moduhto separate, func-
tional ones

4. Procedural : module elements involved in different and possibly urtesleactivities,
but which flow from one activity to the next.

file = open(filename); /I open connection to file name
read(file); /I read file contents
close(file); /I close connection to file name

o related by order of execution rather than by any single pmobielated function
o typically data sent to procedure modules is unrelated ta skt back

o procedural modules pass around partial results
5. Temporal : module elements involved in activities related in time.
initialization
- turn things on
turn things off
- set things to 0

- set things to 1
- set things to '’

o unrelated except carried out at particular time

o each initialization is more closely related to the modulest imake use of i
tight coupling

o want to re-initialize only some of the entities in initiadizon routine

o like procedural, except order of execution is more impdriiaprocedural

6. Logical : module elements contribute to same general category,endwivity is se-
lected from outside the module.

#include <algorithms>

find ...

swap ...

search ...

sort ...

inner_product ...
o modules contain number of activities of some general kind
o to use, pick out just one of the pieces needed

o interface weak, and contains code sharing common linesd# aad/or data areas
7. Coincidental : module elements grouped arbitrarily.

o activities are related neither by flow of data nor control

o like logical, internal activity must be externally selesttbut worse since categories
in the module are very weakly related

4.6 Design Principles
¢ low coupling, high cohesion (logical modularization)

4.7. DESIGN PATTERNS 191

4.7.1

good interfaces (abstraction and encapsulation)
type reuse (type inheritance)
code reuse (implementation inheritance, physical mochaaon)

indirection (data/routine pointers) to generalize olgect

Design Patterns
Design patternshave existed since people/trades developed formal appesac

E.g., chef’s cooking meals, musician’s writing/playingsie) mason’s building pyramid/cathedral.
Pattern is a common/repeated issue; it can be a problem or a solution.

Name and codify common patterns for educational and comeatioh purposes.

Software pattern are solutions to problems:

o name : descriptive name
o problem : kind of issues pattern can solve

o solution : general elements composing the design, withioslships, responsibilities,
and collaborations

o consequences : results/trade-offs of pattern (altereatinplementation issues)
Patterns help:

o extend developers’ vocabulary

Squadron Leader: Top hole. Bally Jerry pranged his kite right in the how’s
your father. Hairy blighter, dicky-birdied, feathered kamn his Sammy, took
a waspy, flipped over on his Betty Harper’s and caught his iedhne Bertie.

— RAF Banter, Monty Python

o offer higher-level abstractions than routines or classes

Pattern Catalog

creational structural behavioural
class|| factory method | adapter interpreter
template
object|| abstract factory | adapter responsibility chain
builder bridge command
prototype composite | iterator
singleton decorator | mediator
facade memento
flyweight | observer
proxy State
strategy
visitor

192 CHAPTER 4. SOFTWARE ENGINEERING

e Scope : applies to classes or objects

o class pattern— relationships among classes and subclasses (statictamoey)

o object pattern — relationships among objects (dynamic creation and ast$oic)
e Purpose : what a pattern does
o creational : classes defer construction through inhezéidnobjects defer creation to
other objects

o structural : composition via inherited classes or assetntibgects

o behavioural : classes describes algorithm or control-floljécts cooperate to perform
task

4.7.1.1 Class Patterns

factory method : generalize creation of product with multiple variants

struct Pizza {...}; /I product

struct Pizzeria { /I creator
enum Kind { It, Mg, Ch, Dd }; Il styles
virtual Pizza »order(Kind p) = 0;

3
struct Italian : public Pizzeria { /I concrete creator (factory)
Pizza xorder(Kind p); // create italian/margarita style
¥
struct Chicago : public Pizzeria { /I concrete creator
Pizza xorder(Kind p); /I create chicago/deep- dish style
2
Italian italian; Chicago chicago; /I factories
enum Kind { It, Mg, Ch, Dd }
Pizza sdispatch(Kind pizza) { /I parameterized creator
switch (pizza) {
case It: case Mg: return italian.order(Pizzeria::Mg);
case Ch: case Dd: return chicago.order(Pizzeria::Dd);
default: ; // error
}
}

Pizza «p = dispatch(It);
p = dispatch(Ch);
e product (Pizza) objects are consistent across all fastdceuld be subclassed)

e clients get a concrete product (Pizza) from the creatoetliy or indirectly), but prod-
uct type is unknown

e client interacts with product object through its abstrateiface (Pizza)

adapter/wrapper : convert interface into another

4.7. DESIGN PATTERNS 193

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
2

struct VStack : public Stack, privat,e Vector { // adapter/wrapper
void push(...) { ... push_back(...); ... }

void pop(...) { pop_back(...); }

%
void p(Stack &) { ...}
VStack vs; // use VStack code with Stack routine

p(vs);

e VStack is polymorphic withStack but implementsgush/pop with Vector::push_back/
Vector::pop_back.

template method : provide algorithm but defer some details to subclass

class PriceTag { /I template method
virtual string label() = 0; /I details for subclass
virtual string price() = 0;
virtual string currency() = 0;
public :
string tag() { return label() + price() + currency(); }

class FurnitureTag : public PriceTag { // actual method
string label() { return “furniture";}
string price() { return "$1000 "; }
string currency() { return "Cdn"; }

I3

FurnitureTag ft;

cout << ft.tag() << endl;

e template-method routines are non-virtual, i.e., not adden

4.7.1.2 Object Patterns

abstract factory : generalize creation of family of products with multiplerizants

194 CHAPTER 4. SOFTWARE ENGINEERING

struct Food {...}; /I abstract product
struct Pizza : public Food {...}; /I concrete product
struct Burger : public Food {...}; /I concrete product
struct Restaurant { /I abstract factory product

enum Kind { Pizza, Burger };
virtual Food «order(Kind f) = 0;
virtual int staff() = 0;
3
struct Pizzeria : public Restaurant { // concrete factory product
Food =order(Kind f) {}
int staff() {...}

s’truct Burgers : public Restaurant { // concrete factory product
Food =order(Kind f) {}
int staff() {...}

h

enum Type { PizzaHut, BugerKing };

struct RestaurantFactory { /I abstract factory
Restaurant screate(Type t) {}

3

struct PizzeriaFactory : RestaurantFactory { // concrete factory
Restaurant screate(Type t) {}
¥

struct BurgerFactory : RestaurantFactory { // concrete factory
Restaurant screate(Type t) {}
3

PizzeriaFactory pizzeriaFactory;
BurgerFactory burgerFactory;
Restaurant xpizzaHut = pizzeriaFactory.create(PizzaHut);
Restaurant xburgerKing = burgerFactory.create(BugerKing);
Food xdispatch(Restaurant::Kind food) { // parameterized creator
switch (food) {
case Restaurant::Pizza: return pizzaHut- >order(Restaurant::Pizza);
case Restaurant::Burger: return burgerKing- >order(Restaurant::Burger);
default : ; /I error
}
}

use factory-method pattern to construct generated prq&ood)

use factory-method pattern to construct generated fa¢Regtaurant)

clients obtains a concrete product (Pizza, Burger) fromreciegie factory (PizzaHut,
BugerKing), but product type is unknown

client interacts with product object through its abstrat¢iface (Food)

singleton : single instance of class

4.7. DESIGN PATTERNS 195

.h file .cc file
class Singleton { #include " Singl eton. h"
struct Impl { Singleton::Impl Singleton::impl(3, 4);
int x,y; Singleton:: Impl::Impl(int X, int y)
Impl(int x, int y); s x(x), y(y) {3
h void Singleton:im() { ... }
static Impl impl;
public :
void m();
3
Singleton x, vy, z; /I all access same value

¢ Allow different users to have they own declaration but stiltess same value.

Database database; // user 1
Database db; /I user 2
Database info; /I user 3

e Alternative is global variable, which forces name and majate abstraction.

composite : interface for complex composite object

struct Assembly { /I composite type
string partNo();
string name();
double price();
void insert(Assembly assm);
void remove(string partNo);
struct lIterator {...};

h

class Engine : public Assembly {...};
class Transmission : public Assembly{...};
class Wheel : public Assembly {...};
class Car : public Assembly {...};

class Stove : public Assembly {...};

/I create parts for car

Car c; /I composite object
c.insert(engine);

c.insert(transmission);

c.insert(wheel);

c.insert(wheel);

e recursive assembly type creates arbitrary complex asyevbigct.
e vertices are subassemblies; leafs are parts

e since composite type defines both vertices and leaf, all reesimhay not apply to both

iterator : abstract mechanism to traverse composite object

196 CHAPTER 4. SOFTWARE ENGINEERING

double price = 0.0;

Assembly::lterator c(car);

for (part = c.begin(engine); part = c.end(); ++part) { // engine cost
price += part- >price();

}

e iteration control: multiple starting/ending locationgpdh-first/breath-first, forward/backward,
etc.; level of traversal

e iterator may exist independently of a composite desigtepat

adapter : convert interface into another

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
3 ;

struct VecToStack : public Stack { // adapter/wrapper
Vector &vec;
VectortoStack(Vector &vec) : vec(vec) {}
void push(...) { ... vec.push_back(...); ...}
void pop(...) { vec.pop_back(...); }
2
void p(Stack &) { ...}
Vector vec;
VecToStack vtos(vec); /I any Vector
p(vtos);

e specific conversion frordector to Stack

proxy : frontend for another object to control access

struct DVD {
void play(...);
void pause(...);

%
struct SPVR : public DVD { /I static
void play(...) { ... DVD:play(...); ... }
void pause(...) { ... DVD:pause(...); ... }
%
struct DPVR : public DVD { /I dynamic
DVD «dvd;
DPVR() { dvd = NULL; }
~DPVR() { if (dvd != NULL) delete dvd; }
void play(...) { if (dvd == NULL) dvd = new T, dvd- >play(...); ... }
void pause(...) { ... don’t need dvd, no pause ... }
%

e proxy extends object’s type
e reverse structure of template method
e dynamic approach lazily creates control object

4.7. DESIGN PATTERNS 197

decorator : attach additional responsibilities to an object dynathica

struct Window {
virtual void move(...) {...}
virtual void lower(...) {...}

¥ ,
struct Scrollbar : public Window { /I specialize
enum Kind { Hor, Ver };
Window &window;
Scrollbar(Window &window, Kind k) : window(&window), ... {}
void scroll(int amt) {...}

%

struct Title : public Window { /I specialize
Title(Window &window, ...) : window(window), ... {}
setTitle(string t) {...}

%

Window w;

Title(Scrollbar(Scrollbar(w, Ver), Hor), "title") decorate;

e decorator only mimics object’s type through base class

¢ allows decorator to be dynamically associated with difieabject’s, or same object to
be associated with multiple decorators

observer : 1 to many dependency change updates dependencies

struct Fan { /I abstract
Band &band,;
Fan(Band &band) : band(band) {}
virtual void update(CD cd) = 0;

3
struct Band {
list<Fan +> fans; /I list of fans
static void perform(Fan «fan) { fan- >update(); }
void attach(Fan &fan) { fans.push_back(&fan); }
void deattach(Fan &fan) { fans.remove(&fan); }
void notify() { for_each(fans.begin(), fans.end(), perform); }
3
struct Groupie : public Fan { /I specialize
Groupie(Band &band) : Fan(band) { band.attach(«this); }
~Groupie() { band.deattach(this); }
void update(CD cd) { buy/listen new cd }
%
Band dust;
Groupie g1(dust), g2(dust); I register
dust.notify(); /I inform fans about new CD

e manage list of interested objects, and push new events ko eac
e alternative design has interested objects pull the events the observer
o = observer must store events until requested

198 CHAPTER 4. SOFTWARE ENGINEERING

visitor : perform operation on elements of heterogeneous container

struct PrintVisitor {
void visit(Wheel &w) { print wheel }
void visit(Engine &e) { print engine }
void visit(Transmission &t) { print transmission }

¥
struct Part {

virtual void action(Visitor &v) = 0;
3

struct Wheel : public Part {
void action(Visitor &v) { v.visit(«this); } // overload
¥

struct Engine : public Part {
void action(Visitor &v) { v.visit(«this); } // overload

h

PrintVisitor pv;

list<Part > ps;

for (inti=0;i<10;i+=1){
ps.push_back(add different car parts);

}

for (list<Part «>:iterator pi = ps.begin(); pi '= ps.end(); ++pi) {
(xpi)- >action(pv);
}

e each part has a geneeattion that is specialized by visitor
o different visitors perform different actions or dynamigatary the action
e compiler statically selects appropriate overloaded warsf visit in action

4.8 Testing

e A major phase in program development is testings0%).

e This phase often requires more time and effort than desidrtading phases combined.

Testing is not debugging.

Testing is the process of “executing” a program with the intent ofedetining differences
between the specification and actual results.

o Good test is one with a high probability of finding a differenc

o Successful test is one that finds a difference.

Debugging is the process of determining why a program doelane an intended testing
behaviour and correcting it.

4.8. TESTING 199

4.8.1 Human Testing
e Human Testing : systematic examination of program to discover problems.

e Studies show 30-70% of logic design and coding errors careteetéd in this manner.

e Code inspectionteam of 3-6 people led by moderator (team leader) lookingpfoblems,
often “grilling” the developer(s):

o data errors: wrong types, mixed mode, overflow, zero diviael, subscript, initializa-
tion problems, poor data-structure

o logic errors: comparison problems=/ !=, </ <=), loop initialization / termination,
off-by-one errors, boundary values, incorrect formulal ehfile, incorrect output

o interface errors: missing members or member parameterapsulation / abstraction
issues

e Walkthrough : less formal examination of program, possibly only 2-3 depers.
e Desk checking: single person “plays computer”, executing program by hand

4.8.2 Machine Testing

e Machine Testing: systematic running of program using test data designestoder prob-
lems.

o speed up testing, occur more frequently, improve testivgi@me, greater consistency
and reliability, use less people-time testing

Commercial products are available.

Should be done after human testing.

Exhaustive testing is usually impractical (too many cases)

Test-case desiginvolves determining subset of all possible test casestivélihighest prob-
ability of detecting the greatest number of errors.

Two major approaches:
o Black-Box Testing: program’s design / implementation is unknown when tesésas
are drawn up.

o White-Box Testing : program’s design / implementation is used to develop tke te
cases.

o Gray-Box Testing : only partial knowledge of program’s design / implemerdati
know when test cases are drawn up.

e Start with the black-box approach and supplement with wihite tests.

e Black-Box Testing

200 CHAPTER 4. SOFTWARE ENGINEERING

o equivalence partitioning : completeness without redundancy
« partition all possible input cases into equivalence ckasse
x select only one representative from each class for testing
x E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

x 3 equivalence classes, plus invalid hours

x Since there are many types of invalid data, invalid hoursaiaa be partitioned
into equivalence classes

o boundary value testing
x test cases which are below, on, and above boundary cases

39, 40, 41 (hours) valid cases
44, 45, 46 "

0, 1, 2 ”

-2,-1, 0 ” invalid cases
59, 60, 61 ”

o error guessing

x surmise, through intuition and experience, what the lilelprs are and then test
for them

e White-Box (logic coverage) Testing

@)

develop test cases to cover (exercise) important logicsgatiough program

@)

try to test every decision alternative at least once

o

test all combinations of decisions (often impossible dugize)

o

test every routine and member for each type

@)

cannot test all permutations and combinations of execution

e Test Harness: a collection of software and test data configured to run g@nam (unit)
under varying conditions and monitor its outputs.

4.8.3 Testing Strategies

e Unit Testing : test each routine/class/module separately before atedrinto, and tested
with, entire program.

o requires construction of drivers to call the unit and pagssit values
o requires construction of stub units to simulate the uniiedaluring testing
o allows a greater number of tests to be carried out in parallel

e Integration Testing : test if units work together as intended.

o after each unitis tested, integrate it with tested system.

4.8. TESTING 201

o

o

e}

done top-down or bottom-up : higher-level code is driveygidr-level code is stubs
In practice, a combination of top-down and bottom-up tesisnusually used.
detects interfacing problems earlier

e Once system is integrated:

o

o

e}

Functional Testing: test if performs function correctly.

Regression Testing test if new changes produce different effects from presioer-
sion of the system (diff results of old / new versions).

System Testing: test if program complies with its specifications.
Performance Testing: test if program achieves speed and throughput requirement

Volume Testing : test if program handles difference volumes of test dataallss
large), possibly over long period of time.

Stress Testing test if program handles extreme volumes of data over a pleoidd of
time with fixed resources, e.g., can air-traffic controltegshandle 250 planes at same
time?

Usability Testing : test whether users have the skill necessary to operatg$hens.

Security Testing: test whether programs and data are secure, i.e., can wnaeth
people gain access to programs, files, etc.

Acceptance Testing checking if the system satisfies what the client ordered.

e Ifaproblemis discovered, make up additional test casesrtwim on the issue and ultimately
add these tests to the test suite for regression testing.

4.8.4 Tester
A program should not be tested by its writer, but in practidge bften occurs.

Remember, the tester only tests wttaythink it should do.

Any misunderstandings the writer had while coding the peiagare carried over into testing.

Ultimately, any system must be tested by the client to detezrfiit is acceptable.

Points to the need for a clear specification to protect batltlient and developer.

202 CHAPTER 4. SOFTWARE ENGINEERING

Index

1,7,39

I=, 39,68
", 87
",6,72
#,1

#, 85
#define , 85
#elif, 88
#else, 88
#endif , 88
#if, 88
#ifdef , 88
#ifndef , 88
#include , 87
$,1,19

${}, 19

%, 1

&, 39, 40, 47, 57
&&, 39, 47
&=, 39
',6,38

x, 39, 40, 57, 64
+/, 34

*=, 39

+, 39, 68
++,41, 150
+=, 39,41
39,41, 48
-, 39
--,41,150
-=,39 41
->, 39

-L, 161
-MD, 166

- MMD, 166
-0,161
-S,161

203

-W, 160

-c, 129 161
-9,161,176
-1,161
-0,129 161
-v, 160

.39

., 64

.C,34

.c,34

.cc, 34,131
.cpp, 34

.h, 87,130
.snapshot, 12
/,3,39 41

\, 6, 38

/%, 34

I, 34

/=, 39

, 53

2, 39,71, 118 135
;35

i, 28

<, 17, 39, 68
<<, 39,40, 78, 106
<<=, 39

<=, 39, 68

<>, 87
<ctrl>-c, 6
<ctrl>-d, 17, 80
=, 8,19, 39,68
==, 3968, 111
> 6,17, 39, 68
>&, 17,18

>=, 39, 68

>> 39, 40, 78, 106
>>=, 39

204

?:, 39,47

[1, 26, 68, 95
%, 39, 41
%=, 39

&, 40,57
{},35 44

~, 39

~=, 39

Y6

[, 17, 39, 47
|=, 39

~, 3,39

a.out, 83, 161
absolute pathnam8, 168
abstracty/2
abstract clasg,43
pure,145
abstract data-typd,18
abstract factory] 93
abstraction101, 118
proceduraly2
routine,72
acceptance testing01
access controll 18
adapter192 196
add, 170
ADT, 118
aggregatef1
aggregationl25
agile,185
alias,70, 136, 157
alias, 8, 12
allocation
array,63, 95
dynamic,93
array,95
heap,94, 95, 150
array,95
matrix, 96
stack,45, 95
argc, 83
argument/4
argv, 83, 84

CHAPTER 4. SOFTWARE ENGINEERING

array, 56, 62, 63, 71, 72, 76, 81, 83, 95,
104
2-D, 96
deallocation95
dimensiong2, 63, 72, 76, 95, 151
parameter76
as,161
assembler] 61
assertion88
assignment39, 41, 70, 107, 108 139
array,63, 150
cascade41
initializing, 36
operator]119, 133
association123
unidirectional 123
association clas4,25
atoi, 84
attribute,122

backquoteb
backslash3, 6, 38
backspace key,
backtrace, 177
backward brancig4, 56
bang,7
bash/1, 21, 25
bash, 10
basic types35, 56

bool , 35

char, 35

double , 35

float, 35

int, 35

wchar _t, 35
behavioural 147
bit field, 65
bitwise copy,109
black-box testingl199
block, 33,44, 71

{1},35 44
blueprint,121
bool, 35, 38
boolalpha, 79
boundary value testin@00

4.8. TESTING

break, 47, 49, 56
labelled,53

break, 178

breakpoint,178
continue, 180
next, 179
step, 179

C-c, 6
C-d, 17,80
c_str, 68
call-back routine100
cascade/8
cascade assignmedt]
case, 28, 46
i, 28
pattern,28
case-sensitivel,9, 35
cast,39,41,43 57,72, 82 97,142
cat, 12,173
cd, 7
cerr, 77
char, 35, 37, 38
checkin,167
checkout167
checkout, 169
chevron,39, 78, 106, 149
chgrp, 16
chmod, 16
chsh, 10
cin, 77
class, 101, 119
class modell22
class pattern192
classes diagrani,22
clear, 81
cmp, 13
code inspection199
coercion42, 57, 82,94, 98
cast,82
explicit, 43, 82
reinterpret _cast, 82
cohesion 189
coincidental 190
comma expressiod,1, 48, 96

command options?
command-line argument83
argc, 83
argv, 83, 84
main, 83
command-line interfacd,
comment], 34
#,1
«l, 34
[+, 34
1,34
nesting,34, 35
out, 34, 88
commit, 170
common coupling189
communicationall89
compilation,33, 159
g++, 34
compiler,33, 34, 160
options
-D, 86, 160
- E, 160
-1,160
-1, 161
-MD, 166
- MMD, 166
-0, 161
-S,161
-W, 160
-¢, 129 161
-g,161,176
-1,161
-0,129 161
-v, 160
separate compilatio®8, 116
composite195
composition126, 134, 146
explicit, 134
concrete clasd,44
conditional expression evaluatiofi/
&&, 47
2., 47
partial evaluation47
short-circuit,47
conditional inclusion87

205

206

const, 38, 61, 76, 86, 101
constant37, 39, 101, 131
initialization, 86
parameter76
variable,39
construction]135
constructorb6, 103 104, 135 138
const memberlll
copy,107,119 139
implicit conversion,105
literal, 105
passing arguments to other construc-
tors,138
type,56
container149
deque, 149
list, 149
map, 149
queue, 149
stack, 149
vector, 149, 150
content coupling189
contiguous object] 07
continue , 49
labelled,53
continue, 180
contra-variancel 37
control coupling, 188
control structure44
block, 44
{},35 44
conditional expression evaluaticfi/
&&, 47
?:, 47
partial evaluation47
short-circuit,47
looping,44, 47
break, 30
continue , 30
do, 48
for, 29, 48
while , 28, 47
selection44, 45
break, 47
case, 28, 46

CHAPTER 4. SOFTWARE ENGINEERING

dangling else45
default , 47

else, 45

if, 27, 45
pattern,28
switch , 46, 84
test,26

short-circuit expression evaluaticty

transfer44
conversion4l, 57, 68, 105
cast,39, 41
dynamic _cast, 142
explicit, 41, 97
implicit, 41, 75, 97, 105
narrowing,42
promotion 42
static _cast, 41
widening,42
copy constructorl08 119, 133
copy-modify-merge model,67
coupling,188
cout, 77
cp, 11,172
cpp,160
create, 168
csh,1, 21, 25
csh, 10
current directory3, 4, 7, 10
current stack framel, 78

dangling else45
dangling pointer94, 110
data coupling188
data membei64
dbx, 176
debug print statement80
debuggerl76
Debugging90
debugging90, 198
dec, 79
declaration35
basic types35
const , 86
type constructol56
type qualifier,36

4.8. TESTING

variable,36
Declaration Before Us€,16
declaration before usé& 15
decorator197
deep compare,11
deep copyl110 111
default
parameter98
default , 47
default constructor] 03
default initialized,71
default valuey6, 103
parameter76
delegation]147
delete, 93
(1,95
delete key2
dependencel, 62
deque, 149, 154
dereferencel, 40, 57
dereferencingb7
design patterng,91
desk checking]l99
desktop1
destruction135
explicit, 107
implicit, 107
order,107
destructor]106 135, 138
diff, 13

dimensionp2, 63, 72, 76, 95, 151

do, 48
documentation34
double , 35, 38

double quote6, 22
downcast]142
duplicate code72
dynamic allocation104

dynamic storage manageme®as, 107

dynamic _cast, 142

eager evaluatiorl7
echo, 9

egrep, 14

else, 45

encapsulatiori 18 150
end of file,80
end of line,33
endl, 33, 79
Enter key,1
enum, 56, 86
enumeration56
enumeratorb6
eof, 80
equivalence
name,70
structural,70
equivalence partitioning200
error guessing200
escapeb
escape sequendg/
Escape sequencgég
escaped?6
evaluation
eagera7
lazy, 47
partial, 47
short-circuit,47, 52
event programmingl00
executel5
execution error92
exit
static multi-exit,51
static multi-level 53
exit, 9
exit, 33
exit status9, 22
explicit coercion43, 82
explicit conversion41, 97
export,128 131
expression39
extreme 185
Eye Candyps0

factoring,72, 187
factory method192
fail, 78, 80

false, 42

feof, 81

file

207

208

.h, 87
opening,78
file inclusion,87
file management
file permission15
input/output redirection] 7
<, 17
>&, 17
> 17
[, 17
file permission
executel5
group,15
other,15
read,15
search]15
user,15
write, 15
file suffix
.C,34
.c,34
.cc, 34,131
.cpp, 34
.h, 130
.0,129
files, 2
input/output redirection] 7
find, 13, 68
find_first_not_of, 68
find_first_of, 68
find_last_not_of, 68
find_last_of, 68
fix-up routine,99
fixed, 79
flag variable 51
float , 35, 37
for, 29, 48
for_each, 155
format
I/0, 79
formatted 1/0,77
forward branch54
forward declaration] 16
frame, 178
free,93

CHAPTER 4. SOFTWARE ENGINEERING

free, 93

friend , 120
friendship,120, 135
fstream, 78

function,73

function member64
function-call operator] 14
functional,189

functional testing201
functor,114, 156

g++, 34,62, 72,105 160
garbage collectior§3
gdb
backtrace, 177
break, 178
breakpoint,178
continue, 180
next, 179
step, 179
continue, 180
frame, 178
info, 179
list, 180
next, 179
print, 177
run, 177
step, 179
gdb, 176
generalization145
generatel21
globbing,4, 6, 14, 15, 28
gmake, 163
goto, 53, 55, 56
label,53
graphical user interfac4,
gray-box testing199
group,15

has-a134, 146

heap,74, 94, 95, 150
array,95

help, 7

heterogeneous value&3, 65

hex, 79

4.8. TESTING

hidden file,5, 10, 12
history , 7

home directory3, 7
homogeneous value82
hot spot,89

human testingl 99

I/O
cerr, 77
cin, 77
clear, 81
cout, 77
fail, 78
formatted,77
fstream, 78
ifstream, 78
ignore, 81
iomanip, 79
jostream, 78
manipulators79
boolalpha, 79
dec, 79
endl, 79
fixed, 79
hex, 79
left, 79
noboolalpha, 79
noshowbase, 79
noshowpoint, 79
noskipws, 79
oct, 79
right, 79
scientific, 79
seffill, 79
setprecision, 79
setw, 79
showbase, 79
showpoint, 79
skipws, 79
ofstream, 78
identifier,35, 53
if, 27, 45
?:, 47
dangling else45
else, 45

ifstream, 78
ignore, 81
implementation130

implementation inheritancé& 34
implicit conversion4l, 75, 97, 105

import,128 130

import, 169

indirection,59

info, 179

Inheritance 148

inheritance 134, 146
implementation134
type, 134, 136

initialization, 71, 103 105, 107,108 111,

135 138 139
array, 71
forward declaration] 17
string,72
structure,/71
inline , 86
input,33, 77, 79
>> 106
end of file,80
eof, 80
fail, 80
feof, 81
formatted,77
manipulators
iomanip, 79
noskipws, 79
skipws, 79
standard input
cin, 77
input/output redirection]. 7
filter
[, 17
input
<, 17
output
> 17
>&, 17
int, 35, 37, 38
INT16_MAX, 37
INT16_MIN, 37
intl6_t, 37

210

INT32_MAX, 37
INT32_MIN, 37
int32_t, 37
INT64_MAX, 37
INT64_MIN, 37
inté4_t, 37
INT8_MAX, 37
INT8_MIN, 37
int8_t, 37
INT_MAX, 37
INT_MIN, 37
integral type 65
integration testing200
interaction model122
interface,73, 101, 130
interface classl45
interfaces;2
iomanip, 79
jostream, 33, 78
is-a,136, 146
iteration statement

break, 49

continue , 49
iterative,185
iterator,150, 195

++, 150

--,150

for_each, 155

keyword,35
keywords,19
ksh,1

label,53

label variableb53

language
preprocessod 59
programming,159
template 159

lazily, 47

lazy evaluation47

Id, 161

left, 79

less, 12

linker, 161

CHAPTER 4. SOFTWARE ENGINEERING

list, 149 154, 180
back, 154
begin, 155
clear, 154
empty, 154
end, 155
erase, 155
front, 154
insert, 155
pop_back, 154
pop_front, 154
push_back, 154
push_front, 154
begin, 155
end, 155
size, 154

literal, 37, 38, 66, 71, 80
bool, 38
char, 38
double , 38
escape sequences
initialization, 71
int, 38
string, 38, 66
type constructor/1

literals,56

LLONG_MAX, 37

LLONG_MIN, 37

logical, 190

login, 1, 2

login shell,25

logout,2

long, 37

LONG_MAX, 37

LONG_MIN, 37

loop
mid-test,50
multi-exit, 50

looping statemeny7
break, 30
continue , 30
do, 48
for, 29, 48
while , 28, 47

Ip, 12

4.8. TESTING

Ipstat, 12
Is, 10, 16, 169

machine testingl 99
macros86
main, 33, 83, 116
make,163
make, 163
malloc, 93
man, 10
managed languag@3
manipulators79
map, 149 153
begin, 154
end, 154
erase, 154
find, 154
insert, 154
begin, 154
end, 154
math library,161
matrix, 62, 76, 96, 151
memberp4
anonymousl134
const, 111
constructor103
destruction106, 135, 138
initialization, 103 135, 138
object,101
operator102
overloading102
pure virtual, 143 144
static member112
virtual, 141, 142
member selectior§4
memberwise copy,09
memory leak94, 96, 110
mid-test loop 50
mixin, 146
mkdir, 11, 168
modularizationy2
modularize 187
module,72
more, 12
multi-exit

211

loop, 50

mid-test,50
multi-level exit

static,53
multiple inheritancel45
mutually recursivells 116
mv, 11, 172

name equivalenc&0, 136, 137, 148

namespace33, 156
std, 33

narrowing,42

navigable124

nesting,135
blocks,44, 45
comments34, 35
initialization, 71
preprocessof§7
routines,74
type, 70

new, 93

next, 179

noboolalpha, 79

non-contiguousl07

noshowbase, 79

noshowpoint, 79

noskipws, 79

npos, 68

NULL, 71, 87

null address59

null characterg7

object,100 101
anonymous membet34
assignment]07, 139
const memberl1ll
constructor103 135 138
copy constructorl07, 119 139
default constructorl 03
destructor106 135,138
initialization, 103 138
literal, 105
member101
pure virtual memberl43 144
static member]112

212

virtual member]141, 142
object codel61
object diagram124
object model122
object pattern192
object-oriented100 134
observer197
oct, 79
ofstream, 78
open,78
file, 78
operation123
operators
x, 40, 57
<<, 78,106
>> 78,106
&, 40,57
arithmetic,39
assignment39
bit shift, 39
bitwise,39
cast,39
comma expressior9
control structures39
logical, 39
overloading,78, 102
pointer,39, 40, 57
priority, 39
relational,39
selection,71, 135
string,68
struct , 39
selection,118
other,15
output,33, 77, 81
<<, 106
endl, 33
formatted,77
manipulators
boolalpha, 79
dec, 79
endl, 79
fixed, 79
hex, 79
iomanip, 79

CHAPTER 4. SOFTWARE ENGINEERING

left, 79
noboolalpha, 79
noshowbase, 79
noshowpoint, 79
oct, 79
right, 79
scientific, 79
seftfill, 79
setprecision, 79
setw, 79
showbase, 79
showpoint, 79
standard error
cerr, 77
standard output
cout, 33, 77
overflow,40
overload 383
overloading,78, 97, 102 103 106
override, 135, 137, 140, 141
overriding,45

paginate12
parameter/4
array, 76
constant/6
default value76
pass by referenc@4
pass by value/4
prototype, 116
parameter passing
array, 76
pass by referenc@4
pass by valuer4
pattern28, 191
pattern matching4
performance testin@01
pointer,56, 57, 71
0,71
array,63, 95
matrix, 96
NULL, 71, 87
pointer variable58
polymorphic,142
polymorphism 136

4.8. TESTING

Polymorphism147
preprocessof35, 85, 159 160, 166
#define , 85
#elif, 88
#else, 88
#endif , 88
#if, 88
#ifdef , 88
#ifndef , 88
#include , 87
comment-out35
file inclusion,87
macros 86
variable,86, 160
print, 177
priority, 39
private , 119
procedural,190
procedural abstractiofi2
procedurey3
program
structure 34
program structure34
block, 33
main, 33
project,167
promotion,42
prompt,1
$1
%, 1
>, 6
protected , 119
prototype, 115 116
proxy, 196
pseudo random-number generafidr3
pseudo random-numberk] 3
public , 64,119
pure abstract-clas345
pure virtual memberl43 144
pwd, 7

queue, 149, 154
guoting,6

random number113

213

generator113
pseudo-randoni, 13
seed,115
Random-number generatdr.3
read,15
real time,9
recursive type65
reference40, 56, 57
initialization, 60
reference parametef4
referencingb57
regression testin@01
regular expressiond,
reinterpret _cast, 82
relative pathname
replace, 68
repository,167, 168
resolve, 175
return, 33, 73
return code9
Return key1
return type,/3
reuse134
revert, 171
rfind, 68
right, 79
rm, 11,171
routine, 72
argument/parameter passind,
array parameter,6
function,73
member101
parameter73
pass by referenc@4
pass by value/4
procedurey3
prototype, 115
return, 73
return type,/3
routine overloading97
routine prototype
forward declaration] 16
scope 101
routine abstraction/2
routine memberG4

214

routine pointer98
routine prototypel16
run, 177

scientific, 79
scope 101, 118 156
script,21
search]15
security testing201
sed, 19
selection operator1
selection statemenb
break, 47
case, 28, 46
default , 47
else, 45
if, 27, 45
pattern,28
switch , 46, 84
self-assignment, 10
semantic error92
semi-colon27
semicolon 35, 44, 64
sentinel 67
separate compilatio®8, 127
-c, 129
sequentiall89
setfill, 79
setprecision, 79
setw, 79
sh,1,21
sh, 10
sha-bang21
shell,1
bash/, 25
csh,1, 25
ksh,1
login, 25
prompt,1
$,1
%, 1
> 6
sh,1
tcsh,1
shell program21

CHAPTER 4. SOFTWARE ENGINEERING

shift , 27
short , 37
short-circuit,26, 47
short-circuit expression evaluatiofi/
showbase, 79
showpoint, 79
SHRT_MAX, 37
SHRT_MIN, 37
signature116
signed , 37
single quote6
singleton,194
size_type, 68
sizeof , 40
sketch,121
skipws, 79
slicing, 143
software development
.cc, 131
.h, 130
.0,129
separate compilatior,27
software engineering,2, 183
source , 24
source file]116, 118
source-code managemeh€6
source-code management-systégi/
spiral, 185
ssh, 15
stack,45, 74
stack, 149 154
stack allocation95
staged deliveryl1 85
stamp coupling188
statement35
static , 132
static block,74, 112
static exit
multi-exit, 51
multi-level,53
static multi-level exit53
static _cast, 41
status, 171
std, 33
stderr, 78

4.8. TESTING

stdin, 78
stdout, 78
step, 179
strcat, 68
strcpy, 68
strcspn, 68
stream
cerr, 77
cin, 77
clear, 81
cout, 77
fail, 78
formatted,77
fstream, 78
ifstream, 78
ignore, 81
input, 33
cin, 77
end of file,80
eof, 80
fail, 80
manipulators
boolalpha, 79
dec, 79
endl, 79
fixed, 79
hex, 79
iomanip, 79
left, 79
noboolalpha, 79
noshowbase, 79
noshowpoint, 79
noskipws, 79
oct, 79
right, 79
scientific, 79
seffill, 79
setprecision, 79
setw, 79
showbase, 79
showpoint, 79
skipws, 79
ofstream, 78
output,33
cout, 33

215

endl, 33
stream file,77
stress testing201
string, 38, 66
C+H
I=, 68
+, 68
<, 68
<=, 68
=, 68
==, 68
>, 68
>=, 68
[1, 68
c_str, 68
find, 68
find_first_not_of, 68
find_first_of, 68
find_last_not_of, 68
find_last_of, 68
npos, 68
replace, 68
rfind, 68
size_type, 68
substr, 68

[1, 68
strcat, 68
strcpy, 68
strcspn, 68
strlen, 68
strncat, 68
strncpy, 68
strspn, 68
strstr, 68
literal, 66
null termination 67
stringstream, 84
strlen, 68
strncat, 68
strncpy, 68
strspn, 68
strstr, 68
struct , 101, 119
structurally equivalenZ0

216

structure 56, 63, 71, 72, 100, 101

member64, 101
data,64
function, 64
initialization, 64
routine,64

visibility
default,64
public , 64

struct , 39

structured programming9
subscript62

subshell 10, 21, 25
substitutability 147

substr, 68

subversion167
successive refinemert87
suffix

.C,34

.c,34

.cc, 34

.cpp, 34

svn, 167

add, 170

cat, 173

checkout, 169

commit, 170

cp, 172

import, 169

Is, 169

mkdir, 168

mv, 172

resolve, 175

revert, 171

rm, 171

status, 171

update, 173

svnadmin

create, 168

switch , 46, 84

break, 47

case, 46

default , 47

syntax error91
system command,63

CHAPTER 4. SOFTWARE ENGINEERING

system modellingl 21
system testing201
system time9

tab key,5

target valueb9

target variable59

tcsh,1

tcsh, 10

template 148 159
routine,148
type,148

template method93

template routinel48

template typel48

temporal, 190

terminal,1, 2

test, 26

test harnes00

test-case desigi99

Testing
Integration,200

testing,198
acceptance201
black-box,199
functional,201
gray-box,199
harness200
human,199
machine 199
performance201
regression201
security,201
stress201
system201
unit, 200
usability,201
volume,201
white-box,199

text merging, 167

this, 101

time, 9

time stamp 162

token,85

translation unit128

4.8. TESTING

translator160
true, 42
type, 8
type aliasing70
type coercion82
Type constructol6
type constructor
array,62
enumeration56, 86
literal, 71
pointer,57
referenceb57
structure 63
type aliasing70
union,65
type conversiorél, 97, 105 142
type equivalencel 36, 137
type inheritancel34, 136
type nesting70
type qualifier,36, 37, 61
const, 38, 61
long , 37
short , 37
signed , 37
static , 132
unsigned , 37
type-constructor literal
array, 71
pointer,71
structure,/71
typedef , 70, 157

UINT16_MAX, 37
uintl6_t, 37
UINT32_MAX, 37
uint32_t, 37
UINT64_MAX, 37
uinté4_t, 37
UINT8_MAX, 37
uint8_t, 37
UINT_MAX, 37
ULLONG_MAX, 37
ULONG_MAX, 37
undefined59
unformatted /077, 82

217

unidirectional associatiod23
unified modelling languagéd,22
uninitialization,106
uninitialized variable36, 59, 93, 94
union,65
unit testing,200
unmanaged language3
unsigned , 37
update, 173
usability testing201
user,15
user time9
USHRT_MAX, 37
using
declaration]157
directive,157

value parametei4
variable declarations

type qualifier36, 37
variables

constant39

dereference40, 57

referenced0, 57
vector, 149, 150

[], 150

at, 150

begin, 152

clear, 150

empty, 150

end, 152

erase, 152

insert, 152

pop_back, 150

push_back, 150

rbegin, 152

rend, 152

resize, 150, 152

size, 150
version control166
virtual , 141, 142
virtual members141-144
visibility, 70

default,64

private , 119

218 CHAPTER 4. SOFTWARE ENGINEERING

protected , 119
public , 64, 119
visitor, 198
void , 73
void *, 94
volume testing201

walkthrough,199
waterfall, 185
wchar _t, 35
which, 8
while , 28, 47
white-box testing199
whitespace34, 80, 85
widening,42
wildcard,4, 15
qualifier,15
working copy,167
wrapper,192
wrapper membed 40
write, 15

xterm,1, 2

zero-filled, 71

	Title
	Contents
	Shell
	File System
	Pattern Matching
	Quoting
	Shell Commands
	System Commands
	File Permission
	Input/Output Redirection
	Variables
	Arithmetic
	Programming
	Routine
	Environment Variables
	Control Structures
	Test
	Shift
	Selection
	Looping

	Cleanup Script
	Regress Script

	C++
	First Program
	Program Structure
	Comment
	Statement

	Declaration
	Identifier
	Basic Types
	Variable Declaration
	Type Qualifier
	Literals

	Expression
	Conversion
	Coercion
	Math Operations

	Control Structures
	Block
	Selection
	Conditional Expression Evaluation
	Looping

	Structured Programming
	Multi-Exit Loop
	Multi-Level Exit

	Type Constructor
	Enumeration
	Pointer/Reference
	Aggregates
	Array
	Structure
	Union

	String
	Type Equivalence
	Type Nesting
	Type-Constructor Literal

	Modularization
	Routine
	Argument/Parameter Passing
	Array Parameter

	Input/Output
	Formatted I/O
	Formats
	Input
	Output

	Unformatted I/O

	Command-line Arguments
	Preprocessor
	Variables/Substitution
	File Inclusion
	Conditional Inclusion

	Assertions
	Debugging
	Debug Print Statements
	Errors

	Dynamic Storage Management
	Overloading
	Routine Pointer
	Object
	Object Member
	Operator Member
	Constructor
	Literal
	Conversion

	Destructor
	Copy Constructor / Assignment
	Initialize const / Object Member
	Static Member

	Random Numbers
	Declaration Before Use
	Encapsulation
	System Modelling
	UML

	Separate Compilation
	Inheritance
	Implementation Inheritance
	Type Inheritance
	Constructor/Destructor
	Copy Constructor / Assignment
	Overloading
	Virtual Routine
	Downcast
	Slicing
	Protected Members
	Abstract Class
	Multiple Inheritance
	UML

	Composition / Inheritance Design
	Template
	Standard Library
	Vector
	Map
	List
	for_each

	Namespace

	Tools
	C/C++ Composition
	Compilation
	Preprocessor
	Translator
	Assembler
	Linker

	Compiling Complex Programs
	Dependencies
	Make

	Source-Code Management
	SVN
	Repository
	Checking Out
	Adding
	Checking In
	Modifying
	Revision Number
	Updating

	Debugger
	GDB

	Software Engineering
	Software Crisis
	Software Development
	Development Processes
	Software Methodology
	System Design
	Top-Down

	Design Quality
	Coupling
	Cohesion

	Design Principles
	Design Patterns
	Pattern Catalog
	Class Patterns
	Object Patterns

	Testing
	Human Testing
	Machine Testing
	Testing Strategies
	Tester

	Index

