UNIVERSITY OF

WATERLOO

School of Computer Science

CS 246
Object-Oriented Software Development

Course Notes
Fall 2011

http: //www.student.cs.uwaterloo.ca/ ~Cs246

November 7, 2011

Outline

Introduction to basic UNIX software development tools abgeot-oriented program-

ming in C+ to facilitate designing, coding, debuggingitegg and documenting of

medium-sized programs. Students learn to read a speaficatid design software
to implement it. Important skills are selecting approm@idata structures and control
structures, writing reusable code, reusing existing codéerstanding basic perfor-
mance issues, developing debugging skills, and learnitesta program.

*Permission is granted to make copies for personal or edurtiise.

http://www.student.cs.uwaterloo.ca/~cs246

Contents

1 Shell

11
1.2
1.3
1.4
15
1.6
1.7
1.8

1.9
1.10

2 C++
2.1
2.2

2.3

2.4

1

File System. e 2
Pattern Matching. 4
QUOLING 6
ShellCommands. e 7
SystemCommands 9
File Permission. 15
Input/Output Redirection 16
Programming. e 19
1.8.1 \Variables. 19
1.8.2 Arithmetic e 21
1.8.3 Routine. e 21
1.8.4 EnvironmentVariables 23
1.8.5 Control Structures. 24

1.85.1 Test. e 24

1.85.2 Selection 25

1.853 Looping. e 27
Cleanup Script. e e 29
Regress Script. 30

31

First Program. e e 31
Program Structure. e 32
221 Comment. e e 32
2.2.2 Statement e 33
Declaration. e 33
2.3.1 ldentifier e 33
2.3.2 BaSiCTYPES o e e e 33
2.3.3 \Variable Declaration. o 34
2.3.4 TypeQualifier 34
235 Literals. 35
EXpression 37
2.4.1 CONVersion. v i e e e e 39
2.4.2 COErCION o e e e e 40
243 MathOperations. 41

CONTENTS

2.5 Control Structures e 42
251 Block. 42
2.5.2 Selection. 43
2.5.3 Conditional Expression Evaluation 45
254 LOOPING. e 45

2.6 Structured Programming e 47
2.6.1 Multi-ExitLoop 47
2.6.2 Multi-Level Exit 51

2.7 Type Constructor. e 54
2.7.1 Enumeration. 54
2.7.2 Pointer/Reference. 56
2.7.3 Aggregates. e 60

2.7.3.1 Array. . . .o e e e 60
2.7.3.2 Structure 62
2733 Union 63
274 TypeEquivalence. 64
275 TypeNesting. e 65
2.7.6 Type-ConstructorLiteral 66
277 SHiNG. . . . e e 67

2.8 Modularization. 70

29 RoOUtiNE 70
2.9.1 Argument/ParameterPassing. 72
2.9.2 Array Parameter. 74

2.10 Input/Output L 74
2.10.1 Formatted /O e 75

2.10.1.1 Formats. 76
2.10.1.2 Input. e 77
2.10.1.3 Output. 79
2.10.2 Unformatted I/O. 80

2.11 Command-line Arguments 80

2.12 PreproCessor. o o e e 83
2.12.1 Variables/Substitution. Lo 83
2.12.2 FilelInclusion. 84
2.12.3 Conditional Inclusion 85

2.13 ASSErtiONS 85

2.14 Debugging e 87
2.14.1 DebugPrintStatements oo 87
2.14.2 EITOIS. 89

2.15 Dynamic Storage Management e 90

2.16 Overloading. e 94

2.17 Routine Pointer. 95

2.18 Object. 97
2.18.1 ObjectMember 98
2.18.2 OperatorMember. e 99

2.18.3 CoONnStructor e 100

CONTENTS %

2.18.3.1 Literal 102

2.18.3.2 CoONversiono 102

2.18.4 Destructor 103
2.18.5 Copy Constructor/Assignment. 104
2.18.6 Initialize const/ Object Member. 108
2.18.7 StaticMember. 109
2.19 Random Numbers. e 110
2.20 DeclarationBeforeUse 112
2.21 Encapsulation 115
2.22 SystemModelling 118
2.22.1 UML e 119
2.23 Separate Compilation. 124
2.24 Inheritance 131
2.24.1 Implementation Inheritance oL 131
2.24.2 Typelnheritance. 133
2.24.3 Constructor/Destructar. 135
2.24.4 Copy Constructor/Assignment. 135
2.245 Overloading 136
2.24.6 Virtual Routine. L 137
2.24.7 Downcast e 139
2.24.8 Slicing e 139
2.24.9 Protected Members. 140
2.2410AbstractClass. 140
2.24.11 Multiple Inheritance. 142
224.12UML e 142
2.25 Inheritance / CompositionDesign L 0o 143
2.26 Template 145
2.26.1 Standard Library. 146
2.26.1.1 Vector. e 147

2.26.1.2 Map o 149

2.26.1.3 List. e 151

2.26.1.4 foreach 152

2.27 NamMespacCe. o e e 153

3 Tools 157

3.1 C/C++Composition e 157
3.2 Compilation. 157
3.2.1 PreproCessor e e e e 158
3.2.2 Translator 158
3.23 Assembler. 159
3.24 Linker.o e 159

3.3 CompilingComplexPrograms 159
3.3.1 Dependencies. 160
332 Make e 161

3.4 Source-Code Management.o 164

Vi

CONTENTS

341 SVN . e e 165
3.4.2 RepoSItory e 166
3.4.3 CheckingOut e 167
344 AdAIng 168
3.45 CheckinglIn 168
3.4.6 Modifying 169
3.4.7 RevisionNumber 170
348 Updating. 171

3.5 Debugger. e 174
351 GDB e 174

4 Software Engineering 181

4.1 Software CriSiS. v i 181
4.2 Software Development 182
4.3 DevelopmentProcesses e e 182
4.4 Software Methodology. 184
4.4.1 SystemDesign 185
442 Top-Down e e e 185

45 DesignQuality 186
451 Coupling 186
452 Cohesion. 187

4.6 DesignPrinciples. 188
4.7 DesignPatterns e e 189
471 PatternCatalog 189
4711 ClassPatterns 190

4.7.1.2 ObjectPatterns. o 191

4.8 Testing e e 196
481 HumanTesting 197
4.8.2 MachineTesting. 197
4.8.3 TestingStrategies. 198
4.8.4 Tester.o e 199

Index 201

1 Shell

e After signing onto a computer (login), a mechanism musttewiglisplay information and
perform operations.

e The two main approaches are graphical and command line.
e Graphical interface (desktop):

o use icons to represent programs (actions),
o click on icon launches (starts) a program,
o program may pop up a dialog box for arguments to affect its@txen.

e Command-line interface (shell):

o use text strings (names) to represent programs (commands),
o command is typed after a prompt in an interactive area toistar

o arguments follow the command to affect its execution.
e Graphical interface is convenient, but seldom programmabl
¢ Command-line interface requires more typing, but allowsgpamming.
e A shellis a program that reads commands and interprets them.
e It provides a simple programming-language wsthing variables and a few statements.

e Unix shells falls into two basic campsh (ksh, bash) andcsh (tcsh), each with slightly
different syntax and semantics.

e Focus on bash with some tcsh.
e Area (window) where shell runs is calledeaminal or xterm.
e Shell line begins with @arompt denoted by (sh) or% (csh) (often customized).

e A command is typed after the prompt buit executed untiEnter /Return key is pressed.

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009

$ whoamiEnter # print userid

jfdoe

$ echo Hi There!Enter # print any string
Hi There!

e Comment begins with a hash)(and continues to the end of line.

© Peter A. Buhr

2 CHAPTER 1. SHELL

e Multiple commands can be typed on the command line sepabgtédte semi-colon.
$ date; whoami; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009

jfdoe
Hi There!

e Commands can be editted on the command line (not sh):

position cursorl,], with < andr> arrow keys,

@)

o

remove characters before cursor wititkspace/delete key,

@)

type new characters before cursor,

@)

pressEnter at any point along the command line to execute modified condman

e Most commands haveptions, specified with a minus followed by one or more characters,
which affect how the command operates.

$ uname -m # machine type
x86_64

$ uname -s # operating system
Linux

$ uname -a # all system information

Linux linux008.student.cs 2.6.31-21-server #59-Ubuntu SMP x86_64 GNU/Linux
e Options are normally processed left to right; one option weycel another.
e No standardization for command option names and syntax.

e Shell terminates with commaredtit .

$ exit # exit shell and possibly terminal

o when the shell of terminal/xterm terminates, the termiiatm terminates.

o when the login terminal/xterm terminates, you sign off tbenputer (logout).

1.1 File System

e Shell commands interact extensively with the file system.
e Files are containers for data stored on persistent stotesgally disk).
e File names are organized in an N-ary tree: directories ateces, files are leaves.

¢ Information is stored at specific locations in the hierarchy

1.1. FILE SYSTEM 3

/ root of the local file system

bin basic system commands

lib system libraries

usr
bin more system commands
lib more system libraries
include system include files, .h files

tmp system temporary files

u or home user files
jfdoe home directory

oo current, parent directory
.bashrc, .emacs, .login,... hidden files
€s246 course files
al assignment 1 files
g1x.C, g2y.h, g2y.cc, g3z.cpp
other users

Directory named/” is the root of the file system.

bin, lib, usr, include : system commands, system library and include files.

tmp : temporary files created by commandidred among all usefs

u or home : user files are located in this directory.

Directory for a particular user is called théiome directory.

Each file has a unique path-name in the file system, referemitbén absolute pathname.

An absolute pathnameis a list of all the directory names from the root to the file mam
separated by the backslash charactér “

/uljfdoe/cs246/al/qlx.C # => file q1x.C

Shell provides short names for a file using an implicit staytocation.

At sign on, the shell createscairrent directory variable set to the user’'s home directory.

Any file name not starting with/* is automatically prefixed with the current directory to
create the necessary absolute pathname.

A relative pathnameis a list of all the directory names from the current diregtimrthe file
name separated by the charactéer “

E.g., when usefdoe signs on, home and current directory are setfiédoe.

cs246/al/qlx.C # => [Juljffdoe/cs246/al/qlx.C

Shell special character” (tilde) expands to user’s home directory.

~/cs246/allglx.C # => /uljffdoe/cs246/al/qlx.C

4 CHAPTER 1. SHELL

e Every directory contains 2 special directories:

o “.” points to current directory.
Jcs246/allqix.C # => /uljfdoe/cs246/al/qlx.C

o “..” points to parent directory above the current directory.

..I. .Jusr/include/limits.h # => [usr/include/limits.h

1.2 Pattern Matching
e Shells provide pattern matching of file namegbbing (regular expressions), to reduce
typing lists of file names.

¢ Different shells and commands support slightly differemtris and syntax for patterns.

e Pattern matching is provided through special charactefs,{}, [], denoting differentvild-
cards (from card games, e.g., Joker is wild, i.e., can be any card)

e Patterns are composable: multiple wildcards joined intogex pattern (Aces, 2s and Jacks
are wild).

e E.g.,ifthe current directory isl/jfdoe/cs246/al containing fileg1x.C, g2y.h, g2y.cc, q3z.cpp

o x» matches 0 or more characters

$ echo g« # shell globs “g«" to match file names, which echo prints
g1x.C g2y.h g2y.cc g3z.cpp

o ? matches 1 character
$ echo gx.??
g2y.cc
o {...} matches any alternative in the set

$ echo «{C,cc,cpp}
g1x.C g2y.cc q3z.cpp

o [...] matches 1 character in the set
$ echo g[12]«
g1x.C g2y.h g2y.cc
o ['...] (* csh) matches 1 characteot in the set

$ echo q[!'1]«
g2y.h g2y.cc q3z.cpp

o Create ranges using hyphen (dash)
[0-3] #=>0123

[a-zA-Z] # => lower or upper case letter
[la-zA-Z] # => any character not a letter

1.2. PATTERN MATCHING 5

o Hyphen is escaped by putting it at start or end of set

[-?+]* # => matches file names starting with -, ?, or «

¢ If globbing pattern does not match any files, the patternadite name (including wildcards).

$ echo g+.ww g[a-z].cc # files do not exist so no expansion
g*.ww ([a-z].cc

csh prints: echo: No match.
e Hidden files contain administrative information and start with (dot).

e These files are ignored by globbing patterns, e.dges not match all file names in a direc-
tory.

e Patterns matches all hidden files:

“wn (TR T ”

o match “”, match zero or more characters, e.@ashrc, .login, etc.,and“.”, “ ..

o matching “.”,* ..” can be dangerous

e Pattern[!.]« matches all hidden files bubt“.” and “..” directories.

o match “”, match any character NOT a™, match zero or more characters
o = there must be at least 2 characters, the 2nd character damaalot

o “.” starts with dot but fails the 2nd pattern requiring anottiearacter

o “..” starts with dot but the second dot fails the 2nd pattern irggginon-dot character
Which hidden files are still missed?

e Onthe command line, pressing ttag key after typing several characters of a command/file
name causes the shell to automatically complete the name.

$ ectab # cause completion of command name to echo
$ echo qltab # cause completion of file name to q1x.C

¢ If the completion is ambiguous (i.e., more than one):

o shell “beeps”,
o prints all completions if tab is pressed again,

o then you must type more characters to uniquely identify gra&

$ datab # beep
$ datab # print completions
dash date

$ dattab # cause completion of command name to date

CHAPTER 1. SHELL
1.3 Quoting

e Quoting controls how shell interprets strings of characters.

e Backslash(\) : escapeany character, including special characters.

$ echo .[.]« # expand globbing patterm
.bashrc .emacs .login .vimrc

$ echo \\\\\J\x # print globbing pattern
JL]

e Backquote (') : execute the text as a command, and replace it with the comimatput.

$ echo ‘whoami'

$ whoami => jfdoe
jfdoe

e Single quote(”) : do not interpret the string, even backslash.
$echo ".[!.]+’
L]+

$echo A VIV AV #
VAL

A single quote cannot appear inside single quotes.

o E.g., file name containing special characters (blankséaiids/comment).

$ echo Book Report #2
Book Report

$ echo “Book Report #2’
Book Report #2

e Double quote(") : interpret escapes, backquotes, and variables (see@6&d@i]).

$echo ".[!1.]+« \"whoami \" V. \[VIV ATV &"
[l "jfdoe” AN«

e Put newline into string for multi-line text.

$ echo "abc
> cdf "

abc

cdf

prompt “>” means current line is incomplete

e To stop prompting or output from any shell commantype<ctrl>-c (C-c), i.e., press:ctrl>
andc keys simultaneously, causes the shell to interrupt theeottmommand.

$ echo "abc
> C-c
$

1.4. SHELL COMMANDS 7

1.4 Shell Commands

e Some commands are executed directly by the shell rathethleadS because they read/write
the shell’s state.

e help : display information about bash commands (not sh or csh).

help [command-name]

o without argument, lists all bash commands.

e cd : change the current directory (navigate file hierarchy).

cd [directory]

o argument must be a directory and not a file

o cd : move to home directory, same as ~

o cd -: move to previous current directory

o cd ~/cs246 : move to thecs246 directory contained iffdoe home directory
o cd /usr/include : move to/usr/include directory

o cd ..: move up one directory level

o If path does not existd fails and current directory is unchanged.

e pwd : print the current directory.
$ pwd
/uljfdoe/cs246

e history and “” (bang!) : print a numbered history of most recent commarndsred and
access them.

$ history $12 # rerun 2nd history command

1 date whoami

2 whoami jfdoe

3 echo Hi There | $! # rerun last history command

4 help whoami

5 cd.. jfdoe

6 pwd $ lec # rerun last history command starting with “ec”
echo Hi There
Hi There

IN rerun commandl

@)

Il rerun last command

@)

o

Ixyz rerun last command starting with the string2”

o

Arrow keysA/v move forward/backward through history commands on comniaad

$ A pwd
$AcCd..
$ A help

CHAPTER 1. SHELL

e alias : string substitutions for command names.

alias [command-name=string]

o No spaces before/after™ (csh does not have=").
o string is substituted for commar@mmand-name.
o Providenicknameor frequently used or variations of a command.

$ alias d=date # no quotes

$d

Mon Oct 27 12:56:36 EDT 2008

$ alias off="cl ear; exit"

$ off # clear screen before terminating shell

Why are quotes necessary for alw®
o Always use quotes to prevent problems.
o Aliases are composable, i.e., one alias references another

$ alias now="d" # quotes
$ now
Mon Oct 27 12:56:37 EDT 2008

o Without argument, print all currently defined alias named stnings.

$ alias

alias d="dat e’

alias now="d"

alias off="cl ear; exit’

o Alias CANNOT be command argumeifsee page0).

$ alias cs246assn=/u/jfdoe/cs246/al
$ cd cs246assn # alias only expands for command
bash: cd: cs246assn: No such file or directory

o Alias entered on command line disappears when shell tetesna
o Two options for making aliases persist across sessions:

1. insert thealias commands in the appropriate (hiddeshellrc file,

2. place a list otllias commands in a file (ofteraliases) andsource (see page?3)
that file from theshellrc file.

e type (cshwhich) : print pathname of a command.

$ type now

now is aliased to ‘d’
$ type d

d is aliased to ‘date
$ type bash

bash is /bin/bash

1.5. SYSTEM COMMANDS 9

e echo : write arguments, separated by a space and terminated eutlne.

$ echo We like ice cream # 4 arguments
We like ice cream

$echo " W |like ice cream" # 1 argument
We like ice cream

e time : execute a command and print a time summary.

@)

test if program modification produces change in executiofop@ance

@)

printsuser time (program CPU)system time(OS CPU),real time (wall clock)

@)

different shells print these values differently.

$ time myprog | % time myprog

real 1.2 | 0.94u 0.22s 0:01.2
user 0.9
Sys 0.2

@)

user + system real-time (uniprocessor, no OS delay)

@)

compare user (and possibly system) execution times befaraféer modification
e exit : terminates shell, with optional integer exit status (netcode)N.

exit [N]

o [N]isinrange 0-255; larger values are truncated (2566, 257=- 1, etc.) , negative
values (if allowed) become unsigned &1 255).

o exit status defaults to zero if unspecified (see p&fend25 for status usage).

1.5 System Commands

e Commands executed by operating system (UNIX).

e sh/bash/csh/tcsh : startsubshell

$... # bash commands

$ tcsh # start tcsh in bash

% ... # tcsh commands

% sh # start sh in tcsh

$... # sh commands

$ exit # exit sh

% exit # exit tcsh

$ exit # exit original bash and terminal

o Allows switching among shells for different purposes.

e chsh : set login shell (bash, tcsh, etc.).

10 CHAPTER 1. SHELL

$ echo $SHELL # what shell am | using ?

/bin/tcsh

$ chsh # change to different shell

Password: XXXXXX

Changing the login shell for jfdoe

Enter the new value, or press ENTER for the default
Login Shell [/bin/tcsh]: /bin/bash

e man : print information about command, option names (see @x@ad function.

$ man bash
information about “bash” command
$ man chsh
information about “chsh” command
$ man man

information about “man” command

e Is: list the directories and files in the specified directory.

Is [-al][file or directory name-list]
o -alistsall files, including hidden files (see page

o -l generates bnglisting (details) for each file (see paé)
o no file/directory name implies current directory

$ls. # list current directory (non-hidden files)
g1lx.C g2y.h q2y.cc Q3z.cpp
$lIs-a # list current directory plus hidden files

.bashrc .emacs .login gix.C qg2y.h q2y.cc q3z.cpp

e mkdir : create a new directory at specified location in file hiergrch

mkdir directory-name-list

$ mkdir d d1 d2 d3 # create 4 directories in current directory

e cp : copy files; with the roption, copy directories.

cp [-i] source-file target-file
cp [-i] source-file-list target-directory
cp [-i] -r source-directory-list target-directory

o -i prompt for verification if a target file is being replaced.
o -r recursively copy contents of a source directory to a targettbry.
$cpflf2 # copy file f1 to f2

$cpflf2f3d # copy files fl, f2, f3 into directory d
$ cp -r d1 d2 d3 # copy directories d1, d2 recursively into directory d3

1.5. SYSTEM COMMANDS 11

e mv : move files and/or directories to another location in thetikrarchy.

mv [-i | source-file target-file
mv [-i] source-file-list/source-directory-list target-directory

o if the target-file does not exist, the source-file is renanmderwise the target-file is
replaced.

o -i prompt for verification if a target file is being replaced.

$ mv fl1 foo # rename file f1 to foo
$ mv f2 13 # delete file f3 and rename file f2 to f3
$ mv f3 d1 d2 d3 # move file f3 and directories d1, d2 into directory d3

e rm : remove (delete) files; with the eption, remove directories.

rm [-ifr] file-list/directory-list

o -i prompt for verification for each file/directory being remdve

o -f do not prompt for verification for each file/directory beiregmoved.
o -r recursively delete the contents of a directory.

UNIX does not give a second chance to recover deleted filessdreful when using
rm, especially with globbing, e.grm « or rm .«

UW has hidden directorgnapshot in every directory containing backups of all files in
that directory (per hour for 8 hours, per night for 7 days,\week for 21 weeks)

$ Is .snapshot # directories containing backup files

hourly.0 hourly.6 nightly.4 weekly.11 weekly.17 weekly.3 weekly.9
hourly.1 hourly.7 nightly.5 weekly.12 weekly.18 weekly.4

hourly.2 nightly.0 nightly.6 weekly.13 weekly.19 weekly.5

hourly.3 nightly.1 weekly.0 weekly.14 weekly.2 weekly.6

hourly.4 nightly.2 weekly.1 weekly.15 weekly.20 weekly.7

hourly.5 nightly.3 weekly.10 weekly.16 weekly.21 weekly.8

$ cp .snapshot/hourly.0/ql.h q1.h # restore file from previous hour

e Usealias for setting command options for particular commands.
$ alias cp="cp -i "

$ alias mv="nmv -i "
$ alias rm="rm-i "

which always uses théeption (see pag&0) on commandsp, mv andrm.

e Alias can be overridden by quoting or escaping the commantena

$"rm -r xyz
$\rm -r xyz

which does not add théeption.

12 CHAPTER 1. SHELL

e cat/more/less : print files.

cat file-list

o cat shows the contents in one continuous stream.

o more/less paginate the contents one screen at a time.

$ cat ql.h

print file g1.h completely
$ more ql.h
.. # print file g1.h one screen at a time

type “space” for next screen, “q” to stop

e Ip/lpstat/lprm : add, query and remove files from the printer queues.

Ip [-d printer-name] file-list
Ipstat [-d] [-p [printer-name]]
Iprm [-P printer-name] job-number

o

if no printer is specified, use default printgp (3016 in MC3016).

@)

Ipstat : -d prints default printer,p without printer-name lists all printers

o

each job on a printer’s queue has a unique number.

o

use this number to remove a job from a print queue.

$ Ip -d ljp_3016 uml.ps # print file to printer ljp_3016

$ Ipstat # check status, default printer ljp_3016
Spool queue: Ip (Ijp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes
2nd jfdoe 403 uml.ps 41262 bytes

$ lprm 403 # cancel printing
services203.math: cfA403servicesl6.student.cs dequeued

$ Ipstat # check if cancelled

Spool queue: Ip (Ijp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

e cmp/diff : compare 2 files and print differences.

cmp filel file2
diff filel file2

o return 0O if files equal (no output) and non-zero otherwisedoudifference)

o cmp generates the first difference between the files.

1.5. SYSTEM COMMANDS 13

o

e find :

filex | filey
$cmp xy
ljan |awn x y differ: char 7, line 4
2 | b\n b\n
3| c\n c\n
4 | d\n e\n
5| g\n h\n
6 | h\n i\n
7 g\n

newline is counteds- 2 characters per line
diff generates output describing how to change first file intorseite.

$ diff x y
4,5¢c4 # replace lines 4 and 5 of 1st file
<d # with line 4 of 2nd file

<dg

> e

6a6,7 # after line 6 of 1st file

> # add lines 6 and 7 of 2nd file
> 9

search for names in the file hierarchy.

find [file/directory-list] [expr]

\(expr \) evaluation order

-not expr, expr -a expr, expr -o expr logicalnot, andandor (precedence order)
-a default if unspecifiedexpr expr = expr -a expr

-type f | d select files of typeile or directory

-maxdepth N recursively descend at mdstdirectory levels (C= current directory)
-name pattern restrict file names to globbing pattern.

find file/directory names in current and subdirectories \piktern t«”

$ find . -name "t " # why quotes ?
Jtest.cc
Jtestdata

find only file names in current and subdirectories with pattes

$ find « -type f -name "t +" # -a unspecified
test.cc

find only file names in current and subdirectories to a maxirdapth of 3 with patterns
tx Or *.C.

$ find « -maxdepth 3 -a -type f -a \(-name "t+" -0 -name "*.C")
test.cc

ql.C

testdata/data.C

14

CHAPTER 1. SHELL

e egrep : (extended ¢pbal regular &pression pint) search & print lines matching pattern in
files (Google). (same agep -E)

e ssh:

egrep -irn pattern-string file-list

-i ignore case in both pattern and input files

-r recursively examine files in directories.

-n prefix each matching line with line number

returns O if one or more lines match and non-zero otherwisenier intuitive)
list lines containing fhain” in files with suffix “.cc”

$ egrep -n main x.cc
ql.cc:33:int main() {

list lines containing fred” in any case in file hames.tex”

$ egrep -i fred names.txt
names.txt:Fred Derf
names.txt:FRED HOLMES
names.txt:freddy jones

list lines that match start of line*”, match “#include”, match 1 or more space or tab
“[1+, match either "” or “<”, match 1 or more characters+®, match either “” or
“>” match end of line $” in files with suffix “.h” or “.cc”

$ egrep i ncl ude| 1+["<].+[">] $ «{h,cc} # why quotes ?

egrep: *.h: No such file or directory

gl.cc:#include <iostream>

gl.cc:#include <iomanip>
gl.cc:#include “gl.h”

egrep pattern is different from globbing pattern (seeman egrep).
Most important difference is" is a wildcard qualifier not a wildcard.
(secure skll) safe, encrypted, remote-login between client/senosts.

ssh[-Y][-luser] [user@] hosthame

-Y allows remote computer (University) to create windows aral@omputer (home).
-l login user on the server machine.

To login from home to UW environment:

$ ssh -Y -l jfdoe linux.student.cs.uwaterloo.ca

enter password, run commands (editor, programs)
$ ssh -Y jfdoe@linux.student.cs.uwaterloo.ca

1.6. FILE PERMISSION 15

1.6

File Permission

UNIX supports 3 levels of security for each file or directogskd on sets of users:

o user : owner of the file,
o group : arbitrary name associated with a set of userids,
o other : any other user.

File or directory have permissions, read, write, and exasatirch for the 3 sets of users.

o Read/write allow specified set of users to read/write a fileddory.

o Executable/search allow:
« file : execute as a command, e.g., file contains a program drssihigt,
x directory : search by certain system operations but notiregdneral.

Usels -I command to print file-permission information.

drwxr-x--- 2 jfdoe jfdoe 4096 Cct 19 18:19 cs246/
drwxr-x--- 2 jfdoe jfdoe 4096 Cct 21 08:51 cs245/
“STW------ 1 jfdoe jfdoe 22714 Cct 21 08:50 test.cc
SrW--- - - 1 jfdoe jfdoe 63332 Oct 21 08:50 notes.tex

Columns are: permissions, #-of-directories (includiriggthd “..”), owner, group, file size,
change date, file name.

Permission information is:

d = directory —— user permission

-=file group permissions
lﬁ r other permissions

dirw| [r-x| |---

E.g.,drwxr - x- - - , indicates

o directory in which the user has read, write and execute @sions,
o group has only read and execute permissions,
o others have no permissions at all.

In general, never allow “other” users to read or write your k.
Default permissions (usually) on:

o file:rrwr----- , owner has read/write permission, and group has only reawligsion.
o directory:r wx----- - , owner has read/write/execute.

16 CHAPTER 1. SHELL

e chgrp : change group-name associated with file.

chgrp [-R] group-name file/directory-list
o -R recursively modify the group of a directory.

$ chgrp cs246_05 cs246 # course directory
$ chgrp -R ¢s246_05 cs246/a5 # assignment directory/files

Must associate group along entire pathname and files.
e Creating/deleting group-names is done by system admiitsir.

e chmod : add or remove from any of the 3 security levels.

chmod [-R] mode-list file/directory-list

o -R recursively modify the security of a directory.

o mode-listhas the fornsecurity-level operator permission

o Security levels are denoted hyfor you userg for group,o for other,a for all (ugo).
o Operator+ adds permission, - removes permission.

o Permissions are denoted bfor readablew for writable andx for executable.

o Elements of thenode-listare separated by commas.

chmod g-r,o0-r,g-w,0-w foo # long form, remove read/write for group/others users

chmod go-rw foo # short form
chmod g+rx cs246 # allow group users read/search
chmod -R g+rw cs246/a5 # allow group users read/write

Must associate permission along entire pathname and files.

1.7 Input/Output Redirection
e Every command has three standard files: input (0), outpur{d)error (2).

e By default, these are connected to the keyboard (input) areks (output/error).

— output (1)

input (0) —= command
put (0) —— error (2)

1.7. INPUT/OUTPUT REDIRECTION 17

$ sort -n # numeric sort

7 sort reads unsorted values from keyboard
30

5

C-d close input file

5 sort prints sorted values to screen

-

30

e To close an input file from the keyboaradype <ctrl>-d (C-d), i.e., press<ctrl> andd keys
simultaneously, causes the shell to close the keyboard fitgu

e Redirection allows:

o alternate input from a file (faster than typing at keyboard),
o saving output to a file for subsequent examination or praicgss

e Redirection performed using operater®r input and>/ >> for output to/from other sources.

_ — output (1)
input (0) —= command

error (2)
I S > I
in < >> out

o <means read input from file rather than keyboard.
o >means (create if needed) output file and write to file rathem gtreen (destructive).
o >>means (create if needed) output file and append to file ratlerdcreen.

Command is (usually) unaware of redirection.

To distinguish between output and error, prefix output esdion with number.

> # implicit, => output
1> # explicit, => output
1>> # => output

2> # => error

2>> # => error

Normally, standard error (e.g., error messages) is noteetdid because of its importance.

$ sort < in # input from file “in”; output to screen
$ sort < in > out # input from file “in”; output to file “out”
$ Is -al 1> out # output to file “out”

$ Is -al >> out # append output to file “out”

$ sort 2>> errs # append errors to file “errs”

$ sort 1> out 2> errs # output to file “out”; errors to file “errs”

Can tie standard error to output (and vice versa) uskigj ‘= both write to same place.

18

CHAPTER 1. SHELL

S output (1) error (2
input (0) —= command P _. utput (1) @)
----*error (2) output (1)

Order of tying redirection files is important.

$ sort 2>&1 > out # tie stderr (2) to stdout (1), stdout to “out”
$ sort > out 2>&1 # redirect stdout to “out”, tie stderr to stdout => “out”

To ignore output, redirect to pseudo-fiteev/null.

$ sort data 2> /dev/null # ignore error messages

Redirection requires explicit creation of intermediatan{porary) files.

$ sort data > sortdata # sort data and store in “sortdata”
$ grep -v "abc" sortdata > temp # remove lines with “abc”, store in “temp”

$trab <temp > result # translate a’s to b’s and store in “result”
$ rm sortdata temp # remove intermediate files

Shell pipe operatof makes standard output for a command the standard inputdanehkt
command, without creating intermediate file.

$ sort data | grep -v "abc" | tr a b > result

Standard error is not piped unless redirected to standapdibu
$ sort data 2>&1 | grep -v "abc" 2>&1 | tr a b > result 2>&1

now both standard output and error go through pipe.

Print file hierarchy using indentation (see p&jye

$ find cs246
cs246/

cs246/al
cs246/al/qlx.C
cs246/allq2y.h
cs246/allq2y.cc
cs246/allq3z.cpp

$ find cs246 | sed 's| []+/]| |9’
Cs246
al
qlx.C
g2y.h
g2y.cc
q3z.cpp

sed : inline editor, pattern changes all occurrenagof string[*/]«/ (zero or more characters
not “/” and then 1”, where “” is a wildcard qualifier not a wildcard) to 3 spaces.

1.8. PROGRAMMING 19

1.8 Programming

e A shell program or script is a file containing shell commands to be executed.

#l/bin/bash [-x]

date # shell and OS commands
whoami

echo Hi There

First line should begin with magic comment#!* (sha-bang) with shell pathname for exe-
cuting the script.

It forces a specific shell to be used, which is run as a subshell

If the “#!” line is missing, a subshell of the same kind as the invokimgllss used for sh
shells and sh is used for csh shells.

Optional-x is for debugging and prints trace of the script during exeqdoi.

A script can be invoked directly using a specific shell, or asmmand if it has executable

permissions.
$ bash scriptfile # direct invocation
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hi There!
$ chmod u+x scriptfile # make script file executable
$./scriptfile # command execution
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hi There!

e Interactive shell session is just a script reading fromdsiah input.

1.8.1 Variables

e syntax :[_a-zA-Z][_a-zA-Z0-9]x where %" is wildcard qualifier

e case-sensitive

VeryLongVariableName Pagel Income_Tax _75

Some identifiers are reserved (eify.while), and hencekeywords.

Variables ONLY hold string values (arbitrary length).

Variable is declaredynamicallyby assigning a value with operator™

$ cs246assn=/ufjffdoe/cs246/al # declare and assign

No spaces before or after=".

20

CHAPTER 1. SHELL

A variable’s value is dereferenced using operat@'sot “ ${}".
$ echo $cs246assn ${cs246assn}
/uljfdoe/cs246/al /uljffdoe/cs246/al
$ cd $cs246assn # or ${cs246assn}

Unlike alias, variable can be a command argument (see §)age

Dereferencing an undefined variables returns the emptygstri
$ cd $cs246assnTest # cd /u/jffdoe/cs246/alTest

Where does this move to?

Always use braces to allow concatenation with other text.

$ cd ${cs246assn}Test # cd /uljffdoe/cs246/alTest

Beware commands/arguments composed in variables.

$ out=sortdata # output file
$ dsls="l s | sort -r > ${out}” # store files names in descending (-r) order
$ ${dsls} # execute command

Is: cannot access |: No such file or directory

Is: cannot access sort: No such file or directory
Is: cannot access >: No such file or directory

Is: cannot access ${out}: No such file or directory

Behaviour results because the shell tokenizes, substjtanel then executes.

Initially, the shell sees only one tokers{tisls}’, so the tokensvithin the variable are not
marked correctly, e.g.|"and ">" not marked as pipe/redirection tokens.

Then variable substitution occurs a¥{éisls}”, giving tokens'|s” /| ” “sort” "-r” ’>” “${ out } *,
sols is the command and remaining tokens are file names.

Why no “cannot access” message above for -
To make this work, shell must tokenize and substitute a sktiore beforeexecution.

eval command causes its argument to be processed by shell.

$ eval ${dsls} # tokenize/substitute and tokenize/substitute
$ cat sortdata # no errors, check results
list of file names in descending order

o 1st tokenize/substitute givesal ‘I s” /|7 “sort” ’-r” ’>” “${ out }/

o 2nd tokenize/substitute givdss | sort -r > sortdata’, which shell executes

1.8. PROGRAMMING 21

1.8.2 Arithmetic

¢ Shell variables have type string, which has no arithmég¢: + " 17" .

$i=3 # i has string value “3” not integer 3

Arithmetic is performed by:

o converting a string to an integer (if possible),
o performing an integer operation,
o and converting the integer result back to a string.

bash performs these steps with shell-command opesgtpression)).

$ echo $((3 + 4 - 1))
6

$ echo $((3 + ${i} » 2))
9

$ echo $((3 + ${k})) # k is unset
bash: 3 + : syntax error: operand expected (error token is " ")

Basic integer operations, -, , /, % (modulus), with usual precedence, afd

For shells without arithmetic shell-command (e.g., sh),asbe system commaredpr.

$ echo ‘expr 3+ 4 -1 # for sh, csh
6

$ echo ‘expr 3 + ${i} « 2' # escape
9

$ echo ‘expr 3 + ${k}' # k is unset

expr: non-numeric argument

1.8.3 Routine

e A routine is defined as follows:

routine_name() { # number of parameters depends on call
commands
}

e Invoke like a command.

routine_name [args ...]

e E.g., create aroutine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g -e input-file[output-file]"
exit 1 # terminate script with non-zero exit code
}

usage # call, no arguments

CHAPTER 1. SHELL

e Special parameter variables to access arguments/result.

${#} number of arguments, not including script name

o

o

${0} name of shell script

$ echo ${0} # shell you are using (not csh)
bash

${n} refers to the arguments by position, i.e., 1st, 2nd, 3rd, ...

o

${x} arguments as a single string, e'df{ 1} ${2} . . .", notincluding script name

@)

@)

${@} arguments as separate strings, é${.1}" "${2}" ..., notincluding script name

${?} exit status of the last routine/command executed; O citeexited normally.

@)

${$} process id of executing script.

o

$ cat scriptfile

#!/bin/bash

rtn() {
echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # arguments
echo ${} # arguments as a single string
echo ${@} # arguments as separate strings
echo ${$} # process id of executing subshell
return 17 # routine exit status

rtn al a2 a3 a4 a5 # invoke routine

echo ${?} # print routine exit status
exit 21 # script exit status

$./scriptfile # run script

5 # number of arguments
scriptfile al a2 a3 a4 # script-name / args 1-5
al a2 a3 a4 a5 # args 1-5, 1 string

al a2 a3 a4 a5 # args 1-5, 5 strings
27028 # process id of subshell
17 # routine exit status

$ echo ${?} # print script exit status
21

e shift [N]: destructively shift parameters to the Isfpositions, i.e.${1}=${N+1}, ${2}=${N+2},
etc., andb{#} is reduced by.

o IfnoN, 1is assumed.

o If Nis O or greater thars{#}, there is no shift.

1.8. PROGRAMMING

$ cat scriptfile

#!/bin/bash

rtn() {
echo ${1}; shift 1
echo ${1}; shift 2
echo ${1}; shift 3
echo ${1}

}
rtnl12345678

23

Jscriptfile

$
1
2
4
7

e Routines/variables must be created before used, are tedmevihroughout the script, and

can be removed.

rinl() {
var=3 # new variable
rtn2 # call rtn2, see all routines
unset rtn2 # remove routine!!!
}
rin2() {
echo ${var} # see all variables
unset var # remove variable!!!
}
rtnl # call

e source filename : execute commands from a file in the current shell.

o For convenience or code sharing, a script may be subdividednultiple files.

o E.g., put commonly used routines or set of commands intoragpéiles.

o No “#!...” necessary at top, because not invoked directly like a scrip

o

source ./aliases

Sourcing a filancludesit into the current shell script arelvaluateghe lines.

include/evaluate aliases into .shellrc file

source ./usage.bash # include/evaluate usage routine into scriptfile

@)

shell.

1.8.4 Environment Variables

Created or modified variables/routines from sourced file @diately affect current

e Each shell has a list of environment (global) and scriptglparameters) variables.

e Temporally, a shell hasd lists of variables: environment, local, arguments fors@il ;.

Shell (command)

Envir: $E0 $E1 $E2...
Local: $LO $L1 $L2...
Args;: $0 $1 $2...

: (call stack) -
Args: $0 $1 $2...

24 CHAPTER 1. SHELL

A new variable starts on the local list.

$ var=3 # new local variable

A variable is moved to environment list if exported.

$ export var # move from local to environment list

Login shell starts with a number of useful environment Malga, e.qg.:

$ set # print variables (and values) on environment list
HOME=/ul/jffdoe # home directory
HOSTNAME=linux006.student.cs # host computer

PATH=... # lookup directories for OS commands
SHELL=/bin/bash # login shell

A script executes in its own subshell withcapy of calling shell’s environment variables
(works across different shells).

$./scriptfile # execute script in subshell

- Envir: $E0 $E1 $E2... Shell

copied

e When a (sub)shell ends, changes to its environment vasadenot affect its containing
shell environment variables only affect subshells

e Only put a variable in the environment list to make it accelsk by subshells.

1.8.5 Control Structures

e Shell provides control structures for conditional andati®e execution; syntax for bash is
presented (csh is different).

1.8.5.1 Test

e test ([]) command compares strings, integers and queries files.

e test expression is constructed using the following:

test | operation | priority
I expr not high
\(expr \) evaluation orderrfiust be escapg

exprl -a expr2 | logical and ot short-circuif)
exprl -o expr2 | logical or (hot short-circuit) low

1.8. PROGRAMMING

e test comparison is performed using the following:

test operation
stringl = string2 equal ot ==
stringl != string2 not equal
integerl -eq integer2 | equal
integerl -ne integer2 | not equal
integerl -ge integer2 | greater or equal
integerl -gt integer2 | greater
integerl -le integer2 | less or equal
integerl -It integer2 | less
-d file exists and directory
-e file exists
-f file exists and regular file
-r file exists with read permission
-w file exists with write permission
-x file exists with executable or searchable

e Logical operatorsa (and) and e (or) evaluate both operands (see Secf#dn3 p.45).

e test returns O if expression is true and 1 otherwise (counteiting).

$test 3 -t 4
$ echo ${?}
0

$ test ‘whoami® =

$ echo ${?}
1

integer test
true

jfdoe # string test
false

$ test 2 -It ${i} -o ‘whoami' = jfdoe # compound test

$ echo ${?}

[-e ql.cc]
echo ${?}

o &8O

1.8.5.2 Selection
e An if statement provides conditional control-flow.

if test-command
then
commands

elif test-command

then
commands
else
commands
fi

true

file test, alternate syntax
true

if test-command ; then

commands
elif test-command ; then

commands
else

commands
fi

Semi-colon is necessary to sepatatg-command from keyword.

25

26 CHAPTER 1. SHELL

e test-command is evaluated; exit status of zero implies true, otherwissefa

e Check for different conditions:

if test "‘whoam ™ ="jfdoe" ; then
echo "valid userid"

else
echo "invaliduserid"

fi

if diff filel file2 > /dev/null ; then # ignore diff output
echo "sane files"

else
echo "different files"

fi

if [-x /usr/bin/cat] ; then # alternate syntax for test
echo "cat comuand avai |l abl e"

else
echo "no cat comuand"”

fi

e Beware unset variables or values with blanks.

if [${var} = ’yes’];then ... # var unset => if [= ‘yes’]

bash: [: =: unary operator expected

if [${var} =’yes’];then ... #var="abc =>if[abc = "yes]
bash: [: too many arguments

if ["${var}" =’yes’];then ... # var unset => if [" = "yes’]

if ["${var}" =’yes’];then ... #var="abc’ =>if[“abc’ = yes']

When dereferencing, always quote variables!

expression with a series of patterns (globbing), e.g.:

case expression in

pattern | pattern | ...) commands ;;
*) commands ;; # optional match anything
esac

statement.

If no pattern is matched, thease statement does nothing.

E.qg., for simple command with only one of these options:
-h, --help, -v, -verbose, -f file

usecase statement to process single command-line arguments:

A case statement selectively executes oneNofalternatives based on matching a string

When a pattern is matched, the commands are executed yp st control exits thease

1.8. PROGRAMMING 27

usage() { ...} # print message and terminate script
case "${1}" in # process single command-line argument
’-h” | ’--hel p”) usage ;;
’-v”| ’--ver bose’) verbose=yes ;;

£ -file”) # has additional argument
shift 1 # access argument
file="${1}"
*) usage ;; # default, has to be one argument
esac

if [${#} -ne 1] ; then usage ; fi # check no other arguments
execute remainder of command

1.8.5.3 Looping

e while statement executes its commands zero or more times.

while test-command while test-command ; do
do
commands commands
done done

e test-command is evaluated; exit status of zero implies true, otherwissefa

e Check for different conditions:

search command-line parameters for “-x”

while ["${1}" !="-x"]1; do # string compare
shift # destructive

done

i=1

while [${i} -le ${#}] ; do # process parameters, non-destructive
eval arg="\${${i}}" # 1st step ${1}, 2nd step argument 1
echo "${arg}" # process value
i=$((${i} + 1))

done

i=1

file=data${i}

while [-f"${file}"]; do # file regular and exists?
process file
i=$((${i} + 1)) # advance to next file
file=data${i}

done

o for statementis a specializedile statement for iterating with an index over list of strings.

28 CHAPTER 1. SHELL

for index [in list] ; do
commands
done

for arg in "${@" ; do # process parameters, non-destructive
echo ${arg}
done

If no list, iterate over parameters, i.8{@}.

e Or over a set of values:

for ((init-expr; test-expr; incr-expr)); do # double parenthesis
commands
done

for ((i=1;i<=${#:i+=1)):do
eval echo "\${${i}}" # ${1-#}
done

e Use directly on command line:

$ for file in «.C ; do cp "${file}" "${file}".old ; done

¢ A while /for loop may contaircontinue andbreak to advance to the next loop iteration or
terminate loop.

for count in "one" "two" "three &four" ; do
if ["‘whoam ™ ="jfdoe"]; then continue ; fi # next iteration
if [”$.{?} -ne 0] ; then break ; fi # exit loop

done

1.9. CLEANUP SCRIPT

1.9 Cleanup Script

#!/bin/bash

#

List and remove unnecessary files in directories

#

Usage: cleanup [[-r[R] [-i|f] directory-name]+

-r|-R clean specified directory and all subdirectories
-i|-f prompt or not prompt for each file removal

Examples:

$ cleanup jfdoe

9 cleanup -R .

$ cleanup -r dirl -i dir2 -r -f dir3

Limitations:

« only removes files named: core, a.out, *.0, *.d

« does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | -R] [-i | -f] directory-nane] +"
exit 1

defaults() { # defaults for each directory
prompt="-i " # do not prompt for removal
depth="-maxdept h 1" # not recursive

remove() {

for file in ind "${1}" ${depth} -type f -a \(-name ‘core’ -o \
-name “a. out” -o -name "+. 0" -0 -name . d” \)'

do
echo "${file}" # print removed file
rm "${pronmpt}" "${file}"

done

}
if [${#} -eq 0] ; then usage ; fi # no arguments ?

defaults # set defaults for directory
while ["${#}" -gt 0] ; do # process command-line arguments
case "${1}" in
"-h") usage ;; # help ?
"o | "-R") depth="" ;; # recursive ?
L") prompt="${1}" ;; # prompt for deletion ?
*) # directory name ?
remove "${1}" # remove files in this directory
defaults # set defaults for directory
esac
shift # remove argument

done

29

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/cleanup

30 CHAPTER 1. SHELL

1.10 Regress Script

#!/bin/bash

#

Compare output from two programs printing any differences.

#

Usage: regress programl ‘programl-options” program2 ‘program2-options” argument-list
#

Examples:

regress cat 7 cat "-n’ regress regress

regress regress “cat ” cat -n” regress “cat ”’ cat "-n” regress regress

regress myprog -w’ samplesoln "-w’ 27 100 -2 -100

usage() {
echo "Usage: ${0} progranl \"progrant-options\"" \
“progran? \ " progrank-options\" argunent-list”
exit 1

check command-line arguements

if [${#} -It 5] ; then usage ; fi

if [!-x"type-p ${1}"™]; then echo "progranl i s not executable" ; usage ; fi
if [1-x"type -p ${3}"]; then echo "progran? i s not executable" ; usage ; fi

progl=${1} # copy first 4 parameters
opts1=${2}

prog2=%${3}

opts2=${4}

shift 4 # remove first 4 parameters

for parm in "${@" ; do # process remaining parameters

must use eval to reevaluate parameters
eval ${progl} ${optsl} ${parm} > tmpl_${$} 2>&1 # run programs and save output
eval ${prog2} ${opts2} ${parm} > tmp2_${$} 2>&1
diff tmp1_${$} tmp2_${$} # compare output from programs
if [${?} -eq 0] ; then # check return code
echo "identical output”
fi
rm tmpl_${$} tmp2_${$} # clean up temporary files
done

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/regress

2 CH+
2.1 First Program

Java | C C+
import java.lang.x; // implicit #include <stdio.h> #include <iostream> // access to output
class Hello { using namespace std; // direct naming
public static
void main(String[] args) { int main() { int main() { // program starts here
System.out.printin(" Hel | o! "); printf("Hel I o!'\' n"); cout << "Hel | o!" << endl;
System.exit(0); return O; return 0O; // return O to shell, optional
} } }
}

e #include <iostream> copies (imports) basic I/O descriptions (no equivalentava).

e using namespace std allows imported I/0O names to be accessed directly (othergusli-
fication is necessary, see Sect@7, p.153).

e int main() is the routine where execution starts.
e curly braces{ ... }, denote a block of code, i.e., routine bodynadin.

e cout << "Hell o!" << endl prints"Hel | 0! to standard output, callesbut (System.out in
Javastdout in C).

e endl starts a newline aftérHel | o! " (printin in Java,\ n”in C).

e Optionalreturn 0 returns zero to the shell indicating successful compleaticthe program;
non-zero usually indicates an error.

e main magic! If no value is returned, 0 is implicitly returned.

e Routineexit (JavaSystem.exit) stops a program at any location and returns a code to the
shell, e.g.gxit(0) (#include <cstdlib>).

o LiteralsEXIT_SUCCESS andEXIT_FAILURE indicate successful or unsuccessful ter-
mination status, e.greturn EXIT_SUCCESS or exit(EXIT_FAILURE).

e Java/C/C+ program must be transformed from human reaflaiphe(text) to machine read-
able form (numbers) for execution by computer, cattechpilation.

e Compilation is performed by @eompiler; several different compilers exist for C+-.

e Compile withg++ command:

$ g++ firstprogram.cc # compile program, generate executable "a. out "
$.Ja.out # execute program; execution permission

C program-files use suffix; CH program-files use suffixeS / .cpp / .cc.

© Peter A. Buhr

31

32 CHAPTER 2. C++

2.2 Program Structure

e A C+ program is composed of comments for people, and statesnia both people and the
compiler.

e A source file contains a mixture of comments and statements.

e The C/C+ compiler only reads the statements and ignoresoiimenents.

2.2.1 Comment

e Comments document what a program does and how it does it.
e A comment may be placed anywhere a whitespace (space, talnekis allowed.

e There are two kinds of comments in C/C+ (same in Java):

| Java/C/CH |

1 /...«
2 | /Il remainder of line

e First comment begins with the start symb®],and ends with the terminator symbgl,and
hence, can extend over multiple lines.

e Cannot be nested one within another
/* /* */ */

end comment treated as statements

e Be extremely careful in using this comment to elide/comnaaritcode:

[+ attempt to comment-out a number of statements
while (...) {
I ... nested comment causes errors «/

it (...){

/+ ... nested comment causes errors */

}
+l

e Second comment begins with the start symlipland continues to the end of the line, i.e.,
only one line long.

e Can be nested one within another:
/I ... Il ... nested comment

so it can be used to comment-out code:

2.3. DECLARATION 33

Il while (...){

Il I« ... nested comment does not cause errors x/
1l if (...){

1 /I ... nested comment does not cause errors
1 }

11}

(page85 presents another way to comment-out code.)

2.2.2 Statement

e The syntax for a C/C+ statement is a series of tokens segpdrgtwhitespace and terminated
by a semicolon (except for a bloc§).

2.3 Declaration

e A declaration introduces names or redeclares names fronopedeclarations.

2.3.1 Identifier

e name used to refer to a variable or type.

e syntax :[_a-zA-Z][_a-zA-Z0-9]x where %" is wildcard qualifier

e case-sensitive:

VeryLongVariableName Pagel Income_Tax _75

e Some identifiers are reserved (eify.while), and hencekeywords.

2.3.2 Basic Types

Java C/CH
boolean || bool (C <stdbool.h>)
char char / wchar _t ASCII / unicode character
byte char / wchar _t integral types
int int
float float real-floating types
double double
label type, implicit

e C/CH treaftchar / wchar _t as character and integral type.

e Javatypeshort andlong are created using type qualifiers (see Seci@¥).

34 CHAPTER 2. C++

2.3.3 Variable Declaration

e Declaration in C/C+ type followed by list of identifiers,@pt label which has implicit type
(same in Java).

| Java/C/CH |

char a, b, c, d;
int i, j, k;
double x, v, z;
id :

e Declarations may have an initializing assignment (excepti€lds instruct /class , see Sec-
tion 2.7.6 p. 66):

int i =3; inti=3,j=4,k=5;
int j = 4;
int k = 5;

e Value of anuninitialized variable is usually undefined (see paga).

int i;
cout << | << endl; /I i has undefined value

Some C/CH compilers check for uninitialized variablese(a&/all option, Section3.2.2
p. 158).

2.3.4 Type Qualifier
e C/CH+ provide two basic integral typesar andint.
e Other integral types are generated using type qualifiersodifynthe basic types.
e C/CH+ provide size and signed-ness (positive/negatpesifive only) qualifiers.

e #include <climits> specifies names for lower and upper bounds of a type’s rangawés.

| integral types | range (lower/upper bound name)
char (signed char) SCHAR_MIN to SCHAR_MAX, e.g., 428 to 127
unsigned char 0 toUCHAR_MAX, e.g.0 to 255
short (signed short int) SHRT_MIN to SHRT_MAX, e.g., 32768 t0 32767
unsigned short (unsigned short int) 0 to USHRT_MAX, e.g.,0 to 65535
int (signed int) INT_MIN to INT_MAX, e.g., 2147483648 t0 2147483647
unsigned int 0 toUINT_MAX, e.g.,0 to 4294967295
long (signed long int) (LONG_MIN to LONG_MAX),
e.g., 2147483648 t0 2147483647
unsigned long (unsigned long int) 0 to (ULONG_MAX, €.g.0 to 4294967295
long long (signed long long int) LLONG_MIN to LLONG_MAX,
€.g., 9223372036854775808 t0 9223372036854775807
unsigned long long (unsigned long long int) | O to (ULLONG_MAX), e.g.,0 to 18446744073709551615

2.3. DECLARATION 35

e int range is machine specific: e.g., 2 bytes for 16-bit computer&bytes for 32/64-bit
computer.

e long range is at least as large ias: e.g., 2/4 bytes for 16-bit computer and 4/8 bytes for
32/64-bit computer.

e #include <stdint.h> providesabsolutetypes[u]intN_t for signed /unsigned N = 8, 16, 32,

64 bits.
| integral types| range (lower/upper bound name) |
int8_t INT8_MIN to INT8_MAX, e.g., 428 to 127
uint8_t 0 toUINT8_MAX, e.g.,0 to 255
intl6_t INT16_MIN to INT16_MAX, e.g., 32768 t0 32767
uintl6_t 0 toUINT16_MAX, e.g.,0 to 65535
int32_t INT32_MIN to INT32_MAX, e.g., 2147483648 t0 2147483647
uint32_t 0 toUINT32_MAX, e.g.,0 t0 4294967295
int64_t INT64_MIN to INT64_MAX,
e.g., 9223372036854775808 t0 9223372036854775807
uint64_t 0 toUINT64_MAX, e.g.,0 to 18446744073709551615

e C/CH provide two basic real-floating typéisat and double , and one real-floating type
generated with type qualifier.

e #include <cfloat> specifies names for precision and magnitude of real-floathges.

real-float types range (precision, magnitude)

float FLT_DIG precisionFLT_MIN_10_EXP to FLT_MAX_10_EXP,
e.g,. 6+ digits over range 18 to 10°, IEEE (4 bytes)
double DBL_DIG precision,DBL_MIN_10_EXP to DBL_MAX_10_EXP,

e.g., 15+ digits over range 18’ to 10°°8, IEEE (8 bytes)
long double LDBL_DIG precisionLDBL_MIN_10_EXP to LDBL_MAX_10_EXP,
e.g., 18-33+ digits over range 1##32to 10"32 |EEE (12-16 bytes

float : £1.17549435e-38 to 13.40282347e+38
double : £2.2250738585072014e-308 to £1.7976931348623157e+308
long double : £3.36210314311209350626e-4932 to +1.18973149535723176502e+4932

2.3.5 Literals
e Variables contain values, and each value hasrestant(C) or literal (C+) meaning.

e E.g., the integral value 3 is constant/literal, i.e., itmainchange, it always means 3.

3 =7; [l disallowed

e Every basic type has a set of literals that define its values.

36 CHAPTER 2. C++

e Avariable’s value always starts with a literal, and changasinother literal or computation.

e C/C+ and Java share almost all the same literals for the bgses.

| type | literals |
boolean| false, true
character| a’,"\”
integral | decimal :123, -456, 123456789
octal, prefix0 : 0144, -045, 04576132
hexadecimal, prefigX / 0x : Oxfe, -0X1f, 0Oxe89abc3d
real-floating| .1, 1., -1., 0.52, -7.3E3, -6.6e-2, E/e exponent

e Use the right literal for a variable’s type:

bool b = true; /l not 1
int i =1; /l not 1.0
double d = 1.0 /l not 1
char ¢ = ’a”; /I not 97

e Escape sequence provides quoting of special charactershar diteral using a).

W\ backslash

N single quote

\t’,\n” | (special names) tab, newline, ...
N0’ zero, string termination character

\ 000’ octal valuepoo up to 3 octal digits
\ xhh” hexadecimal valuéh up to 2 hexadecimal digits fahar,
up to 4 hexadecimal digits favchar _t (not Java)

cout << \\’ << endl
<<\ << endl
<< \t7 << \t7 << X’ <<\ n” /I newline value 10
<<y’ << N\ 127 /I octal 10

<< 7’ <<\ xa’; /I hexadecimal 10
\
X
y
y4
e C/CH+ provide user named literals (write-once/read-omlyables) with type qualifiezonst
(Javafinal).
| Java | C/CH |
final char Initial = 'D’; const char Initial = ’'D’;
final short int Size = 3, SupSize; || const short int Size = 3, SupSize = Size + 7;
SupSize = Size + 7, disallowed
final double Pl = 3.14159; const double PI = 3.14159;

2.4. EXPRESSION 37

e C/C+-const variablemustbe assigned a value at declaration (or by a constructorlaidec
tion); the value can be the result of an expression.

A constant variable can (only) appear in contexts wheresgalitan appear.

Size = 7; |/ disallowed

Good practise is to name literals so all usages can be chamay#utk initialization value.

There are trillions of literals> cannot all be stored in memory.

Only literals used in a program occupy storage, some are @eloledirectly into computer
instructions.

2.4 Expression

| Java | C/C+ | priority
unaryl., (), [], call 2 o =>, 0, [1, call, dynamic _cast |high
cast+, -, |, ~ cast+, -, |, ~, &, *
new new, delete, sizeof
binary|«, /, % *, 1, %
+, - +, -
bit shift|<<, >>, >>> <<, >>
relational<, <=, >, >=, instanceof <, <=, >, >=
equality ==, != ==, I=
bitwise|& and &
~ exclusive-or n
| or |
logical|&& short-circuit &&
[[
conditional?: ?:
assignment, +=, -=, «=, /=, %= =, +=, -2, +=, [=, Y%=
<<=, >>=, 5>z, &=, M=, |=|I<<=, >>=, &=, =, |=
comma , low

e Expression evaluation is like algebra:

o predefined operations exist and are invoked using name argnghesized argument(s).

abs(-3); |3
sqrt(x); VX
pow(X, y); xY

o operators are prioritized and performed from high to low.
X +y«*sqrt(z); /Il call, multiple, add
o operators with same priority are done left to right

X+y-z /I add, subtract
30/vxw /I divide, multiple

38 CHAPTER 2. C++

except for unary?, and assignment operators, which associate right to left.

-~X; /I complement, negate
*&p; /I address-of, dereference
X =y =z Il ztoy to x

o parentheses are used to control order of evaluation, verride rules.

X+yxz/w; /I multiple, divide, add
(X +y) = (z ! w) /I add, divide, multiple

e Order of subexpressions and argument evaluation is urfigze@lava left to right).

(i+j)«(k+j) /I either + done first
(i=j)y+(j=1i), /I either = done first
g(i)+f(k)+h(j); /I g, f, or h called in any order

f(p++, p++, p++); /I arguments evaluated in any order

e C+ relational/equality returfalse /true ; C returno/1.

e Referencing (address-o8, and dereference, operators (see Sectié?7.2 p.56) do not
exist in Java because access to storage is restricted.

e Pseudo-routineizeof returns the number of bytes for a type or variable (not in Java

long int i;
sizeof (long int); Il type, at least 4
sizeof (i); /I variable, at least 4

Thesizeof a pointer (type or variable) is the size of the pointer on gaaticular computer
and not the size of the type the pointer references.

e Bit-shift operatorss< (left), and>> (right) shift bits in integral variables left and right.

o left shift is multiplying by 2, modulus variable’s size;
o right shift is dividing by 2 if unsigned or positive (like Ja¥>>); otherwise undefined.

int x, b, c;

X=y=z=1

cout << (x << 1) <<’/ << (y << 2) <<’/ << (z << 3) << endl;
X =y =2z=16;

cout << (x >> 1) <<’/ << (y >> 2) <<’/ << (z >> 3) << endl;
248

842

Why are parenthesis necessary?

¢ Division operator/, accepts integral and real-float operands, but truncatestégrals.

3/4 /I 0 not 0.75
3.0/4.0 /I 0.75

e Remainder (modulus) operatos, only accepts integral operands.

2.4. EXPRESSION 39

o If either operand is negative, the sign of the remainder [gementation defined, e.g.,
-3 % 4,3 % -4, -3 % -4 can be3 or -3.

e Assignment is an operator; useful fmscade assignmeno initialize multiple variables of
the same type:

a=b=c

= 0; /I cascade assignment
X =y =2z+4

o Other uses of assignment in an expression are discouragedke., assignments only
on left side.

e General assignment operators, lgs,+= rhs does NOT mean:
Ihs = Ihs + rhs;
instead, implicitly rewritten as:
temp = &(lhs); xtemp = stemp + rhs;
hence, the left-hand sidias, is evaluated only once:

v[f(3)] += 1; /I only calls once
vf3)]1=Vv[f(3)] + 1; /I calls twice

e Comma expression allows multiple expressions to be ewveduata context where only a
single expression is allowed (see pad

x, f+9, sqrt(3)/2, m[i][j] <« valuereturned
o Expressions evaluated left to right with the value of rigbstnexpression returned.

e Operators-+ / -- are discouraged because subsumed by gereral-.

i += 1; versus i ++
i += 3; versus i ++ ++ ++; // disallowed

2.4.1 Conversion

e Conversiontransforms a value from one type to another by changing theevta the new
type’s representation (see Secti8.3.2 p. 102).

e Conversions can occur implicitly by the compiler or exglicby the programmer.
e Two kinds of conversions:

o widening/promotion conversion, no information is lost:

bool — char — shortint — long int — double
true 1 1 1 1.000000000000000

wherefalse — 0O;true — 1

40 CHAPTER 2. C++

o narrowing conversion, information can be lost:

double — long int — shortint — char — bool
177717 T77777777777 77777 12241 209 true

where 0— false ; non-zero— true

C/C+ have implicit widening and narrowing conversions@Janly implicit widening).

Implicit narrowing conversions can cause problems:

int i; double r;
= 35 /[r->35
r=i=35; /[r->3.07???

Good practice is to perform narrowing conversions expjieis documentation using €ast
operator or CHstatic _cast operator.

int i; double x=7.2,y =3.5;

i = (int) x; /I explicit narrowing conversion

i = (int) x / (int) y; /I explicit narrowing conversions for integer division
i = static _cast<int>(x / y); // alternative technique after integer division

C/C+ supports casting among the basic types and user défpesi(see Sectidh18 p.97).

2.4.2 Coercion

e Coercionforcesa transformation of a value to another type but the resulbismeaningful
in the new type’s representation.

Some narrowing conversions are considered coercions.

o E.g., when a value is truncated or converting non-zetauto, the result is nonsense in
the new type’s representation.

Also, having typechar represent ASCII characteasid integral (byte) values allows:

char ch =7z - ’a”; /I character arithmetic!

which may or may not be reasonable as it might generate ahdmfearacter.

But the most common coercion is through pointers (see Se2tib2 p. 56):
int i, sip = &i;
double d, »dp = &d;
dp = (double x)ip; // dp points at an integer not a double!!!

Using the explicit cast, programmer has lied to the comibeyut the type oip.

Good practice is to limit narrowing conversions and NEVERelabout a variable’s types.

2.4. EXPRESSION

2.4.3 Math Operations

41

e #include <cmath> provides overloaded real-float mathematical-routinet/joesfloat , double

andlong double :

operation| routine operation routine
|X| abs(x) xmody | fmod(x, y)
arccox | acos(x) InXx log(x)
arcsinx asin(x) logx log10(x)
arctarx atan(x) xY pow(X, y)
[X] ceil(x) sinx sin(X)
COSX cos(X) sinhx sinh(x)
coshx cosh(x) VX sqrt(X)
et exp(x) tanx tan(x)
| X] floor(x) tanhx tanh(x)
and math literals:
M_E 2.7182818284590452354 /Il e
M_LOG2E 1.4426950408889634074 /I log_2 e
M_LOGI10E 0.43429448190325182765 /l 1og_10 e
M_LN2 0.69314718055994530942 /I log_e 2
M_LN10 2.30258509299404568402 /I log_e 10
M_PI 3.14159265358979323846 Il pi
M_PI_2 1.57079632679489661923 Il pif2
M_PI_4 0.78539816339744830962 Il pil4
M_1_PI 0.31830988618379067154 /I 1/pi
M_2_PI 0.63661977236758134308 Il 2/pi
M_2_SQRTPI 1.12837916709551257390 /I 2/sqrt(pi)
M_SQRT2 1.41421356237309504880 Il sqrt(2)
M_SQRT1_2 0.70710678118654752440 Il 1/sqrt(2)

e Some systems also proviteg double math literals.

e pow(x,y) (¥) is computed using logarithms, 189 (versus repeated multiplication), when
yis non-integral value> y > 0

pow(2.0,-3.0); 2 3= 2_13 = ot

pow(-2.0, -3.1); 2731— lel

1
—-=73=0.125
nan (not a number) log—3.1 undefined

N

e Quadratic roots:

o —b+vb?%—4ac
N 2a

42 CHAPTER 2. C++

#include <iostream>
#include <cmath>
using namespace std;

int main() {
double a =3.5,b=21,c=-12;
double dis=b +b-4.0xa=xc, dem = 2.0 « a;
cout << "rootl: " << (-b + sqgrt(dis)) / dem << endl;
cout << "root2: " << (-b - sqgrt(dis)) / dem << endl;

}

e Must explicitly link in the math library:

$ g++ roots.cc -Im # link math library

2.5 Control Structures

| Java | C/C+
block | { intermixed decls/stmts } { intermixed decls/stmts }
selection| it (pool-exprl) stmtl if (bool-exprl) stmtl
else if (bool-expr2) stmt2 else if (bool-expr2) stmt2
else stmtN else stmtN
switch (integral-expr) { switch (integral-expr) {
case cl: stmtsl; break; case cl: stmtsl; break;
;:.a.se cN: stmtsN; break; ;:.a.se cN: stmtsN; break;
default ; stmtsO; default ; stmtsO;
} }
looping | while (bool-expr) stmt while (bool-expr) stmt
do stmt while (bool-expr) ; do stmt while (bool-expr) ;
for (init-expr;bool-expr;incr-expr) stmt || for (init-expr;bool-expr;incr-expr) stmt
transfer| break [label] break
continue [label] continue
goto label
return [expr] return [expr]
throw [expr] throw [expr]
label | label : stmt label : stmt
2.5.1 Block

e Block is a series of statements bracketed by brace$, which can be nested.
e A block forms a complete statement and does not have to benated with a semicolon.

e Block serves two purposes: bracket several statementa isitqyle statement and introduce
local declarations.

2.5. CONTROL STRUCTURES 43

e Good practice is to always use a block versus single statetoetlow easy insertion and
removal of statements to or from block.

if (x>y) /I no block
X = 0; /I cannot directly add statements

if (x>y){ /I block
x = 0; /I can directly add/remove statements
}

Does the shell have this problem?
e Declarations may be intermixed among executable statenmeatblock.

e Variables in blocks are allocated in first-in first-out (FIF@der from a memory area called
thestack

e Localizing declarations in nested blocks helps reduceadattbn clutter at the beginning of

a block.
int i, j, k; // global int i
... /lusel, j, k ... Il use i
{
int j; // local
.../l use i, j
int k; // local
.usei, j, k

However, it can also make locating declarations more difficu

e Variable names can be reused in different blocks, i.e.,iplyssverriding (hiding) prior

variables.
inti=1;... /I first i
{int k=1 i=2;... /] second i (override first), both i’s used in block!
{inti=3;... /I third i (override second)

2.5.2 Selection

e C/CH selection statements af@ndswitch (same as Java).

e An if statement selectively executes one of two alternativesdoas the result of a compar-
ison, e.g.:

if (Xx>y) max =x;
else max =vy;

e For nestedf statementsslse matches with the closest which results in thelangling else
problem.

44 CHAPTER 2. C++

e E.g., reward WIDGET salesperson who sold more than $10,0@¢thvef WIDGETS and
dock pay of those who sold less than $5,000.

| Dangling Else | Fix Using Null Else | Fix Using Blocks |

if (sales < 10000) if (sales < 10000) if (sales < 10000) {

if (sales < 5000) if (sales < 5000) if (sales <5000) {

income -= penalty; income -= penalty; income -= penalty;

else [/ incorrect match!!! else ; /I null statement } /I block

income += bonus; else } else {

income += bonus; income += bonus;
}

e Unnecessary equality for boolean as value is alreadyor false .

bool b;
if (b==true)... /l'if(b)

e Common mistake to assigrno x and converts to bool (possible in Java for one type).
if (x=vy)...

e A switch statement selectively executes ondddilternatives based on matching an integral
value with a series of case clauses, e.g.:

switch (day) { /I integral expression

case MON: case TUE: case WED: case THU: // case value list
cout << "PROGRAM' << endl;
break; /I exit switch

case FRI:
wallet += pay;
/I FALL THROUGH

case SAT:
cout << "PARTY" << endl;
wallet -= party;

break; /I exit switch
case SUN:

cout << "REST" << endl;

break; /I exit switch
default :

cerr << "ERROR bad day" << endl;
exit(EXIT_FAILURE); // terminate program

}

Only one label for eachase clause but a list ofase clauses is allowed.

Once a case clause is matched, its statements are exeadeardrol continues to theext
statement.

If no case clause is matched and there ikfault clause, its statements are executed, and
control continues to theext statement.

Unless there is reak statement to prematurely exit theitch statement.

2.5. CONTROL STRUCTURES 45

e Itis a common error to forget the break in a case clause.

e Otherwise, thawitch statement does nothing.

2.5.3 Conditional Expression Evaluation

e Conditional expression evaluatiorperforms partialg¢hort-circuit) expression evaluation.

&& | only evaluates the right operand if the left operand is trye
|| | only evaluates the right operand if the left operand is false
?: | only evaluates one of two alternative parts of an expression

e && and|| are similar to logicak and| for bitwise (boolean) operands, i.e., both produce a
logical conjunctive or disjunctive result.

e However, short-circuit operators evaluate operandsyladitil a result is determined, short
circuiting the evaluation of other operands.

d!=0&& n/d>5 // may not evaluate right operand, prevents division by 0

false and anything is?

e Hence, short-circuit operators are control structurefénniddle of an expression because
el && e2 # &&(el, e2) (unless lazy evaluation).

e Logical & and| evaluate operands eagerly, evaluating both operands.

e Conditional?: evaluates one of two expressions, and returns the resuieadaluated ex-
pression.

e Acts like anif statement in an expression and can eliminate temporargblas.

f((la<0?-a:a)+2); | int temp;
if (a<0)temp = -a;
else temp = a;
f(temp + 2);
2.5.4 Looping

e C/CH+ looping statements angnile , do andfor (same as Java).
e while statement executes its statemeerto or more times

while (x<5){
. /I executes 0 or more times

}
e Beware of accidental infinite loops.
x = 0; x =0;
while (x < 5); // extra semicolon! while (x < 5) // missing block
X=X+ 1; y =y + X

X=X+ 1;

46

CHAPTER 2. C++

do statement executes its statement or more times
do {

/I executes one or more times
} while (x <5);

for statement is a specializedhile statement for iterating with an index.

init-expr;

while (bool-expr) { for (init-expr; bool-expr; incr-expr) {
stmts; stmts;
incr-expr;

} }

If init-expr is a declaration, the scope of its variables is the remaiafigre declaration, the
other two expressions, and the loop body.

for (inti=0,j=ii<ji+=1){/iand]jdeclared
/l'i and j visible

} /1'i and j deallocated and invisible

Many ways to use thfer statement to construct iteration:

for (i=1;i<=10;i+=1){ /I count up
/l loop 10 times

} /i has value 11 on exit

for (i=10;1<=0;i-=1){ /I count down
/l loop 10 times

} /i has value 0 on exit

for (p=s; p!= NULL; p = p->link) { /I pointer index
/I loop through list structure

} // p has the value NULL on exit

for (i=1,p=s;i<=10& p!'= NULL;i+=1, p =p->link) { // 2 indices
// loop until 10th node or end of list encountered
}

Comma expression (see pag® is used to initialize and increment 2 indices in a context
where normally only a single expression is allowed.
Defaulttrue value inserted if no conditional is specifiedfem statement.
for () /I rewritten as: for (; true ;)
break statement terminates enclosing loop body.

continue Statement advances to the next loop iteration.

2.6. STRUCTURED PROGRAMMING a7

2.6

Structured Programming
Structured programming is about managing (restricting) control flow using a fixeddfet
well-defined control-structures.

A small set of control structures used with a particular paogming style make programs
easier to write and understand, as well as maintain.

Most programmers adopt this approach so there is a univ@sa@mon) approach to man-
aging control flow (e.qg., like traffic rules).

Developed during the 1970’s to overcome the indiscriminaetof the GOTO statement.

GOTO leads to convoluted logic in prograrfi®., does NOT support a methodical thought
process).

l.e., arbitrary transfer of control makes programs diffitcalunderstand and maintain.

Restricted transfer reduces the points where flow of cootiahges, and therefore, is easy
to understand.

There are 3 levels of structured programming:

classical

o seqguence: series of statements
o if-then-else: conditional structure for making decisions
o while: structure for loops with test at top

Can write any programagtually only needvhile s or onewhile andifs).
extended
o use the classical control-structures and add:
x case/switch: conditional structure for making decisions

« for: while with initialization/test/increment
x repeat-until/do-while: structure for loops with test attom
modified
o use the extended control-structures and add:
x one or more exits from arbitrary points in a loop

x exits from multiple nested control structures
« exits from multiple nested routine calls

2.6.1 Multi-Exit Loop

A multi-exit loop (or mid-test loop) is a loop with one or more exit locationgwting
within the body of the loop.

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362947&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17962264&CFTOKEN=40004382
http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=365646&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17493625&CFTOKEN=51955079

48

CHAPTER 2. C++

While-loop has 1 exit located at the top:
while i < 10 do loop -- infinite loop
exit when i >= 10; -- loop exit
. e 1 reverse condition
end while end loop
Repeat-loop has 1 exit located at the bottom:
do loop -- infinite loop

exit when i >= 10; -- loop exit
while (i< 10) end loop 1 reverse condition

Exit should not be restricted to only top and bottom, i.en, appear in the loop body:
loop
exﬁ\hhen i >= 10;
endibbp
Or allow multiple exit conditions:
loop
exﬁ\hhen i >= 10;
exﬁ\hhen j >= 10;
endibbp
Eliminates priming (duplicated) code necessary wikiile :

read(input, d); loop

while ! eof(input) do read(input, d);

e exit when eof(input);
read(input, d); e

end while end loop

Good practice is to reduce or eliminate duplicate cod#hy?

The loop exit is outdented or clearly commented (or both} san be found without having
to search the entire loop body.

Same indentation rule as for thse of the if-then-else (outderise):

if ... then if ... then
XXX XXX
else else
XXX XXX

end if end if

A multi-exit loop can be written in C/C+ in the following way

2.6. STRUCTURED PROGRAMMING

for (;;){
if (i>=10) break:
if (j>=10) break:

}

49

while (true) { do {
if (i>=10) break: if (i>=10) break:
if (j>=10) break: if (j >= 10) break:
Y } while (true):

e Thefor version is more general as it can be easily modified to havemitudex or a while

condition.

for (int i =0;i<10;i+=1){/ loop index
for (; x <vy;) {// while condition

¢ In general, the programming language and your code-enthy should allow insertion of
new code without having to change existing code.

e Eliminateelse on loop exits:

BAD GOOD
for (;;){ for (;;){
S1 S1
if (C1){ if (!C1) break;
S2 S2
} else {
break;
}
S3 S3
} }
for (;;){ for (;;){
S1 S1
if (C1){ if (C1) break;
break ;
} else {
S2 S2
}
S3 S3
} }

S2 is logically part of loop body not part of ah

e E.g., write linear search such that:

o no invalid subscript for unsuccessful search

o index points at the location of the key for successful search

e Using only control-flow construcig andwhile :

50

CHAPTER 2. C++

int i = -1; bool found = false;

while (i< size -1 & ! found) { // rewrite: &(i<size-1, !found)
i +=1;
found = key == list][i];

}

if (found) {... /I found

}else { ... /I not found

}

Why must the program be written this way?

Allow third construct structure: short-circuit operat¢sse Sectio2.5.3 p. 45).

for (i =0;i< size & key !=list[i]; i += 1); // using for not while
Il rewrite: if (i < size) if (key != list[i])

if (i<size){... // found
}else { ... /I not found
}

How does&& prevent subscript error?

Short-circuit&& does not exist in all programming languages, and requiresviadge of

Boolean algebra (false and anything is?).

Multi-exit loop can be used if n&& exits and does not require Boolean algebra.

for (i=0;;i+=21){//or for (i=0;i<size;i+=1)
if (i >= size) break;

if (key == list[i]) break;
}
if (i<size){... /I found
}else { ... /I not found

}
When loop ends, it is known if the key is found or not found.
Why is it necessary to re-determine this fact after the loop?
Can it always be re-determined?

The extra test after the loop can be eliminated by movingatkednto the loop body.

for (i=0;;i+=1){

if (i>=size){... /I not found
break;;
} 11 exit
if (key ==list[i]) {... // found
break ;
} /I exit

} /I for

2.6. STRUCTURED PROGRAMMING 51

e E.g., an element is looked up in a list of items, if it is nothe tist, it is added to the end of
the list, if it exists in the list its associated list countemcremented.

for (inti=0;;i+=1){
if (i>=size){
list[size].count = 1;
list[size].data = key;
size += 1; /I needs check for array overflow
break ;
} Il exit
if (key == list[i].data) {
list[i].count += 1;
break ;
} /I exit
} /I for

e None of these approaches is best in all cases; select theaapypthat best fits the problem.

2.6.2 Multi-Level Exit

e multi-level exit exits multiple control structures where exit points &r@wnat compile
time.

e Labelled exit break/continue) provides this capability (Java):

L1:{
... declarations ...
L2: switch (...) {
L3: for (...){
... break L1; ... /I exit block
... break L2; ... /] exit switch
... break L3; ... /I exit loop

}

Labelledbreak/continue transfer control out of the control structure with the cepending
label, terminating any block that it passes through.

C/C+ do not have labellddareak /continue ; simulate withgoto .

goto label allows arbitrary transfer of contretlithin a routine from theyoto to statement
marked with label variable.

Label variable is declared by prefixing an identifier with & to a statement.

L1: i += 1; /I associated with expression
L2:if (...) .. /I associated with if statement
L3:; [/l associated with empty statement

52 CHAPTER 2. C++

e Labels can only be declared in a routinehere the label has routine scopfsee Sec-
tion 2.3.3 p. 34).

o i.e., label identifier is unique within a routine body cannot be overridden in local

blocks.
int L1; /I identifier L1
L2: ; /I identifier L2
double L1; /I can override variable identifier
double L2; /I cannot override label identifier
}

e goto transfers control backwards/forwards to labelled statéme

L1:;

Q.o.to L1; /I transfer backwards, up
goto L2; /I transfer forward, down
L2: ;

e Why is it good practice to associate a label with an emptestant?

e Transforming labelle@ireak to goto :

{
... declarations ...
switch (...){
for (...){
... goto L1; .../l exit block
... goto L2; ... /I exit switch
... goto L3; ... /I exit loop
} L3:;
} L2:. .;.
} Ll:' ';'

e Why are labels at the end of control structures not as gootistaré?

e Multi-level exits are commonly used with nested loops:

2.6. STRUCTURED PROGRAMMING

for ()4 /I while (flagl && ...)
for (;;){ /I while (flag2 && ...)
for (;;){ /I while (flag3 && ...)
if (...)goto L1; I1'if (..) flagl=flag2=flag3=false; else
if (...) goto L2; I1'if (...) flag2=flag3=false; else
if () goto L3; /I if (...) flag3=false; else
} L3:. .;.

}L2:;
} L1

Indentation matches with control-structure terminated.

e Without multi-level exit, multiple “flag variables” are nessary.

53

o flag variable is used solely to affect control flow, i.e., does not contatachssociated

with a computation.

e Flag variables are the variable equivalent to a gobecause they can be set/reset/tested at

arbitrary locations in a program.

e Multi-level exit allows elimination of all flag variablés

e Simple case (exit 1 level) of multi-level exit is a multi-eloop.

e Why is it good practice to label all exits?

e break and labelletbreak are agoto with restrictions:

o Cannot be used to create a loop (i.e., cause a backward brdmeeite, all situations

resulting in repeated execution of statements in a prograrolaarly delineated.

o Cannot be used to branafito a control structure.

e The following control-flow pattern appears occasionally:

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362337&type=pdf&coll=ACM&dl=ACM&CFID=19394860&CFTOKEN=33044646

54 CHAPTER 2. C++
duplication no duplication
if (...){ if (...){
stmtsi; stmtsi;
if (...){ if (...){
stmts2; stmts2;
if (...){ if (...){
stmts3; stmts3;
} else { goto common:
stmts4; }
}
} else { }
stmts4; stmts4; // only once
common: ;
} else { stmtsb;
stmts4,
}
stmtsb;

If any conditions are false, the same code is executed (ergting an error message),
resulting in code duplication.

Multi-level exit removes all duplication aftmts4.

Only usegoto to simulate labelledbreak and continue .

return statements can simulate multi-exit loop and multi-levéd.ex

Multi-level exits appear infrequently, but are extremedycise and execution-time efficient.

2.7 Type Constructor
e A type constructor declaration builds a more complex type from the basic types.

constructor]| Java | C/C+ |
enumeration enum Colour { R, G, B} enum Colour { R, G, B}
pointer any-type «p;
reference| (final) class-type r; any-type &r; (C+ only)
array | any-type v[] = new any-type[10]; any-type v[10];
any-type m[][] = new any-type[10][10]; || any-type m[10][10];
structure| class struct Or class

2.7.1 Enumeration

e Anenumerationis a type defining a set of named literals with only assignprearhparison,
and conversion to integer:

enum Days {Mon,Tue,Wed, Thu,Fri,Sat,Sun}; // type declaration, implicit numbering

Days day = Sat; /I variable declaration, initialization

enum {Yes, No} vote = Yes; /I anonymous type and variable declaration

enum Colour {R=0x1, G=0x2, B=0x4} colour; // typelvariable declaration, explicit numbering
colour = B; /I assignment

2.7.

TYPE CONSTRUCTOR 55

Identifiers in an enumeration are calledumerators.

First enumerator is implicitly numbered 0; thereafter,lreaaumerator is implicitly num-
bered +1 the previous enumerator.

Enumerators can be explicitly numbered.

enum {A=3,B, C=A-5D=3E}//34-234
enum { Red = 'R, Green = ‘G, Blue = ‘B’ }; // 82, 71, 66

Enumeration in C+ denotes a new type; enumeration in Cas &brint .

day = Sat; /[l enumerator must match enumeration
day = 42; /I disallowed C++, allowed C
day = R; /I disallowed C++, allowed C
day = colour ; /I disallowed C++, allowed C

Alternative mechanism to create literalshst declaration (see pags).
const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;

short int day = Sat;
days = 42; /I assignment allowed

C/C+ enumerators must be unique in block.

enum CarColour { Red, Green, Blue, Black };
enum PhoneColour { Red, Orange, Yellow, Black };

Enumerator®ed andBlack conflict. (Java enumerators are always qualified).

In C, “enum” must also be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

Trick to count enumerators (if no explicit numbering):
enum Colour { Red, Green, Yellow, Blue, Black, No_Of_Colours };

No_Of_Colours is 5, which is the number of enumerators.

lterating over enumerators:

for (Colour ¢ = Red; ¢ < No_Of_Colours; ¢ = (Colour) (c + 1)) {
cout << ¢ << endl;
}

Why is the cast(Colour), necessary? Is it a conversion or coercion?

56 CHAPTER 2. C++

2.7.2 Pointer/Reference
e pointer/referenceis a memory address.

e Used to access the value stored in the memory location ainhéep address.

e All variables have an address in memory, éng.x = 5, y = 7:

value type int int
identifier/value x 5 y 7
address 100 200

e Two basic addressing operations:

1. referencing: obtain address of a variable; unary operatan C+:

100 «— &x
200 «— &y

2. dereferencing retrieve value at an address; unary operatorC+:

5 «— %(100) «— *(&x)
7 «— %(200) «— *(&Y)

Note, unary and binary use of operat&rsfor reference/dereference and conjunction/multiploati
e So what does a variable name mean?>5as it 5 or 100? It depends!

e Avariable name is a symbolic name for the pointer to its vadug. x meansx, i.e., symbol
x is always replaced by pointer valaeo.

e What happens in this expression so it can execute?

X=X+ 1;

e First, each variable name is substituted (rewritten) fopiinter value:

(&x) <« (&x) + 1 where x = &xX
(100) « (100) + 1

Assign into memory location 100 the value 1017 Only pastiedirrect!

e Second, when a variable name appears on the right-hand fsa&dsignment, it implies the
variable’s value not its address.
(&x) <« #(&x) + 1
(100) «— x(100) + 1
(100) «— 5 + 1

Assign into memory location 100 the value 6? Correct!

e Hence, a variable name always means its address, and aleanabe isalso implicitly
dereferenced on right side of assignment.

2.7. TYPE CONSTRUCTOR 57

e Exception is&x, which just meangx not &(&x).

¢ Notice, identifierx (in a particular scope) is a literaldnst) pointer because it always means
the same memory address (e.g., 100).

e Generalize notion of literal variable-name to variable eahmat can point to more than one
memory location (like integer variable versus literal).

e A pointer variable is a noneonst variable that contains different variable addresses
stricted to a specific typm any storage location (i.e., static, stack or heap stgrage

o Java references can only addrebgect typeon theheap

int xpl = &x, *p2 = &y, *p3 = 0; // or p3 is uninitialized

int * int

30 «— &p1l

pl 100 5 X 40 «— &p2
30 //’ 100 50 « &p3
7 100 «— »&pl
p2 200 7 y 200 « x&p2
40 200 0 « *&p3
I/undefined 5 «— x&pl
null/undetine 7 < =&p2
p3 [0 / Ox34fe7 pointer 2 w&p3

50

e Storage is needed for different address values, so a peitable also has an address!
e By convention, no variable is placed at thell address (pointer),null in Java, 0 in C/C+.

e Hence, an address value is another variable’s addnessetion) or null address or an
undefined address when uninitialized.

o null address often means pointer is unused.
e Multiple pointers may point to the same memory addregs< p1, dashed line).
¢ Dereferencing null/undefined pointenisdefinedas no variable at addregsu¢ not error).
¢ Variable pointed-at is th&arget variable and its value is théarget value.
o e.g.,x is the target variable qf1 with target value 5.
e Can a pointer variable point to itself?

e Same implicit reference/dereference rules apply for goinariables.

pl = &x; /I pointer assignment
(&pl) «— &x /I no rewrite rule for x, why?
(30) « 100

Assign to memory location 30 the value 100.

58

CHAPTER 2. C++

p2 = pl,; /I pointer assignment
(&p2) «— #(&p1l) /I rewrite rules

(40) «— %(30)

(40) < 100

Assign to memory location 40 the value 100.

Value assignment requires explicit dereferencing to aceakies:
*p2 = «pl; /I value assignment, y = x
*(&p2) «— *(x(&pl)) // rewrite rules
«(40) — «(x(30))
200 « x(100)
200 «— 5

Assign to memory location 200 the value 5.

Often the target value is used more than the pointer value.
*p2 = ((xpl + *p2) = (xp2 - xpl)) / (»pl - *p2);
Less tedious and error prone to write:
p2 = ((p1 + p2) = (p2 - p1)) / (p1 - p2);
C+ reference pointer provides extra implicit dereferetacaccess target value:

int &l = x, &2 = y;
r2 =(rl +r2) = (2 -rl)/ (rl - r2);

Hence, difference between plain and reference pointer is agxtra implicit dereference.
o l.e., do you want to write thes", or let the compiler write the<"?

However, extra implicit dereference generates a problemdmter assignment.

r2 =rl;
*(&r2) «— »(»(&r1)) /I value assignment
(&r2) <« x(&rl) // not pointer assignment

C+ solves this problem by making reference pointers lisgganst), like a plain variable.
o Hence, a reference pointer cannot be assigned after itardéoh, so pointer assign-
ment is impossible.

o As a literal, initialization must occur at declaration, Imitializing expression has im-
plicit referencing because addressiiwaysrequired.

int &rl = &x; // error, unnecessary & before x

Java solves this problem by only using reference pointeny, ltaving pointer assignment,
and using a different mechanism for value assignment (lone

Is there one more solution?

2.7. TYPE CONSTRUCTOR 59

e Since reference means its target’s value, address of &nefemeans its target’s address.
int i
int & = i;
&r; *(&r) = &i not &r

e Hence, cannot initialize reference to reference or poiteeference.

int & &rr =; /I reference to reference, rewritten &r
int &«pr = &r; /I pointer to reference

e As well, an array of reference is disallowed (reason unknown

int &a[3] ={i, 1,1} /I array of reference

e Type qualifiers (see Sectid3.4 p. 34) can be used to modify pointer types.

const short int w = 25; p4| 300 ~ 25 |w
const short int xp4 = &w; 60 300

int « const p5 = &x; p5 100 - 5 X
int &p5 = X; 70 100
const long int z = 37; p6 308 - 37 z
const long int « const p6 = &z; 80 308

e p4 may point atany short int variable €onst or non€onst) and may not change its value.
Why canp4 point to a noneonst variable?

e p5 may only point at thént variablex and may change the valuexthrough the pointer.
o » const and& are literal pointers but const has no implicit dereferencing like.
e p6 may only point at théong int variablez and may not change its value.

¢ Pointer variable has memory address, so it is possible foirdgy to address another pointer
or object containing a pointer.

int «px = &X, *ppX = &pX,
&rX = X, *prx = ℞ &prx «— x(&rx)

ppX px
108 > 100
124 108
5 X
prx rx 100
100 100
132 116
e Pointer/reference type-constructor is not distributed acoss the identifier list.
int pl, p2; plis a pointer, p2is an integer int *pl, *p2;

int & rx =i, ry = i; rxisareference, ry is an integeint &rx =i, &ry = i;

60 CHAPTER 2. C++

e C+ idiom for declaring pointers/references is misleagdmgy works for single versus list
of variables.

int i; int i, k;
double & x = d; double & x =d,y =d;

Gives false impression of distribution across the idemtifg.

2.7.3 Aggregates

e Aggregates are a set of homogeneous/heterogeneous vatlas@echanism to access the
values in the set.

2.7.3.1 Array
e Array is a set ohomogeneous values

int array[10]; /I 10 int values

e Array type,int, is the type of each set value; arrdynension, 10, is the maximum number
of values in the set.

e An array can be structured to have multiple dimensions.

int matrix[10][20]; /I 10 rows, 20 columns => 200 int values
char cube[5][6][7]; // 5 rows, 6 columns, 7 deep => 210 char values

Common dimension mistakenatrix[10, 20]; meansmatrix[20] becausel0, 20 is a comma
expression not a dimension list.

e Number of dimensions is fixed at compile time, but dimensiaa may be:

o static (compile time),
o block dynamic (static in block),
o or dynamic (change at any time, seetor Section2.26.1.1 p. 147).

e C+ only supports a compile-time dimension valget+ allows a runtime expression.

int r, c;

cin >>r >> c; /I input dimensions

int array]r]; /I dynamic dimension, g++ only
int matrix[r][c]; /I dynamic dimension, g++ only

e Array values (elements) are accessedblyscripts, “[]” (look like dimensions).

e A dimension is subscripted from 0 to dimension-1.

array[5] = 3; Il location at column 5
i = matrix[0][2] + 1; // value at row O, column 2
¢ = cube[2][O][3]; /[value at row 2, column O, depth 3

Common subscript mistakenatrix[3, 4] meansmatrix[4], 4th row of matrix.

2.7. TYPE CONSTRUCTOR 61

An array name without a subscript means the first element.

array = array[0]
matrix = matrix[0][0]
cube = cube[0][0][0]

C/C+ array is a contiguous set of elements not a referentteetelement set as in Java.

Java | C/C+
int X[] = new int [6] int x[6]
X =6/ 1|7|5/0 8{-1| x|[1]7|5 0] 8 -1

C/C+ do not store dimension information in the array!

Hence, cannot query dimension sizes,subscript checkingand no array assignment.

Declaration of a pointer to an array is complex in C/CH (dee paged?2).

Because no array-size information, the dimension valuariaarray pointer is unspecified.

int i, arr[10];
int «parr = arr; /I think parr[], pointer to array of N ints

However, no dimension information results in the followengbiguity:

int spvar = &i; /I think pvar[] and i[1]
int xparr = arr; /I think parr[]

Variablespvar and parr have same type but one points at a variable and other an array!

Programmer decides if one or many by not using or using sijbsx.

*pvar /I one

*parr /I one, arr[0]
parr[0], parr[3] /I many, many
pvar[3] /[many, but wrong

ASIDE: Practise reading a complex declaration:

o parenthesize type qualifiers based on priority,
o read inside parenthesis outwards,

o start with variable name.

o end with type name on the left.

const long int * const a[5] = {0,0,0,0,0};
const long int % const (&x)[5] = a;
const long int (= const ((&X)[5])) = &;

O -—
O =-—

[|]]
v ov oy
0 0O
x : reference to an array of 5 constant pointers to constagtilttegers

62 CHAPTER 2. C++

2.7.3.2 Structure

e Structure is a set oheterogeneous valugsncluding (nested) structures.

| Java | C/C+ |
class Foo { struct Foo {
int i =3; int i; // no initialization
... Il more fields ... Il more members
} }; /I semi-colon terminated

e Components of a structure are callegmbers subdivided into data and routine/function
member$in C+.

e All members of a structure are accessible (public) by défaul

e A structure member cannot be directly initialized (unlilevd) (see Sectio2.7.6 p. 66
and2.18.3 p. 100).

e A structure is terminated with a semicolon

e Structure can be defined and instances declared in a siagdersnt.

struct Complex { double re, im; } s; // definition and declaration

e In C, “struct ” must also be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration

e Structures with the same type can be assigned but not cothpare

struct Student {
struct Name { /I nested structure
char first[20]; /I array
char last[20]; I/l array

} name;
double age;
int marks[10]; /I array
} sl, s2, «spl = &s1;
sl = s2; /I allowed
sl == s2; /I disallowed, no structure relational operations

Notice, arrays in the structures are copied, but there ignay @opy. How?
e Structuresnustbe compared member by member.

o comparing bits (e.gmemcmp) fails as alignment padding leaves undefined values be-
tween members.

LJava subdivides members into fields (data) and methodsr{esit

2.7. TYPE CONSTRUCTOR 63

e Recursive types (lists, trees) are defined using a self-referential pointa structure:

struct Node {
/I data members
Node «link; /I pointer to another Node

h

e Structure members are accessedrtmymber selection“.” and “->”.

sl.name.first[0] = ‘a’; /I dot usually with variable

sl.name.last[3] = 'b’;

(xspl).age = 3;

spl->age = 3; /I -> usually with pointer
(&s1)->marks[5] = 95;

e C/C+ are unique for having the priority of selection operdt” incorrectly higher than
dereference operatos™
o Hencep.f executes agp.f) instead of(«p).f.

o -> operator performs a dereference and member selection oothect order, i.e p->f
is implicitly rewritten ag(xp).f.

o For reference pointersf meangxr).f, sor.f makes more sense thégr)->f.

e A bit field allows direct access to individual bits of memory:

struct S {
int i:3; /I 3 bits
int j:7; /I 7 bits
int k : 6; /I 6 bits

}s;

S.i=2; /I 010

s.j = 5; // 0000101
s.k=09; // 001001

A bit field must be an integral type.

Unfortunately allocation of bit-fields is implementatioafthed=- not portable (maybe left
to right or right to left!).

Hence, the bit-fields in variabkabove must be reversed.

While it is unfortunate C/C+ bit-fields lack portabilityyey are the highest-level mechanism
to manipulate bit-specific information.

2.7.3.3 Union

e Union is a set ofheterogeneous valugdancluding (nested) structureshere all members
overlay the same storage

64 CHAPTER 2. C++

union U {
char c;
int i;
double d;

P

e Used to access internal representation or save storageisingeat for different purposes at
different times.

union U {
float f;
struct {
unsigned int sign : 1; // may need to be reversed
unsigned int exp : 8;
unsigned int frac : 23;

}s;
int i;
Hy;
u.f = 3.5; cout << u.f << \'t’ << hex << u.i << endl;
ui=3; cout << u.i << \'t’ << u.f << endl;
u.f = 3.5e3; cout << u.s.sign << \'t” << u.s.exp << \'t’ << u.s.frac << endl;
u.f = -3.5e-3; cout << u.s.sign << \'t” << u.s.exp << \'t’ << u.s.frac << endl;
produces:

3.5 40600000
3 4.2039e-45
0 8a 5ac000
1 76 656042

e Reusing storage is dangerous and can usually be accomplistia other techniques.

2.7.4 Type Equivalence

e In Java/C/C+, two types are equivalent if they have the saamee, callechame equiva-

lence
struct T1 { struct T2 { // identical structure
int i, j, k; int i, j, k;
double x, vy, z; double x, vy, z;
} }
T1 t1, t11 =t1; // allowed, t1, t11 have compatible types
T2 t2 = t1; /I disallowed, t2, t1 have incompatible types

T2 t2 = (T2)t1; /I disallowed, no conversion from type T1 to T2

e TypesT1 andT2 arestructurally equivalent, but have different names so they are incom-
patible, i.e., initialization of variable is disallowed.

e An aliasis a different name for same type, so alias types are equivale

e C/CH providesypedef to create a alias for an existing type:

2.7. TYPE CONSTRUCTOR 65

typedef short int shrintl; /I shrintl => short int
typedef shrintl shrint2; /I shrint2 => short int
typedef short int shrint3; /I shrint3 => short int
shrintl s1; /I implicitly rewritten as: short int s1
shrint2 s2; /I implicitly rewritten as: short int s2
shrint3 s3; /I implicitly rewritten as: short int s3

e All combinations of assignments are allowed amangs2 ands3, because they have the
same type nameshort int ”.

e Java provides no mechanism to alias types.

2.7.5 Type Nesting

e Type nesting is useful for organizing and controlling vikip for type names (see Sec-
tion 2.21, p.115:

enum Colour { R, G, B, Y, C, M}
struct Foo {
enum Colour { R, G, B }; /I nested type

struct Bar { /I nested type
Colour c[5]; /I type defined outside (1 level)
h
::Colour c[5]; /I type defined outside (top level)
Colour cc; /I type defined same level
Bar bars[10]; /I type defined same level
I3
Colour c1 = R; /I typelenum defined same level
Foo::Colour c2 = Foo:R; /I typelenum defined inside
Foo::Bar bar; /I type defined inside

Variables/types at top nesting-level are accessible witfualified “:”.

References to types inside the nested type do not requitdicatzon (like declarations in
nested blocks, see Secti@r8.3 p. 34).

References to types nested inside another type must bdiegdialith type operator:*'.

With nested typesColour (and its enumerators) arkbo in top-level scope; without nested
types need:

66

CHAPTER 2. C++

enum Colour { R, G, B, Y, C, M}
enum Colour2 { R2, G2, B2 }; /I prevent name clashes
struct Bar {

Colour2 c[5];

¥

struct Foo {
Colour c[5];
Colour2 cc;
Bar bars[10];

%

Colour cl1 = R;
Colour2 c2 = R2;
Bar bar;

e Do not pollute lexical scopes with unnecessary hames (natasites).

2.7.6 Type-Constructor Literal

enumeration enumerators

pointer 0 or NULL indicates a null pointer
structure struct { double r,i;}c={3.0, 21}
array int vi3] ={1, 2,3}

C/C+ useD to initialize pointers (Javaull).
System include-file defines the preprocessor varislblel asoO (see Sectior2.12 p. 83).

Structure and array initialization can occur as part of dataton.

struct {int i; struct {double r,i;}s;}d={1,{3.0,21}} [/l nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

A nested structure or multidimensional array is createdgisested braces.
Initialization values are placed into a variable startihgeginning of the structure or array.
Not all the members/elements must be initialized.

o Uninitialized values arelefault initialized (see also Sectio2.18.3 p. 100), which

means zero-filled for basic types.

int b[10]; /I uninitialized
int b[10] = {}; /I zero initialized

g++ has a cast extension allowing construction of structureaarely literals in executable
statements not just declarations:

void rtn(const int m[2][3]);

struct Complex { double r, i; } c;

rin((int [2][3]1 {93, 67, 72}, {77, 81, 86} }); /I g++ only
¢ = (Complex){ 2.1, 3.4 };, /I g++ only

2.7. TYPE CONSTRUCTOR 67

¢ In both cases, a cast indicates the type and structure oténa |

e String literals can be used as a shorthand array initializkere:
char s[6] = "abcde"; rewritten as char s[6] = { “a’, ’b’, ’c¢’, ‘d’, ’e’, \ 0" };
e It is possible to leave out the first dimension, and its vatumierred from the number of
literals in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 67?)

int v[]={0,1, 2,3, 4}/ 1st dimension inferred as 5

int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2
2.7.7 String

e A string is a sequence of characters with specialized operationamgpulate the sequence.

Strings are provided in C by an arraydfar, string literals, and library facilities.

char s[10]; /I string of at most 10 characters

e String literal is a double-quoted sequence of characters.

abc

e Pointer to a string literal must b®nst .
const char «cs = "abc";
Why?
e Juxtaposed string literals are concatenated.

const char «nl ="j ohndoe";
const char «n2 = "j ohn" "doe"; // divide literal for readability

e Character escape sequences (see p8gmay appear in string literal.

WAVt A\ n 12 \ xa"

e Sequence of octal digits is terminated by length (3) or fifgracter not an octal digit;
sequence of hex digits is arbitrarily long, but value truadao fit character type.

"\ 0123\ 128\ xaaa\ xaw'

How many characters?
e Techniques for preventing escape ambiguity.

o Octal escape can be written with 3 digits.
"1 01234"

68 CHAPTER 2. C++

o Octal/hex escape can be written as concatenated strings.
ll\ 12" n 34" |l\ Xall n abC" II\ X12|l n 34"

e Every string literal is implicitly terminated with a chatac’\ 0.

o e.g., string literal' abc" is actually 4 charactersa’, ’b’, ’c’, and’\ 0/, which occupies
4 bytes of storage.

e Zero value is aentinelused by C-string routines to locate the string end.
e Drawbacks:

o A string cannot contain a character with the valu&.

o To find string length, must linearly search fof’, which is expensive for long strings.

e Because C-string variable is fixed-sized array, manageoferdriable-sized strings is the
programmer’s responsibility, requiring complex storagenagement.

e C+ solves these problems by providingsathg” type using a length member and managing
all of the storage for the variable-sized strings.

e Set of powerful operations that perform actions on groupshafacters.

| JavaString | Cchar [] | C+ string
strcpy, strncpy =
+, concat strcat, strncat +
compareTo strcmp, strncmp | ==, I=, <, <=, >, >=
length strlen length
charAt [] []
substring substr
replace replace
indexOf, lastindexOf || strstr find, rfind
strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of
c_str

e All of the C+ stringfind members return values of typting::size_type and valuestring::npos
if a search is unsuccessful.

2.7. TYPE CONSTRUCTOR 69

string a, b, c; /I declare string variables

cin >> c; /I read white-space delimited sequence of characters
cout << ¢ << endl; /I print string

a="abc"; Il set value, a is “abc”

b =a; /I copy value, b is “abc”

c=a+hb; /I concatenate strings, c¢ is “abcabc”

if (a==Db) /I compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; /I subscript, ch is 'b’, zero origin

c[4] = x’; /I subscript, ¢ is “abcaxc”, must be character literal

string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length 3, d is “cax”
c.replace(2, 1, d); // replace starting at position 2 for length 1 and insert d, c is “abcaxaxc”
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is 3

p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5

p = c.find_first_of("aei ou"); // search for first vowel, p is O

p = c.find_first_not_of("aei ou"); // search for first consonant (not vowel), p is 1

p = c.find_last_of("aei ou"); // search for last vowel, p is 5

p = c.find_last_not_of("aei ou"); // search for last consonant (not vowel), p is 7

¢ Note different call syntak.substr(2, 3) versus substr(c, 2, 3) (see Sectit8 p.97).

e Memberc_str converts a string to ehar » pointer (\ 0’ terminated).

e Scan string-variabléne containing words, and count and print words.

unsigned int count = O;
string line, alpha = "abcdef ghi j kI mopqr st uvwxyz"
" ABCDEFGHI JKLMNOPQRSTUVWKYZ" ;
... Il'line is initialized with text
line += "\ n"; /I add newline as sentinel
for (;;){ /I scan words off line
/I find position of 1st alphabetic character
string::size_type posn = line.find_first_of(alpha);
if (posn == string::npos) break; // any characters left ?
line = line.substr(posn); /I remove leading whitespace
/I find position of 1st non-alphabetic character
posn = line.find_first_not_of(alpha);
/I extract word from start of line
cout << line.substr(0, posn) << endl; // print word

count += 1; /I count words
line = line.substr(posn); /I delete word from line
} /I for

e Itis seldom necessary to iterate through the characters afteng variable!

e Contrast C and C+ style strings (note, management of sitorgge):

70

2.8

2.9

CHAPTER 2. C++

#include <string> /I C++ string routines
using namespace std;

#include <string.h> /I C string routines
int main() {

/I C++ string

const string X = "abc", Y ="def", Zz ="¢ghi";
string S =X + Y + Z;

/I C string

const char «x = "abc", «y = "def", «z = "ghi ";

char s[strlen(x)+strlen(y)+strlen(z)+1]; // pre-compute worst-case size
strepy(s, ""); // initialize to null string

strcat(strcat(strcat(s, x), y), 2);

}

Why “+1” for dimension ofs?

Modularization

Modularization is the division of a system into interconnecting smalletpéromponents),
using some systematic basis, and is the foundation of sidtaragineering (see Sectidrt.],

p. 185).
Medium and large systems must be modularized.

Modules provide a separation of concerns and improve maintairabyi enforcing logical
boundaries between components.

These boundaries are providedibierfacesdefined through various programming-language
mechanisms.

Hence, modularization provides a mechanisnalstract data-structures and algorithms
through interfaces.

Modules eliminate duplicated code fgctoring common code into a single location.
Essentially any contiguous block of code can be factorea antoutine or class (see Sec-

tion 2.18 p. 97) and given a name (or vice versa).

Routine

Like algebra, arbitrary operations can be define and invokeg, f (x) = 3x* 4 2.5x — 17,
wheref(4.5) = 55.

double f(double x) {return 3.0 x X » X + 2.5 » x - 17.0; }
f(4.5); /I returns 55

A routine is the simplest module for factoring an abstraction intoecod

Input and output parameters defined a routine’s interface.

2.9. ROUTINE 71

| C | C+
[inline] void p(OR T f(| [inline] void p(OR T f(
Tl a [/ pass by value T1 a, /I pass by value
T2 &b, Il pass by reference
T3c=3 /I optional, default value
))
{ /I routine body { /I routine body
/I intermixed decls/stmts /I intermixed decls/stmts
} }

e Routine is either @rocedure or afunction based on the return type.

e Procedure does NOT return a value that can be use in an expresslicated with return
type ofvoid :

void usage() {
cout << "Usage: " << ... <<endl; // some usage message
exit(EXIT_FAILURE); /I TERMINATE

}
e Procedure can return values via the argument/parametdraniscn (see Sectidh9.]).

e Procedure terminates when control runs off the end of itimedbody or aeturn statement
is executed:

void proc() {
. return ; ...
... 1l run off end => return

}

e Function returns a value that can be used in an expressidienrte mustexecute aeturn
statement specifying a value:

int func() {
... return 3; ...
return a + b;

}

e A return statement can appear anywhere in a routine body, and neutgplirn statements
are possible.

e Routine with no parameters has parametit in C and empty parameter list in C+:

.rtn(void) {...} /I C: no parameters
.rtn() { ...} /[C++: no parameters

o In C, empty parameters mean no information about the numtitgpes of the param-
eters is supplied.

e If a routine is qualified withinline , the routine is expanded (maybe) at the call site, i.e.,
unmodularize, to increase speed at the cost of storage (o ca

72

CHAPTER 2. C++

Routine cannot be nested in another routine (possikdedh
Java requires all routines to be defined itleas (see Sectio2.18.], p. 98).

Each routine call creates a new block on the stack contaitsngarameters and local vari-
ables, and returning removes the block.

Variables declared outside of routines are defined in aniamgtatic block.

int i /I static block, global
const double PI = 3.14159;
int rtn(double d) // static block

{ ...retun 4; /I create stack block
} /I remove stack block
int main() /I static block
{ intj; /I create stack block
{ int k; /I create stack block
rin(3.0);
} /I remove stack block
} /I remove stack block

i, Pl, rtn, main in static block.
Static block is a separate memory from the stack and heasahdays zero filled

Good practise is to ONLY use static block for literals/vates accessed throughout program.

2.9.1 Argument/Parameter Passing

Modularization without communication is useless; infotima needs to flow from call to
routine and back to call.

Communication is achieved by passing arguments to parasnatel back to arguments or
return values.

o value parameter. parameter is initialized by copying argument (input only)

o reference parameter parameter is a reference to the argument and is initiatizéuke
argument’s address (input/output).

pass by value pass by reference

argument
copy address-of (&)
parameter

Java/C, parameter passing is by value, i.e., basic typeslgadt references are copied.
C+, parameter passing is by value or reference dependitigedype of the parameter.
Argument expressions are evaluate@ny order(see Sectior2.4, p. 37).

For value parameters, each argument-expression resulpisctinto the corresponding pa-
rameter in the routine’s block on the staekjich may involve an implicit conversion

2.9. ROUTINE 73

e Forreference parameters, each argument-expressionisagiérenced (address of) and this
address is pushed on the stack as the corresponding refgrarameter.

struct S { double d; };
void r1(S's, S &rs, S x const ps) {
s.d =rs.d = ps->d = 3.0;

}
int main() {
S sl ={1.0}, s2 = {2.0}, s3 = {7.5};
rl(si, s2, &s3);
/l s1.d = 1.0, s2.d = 3.0, s3.d = 3.0
}
sl s2 s3 sl s2 s3
argument 10 || 20 || 75 ||| 10 | [30 || 3.0 |
100 200 300 100 200 300
parametef 1.0 | | 200 | [300 | | | 3.0 | [200 | | 300 |
S rs ps s rs ps
call return

e C-style pointer-parameter simulates the reference pdeanteit requireg. on argument and
use of > with parameter.

e Value passing is most efficient for small values or for largéugs with high referencing
because the values are accessed directly (not througheppint

e Reference passing is most efficient for large values withoedium referencing because
the values are not duplicated in the routine but accesseubuders.

e Problem: cannot change a literal or temporary variable arameter!

void r2(int &, Complex &c, int v[]);
r2(i +j, (Complex){ 1.0, 7.0 }, (int [8]){ 3, 2, 7}); /I disallowed!

e Use type qualifiers to create read-only reference paramstethe corresponding argument
is guaranteed not to change:

void r2(const int &i, const Complex &c, const int Vv[]) {
i = 3; [/ disallowed, read only!
c.re = 3.0;
v[0] = 3;

}
r2(i+ j, (Complex){ 1.0, 7.0 }, (int [5]){ 3,2, 7,9, 0});

e Provides efficiency of pass by reference for large varialdesurity of pass by value as
argument cannot change, and allows literals and tempoeaighles as arguments.

e C+ parameter can havedafault value, which is passed as the argument value if no argu-
ment is specified at the call site.

74 CHAPTER 2. C++

void r3(int i, double g, char ¢ = ’+’, double h=35){...}

r3(1, 2.0, 'b’, 9.3); /I maximum arguments
r3(1, 2.0, 'b”"); /I h defaults to 3.5
r3(1, 2.0); /I ¢ defaults to "+, h defaults to 3.5

e In a parameter list, once a parameter has a default valupaedimeters to the right must
have default values.

e In a call, once an argument is omitted for a parameter withfauttevalue, no more argu-
ments can be specified to the right of it.

2.9.2 Array Parameter
e Array copy is unsupported (see Sectid, p.54) so arrays cannot be passed by value.

e Instead, array argument is a pointer to the array that isecbipito the corresponding array
parameter (pass by value).

o Aformal parameter array declaration can specify the firstegision with a dimension value,
[10] (which is ignored), an empty dimension ligL, or a pointers:

double sum(double v[5]); double sum(double Vv[]); double sum(double xv);
double sum(double «m[5]); double sum(double «m[]); double sum(double xm);

e Good practice uses the middle form as it clearly indicates/tiriable can be subscripted.

e An actual declaration cannot ugeit must use:

double sum(double v[]) { // formal declaration
double =xcv; /I actual declaration, think cv[]
cV =V, /I address assignment

¢ Routine to add up the elements of an arbitrary-sized arrayairix:

double sum(int cols, double v[]){ double sum(int rows, int cols, double ~m[]) {

double total = 0.0; double total = 0.0;
for (int c=0;c<cols;c+=1) for (int r=0;r<rows;r+=1)
total += v[c]; for (int c=0;c<cols;c+=1)
return total; total += m[r][c];
} return total;
}

2.10 Input/Output
¢ Input/Output (1/0) is divided into two kinds:
1. Formatted I/O transfers data with implicit conversion of internal valt@$rom human-
readable form.

2. Unformatted I/O transfers data without conversion, e.g., internal inteyet real-
floating values.

2.10. INPUT/OUTPUT

2.10.1 Formatted I/O

Java

| C

C+

import java.io.x;
import java.util.Scanner;

#include <stdio.h>

#include <iostream>

File, Scanner, PrintStream

| FILE

ifstream, ofstream

Scanner in = new
Scanner(new File("f"))

in = fopen("f", "r");

ifstream in("f");

PrintStream out = new out = fopen("g", "W') ofstream out("g")
PrintStream(" g")
in.close() close(in) scope endsn.close()
out.close() close(out) scope endsyut.close()
nextint() fscanf(in, " %", &i) in>>T
nextFloat() fscanf(in, "% ", &f)
nextByte() fscanf(in, "%", &c)
next() fscanf(in, "%6", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()
in.clear()

skip("regexp) fscanf(in, " %[regexd") | in.ignore(n, c)
out.print(String) fprintf(out, " %", i) out << T

fprintf(out, "% ",)

fprintf(out, "%", c)

fprintf(out, "9%", s)

Formatted 1/0O occurs to/from stream file, and values are conversed based on the type of

variables and format codes.

75

C+ has three implicit stream filesin, cout andcerr, which are implicitly declared and
opened (Java has, out anderr).

C hasstdin, stdout andstderr, which are implicitly declared and opened.

#include <iostream> imports all necessary declarations to ace@sscout andcerr.

cin reads input from the keyboard (unless redirected by shell).

cout writes to the terminal screen (unless redirected by shell).

cerr writes to the terminal screen even whemnit output is redirected.

Error and debugging messages should always be writtendo :

o normally not redirected by the shell,

o unbuffered so output appears immediately.

76

CHAPTER 2. C++

Stream files other than 3 implicit ones require declarindhéée object.

#include <fstream> // required for stream-file declarations

ifstream infile("nyinfile");

ofstream outfile("nmyoutfile"

Il input file
); I/l output file

File types,fstream/ofstream, indicate whether the file can be read or written.

File-name type,nyinfile"/"nmyoutfile",ischar « (notstring , see pag&9).

Declarationopers an operating-system file making it accessible through dhnialvie name:

o infile reads from filenyi nfil e
o outfile writes to filenyoutfil e

where both files are located in the directory where the pragsarun.

Check for successful opening of a file using the stream mefalbee.qg.,infile.fail(), which
returnstrue if the open failed anéhlse otherwise.

if (infile.fail()) ... // open failed, print message and exit
if (outfile.fail()) ... // open failed, print message and exit

C+ 1/O library overloads (see Secti@lg p. 94) the bit-shift operators< and>> to per-

form 1/O.

C 1/O library usedscanf(outfile,...) andfprintf(infile,...), which have short formscanf(...)

andprintf(. . .) for stdin andstdout.

Both I/O libraries can cascade multiple I/O operations, irgput or output multiple values

in a single expression.

2.10.1.1 Formats

e Format of input/output values is controlled vieanipulators defined in#include <iomanip>.

oct

dec

hex

left / right (default)

boolalpha / noboolalpha (default)
showbase / noshowbase (default)
showpoint / noshowpoint (default)
fixed (default) /scientific
setprecision(N)

setfill("ch)

setw(N)

endl

skipws (default) /noskipws

integral values in octal

integral values in decimal

integral values in hexadecimal

values with padding after / before values

bool values as false/true instead of 0/1

values with / without prefix O for octal & Ox for hex
print decimal point if no fraction

float-point values without / with exponent

fraction of float-point values in maximum of N columt
padding character before/after value (default blank)
NEXT VALUE ONLY in minimum of N columns
flush output buffer and start new lineutput only)

ns

skip whitespace charactetisgut only)

2.10.

2.10.1.2

INPUT/OUTPUT

77

Manipulators are not variables for input/output, but control I/0O formatting for all liter-
als/variables after it, continuing to the next I/O expreadbr a specific stream file.

Except manipulator setw, which only applies to the next value in the I/O expression.

endl is not the same d$n’, as’\ n’

does not flush buffered data.

During input, skipsw/noskipws toggle between ignoring whitespace between input tokens
and reading the whitespace characters (i.e., tokenizeveasv input).

Input

e C/C+ formatted input haisnplicit character conversion for all basic types and is extensible
to user-defined types (Java usesaplicit Scanner).

| Java

H c

CH |

import java.io.x,
import java.util.Scanner;
Scanner in =
new Scanner(new File("f"));
PrintStream out =
new PrintStream("g");
int i, j;
while (in.hasNext()) {
i = in.nextInt(); j = in.nextInt();
out.printin("i:"+i+" J "4);

in.close();
out.close();

#include <stdio.h>
FILE «in = fopen("f", "r");

FILE »out = fopen("g", "W');
int i, j;
for (;;){
fscanf(in, " %%l", &i, &);
if (feof(in)) break;
fprintf(out,”" i : % | : %\ n" i,j);
}
close(in);
close(out);

#include <fstream>
ifstream in("f");

ofstream out("9~);

int i, j;
for (;;){
in >>i>>|;
if (in.fail()) break;
out << "i:" <<
<<"] " <<j<<end];
}

/I infout closed implicitly

Input values for a stream file are C/C+ litera8s3.5e-1, etc., separated by whitespace.

Except for characters and character stringsich are not in quotes

Type of operand indicates the kind of literal expected indfneam, e.g., an integer operand
means an integer literal is expected.

To read strings containing white spaces use rougitne(stream, string, char), which
allows different delimiting characters on input:

string s;
getline(cin, s,); /Il read
getline(cin, s, ‘@); // read

/7 7/

getline(cin, s, \' n”); // read characters until newline (default)

characters until * 7 => cin >> ¢
characters until ‘@’

Input starts reading where the last input left off, and sdames to obtain necessary number

of literals.

Hence, placement of input values on lines of a file is ofteritray.

78

CHAPTER 2. C++

C/CH must attempt to redekforeend-of-file is set and can be tested.
End of file is the detection of the physical end of a filbere is no end-of-file character

From a shell, typingsctrl>-d (C-d), i.e., press<ctrl> andd keys simultaneously, causes the
shell to close the current input file marking its physical.end

In C+, end of file can be explicitly detected in two ways:

o stream membezof returnstrue if the end of file is reached arfdise otherwise.

o stream membédhail returnstrue for invalid literal OR no literal if end of file is reached,
andfalse otherwise.

Safer to checkail and then checkof.
for (;;){
cin >> i;
if (cin.eof()) break; /I should use “fail()”
cout << | << endl;
}

If "abc” is entered (invalid integer literalfgil becomegrue buteof is false.
Generates infinite loop as invalid data is not skipped fossghent reads.

Streams also have coercionvad «: if fail(), null pointer; otherwise non-null pointer.

cout << cin; /Il print fail() status of stream cin
while (cin >>1i) ... /l read and check pointer to = 0

When bad data is readfream must be reset and bad data cleared

#include <iostream>

#include <limits> /I numeric_limits
using namespace std;
int main() {
int n;
cout << showbase; /I prefix hex with 0x
cin >> hex; /I input hex literals
for () {
cout << "Enter hexadeci mal number: ";
cin >> n;
if (cin.fail()) { /I problem ?
if (cin.eof()) break; /I eof ?
cout << "I nvalid hexadeci mal nunber" << endl;
cin.clear(); /I reset stream failure
cin.ignore(numeric_limits<int>::max(), \ n”); // skip until newline
} else {
cout << hex << "hex:" << n << dec << " dec:" << n << endl;
}
}
cout << endl;

2.10. INPUT/OUTPUT 79

e After an unsuccessful readear() resets the stream.
e ignore skipsn characters, e.gcjn.ignore(5) or until a specified character.

e Read in file-names, which may contain spaces, and procelsdikac

#include <fstream>

using namespace std;

int main() {
ifstream fileNames("fil eNames"); // requires char = argument
string fileName;

for (;;){ /I process each file
getline(fileNames, fileName); /I may contain spaces
if (fleNames.fail()) break; /I handle no terminating newline

ifstream file(fleName.c _str()); // access char
/I read and process file

}

e In C, routinefeof returnstrue when eof is reached arstanf returnseOF.

e Parameters in C are always passed by value (see S@c8idnp. 72), so arguments tfscanf
must be preceded witt (except arrays) so they can be changed.

2.10.1.3 Output

e Java output style converts values to strings, concatestitags, and prints final long string:

System.out.printin(i + +) // build a string and print it

C/C+ output style has a list of formats and values, and dutperation generates strings:

cout << | << << j << endl; /I print each string as formed

No implicit conversion from the basic types to string in Cbti{one can be constructed).

While it is possible to use the Java string-concatenation gke in C+, itis incorrect style.

Use manipulators to generate specific output formats:

#include <iostream> /I cin, cout, cerr
#include <iomanip> /[manipulators
using namespace std;
int i = 7: double r = 2.5;: char ¢ = 'z’ const char s = "abc":
cout << "i:" << setw(2) << i
<< " r:" << fixed << setw(7) << setprecision(2) << r

<" " <<c<<" 5" << s << endl

#include <stdio.h>
fprintf(stdout, "i:9%2d r: %. 2f ¢c: % s:%\n", i, r, c, s);

i 7r. 250 c:z s:abc

80

CHAPTER 2. C++

2.10.2 Unformatted I/O
Expensive to convert from internal (computer) to exterhahgan) forms (bits= characters).

When data does not have to be seen by a human, use efficientnattied 1/0O so no conver-

sions.

Uses same mechanisms as formatted 1/O to connect variatile topen/close).

read andwrite routines directly transfer bytes from/to a file, where eaaites a pointer to
the data and number of bytes of data.

read(char xdata, streamsize num);
write(char xdata, streamsize num);

Read/write of types other than characters requires a areczst (see Sectidh4.2 p. 40)
or CH+reinterpret _cast.

#include <iostream>
#include <fstream>
using namespace std;

int main() {
ofstream outfile("nyfile"); /I open output file “myfile”
if (outfile.fail()) ... /I unsuccessful open ?
double d = 3.0;
outfile.write((char «)&d, sizeof (d)); // coercion
outfile.close(); /I close file before attempting read
ifstream infile("nmyfile"); /I open input file “myfile”
if (infile.fail()) ... /I unsuccessful open ?
double e;
infile.read(reinterpret _cast<char «>(&e), sizeof(e)); // coercion
if (dl=e) ... /I problem
infile.close();
}

e Coercion would be unnecessary if buffer type waig «.

2.11 Command-line Arguments
e Starting routinenain has two overloaded prototypes.

int main(); // C: int main(void);
int main(int argc, char xargv[]); // parameter names may be different

e Second form is used to receive command-line arguments fiersitell, where the command-
line string-tokens are transformed into C/C+ parameters.

e argc is the number of string-tokens on the command line, inclgdie command name.

e Java does not include command name, so number of tokens isless

2.11. COMMAND-LINE ARGUMENTS 81

e argv is an array of pointers to C character strings that make uvgnt@kguments.

% ./a.out -option infile.cc outfile.cc

0 1 2 3
argc =4 /I number of command-line tokens
argv[0] = ./a.out\O /I not included in Java
argv[l] = -option\O
argv[2] = infile.cc\O
argv[3] = outfile.cc\O
argv[4] =0 /l mark end of variable length list

e Because shell only has string variables, a shell argumeriasf does not mean integer 32,
and may have to converted.

e Routinemain usually begins by checkingrgc for command-line arguments.

Java

C/C+

class Prog {
public static void main(String[] args) {
switch (args.length) {

case 0: ... /I no args
break;

case 1. ... args[0] ... // 1 arg
break ;

case ... /I others args
break;

default : ... /I usage message

System.exit(1);

int main(int argc, char xargv[]) {
switch (argc) {

case 1. ... /I no args
break;

case 2: ... args[1] ... // 1 arg
break ;

case ... /I others args
break;

default: ... /I usage message

exit(EXIT_FAILURE);

e Arguments are processed in the raagg[1] throughargv[argc - 1] (one greater than Java).

e Process following arguments frosiell command linéor command:

cmd [size (> 0) [code (> 0) [input-file [output-file] 1]]

e Note, dynamic allocatiorstringstream (atoi does not indicate errors), and no duplicate code.

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/IO.cc

82 CHAPTER 2. C++

#include <iostream>
#include <fstream>
#include <sstream>

#include <cstdlib> I exit

using namespace std; /I direct access to std

bool convert(int &val, char =buffer) { /I convert C string to integer
std::stringstream ss(buffer); /I connect stream and buffer
ss >> dec >> val; /I convert integer from buffer
return ! ss.fail() && /I conversion successful ?

/I characters after conversion all blank ?
string(buffer).find_first_not_of(" ", ss.tellg()) == string::npos;
} I/ convert

enum { sizeDeflt = 20, codeDeflt = 5 }; /I global defaults
void usage(char argv[]) {

cerr << "Usage: " << argv[0] << " [size (>=0: " << sizeDeflt << ") [code (>=0:
<< codeDeflt << ") [input-file[output-file]]]]" << endl

exit(EXIT_FAILURE); /I TERMINATE
} // usage
int main(int argc, char »argv[]) {
int size = sizeDeflt, code = codeDeflt; /I default value
istream xinfile = &cin; /I default value
ostream xoutfile = &cout; /I default value
switch (‘argc) {
case 5:

outfile = new ofstream(argv[4]);
if (outfile->fail()) usage(argv); // open failed ?
/I FALL THROUGH
case 4:
infile = new ifstream(argv[3]);
if (infile->fail()) usage(argv); // open failed ?
/I FALL THROUGH
case 3:
if (! convert(code, argv[2]) || code < 0) usage(argv) ; // invalid integer ?
/I FALL THROUGH
case 2:
if (! convert(size, argv[l]) || size < 0) usage(argv); // invalid integer ?
/l FALL THROUGH

case 1: /I all defaults
break ;
default : /I wrong number of options
usage(argv);
}
/I program body
if (infile 1= &cin) delete infile; /I close file, do not delete cin!
if (outfile != &cout) delete outfile; /I close file, do not delete cout!

} // main

2.12. PREPROCESSOR 83

2.12 Preprocessor
e Preprocessor manipulates the text of the progoafrecompilation.

e Program you see is not what the compiler sees!

e A preprocessor statement starts with eharacter, followed by a series of tokens separated
by whitespace, which is usually a single line and not termeiddy punctuation.

e The three most commonly used preprocessor facilities dvstisution, file inclusion, and
conditional inclusion.

2.12.1 Variables/Substitution

e #define Statement declares a preprocessor string variable, andlis is all the text after
the name up to the end of line.

#define Integer int
#define begin {
#define end }
#define gets =

#define set

#define with =

Integer main() begin /I same as: int main() {
Integer x gets 3, v; /l same as: int x = 3, v;
X gets 5; /l same as: x = 5;
set y with X; /l same as: y = x;

end /I same as: }

Preprocessor can transform the syntax of C/C+ prograseguraged.

Preprocessor variables can be defined and initialized oodimpilation command with op-
tion -D.

% g++ -DDEBUG="2" -DASSN ... source-files

Initialization value is text aftet.

Same as putting the followingdefine s in a program without changing the program:

#define DEBUG 2
#define ASSN 1

Cannot have both D and #define for the same variable.

Predefined preprocessor-variables exist identifyingward and software environment, e.g.,
mcpu is kind of CPU.

Replacetdefine with enum (see SectioR.7.1, p.54) for integral types; otherwise usenst
declarations (see Secti@x3.4 p. 34) (Javafinal).

84

CHAPTER 2. C++

enum { arraySize = 100 } #define arraySize 100

enum { PageSize = 4 x« 1024 }; #define PageSize (4 » 1024)
const double PI = 3.14159; #define Pl 3.14159

int array[arraySize], pageSize = PageSize;

double x = PI,

enum uses no storage whitmnst declarations might.

#define can declare macros with parameters, which expand duringitaton, textually
substituting arguments for parameters, e.g.:

#define MAX(a,b) (a>b)?a:b)
z = MAX(X, ¥); /I implicitly rewritten as: z = (X > y) ? X 1 y)

Useinline routines in C/C+ rather thatlefine macros (see padetb).

inline int MAX(int a,int b) {return a>b ?a:b;}

2.12.2 File Inclusion

File inclusion copies text from a file into a C/C+ program.
An included file may contain anything.

An include file normally imports preprocessor and C/C+ tkatgs/declarations for use in a
program.

Allincluded text goes through every compilation step, peeprocessor, compiler, etc.

Java implicitly includes by matching class nhames with filsnea inCLASSPATH directories,
then extracting and including declarations.

The#include statement specifies the file to be included.
C convention uses suffixii” for include files containing C declarations.

C+ convention drops suffix.” for its standard libraries and has special file names for
equivalent C files, e.gcstdio versusstdio.h.

#include <stdio.h> /I C style
#include <cstdio> /I C++ style
#include "user.h"

A file name can be enclosed#» or"".
<> means preprocessor only looks in the system include diiesto

means preprocessor starts looking for the file in the sanextdiry as the file being
compiled, then in the system include directories.

System filesimits.h (climit) andstddef.h (cstddef) contain many usefutdefine s.

o e.g., null pointer literaNULL and min/max values for types (e.g., $e/include/limits.h).

2.13. ASSERTIONS 85

2.12.3 Conditional Inclusion

e Preprocessor has dinstatement, which may be nested, to conditionally add/rentode
from a program.

e Conditionalif uses the same relational and logical operators as C/C+opauands can only
be integer or character values.

#define DEBUG 0 /I declare and initialize preprocessor variable
#if DEBUG == I/ level 1 debugging

include "debugl.h"

#.ellif DEBUG == Il level 2 debugging

include "debug2.h"

#.e'lse /I non-debugging code

#rendif

e By changing value of preprocessor variaDIEBUG, different parts of the program are in-
cluded for compilation.

e To exclude code (comment-out), useonditional a® implies false.
#if O
/I code commented out
#endif
e Itis also possible to check if a preprocessor variable isxddfor not defined by usintifdef
or #ifndef :

#ifndef __MYDEFS_H__ /I if not defined
#define __MYDEFS_H__1 // make it so

#rendif
e Used in antinclude file to ensure its contents are only expanded once (see 8&cfg
p.124).

e Note difference between checking if a preprocessor vaiabdefined and checking the
value of the variable.

e The former capability does not exist in most programminglayes, i.e., checking if a
variable is declared before trying to use it.

2.13 Assertions
e Assertions document program assumptions:

o pre-conditions — things true before a computation (e.fvadlies are positive),

86 CHAPTER 2. C++

o invariants — things true across the computation (e.g. alles during the computation
are positive, because onhy, / operations),

o post-conditions — things true after the computation (@lgjresults are positive).
e Assumptions cannot reflect external usage, where thereagemtool.

o E.g., atinterface points, a routine call can be made withnrect values.

o Checking interface parameters is not an assumption abogtan behaviour, rather
about user behaviour.

e Assertions occuafter usage checks when a program has control over its computation

o E.g., after checking a “car” is passed to a routine to cateubaaking distance, an
assumption of correct behaviour is a positive braking dista

o Therefore, routine can assert post-condition “brakindgatise is greater than zero
before returning.

e Macroassert tests a boolean expression representing a logical assampti

#include <cassert>
unsigned int stopping_distance(Car car) {

if (car!=...) exit(EXIT_FAILURE); // check parameter
brakes = ... ;
assert(brakes > 0); /I pre-condition

temp = brakes ... ;

assert(temp > 0); /I invariant
temp = ... ;

assert(temp > 0); /I invariant
distance = ... ;

assert(distance > 0)); // post-condition
return distance;

}

e If assert fails (false result), it aborts program and prexgression:

a.out: test.cc:19: unsigned int stopping_distance(Car):
Assertion “di st ance > 0’ failed.

e Use comma expression (see p&@eto add documentation to assertion message.

assert(("I nternal error, please report"”, distance > 0));
a.out: test.cc:19: unsigned int stopping_distance(Car):

Assertion ("I nternal error, pleasereport”, distance > 0)’ failed.

e Assertions imot spot, i.e., point of high execution, can significantly increasegsam cost.

2.14. DEBUGGING 87

e Compiling a program with preprocessor variaRIBEBUG defined removes all asserts.

% g++ -DNDEBUG ... # all asserts removed

e Therefore, never put computations needed by a program iméssertion.

assert(needed _computation(...) > 0); // may not be executed

2.14 Debugging

e Debuggingis the process of determining why a program does not havetandad be-
haviour.

e Often debugging is associated with fixing a program afteilaréa
e However, debugging can be applied to fixing other kinds obfams, like poor performance.

e Before using debugger tools it is important to understandtwiou are looking for and if
you need them.

2.14.1 Debug Print Statements

e An excellent way to debug a program isstart by inserting debug print statements (i.e., as
the program is written).

It takes more time, but the alternative is wasting hoursitgyo figure out what the program
is doing.

The two aspects of a program that you need to know are: wherprtigram is executing
and what values it is calculating.

Debug print statements show the flow of control through aanmgand print out intermediate
values.

E.g., every routine should have a debug print statemenedig¢hinning and end, as in:

int p(...){
/I declarations

cerr << "Enter p" << parameter variables << endl;

cerr << "Exit p" << return value(s) << endl;
return T;

}

e Resultis a high-level audit trail of where the program isexeg and what values are being
passed around.

e Finer resolution requires more debug print statements pomant control structures:

88 CHAPTER 2. C++

if (a>b){
cerr << "a > b" << endl ; /I debug print

for (...){

cerr << "x=" << x<<", y=" <<y <<endl; // debug print

} else {
cerr << "a <= b" << endi; /I debug print

}

e By examining the control paths taken and intermediate wgenerated, it is possible to
determine if the program is executing correctly.

e Unfortunately, debug print statements can generate eng@mounts of output.

It is of the highest importance in the art of detection to béedb recognize out
of a number of facts which are incidental and which vital. €8ck Holmes, The
Reigate Squires)

e Gradually comment out debug statements as parts of thegolgegin to work to remove
clutter from the output, but do not delete them until the pangworks.

e When you go for help, your program should contain debug {tatements to indicate some
attempted at understanding the problem.

e Use a preprocessor macro to simplifgbug prints

#define DPRT(title, expr) \
{ std::cerr << #title "\ t\"" << __PRETTY_FUNCTION__ << "\" " <<\

expr << " in" << __FILE__ << " at line" << __LINE__ << std::endl; }

for printing entry, intermediate, and exit locations anthda

#include <iostream>
#include "DPRT. h"
int test(int a, int b)) {
DPRT(ENTER, "a:" <<a<<" b:" <<b);
if (a<b)/{
DPRT(a<b, "a:" <<a<<" b:" <<b);
}

DPRT(,a +b); /I empty title
DPRT(HERE, ""); /I empty expression
DPRT(EXIT, a);

return a;

}
which generates debug output:

ENTER "int test(int, int)" a3 b:4 in test.cc at line 14

a<b "inttest(int, int)" a:3 b:4 in test.cc at line 16
“int test(int, int)" 7 in testcc at line 18

HERE "int test(int, int)" in testcc at line 19

EXIT "int test(int, int)" 3 in test.cc at line 20

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/DPRT.h

2.14.

DEBUGGING 89

2.14.2 Errors

Debug print statements do not prevent errors, they simplyrgiinding errors.

What you do about an error depends on the kind of error.

Errors fall into two basic categories: syntax and semantic.

Syntax error is in the arrangement of the tokens in the programming laggua

These errors correspond to spelling or punctuation erroesswriting in a human language.

Fixing syntax errors is usually straight forward espeygidlthe compiler generates a mean-
ingful error message.

Always readthe error message carefully addeckthe statement in error.
You see (Watson), but do not observe. (Sherlock Holmes,&i&lda Bohemia)
Difficult syntax errors are:

o missing closing' or «/, as the remainder of the programswallowedas part of the
character string or comment.

o missing{ or}, especially if the program is properly indented (editons kalp here)
o missing semi-colon at end of structure

Semantic error is incorrect behaviour or logic in the program.
These errors correspond to incorrect meaning when writirghuman language.
Semantic errors are harder to find and fix than syntax errors.

A semantic or execution error message only tells why theraragtopped not what caused
the error.

In general, when a program stops with a semantic error, #teraent in error is often not
the one that must be fixed.

Must work backwards from the error to determine the causheptoblem.

In solving a problem of this sort, the grand thing is to be ableeason backwards.
That is a very useful accomplishment, and a very easy onegpdmyle do not
practise it much. In the everyday affairs of life it is morefus to reason forward,
and so the other comes to be neglected. (Sherlock Holmesdi fBtScarlet)

Reason from the particular (error symptoms) to the generabi(cause).

o locate pertinent data : categorize as correct or incorrect
o look for contradictions
o list possible causes

90 CHAPTER 2. C++

@)

devise a hypothesis for the cause of the problem

o

use data to find contradictions to eliminate hypotheses

o

refine any remaining hypotheses

@)

prove hypothesis is consistent with both correct and ir@mesults, and accounts for
all errors

e E.g., aninfinite loop with nothing wrong with the loop.

i = 10;
while (i!=5) {

i += 2;

}

The initialization is wrong.
e Difficult semantic errors are:

o uninitialized variable
o invalid subscript or pointer value

o off-by-one error

e Finally, if a statement appears not to be working propedy)d&oks correct, check the syntax
(see pagdd).

if (a=b){
cerr << "a == h" << endl;
}

When you have eliminated the impossible whatever remadmg\Ver improbable
must be the truth. (Sherlock Holmes, Sign of Four)

2.15 Dynamic Storage Management

e Java/Scheme amanaged languags because the language controls all memory manage-
ment, e.g.garbage collectionto free dynamically allocated storage.

e C/CH areunmanaged languags because the programmer is involved in memory manage-
ment, e.g., o garbage collection so dynamic storage muestieitly freed.

e C+ provides dynamic storage-management operatiengielete and C providesnalloc/free.

e Do not mix the two forms in a C+ program.

2.15. DYNAMIC STORAGE MANAGEMENT

91

| Java

C

H C

class Foo { char cl, c2;}
Foo r = new Foo();

rcl = ’X:

/I r garbage collected

struct Foo { char c1, c2; };
struct Foo xp =
(struct Foo %) // coerce
malloc(/I allocate
sizeof (struct Foo) // size
)i
p->cl = X

struct Foo { char cl1, c2; };
Foo *p = new Foo();

p->cl = X

delete p; // explicit free
Foo &r = snew Foo();

rcl =X,

delete &r; /I explicit free

free(p); /I explicit free

e Allocation has 3 steps:

1. determine size of allocation,
2. allocate heap storage of correct size/alignment,
3. coerce undefined storage to correct type.

e C+ operatonew performs all 3 steps implicitly; each step is explicitin C.
e Coercion cast is required in C+ foralloc but optional in C.

o C has implicit cast fronvoid « (pointer to anything) to specific pointetgngerous).
o Good practise in C is to use a cast so compiler can verify tgage after allocation.

e Parenthesis after the type name in tle@ operation are optional.

e For reference, why is there a+” beforenew and an &” in the delete ?

e Storage for dynamic allocation comes from a memory areadtieheap

e If heap is full (i.e., no more storage availableglloc returns 0, anthew generates an error.

e Before storage can be usediitistbe allocated.

Foo +p;
p->cl = 'R

/I forget to initialize pointer with “new”
/I places ‘R’ at some random location in memory

Called an uninitialized variable.

e After storage is no longer neededitstbe explicitly deleted.

Foo +p = new Foo;

p = new Foo; /I forgot to free previous storage

Called amemory leak.

e After storage is deleted, ihustnot be used:

delete p;

p->cl = 'R /I result of dereference is undefined

Called adangling pointer.

92 CHAPTER 2. C++

e Unlike Java, C/C+ allovall types to be dynamically allocated not just object types., e.g
new int.

e As well, C/C+ allowall types to be allocated on the stack, i.e., local variablesbek:

| Java | C+ |
{ Il basic & reference stack heap { /I all types stack heap
int i;) int i; :
double d; ' double d; !
AggrType agr = d AggrType agr; d

new AggrType();

agr— "] } // implicit delete ||_29"
} // garbage collected : :

e Stack allocation eliminates explicit storage-manager(smipler) and is more efficient than
heap allocation —tise it whenever possible.

{ I/ good, use stack { /I bad, unnecessary dynamic allocation
int i int xip = new int;
... Il use i ... Il use «ip
delete ip;
} }

e Dynamic allocation in C+ should be used only when a variable storage must outlive
the block in which it is allocated (see also pag#01).

Type #rtn(...) {
Type xtp = new Type; /I MUST USE HEAP

/I initialize/compute using tp
return tp; /I storage outlives block
} /I tp deleted later

e Declaration of a pointer to an array is complex in C/CH (dse page5l).

e Because no array-size information, no dimension for arygoanter.

int xparr = new int [10]; /Il think parr[], pointer to array of 10 ints

¢ No dimension information results in the following ambiguit

int «pvar = new int; /I basic “new”
int «parr = new int [10]; Il parr[], array “new”

e Variablespvar andparr have the same type but one is allocated with the basicand the
other with the arrayew.

e Special syntaxnustbe used to call the corresponding deletion operation foriamg or an
array (any dimensions):

delete pvar; /I basic delete : single element
delete [] parr; // array delete : multiple elements (any dimension)

2.15.

DYNAMIC STORAGE MANAGEMENT 93

If basicdelete is used on an array, only the first element is freed (memoky).lea
If array delete is used on a variable, storage after the variable is alsd fi@iten failure).
Never do this:
delete [] parr, pvar; /[=> (delete [] parr), pvar;
which is an incorrect use of a comma expresspar is not deleted.

Declaration of a pointer to a matrix is complex in C/C+, girg. sm[5] could mean:

1
|
|
J

m

[Ww[N [[0 [w©]

T

|

;o . B
S N N

r

|

|

|

|

|

|

L

Left: array of 5 pointers to an array of unknown number of gjetes.

Right: pointer to matrix of unknown number of rows with 5 calas of integers.
Dimension is higher priority so declaration is interpreseiht («(m[5])) (left).
Right example cannot be generalized to a dynamically-sizetix.

int R=5, C =4; /I 5 rows, 4 columns
int (*m)[R] = new int [R][C]; /[C must be literal, e.g, 4

Compiler must know the stride (number of columns) to compoxe
Left example can be generalized to a dynamically-sizediraatr

int main() {
int R=5, C = 4; /l cin >> R >> C;
int xm[R]; /I R rows
for (int r=0;r<R;r+=1){
m[r] = new int [C]; /I C columns per row
for (intc=0;c<C;c+=1){
mir][c] = r + c; /I initialize matrix

}

for (int r=0;r<R;r+=1){// print matrix
for (intc=0;c<C;c+=1){

cout << mfr][c] << ", *;

}

cout << endl;
}
for (int r=0;r<R;r+=1){

delete [] m[r]; /I delete each row
}

} /[implicitly delete array “m”

94

CHAPTER 2. C++

2.16 Overloading

Overloading occurs when a name has multiple meanings in the same context.

Most languages have overloading, e.g., most built-in dpesare overloaded on both inte-
gral and real-floating operands, i.e.gperator is different fot + 2 than for1.0 + 2.0.

Overloading requires disambiguating among identical relp@sed on some criteria.
Normal criterion is type information.

In general, overloading is done on operations not variables

int i; /I disallowed : variable overloading
double i;

void r(int) {...} /I allowed : routine overloading
void r(double) { ...}

Power of overloading occurs when a variable’s type is chadgeperations on the variable
are implicitly reselected for the variable’s new type.

E.g., after changing a variable’s type fram to double , all operations implicitly change
from integral to real-floating.

Number andunique parameter typebut not the return typeare used to select among a
name’s different meanings:

int r(int i,int j){...} // overload name r three different ways
int r(double x, double y){...}
int r(int k) {...}

r(1, 2); /I invoke 1st r based on integer arguments
r(1.0, 2.0); /I invoke 2nd r based on double arguments
r(3); /I invoke 3rd r based on number of arguments

Subtle cases:

int i; unsigned int ui; long int i

void r(int i) {...} [/l overload name r three different ways
void r(unsigned int i) {...}

void r(long int i){...}

r(i); I int

r(ui); /I unsigned int

r(i), /l long int

Parameter types with qualifiers other thetort /long /signed /unsigned or reference with
same base type are not unique:

int r(int i) {..} /I rewritten: int r(signed int)
int r(signed inti) {...} /I disallowed : redefinition
int r(constinti) {...} /I disallowed : redefinition
intr(int &) {...} /l disallowed : ambiguous

int r(const int &) {...} /I disallowed : ambiguous
r(i); /I all routines look the same

2.17. ROUTINE POINTER 95

Implicit conversions between arguments and parametersaizse ambiguities:

r(1, 2.0); // ambiguous, convert either argument to integer or double

Use explicit cast to disambiguate:

r(1, (int)2.0) /I 1str
r((double)1, 2.0) [/ 2ndr

Overload/conversion confusion: 1/0O operataris overloaded witlthar « to print a C string
andvoid « to print pointers.

char c; int i;
cout << &c <<

<< &i << endl; /I print address of variables

type ofé&c ischar «, so printed as C string, which is undefinedype of&i isint «, which is
converted tovoid «, So printed as an address.

Fix using coercion.

cout << (void #)&c << << &i << endl; /I print address of variables

Overlap between overloading and default arguments fompeters with same type:

| Overloading | Default Argument |
int r(int i,intj){...} int rCinti,intj=2){...}
int r(inti){intj=2;...}

r(3);//2ndr r(3); // default argument of 2

If the overloaded routine bodies are essentially the samse & default argument, other-
wise use overloaded routines.

2.17 Routine Pointer

The flexibility and expressiveness of a routine comes froenaityument/parameter mecha-
nism, which generalizes a routine across any argumentotasi@f matching type.

However, the code within the routine is the same for all dathése variables.

To generalize a routine further, code can be passed as amanguvhich is executed within
the routine body.

Most programming languages allow a routine pointer forHfertgeneralization and reuse.
(Java does not as its routines only appear in a class.)

As for data parameters, routine pointers are specified wigipa (return type, and number
and types of parameters), and any routine matching thisdgpde passed as an argument,

e.g.:

96

CHAPTER 2. C++

int f(int v, |int («p)(int)|) {return p(v=+2)+ 2;}

int g(int i) {retun i-1;}

int h(int i) {return i/ 2;}

cout << f(4, g) << endl; /I pass routines g and h as arguments
cout << f(4, h) << endl;

Routinef is generalized to accept any routine argument of the fortarme anint and takes
anint parameter.

Within the body off, the parametep is called with an appropriatet argument, and the
result of callingp is further modified before it is returned.

A routine pointer is passed as a constant reference in \hyrtath programming languages;
in general, it makes no sense to change or copy routine dedesdpying a data value.

C/C+ require the programmer to explicitly specify the refece via a pointer, while other
languages implicitly create a reference.

Two common uses of routine parameters are fix-up and cakmadines.

A fix-up routine is passed to another routine and called if an unusual situetiencountered
during a computation.

E.g., a matrix is not invertible if its determinant is O (Sutay).

Rather than halt the program for a singular matrixert routine calls a user supplied fix-up
routine to possibly recover and continue with a correctmg.(modify the matrix):
int singularDefault(int matrix[][10], int rows, int cols) { return O; }
int invert(int matrix[][10], int rows, int cols,
int (xsingular)(int matrix[][10], int rows, int cols) = singularDefault) {

if (determinant(matrix, rows, cols) == 0) {
correction = singular(matrix, rows, cols); // compute correction
}
}

A fix-up parameter generalizes a routine as the correctitierats specified for each call,
and the action can be tailored to a particular usage.

Giving the fix-up parameter a default value eliminates hgtinprovide a fix-up argument.
A call-back routine is used in event programming.

When an event occurs, one or more call-back routines aredcéiggered) and each one
performs an action specific for that event.

E.g., a graphical user interface has an assortment of otiezd'widgets”, such as buttons,
sliders and scrollbars.

2.18. OBJECT 97

e When a user manipulates the widget, events are generatebeating the new state of the
widget, e.g., button down or up.

e A program registers interest in transitions for differemdgets by creating and registering a
call-back routine.

int closedown(/= info about event «/) {
/I close down because close button press
/I return status of callback action

}

/I inform when close button pressed for “widget”
registerCB(widget, closeButton, closedown);

e widget maintains list of registered callbacks.

e Awidget calls specific call-back routine(s) when the widgetnges state, passing new state
of the widget to each call-back routine.

2.18 Object

e Objectoriented programming was developed in the mid-1960s byl Bati Nygaard and
first implemented in SIMULAG?.

e Object programming is based on structures, used for orgaylizgically related data (see Sec-
tion 2.7.3 p. 60):

| unorganized | organized |
struct Person {
int people_age[30]; int age;
bool people_sex[30]; bool sex;
char people_name[30][50]; char name[50];
} people[30];

e Both approaches create an identical amount of information.

e Difference is solely in the information organization (andmmory layout).

e Computer does not care as the information and its manipul&ilargely the same.

e Structuring is an administrative tool for programmer ustiending and convenience.
e Objects extend organizational capabilities of a strudhyrallowing routine members.

e C+ does not subscribe to the Java notion that everythinghierea basic type or an object,
i.e., routines can exist without being embedded stract /class (see Sectiorz.9, p. 70).

98

CHAPTER 2. C++

| structure form | object form |

struct Complex { struct Complex {
double re, im; double re, im;

h double abs() const {

double abs(const Complex &This) { return sqrt(re = re +
return sqrt(This.re = This.re + im % im);

This.im % This.im); }

} 5

Complex x; /I structure Complex x; // object

abs(x); /I call abs x.abs(); /I call abs

An object provides both data and the operations necessanmpémipulate that data in one
self-contained package.

Both approaches use routines as an abstraction mechanismate an interface to the in-
formation in the structure.

Interface separates usage from implementation at thefaseeboundary, allowing an ob-
ject’'s implementation to change without affecting usage.

E.g., if programmers do not accedsmplex’s implementation, it can change from Cartesian
to polar coordinates and maintain same interface.

Developing good interfaces for objects is important.

o e.g., mathematical types (likemplex) should use value semantics (functional style)
versus reference to prevent changing temporary values.

2.18.1 Object Member

A routine member in a class is constant, and cannot be ask{grge,const member).
What is the scope of a routine member?

Structure creates a scope, and therefore, a routine membaccess the structure members,
e.g.,abs member can refer to membeatsandim.

Structure scope is implemented viara const this parameter, implicitly passed to each
routine member (like left example).

double abs() const {
return sqgrt(this ->re « this ->re + this ->im « this ->im);
}
Since implicit parameter this ” is a const pointer, it should be a reference.
Except for the syntactic differences, the two forms are tidah
The use of implicit parametethis, e.g.,this ->f, is seldom necessary.

Member routine declarecbnst is read-only, i.e., cannot change member variables.

2.18. OBJECT 99

e Member routines are accessed like other members, using erelectionx.abs, and called
with the same formx.abs().

e No parameter needed because of implicit structure scopanityis parameter.

¢ Nesting of object types only allows static not dynamic seagp(see Sectior2.7.5 p. 65)
(Java allows dynamic scoping).

struct Foo {

int g;
intr){...}
struct Bar { /I nested object type
int s() {g=23;r(); } [/ disallowed, dynamic reference
h /I to specific object
} X Y, Z;

References is to memberg andr in Foo disallowed because must know the for specific
Foo object, i.e., whickx, y or z.

e Extend typeComplex by inserting an arithmetic addition operation:
struct Complex {

éémplex add(Complex c) {
return (Complex){ re + c.re, im + c.im };
}

e To sumx andy, write x.add(y), which looks different from normal additior,+ y.

e Because addition is a binary operatiadd needs a parameter as well as the implicit context
in which it executes.

e Like outside a type, C+ allows overloading members in a.type

2.18.2 Operator Member

e Itis possible to use operator symbols for routine names:
struct Complex {

Complex operator +(Complex ¢) { // rename add member
return (Complex){ re + c.re, im + c.im };
}

|

e Addition routine is called-, andx andy can be added by.operator +(y) or y.operator +(x),
which looks slightly better.

100 CHAPTER 2. C++

e Fortunately, CH implicitly rewriteg + y asx.operator +(y).
Complex x ={3.0,52} y={-91, 74}
cout << "X:" << xre << "+" << x.im << "i" << endl;
cout << "y:" << yre << "+" <<yim << "i" << end|
Complex sum = x +y; /] rewritten as x.operator+(y)

cout << "sum" << sum.re << "+" << sum.im << "i" << endl;

2.18.3 Constructor

e A constructor is a special member useditoplicitly perform initialization after object allo-
cation to ensure the object is valid before use.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
... Il other members

2
e Constructor name is overloaded with the type name of thetstrel (normally disallowed).
e Constructor without parameters is thefault constructor, for initializing a new object to a

default value.

Complex x; x.Complex();
Complex xy = new Complex;
y->Complex();

Complex x; implicitly
Complex xy = new Complex; rewritten as
e Unlike Java, C+ does not initialize all object members tfadk values.

e Constructor is responsible for initializing memberst initialized via other constructors
i.e., some members are objects with their own constructors.

e Because a constructor is a routine, arbitrary executiorbegrerformed (e.g., loops, routine
calls, etc.) to perform initialization.

e A constructor may have parameters but no return type (not wie).

e Never put parentheses to invoke default constructor fordébdeclarations.
Complex x(); // routine prototype, no parameters returning a complex

e Once a constructor is specified, structure initializatios disallowed:

Complex x = { 3.2}, /I disallowed
Complexy ={3.2,45%} /I disallowed

e Replace using constructor(s) with parameters:

struct Complex {
double re, im;
Complex(double r = 0.0, double i=0.0){re=r,im=1i;}

2.18. OBJECT 101

Note, use of default values for parameters (see F&pe

e Unlike Java, constructor argument(s) can be specditat a variable for local declarations:
Complex x; x.Complex(0.0, 0.0);

Complex x, y(1.0), z(6.1, 7.2); impli_citly Complex y; y.Complex(1.0, 0.0);
rewritten as Complex z; z.Complex(6.1, 7.2);

(see declaring stream files pag®

e Dynamic allocation is same as Java:

Complex »x = new Complex(); // parentheses optional
Complex xy = new Complex(1.0);
Complex xz = new Complex(6.1, 7.2);

e Constructor may force dynamic allocation when initialiagtan array of objects.

Complex ac[10]; /I complex array initialized to 0.0
for (inti=0;i<10;i+=1){
ac[i] = (Complex){ i, 2.0 } /I disallowed

}
/I MUST USE DYNAMIC ALLOCATION
Complex xap[10]; /[array of complex pointers

for (int i=0;i<10;i+=1){
ap[i] = new Complex(i, 2.0); // allowed
}

¢ If only non-default constructors are specified, i.e., oneghlwparameters, an object cannot
be declared without an initialization value:

struct Foo {
/I no default constructor
Foo(inti){...}

3

Foo x; /I disallowed!!!

Foo x(1); // allowed

e Unlike Java, constructor cannot be called explicitly in @0 constructor, so constructor
reuse is done through a separate member:

| Java | CH |
class Foo { struct Foo {
int i, j; int i, j;
void common(int p){i=p;j=1;}
Foo() { this(2); } /I explicit call Foo() { common(2); }
Foo(int p){i=p;j=1;} Foo(int p) { common(p); }
} 2

102 CHAPTER 2. C++

2.18.3.1 Literal

e Constructors can be used to create object literals {Jiketype-constructor literals in Sec-
tion2.4.1, p. 39):

Complex X, vy, z;

X = Complex(3.2); /I complex literal value 3.2+0.0i

y = x + Complex(1.3, 7.2); /I complex literal 1.3+7.2i

z = Complex(2); // 2 widened to 2.0, complex literal value 2.0+0.0i

e Previous operator for Complex (see pag®9) is changed because type-constructor literals
are disallowed for a type with constructors:

Complex operator +(Complex ¢) {
return Complex(re + c.re, im + c.im); // create new complex value
}

2.18.3.2 Conversion
e Constructors are implicitly used for conversions (seeie&.4.1, p. 39):

int i

double d;

Complex X, v;

X = 3.2; X = Complex(3.2);

y =x+ 13 implicitly y = x.operator +(Complex(1.3));

y =X+ rewritten as y = x.operator +(Complex((double)i);
y =X+ d; y = x.operator +(Complex(d));

¢ Allows built-in literals and types to interact with userfahed types.

¢ Note, two implicit conversions are performed on varialilex + i: int to double and then
double to Complex.

e Can require only explicit conversions with qualifexplicit on constructor:
struct Complex {

/l turn off implicit conversion
explicit Complex(double r = 0.0, double i =0.0) {re=r;im=1i;}

e Problem: implicit conversion disallowed for commutativedry operators.

e 1.3 + x, disallowed because it is rewritten agl.3).operator +(x), but member
double operator +(Complex) does not exist in built-in typdouble .

e Solution, move operator out of the object type and made into a routine, which can atso b
called in infix form (see SectioR.16 p. 94):

2.18. OBJECT 103

struct Complex { ... }; // same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters
return Complex(a.re + b.re, a.im + b.im);

}

X +Y; . . operator +(X, Y)

1.3 + x; ImpII.CItIy operator +(Complex(1.3), X)
X + 1.3; rewritten as operator +(x, Complex(1.3))

e Compiler first checks for an appropriate operator in objggét and if found, applies con-
versions only on the second operand.

e If no appropriate operator in object type, the compiler &lsfor an appropriate routine (it
is ambiguous to have both), and if found, applies applicablerersions ttoth operands.

e In general, commutative binary operators should be wriggmoutines to allow implicit
conversion on both operands.

e |/O operators< and>> often overloaded for user types:

ostream &operator <<(ostream &o0s, Complex c) {

return os << c.re << "+" << c.im << "i";
}
cout << "Xx:" << x; [/ rewritten as: <<(cout.operator<<(“x:"), X)
e Standard C+ convention for I/O operators to take and resustream reference to allow
cascading stream operations.

e << operator in objectout is used to first print string value, then overloaded routir€o
print the complex variablg.

e Why write as a routine versus a member?

2.18.4 Destructor
e A destructor (finalize in Java) is a special member used to perform uninitialireitobject

deallocation:
| Java | C+ |
class Foo { struct Foo {
finalize() { ... } ~Foo() { ... } /I destructor
} 2

e An object type has one destructor; its name is the charactdoliowed by the type name
(like a constructor).

e A destructor has no parameters nor return type (not ewvier):

e A destructor is only necessary if an object i®n-contiguous i.e., composed of multiple
pieces within its environmente.g., files, dynamically allocated storage, etc.

104 CHAPTER 2. C++

e A contiguous object like a Complex object, requires no destructor as it is self-contained
(see Sectior2.23 p. 124for a version ofComplex requiring a destructor).

e A destructor is invoketheforean object is deallocated, either implicitly at the end ofachl
or explicitly by adelete :

{ { /I allocate local storage
Foo X, y(X); Foo x, y; x.Foo(); y.Foo(x);
Foo x*z = new Foo0; Foo *z = new Foo; z->Foo();
= implicitly =

&/I.;Foo(); x.~Foo();
} } /I deallocate local storage

e For local variables in a block, destructorsust becalled in reverse order to constructors
because of dependencies, eygdepends onm.

e A destructor is more common in C+ than a finalize in Java dubedack of garbage col-
lection in C+.

¢ If an object type performs dynamic storage allocation, itn®n-contiguous and needs a
destructor to free the storage:

struct Foo {
int «i; // think int i[]
Foo(int size) { i = new int [size]; } // dynamic allocation
~Foo() { delete []i; } /I must deallocate storage

¥
Exception is when the dynamic object is transfered to amathgct for deallocation.

e C+ destructor is invoked at a deterministic time (blockrteration ordelete), ensuring
prompt cleanup of the execution environment.

e Javdfinalize is invoked at a non-deterministic time during garbage ctilb& ornot at all, so
cleanup of the execution environment is unknown.

2.18.5 Copy Constructor / Assignment

e There are multiple contexts where an object is copied.

1. declaration initialization@bjType obj2 = obj1)

2. pass by value (argument to parameter)

3. return by value (routine to temporary at call site)
4. assignmentopj2 = objl)

e Cases 1 to 3 involve a newly allocated object with undefinddesa

e Case 4 involves an existing object that may contain prelWammnputed values.

2.18. OBJECT 105

o C+ differentiates between these situations: initial@atand assignment.

e Constructor with aonst reference parameter of class type is used for initialireftecla-
rations/parameters/return), called thley constructor.

Complex(const Complex &c) { ...}

e Declaration initialization:

Complex y = x; implicitly rewritten as Complex y; y.Complex(x);

o “="is misleading as copy constructor is called not assignropatator.

o value on the right-hand side of™is argument to copy constructor.

e Parameter/return initialization:

Complex rtn(Complex a, Complex b) { ... return a; }
Complex X, v;
Xx=rtn(X, y); /I creates temporary before assignment

o call results in the following implicit action intn:

Complex rtn(Complex a, Complex b) {
a.Complex(x); b.Complex(y); // initialize parameters with arguments

o return results in a temporary created at the call site to ti@desult:

Complex temp;
x = rn(...); implicitly rewritten as temp.Complex(rtn(....));

X = temp;
e Assignment routine is used for assignment:

Complex &operator =(const Complex &rhs) { ...}

o value on the right-hand side of™ is argument to assignment operator.
x =y; implicitly rewritten as x.operator =(y);
o usually most efficient to use reference for parameter andrréype.

e If a copy constructor or assignment operator is not definednalicit one is generated that
does anemberwise copyof each subobject.

o basic typebitwise copy
o class type, use class’s copy constructor
o array, each element is copied appropriate to the elemeat typ

106 CHAPTER 2. C++

struct B {

B() {}
B(const B &c) { cout << "B(&) ";}

B &operator =(const B &rhs) { cout << "B="; }

}struct D { /I implicit copy and assignment
int i /I basic type, bitwise
B b; /I object type, memberwise
B ab[5]; /I array, element/memberwise
i}nt main() {
D i /I B’s default constructor
Dd=i /I D’s default copy-constructor
d=i; /I D’s default assignment
}

outputs the following:

B(&) B(&) B(&) B(&) B(&) B(&) B= B= B= B= B= B=
b ab b ab

e Often only a bitwise copy as subobjects have no copy cortstroc assignment operator.

¢ If D defines a copy-constructor/assignment, it is used ratiaarttiat in any subobject.

struct D {
int i B b; B ab[5];
D(const D &c) :i(c.i), b(c.b), ab(c.ab) {}
D &operator =(const D &rhs) {
i = rhs.i; b = rhs.b;
for (int i =0;i<5;i+=1) ab[i] = rhs.abli;
return «this ;

Must manually copy each subobject (same output as befd array copy!

e When an object type has pointers, it is often necessary to deep copy, i.e, copy the
contents of the pointed-to storage rather than the poifgessalso SectioR.23 p. 124).

2.18. OBJECT 107

struct Shallow {
int «i;
Shallow(int v) {i=newint; «i = v; }
~Shallow() { delete i; }

struct Deep {
int *i;
Deep(int v){i=newint; « =v;}
~Deep() { delete i; }
Deep(Deep &d) { i = new int; «i = «d.i; } /I copy value
Deep &operator =(const Deep &rhs) {

xl = »rhs.i; return =«this; /I copy value
}
%
initialization
Shallow x(3), y = X; Deep x(3), y = x;
y —~ X y X
shallow cop ! ! !
deep co
newx.i| 3 3= b Eopy 3
assignment
Shallow x(3), y(7); y=X; Deep x(3), y(7); y =X
y —~ X y X
shallow cop ! ! !
deep co
newvy.i| 7 newx.i| 3 X 3= b Eopy 3
memory leak dangling pointer

e For shallow copy:

o memory leak occurs on the assignment

o dangling pointer occurs afterory is deallocated; when the other object is deallocated,
it reuses this pointer to delete the same storage.

e Deep copy does not change the pointers only the values asswevithin the pointers.

e Bewareself-assignmenfor variable-sized types:

108

struct Varray {
unsigned int size;
int «a;

CHAPTER 2. C++

/I variable-sized array

Varray(unsigned int s) { size = s; a = new int [size]; }

. I/ other members

Varray &operator =(const Varray &rhs) { // deep copy

delete [] a;
size = rhs.size;
a = new int [size];

/I delete old storage
/I set new size
/I create storage for new array

for (unsigned int i =0; i< size; i += 1) a[i] = rhs.a[i]; // copy values

return «this ;
}
|5
Varray x(5), y(10);

X =vy; [/l works
y =vy; [l fails

e How can this problem be fixed?

e Which pointer problem is this, and why can it go undetected?

e For deep copy, it is often necessary to define a equality tpefperator ==) performing a
deep compare, i.e., compare values not pointers.

2.18.6 Initialize const / Object Member

e C/CHconst members and local objects of a structure must be initialeteclaration:

Ideal (Java-like) Structure
struct Bar { struct Bar {

Bar(int i) {..} Bar(int i) {...}

/Il no default constructor /Il no default constructor
} bar(3); } bar(3);
struct Foo { struct Foo {

constint i = 3; const int i;

Bar » const p = &bar; Bar * const p;

Bar &rp = bar; Bar &rp;

Bar b(7); Bar b;

X

} x = {3, &bar, bar, 7 };

e Left: disallowed because fields cannot be directly initiedi.

e Right: disallowed becauggar has a constructor domust use constructor syntax (see Sec-

tion 2.18.3 p. 100).

e Try using a constructor:

2.18. OBJECT 109

Constructor/assignment Constructor/initialize
struct Foo { struct Foo {
const int i; const int i
Bar = const p; Bar = const p;
Bar &rp; Bar &rp;
Bar b; Bar b;
Foo() { Foo() : // declaration order
i = 3; /I after declaration i(3),
p = &bar; p(&bar),
rp = bar; rp(bar),
b(7); // not a statement b(7) {
} }
b %

Left: disallowed becaussnst has to be initialized at point of declaration.

Right: special syntax to indicate initialized at point ottiation.

Ensuregonst /object members are initialized before used in construmbaoly.

Must be initialized in declaration order to prevent use beganitialization.

Syntax may also be used to initialize any local members:

struct Foo {

Complex c;

int k;

Foo() : c(1,2), k(14) { /I initialize c, k
¢ = Complex(1, 2); /[or assign c, k
k = 14;

}

h

Initialization may be more efficient versus default constion and assignment.

2.18.7 Static Member

e Static members create a single instance for object typeausdis object instances, e.g.,
maintain statistics across all objects.

e Members qualified witstatic are declared in the static block not within an object.

110

CHAPTER 2. C++

struct Foo { static block
int i; ::Foo::cnt
static int cnt; L
Foo() { ::Foo::stats
cnt += 1, /I allowed i
} stats(); I/l allowed X Foo

static void stats() {
cout << cnt; // allowed i
i =3; /I disallowed y Foo
mem(); // disallowed

}
FX, Y; | o
int Foo::cnt; // declaration (optional initialization)

e Object membermem can referencgandrtn in static block.

e Static membertn not logically nested in typfao, so it cannot reference membéandmem.

e Static class-variables must be declared once (versus ddfinghe type) in a.cc file.

2.19 Random Numbers
e Random numbersare values generated independently, i.e., new values ddep&nd on

previous values (independent trials).
E.g., lottery numbers, suit/value of shuffled cards, valu®ked dice, coin flipping.

While programmers spend most of their time ensuring contpugdues are not random,
random values are useful:

o gambling, simulation, cryptography, games, etc.
A random-number generatoris an algorithm that computes independent values.

If the algorithm uses deterministic computation, it getespseudo random-numbersver-
sus “true” random numbers, as sequence is predictable.

All pseudo random-number generatos (PRNG) involve some technique that scrambles
the bits of a value, e.g., multiplicative recurrence:

seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble bits
Multiplication of large values adds new least-significaits nd drops most-significant bits.

bits 63-32| bits 31-0
0 3e8e36

5f | 718c25el

ad3e | 7b5f 1dbe
bc3b | ac69ff 19
1070f | 2d258dc6

2.19. RANDOM NUMBERS 111

e By dropping bits 63-32, bits 31-0 become scrambled afteln eadtiply.

e E.g.,classPRNG generates fixed sequence of LARGE random values that repeats affer 2
values (but might repeat earlie?):

class PRNG {
uint32_t seed_; /I same results on 32/64-bit architectures
public :

PRNG(uint32_t s = 362436069) {
seed_ = s; /| set seed

void seed(uint32_t s) { /I reset seed
seed_ = s; /I set seed

}

uint32_t operator ()() { /I [0,UINT_MAX]

seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble bits
return seed_;

}
uint32_t operator ()(uint32_t u) { // T0,u]
return operator ()() % (u + 1); /I call operator()()
}
uint32_t operator ()(uint32_t I, uint32_t u) { // [l,u]
return operator ()(u-1) +I; /I call operator()(uint32_t)
}

e Creating a member with the function-call operator naghgfunctor) allows these objects
to behave like a routine.

PRNG prng; /I often create single generator
prng(); /I [0,UINT_MAX]
prng(5); 11'10,5]

prng(5, 10); // [5,10]

e Large values are scaled using modulus; e.g., generate d0rmmanumber between 5-21.:

PRNG prng;

for (inti=0;i<10;i+=1){
cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << endl;
cout << prng(5, 21) << endl;

e By initializing PRNG with a different “seed” each time the program is run, the gateel
sequence is different:

PRNG prng(getpid()); // process id of program
prng.seed(time()); /I current time

htt p: / / ww. bobwheel er. com st ati stics/Passwor d/ Mar sagl i aPost . t xt

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/PRNG.h
http://www.bobwheeler.com/statistics/Password/MarsagliaPost.txt

112 CHAPTER 2. C++

e #include <cstdlib> provides C random routinesand andrand to set a seed and generate
random values, respectively.

srand(getpid()); /I seed random genrator
r = rand(); /I obtain next random value

2.20 Declaration Before Use

e C/CH haveDeclaration Before Usg(DBU), e.g., a variable declaration must appear before
its usage in a block:

¢ In theory, a compiler could handle some DBU situations:

{
cout << i << endl; // prints 4 ?
int i =4; /I declaration after usage
}
but ambiguous cases make this impractical:
int i =3;
{
cout << i << endl; /I which i?
int i = 4;

cout << | << endl;

}
e C always requires DBU.
e C+ requires DBU in a block and among types but not within a&typ
e Java only requires DBU in a block, but not for declarationsrimmong classes.

e DBU has a fundamental problem specifyimgitually recursive references:

void f) { [/ fcallsg
a(); /I g is not defined and being used

}
void g){ // gcallsf

f0); /I T is defined and can be used
}

Caution: these calls cause infinite recursion as there is nade case.

e Cannot type-check the call tpin f to ensure matching number and type of arguments and
the return value is used correctly.

e Interchanging the two routines does not solve the problem.

e A forward declaration introduces a routine’s type (calledeototype/signature) before its
actual declaration:

2.20. DECLARATION BEFORE USE 113

int f(int i, double); // routine prototype: parameter names optional
/l and no routine body
int f(int i, double d) { // type repeated and checked with prototype

}
e Prototype parameter names are optional (good documemyatio
e Actual routine declaration repeats routine type, whichtmatch prototype.

e Routine prototypes also useful for organizing routines soarce file.

int main(); /I forward declarations, any order
void g(int i);
void f(int i);
int main() { /I actual declarations, any order
f(5);
g(4);

}
void g(inti){...}
void f(int i) {...}

e E.g., allowingmain routine to appear first, and for separate compilation (sei@e2.23
p.124).

e Like Java, C+ does not always require DBU within a type:

| Java | C+
void g() {} // not selected by call in T::f
class T { struct T {
void f() { ¢ = Colour.R; g(); } void f) {c =R; g(;} // ¢, R, g not DBU
void g() { ¢ = Colour.G; f(); } void g() {c =G; f(); } // c, G not DBU
Colour c; enum Colour { R, G, B }; // type must be DBU
enum Colour { R, G, B }; Colour c;
h ¥
e Unlike Java, C+ requires a forward declaration for muguadicursive declarationsmong
types:
| Java | C+ |
class T1 { struct T1 {
T2 t2; T2 t2; // DBU failure, T2 size?
T1() { t2 = new T2(); }
: 3
class T2 { struct T2 {
T1 t1; T1 t1;
T2() {t1 = new T1(); }
¥ h

T1 t1 = new T1(); T1 t1;

114 CHAPTER 2. C++

Caution: these types cause infinite expansion as there is agsdcase.

e Java version compiles becaudé? are references not objects, and Java can look ahead at
T2; CH version disallowed because DBU o2 means it does not know the sizeT.

e An object declaration and usage requires the object’s sideneembers so storage can be
allocated, initialized, and usages type-checked.

e Solve using Java approach: break definition cycle usingvediat declaration and pointer.

| Java | CH |
struct T2; // forward
class T1 { struct T1 {
T2 t2; T2 &t2; // pointer, break cycle
T1() {t2 = new T2(); } T1() : t2(»new T2) {} // DBU failure, size?
class T2 { struct T2 {
T1 t1; T1 t1;

T2() {tl = new T1(; } || }
|5

Forward declaration of2 allows the declaration of variabfeL::t2.

Note, a forward declaration only introduces the name of a.typ

Given just a type name, only pointer/reference declarattorthe type are possible, which
allocate storage for an address versus an object.

C+’s solution still does not work as the constructor canrset typer2.

Use forward declaration and syntactic trick to move memleéindion after both types are
defined

struct T2; // forward

struct T1 {
T2 &t2; // pointer, break cycle
T1(); /I forward declaration

%

struct T2 {
T1 t1;

h

T1:T1() : t2(»new T2) {} // can now see type T2

e Use of qualified nam&1::T1 allows a member to be logically declaredTin but physically
located later (see Secti@i23 p.124).

2.21.

ENCAPSULATION 115

2.21 Encapsulation

Encapsulationhides implementation to force abstracti@a¢ess contrd).

Access control applies to types NOT objects, i.e., all disjet the same type have identical
levels of encapsulation.

Abstraction and encapsulation are neither essential nogrgred to develop software.
E.g., programmers could follow a convention of not direettgessing the implementation.
However, relying on programmers to follow conventions iegkerous.

Abstract data-type (ADT) is a user-defined type that practices abstraction anodesula-
tion.

Encapsulation is provided by a combination of C and C+ festu

C features work largely among source files, and are indy¢iett! into separate compilation
(see SectiorR.23 p.124).

C+ features work both within and among source files.

C+ provides 3 levels of access control for object types:

| Java | CH

class Foo { struct Foo {
private ... private : /I within and friends
/I private members
protected ... protected : /I within, friends, inherited
/I protected members
public ... public : /I within, friends, inherited, users
/I public members

h J§

Java requires encapsulation specification for each member.

C+ groups members with the same encapsulation, i.e., atibees after a labeprivate ,
protected or public , have that visibility.

Visibility labels can occur in any order and multiple timesan object type.

To enforce abstraction, all implementation members aneaf@j and all interface members
are public.

Nevertheless, private and protected (see Secfd¥.9 p. 140 members are still visible
but cannot be accessed.

116 CHAPTER 2. C++

struct Complex {
private :
double re, im; // cannot access but still visible
public :
/I interface routines
3

e struct has an implicipublic inserted at beginning, i.e., by default all members areipubl

e class has an impliciprivate inserted at beginning, i.e., by default all members aregpeiv

struct S { class C {
/I public: /I private:
int z; int x;
private : protected :
int x; int y;
protected : public :
int y; int z;
¥ ¥
e Use encapsulation to preclude object copying by hiding capystructor and assignment
operator:
class Foo {
Foo(const Foo &); /I definitions not required
Foo &operator =(Foo &);
public :
Foo() {...}
¥
void rtn(Foo f) {...}
Foo x, v;

rtn(x); /I disallowed, no copy constructor for pass by value
x =vy; [/l disallowed, no assignment operator for assignment

e Prevent object forgery (lock, boarding-pass, receipt)apymng that does not make sense
(file, database).

e Encapsulation introduces problems when factoring for nextzation, e.g., previously ac-
cessible data becomes inaccessible.

class Cartesian { // implementation type
double re, im;

h
class Complex { class Complex {
double re, im; Cartesian impl;
public : public :
Complex operator +(Complex c);
h
h Complex operator +(Complex a, Complex b);

ostream &operator <<(ostream &o0s, ostream &operator <<(ostream &o0s,
Complex c); Complex c);

2.21. ENCAPSULATION 117

¢ Implementation is factored into a new typartesian, “+” operator is factored into a routine
outside and outputl<” operator must be outside (see Sectibh8.3.2 p. 102).

e Both Complex and “+” operator need to acceSartesian implementation, i.ere andim.
e Creatingget andset interface members fa@artesian provides no advantage over full access.

e C+ provides a mechanism to state that an outside typefi®igiallowed access to its im-
plementation, calle@fiendship (similar to package visibility in Java).

class Complex; // forward

class Cartesian { // implementation type
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex ¢);
friend class Complex;
double re, im;

%

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex ¢);
Cartesian impl;

public :

I3
Complex operator +(Complex a, Complex b) {

return Complex(a.impl.re + b.impl.re, a.impl.im + b.implLim);
}

ostream &operator <<(ostream &o0s, Complex c) {

}

return os << c.impl.re << "+" << c.implLim << "i";

e Cartesian makese/im accessible to friends, artbmplex makesmpl accessible to friends.

e Alternative design is to nest the implementation typ€amplex and remove encapsulation
(usestruct).

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
struct Cartesian { // implementation type
double re, im;
} impl;
public :
Complex(double r = 0.0, double i =0.0) {
impl.re = r; impl.im = i;
}

|

Complex makesCartesian, re, im andimpl accessible to friends.

118

CHAPTER 2. C++

2.22 System Modelling

System modellinginvolves describing a complex system in an abstract way o ineder-
stand, design and construct the system.

Modelling is useful at various stages:

o analysis : system function, services, requirements (oatbr design)
o design : system parts/structure, interactions, behayautine for programming)

o programming : converting model into implementation
Model grows from nothing to sufficient detail to be transfedhinto a functioning system.

Model provides high-level documentation of the system faoderstanding (education) and
for making changes in a systematic manner.

Top-down successive refinement is a foundational mechaméga in system design.

Multiple design tools (past and present) for supportingesysdesign, most are graphical
and all are programming-language independent:

o flowcharts (1920-1970)

o pseudo-code

o Warnier-Orr Diagrams

o Hierarchy Input Process Output (HIPO)

o UML

Design tools can be used in various ways:

o sketchout high-level design or complex parts of a system,
o blueprint the system abstractly with high accuracy,

o generateinterfaces/code directly.

Key advantage is design tool provides a generic, abstradehwod a system, which is trans-
formable into different formats.

Key disadvantage is design tool seldom linked to implenmentanechanism so two often
differ. (CODE = TRUTH)

Currently, UML is the most popular design tool.

2.22. SYSTEM MODELLING 119

2.221 UML

Unified Modelling Language (UML) is a graphical notation for describing and designing
software systems, with emphasis on the object-orientde. sty

UML modelling has multiple viewpoints:

o class model describes static structure of the system for creatingabbje
o object model: describes dynamic (temporal) structure of system objects
o interaction model : describes the kinds of interactions among objects

Focus on class and object modelling.

comment texr ””” target

Classes diagramdefines class-based modelling, where a class is a type ftantnsting
objects.

Note / comment

Class has a name, attributes and operations, and may par&ién inheritance hierarchies
(see SectiorRr.24.12 p.142.

class name Person
- name : String
attributes | - age : Integer optional
(data)| - sex : Boolean
-owns: Car[0.5]
+ getName : String
operations | + getAge : Integer optional
(routines)| + getCars : Car[0..5]
+ buy(in car : inout card : CreditCard) : Boolean

Attribute describes a property in a class.
[visibility] name [*:” [type] [“[” multiplicity “]”] [*="d efault]]
o visibility : access to property
+ = public, — = private, #= protected~ = package
o name : identifier for property (like field name in structure)
o type : kind of property
Boolean, Integer, Float, String, class-name

o multiplicity : cardinality for instantiation of property
0..(N|x), from 0 toN or unlimited,N short forN..N, x short for 0.x
Defaults to 1

120 CHAPTER 2. C++

o default : expression that evaluates to default value (areslfor property

e operation : action invoked in context of object from the class
[visibility] name [“(" [parameter-list] “)”] [“:” return-type] [“[” multiplicity “]”]
o visibility : access to operation
+ = public, — = private, #= protected~ = package
o name : identifier for operation (like method name in strugfur

o parameter-list : input/output types for operation
[direction | parameter-name “:” type [“[” multiplicity “]"]
[“=" default] [“ {" modifier-list“}"]]
o direction : direction of parameter data flow
“in” (default) | “out” | “inout”

o return-type : output type from operation

e Only specify attributes/operations useful in modelling:flags, counters, temporaries, con-
structors, helper routines, etc.

e Attribute with type other than basic type hasaasociation

Person Car

owns :. C.ar [0..5]

o Class Person has attribut@ns with multiplicity constraint 0..5 forming unidirectional
association with clasSar, i.e., person owns (has) 0 to 5 cars.

¢ Alternatively, association can be represented via a linsgjbly named):

Person ownership Car

owns
0.5

o ClassPersorhas attributewnswith multiplicity constraint0..5(at target end) forming
a unidirectional association with claSar and association is named “ownership”.

e Association can also be bidirectional.

Person Car
owns: Car[0..5 owned : Person
Person ownership Car
owned owns

1 0..5

2.22. SYSTEM MODELLING 121

o Association “ownership” also has cla€ar having attributeownedwith multiplicity
constraintl person, i.e., a car can only be owned by 1 person.

If UML graph is cluttered with lines, create associationliass rather than using a line.

o E.g., if 20 classes associated with Car, replace 20 lindsatitibutes in each class.

Alternatively, multiple lines to same aggregate may be meigto a single segment.

o Any adornments on that segment apply to all of the aggregaitials.

< (arrowhead)= navigable

o instances of association can be accessed efficiently asHueiation end (arrowhead)
(car is accessible from person)

o opposite association end “owns” the association’s implaaten (person has a car)

X = not navigable.

Adornments options:

o show all arrows ands (completely explicit)

o suppress all arrows angs =- no inference about navigation
often convenient to suppress some of the arrows/Xs and boly special cases

o show only unidirectional association arrows, and supdvefisectional associations

= two-way navigability cannot be distinguished from no nawign at all, but latter
case occurs rarely in practice.

¢ Navigability may be implemented in a number of ways:

o pointer/reference from one object to another

o elements in arrays
e Object diagram : is a snaphot of class instances at one moment during egacuti

e Object can specify values of class : “name : class-type” édinted), attribute values.

object name | mary : Person
name="Mary”
attribute | age=29 optional
values| sex=T

owns=(pointer)

Object may not have a name (dynamically allocated).

e Objects associated with “ownership” are linked.

122 CHAPTER 2. C++

owned owns
fred: Person : Car
name="Fredrick’ kind="Honda’
mary: Person >< : Car
name="Mary” kind="Toyota’
peg:Person : Car
name="Margaret’ kind="Ford’

Which associations are valid/invalid/missing?

e Association Class optional aspects of association (dashed line).

Person Car
Sale
dealership
serialno
fred: Person : Car
name="Fredrick’ kind="Honda’
billof: Sale
Ted’s Honda
L345YH454

o cars sold through dealership (versus gift) need bill of sale
o association class cannot exist without association (neown

e Aggregation (Q) is an association between an aggregate attribute andrits pa

Car <= Tire
0.1 0..%

o car can have 0 or more tires and a tire can only be on O or 1 car

o aggregate may not create/destroy its parts, e.g., margrelif tires during car’s life-
time and tires may exist after car’s lifetime (snow tires).

class Car {
Tires «tires[4]; // array of pointers to tires

e Composition(#) is a stronger aggregation where a part is included in at orestomposite
at a time.

2.22. SYSTEM MODELLING 123

Car b SEm—— Brake

o car has 4 brakes and each brake ison 1 car

o composite aggregate often does create/destroy its partsame brakes for lifetime of
car and brakes deleted when car deleted (unless brakesedrabjunkyard)

class Car {
DiscBrake brakes[4]; /I array of brakes

e UML has many more facilities, supporting very complex dggans of relationships among
entities.

o VERY large visual mechanisms, with several confusing gieghepresentations.

e UML diagram is too complex if it contains more than about 25 bxes.

Classes Diagram

Vehicle Client Insurance
- make: String | * 1 -name: String |1 1| - company: String
- model: String ! - phone: String - policy: String
- colour: String ! + rate(): Double - expiry: String
Contract :
’7—‘ - start: Date
- end: Date
Truck| |SUV|| Car 1 Corporate| | Individual

*

Accessory
- surcharge: Double | = | no charg
+ surcharge(): Double during sales

I |
FloorMat GPS SatelliteRadio

124 CHAPTER 2. C++

Object Diagram

:Contract

start="2009/09/07"
end="2012/09/07’

jfdoe:Individual
name="John F. Doe”

:Insurance

Car |
l company="SUN Lite”

make="Honda”

model="Civic”
colour="silver’

phone="204 888-202

policy="X-JAJ1567"
expiry="2011/05/31"

:Truck ibm:Corporate :SUV
make="Ford” ‘ name="IBM” ‘ make="Nissan
model="F150" phone="519 744-3121" model="Quest’
colour="red” | | colour="black”

Confract Insurance ~ Contract

end="2013/10/13'

start="2010/10/13"

company="Pilote”
policy="123-ABC”

start="2008/01/25"
end="2014/01/25

expiry="2010/12/01"

:GPS

:FloorMat
- surcharge=500

- surcharge=50

Invalid Object Diagram

:Contract

start="2009/09/07’
end="2012/09/07

:Insurance

company="All Gate”
policy="A012678BJK
expiry="2010/10/01"

jfdoe:Individual

name="John F. Doe”
phone="204 888-202

T
I
:Car |
make="Honda” .
model="Civic”
colour="silver]

:Insurance

company="SUN Lite”
policy="X-JAJ1567"
expiry="2011/05/31"

)

:Truck ibm:Corporate :SUV
make="Ford” | | name="IBM” make="Nissan{
model="F1507 | phone="519 744-312 model="Quest’
colour="red” N R colour="black”

:Contract SUV ~Contract
start="2010/10/13" make="Honda" start="2008/01/25"
end="2013/10/13 model="CRV” end="2014/01/25

colour="blue”

:GPS

:FloorMat
- surcharge=500

- surcharge=50

2.23 Separate Compilation
e As program size increases, so does cost of compilation.

e Separate compilationdivides a program into units, where each unit can be indepahd
compiled.

2.23. SEPARATE COMPILATION 125

e Advantage: saves time by recompiling only program unit{a} thange.

@)

In theory, if an expression is changed, only that expressesus to be recompiled.

o

In practice, compilation unit is coarseranslation unit (TU), which is a file in C/C+-.

@)

In theory, each line of code (expression) could be put in arsge file, but impractical.

o

So a TU should not be too big and not be too small.

e Disadvantage: TUs depend on each other because a progrees steny forms of informa-
tion, especially types (done automatically in Java).

o Hence, need mechanismitoport information from referenced TUs amdport infor-
mation needed to referencing TUs.

e For example, simple program in filgog.cc using complex numbers:

prog.cc
#include <iostream> /I import
#include <cmath>
using namespace std;
class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);

static int objects; /I shared counter
double re, im;
public :

Complex(double r = 0.0, double i = 0.0) { objects +=1; ...}
double abs() const { return sqrt(re = re + im % im); };
static void stats() { cout << objects << endl; }

h

int Complex::objects; /I declare

Complex operator +(Complex a, Complex b) {...}

... I other arithmetic and logical operators

ostream &operator <<(ostream &os, Complex c) {...}

const Complex C_1(1.0, 0.0);

int main() {
Complex a(1.3), b(2., 45), ¢c(-3, -4);
cout << a+b+c+ C_1l << c.abs() << endl;
Complex::stats();

e TU prog.cc has referenes to items ivstream andcmath.
e As well, there are many references within the TU, ergin reference€omplex.

e Subdividing program into TUs in C/C+ is complicated be@ofimport/export mechanism.

126

CHAPTER 2. C++

prog.cc
exec
lithi program
monolitnic L~ - |executable
g++ prog.cc -o exec
unitl.cc]
unitl.o
TUy program exec
separate unit2.cc _ executable
unit2.0
TU» program
g++ -c unitN.cc g++ unit*.o0 -0 exec

TU; is NOT a program; program formed by combining TUs.

Compile each Twith -c compiler flag to generate executable codeifile (Java hasclass

file).

$ g++ -c unitl.cc ... // compile only modified TUs
generates filesnitl.o containing a compiled version of source code.
Combine TY with -o compiler flag to generate executable program.

$ g++ unit~.0 -0 exec // create new excutable program “exec”

Separate original program into two TUs in filesmplex.cc andprog.cc:

complex.cc
#include <iostream> /I import
#include <cmath>
using namespace std;
class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);

static int objects; /I shared counter
double re, im; /I implementation
public :

Complex(double r = 0.0, double i = 0.0) { objects +=1; ...}
double abs() const { return sqrt(re = re + im * im); }
static void stats() { cout << objects << endl; }

h

int Complex::objects; /I declare

Complex operator +(Complex a, Complex b) {...}

... I other arithmetic and logical operators

ostream &operator <<(ostream &o0s, Complex c) {...}

const Complex C_1(1.0, 0.0);

2.23. SEPARATE COMPILATION 127

TU complex.cc has referenes to items iwstream andcmath.

prog.cc
int main() {
Complex a(1.3), b(2., 45), c(-3, -4);
cout << a+ b+ c+ C_1 << c.abs() << endl;
Complex::stats ();

}

TU prog.cc has referenes to items iostream andcomplex.cc.
e How can TUprog.cc accesomplex? By importing description o€omplex.

e How are descriptions imported?

TU imports information using preprocesstinclude (see Sectio2.12.2 p. 84).

e Why not includecomplex.cc into prog.cc?

Because all ofomplex.cc is compiled each timprog.cc is compiled so there is no advantage
to the separation (program is still monolithic).

e Hence, must separatemplex.cc into interface for import and implementation for code.

e Complex interface placed into fileomplex.h, for inclusion (import) into TUs.

complex.h
#ifndef __COMPLEX_H__
#define __COMPLEX_H__ /I protect against multiple inclusion
#include <iostream> /I import
/I NO “using namespace std”, use qualification to prevent polluting scope
class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);

static int objects; /I shared counter
double re, im; /I implementation
public :

Complex(double r = 0.0, double i = 0.0);
double abs() const;
static void stats();
%
extern Complex operator +(Complex a, Complex b);
... I other arithmetic and logical operator descriptions
extern std::ostream &operator <<(std::ostream &os, Complex c);
extern const Complex C_1;
#endif // __COMPLEX_H__

e (Usually) no code, just descriptions : preprecessor vieslC/C+ types and forward dec-
larations (see Sectidh2Q p.112).

e extern qualifier means variable or routine definition is locate@elsere (not for types).

128 CHAPTER 2. C++

e Complex implementation placed in fileomplex.cc.

complex.cc
#include "conpl ex. h" /I do not copy interface
#include <cmath> /I import
using namespace std; /l ok to pollute implementation scope
int Complex::objects; /I defaults to O

void Complex::stats() { cout << Complex::objects << endl; }
Complex::Complex(double r, double i) { objects +=1; ...}
double Complex::abs() const { return sqrt(re = re + im % im); }
Complex operator +(Complex a, Complex b) {

return Complex(a.re + b.re, a.im + b.im);
}

ostream &operator <<(ostream &o0s, Complex c) {
return os << c.re << " i
}

+' << cim << "i
const Complex C_1(1.0, 0.0);

Implementation is composed of actual declarations and.code

.cc file includes the.h file so that there is only one copy of the constants, declasas, and
prototype information.

Why is#include <cmath> in complex.cc instead ofcomplex.h?

Compile TUcomplex.cc to generateomplex.o.

$ g++ -c complex.cc

What variables/routines are exported froamplex.o?

$ nm -C complex.o | egrep " T| B’
Cc_1

Complex::stats()

Complex::objects
Complex::Complex(double, double)
Complex::Complex(double, double)
Complex::abs() const
operator<<(std::ostreamé&, Complex)
operator+(Complex, Complex)

e In general, type names are not in thdile?

e To compileprog.cc, it must importcomplex.h

2.23. SEPARATE COMPILATION 129

prog.cc
#include "conpl ex. h"
#include <iostream> /I included twice!

using namespace std;

int main() {
Complex a(1.3), b(2., 45), c(-3, -4);
cout << a+ b+ c+ C_1 << c.abs() << endl;
Complex::stats ();

Why is#include <iostream> in prog.cc when it is already imported byomplex.h?

Compile TUprog.cc to generatgrog.o.

$ g++ -c prog.cc

Link together TUscomplex.o andprog.o to generatexec.

$ g++ prog.o complex.o -0 exec

All .o files MUST be compiled for the same hardware architectureg.eall x86.

To hide global variables/routines (but NOT class member3)4, qualify with static .

complex.cc

static Complex operator +(Complex a, Complex b) {...}
static ostream &operator <<(ostream &o0s, Complex c) {...}
static Complex C_1(1.0, 0.0);

o herestatic means linkage NOT allocation (see Sect®bh8.7 p. 109).

e Encapsulation is provided by giving a user access to thadecile(s) (h) and the compiled
source file(s).p), but not the implementation in the source file(st).

¢ Note, while theh file encapsulates the implementation, the implementasiaiili visible.

e To completely hide the implementation requires a (more egpe) reference:

130 CHAPTER 2. C++

complex.h
#ifndef __COMPLEX_H__
#define __COMPLEX_H__ /I protect against multiple inclusion
#include <iostream> /I import
/I NO *“using namespace std”, use qualification to prevent polluting scope
class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);

static int objects; /I shared counter
struct Compleximpl; /I hidden implementation, nested class
Compleximpl &impl; /l indirection to implementation

public :

Complex(double r = 0.0, double i = 0.0);
Complex(const Complex &c); /I copy constructor
~Complex(); /I destructor
Complex &operator=(const Complex &c); /I assignment operator
double abs() const;
static void stats();
h
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::ostream &os, Complex c);
extern const Complex C_1;
#endif // __COMPLEX_H__

complex.cc
#include "conpl ex. h" /I do not copy interface
#include <cmath> /I import
using namespace std; /I ok to pollute implementation scope
int Complex::objects; /I defaults to 0
struct Complex::Compleximpl { double re, im; }; /I implementation

Complex::Complex(double r, double i) : impl(«new Compleximpl) {
objects += 1; impl.re = r; impl.im = i;
}

Complex::Complex(const Complex &c) : impl(snew Compleximpl) {
objects += 1; impl.re = c.impl.re; impl.im = c.impl.im;
}

Complex::~Complex() { delete &mpl; }

Complex &Complex::operator=(const Complex &c) {
impl.re = c.impl.re; impl.im = c.impl.im; return xthis;

}

double Complex::abs() { return sqgrt(impl.re = impl.re + implL.im = impl.im); }
void Complex::stats() { cout << Complex::objects << endl; }
Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &o0s, Complex ¢) {

}

return os << c.impl.re << "+" << c.impl.im << "i";

e A copy constructor and assignment operator are used becamg#ex objects now contain
a reference pointer to the implementation (see [ddif.

2.24. INHERITANCE 131

2.24 Inheritance

e Objectorientedlanguages provideheritance for writing reusable program-components.

| Java | C+ |

class Base { ...}
class Derived extends Base { ... }

struct Base { ...}
struct Derived : public Base { ... };

¢ Inheritance has two orthogonal sharing concepts: impléatien and type.

e Implementation inheritance provides reuse of cotgde an object type; type inheritance
provides reuseutsidethe object type by allowing existing code to access the bhgse t

2.24.1

e Implementation inheritance reuses program component®imposing a new object’s im-
plementation from an existing object, taking advantagee¥ipusly written and tested code.

Implementation Inheritance

e Substantially reduces the time to generate and debug a njewat type.

¢ One way to understand implementation inheritance is to tibd@ composition:

| Composition | Inheritance
struct Base { struct Base {
int i int i
int r(..){...} int r(..){...}
Base() { ...} Base() { ...}
h I3

struct Derived : public Base { // implicit
/I composition

{i=3r.); ...}
{...}

struct Derived {
Base b; // explicit composition
int s(..){bi=3;br(..);...}
Derived() { ... }

}d; }d;

int s(...)
Derived()

d.b.i = 3; // composition reference
d.b.r(...); // composition reference
d.s(...); /I direct reference

d.i = 3; /I direct reference
d.r(...); // direct reference
d.s(...); /I direct reference

e Composition implies explicitly create an object membetp aid in the implementation, i.e.,

Derived has-aBase.

e Inheritance, public Base” clause, implies implicitly:

o create an anonymous base-class object-member,

o openthe scope of anonymous member so its members are accesghuetgualifi-

cation, both inside and outside the inheriting object type.

132 CHAPTER 2. C++

e Constructors and destructors must be invoked for all intplideclared objects in the inher-
itance hierarchy as done for an explicit member in the comipos

Base b; b.Base(); // implicit, hidden declaration
Derived d; implicitly Derived d; d.Derived();

rewritten as e :
d.~Derived(); b.~Base(); // reverse order of construction

¢ If base type has members with the same name as derived typerks like nested blocks:
inner-scope name overrides outer-scope name (see SBAIGp. 34).

¢ Still possible to access outer-scope names usihgualification (see SectioR.18 p.97) to
specify the particular nesting level.

| Java | CH |
class Basel { struct Basel {
int i; int i
¥
class Base2 extends Basel { struct Base2 : public Basel {
int i int i; /I overrides Basel::i
} %
class Derived extends Base2 { struct Derived : public Base2 {
int i; int i /I overrides Base2::i
void s() { void r() {
int i = 3; int i =3; /I overrides Derived::i
this .i = 3; Derived::i = 3; // this.i
((Base2)this).i = 3; /I super.i Base2::i = 3;
((Basel)this).i = 3; Base2::Basel::i = 3; /I or Basel:i
} }
} h

e E.g., Derived declaration first creates an invisibase object in theDerived object, like
composition, for the implicit references Base::i andBase::r in Derived::s.

e Friendship is not inherited.

class C {
friend class Base;

%
class Base {
Il access C’s private members

%

class Derived : public Base {
/I not friend of C

%

¢ Unfortunately, having to inherit all of the members is navays desirable; some members
may be inappropriate for the new type (e.g, large array).

2.24. INHERITANCE 133

e As a result, both the inherited and inheriting object musvéey similar to have so much
common code.
2.24.2 Type Inheritance

e Type inheritance extends name equivalence (see Se2tibmp. 54) to allow routines to
handle multiple types, callegblymorphism, e.g.:

struct Foo { struct Bar {
int i int i
double d; double d;
HE }b;

void r(Foo f) { ...}
r(f); /I allowed
r(b); /I disallowed, name equivalence

e Since types-oo andBar are structurally equivalent, instances of either type &haork as
arguments to routine(see SectioR2.7.4 p. 64).

e Even if typeBar has more members at the end, routimaly accesses the common ones at
the beginning as its parameter is typm.

e However, name equivalence precludes thergdil).

e Type inheritance relaxes name equivalence by aliasing tleeided name with its base-type

names.
struct Foo { struct Bar : public Foo { // inheritance
int i /I remove Foo members
double d;
+h } b;

void r(Foo f){...}
r(f); // valid call, derived name matches
r(b); /I valid call because of inheritance, base name matches

e E.g., create a new typdycomplex that counts the number of timess is called for each
Mycomplex object.

e Use both implementation and type inheritance to simplifydaag type Mycomplex:

struct Mycomplex : public Complex {
int cntCalls; /I add
Mycomplex() : cntCalls(0) {} /I add
double abs() { // override, reuse complex’s abs routine
cntCalls += 1;
return Complex::abs();

int calls() { return cntCalls; } /I add

134 CHAPTER 2. C++

e Derived typeMycomplex uses the implementation of the base t@enplex, adds new mem-
bers, and overridesbs to count each call.

e Why is the qualificatiorComplex:: necessary itMycomplex::abs?

e Allows reuse ofComplex’s addition and output operation ftdycomplex values, because of
the relaxed name equivalence provided by type inheritaatveden argument and parameter.

e RedeclareComplex variables toMycomplex to get newabs, and membectalls returns the
current number of calls tabs for any Mycomplex object.

e Two significant problems with type inheritance.

1. o Complex routineoperator + is used to add th&ycomplex values because of the
relaxed name equivalence provided by type inheritance:

int main() {
Mycomplex Xx;
X=X+ X;

}

o However, result type fromperator + is Complex, notMycomplex.

o Assignment of @omplex (base type) tiycomplex (derived type) disallowed be-
cause the&omplex value is missing thentCalls member!

o Hence, aMycomplex can mimic aComplex but not vice versa.
o This fundamental problem of type inheritance is caltedtra-variance.
o CH provides various solutions, all of which have problemd are beyond this

course.
2. void r(Complex &c) {

c.abs();

int main() {
Mycomplex x;
x.abs(); /I direct call of abs
r(x); /I indirect call of abs
cout << "X:" << x.calls() << endl;

}

o While there are two calls tabs on objectx, only one is counted! (see Sec-
tion 2.24.6 p.137)

e public inheritance means both implementation and type inheranc

e private inheritance means only implementation inheritance.
class bus : private car { ...

Use implementation fromar, butbus is not acar.

e No direct mechanism in C+ for type inheritance without iexpentation inheritance.

2.24. INHERITANCE 135

2.24.3 Constructor/Destructor
e Constructors aranplicitly executed top-down, from base to most derived type.

e Mandated by scope rules, which allow a derived-type congiruo use a base type’s vari-
ables so the base type must be initialized first.

e Destructors ar@mplicitly executed bottom-up, from most derived to base type.

e Mandated by the scope rules, which allow a derived-typerdestr to use a base type’s
variables so the base type must be uninitialized last.

e Javafinalize must beexplicitly called from derived to base type.

e Unlike Java, C+ disallows calls to other constructors atdtart of a constructor (see Sec-
tion 2.18.6 p. 108).

e To pass arguments to other constructors, use same syntaxiagiélizing const members.

| Java | C+ |

class Base { struct Base {
Base(int i) {...} Base(int i) {...}

% I3

class Derived extends Base { struct Derived : public Base {
Derived() { super(3); ...} Derived() : Base(3) { ...}
Derived(int i) { super(i); ...} Derived(int i) : Base(i) {...}

} 2

2.24.4 Copy Constructor / Assignment

e If a copy constructor or assignment operator is not definatienderived class, it inherits
from the base class (see pdadib).

struct B {

BO {}
B(const B &c) { cout << "B(&) ";}

B &operator =(const B &rhs) { cout << "B=";}

2

struct D : public B { /I inherit copy and assignment
int i /I basic type, bitwise

int main() {
Dd=d; /I bitwise/memberwise copy
d=d; /I bitwise/memberwise assignment

}

outputs the following:

B(&) B=

136 CHAPTER 2. C++

¢ If D defines a copy-constructor/assignment, it is used ratlaerttiat in any base class.

struct D : public B {
int i /I basic type, bitwise
D(const D&c):B(c),i(c.i){}
D &operator =(const D &rhs) {
i = rhs.i; (B &)sthis = rhs; return «this;
}

5

Must manually copy each subobject (same output as befdm} coercion!

2.24.5 Overloading

e Overloading a member routine in a derived class overridevatloaded routines in the base
class with the same name.

class Base {
public :
void mem(int i) {}
void mem(char c) {}

%
class Derived : public Base {
public :
void mem() {} // overrides both versions of mem in base class
2

e Hidden base-class members can still be accessed:

o Provide explicit wrapper members for each hidden one.

class Derived : public Base {
public :
void mem() {}
void mem(int i) { Base:mem(i); }
void mem(char c) { Base::mem(c); }

3
o Collectively provide implicit members for all of them.

class Derived : public Base {
public :
void mem() {}
using Base::mem; // all base mem routines visible

¥

o Use explicit qualification to call members (violates absticn).
Derived d;
d.Base::mem(3);

d.Base:mem(‘a”);
d.mem();

2.24. INHERITANCE 137

2.24.6 Virtual Routine

e When a member is called, it is usually obvious which one isked even with overriding:

struct Base {

void r) { ...}
%
struct Derived : public Base {
void r) { ...} /I override Base::r
3
Base b;
b.r(); /I call Base::r
Derived d;

d.r(); /I call Derived::r

e However, it is not obvious for arguments/parameters andtprs/references:

void s(Base &b) { b.r(); }

s(d); /I inheritance allows call: Base::r or Derived:.r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); /I Base::r or Derived::r ?

¢ Inheritance masks the actual object type, but both callsildhiovoke Derived::r because
argumenb and referencép point at an object of typPerived.

e If variabled is replaced wittb, the calls should invokBase::r.
e To invoke routine defined in referenced object, qualify mentbutine withvirtual .

e To invoke routine defined by type of pointer/reference, doqualify member routine with
virtual .

e CH+ uses non-virtual as the default because it is more dfficie
e Javaalwaysuses virtual for all calls to objects.

e Once a base type qualifies a member as virtiia, virtual in all derived types regardless
of the derived type’s qualification for that member

e Programmer may want to access membeBase even if the actual object is of tyfzerived,
which is possible becaugrived containsa Base.

e C+ provides mechanism to override the default at the dall si

138 CHAPTER 2. C++

| Java | CH |
class Base { struct Base {
public void f() {} // virtual void f() {} /I non-virtual
public void g() {} // virtual void g() {} /I non-virtual
public void h() {} // virtual virtual void h() {} // virtual
} %
class Derived extends Base { || struct Derived : public Base {
public void g() {} // virtual void g() {} /I non-virtual
public void h() {} // virtual void h() {}; /I virtual
} h
final Base bp = new Derived(); || Base &bp = xnew Derived(); // polymorphic assignment
bp.f(); /| Base.f bp.f(); /I Base::f, pointer type
((Base)bp).g(); /I Derived.g bp.g(); /I Base::g, pointer type
bp.g(); /I Derived.g ((Derived &)bp).g(); // Derived:.g, pointer type
((Base)bp).h(); /I Derived.h bp.Base::h(); /I Base::h, explicit selection
bp.h(); /I Derived.h bp.h(); /I Derived::h, object type

e Java casting does not provide access to base-type’s meauieres.

¢ Virtual members are only necessary to access derived mesitteough a base-type refer-
ence or pointer.

¢ If a type is not involved in inheritancdifal class in Java), virtual members are unnecessary
so use more efficient call to its members.

e C+ virtual members are qualified in the base type as oppastie tderived type.

e Hence, C+ requires the base-type definer to presuppose @aved definers might want
the call default to work.

e Good practice for inheritable object types is to make all tome members virtual.

e Any type with virtual members and a destructor needs to miaéeléstructor virtual so the
most derived destructor is called through a base-type @dieterence.

e Virtual routines are normally implemented by routine peist(see SectioR.17, p. 95).

class Base {
int x,y; /I data members
virtual void m1(...); /I routine members
virtual void m2(...);

J»

e May be implemented in a number of ways:

2.24. INHERITANCE 139

X X X

y y y Virtual Routine Table
m1l — - ml ——ml

m2 T m2 — = m2
copy direct routine pointer indirect routine pointer

2.24.7 Downcast
e Type inheritance can mask the actual type of an object thraygpinter/reference (see Sec-
tion 2.24.2 p.133.

e A downcastdynamically determines the actual type of an object poitadxy a polymorphic
pointer/reference.

e The Java operatanstanceof and the C+Hdynamic _cast operator perform a dynamic check
of the object addressed by a pointer/reference (not ca®tcio

| Java | CH+ |
Base bp = new Derived(); Base *bp = new Derived;
Derived *dp;
if (bp instanceof Derived) || dp = dynamic _cast<Derived *>(bp);
((Derived)bp).rtn(); if (dp!=0){// 0 => not Derived
dp->rtn(); // only in Derived

e To usedynamic _cast on a type, the type must have at least one virtual member.

2.24.8 Slicing

e Polymorphic copy or assignment can result in object truonatalledslicing.

struct B {
int i
%

struct D : public B {
int j;

h
void f(B b) {...}

int main() {
B b;
D d;
f(d); /l truncate D to B
b =d; /I truncate D to B
}

e Avoid polymorphic value copy/assignment; use polymorppainters.

140 CHAPTER 2. C++

2.24.9 Protected Members

¢ Inherited object types can access and modify public anaépred members allowing access
to some of an object’s implementation.

class Base {
private :
int x;
protected :
int y;
public :
int z;
2
class Derived : public Base {
public :
Derived() { x; y; z; }; /I x disallowed; y, z allowed
int main() {
Derived d;
d.x; d.y; d.z; /I x, y disallowed; z allowed

2.24.10 Abstract Class

e Abstract classcombines type and implementation inheritance for strugumew types.

e Contains at least one pure virtual member thattbe implemented by derived class.

class Shape {
int colour;
public :
virtual void move(int x, int y) = 0; /I pure virtual member
2

e Strange initialization to 0 means pure virtual member.

e Define type hierarchy (taxonomy) of abstract classes movimgmon data and operations
are high as possible in the hierarchy.

2.24. INHERITANCE 141

| Java | CH

abstract class Shape { class Shape {
protected int colour = White; protected : int colour;
public public :

Shape() { colour = White; }

abstract void move(int x, int y); virtual void move(int x, int y) = 0;

} 2

abstract class Polygon extends Shape { || class Polygon : public Shape {
protected int edges; protected : int edges;
public abstract int sides(); public : virtual int sides() = O;

} 3

class Rectangle extends Polygon { class Rectangle : public Polygon {
protected int x1, y1, x2, y2; protected : int x1, yl, x2, y2;

public :

public Rectangle(...) {...} Rectangle(...) {...} // init corners
public void move(int x, int y) {..} void move(int x, int y) {...}
public int sides() { return 4; } int sides() { return 4; }

} 3

class Square extends Rectangle { struct Square : public Rectangle {
/I check square /I check square
Square(...) { super(...); ...} Square(...) : Rectangle(...) {...}

} 3

e Usepublic /protected to define interface and implementation access for derivassels.

e Provide (pure) virtual member to allow overriding and foiogplementation by derived
class.

e Provide default variable initialization and implementatifor virtual routine (non-abstract)
to simplify derived class.

e Provide non-virtual routine téorce specific implementatiorgerived class should not over-
ride these routines

e Concrete clasgnherits from one or more abstract classes defining all pinteat members,
i.e., can be instantiated.

e Cannot instantiate an abstract class, but can declare penfteference to it.

e Pointer/reference used to write polymorphic data strestand routines:

void move3D(Shape &s) { ... s.move(...); ... }
Polygon xpolys[10] = { new Rectangle(), new Square(), ... };
for (unsigned int i=0;i<10;i+=1){
cout << polys[i]->sides() << endl; // polymorphism
move3D(xpolys[i]); // polymorphism

142 CHAPTER 2. C++

¢ To maximize polymorphismyrite code to the highest level of abstracti$ji.e. useShape
overPolygon, usePolygon overRectangle, etc.

2.24.11 Multiple Inheritance

e Multiple inheritance allows a new type to apply type and implementation inheciéamul-
tiple times.

class X : public Y, public Z, private P, private Q {...}

e X type is aliased to types andz with implementation, and also uses implementation from
P andQ.

e Interface class(pure abstract-clas9 provides only types and constants, providing type
inheritance.

e Java only allows multiple inheritance for interface class.

| Java | C+ |
interface Polygon { struct Polygon {
int sides(); virtual int sides() = 0;
void move(int X, int y); virtual void move(int x, int y) = 0;
} %
interface Rectilinear { struct Rectilinear {
final int angle = 90; enum { angle = 90 };
} h
class Rectangle implements Rectilinear, || class Rectangle : public Polygon,
Polygon { public Rectilinear {
private int x1, y1, x2, y2; int x1, y1, x2, y2;
public :
public void move(int x, int y) {} void move(int x, int y) {}
public int sides() { return 4; } int sides() { return 4, }
} %
class Square extends Rectangle { struct Square : public Rectangle {
public void move(int x, int y) {} void move(int x, int y) {}
} h

e Multiple inheritance hashanyproblems (beyond this course).

e Safe if restrict multiple inheritance to on@ublic type and one or twrivate types.

2.24.12 UML

e Generalization: reuse through forms of inheritance.

3Also called “program to an interface not an implementatjaviiich does not indicate the highest level of abstrac-
tion.

2.25. INHERITANCE / COMPOSITION DESIGN 143

Polygon

abstract class | Rectilinear

+sides : Integer
+angle: 90 #move(inx: Integer, iny : Integer

t 9

multiple | inheritance single inheritance

concrete class Rectangle Trapezoid| gperclass

+sides ; Intege +sides ; Integar (Dase)
+move(...) +move(...)

=

Zrsingle inheritance

Square subclass
(derived)

+move(...)

o Inheritance establishess*a’ relationship on type, and reuse of attributes and opera-
tions.

o Association class can be implemented with forms of multipkeritance (mixin).

e For abstract class, the class name and abstract operateiteiaized

e For concrete class, abstract operations that are impletapipear in the class diagram.

2.25 Inheritance / Composition Design

e Duality between “has-a” (composition) and “is-a” (inharnte) relationship (see paal).

e Types created from multiple composite classes; typesendadm multiple superclasses.

Composition | Inheritance
class A {...}; class A {...};
class B{ A a; ...} class B: A{...}
class C {...} class C {...};

class D{Bb;Cc;...};|class D:B, C{..}

e Both approaches:

o remove duplicated code (variable/code sharing)

o have separation of concern into components/superclasses.

e Choose inheritance when evolving hierarchical types (tarwy) needing polymorphism.

144 CHAPTER 2. C++

Vehicle
Construction
Heavy Machinery
Crane, Grader, Back-hoe
Haulage
Semi-trailer, Flatbed
Passenger
Commercial
Bus, Fire-truck, Limousine, Police-motorcycle
Personal
Car, SUV, Motorcycle

e For maximum reuse and to eliminate duplicate code, placahlas/operations as high in
the hierarchy as possible.

e Polymorphism requires derived class maintain base clagsterface (Substitutability).
o derived class should also havehavioural compatibility with base class.

e However, all taxonomies are an organizational compromigeen is a car a limousine and
vice versa.

e Not all objects fit into taxonomy: flying-car, boat-car.
¢ Inheritance is rigid hierarchy.

e Choose composition when implementation canibkegated

class Car {
SteeringWheel s; /I fixed
Donut spare;
Wheel swheels[4]; /I dynamic
Engine xeng;
Transmission xtrany;
public :
Car(Engine xe = fourcyl, Transmission «t = manual) :
eng(e), trany(t) { wheels[i] = ...}
rotate() {...} /I rotate tires
wheels(Wheels sw[4]) {...} // change wheels
engine(Engine xe) {...} // change engine

¥
o Composition may be fixed or dynamic (pointer/reference).
e Composition still uses hierarchical types to generalizaponents.

o Engine is abstract class that is specialized to different kindsngfiees, e.g., 3,4,6,8
cylinder, gas/diesel/hybrid, etc.

2.26. TEMPLATE 145

2.26 Template

¢ Inheritance provides reuse for types organized into a tdbyathat extends name equiva-
lence.

e Template provides alternate kind of reuse with no type hierarchy gpes are not equiva-
lent.

e E.g., overloading (see Secti@nlg p.94), where there is identical code but different types:

int max(int a,int b){return a>b?a:b;}
double max(double a, double b) {return a>b ?a: b;}

e Template routine eliminates duplicate code by using types as compile-timarpaters:

template <typename T> T max(Ta, Tb){return a>b?a:b}

e template introduces type paramet€rused to declare return and parameter types.

e At a call, compiler infers typ& from argument(s), and constructs a specialized routine wit
inferred type(s):

cout << max(1, 3) << << max(-1, -4) <<endl; // T ->int
cout << max(1.1, 3.5) << " " << max(-1.1, -4.5) << endl; // T -> double

¢ Inferred type must supply all operations used within thegiate routine.
o e.g., types used with template routimex must supplyoperator >.
e Template typeprevents duplicating code that manipulates differentsype

e E.g., collection data-structures (e.g., stack), have comoode to manipulate data structure,
but type stored in collection varies:

template <typename T=int, unsigned int N=10> // default type/value

struct Stack { /I NO ERROR CHECKING
T elems|N]; /I maximum N elements
unsigned int size; /I position of free element after top

Stack() { size = 0; }
T top() { return elems[size - 1]; }
void push(T e) { elems[size] = e; size += 1; }
T pop() { size -= 1; return elems[size]; }

2

template <typename T, unsigned int N> // print stack

ostream &operator <<(ostream &o0s, const Stack<T, N> &stk) {

for (int i = 0; i < stk.size; i += 1) os << stk.elems[i] << " ";
return os;

}

e Type parametef, specifies the element type of arralgms, and return and parameter types
of the member routines.

e Integer parameteN, denotes the maximum stack size.

146 CHAPTER 2. C++

¢ Unlike template routines, the compiler cannot infer thestpprameter for template types, so
it must be explicitly specified:

Stack<> si; /I stack of int, 10
Stack<double > sd; /I stack of double, 10
Stack<Stack<int>,20> ssi; /I stack of (stack of int, 10), 20
si.push(3); /l'si:3

si.push(4); /l'si:34

sd.push(5.1); /l'sd:5.1

sd.push(6.2); /l sd :516.2

ssi.push(si); /Il ssi: (3 4)

ssi.push(si); /I 'ssi: (34)(34)
ssi.push(si); /l'ssi: (34)(34)(34)
cout << si.top() << endl; 14

cout << sd << endl; /l 5.1 6.2

cout << ssi << endl; /134 34 34

int i = si.pop(); /li:4,si:3

double d = sd.pop(); //d:6.2 sd:5.1

si = ssi.pop(); /l'si:34,ssi:(34) (34

Why doescout << ssi << endl have 2 spaces between the stacks?
e Specified type must supply all operations used within theptata type.

e There must be a space between the two ending chevrons-as parsed asperator>> .

template <typename T> struct Foo { ... };
Foo<Stack<int>> foo; // syntax error
Foo<Stack<int> > foo; // space between chevrons

e Compiler requires a template definition for each usage solbtite interface and imple-
mentation of a template must be in & file, precluding some forms of encapsulation.

2.26.1 Standard Library

e C+ Standard Library is a collection of (template) classebrautines providing: 1/0, strings,
data structures, and algorithms (sorting/searching).

e Data structures are calledntainers: vector, map, list (stack, queue, deque).
¢ In general, nodes of a data structure are either in a comtaip®inted-to from the container.

e To copy a node requires its type have a default and/or copgtaator so instances can be
created without constructor arguments.

e Standard library containers use copying- node type must have default constructor.
e All containers are dynamic sized so nodes are allocateckihéiap.

e To provide encapsulation (see Sect21], p. 115, containers use a nestédrator type
(see SectiorR.7.5 p. 65) to traverse nodes.

o Knowledge about container implementation is completetigai.

2.26. TEMPLATE 147

o lterator capabilities often depend on kind of container:

o singly-linked list has unidirectional traversal
o doubly-linked list has bidirectional traversal
o hashing list has random traversal

¢ lterator operator++” moves forward to the next node, ungpibstthe end of the container.
e For bidirectional iterators, operator “--” moves in theeese direction to++".

2.26.1.1 \Vector
e vector has random access, length, subscript checkit)ggnd assignment (like Java array).

std::vector<T>

vector() create empty vector
vector(int N) create vector with N empty elements
int size() vector size
bool empty() size() ==
T &operator [](int i) access ith element, NO subscript checking
T &at(int i) access ith element, subscript checking
vector &operator =(const vector &) | vector assignment
void push_back(const T &x) add x after last element
void pop_back() remove last element
void resize(int n) add or erase elements at end so size() 3=n
void clear() erase all elements

-~ push—

__i=— pop

o 1 2 3 4

e vector is alternative to C/C+ arrays (see Sectihii.3.1 p. 60).

#include <vector>

int i, elem;
vector<int> v; /I think: int v[0]
for (;;){ /I create/assign vector
cin >> elem;
if (cin.fail()) break;
v.push_back(elem); /l add elem to vector
}
vector<int> c; /I think: int c[0]
cC =V /I array assignment
for (i=csize()-1;,0<=1i;i-=1){
cout << c.at(i) << " "; /I subscript checking
}
cout << endl;

v.clear(); /I remove ALL elements

148 CHAPTER 2. C++

e \ector declaratiomay specify an initial size, e.gvector<int> v(size), like a dimension.

e To reduce dynamic allocation, it is more efficient to dimensiwhen the size is known.

int size;
cin >> size; /I read dimension
vector<int> v(size); /I think int v[size]

e Matrix declaration is a vector of vectors (see also p2@§)e

vector< vector<int> > m;

e Again, it is more efficient to dimension, when size is known.
#include <vector> -

vector< vector<int> > m(5, vector<int>(4)); BEEE

for (int r=0;r< m.size(); r += 1) { 11244
for (int ¢ = 0; ¢ < m[r].size(); ¢ += 1) { —

mlr][c] = r+c; /I or m.at(r).at(c) 21345

, 3456

for (int r=0; r < m.size(); r += 1) { 4567

for (int ¢ =0; c < mr].size); c += 1) {

cout << m[r][c] << ", ";
}
cout << endl;

}

e Optional second argument is initialization value for edelment, i.e., 5 rows of vectors each
initialized to a vector of 4 integers initialized to zero.

e All loop bounds use dynamic size of row or column (columns matybe same length).

o Alternatively, each row is dynamically dimensioned to acsfiesize, e.g., triangular matrix.
vector< vector<int> > m(5); // 5 rows

for (int r=0;r<m.size();r+=1) { L 0
m[r].resize(r + 1); // different length 12
for (int c=0;c<mfsize();c+=1){ [] o34
m[r][c] = r+c; /[or m.at(r).at(c) -
} 3/4/56
) 4)56/7/8
o lterator allows traversal in insertion order or random orde
std::vector<T>::iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase element at posn
++, --, +, +=, -, -= (insertion / random order) forward/backward operations

2.26. TEMPLATE 149

begin() end()
[e]
¢ ¢
o 1 2 3 af
rend) -- —= —=— *++ rbegin()

Iterator’s value is a pointer to its current vector elementlereference to access element.

vector<int> v(3);

vector<int >::iterator it;

v[0] = 2; /I initialize first element

it = v.begin(); /I intialize iterator to first element
cout << v[0] << " " << xv.begin() << " " << 4t << endl;

If erase andinsert took subscript argument, no iterator necessary!

Use iterator like subscript by adding/subtracting froegin/end.

v.erase(v.begin()): Il erase v[0], first
v.erase(v.end() - 1); /I erase V[N - 1], last (why “- 1"?)
v.erase(v.begin + 3); /Il erase Vv[3]

Insert or erase during iteration using an iterator causesifare.

vector<int> v;
for (inti=0;i<5;i+=1)/ create

v.push_back(2 = i); /l values: 0, 2, 4, 6, 8
v.erase(v.begin() + 3); /I remove V[3] : 6
int i /I find position of value 4 using subscript
for (i=0;i<5&&V[i]!=4;i+=1);
v.insert(v.begin() + i, 33); /I insert 33 before value 4

/I print reverse order using iterator (versus subscript)

vector<int >::reverse_iterator r;

for (r = v.rbegin(); r !'= v.rend(); r ++) // ++ move towards rend
cout << #r << endl; Il values: 8, 4, 33, 2, 0

2.26.1.2 Map

e map (dictionary) has random access, sorted, unique-key auartaf pairs Key, Val).

150 CHAPTER 2.
std::map<Key,Val> / std::pair<Key,Val>
map() create empty map
int size() map size
bool empty() size() ==
Val &operator [](const Key &k) | access pair with Key k
int count(Key key) 0 = no key, 1=- key (unique keys
map &operator =(const map &) | map assignment
insert(pair<Key,Val>(k, v)) insert pair
erase(Key k) erase key k
void clear() erase all pairs
pair
first second
bl ue
keys| 9" €€N values
red
#include <map>
map<string, int> m, c; /I Key => string, Val => int
m['green"] = 1; /I create, set to 1
m[" bl ue"] = 2; /I create, set to 2
m["red"]; /I create, set to O for int
m['green"] = 5; /Il overwrite 1 with 5
cout << m["green"] << endl; // print 5
c=m; /I map assignment

m.insert(pair<string,int>(“yel ow', 3)); // m[“yellow”] = 3
if (m.count("bl ack")) Il check for key “black”
m.erase(" bl ue"); Il erase pair(“blue”, 2)

e First subscript for key creates an entry and initializes diéfault or specified value.

e Iterator can search and return values in key order.

std::map<T>:iterator / std::map<T>::reverse_iterator

iterator begin()

iterator end()

iterator rbegin()

iterator rend()

iterator find(Key &k)

iterator insert(iterator posn, const T &X)
iterator erase(iterator posn)

++, -- (sorted order)

iterator pointing to first pair
iterator pointingAFTER last pair
iterator pointing to last pair
iterator pointingBEFORE first pair
find position of key k

insert x before posn

erase pair at posn
forward/backward operations

e lterator returns a pointer togair, with fieldsfirst (key) andsecond (value).

C++

2.26. TEMPLATE 151

#include <map>
map<string,int >::iterator f = m.find(" green"); // find key position
if (f!=m.end()) /I found ?

cout << "found " << f->first <<’ ’ << f->second << endl;

for (f = m.begin(); f = m.end(); f ++) /I increasing order
cout << f->first << 7 7 << f->second << endl:

map<string,int>::reverse_iterator r;

for (r = m.rbegin(); r = m.rend(); r ++) /I decreasing order
cout << r->first << 7’ << r->second << endl;
m.clear(); /I remove ALL pairs

2.26.1.3 List

e If random access is not required, use more efficient singéeKsjueue/deque) or double
(list) linked-list container.

e Examindist (arbitrary removal)stack, queue, deque are similar (restricted insertion/removal).

std::list<T>
list() create empty list
list(int n) create list with n default nodes
int size() list size
bool empty() size() ==
list &operator =(const list &) | list assignment
T front() first node
T back() last node

void push_front(const T &x) | add x before first node
void push_back(const T &x) | add x after last node

void pop_front() remove first node
void pop_back() remove last node
void clear() erase all nodes
~push o L o push—~
pop ——L__ _—™ = —=L __ = pop
front back

e lterator returns a pointer to a node.

std::list<T>::iterator / std::list<T>::reverse_iterator
iterator begin() iterator pointing to first node
iterator end() iterator pointingAFTER last node
iterator rbegin() iterator pointing to last node
iterator rend() iterator pointingBEFORE first node
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase node at posn
++, -- (insertion order) forward/backward operations

152 CHAPTER 2. C++

#include <list>
struct Node {
char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

3

list<Node> dI; /I doubly linked list

for (inti=0;i<10;i+=1){ /I create list nodes
dl.push_back(Node(‘a’+i, i, i+0.5)); // push node on end of list

}

list<Node>::iterator f;
for (f = dl.begin(); f '= dl.end(); f ++) { // forward order

cout << "c:" << (+f)c << " 11" << f>i << " A" << f->d << end];
while (0 < dl.size()) { /I destroy list nodes
dl.erase(dl.begin()); /I remove first node

} // same as dl.clear()

2.26.1.4 for_each
e Template routindor_each provides an alternate mechanism to iterate through a cwrtai
e An action routine is called for each node in the containesipasthe node to the routine for
processing (Lismpply).

#include <iostream>
#include <list>
#include <vector>

#include <algorithm> /I for_each
using namespace std;

void print(inti) {cout<<i<<" ";} /I print node
int main() {

list< int > int_list;

vector< int > int_vec;

for (inti=0;i<10;i+=1){ /I create lists
int_list.push_back(i);
int_vec.push_back(i);

}

for_each(int_list.begin(), int_list.end(), print); // print each node

for_each(int_vec.begin(), int_vec.end(), print);

Type of the action routine iid rtn(T), whereT is the type of the container node.

E.g.,print has arint parameter matching the container node-type.

More complex actions are possible using a functor (see paitje

e E.g., an action to print on a specified stream must store tharstand have aoperator ()
allowing the object to behave like a function:

2.27. NAMESPACE 153

struct Print {

ostream &stream; /I stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream <<i<<"";}
5
int main() {
list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));
}

e ExpressiorPrint(cout) creates a constartint object, andfor_each calls operator ()(Node)
in the object.

2.27 Namespace

e CH namespacds used to organize programs and libraries composed of preiliypes and
declarationgo deal with naming conflicts

e E.g., namespacsed contains all the I/O declarations and container types.
e Names in a namespace form a declaration region, like theeszidplock.

e Analogy in Java is a package, m#mespace does NOT provide abstraction/encapsulation
(use.h/.cc files).

e C+ allows multiple namespaces to be defined in a file, as wednaong files (unlike Java
packages).

e Types and declarations do not have to be added consecutively

| Java source files | C+ source file
package Foo; // file namespace Foo {
public class X ... /I export one type /I types / declarations
/Il local types / declarations }

namespace Foo {

package Foo; // file /I more types / declarations

public enum Y ... // export one type }

/Il local types / declarations namespace Bar {

package Bar; // file /I types /| declarations

public class Z ... // export one type }
/Il local types / declarations

e Contents of a namespace are accessed using full-qualifredsa

| Java | CH |

Foo.T t = new Fo00.T(); || Foo::T «t = new Foo::T();

CHAPTER 2. C++

154
e Or by importing individual items or importing all of the naspace content.

| Java | CH
import Foo.T; || using Foo::T; /I declaration
import Foo.x; || using namespace Foo; // directive

e using declaratiorunconditionallyintroduces an alias (likepedef , see Sectio.7.4 p.64)
into the current scope for specified entity in namespace.

o If name already exists in current scopeing fails.

namespace Foo {int i =0; }
int i =1;
using Foo:i; // i exists in scope, conflict failure

o May appear in any scope.

e using directive conditionally introduces aliases to current scope for all entities in rame
pace.

o If name already exists in current scope, alias is ignoredarhe already exists from

using directive in current scopeising fails.

namespace Foo {int i =0; }
namespace Bar {int i = 1;}
{

int i =2;
using namespace Foo; // i exists in scope, alias ignored

{
using namespace Foo;
using namespace Bar; // i exists from using directive

i =0; // conflict failure, ambiguous reference to ‘i’

o May appear in namespace and block scope, but not class scope

2.27. NAMESPACE 155

namespace Foo { /I start namespace
enum Colour { R, G, B };
int i =3;
}
namespace Foo { /l add more
class C {int i; };
int j = 4;
namespace Bar { /I start nested namespace
typedef short int shrint;
char j ="a’;
int C();
}
}
int j =0; /I external
int main() {
int j =3; I local
using namespace Foo; // conditional import: Colour, i, C, Bar (not j)
Colour c; /I Foo::Colour
cout << i << endl; /I Foo::i
C x; /| Foo::C
cout << :j << endl; /I external
cout << j << endl; /Il local

cout << Foo:;j << << Bar::j << endl; /I qualification
using namespace Bar; // conditional import: shrint, C() (not j)

shrint s = 4; /I Bar::shrint
using Foo:j; /I disallowed : unconditional import
C(); /I disallowed : ambiguous “class C” or “int C()"

}

e Never put anamespace in a header file.f) (pollute local namespace) or befatiaclude
(can affect names in header file).

156 CHAPTER 2. C++

3 Tools

3.1 C/C+ Composition
e C+ is composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edigsptogranbeforecompilation
(see SectiorR.12 p. 83).

2. The template (generic) language adds new types and esdtiming compilation (see
Section2.26 p. 145).

3. The C programming language specifying basic declaratiom control flow to be ex-
ecutedafter compilation.

4. The CH programming language specifying advanced deadas and control flow to
be executedfter compilation.

e A programmer uses the four programming languages as fallows

user edits— preprocessor edits— templates expand— compilation
(— linking/loading— execution)

e Cis composed of languages 1 & 3.

e The compiler interface controls all of these steps.

3.2 Compilation
C/C++ header filesC/C++ source files

— =
(preprocessor)cpp
'

preprocessed source ¢

-E, -D, -l
e

(translator) cclplus
W, -v, -g, -S, -O1/2/3, -c
assembly code

(assembler)as

object code
o%iherobjeﬁt-codL, Iil (linker) }-o, -, -L

les and libraries

Ja.out object

e Compilation is the process of translating a program from human to macksxable form.

© Peter A. Buhr

157

158 CHAPTER 3. TOOLS

e The translation is performed by a tool calledanpiler.

Compilation is subdivided into multiple steps, using a nemdi tools.

Often a number of options to control the behaviour of eacp. ste

Option are presented fgr-+, but other compilers have similar options.

General format:

g++ option-list x.cc .0 ...

3.2.1 Preprocessor
e Preprocessor (cpp) takes a C+ source file, removes compmaedtexpandginclude , #define ,
and#if directives (see Sectidh12 p.83).
e Options:

o -E run only the preprocessor step and writes the preprocesgoutdo standard out.

$ g++ -E x.cC ...
... much output from the preprocessor

o -D define and optionally initialize preprocessor variablesrirthe compilation com-
mand:

$ g++ -DDEBUG=2 -DASSN ... %.cC *.0 ...
same as putting the followinggefine s in a program without changing the program:

#define DEBUG 2
#define ASSN

e -ldirectorysearch directory for include files;

o files within the directory can now be referenced by relat@me usingtinclude <file-name>.

3.2.2 Translator
e Translator takes a preprocessed file and converts the Cgtdge into assembly language
for the target machine.
e Options:

o -Wkind generate warning message for thkand” of situation.

« -Wall print ALL warning messages.
x -Werror make warnings into errors so program does not compile.

o -v show each compilation step and its details:

$ g++ -V +.CC %.0 ...
... much output from each compilation step

E.g., system include-directories wheyp looks for system includes.

3.3. COMPILING COMPLEX PROGRAMS 159

#include <...> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/i486-linux
{usr/include/c++/3.3/backward
{usr/local/include
{usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

o -g add symbol-table information to object file for debugger
o -S compile source file, writing assemble code to $iteirce-file.s

o -01/2/3 optimize translation to different levels, where ebslel takes more compila-
tion time and possibly more space in executable

o -c compile/assemble source file but do not link, writing objeade to filesource-file.o

3.2.3 Assembler

e Assembler (as) takes an assembly language file and convedasbject code (machine

language).

3.2.4 Linker

e Linker (Id) takes the implicito file from translated source and expliait files from the

3.3

command line, and combines them into a new object or exeleufiéd
Linking options:

o -Ldirectoryis a directory containing library files of precompiled code.
o -llibrary search in library directories for givdibrary.
o -0 gives the file name where the combined object/ executablaceg.

x If no name is specified, default naragut is used.

Look in library directory 7lib” for math library “m” containing precompiledsin” routine
used in ‘myprog.cc” haming executable progranedic”.

$ gcc myprog.cc -L/lib -Im -0 calc

Compiling Complex Programs

As number of TUs grow, so do the references to type/varidliegendencies) among TUs.
When one TU is changed, other TUs that depend on it must clemjbe recompiled.

For a large numbers of TUs, the dependencies turn into a nigkdre with respect to re-
compilation.

160 CHAPTER 3. TOOLS

3.3.1 Dependencies
e A dependenceoccurs when a change in one location (entity) requires aggnamanother.

e Dependencies can be:

o loosely coupled, e.g., changing source code may requiraraspmnding change in
user documentation, or
o tightly coupled, changing source code may require recangpdf some or all of the
components that compose a program.
e Dependencies in C/C+ occur as follows:

o executable depends amfiles (linking)
o .o files depend orc files (compiling)
o .C files depend orh files (including)

source code dependence graph

x.h #include y h Xx.0—=Xx.C—=x.h
x.C #include "Xx.h
yh #include "z.h" aouts YO0 T¥CTTyh
y.C #include "y.h"

zo—>=z.C—>2zh
z.h #include "y. h"
z.C #include "z.h"

Cycles in#include dependences are broken#ifndef checks (see padb).

The executablea(out) is generated by compilation commands:

$ g++ -c z.C # generates z.0
$ g++ -c y.C # generates y.o
$ g++ -c x.C # generates x.0

$ g++ x.0 y.0 z.0 # generates a.out

However, it is inefficient and defeats the point of separatamlation to recompile all pro-
gram components after a change.

If a change is made tph, what is the minimum recompilation necessary? (all)

Doesany change tg.h require these recompilations?

Often no mechanism to know the kind of change made within adilg, changing a com-
ment, type, variable.

Hence, “change” may be coarse grain, i.e., basedgrchange to a file.

One way to denote file change is witme stamps.

3.3. COMPILING COMPLEX PROGRAMS 161

e UNIX stores in the directory the time a file is last changedhwecond precision (see Sec-
tion 1.6, p. 15).

e Using time to denote change means the dependency graphngpari ordering where the
root has the newest (or equal) time and the leafs the oldestg(al) time.

1:00 12:30 12:00 3:00 2:30 2:00
X.0—=X.C—=x.h X.0—=X.C—=x.h
1:0 1:00 12:35 12:4 3:0 1:00 12:35 12:4

a.out yo—=yC—=yh > a.out yo—=yC—=yh >

1:00 12:30 12 1:00 12:30 12
z.0—=z.C—=1z.h z.0—=z.C—=1z.h

o Filesx.o, y.0 andz.o created at 1:00 from compilation of files created befoge.
o File a.out created at 1:01 from link of.o, y.0 andz.o.

o Changes are subsequently made.boandx.C at 2:00 and 2:30.

o Only filesx.o anda.out need to be recreated at 3:00 and 3:01. (Why?)

3.3.2 Make

e make is a system command that takes a dependence graph and usdsfie-times to
trigger rules that bring the dependence graph up to date.

e A make dependence-graph expresses a relationship between apamdia set of sources.

e make does not understand relationships among sources, one thatists at the source-
code level and is crucial.

e Hence, make dependence-graph loses some of the relapsr{giashed lines):

E.g., source.C depends on sourceh butx.C is not a product ok.h like x.o is a product of
x.C andx.h.

Two most common UNIX makes are: make and gmake (on Linake is gmake).

Like shells, there is minimal syntax and semanticsiiake, which is mostly portable across
systems.

Most common non-portable features are specifying depeneeand implicit rules.

162 CHAPTER 3. TOOLS

A basic makefile consists of string variables with initialibn, and a list of targets and rules.

This file can have any name, hutke implicitly looks for a file calledmakefile or Makefile
if no file name is specified.

Each target has a list of dependencies, and possibly a sehahands specifying how to
re-establish the target.

variable = value # variable

target : dependencyl dependency? ... # target / dependencies
commandl # rules
command?2

Commands must be indented by one tab character.

make is invoked with a target, which is the root or subnode of a depace graph.

make builds the dependency graph and decorates the edges watlstamps for the specified
files.

If any of the dependency files (leafs) is newer than the tdiigetor if the target file does
not exist, the commands are executed by the shell to updattatbet (generating a new
product).

Makefile for previous dependencies:

a.out : x.0 y.0 z.0

g++ X.0 y.0 2.0 -0 a.out
X.0 : Xx.C x.h y.h z.h

g++ -g -Wall -c x.C
y.0 : y.C y.h z.h

g++ -g -Wall -c y.C
z.0:2C zhy.h

g++ -g -Wall -c z.C

e Check dependency relationship (assume source files jued)e

$ make -n -f Makefile a.out
g++ -g -Wall -c x.C

g++ -g -Wall -c y.C

g++ -g -Wall -c z.C

g++ X.0 y.0 .0 -0 a.out

All necessary commands are triggered to bring taageft up to date.
o -n builds and checks the dependencies, showing rules to lgeetad (leave off to exe-
cute rules)
o -f Makefile is the dependency file (leave off if namgin]akefile)
o a.out target name to be updated (leave off if first target)

3.3. COMPILING COMPLEX PROGRAMS 163

e Generalize and eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJIECTS} -0 ${EXEC}
X.0 : Xx.C x.h y.h z.h # targets / dependencies / commands

${CXX} ${CXXFLAGS} x.C
y.0 : y.C y.h z.h

${CXX} ${CXXFLAGS} y.C
z.0:2C zhy.h

${CXX} ${CXXFLAGS} z.C

e Eliminate common rules:

@)

make can deduce simple rules when dependency files have spedifiesu

o

E.g., given target with dependencies:
X.0 : X.C x.h y.h z.h
make deduces the following rule:

${CXX} ${CXXFLAGS} x.C # special variable names

This rule use variable&{CXX} and${CXXFLAGS]} for generalization.

o

Therefore, all rules fox.o, y.o andz.o can be removed.

@)

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step

${CXX} ${OBJIECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets / dependencies

y.0 : y.C y.h z.h
z.0:z.C zhy.h

e Because dependencies are extremely complex in large pnegmogrammers seldom con-
struct them correctly or maintain them.

e Without complete and update dependenciesyake is useless.

e Automate targets and dependencies:

164 CHAPTER 3. TOOLS

CXX = g++ # compiler
CXXFLAGS = -g -Wall -MMD # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
DEPENDS = ${OBJECTS:.0=.d} # substitute “.0” with “.d”
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${OBIECTS} -0 ${EXEC}
-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)
.PHONY : clean # not a file name
clean : # remove files that can be regenerated

rm -rf ${DEPENDS} ${OBJECTS} ${EXEC} # alternative *.d %.0

o Preprocessor traverses all include files, so it knows alicsatile dependencies.
o g++ flag MMD writes out a dependency graph for user source-files tadilece-file.d

file | contents
x.d | x.0: Xx.C x.h y.h z.h
y.d | y.0: y.C y.h z.h
zd | z.0: z.C zh y.h

o g++ flag MD generates a dependency graph for user/system source-files.
o -include reads thed files containing dependencies.

o .PHONY indicates a target that is not a file name and never creatsda itecipe to be
executed every time the target is specified.

x A phony target avoids a conflict with a file of the same name.
o Phony targetlean removes product files that can be rebuilt (save space).

$ make clean # remove all products (don’t create “clean”)

e Hence, itis possible to have a universalkefile for a singleor multiple programs.

3.4 Source-Code Management
e As a program develops/matures, it changes in many ways.

o UNIX files do not support the temporal development of a prog(aersion control),
i.e., history of program over time.

o Access to older versions of a program is useful, e.g., bgciut of changes because
of design problems.

e Program development is often performed by multiple develsgach making independent
changes.

o Sharing using files can damage file content for simultaneaitesy

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/Makefile.1
http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/Makefile.2

3.4. SOURCE-CODE MANAGEMENT

o Merging changes from different developers is tricky andeticonsuming.

e To solve these problemssaurce-code management-systers used to provide versioning
and control cooperative work.

3.41 SVN

e Subversion(SVN 1.6) is a source-code management-system usingoine- modify-merge

model.

@)

@)

o

o

merging.

master copy of albroject files kept in arepository,
multiple versions of the project files managed in the repogit
developersheckoutaworking copy of the project for modification,

developerscheckin changes from working copy with helpful integration usiregt

SVN works on file content not file time-stamps.

working copies

V2

programmey

V2
programmey

V3
programmey

repository
checkout 1
: V2
checkin project
checkout
checkin
2
V3 :
rojec
checkout project

checkin

166

SVN Command

CHAPTER 3. TOOLS

Action

mkdir repository-dir-namem " string"

Is repository-name

import directory-name repository-nam
checkout repository-name

add file/dir-list

commit -m " string"

rm file/dir-list

status
revert file/dir-list
mv file/dir-list

cp file/dir-list

cat file
update

resolve --accept ARG file

3.4.2 Repository

make new directory in repository
list files in repository

ecopies unversioned directory into repository
extract working copy from the repository
schedules files for addition to repository
update the repository with changes in working copy
remove files from working copy and schedule removal from
repository
displays changes between working copy and repository
undo scheduled operations on repository
rename file in working copy and schedule renaming in
repository
copy file in working copy and schedule copying in reposi-
tory
print file in repository
update working copy from repository
resolve conflict for file as specified ARG

e The repository is a directory containing multiple projects

courses
cs246
assnl
x.h, x.C, ...
assn2

more meta-projects / proje

repository

meta-project

project

project files

project

project files
cts

e svnadmin create command creates and initializes a repository.

$ svnadmin create courses

e svn mkdir command creates subdirectories for meta-projects andqisoj

$ svn mkdir file:///u/jfdoe/courses/cs246

Committed revision 1.

$ svn mkdir file:///u/jfdoe/courses/cs246/assnl

Committed revision 2.

-m " create directory cs246

-m " create subdirectory assnl

o files in repository are designated using URL, so must uselatespathname

o -m (message) flag documents repository change.

o if no -m (message) flag specified, prompts for documentation (usiregéor if shell
environment variabl€DITOR set).

3.4. SOURCE-CODE MANAGEMENT 167

e svn Is command lists directories.

$ svn Is file:///u/jfdoe/courses/cs246
assnl/
$ svn Is file:///u/jfdoe/courses/cs246/assnl

e If project directoryassnl already exists, it can be added directly to the repository.

e svn import command copies an unversioned directory of files into a liepys

$ svn import assnl file:///u/jfdoe/courses/cs246/assnl

Adding assnl/z.h
Adding assnl/x.C
Adding assnlly.C
Adding assnl/z.C
Adding assnl/Makefile
Adding assnl/x.h
Adding assnlly.h

Committed revision 2.

$ svn Is file:///u/jfdoe/courses/cs246/assnl
Makefile

x.C

x.h

e For students working together, the shared repository meishade accessible in the file
system (see padk).

$ chgrp -R ¢s246 _75 courses # set group on directory and subfiles
$ chmod -R g+rwx courses # allow group members access to ALL files

and for the path to the repository.
e Group names246_75 is acquired on a per course basis for each team of students.

3.4.3 Checking Out
e svn checkout command extracts a working copy of a project from the repogit

$ svn checkout file:///u/jfdoe/courses/cs246/assnl
Checked out revision 2.

$ Is -AF assnl

.svn/

e For first checkout, directoryssnlis created in the current directory (unless it already sxist
e Subdirectorysvn contains administrative information for SVN andist not be modified

e Working copy is then modified before being merged back inéorépository.

168

CHAPTER 3. TOOLS

e Other developers do not see each others working copy, ahdmnylsee modifications when

committed.

e To create a working-copy off-campus, ush URL:

$ svn checkout svn+ssh://jfdoe@student.cs.uwaterloo.ca /uljfdoe/courses/cs246/assnl

(Replace file URL in subsequent commands with URL.)

3.4.4 Adding

e Introduce files into project directomssnil.

$ cd assnl
$... # create files: Makefile x.C x.h y.C y.h zh z.C

$ Is -AF

.svn/ Makefile x.C x.h y.C y.h zC zh

e svn add commandschedulesaddition of files (in current directory) into the repository

$ svn add Makefile x.C x.h y.C y.h z.h z.C
Makefile

>>>>>>>

x.C
x.h
y.C
y.h
z.h
z.C

Addition only occurs on next commit.

e Forgettingsvn add is a common mistake.

e Put only project source-files into repository.

e Product files, e.gx.0, .d, a.out, do not need to be versioned.

3.4.5 Checking In

e svn commit command updates the repository with the changes in worlapg.c

$ svn commit -m "initial project files

Adding
Adding
Adding
Adding
Adding
Adding
Adding

Makefile
Xx.C
x.h
y.C
y.h
z.C
z.h

Transmitting file data
Committed revision 3.

3.4. SOURCE-CODE MANAGEMENT 169

¢ if no -m (message) flag specified, prompts for commit documentation.

$ svn Is file:///uljfdoe/courses/cs246/assnl
Makefile

x.C

x.h

y.C

y.h
z.C
z.h

e Always make sure your code compiles and runs before comnmitit is unfair to pollute a
project with bugs.

3.4.6 Modifying
o Editted files in working copy are implicitlgcheduledor update on next commit.
$viyhyC
e svn rm command removes files from working copy asuhedulegemoval of files from the
repository.
$Is -AF

.svn/ Makefile x.C x.h y.C y.h z.C z.h
$svnrm z.h z.C

D z.h
D z.C
$Is -AF

.svn/ Makefile x.C x.h y.C y.h

e svn status command displays changes between working copy and reppsito

$ svn status

D z.h
M y.C
D z.C
M y.h

Filesy.h / y.C have local modificationsM”, andz.h / z.C are deletedD".
e Possible to undo scheduled changes by reverting to files fepsitory.

e svn revert command copies unchanged files from repository to workiny.co

$ svn revert y.C z.h
Reverted ‘y.C’

Reverted "z.h’
$Is -AF
.svn/ Makefile x.C x.h y.C y.h zh

170

e Commit edits and removals.

$ svn commit -m " changes to y.h and remove z.C
Sending y.h

Deleting z.C

Transmitting file data .

Committed revision 4.

$ svn Is file:///u/jfdoe/courses/cs246/assnl

Makefile

x.C

x.h

Files in the repository can be renamed and copied.

$ svn mv x.h w.h

A w.h
D x.h
$ Is -AF

.svn/ Makefile w.h x.C y.C y.h

$ svn cp w.h k.h

A k.h

$Is -AF

.svn/ Makefile k.h wh x.C y.C y.h

Commit renaming and copying.

$ svn commit -m " renaming and copying

Adding k.h
Adding w.h
Deleting x.h

Committed revision 5.

$ svn Is file:///uljfdoe/courses/cs246/assnl
Makefile

k.h

w.h

x.C

y.C

y.h

3.4.7 Revision Number

e Each commit receives a revision number (currently 5).

CHAPTER 3.

e Information in older versions is accessible using sughiX on URL.

TOOLS

svn mv command renames file in working copy astthedulegenaming in the repository.

svn cp command copies file in working copy asdhedulexopying in the repository:

3.4. SOURCE-CODE MANAGEMENT 171

e E.g., printfilez.C, which last existed in revision 3.

e svn cat command prints specified file from the repository.

$ svn cat file:///u/ifdoe/courses/cs246/assnl/z.C @3
#include " z.h"

e Copy deleted file.C from repository into working copy and modify.

$ svn copy file:///u/jffdoe/courses/cs246/assnl/z.C @3 z.C
A z.C

$ Is -AF

.svn/ Makefile k.h wh x.C y.C yh zC zh
$... # change z.C

$ svn commit -m " bring back z.C and modify
Adding z.C

Transmitting file data .

Committed revision 6.

$ svn cat file:///u/jfdoe/courses/cs246/assnl/z.C @6
#include " z.h"

new text

3.4.8 Updating

e Synchronize working copy with commits in the repositorynfrother developers.

jfdoe | kdsmith
modify x.C | modify x.C & y.C
removek.h
addt.Cc

Assumekdsmith has committed their changes.

jfdoe attempts to committed their changes.

$ svn commit -m " modify x.C "
Sending x.C
svn: Commit failed (details follow):

svn: File “/cs246/assn1/x.C” is out of date

jfdoe must resolve differences between their working copy andcthreent revision in the
repository.

svn update command attempts to update working copy from most receigicgw

172

CHAPTER 3.

$ svn update

D kh file k.h deleted
Uu vy.C file y.C updated without conflicts
A tC file t.C added

Conflict discovered in "x.C".
Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: df
--- .svn/text-base/x.C.svn-base Sun May 2 09:54:08 2010
+++ .svn/tmp/x.C.tmp Sun May 2 11:28:42 2010
@@ -1 +16 @@
#include " x.h"
+<<<<<<< . mine
+jfdoe new text

+kdsmith new text
+>>>5>5>>> 17
Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: tc
G xC file x.C merGed with kdsmith version
Updated to revision 7.

o (p) postpone : mark conflict to be resolved later

o (df) diff-full : show changes to merge file

o (e) edit: change merged file in an editor

o (r) resolved : after editing version

o (mc) mine-conflict : accept my version for conflicts
o (tc) theirs-conflict : accept their version for conflicts
o (mf) mine-full : accept my file (no conflicts resolved)

o (tf) theirs-full : accept their file (no conflicts resolved)

e Merge algorithm is generally very good if changes do not layer

e Overlapping changes result in a conflict, which must be wesbl

e If unsure about how to deal with a conflict, it can be postpdioeeach file.

TOOLS

3.4. SOURCE-CODE MANAGEMENT

$ svn update

D kh file k.h deleted
Uu vy.C file y.C updated without conflicts
A tC file t.C added

Conflict discovered in 'x.C".

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: p

C xC file x.C conflict

Updated to revision 7.

Summary of conflicts:

Text conflicts: 1

e Working copy now contains the following files:

x.C x.C.mine

#include "x.h" | #include "x.h"
<<<<<<< .mine | jfdoe new text

jfdoe new text

kdsmith new text
>S>S>S>5>>> 17

X.C.r3 X.C.r7

#include "x.h" | #include "x.h"

o O O O

e No further commits allowed until conflict is resolved.

kdsmith new text

x.C : with conflicts

x.C.mine : jfdoe version ok.C

x.C.r3 : previous jfdoe version of.C

x.C.r7 : kdsmith version ok.C in repository

173

e svn resolve --accept ARG command resolves conflict with version specifiedABG, for
ARG options:

o O O O O O

base x.C.r3 previous version in repository

working : x.C current version in my working copyéeds modificatioh
mine-conflict :x.C.mine accept my version for conflicts
theirs-conflict :x.C.r7 accept their version for conflicts

mine-full : x.C.mine accept my file (no conflicts resolved)

theirs-full : x.C.r7 accept their file (no conflicts resolved)

$ svn resolve --accept theirs -conflict x.C
Resolved conflicted state of 'X. C’

174

3.5

CHAPTER 3. TOOLS

Removes 3 conflict filex.C.mine, x.C.r3, x.C.r7, and setx.C to theARG version.

$ svn commit -m " nodi fi ed x. C"
Sending x.C

Transmitting file data .

Committed revision 8.

Debugger

An interactive, symboliclebuggereffectively allows debug print statements to be added and
removed to/from a program dynamically.

You should not rely solely on a debugger to debug a program.

You may work on a system without a debugger or the debuggermaayork for certain
kinds of problems.

A good programmer uses a combination of debug print statesvaard a debugger when
debugging a complex program.

A debugger does not debug your program for you, it merelyshiglphe debugging process.

Therefore, you must have some idea about what is wrong witlhgrgm before starting to
look or you will simply waste your time.

3.5.1 GDB

e The two most common UNIX debuggers are: dbx and gdb.

e File test.cc contains:

1 int rCint a[]) {

2 int i = 100000000;

3 afi] += 1, /I really bad subscript error
4 return a[i];

5}

6 int main() {

7 int a[10] = {0, 1}

8 r(a);

o }

e Compile program using they flag to include names of variables and routines for symbolic

debugging:

$ g++ -g test.cc

e Start gdb:

$ gdb ./a.out
... gdb disclaimer
(gdb) «— gdb prompt

3.5. DEBUGGER 175

e Like a shell, gdb uses a command line to accept debugging emuis

GDB Command Action
<Enter> repeat last command
run [shell-arguments] start program with shell arguments
backtrace print current stack trace
print variable-name print value in variable-name
frame [N] go to stack frame n
break routine / file-name:line-na set breakpoint at routine or line in file
info breakpoints list all breakpoints
delete [Nn] delete breakpoint n
step [n] execute next n lines (into routines)
next [n] execute next n lines of current routine
continue [n] skip next n breakpoints
list list source code
quit terminate gdb

e <Enter> without a command repeats the last command.

e run command begins execution of the program:

(gdb) run

Starting program: /u/userid/cs246/a.out

Program received signal SIGSEGV, Segmentation fault.

0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1, /I really bad subscript error
o If there are no errors in a program, running in GDB is the sasreianing in a shell.
o If there is an error, control returns to gdb to allow examorat

o If program is not compiled withg-flag, only routine names given.

e backtrace command prints a stack trace of called routines.
(gdb) backtrace

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:8

o stack has 2 frameasain (#1) andr (#0) because error occurred in callto

e print command prints variables accessible in the current roudibject, or external area.

(gdb) print i
$1 = 100000000

e Can print any C+ expression:

176 CHAPTER 3. TOOLS

(gdb) print a
$2 = (int ») Oxffbefa20

(gdb) p »a
$3 =0

(gdb) p a[1]
$4 =1

(gdb) p a[1]+1
$5 =2

e set valiable command changes the value of a variable in the current mutinject or exter-
nal area.

(gdb) set variable i = 7
(gdb) p i

$6 =7

(gdb) set var a[0] = 3

(gdb) p al0]
$7 =3

Change the values of variables while debugging to:

o investigate how the program behaves with new values wittemampile and restarting
the program,

o to make local corrections and then continue execution.

e frame [n] command moves theurrent stack frame to thenth routine call on the stack.

(gdb) f O

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3

3 afi] += 1, /I really bad subscript error
(gdb) f 1

#1 0x00010764 in main () at test.cc:8

8 r(a);

o If nis not present, prints the current frame
o Once moved to a new frame, it becomes the current frame.

o All subsequent commands apply to the current frame.
e To trace program executiohreakpoints are used.

e break command establishes a point in the program where execuligmesds and control
returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 7.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

o Set breakpoint using routine name or source-file:line-remmb

3.5. DEBUGGER 177

o info breakpoints command prints all breakpoints currently set.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00010710 in main at test.cc:7
2 breakpoint keep y 0x000106d8 in r(intx) at test.cc:3

e Run program again to get to the breakpoint:

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /u/userid/cs246/a.out

Breakpoint 1, main () at test.cc:7

7 int a[10] = {0, 1 };
(gdb) p a[7]
$8=0

e Once a breakpoint is reached, execution of the program caorigued in several ways.

e step [n] command executes the nextlines of the program and stops, so control enters
routine calls.

(gdb) step

8 rca);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1, /I really bad subscript error

(gdb) <Enter>

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

o If nis not present, 1 is assumed.

o If the next line is a routine call, control enters the routamel stops at the first line.

e next [n] command executes the nextines of the current routine and stops, so routine calls
are not entered (treated as a single statement).

178

CHAPTER 3.

(gdb) run

Breakpoint 1, main () at test.cc:7

7 inta[10]={0, 1}

(gdb) next

8 rca);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1, /I really bad subscript error

e continue [n] command continues execution until the next breakpointashred.

(gdb) run

Breakpoint 1, main () at test.cc:7

7 inta[10]={0, 1}

(gdb) c

Breakpoint 2, r (a=0x7fffffffe7d0) at test.cc:3

3 afi] += 1, /I really bad subscript error
(gdb) p i

$9 = 100000000

(gdb) set var i = 3

(gdb) c

Continuing.

Program exited normally.

e list command lists source code.

(gdb) list

int r(int af]) {

int i = 100000000;

afi] += 1, /I really bad subscript error
return a[il;

int main() {
int a[10] ={ 0, 1 };

1

2

3

4

5 1}
6

7

8 rca);
9

o with no argument, list code around current execution locati

o with argument line number, list code around line number

e quit command terminate gdb.

TOOLS

3.5. DEBUGGER 179

(gdb) run

i3.r.eakpoint 1, main () at test.cc:7
7 inta[10]={0, 1}

1: a[0] = 67568

(gdb) quit

The program is running. Exit anyway? (y or n) y

180 CHAPTER 3. TOOLS

4 Software Engineering

4.1

Software Engineering (SE) is the social process of designing, writing, and maiirg
computer programs.

SE attempts to find good ways to help people understand aredogesoftware.
However, what is good for people is not necessarily goodifercomputer.

Many SE approaches are counter productive in the developohéngh-performance soft-
ware.
1. The computer does not execute the documentation!

o Documentation is unnecessary to the computer, and sigmifamaounts of time
are spent building it so it can be ignored (program comments)

o Remember, theuth is always in the code.

o However, without documentation, developers have difficd#signing and under-
standing software.

2. Designing by anthropomorphizing the computer is seldogoad approach (desk-
tops/graphical interfaces).

3. Compiler spends significant amounts of tiomeloing SE design and coding approaches
to generate efficient programs.

It is important to know these differences to achieve a badmetween programs that are
good for people and good for the computer.

Software Crisis

Large software systems-(100,000 lines of code) require many people and months to de-
velop.

These projects too often emerge late, over budget, and dear&twell.

Today, hardware costs are low, and people costs are high.

While commodity software is available, someone still hawtibe it.

Since people produce software software cost is great.

Coupled with a shortage of software personaeproblems.

Unfortunately, software is complex and precise, which nexputime and patience.

Errors occur and cost money if not lives, e.g., Ariane 5, abeR5, Intel Pentium division
error, Mars Climate Orbiter, UK Child Support Agency, etc.

© Peter A. Buhr

181

182 CHAPTER 4. SOFTWARE ENGINEERING

4.2 Software Development

e Techniques for program development for small, medium, argkl systems.
e Objectives:

o plan and schedule project (requirements documents, Ute-tines)
o produce reliable, flexible, efficient programs

o produce programs that are easily maintained

o reduce the cost of software

o reduce program failure
e E.g., atypical software project:

o estimate 12 months of work
o hire 3 people for 4 months

o make up milestones for the end of each month
e However, first milestone is reached after 2 months instedd of
¢ To finish on time, hire 2 more people, but:

o new people require training

o work must be redivided
This takes at least 1 month.
e Now 2 months behind with 9 months of work to be done in 1 montb ipgople.
e To get the project done:

o must reschedule

o trim project goals
e Often, adding manpower to a late software project makessit.la

¢ lllustrates the need for a methodology to aid in the devekapiof software projects.

4.3 Development Processes

e There are different conceptual approaches for develomfigare:

4.3. DEVELOPMENT PROCESSES 183

Time
waterfall 1 1 1 1 1 N
Requiremeﬁtﬁ\nalysis | Design | Coding‘ Testiné Debugging

iterative 1 1 1 1 N
R R F | R Fs Fs
RADCTD RADCTD RADCTD RADCTD RADCTD RADCTD
staged | | | | | _
Requirement#\nalysis ~ Design Fy/» Fa/a Fs/6
CTD CTD CTD
agle | | | | | -
F1/3/4 F2/3 F1/3/4 F2/4/5 F1/5/6 Fa/e
DC DCT RADCTD RADC RADCTD D

waterfall : break down project based on activities that flow (down stescross a timeline.

o activities : (cycle of) requirements, analysis, desigrgieg, testing, debugging
(RADCTD).
o timeline : assign time to accomplish each activity up to @cogompletion time

iterative/spiral : break down project based on functionality and divide fior across a
timeline

o functions : (cycle of) acquire/verify data, process daemeagate data reports

o timeline : assign time to perform software cycle on each fimmcup to project
completion time

staged delivery : combination of waterfall and iterative
o start with waterfall for analysis/design, and finish witkrétive for coding/testing
agilelextreme : short, intense iterations focused largely on code (veldsgamentation)

o often analysis and design are done iteratively
o often coding/testing done in pairs

e Pure waterfall is problematic because all coding/testorges at enés- major problems can
appear near project deadline.

e Pure agile can leave a project with “just” working code, atttelor no testing / documenta-
tion.

e Selecting a process depends on:
o kind/size of system
o quality of system (mission critical?)
o hardware/software technology used
o kind/size of programming team

184 CHAPTER 4. SOFTWARE ENGINEERING

@)

working style of teams
nature of completion risk
consequences of failure
culture of company

@)

o

@)

e Meta-processes specifying the effectiveness of processes

o Capability Maturity Model Integration (CMMI)
o International Organization for Standardization (ISO) @00

e Meta-requirements

o procedures cover key aspects of processes

o monitoring mechanisms

o adequate records

o checking for defects, with appropriate and correctiveoacti
o regularly reviewing processes and its quality

o facilitating continual improvement

4.4 Software Methodology
e System Analysis (next year)

o Study the problem, the existing systems, the requiremtradeasibility.

o Analysis is a set of requirements describing the systent&putputs, processing, and
constraints.

System Design

o Breakdown of requirements into modules, with their relasioips and data flows.

o Results in a description of the various modules required, the data interrelating
these.

Implementation

o writing the program

Testing & Debugging

o get it working

Operation & Review
o was it what the customer wanted and worth the effort?

Feedback

o If possible, go back to the above steps and augment the pegeweded.

4.4. SOFTWARE METHODOLOGY 185

4.4.1 System Design

e Two basic strategies exist to systematically modularizgstesn:

o top-down or functional decomposition
o bottom-up

e Both techniques have much in common and so examine only one.

4.4.2 Top-Down

e Start at highest level of abstraction and break down prolf¢oncohesive units, i.e., divide
& conquer.

e Then refine each unit further generating more detail at eatsiah.

e Each subunit is divided until a level is reached where théspe comprehensible, and can
be coded directly.

e This recursive process is calledccessive refinementr factoring.

e Unit are independent of a programming language, but ulehgaihust be mapped into con-
structs like:

o generics (templates)
o modules
o classes
o routines

e Details look at data and control flow within and among units.
¢ Implementation programming language is often chosen dtdy the system design.
e Factoring goals:

o reduce module sizex: 30-60 lines of code, i.e., 1-2 screens with documentation
o make system easier to understand

o eliminate duplicate code

o localize modifications

e Stop factoring when:

o cannot find a well defined function to factor out
o interface becomes too complex

¢ Avoid having the same function performed in more than oneute(treate useful general
purpose modules)

186 CHAPTER 4. SOFTWARE ENGINEERING

e Separate work from management:

o Higher-level modules only make decisions (managementtahdther routines to do
the work.

o Lower-level modules become increasingly detailed andiSpggerforming finer grain
operations.

e In general:

o do not worry about little inefficiencies unless the code iseerted a LARGE number
of times

o put thought into readability of program

4.5 Design Quality
e System design is a general plan for attacking a problemgaatd to multiple solutions.

¢ Need the ability to compare designs.
e 2 measures: coupling and cohesion

e Low (loose) coupling is a sign of good structured and desiggh cohesion supports read-
ability and maintainability.

4.5.1 Coupling
Coupling measures the degree of interdependence among programmduyiles”.

Aim is to achieve lowest coupling or highest independenee, @ach module can stand alone
or close to it).

A module can be read and understood as a unit, so that chaagesimimal effect on other
modules and possible to isolate it for testing purposes @iereo components).

5 types of coupling in order of loose to tight (low to high):

1. Data: modules communicate using arguments/parameters corgamnimal data.
o E.g.,sin(x), avg(marks)
2. Stamp: modules communicate using only arguments/parametetaioarg extra data.

o E.g., pass aggregate data (array/structure) with someeetsffields unused

o problem: accidentally change other data

o modules may be less general (e.g., average routine passechgrof records)

o stamp coupling is common because data grouping is more targdhan coupling

3. Control : pass data using arguments/parameters to effect contmol flo

o E.g., module calculate 2 different things depending on a flag
o bad when flag is passed down, worse when flag is passed up

4.5. DESIGN QUALITY 187

4. Common: modules share global data.

o cannot control access since scope rule allows many moduksscess the global
variables

o difficult to find all references reading/writing global valoles

5. Content: modules share information about type, size and strucfittata, or methods
of calculation

o changes effect many different modules (good/bad)

o avoid friend routine/class unless friend module is logically nestedextacted
for technical reasons.

4.5.2 Cohesion
e Cohesionmeasures degree of association among elements within alen@auw focused).

e Elements can be a statement, group of statements, or callseéomodules.

Alternate names for cohesion: binding, functionality, miad strength.

Highly cohesive module has strongly and genuinely relatechents.

If modules have low cohesion (module elements are relatetiyht coupling.

If modules have high cohesion (module elements are NOTad)a$ loose coupling.

7 types of cohesion (high to low):

1. Functional : modules elements all contribute to computation of one amg one
problem related task (Single Responsibility Principle).
o E.g.,sin(x), avg(marks), Car {...}, Driver {...}
o coupling is excellent

2. Sequential: module elements interact as producer/consumer, i.epubuiata from
one activity is input data to next.

print(process(getword(word))); // read -> process -> print (shell pipe)

o similar to functional, except possibly mandates sequeotase
o coupling is good
3. Communicational : module elements contribute to activities that use the Shate

find(book, title);
find(book, price);
find(book, ISBN);
find(book, author);
o all have same input data
o like sequential but order is not important

o coupling is acceptable

188 CHAPTER 4. SOFTWARE ENGINEERING

o usually improve maintainability by splitting common moduhto separate, func-
tional ones

4. Procedural : module elements involved in different and possibly urtezlaactivities,
but which flow from one activity to the next.

file = open(filename); /I open connection to file name
read(file); /I read file contents
close(file); /I close connection to file name

o related by order of execution rather than by any single probielated function
o typically data sent to procedure modules is unrelated ta skt back

o procedural modules pass around partial results
5. Temporal : module elements involved in activities related in time.
initialization

- turn things on
- turn things off
- set things to 0

set things to 1

set things to ”’

o unrelated except carried out at particular time

o each initialization is more closely related to the modulest imake use of i
tight coupling

o want to re-initialize only some of the entities in initiadizon routine

o like procedural, except order of execution is more impdriiaprocedural

6. Logical : module elements contribute to same general category,endsdivity is se-
lected from outside the module.

#include <algorithms>

find ...

swap ...

search ...

sort ...

inner_product ...
o modules contain number of activities of some general kind
o to use, pick out just one of the pieces needed

o interface weak, and contains code sharing common linesds and/or data areas
7. Coincidental : module elements grouped arbitrarily.

o activities are related neither by flow of data nor control

o like logical, internal activity must be externally selesttbut worse since categories
in the module are very weakly related

4.6 Design Principles
¢ low coupling, high cohesion (logical modularization)

4.7. DESIGN PATTERNS 189

4.7.1

good interfaces (abstraction and encapsulation)
type reuse (type inheritance)
code reuse (implementation inheritance, physical mochaaon)

indirection (data/routine pointers) to generalize olgect

Design Patterns
Design patternshave existed since people/trades developed formal appesac

E.g., chef’s cooking meals, musician’s writing/playingsie) mason’s building pyramid/cathedral.
Pattern is a common/repeated issue; it can be a problem or a solution.

Name and codify common patterns for educational and comeatioh purposes.

Software pattern are solutions to problems:

o name : descriptive name
o problem : kind of issues pattern can solve

o solution : general elements composing the design, withioslships, responsibilities,
and collaborations

o consequences : results/trade-offs of pattern (altereatiyplementation issues)
Patterns help:

o extend developers’ vocabulary

Squadron Leader: Top hole. Bally Jerry pranged his kite right in the how’s
your father. Hairy blighter, dicky-birdied, feathered kamn his Sammy, took
a waspy, flipped over on his Betty Harper’s and caught his iedhne Bertie.

— RAF Banter, Monty Python

o offer higher-level abstractions than routines or classes

Pattern Catalog

creational structural behavioural
class|| factory method | adapter interpreter
template
object|| abstract factory | adapter responsibility chain
builder bridge command
prototype composite | iterator
singleton decorator | mediator
facade memento
flyweight | observer
proxy State
strategy
visitor

190 CHAPTER 4. SOFTWARE ENGINEERING

e Scope : applies to classes or objects

o class pattern— relationships among classes and subclasses (statidtanoe)

o object pattern — relationships among objects (dynamic creation and ast$oic)
e Purpose : what a pattern does
o creational : classes defer construction through inhezédnobjects defer creation to
other objects

o structural : composition via inherited classes or assedntibgects

o behavioural : classes describes algorithm or control-floljécts cooperate to perform
task

4.7.1.1 Class Patterns

factory method : generalize creation of product with multiple variants

struct Pizza {...}; /I product

struct Pizzeria { /I creator
enum Kind { It, Mg, Ch, Dd }; Il styles
virtual Pizza =order(Kind p) = 0;

2
struct lItalian : public Pizzeria { /I concrete creator (factory)
Pizza xorder(Kind p); /I create italian/margarita style
%
struct Chicago : public Pizzeria { /I concrete creator
Pizza sorder(Kind p); /I create chicago/deep-dish style
3
Italian italian; Chicago chicago; /I factories
enum Kind { It, Mg, Ch, Dd };
Pizza xdispatch(Kind pizza) { /I parameterized creator
switch (pizza) {
case It: case Mg: return italian.order(Pizzeria::Mg);
case Ch: case Dd: return chicago.order(Pizzeria::Dd);
default : ; // error
}
}

Pizza »p = dispatch(It);
p = dispatch(Ch);
e product (Pizza) objects are consistent across all fastdcieuld be subclassed)

e clients get a concrete product (Pizza) from the creatoetly or indirectly), but prod-
uct type is unknown

e client interacts with product object through its abstrateiface (Pizza)

adapter/wrapper : convert interface into another

4.7. DESIGN PATTERNS 191

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
¢ ¢

struct VStack : public Stack, private Vector { // adapter/wrapper
void push(...) { ... push_back(...); ... }

void pop(...) { pop_back(...); }

%
void p(Stack &) { ...}
VStack vs; // use VStack code with Stack routine

p(vs);

e VStack is polymorphic withStack but implementsgush/pop with Vector::push_back/
Vector::pop_back.

template method : provide algorithm but defer some details to subclass

class PriceTag { /I template method
virtual string label() = 0; /I details for subclass
virtual string price() = 0;
virtual string currency() = 0;
public :
string tag() { return label() + price() + currency(); }

class FurnitureTag : public PriceTag { // actual method
string label() { return “furniture";}
string price() { return "$1000 "; }
string currency() { return "Cdn"; }

I3

FurnitureTag ft;

cout << ft.tag() << endl;

e template-method routines are non-virtual, i.e., not adden

4.7.1.2 Object Patterns

abstract factory : generalize creation of family of products with multiplerizants

192

singleton

CHAPTER 4. SOFTWARE ENGINEERING

struct Food {...}; /I abstract product
struct Pizza : public Food {...}; /I concrete product
struct Burger : public Food {...}; /I concrete product
struct Restaurant { /[abstract factory product

enum Kind { Pizza, Burger };
virtual Food =order(Kind f) = 0;
virtual int staff() = 0;
3
struct Pizzeria : public Restaurant { // concrete factory product
Food xorder(Kind) {}
int staff() {...}

s’truct Burgers : public Restaurant { // concrete factory product
Food +order(Kind f) {}
int staff() {...}

h

enum Type { PizzaHut, BugerKing };

struct RestaurantFactory { /I abstract factory
Restaurant «create(Type t) {}

3

struct PizzeriaFactory : RestaurantFactory { // concrete factory
Restaurant «create(Type t) {}
¥

struct BurgerFactory : RestaurantFactory { // concrete factory
Restaurant «create(Type t) {}
3

PizzeriaFactory pizzeriaFactory;

BurgerFactory burgerFactory;

Restaurant xpizzaHut = pizzeriaFactory.create(PizzaHut);

Restaurant xburgerKing = burgerFactory.create(BugerKing);

Food xdispatch(Restaurant::Kind food) { // parameterized creator

switch (food) {

case Restaurant::Pizza: return pizzaHut->order(Restaurant::Pizza);
case Restaurant::Burger: return burgerKing->order(Restaurant::Burger);
default : ; /I error

}

use factory-method pattern to construct generated prq&ood)
use factory-method pattern to construct generated fa¢Regtaurant)

clients obtains a concrete product (Pizza, Burger) fromreciegie factory (PizzaHut,
BugerKing), but product type is unknown

client interacts with product object through its abstrat¢iface (Food)

: single instance of class

4.7. DESIGN PATTERNS 193

.h file .cc file
class Singleton { #include " Singl eton. h"
struct Impl { Singleton::Impl Singleton::impl(3, 4);
int x,y; Singleton:: Impl::Impl(int X, int y)
Impl(int x, int y); s x(x), y(y) {3
h void Singleton:im() { ... }
static Impl impl;
public :
void m();
3
Singleton x, vy, z; /I all access same value

¢ Allow different users to have they own declaration but stiltess same value.

Database database; // user 1
Database db; /I user 2
Database info; /I user 3

e Alternative is global variable, which forces name and majate abstraction.

composite : interface for complex composite object

struct Assembly { /I composite type
string partNo();
string name();
double price();
void insert(Assembly assm);
void remove(string partNo);
struct lterator {...};

J#

class Engine : public Assembly {...};
class Transmission : public Assembly{...};
class Wheel : public Assembly {...};
class Car : public Assembly {...};

class Stove : public Assembly {...};

/I create parts for car

Car c; /I composite object
c.insert(engine);

c.insert(transmission);

c.insert(wheel);

c.insert(wheel);

e recursive assembly type creates arbitrary complex asyesbigct.
e vertices are subassemblies; leafs are parts

e since composite type defines both vertices and leaf, all reesimhay not apply to both

iterator : abstract mechanism to traverse composite object

194 CHAPTER 4. SOFTWARE ENGINEERING

double price = 0.0;
Assembly::lterator c(car);
for (part = c.begin(engine); part = c.end(); ++part) { // engine cost

price += part->price();

}

e iteration control: multiple starting/ending locationgpdh-first/breath-first, forward/backward,
etc.; level of traversal

e iterator may exist independently of a composite desigtepat

adapter : convert interface into another

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
3 ;

struct VecToStack : public Stack { // adapter/wrapper
Vector &vec;

VectortoStack(Vector &vec) : vec(vec) {}

void push(...) { ... vec.push_back(...); ... }

void pop(...) { vec.pop_back(...); }

3

void p(Stack &) { ...}

Vector vec;

VecToStack vtos(vec); /I any Vector

p(vtos);
e specific conversion frordector to Stack

proxy : frontend for another object to control access

struct DVD {
void play(...);
void pause(...);

¥
struct SPVR : public DVD { /I static
void play(...) { ... DVD:play(...); ... }
void pause(...) { ... DVD:pause(...); ... }
%
struct DPVR : public DVD { /I dynamic
DVD xdvd;
DPVR() { dvd = NULL; }
~DPVR() { if (dvd != NULL) delete dvd; }
void play(...) {if (dvd == NULL) dvd = new T; dvd->play(...); ... }
void pause(...) { ... don’t need dvd, no pause ... }
%

e proxy extends object’s type
e reverse structure of template method
e dynamic approach lazily creates control object

4.7. DESIGN PATTERNS 195

decorator : attach additional responsibilities to an object dynathica

struct Window {
virtual void move(...) {...}
virtual void lower(...) {...}

h :
struct Scrollbar : public Window { /I specialize
enum Kind { Hor, Ver };
Window &window;
Scrollbar(Window &window, Kind k) : window(&window), ... {}
void scroll(int amt) {...}

%

struct Title : public Window { /I specialize
Title(Window &window, ...) : window(window), ... {}
setTitle(string t) {...}

%

Window w;

Title(Scrollbar(Scrollbar(w, Ver), Hor), "title") decorate;

e decorator only mimics object’s type through base class

¢ allows decorator to be dynamically associated with difieabject’s, or same object to
be associated with multiple decorators

observer : 1 to many dependency change updates dependencies

struct Fan { [/l abstract
Band &band,;
Fan(Band &band) : band(band) {}
virtual void update(CD cd) = 0;

2
struct Band {
list<Fan > fans; /I list of fans
static void perform(Fan «fan) { fan->update(); }
void attach(Fan &fan) { fans.push_back(&fan); }
void deattach(Fan &fan) { fans.remove(&fan); }
void notify() { for_each(fans.begin(), fans.end(), perform); }
3
struct Groupie : public Fan { /I specialize
Groupie(Band &band) : Fan(band) { band.attach(«this); }
~Groupie() { band.deattach(«this); }
void update(CD cd) { buy/listen new cd }
%
Band dust;
Groupie g1(dust), g2(dust); Il register
dust.notify(); /I inform fans about new CD

e manage list of interested objects, and push new events ko eac
e alternative design has interested objects pull the events the observer
o = observer must store events until requested

196

CHAPTER 4. SOFTWARE ENGINEERING

visitor : perform operation on elements of heterogeneous container

struct PrintVisitor {
void visit(Wheel &w) { print wheel }
void visit(Engine &e) { print engine }
void visit(Transmission &t) { print transmission }

¥
struct Part {

virtual void action(Visitor &v) = 0;
3

struct Wheel : public Part {
void action(Visitor &v) { v.visit(«this); } // overload
%

struct Engine : public Part {
void action(Visitor &v) { v.visit(«this); } // overload

h

PrintVisitor pv;

list<Part > ps;

for (inti=0;i<10;i+=1){
ps.push_back(add different car parts);

}

for (list<Part «>::iterator pi = ps.begin(); pi = ps.end(); ++pi) {
(xpi)->action(pv);

e each part has a geneeattion that is specialized by visitor
¢ different visitors perform different actions or dynamigalary the action
e compiler statically selects appropriate overloaded warsf visit in action

4.8 Testing

e A major phase in program development is testings0%).

This phase often requires more time and effort than desigrcading phases combined.
Testing is not debugging.

Testing is the process of “executing” a program with the intent ofedetining differences
between the specification and actual results.

o Good test is one with a high probability of finding a differenc

o Successful test is one that finds a difference.

Debugging is the process of determining why a program doelane an intended testing
behaviour and correcting it.

4.8. TESTING 197

4.8.1 Human Testing
e Human Testing : systematic examination of program to discover problems.

e Studies show 30-70% of logic design and coding errors careteetéd in this manner.

e Code inspectionteam of 3-6 people led by moderator (team leader) lookingpfoblems,
often “grilling” the developer(s):

o data errors: wrong types, mixed mode, overflow, zero diviael, subscript, initializa-
tion problems, poor data-structure

o logic errors: comparison problems=/ !=, </ <=), loop initialization / termination,
off-by-one errors, boundary values, incorrect formulal ehfile, incorrect output

o interface errors: missing members or member parameterapsulation / abstraction
issues

e Walkthrough : less formal examination of program, possibly only 2-3 depers.
e Desk checking: single person “plays computer”, executing program by hand

4.8.2 Machine Testing

e Machine Testing: systematic running of program using test data designestoder prob-
lems.

o speed up testing, occur more frequently, improve testivgi@me, greater consistency
and reliability, use less people-time testing

Commercial products are available.

Should be done after human testing.

Exhaustive testing is usually impractical (too many cases)

Test-case desiginvolves determining subset of all possible test casestivélihighest prob-
ability of detecting the greatest number of errors.

Two major approaches:
o Black-Box Testing: program’s design / implementation is unknown when tesesas
are drawn up.

o White-Box Testing : program’s design / implementation is used to develop tke te
cases.

o Gray-Box Testing : only partial knowledge of program’s design / implemerdati
know when test cases are drawn up.

e Start with the black-box approach and supplement with wihite tests.

e Black-Box Testing

198 CHAPTER 4. SOFTWARE ENGINEERING

o equivalence partitioning : completeness without redundancy
« partition all possible input cases into equivalence ckasse
x select only one representative from each class for testing
x E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

x 3 equivalence classes, plus invalid hours
x Since there are many types of invalid data, invalid hoursaiaa be partitioned
into equivalence classes
o boundary value testing
x test cases which are below, on, and above boundary cases

39, 40, 41 (hours) valid cases
44, 45, 46 K

0, 1, 2 K

-2,-1, O " invalid cases
59, 60, 61 K

o error guessing

x surmise, through intuition and experience, what the lilealprs are and then test
for them

¢ White-Box (logic coverage) Testing

develop test cases to cover (exercise) important logicsgatiough program
try to test every decision alternative at least once
test all combinations of decisions (often impossible dugize)

@)

@)

o

test every routine and member for each type
cannot test all permutations and combinations of execution

o

@)

e Test Harness: a collection of software and test data configured to run g@nam (unit)
under varying conditions and monitor its outputs.

4.8.3 Testing Strategies

e Unit Testing : test each routine/class/module separately before atedrinto, and tested
with, entire program.

o requires construction of drivers to call the unit and pagssit values
o requires construction of stub units to simulate the uniiedaluring testing
o allows a greater number of tests to be carried out in parallel

e Integration Testing : test if units work together as intended.

o after each unitis tested, integrate it with tested system.

4.8. TESTING 199

o

o

e}

done top-down or bottom-up : higher-level code is driveygidr-level code is stubs
In practice, a combination of top-down and bottom-up tesisnusually used.
detects interfacing problems earlier

e Once system is integrated:

(0]

o

e}

Functional Testing: test if performs function correctly.

Regression Testing test if new changes produce different effects from presioer-
sion of the system (diff results of old / new versions).

System Testing: test if program complies with its specifications.
Performance Testing: test if program achieves speed and throughput requirement

Volume Testing : test if program handles difference volumes of test dataallss
large), possibly over long period of time.

Stress Testing test if program handles extreme volumes of data over a pleoidd of
time with fixed resources, e.g., can air-traffic controltegshandle 250 planes at same
time?

Usability Testing : test whether users have the skill necessary to operatg$hens.

Security Testing: test whether programs and data are secure, i.e., can wnaeth
people gain access to programs, files, etc.

Acceptance Testing checking if the system satisfies what the client ordered.

e Ifaproblemis discovered, make up additional test casesrtwim on the issue and ultimately
add these tests to the test suite for regression testing.

4.8.4 Tester
A program should not be tested by its writer, but in practidge bften occurs.

Remember, the tester only tests wttaythink it should do.

Any misunderstandings the writer had while coding the peiagare carried over into testing.

Ultimately, any system must be tested by the client to detezrfiit is acceptable.

Points to the need for a written specification to protect bloghclient and developer.

200 CHAPTER 4. SOFTWARE ENGINEERING

Index

1, 7,37

I=, 37,68
", 84

", 6,67
#,1

#, 83
#define , 83
#elif, 85
#else, 85
#endif , 85
#if, 85
#ifdef , 85
#ifndef , 85
#include , 84
$,1,20

${}, 20

%, 1

&, 37, 38, 45, 56
&&, 37,45
&=, 37

’, 6, 36

x, 37, 38, 56, 63
+/, 32

*=, 37

+, 37, 68
++, 39, 147
+=, 37,39
37,39, 46
-, 37

--, 39, 147
-=, 37,39
->, 37

-L, 159
-MD, 164
-MMD, 164
-0, 159

-S, 159

201

-W, 158

-c, 126, 159
-9, 159 174

-1, 159

-0, 126, 159
-v, 158

. 37

., 63

.C, 31

.c,31

.cc, 31,128
.cpp, 31

.h, 84, 127
.shapshot, 11
/,3,37, 38

\, 6, 36

%, 32

I, 32

/=, 37

;51

., 37,65,114, 132
;33

i, 26

<, 16, 37, 68
<<, 37,38, 76, 103
<<=, 37

<=, 37,68

<> 84
<ctrl>-c, 6
<ctrl>-d, 17, 78
=, 8, 19, 37,68
==, 37, 68, 108
> 6,16, 37, 68
>&, 16, 17

>=, 37, 68

>> 37, 38, 76, 103
>>= 37

202

2:, 37,45

[1, 24, 68, 92
%, 37, 38
%=, 37

&, 38,56
(1,33 42

A 37

n=, 37

\ 6

|, 16, 37, 45
=, 37

~, 3,37

a.out, 81, 159

absolute pathnam8, 166

abstracty0

abstract clasg40
pure,142

abstract data-typd,15

abstract factory] 91

abstraction98, 115

acceptance testin@99

access controll 15

adapter,190 194

add, 168

ADT, 115

aggregate0

aggregation122

agile,183

alias,64, 133 154

alias, 8, 11

allocation
array,61, 92
dynamic,90

array,92
heap91, 92, 146
array,92

matrix, 93
stack,43, 92

argc, 80, 81

argument;/2

argv, 81

array,54, 60, 61, 66, 74, 79, 81, 92, 101
2-D,93
deallocation92

CHAPTER 4. SOFTWARE ENGINEERING

dimensionp0, 61, 67, 74, 92, 148
parameter74
as,159
assembler] 59
assertion85
assignment38, 39, 65, 104, 105, 135
array,61, 147
cascade39
initializing, 34
operator,116, 130
association120
unidirectional 120
association clas4,22
atoi, 81
attribute,119

backquoteb
backslash3, 6, 36
backspace key,
backtrace, 175
backward brancig2, 53
bang,7
bash]l, 21, 24
bash, 9
basic types33, 54
bool , 33
char, 33
double , 33
float, 33
int, 33
wchar _t, 33
behavioural 144
bit field, 63
bitwise copy,105
black-box testing197
block, 31, 42, 66
{},3342
blueprint,118
bool, 33, 36
boolalpha, 76
boundary value testind,98
break, 44, 46
break, 176
breakpoint,176
continue, 178

4.8. TESTING

next, 177
step, 177

C-c, 6
Cc-d, 17,78
c_str, 68
call-back routine96
cascade/6
cascade assignmeB
case, 26, 44

. 26

pattern,26
case-sensitivel,9, 33

cast, 37, 40, 55, 66, 80, 95, 139

cat, 12, 171
cd, 7
cerr, 75
char, 33, 34, 36
checkin,165
checkout165
checkout, 167
chevron37, 76, 103 146
chgrp, 16
chmod, 16
chsh, 9
cin, 75
class, 97,116
class modell19
class pattern190
classes diagrani,19
clear, 79
cmp, 12
code inspectionl 97
coercion40, 55, 80, 91, 95
cast,80
explicit, 40, 80
reinterpret _cast, 80
cohesion]187
coincidental 188
comma expressio9, 46, 93
command option
command-line argument80
argc, 80, 81
argv, 81
main, 80

203

command-line interfacd,
comment,1, 32
#,1
«l, 32
/%, 32
1,32
nesting,32
out,32 85
commit, 168
common coupling187
communicational187
compilation,31, 157
g++, 31
compiler,31, 32, 158
options
-D, 83,158
-E, 158
-1, 158
-L, 159
-MD, 164
-MMD, 164
-0, 159
-S, 159
-W, 158
-c, 126, 159
-g, 159 174
-1, 159
-0, 126, 159
-v, 158
separate compilatio®5, 113
composite193
composition122, 131, 143
explicit, 131
concrete clasg,41
conditional expression evaluatioff
&&, 45
?:, 45
partial evaluation45
short-circuit,45
conditional inclusion85
const , 36, 59, 73, 83, 98
constant35, 37, 98, 128
initialization, 83
parameter73
variable, 37

204

construction]132

constructorb4, 100, 132 135
const member108
copy,104, 116 135
implicit conversion,102
literal, 102

passing arguments to other construc-

tors,135
type,54
container146
deque, 146
list, 146
map, 146
queue, 146
stack, 146
vector, 146, 147
content coupling187
contiguous objectl 04
continue , 46
continue, 178
contra-variancel 34
control coupling,186
control structure4?2
block, 42
{},3342
conditional expression evaluatiofh
&&, 45
?:, 45
partial evaluation45
short-circuit,45
looping,42, 45
break, 28
continue , 28
do, 46
for, 27, 46
while , 27, 45
selection42, 43
break, 44
case, 26, 44
dangling else43
default , 44
else, 43
if, 25, 43
pattern,26
switch , 44, 81

CHAPTER 4. SOFTWARE ENGINEERING

test,24

short-circuit expression evaluaticth
transfer42

conversion39, 55, 69, 102
cast,37,40
dynamic _cast, 139
explicit, 39, 40, 95
implicit, 39, 72, 95, 102
narrowing,40
promotion,39
static _cast, 40
widening,39

copy constructor] 05 116, 130

copy-modify-merge model,65

coupling,186

cout, 75

cp, 10,170

cpp,158

create, 166

csh,1,19 24

csh, 9

current directory3, 4, 7, 10

current stack framel,76

dangling else43
dangling pointer91, 107
data coupling186
data membei62
dbx, 174
debug print statement87
debuggerl74
Debugging87
debugging87, 196
dec, 76
declaration33
basic types33
const, 83
type constructob4
type qualifier34
variable,34
Declaration Before Usd,13
declaration before usé& 12
decorator195
deep compare,08
deep copyl106, 108

4.8. TESTING

default
parameter9s
default , 44
default constructor100
default initialized 66
default valuey3, 100
parameter73
delegation 144
delete, 90
[1,92
delete key2
dependencel,60
deque, 146, 151
dereference?0, 38, 56
dereferencing56
design patterng,89
desk checking]l97
desktop1
destruction132
explicit, 104
implicit, 104
order,104
destructor]103 132 135
diff, 12
dimensiong0, 61, 67, 74, 92, 148
do, 46
documentation32
double , 33, 36
double quote6
downcast139
duplicated code/0
dynamic allocation101
dynamic storage manageme®®, 104
dynamic _cast, 139

eager evaluatiori5
echo, 9

egrep, 14

else, 43
encapsulationl 15 146
end of file,78

end of line,31

endl, 31, 76

Enter key,1

enum, 54, 83

enumeration54
enumeratorb5
eof, 78
equivalence
name 64
structural 64
equivalence partitionind,98
error guessingl 98
escapeb
escape sequendg/
Escape sequencgéf
escaped?4
evaluation
eager45
lazy, 45
partial,45
short-circuit,45, 50
event programming6
executel5
execution error89
exit, 9
exit, 31
exit status9, 22
explicit coercion40, 80
explicit conversion39, 40, 95
export,125 128
expression37
extreme 183

factoring,70, 185
factory method190
fail, 76, 78
false, 39
feof, 79
file
.h, 84
opening,76
file inclusion,84
file management
file permission15
input/output redirectionl 6
<, 16
>&, 16
> 16
[, 16

205

206

file permission
executel5
group,15
other,15
read,15
search]15
user,15
write, 15

file suffix
.C,31
.c,31
.cc,31, 128
.cpp, 31
.h, 127
.0,126

files, 2

input/output redirection].6

find, 13, 68
find_first_not_of, 68
find_first_of, 68
find_last_not_of, 68
find_last_of, 68
fix-up routine,96
fixed, 76
flag variable 53
float, 33, 35
for, 27, 46
for_each, 152
format

I/O, 76
formatted 1/0,74, 75
forward branch52
forward declaration]12
frame, 176
free,90
free, 90
friend , 117
friendship,117, 132
fstream, 76
function,71
function member62
function-call operator]l11
functional, 187
functional testing199
functor,111, 152

CHAPTER 4. SOFTWARE ENGINEERING

g++, 31, 60, 66, 102 158
garbage collectior§0
gdb
backtrace, 175
break, 176
breakpoint,176
continue, 178
next, 177
step, 177
continue, 178
frame, 176
info, 177
list, 178
next, 177
print, 175
run, 175
step, 177
gdb, 174
generalization142
generatell8
globbing,4, 13, 14, 26
gmake, 161
goto, 51
label,51
graphical interfacel
gray-box testing197
group,15

has-a131, 143

heap,72, 91, 92, 146
array,92

help, 7

heterogeneous valued?, 63

hex, 76

hidden file,5, 10, 11

history , 7

home directory3, 7

homogeneous valueS)

hot spot,86

human testingl 97

I/O
cerr, 75
cin, 75
clear, 79

4.8. TESTING

cout, 75
fail, 76
formatted,75
fstream, 76
ifstream, 76
ignore, 79
iomanip, 76
jostream, 75
manipulators76
boolalpha, 76
dec, 76
endl, 76
fixed, 76
hex, 76
left, 76
noboolalpha, 76
noshowbase, 76
noshowpoint, 76
noskipws, 76
oct, 76
right, 76
scientific, 76
seffill, 76
setprecision, 76
setw, 76
showbase, 76
showpoint, 76
skipws, 76
ofstream, 76
identifier,33, 51
if, 25,43
?:,45
dangling else43
else, 43
ifstream, 76
ignore, 79
implementation127
implementation inheritancé31
implicit conversion39, 72, 95, 102
import, 125 127
import, 167
indirection,57
info, 177
Inheritance 145
inheritance 131, 143

207

implementation131
type,131, 133
initialization,66, 100, 102, 104, 105 108
132,135
array,66
forward declaration] 14
string,67
structure 66
inline , 84
input,31, 74, 77
>> 103
end of file,78
eof, 78
fail, 78
feof, 79
formatted,75
manipulators
iomanip, 76
noskipws, 76
skipws, 76
standard input
cin, 75
input/output redirectionl 6
filter
|, 16
input
<, 16
output
> 16
>&, 16
int, 33, 34, 36
INT16_MAX, 35
INT16_MIN, 35
int16_t, 35
INT32_MAX, 35
INT32_MIN, 35
int32_t, 35
INT64_MAX, 35
INT64_MIN, 35
int64_t, 35
INT8_MAX, 35
INT8_MIN, 35
int8_t, 35
INT_MAX, 34
INT_MIN, 34

208

integral type63
integration testing1 98
interaction model119
interface,70, 98, 127
interface classl42
interfaces,70
iomanip, 76
jostream, 31, 75
is-a,143
iteration statement
break, 46
continue , 46
iterative,183
iterator,146, 193
++, 147
--, 147
for_each, 152

Java 95

keyword,33
keywords,19
ksh,1

label,51

label variableb51

language
preprocessod 57
programming157
template 157

lazy evaluation45

Id, 159

left, 76

less, 12

linker, 159

list, 146, 151, 178
back, 151
begin, 151
clear, 151
empty, 151
end, 151
erase, 151
front, 151
insert, 151
pop_back, 151
pop_front, 151

CHAPTER 4. SOFTWARE ENGINEERING

push_back, 151
push_front, 151
begin, 151
end, 151
size, 151
literal, 35, 36, 66, 67, 77
bool , 36
char, 36
double , 36
escape sequences
initialization, 66
int, 36
string, 36, 67
type constructor66
literals,54
LLONG_MAX, 34
LLONG_MIN, 34
logical, 188
login, 1, 2
login shell,24
logout,2
long, 34
LONG_MAX, 34
LONG_MIN, 34
loop
mid-test,47
multi-exit, 47
looping statemenyg5
break, 28
continue , 28
do, 46
for, 27, 46
while , 27, 45
Ip, 12
Ipstat, 12
Is, 10, 15, 167

machine testingl97
macros 34

main, 31, 80, 113
make,161

make, 161

malloc, 90

man, 10

managed languag@0

4.8. TESTING

manipulatorsy6
map, 146, 149
begin, 150
end, 150
erase, 150
find, 150
insert, 150
begin, 150
end, 150
math library,159
matrix, 60, 74, 93, 148
memberp2
anonymousl131
const, 108
constructor] 100
destruction103 132 135
initialization, 100, 132 135
object,98
operator99
overloading99
pure virtual,140, 141
static member109
virtual, 137, 139
member selectiorg§3
memberwise copy05
memory leak91, 93, 107
mid-test loop47
mixin, 143
mkdir, 10, 166
modularizationy0
modularize 185
module,70
modules,70
more, 12
multi-exit
loop, 47
mid-test,47
multi-level
static,51
multiple inheritancel42
mutually recursivel12 113
mv, 11, 170

name equivalencé4, 133 134, 145
namespacedl, 153

std, 31
narrowing,40
navigable121
nesting,132

blocks,42, 43

comments32

initialization, 66

preprocessof|s

routines,’2

type,65
new, 90
next, 177
noboolalpha, 76
non-contiguous]03 104
noshowbase, 76
noshowpoint, 76
noskipws, 76
npos, 68
NULL, 66, 84
null address57
null character68

object,97
anonymous membet31
assignment]04, 135
const member108
constructor100 132 135
copy constructorl04, 116 135
default constructor]00
destructor]l03 132 135
initialization, 100, 135
literal, 102
member98
pure virtual memben140, 141
static member109
virtual member137, 139

object code159

object diagram121

object model119

object pattern190

object-oriented97, 131

observer195

oct, 76

ofstream, 76

open,76

209

210

file, 76
operation120
operators

*, 38, 56

<<, 76,103

>> 76,103

&, 38, 56

arithmetic,37

assignment37

bit shift, 37

bitwise, 37

cast,37

comma expressior7

control structures37

logical, 37

overloading,76, 99

pointer,37, 38, 56

priority, 37

relational 37

selectionp5, 132

string,68

struct , 37
selection]114
other,15
output,31, 74, 79

<<, 103

endl, 31

formatted,75

manipulators
boolalpha, 76
dec, 76
endl, 76
fixed, 76
hex, 76
iomanip, 76
left, 76
noboolalpha, 76
noshowbase, 76
noshowpoint, 76
oct, 76
right, 76
scientific, 76
seftfill, 76
setprecision, 76
setw, 76

CHAPTER 4. SOFTWARE ENGINEERING

showbase, 76
showpoint, 76
standard error
cerr, 75
standard output
cout, 31, 75
overload 80
overloading,76, 94, 99, 100 103
override, 132, 133 137
overriding,43

paginate12
parametery?2
array, 74
constanty/3
default valuey73
pass by referenc&2
pass by valuef2
prototype, 113
parameter passing
array, 74
pass by referenc&2
pass by valuef2
pattern,26, 189
pattern matching}
performance testing,99
pointer,54, 56, 66
0,66
array,61, 92
matrix, 93
NULL, 66, 84
pointer variable57
polymorphic,139
polymorphism133
Polymorphism144
preprocessof33, 83, 157, 158 164
#define , 83
#elif, 85
#else, 85
#endif , 85
#if, 85
#ifdef , 85
#ifndef , 85
#include , 84
comment-out33

4.8. TESTING

file inclusion,84
macros 84
variable,83, 158
print, 175
priority, 37
private , 115
procedural,188
procedurey1
program
structure 32
program structure32
block, 31
main, 31
project,165
promotion,39
prompt,1
$,1
%, 1
> 6
protected , 115
prototype, 112
proxy, 194
pseudo random-number generafidk)
pseudo random-numberkl 0
public , 62, 115
pure abstract-clas$42
pure virtual member140, 141
pwd, 7

queue, 146, 151
guoting,6

random numberl 10
generator110
pseudo-randon, 10
seed]111

random-number generatdr]0

read,15

real time,9

recursive type63

reference38, 54, 56
initialization, 58

reference parametef?

referencing56
regression testing,99

211

regular expressiond,
reinterpret _cast, 80
relative pathnameg
replace, 68
repository, 165 166
resolve, 173
return, 31, 71
return code9
Return key1
return type,/71
reuse131
revert, 169
rfind, 68
right, 76
rm, 11, 169
routine,70
argument/parameter passing,
array parametei4
function,71
member98
parameter71
pass by referenc&2
pass by valuef2
procedurey1
prototype, 112
return, 71
return type,/71
routine overloading94
routine prototype
forward declaration]112
scope98
routine member62
routine pointer95
routine prototypel12
run, 175

scientific, 76

scope98, 114 153

script,19

search]l5

security testingl199

sed, 18

selection operatof5

selection statement3
break, 44

212

case, 26, 44
default , 44
else, 43
if, 25,43
pattern,26
switch , 44, 81
self-assignment07
semantic error39
semi-colon25
semicolon33, 42, 62
sentinel 68
separate compilatio®5, 124
-c, 126
sequential187
setfill, 76
setprecision, 76
setw, 76
sh,1,19
sh, 9
sha-bangl9
shell,1
bash,1, 24
csh,l1, 24
ksh,1
login, 24
prompt,1
$,1
%, 1
> 6
sh,1
tcsh,1
shell program19
shift , 22
short , 34
short-circuit,24, 45
short-circuit expression evaluatioth
showbase, 76
showpoint, 76
SHRT_MAX, 34
SHRT_MIN, 34
signature112
signed , 34
single quotef
singleton,192
size_type, 68

CHAPTER 4. SOFTWARE ENGINEERING

sizeof , 38
sketch,118
skipws, 76
slicing, 139
software development
.cc, 128
.h, 127
.0,126
separate compilatioi,24
software engineering,0, 181
source , 23
source file113 115
source-code managemeh€4
source-code management-systagh
spiral, 183
ssh, 14
stack,43, 72
stack, 146 151
stack allocation92
staged delivery1 83
stamp coupling186
statement33
static , 129
static block,72, 109
static multi-level exit51
static _cast, 40
status, 169
std, 31
stderr, 75
stdin, 75
stdout, 75
step, 177
strcat, 68
strcpy, 68
strcspn, 68
stream
cerr, 75
cin, 75
clear, 79
cout, 75
fail, 76
formatted,75
fstream, 76
ifstream, 76
ignore, 79

4.8. TESTING

input, 31
cin, 75
end of file,78
eof, 78
fail, 78
manipulators
boolalpha, 76
dec, 76
endl, 76
fixed, 76
hex, 76
iomanip, 76
left, 76
noboolalpha, 76
noshowbase, 76
noshowpoint, 76
noskipws, 76
oct, 76
right, 76
scientific, 76
seftfill, 76
setprecision, 76
setw, 76
showbase, 76
showpoint, 76
skipws, 76
ofstream, 76
output,31
cout, 31
endl, 31
stream file,75
stress testinglL99
string, 36, 67
C+H
I=, 68
+, 68
<, 68
<=, 68
=, 68

[1,68
c_str, 68
find, 68

find_first_not_of, 68
find_first_of, 68
find_last_not_of, 68
find_last_of, 68
npos, 68

replace, 68

rfind, 68

size_type, 68
substr, 68

[1, 68
strcat, 68
strcpy, 68
strcspn, 68
strlen, 68
strncat, 68
strncpy, 68
strspn, 68
strstr, 68
literal, 67
null termination 68
stringstream, 81
strlen, 68
strncat, 68
strncpy, 68
strspn, 68
strstr, 68
struct , 97, 116
structurally equivalent4
structure 54, 62, 66, 97
memberp2, 97
data,62
function,62
initialization, 62
routine,62
visibility
default,62
public , 62
struct , 37
structured programming,7
subscript60
subshell9, 19, 24
substitutability 144
substr, 68
subversion165

213

214

successive refinemerit85

suffix
.C,31
.c,31
.cc, 31
.cpp, 31
svn, 165
add, 168
cat, 171
checkout, 167
commit, 168
cp, 170
import, 167
Is, 167
mkdir, 166
mv, 170
resolve, 173
revert, 169
rm, 169
status, 169
update, 171
svnadmin
create, 166
switch , 44, 81
break, 44
case, 44
default , 44
syntax errorg89
system command,61
system modelling] 18
system testingl99
system time9

tab key,5
target valueb7
target variable57
tcsh,1
tcsh, 9
template 145 157
routine,145
type, 145
template method,91
template routinel45
template typel45
temporal 188

CHAPTER 4. SOFTWARE ENGINEERING

terminal,1, 2

test, 24

test harnesd,98

test-case desigd97

Testing
Integration, 198

testing,196
acceptancel 99
black-box,197
functional,199
gray-box,197
harness]198
human,197
machine 197
performancel199
regression199
security,199
stress ;199
system,199
unit, 198
usability,199
volume,199
white-box,197

text merging, 165

this, 98

time, 9

time stamp 160

token,83

translation unit125

translator158

true, 39

type, 8

type aliasingb4

type coercion80

type constructob4
array,60

enumerations54, 83

literal, 66
pointer,56
reference56
structure 62
type aliasingb4
union,63

type conversior40, 95, 102, 139
type equivalencel 33 134

4.8. TESTING

type inheritancel31, 133
type nesting65
type qualifier34, 35, 59
const, 36, 59
long, 34
short , 34
signed , 34
static , 129
unsigned , 34
type-constructor literal
array,66
pointer,66
structure 66
typedef , 64, 154

UINT16_MAX, 35
uintl6_t, 35
UINT32_MAX, 35
uint32_t, 35
UINT64_MAX, 35
uinteé4_t, 35
UINT8_MAX, 35
uint8_t, 35
UINT_MAX, 34
ULLONG_MAX, 34
ULONG_MAX, 34
undefined57
unformatted 1/0 /4, 80
unidirectional associatiori,20
unified modelling languagé,19
uninitialization,103
uninitialized variable34, 57, 66, 90, 91
union, 63
unit testing,198
unmanaged language
unsigned , 34
update, 171
usability testing;199
user,15
user time9
USHRT_MAX, 34
using
declaration154
directive,154

value parameter;2

215

variable declarations
type qualifier34, 35
variables
constant37
dereference38, 56
reference38, 56
vector, 146, 147
[1, 147
at, 147
begin, 148
clear, 147
empty, 147
end, 148
erase, 148
insert, 148
pop_back, 147
push_back, 147
rbegin, 148
rend, 148
resize, 147, 148
size, 147
version control164
virtual , 137, 139
virtual members137, 139-141
visibility, 65
default,62
private , 115
protected , 115
public , 62,115
visitor, 196
void, 71
void *, 91
volume testing199

walkthrough,197

waterfall,183

wchar _t, 33

which, 8

while , 27, 45

white-box testing197

whitespace32, 77, 83

widening,39

wildcard,4, 14
qualifier,14

working copy,165

216 CHAPTER 4. SOFTWARE ENGINEERING

wrapper,190
wrapper membed, 36
write, 15

xterm,1, 2

zero-filled,66

	Title
	Contents
	Shell
	File System
	Pattern Matching
	Quoting
	Shell Commands
	System Commands
	File Permission
	Input/Output Redirection
	Programming
	Variables
	Arithmetic
	Routine
	Environment Variables
	Control Structures
	Test
	Selection
	Looping

	Cleanup Script
	Regress Script

	C++
	First Program
	Program Structure
	Comment
	Statement

	Declaration
	Identifier
	Basic Types
	Variable Declaration
	Type Qualifier
	Literals

	Expression
	Conversion
	Coercion
	Math Operations

	Control Structures
	Block
	Selection
	Conditional Expression Evaluation
	Looping

	Structured Programming
	Multi-Exit Loop
	Multi-Level Exit

	Type Constructor
	Enumeration
	Pointer/Reference
	Aggregates
	Array
	Structure
	Union

	Type Equivalence
	Type Nesting
	Type-Constructor Literal
	String

	Modularization
	Routine
	Argument/Parameter Passing
	Array Parameter

	Input/Output
	Formatted I/O
	Formats
	Input
	Output

	Unformatted I/O

	Command-line Arguments
	Preprocessor
	Variables/Substitution
	File Inclusion
	Conditional Inclusion

	Assertions
	Debugging
	Debug Print Statements
	Errors

	Dynamic Storage Management
	Overloading
	Routine Pointer
	Object
	Object Member
	Operator Member
	Constructor
	Literal
	Conversion

	Destructor
	Copy Constructor / Assignment
	Initialize const / Object Member
	Static Member

	Random Numbers
	Declaration Before Use
	Encapsulation
	System Modelling
	UML

	Separate Compilation
	Inheritance
	Implementation Inheritance
	Type Inheritance
	Constructor/Destructor
	Copy Constructor / Assignment
	Overloading
	Virtual Routine
	Downcast
	Slicing
	Protected Members
	Abstract Class
	Multiple Inheritance
	UML

	Inheritance / Composition Design
	Template
	Standard Library
	Vector
	Map
	List
	for_each

	Namespace

	Tools
	C/C++ Composition
	Compilation
	Preprocessor
	Translator
	Assembler
	Linker

	Compiling Complex Programs
	Dependencies
	Make

	Source-Code Management
	SVN
	Repository
	Checking Out
	Adding
	Checking In
	Modifying
	Revision Number
	Updating

	Debugger
	GDB

	Software Engineering
	Software Crisis
	Software Development
	Development Processes
	Software Methodology
	System Design
	Top-Down

	Design Quality
	Coupling
	Cohesion

	Design Principles
	Design Patterns
	Pattern Catalog
	Class Patterns
	Object Patterns

	Testing
	Human Testing
	Machine Testing
	Testing Strategies
	Tester

	Index

