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1 Shell

• After signing onto a computer (login), a mechanism must exist to display information and
perform operations.

• The two main approaches are graphical and command line.

• Graphical interface (desktop):

◦ use icons to represent programs (actions),

◦ click on icon launches (starts) a program,

◦ program may pop up a dialog box for arguments to affect its execution.

• Command-line interface(shell):

◦ use text strings (names) to represent programs (commands),

◦ command is typed after a prompt in an interactive area to start it,

◦ arguments follow the command to affect its execution.

• Graphical interface is convenient, but seldom programmable.

• Command-line interface requires more typing, but allows programming.

• A shell is a program that reads commands and interprets them.

• It provides a simple programming-language withstringvariables and a few statements.

• Unix shells falls into two basic camps,sh (ksh, bash) andcsh (tcsh), each with slightly
different syntax and semantics.

• Focus on bash with some tcsh.

• Area (window) where shell runs is called aterminal or xterm.

• Shell line begins with aprompt denoted by$ (sh) or% (csh) (often customized).

• A command is typed after the prompt butnot executed untilEnter /Return key is pressed.

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009
$ whoamiEnter # print userid
jfdoe
$ echo Hi There!Enter # print any string
Hi There!

• Comment begins with a hash (#) and continues to the end of line.

c© Peter A. Buhr
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2 CHAPTER 1. SHELL

• Multiple commands can be typed on the command line separatedby the semi-colon.

$ date; whoami; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hi There!

• Commands can be editted on the command line (not sh):

◦ position cursor, , with ⊳ and⊲ arrow keys,

◦ remove characters before cursor withbackspace/delete key,

◦ type new characters before cursor,

◦ pressEnter at any point along the command line to execute modified command.

• Most commands haveoptions, specified with a minus followed by one or more characters,
which affect how the command operates.

$ uname -m # machine type
x86 64
$ uname -s # operating system
Linux
$ uname -a # all system information
Linux linux008.student.cs 2.6.31-21-server #59-Ubuntu SMP x86 64 GNU/Linux

• Options are normally processed left to right; one option maycancel another.

• No standardization for command option names and syntax.

• Shell terminates with commandexit .

$ exit # exit shell and possibly terminal

◦ when the shell of terminal/xterm terminates, the terminal/xterm terminates.

◦ when the login terminal/xterm terminates, you sign off the computer (logout).

1.1 File System

• Shell commands interact extensively with the file system.

• Files are containers for data stored on persistent storage (usually disk).

• File names are organized in an N-ary tree: directories are vertices, files are leaves.

• Information is stored at specific locations in the hierarchy.
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/ root of the local file system
bin basic system commands
lib system libraries
usr

bin more system commands
lib more system libraries
include system include files, .h files

tmp system temporary files
u or home user files

jfdoe home directory
., . . current, parent directory
.bashrc, .emacs, .login,. . . hidden files
cs246 course files

a1 assignment 1 files
q1x.C, q2y.h, q2y.cc, q3z.cpp

other users

• Directory named “/ ” is the root of the file system.

• bin, lib, usr, include : system commands, system library and include files.

• tmp : temporary files created by commands (shared among all users).

• u or home : user files are located in this directory.

• Directory for a particular user is called theirhome directory.

• Each file has a unique path-name in the file system, referencedwith an absolute pathname.

• An absolute pathnameis a list of all the directory names from the root to the file name
separated by the backslash character “/ ”.

/u/jfdoe/cs246/a1/q1x.C # => file q1x.C

• Shell provides short names for a file using an implicit starting location.

• At sign on, the shell creates acurrent directory variable set to the user’s home directory.

• Any file name not starting with “/ ” is automatically prefixed with the current directory to
create the necessary absolute pathname.

• A relative pathname is a list of all the directory names from the current directory to the file
name separated by the character “/ ”.

• E.g., when userjfdoe signs on, home and current directory are set to/u/jfdoe.

cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

• Shell special character “~” (tilde) expands to user’s home directory.

~/cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C
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• Every directory contains 2 special directories:

◦ “ .” points to current directory.

./cs246/a1/q1x.C # => /u/jfdoe/cs246/a1/q1x.C

◦ “ . .” points to parent directory above the current directory.

. ./. ./usr/include/limits.h # => /usr/include/limits.h

1.2 Pattern Matching
• Shells provide pattern matching of file names,globbing (regular expressions), to reduce

typing lists of file names.

• Different shells and commands support slightly different forms and syntax for patterns.

• Pattern matching is provided through special characters,*, ?, {}, [ ], denoting differentwild-
cards (from card games, e.g., Joker is wild, i.e., can be any card).

• Patterns are composable: multiple wildcards joined into complex pattern (Aces, 2s and Jacks
are wild).

• E.g., if the current directory is/u/jfdoe/cs246/a1 containing filesq1x.C, q2y.h, q2y.cc, q3z.cpp

◦ * matches 0 or more characters

$ echo q* # shell globs “q*” to match file names, which echo prints
q1x.C q2y.h q2y.cc q3z.cpp

◦ ? matches 1 character

$ echo q*.??
q2y.cc

◦ {. . .} matches any alternative in the set

$ echo *.{C,cc,cpp}
q1x.C q2y.cc q3z.cpp

◦ [. . .] matches 1 character in the set

$ echo q[12]*
q1x.C q2y.h q2y.cc

◦ [!. . .] (^ csh) matches 1 characternot in the set

$ echo q[!1]*
q2y.h q2y.cc q3z.cpp

◦ Create ranges using hyphen (dash)

[0-3] # => 0 1 2 3
[a-zA-Z] # => lower or upper case letter
[!a-zA-Z] # => any character not a letter
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◦ Hyphen is escaped by putting it at start or end of set

[-?*]* # => matches file names starting with -, ?, or *

• If globbing pattern does not match any files, the pattern is the file name (including wildcards).

$ echo q*.ww q[a-z].cc # files do not exist so no expansion
q*.ww q[a-z].cc

csh prints: echo : No match.

• Hidden files contain administrative information and start with “.” (dot).

• These files are ignored by globbing patterns, e.g.,* does not match all file names in a direc-
tory.

• Pattern.* matches all hidden files:

◦ match “.”, match zero or more characters, e.g.,.bashrc, .login, etc.,and “ .”, “ . .”

◦ matching “.”, “ . .” can be dangerous

• Pattern.[!.]* matches all hidden files butnot “ .” and “ . .” directories.

◦ match “.”, match any character NOT a “.”, match zero or more characters

◦ ⇒ there must be at least 2 characters, the 2nd character cannotbe a dot

◦ “ .” starts with dot but fails the 2nd pattern requiring anothercharacter

◦ “ . .” starts with dot but the second dot fails the 2nd pattern requiring non-dot character

Which hidden files are still missed?

• On the command line, pressing thetab key after typing several characters of a command/file
name causes the shell to automatically complete the name.

$ ectab # cause completion of command name to echo
$ echo q1tab # cause completion of file name to q1x.C

• If the completion is ambiguous (i.e., more than one):

◦ shell “beeps”,

◦ prints all completions if tab is pressed again,

◦ then you must type more characters to uniquely identify the name.

$ datab # beep
$ datab # print completions
dash date
$ dattab # cause completion of command name to date
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1.3 Quoting

• Quoting controls how shell interprets strings of characters.

• Backslash( \ ) : escapeany character, including special characters.

$ echo .[!.]* # expand globbing patterm
.bashrc .emacs .login .vimrc
$ echo \.\[\!\.\]\* # print globbing pattern
.[!.]*

• Backquote( 8 ) : execute the text as a command, and replace it with the command output.

$ echo 8whoami8 # $ whoami => jfdoe
jfdoe

• Single quote( ′ ) : do not interpret the string, even backslash.

$ echo ′.[!.]*
′

.[!.]*
$ echo ′\.\[\!\.\]\*

′

\.\[\!\.\]\*

A single quote cannot appear inside single quotes.

◦ E.g., file name containing special characters (blanks/wildcards/comment).

$ echo Book Report #2
Book Report
$ echo ′Book Report #2′

Book Report #2

• Double quote( " ) : interpret escapes, backquotes, and variables (see Section1.8.1).

$ echo ".[!.]* \"8whoami8\" \.\[\!\.\]\*"
.[!.]* "jfdoe" \.\[\!\.\]\*

• Put newline into string for multi-line text.

$ echo "abc
> cdf" # prompt “>” means current line is incomplete
abc
cdf

• To stop prompting or output from any shell command, type<ctrl>-c (C-c), i.e., press<ctrl>
andc keys simultaneously, causes the shell to interrupt the current command.

$ echo "abc
> C-c
$
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1.4 Shell Commands
• Some commands are executed directly by the shell rather thanthe OS because they read/write

the shell’s state.

• help : display information about bash commands (not sh or csh).

help [command-name]

◦ without argument, lists all bash commands.

• cd : change the current directory (navigate file hierarchy).

cd [directory]

◦ argument must be a directory and not a file

◦ cd : move to home directory, same ascd ~

◦ cd - : move to previous current directory

◦ cd ~/cs246 : move to thecs246 directory contained injfdoe home directory

◦ cd /usr/include : move to/usr/include directory

◦ cd . . : move up one directory level

◦ If path does not exist,cd fails and current directory is unchanged.

• pwd : print the current directory.

$ pwd
/u/jfdoe/cs246

• history and “!” (bang!) : print a numbered history of most recent commands entered and
access them.

$ history
1 date
2 whoami
3 echo Hi There
4 help
5 cd . .
6 pwd

$ !2 # rerun 2nd history command
whoami
jfdoe
$ !! # rerun last history command
whoami
jfdoe
$ !ec # rerun last history command starting with “ec”
echo Hi There
Hi There

◦ !N rerun commandN

◦ !! rerun last command

◦ !xyz rerun last command starting with the string “xyz”

◦ Arrow keys△/▽ move forward/backward through history commands on commandline.

$ △ pwd
$ △ cd . .
$ △ help
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• alias : string substitutions for command names.

alias [ command-name=string ]

◦ No spaces before/after “=” (csh does not have “=”).

◦ string is substituted for commandcommand-name.

◦ Providenicknamefor frequently used or variations of a command.

$ alias d=date # no quotes
$ d
Mon Oct 27 12:56:36 EDT 2008
$ alias off="clear; exit"
$ off # clear screen before terminating shell

Why are quotes necessary for aliasoff?

◦ Always use quotes to prevent problems.

◦ Aliases are composable, i.e., one alias references another.

$ alias now="d" # quotes
$ now
Mon Oct 27 12:56:37 EDT 2008

◦ Without argument, print all currently defined alias names and strings.

$ alias
alias d=′date′

alias now=′d′

alias off=′clear; exit′

◦ Alias CANNOT be command argument(see page20).

$ alias cs246assn=/u/jfdoe/cs246/a1
$ cd cs246assn # alias only expands for command
bash: cd : cs246assn: No such file or directory

◦ Alias entered on command line disappears when shell terminates.

◦ Two options for making aliases persist across sessions:

1. insert thealias commands in the appropriate (hidden).shellrc file,

2. place a list ofalias commands in a file (often.aliases) andsource (see page23)
that file from the.shellrc file.

• type (cshwhich ) : print pathname of a command.

$ type now
now is aliased to ‘d’
$ type d
d is aliased to ‘date’
$ type bash
bash is /bin/bash
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• echo : write arguments, separated by a space and terminated with newline.

$ echo We like ice cream # 4 arguments
We like ice cream
$ echo " We like ice cream " # 1 argument
We like ice cream

• time : execute a command and print a time summary.

◦ test if program modification produces change in execution performance

◦ printsuser time (program CPU),system time(OS CPU),real time (wall clock)

◦ different shells print these values differently.

$ time myprog
real 1.2
user 0.9
sys 0.2

% time myprog
0.94u 0.22s 0:01.2

◦ user + system≈ real-time (uniprocessor, no OS delay)

◦ compare user (and possibly system) execution times before and after modification

• exit : terminates shell, with optional integer exit status (return code)N.

exit [ N ]

◦ [ N ] is in range 0-255; larger values are truncated (256⇒ 0, 257⇒ 1, etc.) , negative
values (if allowed) become unsigned (-1⇒ 255).

◦ exit status defaults to zero if unspecified (see pages22and25 for status usage).

1.5 System Commands

• Commands executed by operating system (UNIX).

• sh / bash / csh / tcsh : startsubshell.

$ . . . # bash commands
$ tcsh # start tcsh in bash
% . . . # tcsh commands
% sh # start sh in tcsh
$ . . . # sh commands
$ exit # exit sh
% exit # exit tcsh
$ exit # exit original bash and terminal

◦ Allows switching among shells for different purposes.

• chsh : set login shell (bash, tcsh, etc.).
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$ echo $SHELL # what shell am I using ?
/bin/tcsh
$ chsh # change to different shell
Password: XXXXXX
Changing the login shell for jfdoe
Enter the new value, or press ENTER for the default

Login Shell [/bin/tcsh]: /bin/bash

• man : print information about command, option names (see page2) and function.

$ man bash
. . . # information about “bash” command
$ man chsh
. . . # information about “chsh” command
$ man man
. . . # information about “man” command

• ls : list the directories and files in the specified directory.

ls [ -al ] [ file or directory name-list ]

◦ -a listsall files, including hidden files (see page5)

◦ -l generates along listing (details) for each file (see page15)

◦ no file/directory name implies current directory

$ ls . # list current directory (non-hidden files)
q1x.C q2y.h q2y.cc q3z.cpp
$ ls -a # list current directory plus hidden files
. . . .bashrc .emacs .login q1x.C q2y.h q2y.cc q3z.cpp

• mkdir : create a new directory at specified location in file hierarchy.

mkdir directory-name-list

$ mkdir d d1 d2 d3 # create 4 directories in current directory

• cp : copy files; with the -r option, copy directories.

cp [ -i ] source-file target-file
cp [ -i ] source-file-list target-directory
cp [ -i ] -r source-directory-list target-directory

◦ -i prompt for verification if a target file is being replaced.

◦ -r recursively copy contents of a source directory to a target directory.

$ cp f1 f2 # copy file f1 to f2
$ cp f1 f2 f3 d # copy files f1, f2, f3 into directory d
$ cp -r d1 d2 d3 # copy directories d1, d2 recursively into directory d3
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• mv : move files and/or directories to another location in the filehierarchy.

mv [ -i ] source-file target-file
mv [ -i ] source-file-list/source-directory-list target-directory

◦ if the target-file does not exist, the source-file is renamed;otherwise the target-file is
replaced.

◦ -i prompt for verification if a target file is being replaced.

$ mv f1 foo # rename file f1 to foo
$ mv f2 f3 # delete file f3 and rename file f2 to f3
$ mv f3 d1 d2 d3 # move file f3 and directories d1, d2 into directory d3

• rm : remove (delete) files; with the -r option, remove directories.

rm [ -ifr ] file-list/directory-list

◦ -i prompt for verification for each file/directory being removed.

◦ -f do not prompt for verification for each file/directory being removed.

◦ -r recursively delete the contents of a directory.

◦ UNIX does not give a second chance to recover deleted files; becareful when using
rm , especially with globbing, e.g.,rm * or rm .*

◦ UW has hidden directory.snapshot in every directory containing backups of all files in
that directory (per hour for 8 hours, per night for 7 days, perweek for 21 weeks)

$ ls .snapshot # directories containing backup files
hourly.0 hourly.6 nightly.4 weekly.11 weekly.17 weekly.3 weekly.9
hourly.1 hourly.7 nightly.5 weekly.12 weekly.18 weekly.4
hourly.2 nightly.0 nightly.6 weekly.13 weekly.19 weekly.5
hourly.3 nightly.1 weekly.0 weekly.14 weekly.2 weekly.6
hourly.4 nightly.2 weekly.1 weekly.15 weekly.20 weekly.7
hourly.5 nightly.3 weekly.10 weekly.16 weekly.21 weekly.8
$ cp .snapshot/hourly.0/q1.h q1.h # restore file from previous hour

• Usealias for setting command options for particular commands.

$ alias cp="cp -i"
$ alias mv="mv -i"
$ alias rm="rm -i"

which always uses the -i option (see page10) on commandscp, mv andrm.

• Alias can be overridden by quoting or escaping the command name.

$ "rm" -r xyz
$ \rm -r xyz

which does not add the -i option.
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• cat/more/less : print files.

cat file-list

◦ cat shows the contents in one continuous stream.

◦ more/less paginate the contents one screen at a time.

$ cat q1.h
. . . # print file q1.h completely
$ more q1.h
. . . # print file q1.h one screen at a time

# type “space” for next screen, “q” to stop

• lp/lpstat/lprm : add, query and remove files from the printer queues.

lp [ -d printer-name ] file-list
lpstat [ -d ] [ -p [ printer-name ] ]
lprm [ -P printer-name ] job-number

◦ if no printer is specified, use default printer (ljp 3016 in MC3016).

◦ lpstat : -d prints default printer, -p without printer-name lists all printers

◦ each job on a printer’s queue has a unique number.

◦ use this number to remove a job from a print queue.

$ lp -d ljp 3016 uml.ps # print file to printer ljp 3016
$ lpstat # check status, default printer ljp 3016
Spool queue: lp (ljp 3016)
Rank Owner Job Files Total Size
1st rggowner 308 tt22 10999276 bytes
2nd jfdoe 403 uml.ps 41262 bytes
$ lprm 403 # cancel printing
services203.math: cfA403services16.student.cs dequeued
$ lpstat # check if cancelled
Spool queue: lp (ljp 3016)
Rank Owner Job Files Total Size
1st rggowner 308 tt22 10999276 bytes

• cmp/diff : compare 2 files and print differences.

cmp file1 file2
diff file1 file2

◦ return 0 if files equal (no output) and non-zero otherwise (output difference)

◦ cmp generates the first difference between the files.
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file x file y
1 a\n a\n
2 b\n b\n
3 c\n c\n
4 d\n e\n
5 g\n h\n
6 h\n i\n
7 g\n

$ cmp x y
x y differ: char 7, line 4

newline is counted⇒ 2 characters per line

◦ diff generates output describing how to change first file into second file.

$ diff x y
4,5c4 # replace lines 4 and 5 of 1st file
< d # with line 4 of 2nd file
< g
---
> e
6a6,7 # after line 6 of 1st file
> i # add lines 6 and 7 of 2nd file
> g

• find : search for names in the file hierarchy.

find [ file/directory-list ] [ expr ]

◦ \( expr \) evaluation order

◦ -not expr , expr -a expr , expr -o expr logicalnot, andandor (precedence order)

-a default if unspecified,expr expr ⇒ expr -a expr

◦ -type f | d select files of type file or directory

◦ -maxdepth N recursively descend at mostN directory levels (0⇒ current directory)

◦ -name pattern restrict file names to globbing pattern.

◦ find file/directory names in current and subdirectories withpattern “t*”

$ find . -name "t*" # why quotes ?
./test.cc
./testdata

find only file names in current and subdirectories with pattern “t*”

$ find * -type f -name "t*" # -a unspecified
test.cc

find only file names in current and subdirectories to a maximumdepth of 3 with patterns
t* or *.C.

$ find * -maxdepth 3 -a -type f -a \( -name "t*" -o -name "*.C" \)
test.cc
q1.C
testdata/data.C
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• egrep : (extended global regular expression print) search & print lines matching pattern in
files (Google). (same asgrep -E)

egrep -irn pattern-string file-list

◦ -i ignore case in both pattern and input files

◦ -r recursively examine files in directories.

◦ -n prefix each matching line with line number

◦ returns 0 if one or more lines match and non-zero otherwise (counter intuitive)

◦ list lines containing “main” in files with suffix “.cc”

$ egrep -n main *.cc
q1.cc:33:int main() {

list lines containing “fred” in any case in file “names.tex”

$ egrep -i fred names.txt
names.txt:Fred Derf
names.txt:FRED HOLMES
names.txt:freddy jones

list lines that match start of line “^”, match “#include”, match 1 or more space or tab
“ [ ]+”, match either “"” or “ <”, match 1 or more characters “.+”, match either “"” or
“>”, match end of line “$” in files with suffix “.h” or “ .cc”

$ egrep ′^#include[ ]+["<].+[">]$′ *.{h,cc} # why quotes ?
egrep: *.h: No such file or directory
q1.cc:#include <iostream>
q1.cc:#include <iomanip>
q1.cc:#include “q1.h”

◦ egrep pattern is different from globbing pattern (seeman egrep).

Most important difference is “*” is a wildcard qualifier not a wildcard.

• ssh : (secure shell) safe, encrypted, remote-login between client/serverhosts.

ssh [ -Y ] [ -l user ] [ user@ ] hostname

◦ -Y allows remote computer (University) to create windows on local computer (home).

◦ -l login user on the server machine.

◦ To login from home to UW environment:

$ ssh -Y -l jfdoe linux.student.cs.uwaterloo.ca
. . . # enter password, run commands (editor, programs)
$ ssh -Y jfdoe@linux.student.cs.uwaterloo.ca
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1.6 File Permission
• UNIX supports 3 levels of security for each file or directory based on sets of users:

◦ user : owner of the file,

◦ group : arbitrary name associated with a set of userids,

◦ other : any other user.

• File or directory have permissions, read, write, and execute/search for the 3 sets of users.

◦ Read/write allow specified set of users to read/write a file/directory.

◦ Executable/search allow:

∗ file : execute as a command, e.g., file contains a program or shell script,

∗ directory : search by certain system operations but not readin general.

• Usels -l command to print file-permission information.

drwxr-x--- 2 jfdoe jfdoe 4096 Oct 19 18:19 cs246/
drwxr-x--- 2 jfdoe jfdoe 4096 Oct 21 08:51 cs245/
-rw------- 1 jfdoe jfdoe 22714 Oct 21 08:50 test.cc
-rw------- 1 jfdoe jfdoe 63332 Oct 21 08:50 notes.tex

• Columns are: permissions, #-of-directories (including “.” and “ . .”), owner, group, file size,
change date, file name.

• Permission information is:

---r-xd rwx

group permissions
other permissions

- = file
d = directory user permission

• E.g.,drwxr-x---, indicates

◦ directory in which the user has read, write and execute permissions,

◦ group has only read and execute permissions,

◦ others have no permissions at all.

• In general, never allow “other” users to read or write your files.

• Default permissions (usually) on:

◦ file: rw-r-----, owner has read/write permission, and group has only read permission.

◦ directory:rwx------, owner has read/write/execute.
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• chgrp : change group-name associated with file.

chgrp [ -R ] group-name file/directory-list

◦ -R recursively modify the group of a directory.

$ chgrp cs246 05 cs246 # course directory
$ chgrp -R cs246 05 cs246/a5 # assignment directory/files

Must associate group along entire pathname and files.

• Creating/deleting group-names is done by system administrator.

• chmod : add or remove from any of the 3 security levels.

chmod [ -R ] mode-list file/directory-list

◦ -R recursively modify the security of a directory.

◦ mode-listhas the formsecurity-level operator permission.

◦ Security levels are denoted byu for you user,g for group,o for other,a for all (ugo).

◦ Operator+ adds permission, - removes permission.

◦ Permissions are denoted byr for readable,w for writable andx for executable.

◦ Elements of themode-listare separated by commas.

chmod g-r,o-r,g-w,o-w foo # long form, remove read/write for group/others users
chmod go-rw foo # short form
chmod g+rx cs246 # allow group users read/search
chmod -R g+rw cs246/a5 # allow group users read/write

Must associate permission along entire pathname and files.

1.7 Input/Output Redirection

• Every command has three standard files: input (0), output (1)and error (2).

• By default, these are connected to the keyboard (input) and screen (output/error).

error (2)

output (1)
input (0) command
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$ sort -n # numeric sort
7 sort reads unsorted values from keyboard
30
5
C-d close input file
5 sort prints sorted values to screen
7
30

• To close an input file from the keyboard, type<ctrl>-d (C-d), i.e., press<ctrl> andd keys
simultaneously, causes the shell to close the keyboard input file.

• Redirection allows:

◦ alternate input from a file (faster than typing at keyboard),

◦ saving output to a file for subsequent examination or processing.

• Redirection performed using operators< for input and> / >> for output to/from other sources.

in out

input (0) command

>
< >>

error (2)

output (1)

◦ < means read input from file rather than keyboard.

◦ > means (create if needed) output file and write to file rather than screen (destructive).

◦ >> means (create if needed) output file and append to file rather than screen.

• Command is (usually) unaware of redirection.

• To distinguish between output and error, prefix output redirection with number.

> # implicit, => output
1> # explicit, => output
1>> # => output
2> # => error
2>> # => error

• Normally, standard error (e.g., error messages) is not redirected because of its importance.

$ sort < in # input from file “in”; output to screen
$ sort < in > out # input from file “in”; output to file “out”
$ ls -al 1> out # output to file “out”
$ ls -al >> out # append output to file “out”
$ sort 2>> errs # append errors to file “errs”
$ sort 1> out 2> errs # output to file “out”; errors to file “errs”

• Can tie standard error to output (and vice versa) using “>&” ⇒ both write to same place.
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input (0) command
error (2) output (1)

output (1) error (2)

• Order of tying redirection files is important.

$ sort 2>&1 > out # tie stderr (2) to stdout (1), stdout to “out”
$ sort > out 2>&1 # redirect stdout to “out”, tie stderr to stdout => “out”

• To ignore output, redirect to pseudo-file/dev/null.

$ sort data 2> /dev/null # ignore error messages

• Redirection requires explicit creation of intermediate (temporary) files.

$ sort data > sortdata # sort data and store in “sortdata”
$ grep -v "abc" sortdata > temp # remove lines with “abc”, store in “temp”
$ tr a b < temp > result # translate a′s to b′s and store in “result”
$ rm sortdata temp # remove intermediate files

• Shell pipe operator| makes standard output for a command the standard input for the next
command, without creating intermediate file.

$ sort data | grep -v "abc" | tr a b > result

• Standard error is not piped unless redirected to standard output.

$ sort data 2>&1 | grep -v "abc" 2>&1 | tr a b > result 2>&1

now both standard output and error go through pipe.

• Print file hierarchy using indentation (see page3).

$ find cs246
cs246/
cs246/a1
cs246/a1/q1x.C
cs246/a1/q2y.h
cs246/a1/q2y.cc
cs246/a1/q3z.cpp

$ find cs246 | sed ′s|[^/]*/| |g′

cs246
a1

q1x.C
q2y.h
q2y.cc
q3z.cpp

sed : inline editor, pattern changes all occurrences (g) of string[^/]*/ (zero or more characters
not “/” and then “/”, where “*” is a wildcard qualifier not a wildcard) to 3 spaces.
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1.8 Programming
• A shell program or script is a file containing shell commands to be executed.

#!/bin/bash [ -x ]
date # shell and OS commands
whoami
echo Hi There

• First line should begin with magic comment: “#! ” (sha-bang) with shell pathname for exe-
cuting the script.

• It forces a specific shell to be used, which is run as a subshell.

• If the “#! ” line is missing, a subshell of the same kind as the invoking shell is used for sh
shells and sh is used for csh shells.

• Optional -x is for debugging and prints trace of the script during execution.

• A script can be invoked directly using a specific shell, or as acommand if it has executable
permissions.

$ bash scriptfile # direct invocation
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hi There!
$ chmod u+x scriptfile # make script file executable
$ ./scriptfile # command execution
Sat Dec 19 07:36:17 EST 2009
jfdoe
Hi There!

• Interactive shell session is just a script reading from standard input.

1.8.1 Variables

• syntax :[ a-zA-Z][ a-zA-Z0-9]* where “*” is wildcard qualifier

• case-sensitive:

VeryLongVariableName Page1 Income Tax 75

• Some identifiers are reserved (e.g.,if , while ), and hence,keywords.

• Variables ONLY hold string values (arbitrary length).

• Variable is declareddynamicallyby assigning a value with operator “=”.

$ cs246assn=/u/jfdoe/cs246/a1 # declare and assign

No spaces before or after “=”.
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• A variable’s value is dereferenced using operators “$” or “ ${}”.

$ echo $cs246assn ${cs246assn}
/u/jfdoe/cs246/a1 /u/jfdoe/cs246/a1
$ cd $cs246assn # or ${cs246assn}

Unlike alias, variable can be a command argument (see page8).

• Dereferencing an undefined variables returns the empty string.

$ cd $cs246assnTest # cd /u/jfdoe/cs246/a1Test

Where does this move to?

• Always use braces to allow concatenation with other text.

$ cd ${cs246assn}Test # cd /u/jfdoe/cs246/a1Test

• Beware commands/arguments composed in variables.

$ out=sortdata # output file
$ dsls=′ls | sort -r > ${out}′ # store files names in descending (-r) order
$ ${dsls} # execute command
ls: cannot access |: No such file or directory
ls: cannot access sort: No such file or directory
ls: cannot access >: No such file or directory
ls: cannot access ${out}: No such file or directory

• Behaviour results because the shell tokenizes, substitutes, and then executes.

• Initially, the shell sees only one token, “${dsls}”, so the tokenswithin the variable are not
marked correctly, e.g., “|” and ”>” not marked as pipe/redirection tokens.

• Then variable substitution occurs on “${dsls}”, giving tokens′ls′ ′|′ ′sort′ ′-r′ ′>′ ′${out}′ ,
so ls is the command and remaining tokens are file names.

Why no “cannot access” message above for -r?

• To make this work, shell must tokenize and substitute a second timebeforeexecution.

• eval command causes its argument to be processed by shell.

$ eval ${dsls} # tokenize/substitute and tokenize/substitute
$ cat sortdata # no errors, check results
. . . # list of file names in descending order

◦ 1st tokenize/substitute giveseval ′ls′ ′|′ ′sort′ ′-r′ ′>′ ′${out}′

◦ 2nd tokenize/substitute gives′ls | sort -r > sortdata′ , which shell executes
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1.8.2 Arithmetic

• Shell variables have type string, which has no arithmetic:"3" + "17".

$ i=3 # i has string value “3” not integer 3

• Arithmetic is performed by:

◦ converting a string to an integer (if possible),

◦ performing an integer operation,

◦ and converting the integer result back to a string.

• bash performs these steps with shell-command operator$((expression)).

$ echo $((3 + 4 - 1))
6
$ echo $((3 + ${i} * 2))
9
$ echo $((3 + ${k})) # k is unset
bash: 3 + : syntax error: operand expected (error token is " ")

• Basic integer operations,+, -, *, /, % (modulus), with usual precedence, and().

• For shells without arithmetic shell-command (e.g., sh, csh), use system commandexpr.

$ echo 8expr 3 + 4 - 18 # for sh, csh
6
$ echo 8expr 3 + ${i} \* 28 # escape *
9
$ echo 8expr 3 + ${k}8 # k is unset
expr: non-numeric argument

1.8.3 Routine

• A routine is defined as follows:

routine name() { # number of parameters depends on call
# commands

}

• Invoke like a command.

routine name [ args ... ]

• E.g., create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g -e input-file [ output-file ]"
exit 1 # terminate script with non-zero exit code

}
usage # call, no arguments
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• Special parameter variables to access arguments/result.

◦ ${#} number of arguments, not including script name

◦ ${0} name of shell script

$ echo ${0} # shell you are using (not csh)
bash

◦ ${n} refers to the arguments by position, i.e., 1st, 2nd, 3rd, ...

◦ ${*} arguments as a single string, e.g.,"${1} ${2} . . .", not including script name

◦ ${@} arguments as separate strings, e.g.,"${1}" "${2}" . . ., not including script name

◦ ${?} exit status of the last routine/command executed; 0 often⇒ exited normally.

◦ ${$} process id of executing script.

$ cat scriptfile
#!/bin/bash
rtn() {

echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # arguments
echo ${*} # arguments as a single string
echo ${@} # arguments as separate strings
echo ${$} # process id of executing subshell
return 17 # routine exit status

}
rtn a1 a2 a3 a4 a5 # invoke routine
echo ${?} # print routine exit status
exit 21 # script exit status

$ ./scriptfile # run script
5 # number of arguments
scriptfile a1 a2 a3 a4 # script-name / args 1-5
a1 a2 a3 a4 a5 # args 1-5, 1 string
a1 a2 a3 a4 a5 # args 1-5, 5 strings
27028 # process id of subshell
17 # routine exit status
$ echo ${?} # print script exit status
21

• shift [ N ] : destructively shift parameters to the leftN positions, i.e.,${1}=${N+1}, ${2}=${N+2},
etc., and${#} is reduced byN.

◦ If no N, 1 is assumed.

◦ If N is 0 or greater than${#}, there is no shift.
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$ cat scriptfile
#!/bin/bash
rtn() {

echo ${1}; shift 1
echo ${1}; shift 2
echo ${1}; shift 3
echo ${1}

}
rtn 1 2 3 4 5 6 7 8

$ ./scriptfile
1
2
4
7

• Routines/variables must be created before used, are then visible throughout the script, and
can be removed.

rtn1() {
var=3 # new variable
rtn2 # call rtn2, see all routines
unset rtn2 # remove routine!!!

}
rtn2() {

echo ${var} # see all variables
unset var # remove variable!!!

}
rtn1 # call

• source filename : execute commands from a file in the current shell.

◦ For convenience or code sharing, a script may be subdivided into multiple files.

◦ E.g., put commonly used routines or set of commands into separate files.

◦ No “#!. . . ” necessary at top, because not invoked directly like a script.

◦ Sourcing a fileincludesit into the current shell script andevaluatesthe lines.

source ./aliases # include/evaluate aliases into .shellrc file
source ./usage.bash # include/evaluate usage routine into scriptfile

◦ Created or modified variables/routines from sourced file immediately affect current
shell.

1.8.4 Environment Variables

• Each shell has a list of environment (global) and script (local/parameters) variables.

• Temporally, a shell has aN lists of variables: environment, local, arguments for callsC1−i .

Envir: $E0 $E1 $E2...
Local: $L0 $L1 $L2...
Args1: $0 $1 $2...0

1

2

Shell (command)

... (call stack)
Argsi: $0 $1 $2...
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• A new variable starts on the local list.

$ var=3 # new local variable

• A variable is moved to environment list if exported.

$ export var # move from local to environment list

• Login shell starts with a number of useful environment variables, e.g.:

$ set # print variables (and values) on environment list
HOME=/u/jfdoe # home directory
HOSTNAME=linux006.student.cs # host computer
PATH=. . . # lookup directories for OS commands
SHELL=/bin/bash # login shell
. . .

• A script executes in its own subshell with acopyof calling shell’s environment variables
(works across different shells).

$ ./scriptfile # execute script in subshell

Envir: $E0 $E1 $E2......

Envir: $E0 $E1 $E2...

Shell

(scriptfile)Subshell...

copied

• When a (sub)shell ends, changes to its environment variables do not affect its containing
shell (environment variables only affect subshells).

• Only put a variable in the environment list to make it accessible by subshells.

1.8.5 Control Structures

• Shell provides control structures for conditional and iterative execution; syntax for bash is
presented (csh is different).

1.8.5.1 Test

• test ( [ ] ) command compares strings, integers and queries files.

• test expression is constructed using the following:

test operation priority

! expr not high
\( expr \) evaluation order (must be escaped)
expr1 -a expr2 logical and (not short-circuit)
expr1 -o expr2 logical or (not short-circuit) low
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• test comparison is performed using the following:

test operation

string1 = string2 equal (not ==)
string1 != string2 not equal
integer1 -eq integer2 equal
integer1 -ne integer2 not equal
integer1 -ge integer2 greater or equal
integer1 -gt integer2 greater
integer1 -le integer2 less or equal
integer1 -lt integer2 less
-d file exists and directory
-e file exists
-f file exists and regular file
-r file exists with read permission
-w file exists with write permission
-x file exists with executable or searchable

• Logical operators -a (and) and -o (or) evaluate both operands (see Section2.5.3, p. 45).

• test returns 0 if expression is true and 1 otherwise (counter intuitive).

$ test 3 -lt 4 # integer test
$ echo ${?} # true
0
$ test 8whoami8 = jfdoe # string test
$ echo ${?} # false
1
$ test 2 -lt ${i} -o 8whoami8 = jfdoe # compound test
$ echo ${?} # true
0
$ [ -e q1.cc ] # file test, alternate syntax
$ echo ${?} # true
0

1.8.5.2 Selection

• An if statement provides conditional control-flow.

if test-command if test-command ; then
then

commands commands
elif test-command elif test-command ; then

then
commands commands

. . . . . .
else else

commands commands
fi fi

Semi-colon is necessary to separatetest-command from keyword.
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• test-command is evaluated; exit status of zero implies true, otherwise false.

• Check for different conditions:

if test "8whoami8" = "jfdoe" ; then
echo "valid userid"

else
echo "invalid userid"

fi

if diff file1 file2 > /dev/null ; then # ignore diff output
echo "same files"

else
echo "different files"

fi

if [ -x /usr/bin/cat ] ; then # alternate syntax for test
echo "cat command available"

else
echo "no cat command"

fi

• Beware unset variables or values with blanks.

if [ ${var} = ′yes′ ] ; then . . . # var unset => if [ = ′yes′ ]
bash: [: =: unary operator expected
if [ ${var} = ′yes′ ] ; then . . . # var=“a b c” => if [ a b c = ′yes′ ]
bash: [: too many arguments
if [ "${var}" = ′yes′ ] ; then . . . # var unset => if [ “” = ′yes′ ]
if [ "${var}" = ′yes′ ] ; then . . . # var=“a b c” => if [ “a b c” = ′yes′ ]

When dereferencing, always quote variables!

• A case statement selectively executes one ofN alternatives based on matching a string
expression with a series of patterns (globbing), e.g.:

case expression in
pattern | pattern | . . . ) commands ;;
. . .
* ) commands ;; # optional match anything

esac

• When a pattern is matched, the commands are executed up to “;;”, and control exits thecase
statement.

• If no pattern is matched, thecase statement does nothing.

• E.g., for simple command with only one of these options:

-h, --help, -v, -verbose, -f file

usecase statement to process single command-line arguments:
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usage() { . . . } # print message and terminate script
case "${1}" in # process single command-line argument
′-h′ | ′--help′ ) usage ;;
′-v′ | ′--verbose′ ) verbose=yes ;;
′-f′ | ′--file′ ) # has additional argument

shift 1 # access argument
file="${1}"
;;

* ) usage ;; # default, has to be one argument
esac
if [ ${#} -ne 1 ] ; then usage ; fi # check no other arguments
. . . # execute remainder of command

1.8.5.3 Looping

• while statement executes its commands zero or more times.

while test-command while test-command ; do
do

commands commands
done done

• test-command is evaluated; exit status of zero implies true, otherwise false.

• Check for different conditions:

# search command-line parameters for “-x”
while [ "${1}" != "-x" ] ; do # string compare

shift # destructive
done

i=1
while [ ${i} -le ${#} ] ; do # process parameters, non-destructive

eval arg="\${${i}}" # 1st step ${1}, 2nd step argument 1
echo "${arg}" # process value
i=$((${i} + 1))

done

i=1
file=data${i}
while [ -f "${file}" ] ; do # file regular and exists?

. . . # process file
i=$((${i} + 1)) # advance to next file
file=data${i}

done

• for statement is a specializedwhile statement for iterating with an index over list of strings.
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for index [ in list ] ; do
commands

done

for arg in "${@}" ; do # process parameters, non-destructive
echo ${arg}

done

If no list, iterate over parameters, i.e.,${@}.

• Or over a set of values:

for (( init-expr; test-expr; incr-expr )); do # double parenthesis
commands

done

for (( i = 1; i <= ${#}; i += 1 )); do
eval echo "\${${i}}" # ${1-#}

done

• Use directly on command line:

$ for file in *.C ; do cp "${file}" "${file}".old ; done

• A while /for loop may containcontinue andbreak to advance to the next loop iteration or
terminate loop.

for count in "one" "two" "three & four" ; do
. . .

if [ "8whoami8" = "jfdoe" ] ; then continue ; fi # next iteration
. . .

if [ ${?} -ne 0 ] ; then break ; fi # exit loop
. . .

done
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1.9 Cleanup Script

#!/bin/bash
#
# List and remove unnecessary files in directories
#
# Usage: cleanup [ [ -r|R ] [ -i|f ] directory-name ]+
# -r|-R clean specified directory and all subdirectories
# -i|-f prompt or not prompt for each file removal
# Examples:
# $ cleanup jfdoe
# $ cleanup -R .
# $ cleanup -r dir1 -i dir2 -r -f dir3
# Limitations:
# * only removes files named: core, a.out, *.o, *.d
# * does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [ [ -r | -R ] [-i | -f] directory-name ]+"
exit 1

}
defaults() { # defaults for each directory

prompt="-i" # do not prompt for removal
depth="-maxdepth 1" # not recursive

}
remove() {

for file in 8find "${1}" ${depth} -type f -a \( -name ′core′ -o \
-name ′a.out′ -o -name ′*.o

′ -o -name ′*.d
′ \)8

do
echo "${file}" # print removed file
rm "${prompt}" "${file}"

done
}
if [ ${#} -eq 0 ] ; then usage ; fi # no arguments ?
defaults # set defaults for directory
while [ "${#}" -gt 0 ] ; do # process command-line arguments

case "${1}" in
"-h" ) usage ;; # help ?
"-r" | "-R" ) depth="" ;; # recursive ?
"-i" | "-f") prompt="${1}" ;; # prompt for deletion ?
* ) # directory name ?

remove "${1}" # remove files in this directory
defaults # set defaults for directory
;;

esac
shift # remove argument

done

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/cleanup
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1.10 Regress Script

#!/bin/bash
#
# Compare output from two programs printing any differences.
#
# Usage: regress program1 ′program1-options′ program2 ′program2-options′ argument-list
#
# Examples:
# regress cat ′ ′ cat ′ -n′ regress regress
# regress regress “cat ′ ′ cat ′ -n′ ” regress “cat ′ ′ cat ′ -n′” regress regress
# regress myprog ′ -w′ samplesoln ′ -w′ 27 100 -2 -100

usage() {
echo "Usage: ${0} program1 \"program1-options\"" \

"program2 \"program2-options\" argument-list"
exit 1

}
# check command-line arguements
if [ ${#} -lt 5 ] ; then usage ; fi
if [ ! -x "8type -p ${1}8" ] ; then echo "program1 is not executable" ; usage ; fi
if [ ! -x "8type -p ${3}8" ] ; then echo "program2 is not executable" ; usage ; fi

prog1=${1} # copy first 4 parameters
opts1=${2}
prog2=${3}
opts2=${4}
shift 4 # remove first 4 parameters

for parm in "${@}" ; do # process remaining parameters
# must use eval to reevaluate parameters
eval ${prog1} ${opts1} ${parm} > tmp1 ${$} 2>&1 # run programs and save output
eval ${prog2} ${opts2} ${parm} > tmp2 ${$} 2>&1
diff tmp1 ${$} tmp2 ${$} # compare output from programs
if [ ${?} -eq 0 ] ; then # check return code

echo "identical output"
fi
rm tmp1 ${$} tmp2 ${$} # clean up temporary files

done

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/regress


2 C++

2.1 First Program

Java C C++

import java.lang.*; // implicit
class Hello {

public static
void main( String[ ] args ) {

System.out.println("Hello!");
System.exit( 0 );

}
}

#include <stdio.h>

int main() {
printf( "Hello!\n" );
return 0;

}

#include <iostream> // access to output
using namespace std; // direct naming

int main() { // program starts here
cout << "Hello!" << endl;
return 0; // return 0 to shell, optional

}

• #include <iostream> copies (imports) basic I/O descriptions (no equivalent in Java).

• using namespace std allows imported I/O names to be accessed directly (otherwise quali-
fication is necessary, see Section2.27, p.153).

• int main() is the routine where execution starts.

• curly braces,{ . . . }, denote a block of code, i.e., routine body ofmain.

• cout << "Hello!" << endl prints"Hello!" to standard output, calledcout (System.out in
Java,stdout in C).

• endl starts a newline after"Hello!" (println in Java,′\n′ in C).

• Optionalreturn 0 returns zero to the shell indicating successful completionof the program;
non-zero usually indicates an error.

• main magic! If no value is returned, 0 is implicitly returned.

• Routineexit (JavaSystem.exit) stops a program at any location and returns a code to the
shell, e.g.,exit( 0 ) (#include <cstdlib>).

◦ LiteralsEXIT SUCCESS andEXIT FAILURE indicate successful or unsuccessful ter-
mination status, e.g.,return EXIT SUCCESS or exit( EXIT FAILURE ).

• Java/C/C++ program must be transformed from human readableform (text) to machine read-
able form (numbers) for execution by computer, calledcompilation.

• Compilation is performed by acompiler; several different compilers exist for C++.

• Compile withg++ command:

$ g++ firstprogram.cc # compile program, generate executable "a.out"
$ ./a.out # execute program; execution permission

C program-files use suffix.c; C++ program-files use suffixes.C / .cpp / .cc .

c© Peter A. Buhr

31
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2.2 Program Structure

• A C++ program is composed of comments for people, and statements for both people and the
compiler.

• A source file contains a mixture of comments and statements.

• The C/C++ compiler only reads the statements and ignores thecomments.

2.2.1 Comment

• Comments document what a program does and how it does it.

• A comment may be placed anywhere a whitespace (space, tab, newline) is allowed.

• There are two kinds of comments in C/C++ (same in Java):

Java / C / C++

1 /* . . . */
2 // remainder of line

• First comment begins with the start symbol,/*, and ends with the terminator symbol,*/, and
hence, can extend over multiple lines.

• Cannot be nested one within another:

/* . . . /* . . . */ . . . */
↑ ↑

end comment treated as statements

• Be extremely careful in using this comment to elide/comment-out code:

/* attempt to comment-out a number of statements
while ( . . . ) {

/* . . . nested comment causes errors */
if ( . . . ) {

/* . . . nested comment causes errors */
}

}
*/

• Second comment begins with the start symbol,//, and continues to the end of the line, i.e.,
only one line long.

• Can be nested one within another:

// . . . // . . . nested comment

so it can be used to comment-out code:
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// while ( . . . ) {
// /* . . . nested comment does not cause errors */
// if ( . . . ) {
// // . . . nested comment does not cause errors
// }
// }

(page85 presents another way to comment-out code.)

2.2.2 Statement

• The syntax for a C/C++ statement is a series of tokens separated by whitespace and terminated
by a semicolon (except for a block,{}).

2.3 Declaration

• A declaration introduces names or redeclares names from previous declarations.

2.3.1 Identifier

• name used to refer to a variable or type.

• syntax :[ a-zA-Z][ a-zA-Z0-9]* where “*” is wildcard qualifier

• case-sensitive:

VeryLongVariableName Page1 Income Tax 75

• Some identifiers are reserved (e.g.,if , while ), and hence,keywords.

2.3.2 Basic Types

Java C / C++
boolean bool (C <stdbool.h>)
char char / wchar t ASCII / unicode character
byte char / wchar t integral types
int int
float float real-floating types
double double

label type, implicit

• C/C++ treatchar / wchar t as character and integral type.

• Java typesshort andlong are created using type qualifiers (see Section2.3.4).
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2.3.3 Variable Declaration

• Declaration in C/C++ type followed by list of identifiers, except label which has implicit type
(same in Java).

Java / C / C++

char a, b, c, d;
int i, j, k;
double x, y, z;
id :

• Declarations may have an initializing assignment (except for fields instruct /class , see Sec-
tion 2.7.6, p.66):

int i = 3; int i = 3, j = 4, k = 5;
int j = 4;
int k = 5;

• Value of anuninitialized variable is usually undefined (see page72).

int i;
cout << i << endl; // i has undefined value

Some C/C++ compilers check for uninitialized variables (use -Wall option, Section3.2.2,
p. 158).

2.3.4 Type Qualifier

• C/C++ provide two basic integral typeschar andint .

• Other integral types are generated using type qualifiers to modify the basic types.

• C/C++ provide size and signed-ness (positive/negative)/(positive only) qualifiers.

• #include <climits> specifies names for lower and upper bounds of a type’s range ofvalues.

integral types range (lower/upper bound name)

char (signed char ) SCHAR MIN to SCHAR MAX, e.g., -128 to 127
unsigned char 0 to UCHAR MAX, e.g.0 to 255
short (signed short int ) SHRT MIN to SHRT MAX, e.g., -32768 to 32767
unsigned short (unsigned short int ) 0 to USHRT MAX, e.g.,0 to 65535
int (signed int ) INT MIN to INT MAX, e.g., -2147483648 to 2147483647
unsigned int 0 to UINT MAX, e.g.,0 to 4294967295
long (signed long int ) (LONG MIN to LONG MAX),

e.g., -2147483648 to 2147483647
unsigned long (unsigned long int ) 0 to (ULONG MAX, e.g.0 to 4294967295
long long (signed long long int ) LLONG MIN to LLONG MAX,

e.g., -9223372036854775808 to 9223372036854775807
unsigned long long (unsigned long long int ) 0 to (ULLONG MAX), e.g.,0 to 18446744073709551615
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• int range is machine specific: e.g., 2 bytes for 16-bit computer and 4 bytes for 32/64-bit
computer.

• long range is at least as large asint : e.g., 2/4 bytes for 16-bit computer and 4/8 bytes for
32/64-bit computer.

• #include <stdint.h> providesabsolutetypes[u]intN t for signed /unsigned N = 8, 16, 32,
64 bits.

integral types range (lower/upper bound name)

int8 t INT8 MIN to INT8 MAX, e.g., -128 to 127
uint8 t 0 toUINT8 MAX, e.g.,0 to 255
int16 t INT16 MIN to INT16 MAX, e.g., -32768 to 32767
uint16 t 0 toUINT16 MAX, e.g.,0 to 65535
int32 t INT32 MIN to INT32 MAX, e.g., -2147483648 to 2147483647
uint32 t 0 toUINT32 MAX, e.g.,0 to 4294967295
int64 t INT64 MIN to INT64 MAX,

e.g., -9223372036854775808 to 9223372036854775807
uint64 t 0 toUINT64 MAX, e.g.,0 to 18446744073709551615

• C/C++ provide two basic real-floating typesfloat and double , and one real-floating type
generated with type qualifier.

• #include <cfloat> specifies names for precision and magnitude of real-floatingvalues.

real-float types range (precision, magnitude)

float FLT DIG precision,FLT MIN 10 EXP to FLT MAX 10 EXP,

e.g,. 6+ digits over range 10−38 to 1038, IEEE (4 bytes)

double DBL DIG precision,DBL MIN 10 EXP to DBL MAX 10 EXP,

e.g., 15+ digits over range 10−308 to 10308, IEEE (8 bytes)

long double LDBL DIG precision,LDBL MIN 10 EXP to LDBL MAX 10 EXP,

e.g., 18-33+ digits over range 10−4932 to 104932, IEEE (12-16 bytes)

float : ±1.17549435e-38 to ±3.40282347e+38
double : ±2.2250738585072014e-308 to ±1.7976931348623157e+308
long double : ±3.36210314311209350626e-4932 to ±1.18973149535723176502e+4932

2.3.5 Literals

• Variables contain values, and each value has aconstant(C) or literal (C++) meaning.

• E.g., the integral value 3 is constant/literal, i.e., it cannot change, it always means 3.

3 = 7; // disallowed

• Every basic type has a set of literals that define its values.



36 CHAPTER 2. C++

• A variable’s value always starts with a literal, and changesvia another literal or computation.

• C/C++ and Java share almost all the same literals for the basic types.

type literals

boolean false , true
character ′a′ , ′\′ ′

integral decimal :123, -456, 123456789
octal, prefix0 : 0144, -045, 04576132
hexadecimal, prefix0X / 0x : 0xfe, -0X1f, 0xe89abc3d

real-floating .1, 1., -1., 0.52, -7.3E3, -6.6e-2, E/e exponent

• Use the right literal for a variable’s type:

bool b = true ; // not 1
int i = 1; // not 1.0
double d = 1.0 // not 1
char c = ′a′ ; // not 97

• Escape sequence provides quoting of special characters in achar literal using a ,\.

′\\′ backslash
′\′ ′ single quote
′\t′ , ′\n′ (special names) tab, newline, ...
′\0′ zero, string termination character
′\ooo′ octal value,ooo up to 3 octal digits
′\xhh′ hexadecimal value,hh up to 2 hexadecimal digits forchar ,

up to 4 hexadecimal digits forwchar t (not Java)

cout << ′\\′ << endl
<< ′\′ ′ << endl
<< ′\t′ << ′\t′ << ′x′ << ′\n′ // newline value 10
<< ′y′ << ′\12′ // octal 10
<< ′z′ << ′\xa′ ; // hexadecimal 10

\
′

x
y
z

• C/C++ provide user named literals (write-once/read-only variables) with type qualifierconst
(Javafinal ).

Java C/C++

final char Initial = ′D′ ;
final short int Size = 3, SupSize;
SupSize = Size + 7;
final double PI = 3.14159;

const char Initial = ′D′ ;
const short int Size = 3, SupSize = Size + 7;
disallowed
const double PI = 3.14159;
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• C/C++const variablemustbe assigned a value at declaration (or by a constructor’s declara-
tion); the value can be the result of an expression.

• A constant variable can (only) appear in contexts where a literal can appear.

Size = 7; // disallowed

• Good practise is to name literals so all usages can be changedvia the initialization value.

• There are trillions of literals⇒ cannot all be stored in memory.

• Only literals used in a program occupy storage, some are embedded directly into computer
instructions.

2.4 Expression
Java C/C++ priority

unary ., (), [ ], call ::, ., ->, (), [ ], call, dynamic cast high
cast,+, -, !, ~ cast,+, -, !, ~, &, *
new new , delete , sizeof

binary *, /, % *, /, %
+, - +, -

bit shift <<, >>, >>> <<, >>
relational<, <=, >, >=, instanceof <, <=, >, >=
equality==, != ==, !=
bitwise & and &

^ exclusive-or ^
| or |

logical && short-circuit &&
| | | |

conditional?: ?:
assignment=, +=, -=, *=, /=, %= =, +=, -=, *=, /=, %=

<<=, >>=, >>>=, &=, ^=, |= <<=, >>=, &=, ^=, |=
comma , low

• Expression evaluation is like algebra:

◦ predefined operations exist and are invoked using name with parenthesized argument(s).

abs( -3 ); |−3|
sqrt( x );

√
x

pow( x, y ); xy

◦ operators are prioritized and performed from high to low.

x + y * sqrt( z ); // call, multiple, add

◦ operators with same priority are done left to right

x + y - z; // add, subtract
3.0 / v * w; // divide, multiple



38 CHAPTER 2. C++

except for unary,?, and assignment operators, which associate right to left.

-~x; // complement, negate
*&p; // address-of, dereference
x = y = z; // z to y to x

◦ parentheses are used to control order of evaluation, i.e., override rules.

x + y * z / w; // multiple, divide, add
((x + y) * (z / w); // add, divide, multiple

• Order of subexpressions and argument evaluation is unspecified (Java left to right).

( i + j ) * ( k + j ); // either + done first
( i = j ) + ( j = i ); // either = done first
g( i ) + f( k ) + h( j ); // g, f, or h called in any order
f( p++, p++, p++ ); // arguments evaluated in any order

• C++ relational/equality returnfalse /true ; C return0/1.

• Referencing (address-of),&, and dereference,*, operators (see Section2.7.2, p. 56) do not
exist in Java because access to storage is restricted.

• Pseudo-routinesizeof returns the number of bytes for a type or variable (not in Java):

long int i;
sizeof (long int ); // type, at least 4
sizeof (i); // variable, at least 4

Thesizeof a pointer (type or variable) is the size of the pointer on thatparticular computer
and not the size of the type the pointer references.

• Bit-shift operators,<< (left), and>> (right) shift bits in integral variables left and right.

◦ left shift is multiplying by 2, modulus variable’s size;

◦ right shift is dividing by 2 if unsigned or positive (like Java>>>); otherwise undefined.

int x, b, c;
x = y = z = 1;
cout << (x << 1) << ′ ′ << (y << 2) << ′ ′ << (z << 3) << endl;
x = y = z = 16;
cout << (x >> 1) << ′ ′ << (y >> 2) << ′ ′ << (z >> 3) << endl;
2 4 8
8 4 2

Why are parenthesis necessary?

• Division operator,/, accepts integral and real-float operands, but truncates for integrals.

3 / 4 // 0 not 0.75
3.0 / 4.0 // 0.75

• Remainder (modulus) operator,%, only accepts integral operands.
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◦ If either operand is negative, the sign of the remainder is implementation defined, e.g.,
-3 % 4, 3 % -4, -3 % -4 can be3 or -3.

• Assignment is an operator; useful forcascade assignmentto initialize multiple variables of
the same type:

a = b = c = 0; // cascade assignment
x = y = z + 4;

◦ Other uses of assignment in an expression are discouraged!; i.e., assignments only
on left side.

• General assignment operators, e.g.,lhs += rhs does NOT mean:

lhs = lhs + rhs;

instead, implicitly rewritten as:

temp = &(lhs); *temp = *temp + rhs;

hence, the left-hand side,lhs, is evaluated only once:

v[ f(3) ] += 1; // only calls once
v[ f(3) ] = v[ f(3) ] + 1; // calls twice

• Comma expression allows multiple expressions to be evaluated in a context where only a
single expression is allowed (see page46).

x, f + g, sqrt( 3 ) / 2, m[ i ][ j ] ← value returned

◦ Expressions evaluated left to right with the value of rightmost expression returned.

• Operators++ / -- are discouraged because subsumed by general+= / -=.

i += 1; versus i ++
i += 3; versus i ++ ++ ++; // disallowed

2.4.1 Conversion

• Conversion transforms a value from one type to another by changing the value to the new
type’s representation (see Section2.18.3.2, p.102).

• Conversions can occur implicitly by the compiler or explicitly by the programmer.

• Two kinds of conversions:

◦ widening/promotion conversion, no information is lost:

bool → char → short int → long int → double
true 1 1 1 1.000000000000000

wherefalse → 0; true → 1
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◦ narrowing conversion, information can be lost:

double → long int → short int → char → bool
77777.77777777777 77777 12241 209 true

where 0→ false ; non-zero→ true

• C/C++ have implicit widening and narrowing conversions (Java only implicit widening).

• Implicit narrowing conversions can cause problems:

int i; double r;
i = r = 3.5; // r -> 3.5
r = i = 3.5; // r -> 3.0 ???

• Good practice is to perform narrowing conversions explicitly as documentation using Ccast
operator or C++static cast operator.

int i; double x = 7.2, y = 3.5;
i = (int ) x; // explicit narrowing conversion
i = (int ) x / (int ) y; // explicit narrowing conversions for integer division
i = static cast <int >(x / y); // alternative technique after integer division

• C/C++ supports casting among the basic types and user definedtypes (see Section2.18, p.97).

2.4.2 Coercion

• Coercion forcesa transformation of a value to another type but the result is not meaningful
in the new type’s representation.

• Some narrowing conversions are considered coercions.

◦ E.g., when a value is truncated or converting non-zero totrue , the result is nonsense in
the new type’s representation.

• Also, having typechar represent ASCII charactersand integral (byte) values allows:

char ch = ′z′ - ′a′ ; // character arithmetic!

which may or may not be reasonable as it might generate an invalid character.

• But the most common coercion is through pointers (see Section 2.7.2, p.56):

int i, *ip = &i;
double d, *dp = &d;
dp = (double *)ip; // dp points at an integer not a double!!!

Using the explicit cast, programmer has lied to the compilerabout the type ofip.

• Good practice is to limit narrowing conversions and NEVER lie about a variable’s types.
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2.4.3 Math Operations

• #include <cmath> provides overloaded real-float mathematical-routines fortypesfloat , double
andlong double :

operation routine
|x| abs( x )
arccosx acos( x )
arcsinx asin( x )
arctanx atan( x )
⌈x⌉ ceil( x )
cosx cos( x )
coshx cosh( x )
ex exp( x )
⌊x⌋ floor( x )

operation routine
x mody fmod( x, y )
lnx log( x )
logx log10( x )
xy pow( x, y )
sinx sin( x )
sinhx sinh( x )√

x sqrt( x )
tanx tan( x )
tanhx tanh( x )

and math literals:

M E 2.7182818284590452354 // e
M LOG2E 1.4426950408889634074 // log 2 e
M LOG10E 0.43429448190325182765 // log 10 e
M LN2 0.69314718055994530942 // log e 2
M LN10 2.30258509299404568402 // log e 10
M PI 3.14159265358979323846 // pi
M PI 2 1.57079632679489661923 // pi/2
M PI 4 0.78539816339744830962 // pi/4
M 1 PI 0.31830988618379067154 // 1/pi
M 2 PI 0.63661977236758134308 // 2/pi
M 2 SQRTPI 1.12837916709551257390 // 2/sqrt(pi)
M SQRT2 1.41421356237309504880 // sqrt(2)
M SQRT1 2 0.70710678118654752440 // 1/sqrt(2)

• Some systems also providelong double math literals.

• pow(x,y) (xy ) is computed using logarithms, 10y log x (versus repeated multiplication), when
y is non-integral value⇒ y≥ 0

pow( 2.0, -3.0 ); 2−3 = 1
23 = 1

2×2×2 = 1
8 = 0.125

pow( -2.0, -3.1 ); 2−3.1 = 1
23.1 = nan (not a number) log−3.1 undefined

• Quadratic roots:

r =
−b±

√
b2−4ac

2a
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#include <iostream>
#include <cmath>
using namespace std;

int main() {
double a = 3.5, b = 2.1, c = -1.2;
double dis = b * b - 4.0 * a * c, dem = 2.0 * a;
cout << "root1: " << ( -b + sqrt( dis ) ) / dem << endl;
cout << "root2: " << ( -b - sqrt( dis ) ) / dem << endl;

}

• Must explicitly link in the math library:

$ g++ roots.cc -lm # link math library

2.5 Control Structures
Java C/C++

block { intermixed decls/stmts } { intermixed decls/stmts }
selection if ( bool-expr1 ) stmt1

else if ( bool-expr2 ) stmt2
. . .
else stmtN

if ( bool-expr1 ) stmt1
else if ( bool-expr2 ) stmt2
. . .
else stmtN

switch ( integral-expr ) {
case c1: stmts1; break ;
. . .
case cN: stmtsN; break ;
default : stmts0;

}

switch ( integral-expr ) {
case c1: stmts1; break ;
. . .
case cN: stmtsN; break ;
default : stmts0;

}

looping while ( bool-expr ) stmt while ( bool-expr ) stmt

do stmt while ( bool-expr ) ; do stmt while ( bool-expr ) ;

for (init-expr ;bool-expr ;incr-expr ) stmt for (init-expr ;bool-expr ;incr-expr ) stmt

transfer break [ label ] break
continue [ label ] continue

goto label
return [ expr ] return [ expr ]
throw [ expr ] throw [ expr ]

label label : stmt label : stmt

2.5.1 Block

• Block is a series of statements bracketed by braces,{. . .}, which can be nested.

• A block forms a complete statement and does not have to be terminated with a semicolon.

• Block serves two purposes: bracket several statements intoa single statement and introduce
local declarations.
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• Good practice is to always use a block versus single statement to allow easy insertion and
removal of statements to or from block.

if ( x > y ) // no block
x = 0; // cannot directly add statements

if ( x > y ) { // block
x = 0; // can directly add/remove statements

}

Does the shell have this problem?

• Declarations may be intermixed among executable statements in a block.

• Variables in blocks are allocated in first-in first-out (FIFO) order from a memory area called
thestack.

• Localizing declarations in nested blocks helps reduce declaration clutter at the beginning of
a block.

int i, j, k; // global
. . . // use i, j, k

int i;
. . . // use i
{

. . .
int j; // local
. . . // use i, j
{

int k; // local
. . . use i, j, k

However, it can also make locating declarations more difficult.

• Variable names can be reused in different blocks, i.e., possibly overriding (hiding) prior
variables.

int i = 1; . . . // first i
{ int k = i, i = 2;. . . // second i (override first), both i′s used in block!

{ int i = 3;. . . // third i (override second)

2.5.2 Selection

• C/C++ selection statements areif andswitch (same as Java).

• An if statement selectively executes one of two alternatives based on the result of a compar-
ison, e.g.:

if ( x > y ) max = x;
else max = y;

• For nestedif statements,else matches with the closestif , which results in thedangling else
problem.
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• E.g., reward WIDGET salesperson who sold more than $10,000 worth of WIDGETS and
dock pay of those who sold less than $5,000.

Dangling Else Fix Using Null Else Fix Using Blocks

if ( sales < 10000 )
if ( sales < 5000 )

income -= penalty;
else // incorrect match!!!

income += bonus;

if ( sales < 10000 )
if ( sales < 5000 )

income -= penalty;
else ; // null statement

else
income += bonus;

if ( sales < 10000 ) {
if ( sales < 5000 ) {

income -= penalty;
} // block

} else {
income += bonus;

}

• Unnecessary equality for boolean as value is alreadytrue or false .

bool b;
if ( b == true ) . . . // if ( b )

• Common mistake to assigny to x and convertsx to bool (possible in Java for one type).

if ( x = y ). . .

• A switch statement selectively executes one ofN alternatives based on matching an integral
value with a series of case clauses, e.g.:

switch ( day ) { // integral expression
case MON: case TUE: case WED: case THU: // case value list

cout << "PROGRAM" << endl;
break ; // exit switch

case FRI:
wallet += pay;
// FALL THROUGH

case SAT:
cout << "PARTY" << endl;
wallet -= party;
break ; // exit switch

case SUN:
cout << "REST" << endl;
break ; // exit switch

default :
cerr << "ERROR: bad day" << endl;
exit( EXIT FAILURE ); // terminate program

}

• Only one label for eachcase clause but a list ofcase clauses is allowed.

• Once a case clause is matched, its statements are executed, and control continues to thenext
statement.

• If no case clause is matched and there is adefault clause, its statements are executed, and
control continues to thenext statement.

• Unless there is abreak statement to prematurely exit theswitch statement.



2.5. CONTROL STRUCTURES 45

• It is a common error to forget the break in a case clause.

• Otherwise, theswitch statement does nothing.

2.5.3 Conditional Expression Evaluation

• Conditional expression evaluationperforms partial (short-circuit ) expression evaluation.

&& only evaluates the right operand if the left operand is true
| | only evaluates the right operand if the left operand is false
?: only evaluates one of two alternative parts of an expression

• && and| | are similar to logical& and| for bitwise (boolean) operands, i.e., both produce a
logical conjunctive or disjunctive result.

• However, short-circuit operators evaluate operands lazily until a result is determined, short
circuiting the evaluation of other operands.

d != 0 && n / d > 5 // may not evaluate right operand, prevents division by 0

false and anything is?

• Hence, short-circuit operators are control structures in the middle of an expression because
e1 && e2 6≡ &&( e1, e2 ) (unless lazy evaluation).

• Logical& and| evaluate operands eagerly, evaluating both operands.

• Conditional?: evaluates one of two expressions, and returns the result of the evaluated ex-
pression.

• Acts like anif statement in an expression and can eliminate temporary variables.

f( ( a < 0 ? -a : a ) + 2 ); int temp;
if ( a < 0 ) temp = -a;
else temp = a;
f( temp + 2 );

2.5.4 Looping

• C/C++ looping statements arewhile , do andfor (same as Java).

• while statement executes its statementzero or more times.

while ( x < 5 ) {
. . . // executes 0 or more times

}

• Beware of accidental infinite loops.

x = 0;
while (x < 5); // extra semicolon!

x = x + 1;

x = 0;
while (x < 5) // missing block

y = y + x;
x = x + 1;
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• do statement executes its statementone or more times.

do {
. . . // executes one or more times

} while ( x < 5 );

• for statement is a specializedwhile statement for iterating with an index.

init-expr ;
while ( bool-expr ) {

stmts;
incr-expr ;

}

for ( init-expr ; bool-expr ; incr-expr ) {
stmts;

}

• If init-expr is a declaration, the scope of its variables is the remainderof the declaration, the
other two expressions, and the loop body.

for ( int i = 0, j = i; i < j; i += 1 ) { // i and j declared
// i and j visible

} // i and j deallocated and invisible

• Many ways to use thefor statement to construct iteration:

for ( i = 1; i <= 10; i += 1 ) { // count up
// loop 10 times

} // i has value 11 on exit

for ( i = 10; 1 <= i; i -= 1 ) { // count down
// loop 10 times

} // i has value 0 on exit

for ( p = s; p != NULL; p = p->link ) { // pointer index
// loop through list structure

} // p has the value NULL on exit

for ( i = 1, p = s; i <= 10 & p != NULL; i += 1, p = p->link ) { // 2 indices
// loop until 10th node or end of list encountered

}

• Comma expression (see page39) is used to initialize and increment 2 indices in a context
where normally only a single expression is allowed.

• Default true value inserted if no conditional is specified infor statement.

for ( ; ; ) // rewritten as: for ( ; true ; )

• break statement terminates enclosing loop body.

• continue statement advances to the next loop iteration.



2.6. STRUCTURED PROGRAMMING 47

2.6 Structured Programming

• Structured programming is about managing (restricting) control flow using a fixed setof
well-defined control-structures.

• A small set of control structures used with a particular programming style make programs
easier to write and understand, as well as maintain.

• Most programmers adopt this approach so there is a universal(common) approach to man-
aging control flow (e.g., like traffic rules).

• Developed during the 1970’s to overcome the indiscriminantuse of the GOTO statement.

• GOTO leads to convoluted logic in programs(i.e., does NOT support a methodical thought
process).

• I.e., arbitrary transfer of control makes programs difficult to understand and maintain.

• Restricted transfer reduces the points where flow of controlchanges, and therefore, is easy
to understand.

• There are 3 levels of structured programming:

classical

◦ sequence: series of statements

◦ if-then-else: conditional structure for making decisions

◦ while: structure for loops with test at top

Can write any program (actually only needwhile s or onewhile andifs).

extended

◦ use the classical control-structures and add:

∗ case/switch: conditional structure for making decisions

∗ for: while with initialization/test/increment

∗ repeat-until/do-while: structure for loops with test at bottom

modified

◦ use the extended control-structures and add:

∗ one or more exits from arbitrary points in a loop

∗ exits from multiple nested control structures

∗ exits from multiple nested routine calls

2.6.1 Multi-Exit Loop

• A multi-exit loop (or mid-test loop) is a loop with one or more exit locations occurring
within the body of the loop.

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362947&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17962264&CFTOKEN=40004382
http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=365646&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17493625&CFTOKEN=51955079
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• While-loop has 1 exit located at the top:
while i < 10 do

. . .
end while

loop -- infinite loop
exit when i >= 10; -- loop exit

. . . ↑ reverse condition
end loop

• Repeat-loop has 1 exit located at the bottom:
do

. . .

while ( i < 10 )

loop -- infinite loop
. . .

exit when i >= 10; -- loop exit
end loop ↑ reverse condition

• Exit should not be restricted to only top and bottom, i.e., can appear in the loop body:

loop
. . .

exit when i >= 10;
. . .

end loop

• Or allow multiple exit conditions:

loop
. . .

exit when i >= 10;
. . .

exit when j >= 10;
. . .

end loop

• Eliminates priming (duplicated) code necessary withwhile :

read( input, d );
while ! eof( input ) do

. . .
read( input, d );

end while

loop
read( input, d );

exit when eof( input );
. . .

end loop

• Good practice is to reduce or eliminate duplicate code.Why?

• The loop exit is outdented or clearly commented (or both) so it can be found without having
to search the entire loop body.

• Same indentation rule as for theelse of the if-then-else (outdentelse ):

if . . . then
XXX
else
XXX

end if

if . . . then
XXX

else
XXX

end if

• A multi-exit loop can be written in C/C++ in the following ways:
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for ( ;; ) { while ( true ) { do {
. . . . . . . . .

if ( i >= 10 ) break ; if ( i >= 10 ) break ; if ( i >= 10 ) break ;
. . . . . . . . .

if ( j >= 10 ) break ; if ( j >= 10 ) break ; if ( j >= 10 ) break ;
. . . . . . . . .

} } } while ( true );

• The for version is more general as it can be easily modified to have a loop index or a while
condition.

for ( int i = 0; i < 10; i += 1 ) { // loop index
for ( ; x < y; ) { // while condition

• In general, the programming language and your code-entry style should allow insertion of
new code without having to change existing code.

• Eliminateelse on loop exits:
BAD GOOD

for ( ;; ) {
S1
if ( C1 ) {

S2
} else {

break ;
}
S3

}

for ( ;; ) {
S1

if ( ! C1 ) break ;
S2

S3
}

for ( ;; ) {
S1
if ( C1 ) {

break ;
} else {

S2
}
S3

}

for ( ;; ) {
S1

if ( C1 ) break ;

S2

S3
}

S2 is logically part of loop body not part of anif .

• E.g., write linear search such that:

◦ no invalid subscript for unsuccessful search

◦ index points at the location of the key for successful search.

• Using only control-flow constructsif andwhile :
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int i = -1; bool found = false ;
while ( i < size - 1 & ! found ) { // rewrite: &(i<size-1, !found)

i += 1;
found = key == list[i];

}
if ( found ) { . . . // found
} else { . . . // not found
}

Why must the program be written this way?

• Allow third construct structure: short-circuit operators(see Section2.5.3, p. 45).

for ( i = 0; i < size && key != list[i]; i += 1 ); // using for not while
// rewrite: if ( i < size ) if ( key != list[i] )

if ( i < size ) { . . . // found
} else { . . . // not found
}

• How does&& prevent subscript error?

• Short-circuit&& does not exist in all programming languages, and requires knowledge of
Boolean algebra (false and anything is?).

• Multi-exit loop can be used if no&& exits and does not require Boolean algebra.

for ( i = 0; ; i += 1 ) { // or for ( i = 0; i < size; i += 1 )
if ( i >= size ) break ;
if ( key == list[i] ) break ;

}
if ( i < size ) { . . . // found
} else { . . . // not found
}

• When loop ends, it is known if the key is found or not found.

• Why is it necessary to re-determine this fact after the loop?

• Can it always be re-determined?

• The extra test after the loop can be eliminated by moving its code into the loop body.

for ( i = 0; ; i += 1 ) {
if ( i >= size ) { . . . // not found

break ;
} // exit

if ( key == list[i] ) { . . . // found
break ;

} // exit
} // for
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• E.g., an element is looked up in a list of items, if it is not in the list, it is added to the end of
the list, if it exists in the list its associated list counteris incremented.

for ( int i = 0; ; i += 1 ) {
if ( i >= size ) {

list[size].count = 1;
list[size].data = key;
size += 1; // needs check for array overflow
break ;

} // exit
if ( key == list[i].data ) {

list[i].count += 1;
break ;

} // exit
} // for

• None of these approaches is best in all cases; select the approach that best fits the problem.

2.6.2 Multi-Level Exit

• multi-level exit exits multiple control structures where exit points areknownat compile
time.

• Labelled exit (break /continue ) provides this capability (Java):

L1: {
. . . declarations . . .
L2: switch ( . . . ) {

L3: for ( . . . ) {
. . . break L1 ; . . . // exit block
. . . break L2 ; . . . // exit switch
. . . break L3 ; . . . // exit loop

}
. . .

}
. . .

}

• Labelledbreak /continue transfer control out of the control structure with the corresponding
label, terminating any block that it passes through.

• C/C++ do not have labelledbreak /continue ; simulate withgoto .

• goto label allows arbitrary transfer of controlwithin a routine from thegoto to statement
marked with label variable.

• Label variable is declared by prefixing an identifier with a “:” to a statement.

L1: i += 1; // associated with expression
L2: if ( . . . ) . . .; // associated with if statement
L3: ; // associated with empty statement
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• Labels can only be declared in a routine,where the label has routine scope(see Sec-
tion 2.3.3, p.34).

◦ i.e., label identifier is unique within a routine body⇒ cannot be overridden in local
blocks.

int L1; // identifier L1
L2: ; // identifier L2
{

double L1; // can override variable identifier
double L2; // cannot override label identifier

}

• goto transfers control backwards/forwards to labelled statement.

L1: ;
. . .
goto L1; // transfer backwards, up
goto L2; // transfer forward, down
. . .
L2: ;

• Why is it good practice to associate a label with an empty statement?

• Transforming labelledbreak to goto :

{
. . . declarations . . .
switch ( . . . ) {

for ( . . . ) {
. . . goto L1 ; . . . // exit block
. . . goto L2 ; . . . // exit switch
. . . goto L3 ; . . . // exit loop

} L3: ;
. . .

} L2: ;
. . .

} L1: ;

• Why are labels at the end of control structures not as good as at start?

• Multi-level exits are commonly used with nested loops:
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for ( ;; ) { // while ( flag1 && . . . )
for ( ;; ) { // while ( flag2 && . . . )

for ( ;; ) { // while ( flag3 && . . . )
. . .

if ( . . . ) goto L1; // if (. . .) flag1=flag2=flag3=false; else
. . .

if ( . . . ) goto L2; // if (. . .) flag2=flag3=false; else
. . .

if ( . . . ) goto L3; // if (. . .) flag3=false; else
. . .

} L3: ;
} L2: ;

} L1: ;

Indentation matches with control-structure terminated.

• Without multi-level exit, multiple “flag variables” are necessary.

◦ flag variable is used solely to affect control flow, i.e., does not contain data associated
with a computation.

• Flag variables are the variable equivalent to a gotobecause they can be set/reset/tested at
arbitrary locations in a program.

• Multi-level exit allows elimination of all flag variables!

• Simple case (exit 1 level) of multi-level exit is a multi-exit loop.

• Why is it good practice to label all exits?

• break and labelledbreak are agoto with restrictions:

◦ Cannot be used to create a loop (i.e., cause a backward branch); hence, all situations
resulting in repeated execution of statements in a program are clearly delineated.

◦ Cannot be used to branchinto a control structure.

• The following control-flow pattern appears occasionally:

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362337&type=pdf&coll=ACM&dl=ACM&CFID=19394860&CFTOKEN=33044646
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duplication no duplication
if ( . . . ) {

stmts1;
if ( . . . ) {

stmts2;
if ( . . . ) {

stmts3;
} else {

stmts4;
}

} else {
stmts4;

}
} else {

stmts4;
}
stmts5;

if ( . . . ) {
stmts1;
if ( . . . ) {

stmts2;
if ( . . . ) {

stmts3;
goto common:

}
}

}
stmts4; // only once

common: ;
stmts5;

• If any conditions are false, the same code is executed (e.g.,printing an error message),
resulting in code duplication.

• Multi-level exit removes all duplication ofstmts4.

• Only usegoto to simulate labelledbreak and continue .

• return statements can simulate multi-exit loop and multi-level exit.

• Multi-level exits appear infrequently, but are extremely concise and execution-time efficient.

2.7 Type Constructor
• A type constructor declaration builds a more complex type from the basic types.

constructor Java C/C++
enumeration enum Colour { R, G, B } enum Colour { R, G, B }

pointer any-type *p;
reference (final) class-type r; any-type &r; (C++ only)

array any-type v[ ] = new any-type[10]; any-type v[10];
any-type m[ ][ ] = new any-type[10][10]; any-type m[10][10];

structure class struct or class

2.7.1 Enumeration

• An enumeration is a type defining a set of named literals with only assignment, comparison,
and conversion to integer:

enum Days {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering
Days day = Sat; // variable declaration, initialization
enum {Yes, No} vote = Yes; // anonymous type and variable declaration
enum Colour {R=0x1, G=0x2, B=0x4} colour; // type/variable declaration, explicit numbering
colour = B; // assignment
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• Identifiers in an enumeration are calledenumerators.

• First enumerator is implicitly numbered 0; thereafter, each enumerator is implicitly num-
bered +1 the previous enumerator.

• Enumerators can be explicitly numbered.

enum { A = 3, B, C = A - 5, D = 3, E }; // 3 4 -2 3 4
enum { Red = ′R′ , Green = ′G′ , Blue = ′B′ }; // 82, 71, 66

• Enumeration in C++ denotes a new type; enumeration in C is alias forint .

day = Sat; // enumerator must match enumeration
day = 42; // disallowed C++, allowed C
day = R; // disallowed C++, allowed C
day = colour ; // disallowed C++, allowed C

• Alternative mechanism to create literals isconst declaration (see page36).

const short int Mon=0,Tue=1,Wed=2,Thu=3,Fri=4,Sat=5,Sun=6;
short int day = Sat;
days = 42; // assignment allowed

• C/C++ enumerators must be unique in block.

enum CarColour { Red, Green, Blue, Black };
enum PhoneColour { Red, Orange, Yellow, Black };

EnumeratorsRed andBlack conflict. (Java enumerators are always qualified).

• In C, “enum ” must also be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

• Trick to count enumerators (if no explicit numbering):

enum Colour { Red, Green, Yellow, Blue, Black, No Of Colours };

No Of Colours is 5, which is the number of enumerators.

• Iterating over enumerators:

for ( Colour c = Red; c < No Of Colours; c = (Colour) (c + 1) ) {
cout << c << endl;

}

Why is the cast,(Colour), necessary? Is it a conversion or coercion?
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2.7.2 Pointer/Reference

• pointer/referenceis a memory address.

• Used to access the value stored in the memory location at the pointer address.

• All variables have an address in memory, e.g.,int x = 5, y = 7:

x 5

100

int

address

identifier/value

value type

7

200

int

y

• Two basic addressing operations:

1. referencing: obtain address of a variable; unary operator& in C++:

100 ← &x
200 ← &y

2. dereferencing: retrieve value at an address; unary operator* in C++:

5 ← *(100) ← *(&x)
7 ← *(200) ← *(&y)

Note, unary and binary use of operators&/* for reference/dereference and conjunction/multiplication.

• So what does a variable name mean? Forx, is it 5 or 100? It depends!

• A variable name is a symbolic name for the pointer to its value, e.g.,x means&x, i.e., symbol
x is always replaced by pointer value100.

• What happens in this expression so it can execute?

x = x + 1;

• First, each variable name is substituted (rewritten) for its pointer value:

(&x ) ← (&x ) + 1 where x ≡ &x
(100) ← (100) + 1

Assign into memory location 100 the value 101? Only partially correct!

• Second, when a variable name appears on the right-hand side of assignment, it implies the
variable’s value not its address.

(&x ) ← *(&x ) + 1
(100) ← *(100) + 1
(100) ← 5 + 1

Assign into memory location 100 the value 6? Correct!

• Hence, a variable name always means its address, and a variable name isalso implicitly
dereferenced on right side of assignment.



2.7. TYPE CONSTRUCTOR 57

• Exception is&x, which just means&x not&(&x ).

• Notice, identifierx (in a particular scope) is a literal (const ) pointer because it always means
the same memory address (e.g., 100).

• Generalize notion of literal variable-name to variable name that can point to more than one
memory location (like integer variable versus literal).

• A pointer variable is a non-const variable that contains different variable addressesre-
stricted to a specific typein any storage location (i.e., static, stack or heap storage).

◦ Java references can only addressobject typeson theheap.

int *p1 = &x, *p2 = &y, *p3 = 0; // or p3 is uninitialized

p1 100

int *

p2 200

p3 0 / 0x34fe7

x5

int

7 y

pointer
null/undefined

50

40

30 100

200

30 ← &p1
40 ← &p2
50 ← &p3
100 ← *&p1
200 ← *&p2
0 ← *&p3
5 ← **&p1
7 ← **&p2
? ← **&p3

• Storage is needed for different address values, so a pointervariable also has an address!

• By convention, no variable is placed at thenull address(pointer),null in Java, 0 in C/C++.

• Hence, an address value is another variable’s address (indirection ) or null address or an
undefined address when uninitialized.

◦ null address often means pointer is unused.

• Multiple pointers may point to the same memory address (p2 = p1, dashed line).

• Dereferencing null/undefined pointer isundefinedas no variable at address (but not error).

• Variable pointed-at is thetarget variable and its value is thetarget value.

◦ e.g.,x is the target variable ofp1 with target value 5.

• Can a pointer variable point to itself?

• Same implicit reference/dereference rules apply for pointer variables.

p1 = &x; // pointer assignment
(&p1 ) ← &x // no rewrite rule for x, why?
(30) ← 100

Assign to memory location 30 the value 100.
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p2 = p1; // pointer assignment
(&p2 ) ← *(&p1 ) // rewrite rules
(40) ← *(30)
(40) ← 100

Assign to memory location 40 the value 100.

• Value assignment requires explicit dereferencing to access values:

*p2 = *p1; // value assignment, y = x
*(&p2 ) ← *(*(&p1 )) // rewrite rules
*(40) ← *(*(30))
200 ← *(100)
200 ← 5

Assign to memory location 200 the value 5.

• Often the target value is used more than the pointer value.

*p2 = ((*p1 + *p2) * (*p2 - *p1)) / (*p1 - *p2);

Less tedious and error prone to write:

p2 = ((p1 + p2) * (p2 - p1)) / (p1 - p2);

• C++ reference pointer provides extra implicit dereferenceto access target value:

int &r1 = x, &r2 = y;
r2 = ((r1 + r2) * (r2 - r1)) / (r1 - r2);

• Hence, difference between plain and reference pointer is anextra implicit dereference.

◦ I.e., do you want to write the “*”, or let the compiler write the “*”?

• However, extra implicit dereference generates a problem for pointer assignment.

r2 = r1;
*(&r2 ) ← *(*(&r1 )) // value assignment
(&r2 ) ← *(&r1 ) // not pointer assignment

• C++ solves this problem by making reference pointers literals (const ), like a plain variable.

◦ Hence, a reference pointer cannot be assigned after its declaration, so pointer assign-
ment is impossible.

◦ As a literal, initialization must occur at declaration, butinitializing expression has im-
plicit referencing because address isalwaysrequired.

int &r1 = &x; // error, unnecessary & before x

• Java solves this problem by only using reference pointers, only having pointer assignment,
and using a different mechanism for value assignment (clone).

• Is there one more solution?
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• Since reference means its target’s value, address of a reference means its target’s address.

int i;
int &r = i;
&r; *(&r ) ⇒ &i not &r

• Hence, cannot initialize reference to reference or pointerto reference.

int & &rr = r; // reference to reference, rewritten &r
int & *pr = &r; // pointer to reference

• As well, an array of reference is disallowed (reason unknown).

int &ra[3] = { i, i, i }; // array of reference

• Type qualifiers (see Section2.3.4, p. 34) can be used to modify pointer types.

const short int w = 25;
const short int *p4 = &w;

int * const p5 = &x;
int &p5 = x;

const long int z = 37;
const long int * const p6 = &z;

300

100

308

w25

x5

z37

300

100

308

60

70

80

p4

p5

p6

• p4 may point atany short int variable (const or non-const ) and may not change its value.

Why canp4 point to a non-const variable?

• p5 may only point at theint variablex and may change the value ofx through the pointer.

◦ * const and& are literal pointers but* const has no implicit dereferencing like&.

• p6 may only point at thelong int variablez and may not change its value.

• Pointer variable has memory address, so it is possible for a pointer to address another pointer
or object containing a pointer.

int *px = &x, **ppx = &px,
&rx = x, *prx = &rx; &prx ← *(&rx )

pxppx

prx rx 100
5 x

108

116

124

132
100

100108

100

• Pointer/reference type-constructor is not distributed across the identifier list.

int * p1, p2; p1 is a pointer, p2 is an integer int *p1, *p2;
int & rx = i, ry = i; rx is a reference, ry is an integerint &rx =i, &ry = i;
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• C++ idiom for declaring pointers/references is misleading; only works for single versus list
of variables.

int * i; int * i, k;
double & x = d; double & x = d, y = d;

Gives false impression of distribution across the identifier list.

2.7.3 Aggregates

• Aggregates are a set of homogeneous/heterogeneous values and a mechanism to access the
values in the set.

2.7.3.1 Array

• Array is a set ofhomogeneous values.

int array[10]; // 10 int values

• Array type,int , is the type of each set value; arraydimension, 10, is the maximum number
of values in the set.

• An array can be structured to have multiple dimensions.

int matrix[10][20]; // 10 rows, 20 columns => 200 int values
char cube[5][6][7]; // 5 rows, 6 columns, 7 deep => 210 char values

Common dimension mistake:matrix[10, 20]; meansmatrix[20] because10, 20 is a comma
expression not a dimension list.

• Number of dimensions is fixed at compile time, but dimension size may be:

◦ static (compile time),

◦ block dynamic (static in block),

◦ or dynamic (change at any time, seevector Section2.26.1.1, p. 147).

• C++ only supports a compile-time dimension value;g++ allows a runtime expression.

int r, c;
cin >> r >> c; // input dimensions
int array[r]; // dynamic dimension, g++ only
int matrix[r][c]; // dynamic dimension, g++ only

• Array values (elements) are accessed bysubscripts, “[ ]” (look like dimensions).

• A dimension is subscripted from 0 to dimension-1.

array[5] = 3; // location at column 5
i = matrix[0][2] + 1; // value at row 0, column 2
c = cube[2][0][3]; // value at row 2, column 0, depth 3

Common subscript mistake:matrix[3, 4] meansmatrix[4], 4th row of matrix.



2.7. TYPE CONSTRUCTOR 61

• An array name without a subscript means the first element.

array ⇒ array[0]
matrix ⇒ matrix[0][0]
cube ⇒ cube[0][0][0]

• C/C++ array is a contiguous set of elements not a reference tothe element set as in Java.

Java C/C++
int x[ ] = new int [6] int x[6]

1 7 5 0 8 -1x 6 1 7 5 0 8 -1x

• C/C++ do not store dimension information in the array!

• Hence, cannot query dimension sizes,no subscript checking, and no array assignment.

• Declaration of a pointer to an array is complex in C/C++ (see also page92).

• Because no array-size information, the dimension value foran array pointer is unspecified.

int i, arr[10];
int *parr = arr; // think parr[ ], pointer to array of N ints

• However, no dimension information results in the followingambiguity:

int *pvar = &i; // think pvar[ ] and i[1]
int *parr = arr; // think parr[ ]

• Variablespvar and parr have same type but one points at a variable and other an array!

• Programmer decides if one or many by not using or using subscripting.

*pvar // one
*parr // one, arr[0]
parr[0], parr[3] // many, many
pvar[3] // many, but wrong

• ASIDE: Practise reading a complex declaration:

◦ parenthesize type qualifiers based on priority,

◦ read inside parenthesis outwards,

◦ start with variable name.

◦ end with type name on the left.

const long int * const a[5] = {0,0,0,0,0};
const long int * const (&x)[5] = a;
const long int ( * const ( (&x)[5] ) ) = a;

ax

0 0 0 0 0

x : reference to an array of 5 constant pointers to constant long integers
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2.7.3.2 Structure

• Structure is a set ofheterogeneous values, including (nested) structures.

Java C/C++

class Foo {
int i = 3;
. . . // more fields

}

struct Foo {
int i; // no initialization
. . . // more members

}; // semi-colon terminated

• Components of a structure are calledmembers subdivided into data and routine/function
members1 in C++.

• All members of a structure are accessible (public) by default.

• A structure member cannot be directly initialized (unlike Java) (see Section2.7.6, p. 66
and2.18.3, p.100).

• A structure is terminated with a semicolon.

• Structure can be defined and instances declared in a single statement.

struct Complex { double re, im; } s; // definition and declaration

• In C, “struct ” must also be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration

• Structures with the same type can be assigned but not compared.

struct Student {
struct Name { // nested structure

char first[20]; // array
char last[20]; // array

} name;
double age;
int marks[10]; // array

} s1, s2, *sp1 = &s1;
s1 = s2; // allowed
s1 == s2; // disallowed, no structure relational operations

Notice, arrays in the structures are copied, but there is no array copy. How?

• Structuresmustbe compared member by member.

◦ comparing bits (e.g.,memcmp) fails as alignment padding leaves undefined values be-
tween members.

1Java subdivides members into fields (data) and methods (routines).
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• Recursive types (lists, trees) are defined using a self-referential pointer in a structure:

struct Node {
. . . // data members
Node *link; // pointer to another Node

};

• Structure members are accessed bymember selection, “ .” and “->”.

s1.name.first[0] = ′a′ ; // dot usually with variable
s1.name.last[3] = ′b′ ;
(*sp1).age = 3;
sp1->age = 3; // -> usually with pointer
(&s1)->marks[5] = 95;

• C/C++ are unique for having the priority of selection operator “.” incorrectly higher than
dereference operator “*”.

◦ Hence,*p.f executes as*(p.f) instead of(*p).f.

◦ -> operator performs a dereference and member selection in thecorrect order, i.e.,p->f
is implicitly rewritten as(*p).f.

◦ For reference pointers,r.f means(*r).f, sor.f makes more sense than(&r)->f.

• A bit field allows direct access to individual bits of memory:

struct S {
int i : 3; // 3 bits
int j : 7; // 7 bits
int k : 6; // 6 bits

} s;
s.i = 2; // 010
s.j = 5; // 0000101
s.k = 9; // 001001

• A bit field must be an integral type.

• Unfortunately allocation of bit-fields is implementation defined⇒ not portable (maybe left
to right or right to left!).

• Hence, the bit-fields in variables above must be reversed.

• While it is unfortunate C/C++ bit-fields lack portability, they are the highest-level mechanism
to manipulate bit-specific information.

2.7.3.3 Union

• Union is a set ofheterogeneous values, including (nested) structures,where all members
overlay the same storage.
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union U {
char c;
int i;
double d;

} u;

i dcu

• Used to access internal representation or save storage by reusing it for different purposes at
different times.

union U {
float f;
struct {

unsigned int sign : 1; // may need to be reversed
unsigned int exp : 8;
unsigned int frac : 23;

} s;
int i;

} u;
u.f = 3.5; cout << u.f << ′\t′ << hex << u.i << endl;
u.i = 3; cout << u.i << ′\t′ << u.f << endl;
u.f = 3.5e3; cout << u.s.sign << ′\t′ << u.s.exp << ′\t′ << u.s.frac << endl;
u.f = -3.5e-3; cout << u.s.sign << ′\t′ << u.s.exp << ′\t′ << u.s.frac << endl;

produces:

3.5 40600000
3 4.2039e-45
0 8a 5ac000
1 76 656042

• Reusing storage is dangerous and can usually be accomplished via other techniques.

2.7.4 Type Equivalence

• In Java/C/C++, two types are equivalent if they have the samename, calledname equiva-
lence.

struct T1 { struct T2 { // identical structure
int i, j, k; int i, j, k;
double x, y, z; double x, y, z;

} }
T1 t1, t11 = t1; // allowed, t1, t11 have compatible types
T2 t2 = t1; // disallowed, t2, t1 have incompatible types
T2 t2 = (T2)t1; // disallowed, no conversion from type T1 to T2

• TypesT1 andT2 arestructurally equivalent , but have different names so they are incom-
patible, i.e., initialization of variablet2 is disallowed.

• An alias is a different name for same type, so alias types are equivalent.

• C/C++ providestypedef to create a alias for an existing type:
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typedef short int shrint1; // shrint1 => short int
typedef shrint1 shrint2; // shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrint1 s1; // implicitly rewritten as: short int s1
shrint2 s2; // implicitly rewritten as: short int s2
shrint3 s3; // implicitly rewritten as: short int s3

• All combinations of assignments are allowed amongs1, s2 ands3, because they have the
same type name “short int ”.

• Java provides no mechanism to alias types.

2.7.5 Type Nesting

• Type nesting is useful for organizing and controlling visibility for type names (see Sec-
tion 2.21, p. 115):

enum Colour { R, G, B, Y, C, M };
struct Foo {

enum Colour { R, G, B }; // nested type
struct Bar { // nested type

Colour c[5]; // type defined outside (1 level)
};
::Colour c[5]; // type defined outside (top level)
Colour cc; // type defined same level
Bar bars[10]; // type defined same level

};
Colour c1 = R; // type/enum defined same level
Foo::Colour c2 = Foo::R; // type/enum defined inside
Foo::Bar bar; // type defined inside

• Variables/types at top nesting-level are accessible with unqualified “::”.

• References to types inside the nested type do not require qualification (like declarations in
nested blocks, see Section2.3.3, p. 34).

• References to types nested inside another type must be qualified with type operator “::”.

• With nested types,Colour (and its enumerators) andFoo in top-level scope; without nested
types need:
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enum Colour { R, G, B, Y, C, M };
enum Colour2 { R2, G2, B2 }; // prevent name clashes
struct Bar {

Colour2 c[5];
};
struct Foo {

Colour c[5];
Colour2 cc;
Bar bars[10];

};
Colour c1 = R;
Colour2 c2 = R2;
Bar bar;

• Do not pollute lexical scopes with unnecessary names (name clashes).

2.7.6 Type-Constructor Literal

enumeration enumerators
pointer 0 or NULL indicates a null pointer
structure struct { double r, i; } c = { 3.0, 2.1 };
array int v[3] = { 1, 2, 3 };

• C/C++ use0 to initialize pointers (Javanull).

• System include-file defines the preprocessor variableNULL as0 (see Section2.12, p.83).

• Structure and array initialization can occur as part of a declaration.

struct { int i; struct { double r, i; } s; } d = { 1, { 3.0, 2.1 } }; // nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

• A nested structure or multidimensional array is created using nested braces.

• Initialization values are placed into a variable starting at beginning of the structure or array.

• Not all the members/elements must be initialized.

◦ Uninitialized values aredefault initialized (see also Section2.18.3, p. 100), which
means zero-filled for basic types.

int b[10]; // uninitialized
int b[10] = {}; // zero initialized

• g++ has a cast extension allowing construction of structure andarray literals in executable
statements not just declarations:

void rtn( const int m[2][3] );
struct Complex { double r, i; } c;
rtn( (int [2][3]){ {93, 67, 72}, {77, 81, 86} } ); // g++ only
c = (Complex){ 2.1, 3.4 }; // g++ only
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• In both cases, a cast indicates the type and structure of the literal.

• String literals can be used as a shorthand array initializervalue:

char s[6] = "abcde"; rewritten as char s[6] = { ′a′ , ′b′ , ′c′ , ′d′ , ′e′ , ′\0′ };

• It is possible to leave out the first dimension, and its value is inferred from the number of
literals in that dimension:

char s[ ] = "abcde"; // 1st dimension inferred as 6 (Why 6?)
int v[ ] = { 0, 1, 2, 3, 4 } // 1st dimension inferred as 5
int m[ ][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

2.7.7 String

• A string is a sequence of characters with specialized operations to manipulate the sequence.

• Strings are provided in C by an array ofchar , string literals, and library facilities.

char s[10]; // string of at most 10 characters

• String literal is a double-quoted sequence of characters.

"abc"
"a b c"

• Pointer to a string literal must beconst .

const char *cs = "abc";

Why?

• Juxtaposed string literals are concatenated.

const char *n1 = "johndoe";
const char *n2 = "john" "doe"; // divide literal for readability

• Character escape sequences (see page36) may appear in string literal.

"\\ \" \′ \t \n \12 \xa"

• Sequence of octal digits is terminated by length (3) or first character not an octal digit;
sequence of hex digits is arbitrarily long, but value truncated to fit character type.

"\0123\128\xaaa\xaw"

How many characters?

• Techniques for preventing escape ambiguity.

◦ Octal escape can be written with 3 digits.

"\01234"
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◦ Octal/hex escape can be written as concatenated strings.

"\12" "34" "\xa" "abc" "\x12" "34"

• Every string literal is implicitly terminated with a character ′\0′ .

◦ e.g., string literal"abc" is actually 4 characters:′a′ , ′b′ , ′c′ , and′\0′ , which occupies
4 bytes of storage.

• Zero value is asentinelused by C-string routines to locate the string end.

• Drawbacks:

◦ A string cannot contain a character with the value′\0′ .

◦ To find string length, must linearly search for′\0′ , which is expensive for long strings.

• Because C-string variable is fixed-sized array, managementof variable-sized strings is the
programmer’s responsibility, requiring complex storage management.

• C++ solves these problems by providing a “string” type using a length member and managing
all of the storage for the variable-sized strings.

• Set of powerful operations that perform actions on groups ofcharacters.

JavaString C char [ ] C++ string

strcpy, strncpy =
+, concat strcat, strncat +
compareTo strcmp, strncmp ==, !=, <, <=, >, >=
length strlen length
charAt [ ] [ ]
substring substr
replace replace
indexOf, lastIndexOf strstr find, rfind

strcspn find first of, find last of
strspn find first not of, find last not of

c str

• All of the C++ stringfind members return values of typestring::size type and valuestring::npos
if a search is unsuccessful.
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string a, b, c; // declare string variables
cin >> c; // read white-space delimited sequence of characters
cout << c << endl; // print string
a = "abc"; // set value, a is “abc”
b = a; // copy value, b is “abc”
c = a + b; // concatenate strings, c is “abcabc”
if ( a == b ) // compare strings, lexigraphical ordering
string::size type l = c.length(); // string length, l is 6
char ch = c[4]; // subscript, ch is ′b′ , zero origin
c[4] = ′x′ ; // subscript, c is “abcaxc”, must be character literal
string d = c.substr( 2, 3 ); // extract starting at position 2 (zero origin) for length 3, d is “cax”
c.replace( 2, 1, d); // replace starting at position 2 for length 1 and insert d, c is “abcaxaxc”
string::size type p = c.find( "ax" ); // search for 1st occurrence of string “ax”, p is 3
p = c.rfind( "ax" ); // search for last occurrence of string “ax”, p is 5
p = c.find first of( "aeiou" ); // search for first vowel, p is 0
p = c.find first not of( "aeiou" ); // search for first consonant (not vowel), p is 1
p = c.find last of( "aeiou" ); // search for last vowel, p is 5
p = c.find last not of( "aeiou" ); // search for last consonant (not vowel), p is 7

• Note different call syntaxc.substr( 2, 3 ) versus substr( c, 2, 3) (see Section2.18, p. 97).

• Memberc str converts a string to achar * pointer (′\0′ terminated).

• Scan string-variableline containing words, and count and print words.

unsigned int count = 0;
string line, alpha = "abcdefghijklmnopqrstuvwxyz"

"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
. . . // line is initialized with text
line += "\n"; // add newline as sentinel
for ( ;; ) { // scan words off line

// find position of 1st alphabetic character
string::size type posn = line.find first of( alpha );

if ( posn == string::npos ) break ; // any characters left ?
line = line.substr( posn ); // remove leading whitespace
// find position of 1st non-alphabetic character
posn = line.find first not of( alpha );
// extract word from start of line
cout << line.substr( 0, posn ) << endl; // print word
count += 1; // count words
line = line.substr( posn ); // delete word from line

} // for

• It is seldom necessary to iterate through the characters of astring variable!

• Contrast C and C++ style strings (note, management of stringstorage):
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#include <string> // C++ string routines
using namespace std;
#include <string.h> // C string routines

int main() {
// C++ string
const string X = "abc", Y = "def", Z = "ghi";
string S = X + Y + Z;
// C string
const char *x = "abc", *y = "def", *z = "ghi";
char s[strlen(x)+strlen(y)+strlen(z)+1]; // pre-compute worst-case size
strcpy( s, "" ); // initialize to null string
strcat( strcat( strcat( s, x ), y ), z );

}

Why “+1” for dimension ofs?

2.8 Modularization
• Modularization is the division of a system into interconnecting smaller parts (components),

using some systematic basis, and is the foundation of software engineering (see Section4.4.1,
p. 185).

• Medium and large systems must be modularized.

• Modules provide a separation of concerns and improve maintainability by enforcing logical
boundaries between components.

• These boundaries are provided byinterfacesdefined through various programming-language
mechanisms.

• Hence, modularization provides a mechanism toabstract data-structures and algorithms
through interfaces.

• Modules eliminate duplicated code byfactoring common code into a single location.

• Essentially any contiguous block of code can be factored into a routine or class (see Sec-
tion 2.18, p. 97) and given a name (or vice versa).

2.9 Routine
• Like algebra, arbitrary operations can be define and invoked, e.g., f (x) = 3x2 + 2.5x−17,

where f (4.5) = 55.

double f( double x ) { return 3.0 * x * x + 2.5 * x - 17.0; }
f( 4.5 ); // returns 55

• A routine is the simplest module for factoring an abstraction into code.

• Input and output parameters defined a routine’s interface.



2.9. ROUTINE 71

C C++

[ inline ] void p( OR T f(
T1 a // pass by value

)
{ // routine body

// intermixed decls/stmts
}

[ inline ] void p( OR T f(
T1 a, // pass by value
T2 &b, // pass by reference
T3 c = 3 // optional, default value
)

{ // routine body
// intermixed decls/stmts

}

• Routine is either aprocedure or afunction based on the return type.

• Procedure does NOT return a value that can be use in an expression, indicated with return
type ofvoid :

void usage() {
cout << "Usage: " << . . . << endl; // some usage message
exit( EXIT FAILURE ); // TERMINATE

}

• Procedure can return values via the argument/parameter mechanism (see Section2.9.1).

• Procedure terminates when control runs off the end of its routine body or areturn statement
is executed:

void proc() {
. . . return ; . . .
. . . // run off end => return

}

• Function returns a value that can be used in an expression, and hence,mustexecute areturn
statement specifying a value:

int func() {
. . . return 3; . . .
return a + b;

}

• A return statement can appear anywhere in a routine body, and multiple return statements
are possible.

• Routine with no parameters has parametervoid in C and empty parameter list in C++:

. . . rtn( void ) { . . . } // C: no parameters

. . . rtn() { . . . } // C++: no parameters

◦ In C, empty parameters mean no information about the number or types of the param-
eters is supplied.

• If a routine is qualified withinline , the routine is expanded (maybe) at the call site, i.e.,
unmodularize, to increase speed at the cost of storage (no call).
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• Routine cannot be nested in another routine (possible ingcc).

• Java requires all routines to be defined in aclass (see Section2.18.1, p. 98).

• Each routine call creates a new block on the stack containingits parameters and local vari-
ables, and returning removes the block.

• Variables declared outside of routines are defined in an implicit static block.

int i; // static block, global
const double PI = 3.14159;
int rtn( double d ) // static block
{ . . . return 4; // create stack block
} // remove stack block
int main() // static block
{ int j; // create stack block

{ int k; // create stack block
rtn( 3.0 );

} // remove stack block
} // remove stack block

i, PI, rtn, main in static block.

• Static block is a separate memory from the stack and heap andis always zero filled.

• Good practise is to ONLY use static block for literals/variables accessed throughout program.

2.9.1 Argument/Parameter Passing

• Modularization without communication is useless; information needs to flow from call to
routine and back to call.

• Communication is achieved by passing arguments to parameters and back to arguments or
return values.

◦ value parameter: parameter is initialized by copying argument (input only).

◦ reference parameter: parameter is a reference to the argument and is initializedto the
argument’s address (input/output).

pass by value

parameter

argument
pass by reference

copy address-of (&)

• Java/C, parameter passing is by value, i.e., basic types andobject references are copied.

• C++, parameter passing is by value or reference depending onthe type of the parameter.

• Argument expressions are evaluatedin any order(see Section2.4, p.37).

• For value parameters, each argument-expression result is copied into the corresponding pa-
rameter in the routine’s block on the stack,which may involve an implicit conversion.
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• For reference parameters, each argument-expression result is referenced (address of) and this
address is pushed on the stack as the corresponding reference parameter.

struct S { double d; };
void r1( S s, S &rs, S * const ps ) {

s.d = rs.d = ps->d = 3.0;
}
int main() {

S s1 = {1.0}, s2 = {2.0}, s3 = {7.5};
r1( s1, s2, &s3 );
// s1.d = 1.0, s2.d = 3.0, s3.d = 3.0

}

argument

parameter

s3

ps

3.0
300

300

s1

s

100
1.0

1.0

s2

rs

2.0
200

200

s3

ps

7.5
300

300

s1

s

100
1.0

3.0

s2

rs

3.0
200

200

call return

• C-style pointer-parameter simulates the reference parameter, but requires& on argument and
use of -> with parameter.

• Value passing is most efficient for small values or for large values with high referencing
because the values are accessed directly (not through pointer).

• Reference passing is most efficient for large values with low/medium referencing because
the values are not duplicated in the routine but accessed viapointers.

• Problem: cannot change a literal or temporary variable via parameter!

void r2( int &i, Complex &c, int v[ ] );
r2( i + j, (Complex){ 1.0, 7.0 }, (int [3]){ 3, 2, 7 } ); // disallowed!

• Use type qualifiers to create read-only reference parameters so the corresponding argument
is guaranteed not to change:

void r2( const int &i, const Complex &c, const int v[ ] ) {
i = 3; // disallowed, read only!
c.re = 3.0;
v[0] = 3;

}
r2( i + j, (Complex){ 1.0, 7.0 }, (int [5]){ 3, 2, 7, 9, 0 } );

• Provides efficiency of pass by reference for large variables, security of pass by value as
argument cannot change, and allows literals and temporary variables as arguments.

• C++ parameter can have adefault value, which is passed as the argument value if no argu-
ment is specified at the call site.
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void r3( int i, double g, char c = ′*
′ , double h = 3.5 ) { . . . }

r3( 1, 2.0, ′b′ , 9.3 ); // maximum arguments
r3( 1, 2.0, ′b′ ); // h defaults to 3.5
r3( 1, 2.0 ); // c defaults to ′*

′ , h defaults to 3.5

• In a parameter list, once a parameter has a default value, allparameters to the right must
have default values.

• In a call, once an argument is omitted for a parameter with a default value, no more argu-
ments can be specified to the right of it.

2.9.2 Array Parameter

• Array copy is unsupported (see Section2.7, p. 54) so arrays cannot be passed by value.

• Instead, array argument is a pointer to the array that is copied into the corresponding array
parameter (pass by value).

• A formal parameter array declaration can specify the first dimension with a dimension value,
[10] (which is ignored), an empty dimension list,[ ], or a pointer,*:

double sum( double v[5] );
double sum( double *m[5] );

double sum( double v[ ] );
double sum( double *m[ ] );

double sum( double *v );
double sum( double **m );

• Good practice uses the middle form as it clearly indicates the variable can be subscripted.

• An actual declaration cannot use[ ]; it must use*:

double sum( double v[ ] ) { // formal declaration
double *cv; // actual declaration, think cv[ ]
cv = v; // address assignment

• Routine to add up the elements of an arbitrary-sized array ormatrix:

double sum( int cols, double v[ ] ) {
double total = 0.0;
for ( int c = 0; c < cols; c += 1 )

total += v[c];
return total;

}

double sum( int rows, int cols, double *m[ ] ) {
double total = 0.0;
for ( int r = 0; r < rows; r += 1 )

for ( int c = 0; c < cols; c += 1 )
total += m[r][c];

return total;
}

2.10 Input/Output
• Input/Output (I/O) is divided into two kinds:

1. Formatted I/O transfers data with implicit conversion of internal valuesto/from human-
readable form.

2. Unformatted I/O transfers data without conversion, e.g., internal integerand real-
floating values.
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2.10.1 Formatted I/O

Java C C++

import java.io.*; #include <stdio.h> #include <iostream>
import java.util.Scanner;

File, Scanner, PrintStream FILE ifstream, ofstream

Scanner in = new in = fopen( "f", "r" ); ifstream in( "f" );
Scanner( new File( "f" ) )

PrintStream out = new out = fopen( "g", "w" ) ofstream out( "g" )
PrintStream( "g" )

in.close() close( in ) scope ends,in.close()
out.close() close( out ) scope ends,out.close()

nextInt() fscanf( in, "%d", &i ) in >> T
nextFloat() fscanf( in, "%f", &f )
nextByte() fscanf( in, "%c", &c )
next() fscanf( in, "%s", &s )
hasNext() feof( in ) in.fail()
hasNextT() fscanf return value in.fail()

in.clear()
skip( "regexp" ) fscanf( in, "%*[regexp]" ) in.ignore( n, c )

out.print( String ) fprintf( out, "%d", i ) out << T
fprintf( out, "%f", f )
fprintf( out, "%c", c )
fprintf( out, "%s", s )

• Formatted I/O occurs to/from astream file, and values are conversed based on the type of
variables and format codes.

• C++ has three implicit stream files:cin, cout and cerr, which are implicitly declared and
opened (Java hasin, out anderr).

• C hasstdin, stdout andstderr, which are implicitly declared and opened.

• #include <iostream> imports all necessary declarations to accesscin, cout andcerr.

• cin reads input from the keyboard (unless redirected by shell).

• cout writes to the terminal screen (unless redirected by shell).

• cerr writes to the terminal screen even whencout output is redirected.

• Error and debugging messages should always be written tocerr :

◦ normally not redirected by the shell,

◦ unbuffered so output appears immediately.
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• Stream files other than 3 implicit ones require declaring each file object.

#include <fstream> // required for stream-file declarations
ifstream infile( "myinfile" ); // input file
ofstream outfile( "myoutfile" ); // output file

• File types,ifstream/ofstream, indicate whether the file can be read or written.

• File-name type,"myinfile"/"myoutfile", is char * (not string , see page79).

• Declarationopens an operating-system file making it accessible through the variable name:

◦ infile reads from filemyinfile

◦ outfile writes to filemyoutfile

where both files are located in the directory where the program is run.

• Check for successful opening of a file using the stream memberfail, e.g.,infile.fail(), which
returnstrue if the open failed andfalse otherwise.

if ( infile.fail() ) . . . // open failed, print message and exit
if ( outfile.fail() ) . . . // open failed, print message and exit

• C++ I/O library overloads (see Section2.16, p. 94) the bit-shift operators<< and>> to per-
form I/O.

• C I/O library usesfscanf(outfile,. . .) and fprintf(infile,. . .), which have short formsscanf(. . .)
andprintf(. . .) for stdin andstdout.

• Both I/O libraries can cascade multiple I/O operations, i.e., input or output multiple values
in a single expression.

2.10.1.1 Formats

• Format of input/output values is controlled viamanipulators defined in#include <iomanip>.

oct integral values in octal
dec integral values in decimal
hex integral values in hexadecimal
left / right (default) values with padding after / before values
boolalpha / noboolalpha (default) bool values as false/true instead of 0/1
showbase / noshowbase (default) values with / without prefix 0 for octal & 0x for hex
showpoint / noshowpoint (default) print decimal point if no fraction
fixed (default) /scientific float-point values without / with exponent
setprecision(N) fraction of float-point values in maximum of N columns
setfill(′ch′) padding character before/after value (default blank)
setw(N) NEXT VALUE ONLY in minimum of N columns
endl flush output buffer and start new line (output only)
skipws (default) /noskipws skip whitespace characters (input only )
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• Manipulators are not variables for input/output , but control I/O formatting for all liter-
als/variables after it, continuing to the next I/O expression for a specific stream file.

• Except manipulator setw , which only applies to the next value in the I/O expression.

• endl is not the same as′\n′ , as′\n′ does not flush buffered data.

• During input,skipsw/noskipws toggle between ignoring whitespace between input tokens
and reading the whitespace characters (i.e., tokenize versus raw input).

2.10.1.2 Input

• C/C++ formatted input hasimplicit character conversion for all basic types and is extensible
to user-defined types (Java uses anexplicit Scanner).

Java C C++

import java.io.*;
import java.util.Scanner;
Scanner in =

new Scanner(new File("f"));
PrintStream out =

new PrintStream( "g" );
int i, j;
while ( in.hasNext() ) {

i = in.nextInt(); j = in.nextInt();
out.println( "i:"+i+" j:"+j );

}
in.close();
out.close();

#include <stdio.h>
FILE *in = fopen( "f", "r" );

FILE *out = fopen( "g", "w" );

int i, j;
for ( ;; ) {

fscanf( in, "%d%d", &i, &j );
if ( feof(in) ) break ;

fprintf(out,"i:%d j:%d\n",i,j);
}
close( in );
close( out );

#include <fstream>
ifstream in( "f" );

ofstream out( "g" );

int i, j;
for ( ;; ) {

in >> i >> j;
if ( in.fail() ) break ;

out << "i:" << i
<<"j:"<<j<<endl;

}
// in/out closed implicitly

• Input values for a stream file are C/C++ literals:3, 3.5e-1, etc., separated by whitespace.

• Except for characters and character strings,which are not in quotes.

• Type of operand indicates the kind of literal expected in thestream, e.g., an integer operand
means an integer literal is expected.

• To read strings containing white spaces use routinegetline( stream, string, char ), which
allows different delimiting characters on input:

string s;
getline( cin, s, ′ ′ ); // read characters until ′ ′ => cin >> c
getline( cin, s, ′@′ ); // read characters until ′@′

getline( cin, s, ′\n′ ); // read characters until newline (default)

• Input starts reading where the last input left off, and scanslines to obtain necessary number
of literals.

• Hence, placement of input values on lines of a file is often arbitrary.
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• C/C++ must attempt to readbeforeend-of-file is set and can be tested.

• End of file is the detection of the physical end of a file;there is no end-of-file character.

• From a shell, typing<ctrl>-d (C-d), i.e., press<ctrl> andd keys simultaneously, causes the
shell to close the current input file marking its physical end.

• In C++, end of file can be explicitly detected in two ways:

◦ stream membereof returnstrue if the end of file is reached andfalse otherwise.

◦ stream memberfail returnstrue for invalid literal OR no literal if end of file is reached,
andfalse otherwise.

• Safer to checkfail and then checkeof.

for ( ;; ) {
cin >> i;

if ( cin.eof() ) break ; // should use “fail()”
cout << i << endl;

}

• If "abc" is entered (invalid integer literal),fail becomestrue buteof is false .

• Generates infinite loop as invalid data is not skipped for subsequent reads.

• Streams also have coercion tovoid *: if fail(), null pointer; otherwise non-null pointer.

cout << cin; // print fail() status of stream cin
while ( cin >> i ) . . . // read and check pointer to != 0

• When bad data is read,stream must be reset and bad data cleared:

#include <iostream>
#include <limits> // numeric limits
using namespace std;
int main() {

int n;
cout << showbase; // prefix hex with 0x
cin >> hex; // input hex literals
for ( ;; ) {

cout << "Enter hexadecimal number: ";
cin >> n;
if ( cin.fail() ) { // problem ?

if ( cin.eof() ) break ; // eof ?
cout << "Invalid hexadecimal number" << endl;
cin.clear(); // reset stream failure
cin.ignore( numeric limits<int >::max(), ′\n′ ); // skip until newline

} else {
cout << hex << "hex:" << n << dec << " dec:" << n << endl;

}
}
cout << endl;

}
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• After an unsuccessful read,clear() resets the stream.

• ignore skipsn characters, e.g.,cin.ignore(5) or until a specified character.

• Read in file-names, which may contain spaces, and process each file:

#include <fstream>
using namespace std;
int main() {

ifstream fileNames( "fileNames" ); // requires char * argument
string fileName;

for ( ;; ) { // process each file
getline( fileNames, fileName ); // may contain spaces

if ( fileNames.fail() ) break ; // handle no terminating newline
ifstream file( fileName.c str() ); // access char *
// read and process file

}
}

• In C, routinefeof returnstrue when eof is reached andfscanf returnsEOF.

• Parameters in C are always passed by value (see Section2.9.1, p.72), so arguments tofscanf
must be preceded with& (except arrays) so they can be changed.

2.10.1.3 Output

• Java output style converts values to strings, concatenatesstrings, and prints final long string:

System.out.println( i + " " + j ); // build a string and print it

• C/C++ output style has a list of formats and values, and output operation generates strings:

cout << i << " " << j << endl; // print each string as formed

• No implicit conversion from the basic types to string in C++ (but one can be constructed).

• While it is possible to use the Java string-concatenation style in C++, it is incorrect style.

• Use manipulators to generate specific output formats:

#include <iostream> // cin, cout, cerr
#include <iomanip> // manipulators
using namespace std;
int i = 7; double r = 2.5; char c = ′z′ ; const char *s = "abc";
cout << "i:" << setw(2) << i

<< " r:" << fixed << setw(7) << setprecision(2) << r
<< " c:" << c << " s:" << s << endl;

#include <stdio.h>
fprintf( stdout, "i:%2d r:%7.2f c:%c s:%s\n", i, r, c, s );

i: 7 r: 2.50 c:z s:abc
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2.10.2 Unformatted I/O

• Expensive to convert from internal (computer) to external (human) forms (bits⇔ characters).

• When data does not have to be seen by a human, use efficient unformatted I/O so no conver-
sions.

• Uses same mechanisms as formatted I/O to connect variable tofile (open/close).

• read andwrite routines directly transfer bytes from/to a file, where each takes a pointer to
the data and number of bytes of data.

read( char *data, streamsize num );
write( char *data, streamsize num );

• Read/write of types other than characters requires a coercion cast (see Section2.4.2, p. 40)
or C++ reinterpret cast .

#include <iostream>
#include <fstream>
using namespace std;

int main() {
ofstream outfile( "myfile" ); // open output file “myfile”
if ( outfile.fail() ) . . . // unsuccessful open ?
double d = 3.0;
outfile.write( (char *)&d , sizeof ( d ) ); // coercion
outfile.close(); // close file before attempting read

ifstream infile( "myfile" ); // open input file “myfile”
if ( infile.fail() ) . . . // unsuccessful open ?
double e;
infile.read( reinterpret cast<char *>(&e), sizeof ( e ) ); // coercion
if ( d != e ) . . . // problem
infile.close();

}

• Coercion would be unnecessary if buffer type wasvoid *.

2.11 Command-line Arguments
• Starting routinemain has two overloaded prototypes.

int main(); // C: int main( void );
int main( int argc, char *argv[ ] ); // parameter names may be different

• Second form is used to receive command-line arguments from the shell, where the command-
line string-tokens are transformed into C/C++ parameters.

• argc is the number of string-tokens on the command line, including the command name.

• Java does not include command name, so number of tokens is oneless.
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• argv is an array of pointers to C character strings that make up token arguments.

% ./a.out -option infile.cc outfile.cc
0 1 2 3

argc = 4 // number of command-line tokens
argv[0] = ./a.out\0 // not included in Java
argv[1] = -option\0
argv[2] = infile.cc\0
argv[3] = outfile.cc\0
argv[4] = 0 // mark end of variable length list

• Because shell only has string variables, a shell argument of"32" does not mean integer 32,
and may have to converted.

• Routinemain usually begins by checkingargc for command-line arguments.

Java C/C++

class Prog {
public static void main( String[ ] args ) {

switch ( args.length ) {
case 0: . . . // no args

break ;
case 1: . . . args[0] . . . // 1 arg

break ;
case . . . // others args

break ;
default : . . . // usage message

System.exit( 1 );
}
. . .

int main( int argc, char *argv[ ] ) {
switch ( argc ) {

case 1: . . . // no args
break ;

case 2: . . . args[1] . . . // 1 arg
break ;

case . . . // others args
break ;

default : . . . // usage message
exit( EXIT FAILURE );

}
. . .

• Arguments are processed in the rangeargv[1] throughargv[argc - 1] (one greater than Java).

• Process following arguments fromshell command linefor command:

cmd [ size (> 0) [ code (> 0) [ input-file [ output-file ] ] ] ]

• Note, dynamic allocation,stringstream (atoi does not indicate errors), and no duplicate code.

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/IO.cc
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#include <iostream>
#include <fstream>
#include <sstream>
#include <cstdlib> // exit
using namespace std; // direct access to std

bool convert( int &val, char *buffer ) { // convert C string to integer
std::stringstream ss( buffer ); // connect stream and buffer
ss >> dec >> val; // convert integer from buffer
return ! ss.fail() && // conversion successful ?

// characters after conversion all blank ?
string( buffer ).find first not of( " ", ss.tellg() ) == string::npos;

} // convert

enum { sizeDeflt = 20, codeDeflt = 5 }; // global defaults

void usage( char *argv[ ] ) {
cerr << "Usage: " << argv[0] << " [ size (>= 0 : " << sizeDeflt << ") [ code (>= 0 : "
<< codeDeflt << ") [ input-file [ output-file ] ] ] ]" << endl;

exit( EXIT FAILURE ); // TERMINATE
} // usage

int main( int argc, char *argv[ ] ) {
int size = sizeDeflt, code = codeDeflt; // default value
istream *infile = &cin; // default value

ostream *outfile = &cout; // default value
switch ( argc ) {

case 5:
outfile = new ofstream( argv[4] );
if ( outfile->fail() ) usage( argv ); // open failed ?
// FALL THROUGH

case 4:
infile = new ifstream( argv[3] );
if ( infile->fail() ) usage( argv ); // open failed ?
// FALL THROUGH

case 3:
if ( ! convert( code, argv[2] ) | | code < 0 ) usage( argv ) ; // invalid integer ?
// FALL THROUGH

case 2:
if ( ! convert( size, argv[1] ) | | size < 0 ) usage( argv ); // invalid integer ?
// FALL THROUGH

case 1: // all defaults
break ;

default : // wrong number of options
usage( argv );

}
// program body
if ( infile != &cin ) delete infile; // close file, do not delete cin!
if ( outfile != &cout ) delete outfile; // close file, do not delete cout!

} // main
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2.12 Preprocessor

• Preprocessor manipulates the text of the programbeforecompilation.

• Program you see is not what the compiler sees!

• A preprocessor statement starts with a# character, followed by a series of tokens separated
by whitespace, which is usually a single line and not terminated by punctuation.

• The three most commonly used preprocessor facilities are substitution, file inclusion, and
conditional inclusion.

2.12.1 Variables/Substitution

• #define statement declares a preprocessor string variable, and itsvalue is all the text after
the name up to the end of line.

#define Integer int
#define begin {
#define end }
#define gets =
#define set
#define with =
Integer main() begin // same as: int main() {

Integer x gets 3, y; // same as: int x = 3, y;
x gets 5; // same as: x = 5;
set y with x; // same as: y = x;

end // same as: }

• Preprocessor can transform the syntax of C/C++ program (discouraged).

• Preprocessor variables can be defined and initialized on thecompilation command with op-
tion -D.

% g++ -DDEBUG="2" -DASSN . . . source-files

Initialization value is text after=.

• Same as putting the following#define s in a program without changing the program:

#define DEBUG 2
#define ASSN 1

• Cannot have both -D and #define for the same variable.

• Predefined preprocessor-variables exist identifying hardware and software environment, e.g.,
mcpu is kind of CPU.

• Replace#define with enum (see Section2.7.1, p.54) for integral types; otherwise useconst
declarations (see Section2.3.4, p. 34) (Javafinal ).
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enum { arraySize = 100 }; #define arraySize 100
enum { PageSize = 4 * 1024 }; #define PageSize (4 * 1024)
const double PI = 3.14159; #define PI 3.14159
int array[arraySize], pageSize = PageSize;
double x = PI;

enum uses no storage whileconst declarations might.

• #define can declare macros with parameters, which expand during compilation, textually
substituting arguments for parameters, e.g.:

#define MAX( a, b ) ((a > b) ? a : b)
z = MAX( x, y ); // implicitly rewritten as: z = ((x > y) ? x : y)

• Useinline routines in C/C++ rather that#define macros (see page145).

inline int MAX( int a, int b ) { return a > b ? a : b; }

2.12.2 File Inclusion

• File inclusion copies text from a file into a C/C++ program.

• An included file may contain anything.

• An include file normally imports preprocessor and C/C++ templates/declarations for use in a
program.

• All included text goes through every compilation step, i.e., preprocessor, compiler, etc.

• Java implicitly includes by matching class names with file names inCLASSPATH directories,
then extracting and including declarations.

• The#include statement specifies the file to be included.

• C convention uses suffix “.h” for include files containing C declarations.

• C++ convention drops suffix “.h” for its standard libraries and has special file names for
equivalent C files, e.g.,cstdio versusstdio.h.

#include <stdio.h> // C style
#include <cstdio> // C++ style
#include "user.h"

• A file name can be enclosed in<> or "".

• <> means preprocessor only looks in the system include directories.

• "" means preprocessor starts looking for the file in the same directory as the file being
compiled, then in the system include directories.

• System fileslimits.h (climit) andstddef.h (cstddef) contain many useful#define s.

◦ e.g., null pointer literalNULL and min/max values for types (e.g., see/usr/include/limits.h).
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2.12.3 Conditional Inclusion

• Preprocessor has anif statement, which may be nested, to conditionally add/remove code
from a program.

• Conditionalif uses the same relational and logical operators as C/C++, butoperands can only
be integer or character values.

#define DEBUG 0 // declare and initialize preprocessor variable
. . .
#if DEBUG == 1 // level 1 debugging
# include "debug1.h"
. . .
#elif DEBUG == 2 // level 2 debugging
# include "debug2.h"
. . .
#else // non-debugging code
. . .
#endif

• By changing value of preprocessor variableDEBUG, different parts of the program are in-
cluded for compilation.

• To exclude code (comment-out), use0 conditional as0 implies false.

#if 0
. . . // code commented out
#endif

• It is also possible to check if a preprocessor variable is defined or not defined by using#ifdef
or #ifndef :

#ifndef MYDEFS H // if not defined
#define MYDEFS H 1 // make it so
. . .
#endif

• Used in an#include file to ensure its contents are only expanded once (see Section 2.23,
p. 124).

• Note difference between checking if a preprocessor variable is defined and checking the
value of the variable.

• The former capability does not exist in most programming languages, i.e., checking if a
variable is declared before trying to use it.

2.13 Assertions
• Assertions document program assumptions:

◦ pre-conditions – things true before a computation (e.g., all values are positive),
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◦ invariants – things true across the computation (e.g., all values during the computation
are positive, because only+,*, / operations),

◦ post-conditions – things true after the computation (e.g.,all results are positive).

• Assumptions cannot reflect external usage, where there is nocontrol.

◦ E.g., at interface points, a routine call can be made with incorrect values.

◦ Checking interface parameters is not an assumption about program behaviour, rather
about user behaviour.

• Assertions occurafter usage checks when a program has control over its computation.

◦ E.g., after checking a “car” is passed to a routine to calculate braking distance, an
assumption of correct behaviour is a positive braking distance.

◦ Therefore, routine can assert post-condition “braking distance is greater than zero”
before returning.

• Macroassert tests a boolean expression representing a logical assumption:

#include <cassert>
unsigned int stopping distance( Car car ) {

if ( car != . . . ) exit( EXIT FAILURE ); // check parameter

brakes = . . . ;
assert( brakes > 0 ); // pre-condition

temp = brakes . . . ;
assert( temp > 0 ); // invariant
temp = . . . ;
assert( temp > 0 ); // invariant

distance = . . . ;
assert( distance > 0) ); // post-condition
return distance;

}

• If assert fails (false result), it aborts program and printsexpression:

a.out: test.cc:19: unsigned int stopping distance(Car):
Assertion ′distance > 0′ failed.

• Use comma expression (see page39) to add documentation to assertion message.

assert( ("Internal error, please report", distance > 0) );
a.out: test.cc:19: unsigned int stopping distance(Car):

Assertion (′"Internal error, please report", distance > 0)′ failed.

• Assertions inhot spot, i.e., point of high execution, can significantly increase program cost.
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• Compiling a program with preprocessor variableNDEBUG defined removes all asserts.

% g++ -DNDEBUG . . . # all asserts removed

• Therefore, never put computations needed by a program into an assertion.

assert( needed computation(. . .) > 0 ); // may not be executed

2.14 Debugging

• Debugging is the process of determining why a program does not have an intended be-
haviour.

• Often debugging is associated with fixing a program after a failure.

• However, debugging can be applied to fixing other kinds of problems, like poor performance.

• Before using debugger tools it is important to understand what you are looking for and if
you need them.

2.14.1 Debug Print Statements

• An excellent way to debug a program is tostart by inserting debug print statements (i.e., as
the program is written).

• It takes more time, but the alternative is wasting hours trying to figure out what the program
is doing.

• The two aspects of a program that you need to know are: where the program is executing
and what values it is calculating.

• Debug print statements show the flow of control through a program and print out intermediate
values.

• E.g., every routine should have a debug print statement at the beginning and end, as in:

int p( . . . ) {
// declarations
cerr << "Enter p " << parameter variables << endl;
. . .
cerr << "Exit p " << return value(s) << endl;
return r;

}

• Result is a high-level audit trail of where the program is executing and what values are being
passed around.

• Finer resolution requires more debug print statements in important control structures:
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if ( a > b ) {
cerr << "a > b" << endl ; // debug print
for ( . . . ) {

cerr << "x=" << x << ", y=" << y << endl; // debug print
. . .

}
} else {

cerr << "a <= b" << endl; // debug print
. . .

}

• By examining the control paths taken and intermediate values generated, it is possible to
determine if the program is executing correctly.

• Unfortunately, debug print statements can generate enormous amounts of output.

It is of the highest importance in the art of detection to be able to recognize out
of a number of facts which are incidental and which vital. (Sherlock Holmes, The
Reigate Squires)

• Gradually comment out debug statements as parts of the program begin to work to remove
clutter from the output, but do not delete them until the program works.

• When you go for help, your program should contain debug print-statements to indicate some
attempted at understanding the problem.

• Use a preprocessor macro to simplifydebug prints:

#define DPRT( title, expr ) \
{ std::cerr << #title "\t\"" << PRETTY FUNCTION << "\" " << \

expr << " in " << FILE << " at line " << LINE << std::endl; }

for printing entry, intermediate, and exit locations and data:

#include <iostream>
#include "DPRT.h"
int test( int a, int b ) {

DPRT( ENTER, "a:" << a << " b:" << b );
if ( a < b ) {

DPRT( a < b, "a:" << a << " b:" << b );
}
DPRT( , a + b ); // empty title
DPRT( HERE, "" ); // empty expression
DPRT( EXIT, a );
return a;

}

which generates debug output:

ENTER "int test(int, int)" a:3 b:4 in test.cc at line 14
a < b "int test(int, int)" a:3 b:4 in test.cc at line 16

"int test(int, int)" 7 in test.cc at line 18
HERE "int test(int, int)" in test.cc at line 19
EXIT "int test(int, int)" 3 in test.cc at line 20

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/DPRT.h
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2.14.2 Errors

• Debug print statements do not prevent errors, they simply aid in finding errors.

• What you do about an error depends on the kind of error.

• Errors fall into two basic categories: syntax and semantic.

• Syntax error is in the arrangement of the tokens in the programming language.

• These errors correspond to spelling or punctuation errors when writing in a human language.

• Fixing syntax errors is usually straight forward especially if the compiler generates a mean-
ingful error message.

• Always read the error message carefully andcheckthe statement in error.

You see (Watson), but do not observe. (Sherlock Holmes, A Scandal in Bohemia)

• Difficult syntax errors are:

◦ missing closing" or */, as the remainder of the program isswallowedas part of the
character string or comment.

◦ missing{ or }, especially if the program is properly indented (editors can help here)

◦ missing semi-colon at end of structure

• Semantic error is incorrect behaviour or logic in the program.

• These errors correspond to incorrect meaning when writing in a human language.

• Semantic errors are harder to find and fix than syntax errors.

• A semantic or execution error message only tells why the program stopped not what caused
the error.

• In general, when a program stops with a semantic error, the statement in error is often not
the one that must be fixed.

• Must work backwards from the error to determine the cause of the problem.

In solving a problem of this sort, the grand thing is to be ableto reason backwards.
That is a very useful accomplishment, and a very easy one, butpeople do not
practise it much. In the everyday affairs of life it is more useful to reason forward,
and so the other comes to be neglected. (Sherlock Holmes, A Study in Scarlet)

• Reason from the particular (error symptoms) to the general (error cause).

◦ locate pertinent data : categorize as correct or incorrect

◦ look for contradictions

◦ list possible causes
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◦ devise a hypothesis for the cause of the problem

◦ use data to find contradictions to eliminate hypotheses

◦ refine any remaining hypotheses

◦ prove hypothesis is consistent with both correct and incorrect results, and accounts for
all errors

• E.g., an infinite loop with nothing wrong with the loop.

i = 10;
while ( i != 5 ) {

. . .
i += 2;

}

The initialization is wrong.

• Difficult semantic errors are:

◦ uninitialized variable

◦ invalid subscript or pointer value

◦ off-by-one error

• Finally, if a statement appears not to be working properly, but looks correct, check the syntax
(see page44).

if ( a = b ) {
cerr << "a == b" << endl;

}

When you have eliminated the impossible whatever remains, however improbable
must be the truth. (Sherlock Holmes, Sign of Four)

2.15 Dynamic Storage Management

• Java/Scheme aremanaged languages because the language controls all memory manage-
ment, e.g.,garbage collectionto free dynamically allocated storage.

• C/C++ areunmanaged languages because the programmer is involved in memory manage-
ment, e.g., no garbage collection so dynamic storage must beexplicitly freed.

• C++ provides dynamic storage-management operationsnew /delete and C providesmalloc/free.

• Do not mix the two forms in a C++ program.
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Java C C++

class Foo { char c1, c2; }
Foo r = new Foo();
r.c1 = ′X′ ;
// r garbage collected

struct Foo { char c1, c2; };
struct Foo *p =

(struct Foo *) // coerce
malloc( // allocate
sizeof (struct Foo) // size

);
p->c1 = ′X′ ;
free( p ); // explicit free

struct Foo { char c1, c2; };
Foo *p = new Foo();
p->c1 = ′X′ ;
delete p; // explicit free
Foo &r = *new Foo();
r.c1 = ′X′ ;
delete &r; // explicit free

• Allocation has 3 steps:

1. determine size of allocation,
2. allocate heap storage of correct size/alignment,
3. coerce undefined storage to correct type.

• C++ operatornew performs all 3 steps implicitly; each step is explicit in C.

• Coercion cast is required in C++ formalloc but optional in C.

◦ C has implicit cast fromvoid * (pointer to anything) to specific pointer (dangerous!).

◦ Good practise in C is to use a cast so compiler can verify type usage after allocation.

• Parenthesis after the type name in thenew operation are optional.

• For referencer, why is there a “*” beforenew and an “&” in the delete ?

• Storage for dynamic allocation comes from a memory area called theheap.

• If heap is full (i.e., no more storage available),malloc returns 0, andnew generates an error.

• Before storage can be used, itmustbe allocated.

Foo *p; // forget to initialize pointer with “new”
p->c1 = ′R′ ; // places ′R′ at some random location in memory

Called an uninitialized variable.

• After storage is no longer needed itmustbe explicitly deleted.

Foo *p = new Foo;
p = new Foo; // forgot to free previous storage

Called amemory leak.

• After storage is deleted, itmustnot be used:

delete p;
p->c1 = ′R′ ; // result of dereference is undefined

Called adangling pointer.
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• Unlike Java, C/C++ allowall types to be dynamically allocated not just object types, e.g.,
new int .

• As well, C/C++ allowall types to be allocated on the stack, i.e., local variables of ablock:

Java C++

{ // basic & reference
int i;
double d;
AggrType agr =

new AggrType();
. . .

} // garbage collected

stack heap

...

d

i

agr

{ // all types
int i;
double d;
AggrType agr;
. . .

} // implicit delete ...

agr

d

i

heapstack

• Stack allocation eliminates explicit storage-management(simpler) and is more efficient than
heap allocation —use it whenever possible.

{ // good, use stack
int i;
. . . // use i

}

{ // bad, unnecessary dynamic allocation
int *ip = new int ;
. . . // use *ip
delete ip;

}

• Dynamic allocation in C++ should be used only when a variable’s storage must outlive
the block in which it is allocated (see also page101).

Type *rtn(. . .) {
Type *tp = new Type; // MUST USE HEAP
. . . // initialize/compute using tp
return tp; // storage outlives block

} // tp deleted later

• Declaration of a pointer to an array is complex in C/C++ (see also page61).

• Because no array-size information, no dimension for an array pointer.

int *parr = new int [10]; // think parr[ ], pointer to array of 10 ints

• No dimension information results in the following ambiguity:

int *pvar = new int ; // basic “new”
int *parr = new int [10]; // parr[ ], array “new”

• Variablespvar andparr have the same type but one is allocated with the basicnew and the
other with the arraynew .

• Special syntaxmustbe used to call the corresponding deletion operation for a variable or an
array (any dimensions):

delete pvar; // basic delete : single element
delete [ ] parr; // array delete : multiple elements (any dimension)
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• If basicdelete is used on an array, only the first element is freed (memory leak).

• If array delete is used on a variable, storage after the variable is also freed (often failure).

• Never do this:

delete [ ] parr, pvar; // => (delete [ ] parr), pvar;

which is an incorrect use of a comma expression;pvar is not deleted.

• Declaration of a pointer to a matrix is complex in C/C++, e.g., int *m[5] could mean:

. . .

. . .

. . .

. . .

. . .

9

8

1

2

3

...

m m 6 4 09 2

• Left: array of 5 pointers to an array of unknown number of integers.

• Right: pointer to matrix of unknown number of rows with 5 columns of integers.

• Dimension is higher priority so declaration is interpretedasint (*(m[5])) (left).

• Right example cannot be generalized to a dynamically-sizedmatrix.

int R = 5, C = 4; // 5 rows, 4 columns
int (*m)[R] = new int [R][C]; // C must be literal, e.g, 4

Compiler must know the stride (number of columns) to computerow.

• Left example can be generalized to a dynamically-sized matrix.

int main() {
int R = 5, C = 4; // cin >> R >> C;
int *m[R]; // R rows
for ( int r = 0; r < R; r += 1 ) {

m[r] = new int [C]; // C columns per row
for ( int c = 0; c < C; c += 1 ) {

m[r][c] = r + c; // initialize matrix
}

}

for ( int r = 0; r < R; r += 1 ) { // print matrix
for ( int c = 0; c < C; c += 1 ) {

cout << m[r][c] << ", ";
}
cout << endl;

}
for ( int r = 0; r < R; r += 1 ) {

delete [ ] m[r]; // delete each row
}

} // implicitly delete array “m”
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2.16 Overloading
• Overloading occurs when a name has multiple meanings in the same context.

• Most languages have overloading, e.g., most built-in operators are overloaded on both inte-
gral and real-floating operands, i.e.,+ operator is different for1 + 2 than for1.0 + 2.0.

• Overloading requires disambiguating among identical names based on some criteria.

• Normal criterion is type information.

• In general, overloading is done on operations not variables:

int i; // disallowed : variable overloading
double i;
void r( int ) { . . . } // allowed : routine overloading
void r( double ) { . . . }

• Power of overloading occurs when a variable’s type is changed: operations on the variable
are implicitly reselected for the variable’s new type.

• E.g., after changing a variable’s type fromint to double , all operations implicitly change
from integral to real-floating.

• Number andunique parameter typesbut not the return typeare used to select among a
name’s different meanings:

int r( int i, int j ) { . . . } // overload name r three different ways
int r( double x, double y ) { . . . }
int r( int k ) { . . . }
r( 1, 2 ); // invoke 1st r based on integer arguments
r( 1.0, 2.0 ); // invoke 2nd r based on double arguments
r( 3 ); // invoke 3rd r based on number of arguments

Subtle cases:

int i; unsigned int ui; long int li;
void r( int i ) { . . . } // overload name r three different ways
void r( unsigned int i ) { . . . }
void r( long int i ) { . . . }
r( i ); // int
r( ui ); // unsigned int
r( li ); // long int

• Parameter types with qualifiers other thanshort /long /signed /unsigned or reference with
same base type are not unique:

int r( int i ) {. . .} // rewritten: int r( signed int )
int r( signed int i ) {. . .} // disallowed : redefinition
int r( const int i ) {. . .} // disallowed : redefinition
int r( int &i ) {. . .} // disallowed : ambiguous
int r( const int &i ) {. . .} // disallowed : ambiguous
r( i ); // all routines look the same
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• Implicit conversions between arguments and parameters cancause ambiguities:

r( 1, 2.0 ); // ambiguous, convert either argument to integer or double

• Use explicit cast to disambiguate:

r( 1, (int )2.0 ) // 1st r
r( (double )1, 2.0 ) // 2nd r

• Overload/conversion confusion: I/O operator<< is overloaded withchar * to print a C string
andvoid * to print pointers.

char c; int i;
cout << &c << " " << &i << endl; // print address of variables

type of&c is char *, so printed as C string, which is undefined;type of&i is int *, which is
converted tovoid *, so printed as an address.

• Fix using coercion.

cout << (void *)&c << " " << &i << endl; // print address of variables

• Overlap between overloading and default arguments for parameters with same type:

Overloading Default Argument

int r( int i, int j ) { . . . }
int r( int i ) { int j = 2; . . . }
r( 3 ); // 2nd r

int r( int i, int j = 2 ) { . . . }

r( 3 ); // default argument of 2

If the overloaded routine bodies are essentially the same, use a default argument, other-
wise use overloaded routines.

2.17 Routine Pointer
• The flexibility and expressiveness of a routine comes from the argument/parameter mecha-

nism, which generalizes a routine across any argument variables of matching type.

• However, the code within the routine is the same for all data in these variables.

• To generalize a routine further, code can be passed as an argument, which is executed within
the routine body.

• Most programming languages allow a routine pointer for further generalization and reuse.
(Java does not as its routines only appear in a class.)

• As for data parameters, routine pointers are specified with atype (return type, and number
and types of parameters), and any routine matching this typecan be passed as an argument,
e.g.:
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int f( int v, int (*p)( int ) ) { return p( v * 2 ) + 2; }

int g( int i ) { return i - 1; }
int h( int i ) { return i / 2; }
cout << f( 4, g ) << endl; // pass routines g and h as arguments
cout << f( 4, h ) << endl;

• Routinef is generalized to accept any routine argument of the form: returns anint and takes
an int parameter.

• Within the body off, the parameterp is called with an appropriateint argument, and the
result of callingp is further modified before it is returned.

• A routine pointer is passed as a constant reference in virtually all programming languages;
in general, it makes no sense to change or copy routine code, like copying a data value.

• C/C++ require the programmer to explicitly specify the reference via a pointer, while other
languages implicitly create a reference.

• Two common uses of routine parameters are fix-up and call-back routines.

• A fix-up routine is passed to another routine and called if an unusual situation is encountered
during a computation.

• E.g., a matrix is not invertible if its determinant is 0 (singular).

• Rather than halt the program for a singular matrix,invert routine calls a user supplied fix-up
routine to possibly recover and continue with a correction (e.g., modify the matrix):

int singularDefault( int matrix[ ][10], int rows, int cols ) { return 0; }
int invert( int matrix[ ][10], int rows, int cols,

int (*singular)( int matrix[ ][10], int rows, int cols ) = singularDefault ) {
. . .
if ( determinant( matrix, rows, cols ) == 0 ) {

correction = singular( matrix, rows, cols ); // compute correction
}
. . .

}

• A fix-up parameter generalizes a routine as the corrective action is specified for each call,
and the action can be tailored to a particular usage.

• Giving the fix-up parameter a default value eliminates having to provide a fix-up argument.

• A call-back routine is used in event programming.

• When an event occurs, one or more call-back routines are called (triggered) and each one
performs an action specific for that event.

• E.g., a graphical user interface has an assortment of interactive “widgets”, such as buttons,
sliders and scrollbars.



2.18. OBJECT 97

• When a user manipulates the widget, events are generated representing the new state of the
widget, e.g., button down or up.

• A program registers interest in transitions for different widgets by creating and registering a
call-back routine.

int closedown( /* info about event */ ) {
// close down because close button press
// return status of callback action

}
// inform when close button pressed for “widget”
registerCB( widget, closeButton, closedown );

• widget maintains list of registered callbacks.

• A widget calls specific call-back routine(s) when the widgetchanges state, passing new state
of the widget to each call-back routine.

2.18 Object

• Object-oriented programming was developed in the mid-1960s by Dahl and Nygaard and
first implemented in SIMULA67.

• Object programming is based on structures, used for organizing logically related data (see Sec-
tion 2.7.3, p.60):

unorganized organized

int people age[30];
bool people sex[30];
char people name[30][50];

struct Person {
int age;
bool sex;
char name[50];

} people[30];

• Both approaches create an identical amount of information.

• Difference is solely in the information organization (and memory layout).

• Computer does not care as the information and its manipulation is largely the same.

• Structuring is an administrative tool for programmer understanding and convenience.

• Objects extend organizational capabilities of a structureby allowing routine members.

• C++ does not subscribe to the Java notion that everything is either a basic type or an object,
i.e., routines can exist without being embedded in astruct /class (see Section2.9, p. 70).
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structure form object form

struct Complex {
double re, im;

};
double abs( const Complex &This ) {

return sqrt( This.re * This.re +
This.im * This.im );

}
Complex x; // structure
abs( x ); // call abs

struct Complex {
double re, im;
double abs() const {

return sqrt( re * re +
im * im );

}
};
Complex x; // object
x.abs(); // call abs

• An object provides both data and the operations necessary tomanipulate that data in one
self-contained package.

• Both approaches use routines as an abstraction mechanism tocreate an interface to the in-
formation in the structure.

• Interface separates usage from implementation at the interface boundary, allowing an ob-
ject’s implementation to change without affecting usage.

• E.g., if programmers do not accessComplex’s implementation, it can change from Cartesian
to polar coordinates and maintain same interface.

• Developing good interfaces for objects is important.

◦ e.g., mathematical types (likecomplex) should use value semantics (functional style)
versus reference to prevent changing temporary values.

2.18.1 Object Member

• A routine member in a class is constant, and cannot be assigned (e.g.,const member).

• What is the scope of a routine member?

• Structure creates a scope, and therefore, a routine member can access the structure members,
e.g.,abs member can refer to membersre andim.

• Structure scope is implemented via aT * const this parameter, implicitly passed to each
routine member (like left example).

double abs() const {
return sqrt( this ->re * this ->re + this ->im * this ->im );

}

Since implicit parameter “this ” is a const pointer, it should be a reference.

• Except for the syntactic differences, the two forms are identical.

• The use of implicit parameterthis , e.g.,this ->f, is seldom necessary.

• Member routine declaredconst is read-only, i.e., cannot change member variables.
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• Member routines are accessed like other members, using member selection,x.abs, and called
with the same form,x.abs().

• No parameter needed because of implicit structure scoping via this parameter.

• Nesting of object types only allows static not dynamic scoping (see Section2.7.5, p. 65)
(Java allows dynamic scoping).

struct Foo {
int g;
int r() { . . . }
struct Bar { // nested object type

int s() { g = 3; r(); } // disallowed, dynamic reference
}; // to specific object

} x, y, z;

References ins to membersg andr in Foo disallowed because must know thethis for specific
Foo object, i.e., whichx, y or z.

• Extend typeComplex by inserting an arithmetic addition operation:

struct Complex {
. . .
Complex add( Complex c ) {

return (Complex){ re + c.re, im + c.im };
}

};

• To sumx andy, write x.add(y), which looks different from normal addition,x + y.

• Because addition is a binary operation,add needs a parameter as well as the implicit context
in which it executes.

• Like outside a type, C++ allows overloading members in a type.

2.18.2 Operator Member

• It is possible to use operator symbols for routine names:

struct Complex {
. . .
Complex operator +( Complex c ) { // rename add member

return (Complex){ re + c.re, im + c.im };
}

};

• Addition routine is called+, andx andy can be added byx.operator +(y) or y.operator +(x),
which looks slightly better.
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• Fortunately, C++ implicitly rewritesx + y asx.operator +(y).

Complex x = { 3.0, 5.2 }, y = { -9.1, 7.4 };
cout << "x:" << x.re << "+" << x.im << "i" << endl;
cout << "y:" << y.re << "+" << y.im << "i" << endl;
Complex sum = x + y; // rewritten as x.operator+( y )
cout << "sum:" << sum.re << "+" << sum.im << "i" << endl;

2.18.3 Constructor

• A constructor is a special member used toimplicitly perform initialization after object allo-
cation to ensure the object is valid before use.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
. . . // other members

};

• Constructor name is overloaded with the type name of the structure (normally disallowed).

• Constructor without parameters is thedefault constructor, for initializing a new object to a
default value.

Complex x;
Complex *y = new Complex;

implicitly
rewritten as

Complex x; x.Complex();
Complex *y = new Complex;

y->Complex();

• Unlike Java, C++ does not initialize all object members to default values.

• Constructor is responsible for initializing membersnot initialized via other constructors,
i.e., some members are objects with their own constructors.

• Because a constructor is a routine, arbitrary execution canbe performed (e.g., loops, routine
calls, etc.) to perform initialization.

• A constructor may have parameters but no return type (not even void ).

• Never put parentheses to invoke default constructor for local declarations.

Complex x(); // routine prototype, no parameters returning a complex

• Once a constructor is specified, structure initialization is disallowed:

Complex x = { 3.2 }; // disallowed
Complex y = { 3.2, 4.5 }; // disallowed

• Replace using constructor(s) with parameters:

struct Complex {
double re, im;
Complex( double r = 0.0, double i = 0.0 ) { re = r; im = i; }
. . .

};
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Note, use of default values for parameters (see page73).

• Unlike Java, constructor argument(s) can be specifiedafter a variable for local declarations:

Complex x, y(1.0), z(6.1, 7.2); implicitly
rewritten as

Complex x; x.Complex(0.0, 0.0);
Complex y; y.Complex(1.0, 0.0);
Complex z; z.Complex(6.1, 7.2);

(see declaring stream files page76)

• Dynamic allocation is same as Java:

Complex *x = new Complex(); // parentheses optional
Complex *y = new Complex(1.0);
Complex *z = new Complex(6.1, 7.2);

• Constructor may force dynamic allocation when initializating an array of objects.

Complex ac[10]; // complex array initialized to 0.0
for ( int i = 0; i < 10; i += 1 ) {

ac[i] = (Complex){ i, 2.0 } // disallowed
}
// MUST USE DYNAMIC ALLOCATION
Complex *ap[10]; // array of complex pointers
for ( int i = 0; i < 10; i += 1 ) {

ap[i] = new Complex( i, 2.0 ); // allowed
}

• If only non-default constructors are specified, i.e., ones with parameters, an object cannot
be declared without an initialization value:

struct Foo {
// no default constructor
Foo( int i ) { . . . }

};
Foo x; // disallowed!!!
Foo x( 1 ); // allowed

• Unlike Java, constructor cannot be called explicitly in another constructor, so constructor
reuse is done through a separate member:

Java C++

class Foo {
int i, j;

Foo() { this ( 2 ); } // explicit call
Foo( int p ) { i = p; j = 1; }

}

struct Foo {
int i, j;
void common(int p) { i = p; j = 1; }
Foo() { common( 2 ); }
Foo( int p ) { common( p ); }

};
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2.18.3.1 Literal

• Constructors can be used to create object literals (likeg++ type-constructor literals in Sec-
tion 2.4.1, p.39):

Complex x, y, z;
x = Complex( 3.2 ); // complex literal value 3.2+0.0i
y = x + Complex(1.3, 7.2); // complex literal 1.3+7.2i
z = Complex( 2 ); // 2 widened to 2.0, complex literal value 2.0+0.0i

• Previous operator+ for Complex (see page99) is changed because type-constructor literals
are disallowed for a type with constructors:

Complex operator +( Complex c ) {
return Complex( re + c.re, im + c.im ); // create new complex value

}

2.18.3.2 Conversion

• Constructors are implicitly used for conversions (see Section 2.4.1, p. 39):

int i;
double d;
Complex x, y;
x = 3.2;
y = x + 1.3;
y = x + i;
y = x + d;

implicitly
rewritten as

x = Complex( 3.2 );
y = x.operator +( Complex(1.3) );
y = x.operator +( Complex( (double )i );
y = x.operator +( Complex( d ) );

• Allows built-in literals and types to interact with user-defined types.

• Note, two implicit conversions are performed on variablei in x + i: int to double and then
double to Complex.

• Can require only explicit conversions with qualifierexplicit on constructor:

struct Complex {
// turn off implicit conversion
explicit Complex( double r = 0.0, double i = 0.0 ) { re = r; im = i; }
. . .

};

• Problem: implicit conversion disallowed for commutative binary operators.

• 1.3 + x, disallowed because it is rewritten as(1.3).operator +(x), but member
double operator +(Complex) does not exist in built-in typedouble .

• Solution, move operator+ out of the object type and made into a routine, which can also be
called in infix form (see Section2.16, p.94):
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struct Complex { . . . }; // same as before, except operator + removed
Complex operator +( Complex a, Complex b ) { // 2 parameters

return Complex( a.re + b.re, a.im + b.im );
}
x + y;
1.3 + x;
x + 1.3;

implicitly
rewritten as

operator +(x, y)
operator +(Complex(1.3), x)
operator +(x, Complex(1.3))

• Compiler first checks for an appropriate operator in object type, and if found, applies con-
versions only on the second operand.

• If no appropriate operator in object type, the compiler checks for an appropriate routine (it
is ambiguous to have both), and if found, applies applicableconversions tobothoperands.

• In general, commutative binary operators should be writtenas routines to allow implicit
conversion on both operands.

• I/O operators<< and>> often overloaded for user types:

ostream &operator <<( ostream &os, Complex c ) {
return os << c.re << "+" << c.im << "i";

}
cout << "x:" << x; // rewritten as: <<( cout.operator<<(“x:”), x )

• Standard C++ convention for I/O operators to take and returna stream reference to allow
cascading stream operations.

• << operator in objectcout is used to first print string value, then overloaded routine<< to
print the complex variablex.

• Why write as a routine versus a member?

2.18.4 Destructor

• A destructor (finalize in Java) is a special member used to perform uninitialization at object
deallocation:

Java C++

class Foo {
. . .
finalize() { . . . }

}

struct Foo {
. . .
~Foo() { . . . } // destructor

};

• An object type has one destructor; its name is the character “~” followed by the type name
(like a constructor).

• A destructor has no parameters nor return type (not evenvoid ):

• A destructor is only necessary if an object isnon-contiguous, i.e., composed of multiple
pieces within its environment, e.g., files, dynamically allocated storage, etc.
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• A contiguous object, like a Complex object, requires no destructor as it is self-contained
(see Section2.23, p. 124for a version ofComplex requiring a destructor).

• A destructor is invokedbeforean object is deallocated, either implicitly at the end of a block
or explicitly by adelete :

{
Foo x, y( x );
Foo *z = new Foo;
. . .
delete z;
. . .

}

implicitly
rewritten as

{ // allocate local storage
Foo x, y; x.Foo(); y.Foo( x );
Foo *z = new Foo; z->Foo();
. . .
z->~Foo(); delete z;
. . .
y.~Foo(); x.~Foo();

} // deallocate local storage

• For local variables in a block, destructorsmust becalled in reverse order to constructors
because of dependencies, e.g.,y depends onx.

• A destructor is more common in C++ than a finalize in Java due tothe lack of garbage col-
lection in C++.

• If an object type performs dynamic storage allocation, it isnon-contiguous and needs a
destructor to free the storage:

struct Foo {
int *i; // think int i[ ]
Foo( int size ) { i = new int [size]; } // dynamic allocation
~Foo() { delete [ ] i; } // must deallocate storage
. . .

};

Exception is when the dynamic object is transfered to another object for deallocation.

• C++ destructor is invoked at a deterministic time (block termination ordelete ), ensuring
prompt cleanup of the execution environment.

• Javafinalize is invoked at a non-deterministic time during garbage collection ornot at all, so
cleanup of the execution environment is unknown.

2.18.5 Copy Constructor / Assignment

• There are multiple contexts where an object is copied.

1. declaration initialization (ObjType obj2 = obj1)
2. pass by value (argument to parameter)
3. return by value (routine to temporary at call site)
4. assignment (obj2 = obj1)

• Cases 1 to 3 involve a newly allocated object with undefined values.

• Case 4 involves an existing object that may contain previously computed values.
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• C++ differentiates between these situations: initialization and assignment.

• Constructor with aconst reference parameter of class type is used for initialization (decla-
rations/parameters/return), called thecopy constructor:

Complex( const Complex &c ) { . . . }

• Declaration initialization:

Complex y = x; implicitly rewritten as Complex y; y.Complex( x );

◦ “=” is misleading as copy constructor is called not assignmentoperator.

◦ value on the right-hand side of “=” is argument to copy constructor.

• Parameter/return initialization:

Complex rtn( Complex a, Complex b ) { . . . return a; }
Complex x, y;
x = rtn( x, y ); // creates temporary before assignment

◦ call results in the following implicit action inrtn:

Complex rtn( Complex a, Complex b ) {
a.Complex( x ); b.Complex( y ); // initialize parameters with arguments
. . .

◦ return results in a temporary created at the call site to holdthe result:

x = rtn(. . .); implicitly rewritten as
Complex temp;
temp.Complex( rtn(. . .) );
x = temp;

• Assignment routine is used for assignment:

Complex &operator =( const Complex &rhs ) { . . . }

◦ value on the right-hand side of “=” is argument to assignment operator.

x = y; implicitly rewritten as x.operator =( y );

◦ usually most efficient to use reference for parameter and return type.

• If a copy constructor or assignment operator is not defined, an implicit one is generated that
does amemberwise copyof each subobject.

◦ basic type,bitwise copy
◦ class type, use class’s copy constructor
◦ array, each element is copied appropriate to the element type
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struct B {
B() {}
B( const B &c ) { cout << "B(&) "; }
B &operator =( const B &rhs ) { cout << "B= "; }

};
struct D { // implicit copy and assignment

int i; // basic type, bitwise
B b; // object type, memberwise
B ab[5]; // array, element/memberwise

};
int main() {

D i; // B′s default constructor
D d = i; // D′s default copy-constructor
d = i; // D′s default assignment

}

outputs the following:

B(&) B(&) B(&) B(&) B(&) B(&) B= B= B= B= B= B=
b ab b ab

• Often only a bitwise copy as subobjects have no copy constructor or assignment operator.

• If D defines a copy-constructor/assignment, it is used rather than that in any subobject.

struct D {
int i; B b; B ab[5];
D( const D &c ) : i( c.i ), b( c.b ), ab( c.ab ) {}
D &operator =( const D &rhs ) {

i = rhs.i; b = rhs.b;
for ( int i = 0; i < 5; i += 1 ) ab[i] = rhs.ab[i];
return *this ;

}
};

Must manually copy each subobject (same output as before).Note array copy!

• When an object type has pointers, it is often necessary to do adeep copy, i.e, copy the
contents of the pointed-to storage rather than the pointers(see also Section2.23, p. 124).
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struct Shallow {
int *i;
Shallow( int v ) { i = new int ; *i = v; }
~Shallow() { delete i; }

};
struct Deep {

int *i;
Deep( int v ) { i = new int ; *i = v; }
~Deep() { delete i; }
Deep( Deep &d ) { i = new int ; *i = *d.i; } // copy value
Deep &operator =( const Deep &rhs ) {

*i = *rhs.i; return *this ; // copy value
}

};

3

Shallow x(3), y = x; Deep x(3), y = x;

new x.i

xy x y

33

initialization

shallow copy
deep copy

3

Shallow x(3), y(7); y = x; Deep x(3), y(7); y = x;

assignment

7

shallow copy

xy

new x.inew y.i

xy

3
deep copy

37

memory leak dangling pointer

• For shallow copy:

◦ memory leak occurs on the assignment

◦ dangling pointer occurs afterx or y is deallocated; when the other object is deallocated,
it reuses this pointer to delete the same storage.

• Deep copy does not change the pointers only the values associated within the pointers.

• Bewareself-assignmentfor variable-sized types:
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struct Varray { // variable-sized array
unsigned int size;
int *a;
Varray( unsigned int s ) { size = s; a = new int [size]; }
. . . // other members
Varray &operator =( const Varray &rhs ) { // deep copy

delete [ ] a; // delete old storage
size = rhs.size; // set new size
a = new int [size]; // create storage for new array
for ( unsigned int i = 0; i < size; i += 1 ) a[i] = rhs.a[i]; // copy values
return *this ;

}
};
Varray x( 5 ), y( 10 );
x = y; // works
y = y; // fails

• How can this problem be fixed?

• Which pointer problem is this, and why can it go undetected?

• For deep copy, it is often necessary to define a equality operator (operator ==) performing a
deep compare, i.e., compare values not pointers.

2.18.6 Initializeconst / Object Member

• C/C++const members and local objects of a structure must be initializedat declaration:

Ideal (Java-like) Structure

struct Bar {
Bar( int i ) {. . .}
// no default constructor

} bar( 3 );
struct Foo {

const int i = 3;
Bar * const p = &bar ;
Bar &rp = bar ;
Bar b( 7 );

} x;

struct Bar {
Bar( int i ) {. . .}
// no default constructor

} bar( 3 );
struct Foo {

const int i;
Bar * const p;
Bar &rp;
Bar b;

} x = { 3, &bar, bar, 7 };

• Left: disallowed because fields cannot be directly initialized.

• Right: disallowed becauseBar has a constructor sob must use constructor syntax (see Sec-
tion 2.18.3, p.100).

• Try using a constructor:
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Constructor/assignment Constructor/initialize

struct Foo {
const int i;
Bar * const p;
Bar &rp;
Bar b;
Foo() {

i = 3; // after declaration
p = &bar ;
rp = bar ;
b( 7 ); // not a statement

}
};

struct Foo {
const int i;
Bar * const p;
Bar &rp;
Bar b;
Foo() : // declaration order

i( 3 ),
p( &bar ),
rp( bar ),
b( 7 ) {

}
};

• Left: disallowed becauseconst has to be initialized at point of declaration.

• Right: special syntax to indicate initialized at point of declaration.

• Ensuresconst /object members are initialized before used in constructorbody.

• Must be initialized in declaration order to prevent use before initialization.

• Syntax may also be used to initialize any local members:

struct Foo {
Complex c;
int k;
Foo() : c( 1, 2 ), k( 14 ) { // initialize c, k

c = Complex( 1, 2 ); // or assign c, k
k = 14;

}
};

Initialization may be more efficient versus default constructor and assignment.

2.18.7 Static Member

• Static members create a single instance for object type versus for object instances, e.g.,
maintain statistics across all objects.

• Members qualified withstatic are declared in the static block not within an object.



110 CHAPTER 2. C++

struct Foo {
int i;
static int cnt;
Foo() {

cnt += 1; // allowed
stats(); // allowed

}
static void stats() {

cout << cnt; // allowed
i = 3; // disallowed
mem(); // disallowed

}
} x, y;
int Foo::cnt; // declaration (optional initialization)

::Foo::stats

x

::Foo::cnt

y

static block

i
Foo

i
Foo

• Object membersmem can referencej andrtn in static block.

• Static memberrtn not logically nested in typefoo, so it cannot reference membersi andmem.

• Static class-variables must be declared once (versus defined in the type) in a.cc file.

2.19 Random Numbers
• Random numbersare values generated independently, i.e., new values do notdepend on

previous values (independent trials).

• E.g., lottery numbers, suit/value of shuffled cards, value of rolled dice, coin flipping.

• While programmers spend most of their time ensuring computed values are not random,
random values are useful:

◦ gambling, simulation, cryptography, games, etc.

• A random-number generator is an algorithm that computes independent values.

• If the algorithm uses deterministic computation, it generatespseudo random-numbersver-
sus “true” random numbers, as sequence is predictable.

• All pseudo random-number generators (PRNG) involve some technique that scrambles
the bits of a value, e.g., multiplicative recurrence:

seed = 36969 * (seed & 65535) + (seed >> 16); // scramble bits

• Multiplication of large values adds new least-significant bits and drops most-significant bits.

bits 63-32 bits 31-0
0 3e8e36
5f 718c25e1

ad3e 7b5f1dbe
bc3b ac69ff19

1070f 2d258dc6
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• By dropping bits 63-32, bits 31-0 become scrambled after each multiply.

• E.g.,classPRNG generates afixedsequence of LARGE random values that repeats after 232

values (but might repeat earlier):2

class PRNG {
uint32 t seed ; // same results on 32/64-bit architectures

public :
PRNG( uint32 t s = 362436069 ) {

seed = s; // set seed
}
void seed( uint32 t s ) { // reset seed

seed = s; // set seed
}
uint32 t operator ()() { // [0,UINT MAX]

seed = 36969 * (seed & 65535) + (seed >> 16); // scramble bits
return seed ;

}
uint32 t operator ()( uint32 t u ) { // [0,u]

return operator ()() % (u + 1); // call operator()()
}
uint32 t operator ()( uint32 t l, uint32 t u ) { // [l,u]

return operator ()( u - l ) + l; // call operator()( uint32 t )
}

};

• Creating a member with the function-call operator name,(), (functor ) allows these objects
to behave like a routine.

PRNG prng; // often create single generator
prng(); // [0,UINT MAX]
prng( 5 ); // [0,5]
prng( 5, 10 ); // [5,10]

• Large values are scaled using modulus; e.g., generate 10 random number between 5-21:

PRNG prng;
for ( int i = 0; i < 10; i += 1 ) {

cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng( 16 ) + 5 << endl;
cout << prng( 5, 21 ) << endl;

}

• By initializing PRNG with a different “seed” each time the program is run, the generated
sequence is different:

PRNG prng( getpid() ); // process id of program
prng.seed( time() ); // current time

2http://www.bobwheeler.com/statistics/Password/MarsagliaPost.txt

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/PRNG.h
http://www.bobwheeler.com/statistics/Password/MarsagliaPost.txt
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• #include <cstdlib> provides C random routinessrand and rand to set a seed and generate
random values, respectively.

srand( getpid() ); // seed random genrator
r = rand(); // obtain next random value

2.20 Declaration Before Use

• C/C++ haveDeclaration Before Use(DBU), e.g., a variable declaration must appear before
its usage in a block:

• In theory, a compiler could handle some DBU situations:

{
cout << i << endl; // prints 4 ?
int i = 4; // declaration after usage

}

but ambiguous cases make this impractical:

int i = 3;
{

cout << i << endl; // which i?
int i = 4;
cout << i << endl;

}

• C always requires DBU.

• C++ requires DBU in a block and among types but not within a type.

• Java only requires DBU in a block, but not for declarations inor among classes.

• DBU has a fundamental problem specifyingmutually recursive references:

void f() { // f calls g
g(); // g is not defined and being used

}
void g() { // g calls f

f(); // f is defined and can be used
}

Caution: these calls cause infinite recursion as there is no base case.

• Cannot type-check the call tog in f to ensure matching number and type of arguments and
the return value is used correctly.

• Interchanging the two routines does not solve the problem.

• A forward declaration introduces a routine’s type (called aprototype/signature) before its
actual declaration:
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int f( int i, double ); // routine prototype: parameter names optional
. . . // and no routine body
int f( int i, double d ) { // type repeated and checked with prototype

. . .
}

• Prototype parameter names are optional (good documentation).

• Actual routine declaration repeats routine type, which must match prototype.

• Routine prototypes also useful for organizing routines in asource file.

int main(); // forward declarations, any order
void g( int i );
void f( int i );
int main() { // actual declarations, any order

f( 5 );
g( 4 );

}
void g( int i ) { . . . }
void f( int i ) { . . . }

• E.g., allowingmain routine to appear first, and for separate compilation (see Section 2.23,
p. 124).

• Like Java, C++ does not always require DBU within a type:

Java C++

class T {
void f() { c = Colour.R; g(); }
void g() { c = Colour.G; f(); }
Colour c;
enum Colour { R, G, B };

};

void g() {} // not selected by call in T::f
struct T {

void f() { c = R; g(); } // c, R, g not DBU
void g() { c = G; f(); } // c, G not DBU
enum Colour { R, G, B }; // type must be DBU
Colour c;

};

• Unlike Java, C++ requires a forward declaration for mutually-recursive declarationsamong
types:

Java C++

class T1 {
T2 t2;
T1() { t2 = new T2(); }

};
class T2 {

T1 t1;
T2() { t1 = new T1(); }

};
T1 t1 = new T1();

struct T1 {
T2 t2; // DBU failure, T2 size?

};
struct T2 {

T1 t1;

};
T1 t1;
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Caution: these types cause infinite expansion as there is no base case.

• Java version compiles becauset1/t2 are references not objects, and Java can look ahead at
T2; C++ version disallowed because DBU onT2 means it does not know the size ofT2.

• An object declaration and usage requires the object’s size and members so storage can be
allocated, initialized, and usages type-checked.

• Solve using Java approach: break definition cycle using a forward declaration and pointer.

Java C++

class T1 {
T2 t2;
T1() { t2 = new T2(); }

};
class T2 {

T1 t1;
T2() { t1 = new T1(); }

};

struct T2; // forward
struct T1 {

T2 &t2; // pointer, break cycle
T1() : t2( *new T2 ) {} // DBU failure, size?

};
struct T2 {

T1 t1;
};

• Forward declaration ofT2 allows the declaration of variableT1::t2.

• Note, a forward declaration only introduces the name of a type.

• Given just a type name, only pointer/reference declarations to the type are possible, which
allocate storage for an address versus an object.

• C++’s solution still does not work as the constructor cannotuse typeT2.

• Use forward declaration and syntactic trick to move member definition after both types are
defined:

struct T2; // forward
struct T1 {

T2 &t2; // pointer, break cycle
T1(); // forward declaration

};
struct T2 {

T1 t1;
};
T1::T1() : t2( *new T2 ) {} // can now see type T2

• Use of qualified nameT1::T1 allows a member to be logically declared inT1 but physically
located later (see Section2.23, p.124).
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2.21 Encapsulation

• Encapsulationhides implementation to force abstraction (access control).

• Access control applies to types NOT objects, i.e., all objects of the same type have identical
levels of encapsulation.

• Abstraction and encapsulation are neither essential nor required to develop software.

• E.g., programmers could follow a convention of not directlyaccessing the implementation.

• However, relying on programmers to follow conventions is dangerous.

• Abstract data-type (ADT) is a user-defined type that practices abstraction and encapsula-
tion.

• Encapsulation is provided by a combination of C and C++ features.

• C features work largely among source files, and are indirectly tied into separate compilation
(see Section2.23, p. 124).

• C++ features work both within and among source files.

• C++ provides 3 levels of access control for object types:

Java C++

class Foo {
private . . .
. . .
protected . . .
. . .
public . . .
. . .

};

struct Foo {
private : // within and friends

// private members
protected : // within, friends, inherited

// protected members
public : // within, friends, inherited, users

// public members
};

• Java requires encapsulation specification for each member.

• C++ groups members with the same encapsulation, i.e., all members after a label,private ,
protected or public , have that visibility.

• Visibility labels can occur in any order and multiple times in an object type.

• To enforce abstraction, all implementation members are private, and all interface members
are public.

• Nevertheless, private and protected (see Section2.24.9, p. 140) members are still visible
but cannot be accessed.
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struct Complex {
private :

double re, im; // cannot access but still visible
public :

// interface routines
};

• struct has an implicitpublic inserted at beginning, i.e., by default all members are public.

• class has an implicitprivate inserted at beginning, i.e., by default all members are private.

struct S {
// public:

int z;
private :

int x;
protected :

int y;
};

class C {
// private:

int x;
protected :

int y;
public :

int z;
};

• Use encapsulation to preclude object copying by hiding copyconstructor and assignment
operator:

class Foo {
Foo( const Foo & ); // definitions not required
Foo &operator =( Foo & );

public :
Foo() {. . .}
. . .

};
void rtn( Foo f ) {. . .}
Foo x, y;
rtn( x ); // disallowed, no copy constructor for pass by value
x = y; // disallowed, no assignment operator for assignment

• Prevent object forgery (lock, boarding-pass, receipt) or copying that does not make sense
(file, database).

• Encapsulation introduces problems when factoring for modularization, e.g., previously ac-
cessible data becomes inaccessible.

class Complex {
double re, im;

public :
Complex operator +(Complex c);
. . .

};
ostream &operator <<(ostream &os,

Complex c);

class Cartesian { // implementation type
double re, im;

};
class Complex {

Cartesian impl;
public :

. . .
};
Complex operator +(Complex a, Complex b);
ostream &operator <<(ostream &os,

Complex c);
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• Implementation is factored into a new typeCartesian, “+” operator is factored into a routine
outside and output “<<” operator must be outside (see Section2.18.3.2, p. 102).

• Both Complex and “+” operator need to accessCartesian implementation, i.e.,re andim.

• Creatingget andset interface members forCartesian provides no advantage over full access.

• C++ provides a mechanism to state that an outside type/routine is allowed access to its im-
plementation, calledfriendship (similar to package visibility in Java).

class Complex; // forward
class Cartesian { // implementation type

friend Complex operator +( Complex a, Complex b );
friend ostream &operator <<( ostream &os, Complex c );
friend class Complex;
double re, im;

};
class Complex {

friend Complex operator +( Complex a, Complex b );
friend ostream &operator <<( ostream &os, Complex c );
Cartesian impl;

public :
. . .

};
Complex operator +( Complex a, Complex b ) {

return Complex( a.impl.re + b.impl.re, a.impl.im + b.impl.im );
}
ostream &operator <<( ostream &os, Complex c ) {

return os << c.impl.re << "+" << c.impl.im << "i";
}

• Cartesian makesre/im accessible to friends, andComplex makesimpl accessible to friends.

• Alternative design is to nest the implementation type inComplex and remove encapsulation
(usestruct ).

class Complex {
friend Complex operator +( Complex a, Complex b );
friend ostream &operator <<( ostream &os, Complex c );
struct Cartesian { // implementation type

double re, im;
} impl;

public :
Complex( double r = 0.0, double i = 0.0 ) {

impl.re = r; impl.im = i;
}

};
. . .

Complex makesCartesian, re, im andimpl accessible to friends.
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2.22 System Modelling

• System modellinginvolves describing a complex system in an abstract way to help under-
stand, design and construct the system.

• Modelling is useful at various stages:

◦ analysis : system function, services, requirements (outline for design)

◦ design : system parts/structure, interactions, behaviour(outline for programming)

◦ programming : converting model into implementation

• Model grows from nothing to sufficient detail to be transformed into a functioning system.

• Model provides high-level documentation of the system for understanding (education) and
for making changes in a systematic manner.

• Top-down successive refinement is a foundational mechanismused in system design.

• Multiple design tools (past and present) for supporting system design, most are graphical
and all are programming-language independent:

◦ flowcharts (1920-1970)

◦ pseudo-code

◦ Warnier-Orr Diagrams

◦ Hierarchy Input Process Output (HIPO)

◦ UML

• Design tools can be used in various ways:

◦ sketchout high-level design or complex parts of a system,

◦ blueprint the system abstractly with high accuracy,

◦ generateinterfaces/code directly.

• Key advantage is design tool provides a generic, abstract model of a system, which is trans-
formable into different formats.

• Key disadvantage is design tool seldom linked to implementation mechanism so two often
differ. (CODE = TRUTH)

• Currently, UML is the most popular design tool.
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2.22.1 UML

• Unified Modelling Language (UML) is a graphical notation for describing and designing
software systems, with emphasis on the object-oriented style.

• UML modelling has multiple viewpoints:

◦ class model: describes static structure of the system for creating objects

◦ object model: describes dynamic (temporal) structure of system objects

◦ interaction model : describes the kinds of interactions among objects

Focus on class and object modelling.

• Note / comment

comment text target

• Classes diagramdefines class-based modelling, where a class is a type for instantiating
objects.

• Class has a name, attributes and operations, and may participate in inheritance hierarchies
(see Section2.24.12, p.142).

class name Person
- name : String

attributes - age : Integer optional
(data) - sex : Boolean

- owns : Car [ 0..5 ]
+ getName : String

operations + getAge : Integer optional
(routines) + getCars : Car [ 0..5 ]

+ buy( in car : inout card : CreditCard ) : Boolean

• Attribute describes a property in a class.

[visibility] name [“:” [type] [ “[” multiplicity “]” ] [“=” d efault] ]

◦ visibility : access to property

+⇒ public,−⇒ private, #⇒ protected,∼⇒ package

◦ name : identifier for property (like field name in structure)

◦ type : kind of property

Boolean, Integer, Float, String, class-name

◦ multiplicity : cardinality for instantiation of property

0..(N|∗), from 0 toN or unlimited,N short forN..N, ∗ short for 0..∗
Defaults to 1
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◦ default : expression that evaluates to default value (or values) for property

• operation : action invoked in context of object from the class

[ visibility ] name [ “(” [ parameter-list ] “)” ] [ “:” return-type ] [ “[” multiplicity “]” ]

◦ visibility : access to operation
+⇒ public,−⇒ private, #⇒ protected,∼⇒ package

◦ name : identifier for operation (like method name in structure)

◦ parameter-list : input/output types for operation
[ direction ] parameter-name “:” type [ “[” multiplicity “]”]

[ “=” default ] [ “ {” modifier-list “}” ] ]

◦ direction : direction of parameter data flow
“in” (default) | “out” | “inout”

◦ return-type : output type from operation

• Only specify attributes/operations useful in modelling: no flags, counters, temporaries, con-
structors, helper routines, etc.

• Attribute with type other than basic type has anassociation.

owns : Car [0..5]
. . .

Person Car
. . .

◦ Class Person has attributeowns with multiplicity constraint 0..5 forming unidirectional
association with classCar, i.e., person owns (has) 0 to 5 cars.

• Alternatively, association can be represented via a line (possibly named):

Person

. . .

ownership

owns
0..5

Car

. . .

◦ ClassPersonhas attributeownswith multiplicity constraint0..5(at target end) forming
a unidirectional association with classCar and association is named “ownership”.

• Association can also be bidirectional.

Person

. . .

owns : Car [0..5]
. . .

Person

ownership

0..5

Car

Car

. . .

. . .
owned : Person

ownsowned
1
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◦ Association “ownership” also has classCar having attributeownedwith multiplicity
constraint1 person, i.e., a car can only be owned by 1 person.

• If UML graph is cluttered with lines, create association in class rather than using a line.

◦ E.g., if 20 classes associated with Car, replace 20 lines with attributes in each class.

• Alternatively, multiple lines to same aggregate may be merged into a single segment.

◦ Any adornments on that segment apply to all of the aggregation ends.

• < (arrowhead)⇒ navigable:

◦ instances of association can be accessed efficiently at the association end (arrowhead)
(car is accessible from person)

◦ opposite association end “owns” the association’s implementation (person has a car)

• X⇒ not navigable.

• Adornments options:

◦ show all arrows andXs (completely explicit)

◦ suppress all arrows andXs⇒ no inference about navigation

often convenient to suppress some of the arrows/Xs and only show special cases

◦ show only unidirectional association arrows, and suppressbidirectional associations

⇒ two-way navigability cannot be distinguished from no navigation at all, but latter
case occurs rarely in practice.

• Navigability may be implemented in a number of ways:

◦ pointer/reference from one object to another

◦ elements in arrays

• Object diagram : is a snaphot of class instances at one moment during execution.

• Object can specify values of class : “name : class-type” (underlined), attribute values.

object name mary : Person
name=“Mary”

attribute age=29 optional
values sex=T

owns=(pointer)

Object may not have a name (dynamically allocated).

• Objects associated with “ownership” are linked.
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kind=”Honda”

: Car
ownsowned

fred: Person

name=”Fredrick”

mary:Person

name=”Mary”

peg:Person

name=”Margaret” kind=”Ford”

: Car

kind=”Toyota”

: Car

Which associations are valid/invalid/missing?

• Association Class: optional aspects of association (dashed line).

Person

. . . . . .

Car

Sale
dealership
serialno

: Car

kind=”Honda”

billof: Sale
Ted’s Honda
L345YH454

fred: Person

name=”Fredrick”

◦ cars sold through dealership (versus gift) need bill of sale

◦ association class cannot exist without association (no owner)

• Aggregation (♦) is an association between an aggregate attribute and its parts.

Car Tire
0..1 0..*

◦ car can have 0 or more tires and a tire can only be on 0 or 1 car

◦ aggregate may not create/destroy its parts, e.g., many different tires during car’s life-
time and tires may exist after car’s lifetime (snow tires).

class Car {
Tires *tires[4]; // array of pointers to tires

• Composition(�) is a stronger aggregation where a part is included in at mostone composite
at a time.
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Car Brake
1 4

◦ car has 4 brakes and each brake is on 1 car

◦ composite aggregate often does create/destroy its parts, i.e., same brakes for lifetime of
car and brakes deleted when car deleted (unless brakes removed at junkyard)

class Car {
DiscBrake brakes[4]; // array of brakes

• UML has many more facilities, supporting very complex descriptions of relationships among
entities.

◦ VERY large visual mechanisms, with several confusing graphical representations.

• UML diagram is too complex if it contains more than about 25 boxes.

no charge
during sales

- start: Date
- end: Date

Contract

- make: String
- model: String

Vehicle Client
- name: String - company: String

- policy: String
- expiry: String

Insurance
11* 1

- colour: String
- phone: String
+ rate(): Double

SUV CarTruck 1 IndividualCorporate

SatelliteRadio

- surcharge: Double
+ surcharge(): Double

Accessory

GPSFloorMat

*

Classes Diagram
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name=”John F. Doe”
jfdoe:Individual

phone=”204 888-2020”

start=”2009/09/07”
end=”2012/09/07”

:Contract

:Insurance
company=”SUN Lite”
policy=”X-JAJ1567”
expiry=”2011/05/31”

:Insurance
company=”Pilote”
policy=”123-ABC”
expiry=”2010/12/01”

start=”2010/10/13”
end=”2013/10/13”

:Contract
start=”2008/01/25”
end=”2014/01/25”

:Contract

- surcharge=500
:GPS

- surcharge=50
:FloorMat

name=”IBM”
ibm:Corporate

phone=”519 744-3121”

:Car
make=”Honda”
model=”Civic”
colour=”silver”

:Truck
make=”Ford”
model=”F150”
colour=”red”

Object Diagram

:SUV
make=”Nissan”
model=”Quest”
colour=”black”

name=”John F. Doe”
jfdoe:Individual

phone=”204 888-2020”

start=”2009/09/07”
end=”2012/09/07”

:Contract

:Insurance
company=”SUN Lite”
policy=”X-JAJ1567”
expiry=”2011/05/31”

:Insurance
company=”All Gate”
policy=”A012678BJK”
expiry=”2010/10/01”

start=”2010/10/13”
end=”2013/10/13”

:Contract
start=”2008/01/25”
end=”2014/01/25”

:Contract

- surcharge=500
:GPS

name=”IBM”
ibm:Corporate

phone=”519 744-3121”

:SUV
make=”Nissan”
model=”Quest”
colour=”black”

- surcharge=50
:FloorMat

:SUV
make=”Honda”
model=”CRV”
colour=”blue”

:Car
make=”Honda”
model=”Civic”
colour=”silver”

:Truck
make=”Ford”
model=”F150”
colour=”red”

Invalid Object Diagram

2.23 Separate Compilation
• As program size increases, so does cost of compilation.

• Separate compilationdivides a program into units, where each unit can be independently
compiled.
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• Advantage: saves time by recompiling only program unit(s) that change.

◦ In theory, if an expression is changed, only that expressionneeds to be recompiled.

◦ In practice, compilation unit is coarser:translation unit (TU), which is a file in C/C++.

◦ In theory, each line of code (expression) could be put in a separate file, but impractical.

◦ So a TU should not be too big and not be too small.

• Disadvantage: TUs depend on each other because a program shares many forms of informa-
tion, especially types (done automatically in Java).

◦ Hence, need mechanism toimport information from referenced TUs andexport infor-
mation needed to referencing TUs.

• For example, simple program in fileprog.cc using complex numbers:

prog.cc
#include <iostream> // import
#include <cmath>
using namespace std;
class Complex {

friend Complex operator +( Complex a, Complex b );
friend ostream &operator <<( ostream &os, Complex c );
static int objects; // shared counter
double re, im;

public :
Complex( double r = 0.0, double i = 0.0 ) { objects += 1; . . .}
double abs() const { return sqrt ( re * re + im * im ); };
static void stats() { cout << objects << endl; }

};
int Complex::objects; // declare
Complex operator +( Complex a, Complex b ) {. . .}
. . . // other arithmetic and logical operators
ostream &operator <<( ostream &os, Complex c ) {. . .}
const Complex C 1( 1.0, 0.0 );
int main() {

Complex a( 1.3 ), b( 2., 4.5 ), c( -3, -4 );
cout << a + b + c + C 1 << c.abs() << endl;
Complex::stats();

}

• TU prog.cc has referenes to items iniostream andcmath.

• As well, there are many references within the TU, e.g.,main referencesComplex.

• Subdividing program into TUs in C/C++ is complicated because of import/export mechanism.
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prog.cc

executable

exec

g++ prog.cc -o exec

program

unit1.cc

unit2.cc

unit1.o

unit2.o

program1

program2

executable

exec

g++ -c unitN.cc g++ unit*.o -o exec

monolithic

separate

TU1

TU2

• TUi is NOT a program; program formed by combining TUs.

• Compile each TUi with -c compiler flag to generate executable code in.o file (Java has.class
file).

$ g++ -c unit1.cc . . . // compile only modified TUs

generates filesunit1.o containing a compiled version of source code.

• Combine TUi with -o compiler flag to generate executable program.

$ g++ unit*.o -o exec // create new excutable program “exec”

• Separate original program into two TUs in filescomplex.cc andprog.cc:

complex.cc
#include <iostream> // import
#include <cmath>
using namespace std;
class Complex {

friend Complex operator +( Complex a, Complex b );
friend ostream &operator <<( ostream &os, Complex c );
static int objects; // shared counter
double re, im; // implementation

public :
Complex( double r = 0.0, double i = 0.0 ) { objects += 1; . . .}
double abs() const { return sqrt ( re * re + im * im ); }
static void stats() { cout << objects << endl; }

};
int Complex::objects; // declare
Complex operator +( Complex a, Complex b ) {. . .}
. . . // other arithmetic and logical operators
ostream &operator <<( ostream &os, Complex c ) {. . .}
const Complex C 1( 1.0, 0.0 );
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TU complex.cc has referenes to items iniostream andcmath.

prog.cc
int main() {

Complex a( 1.3 ), b( 2., 4.5 ), c( -3, -4 );
cout << a + b + c + C 1 << c.abs () << endl ;
Complex::stats ();

}

TU prog.cc has referenes to items iniostream andcomplex.cc.

• How can TUprog.cc accessComplex? By importing description ofComplex.

• How are descriptions imported?

TU imports information using preprocessor#include (see Section2.12.2, p.84).

• Why not includecomplex.cc into prog.cc?

Because all ofcomplex.cc is compiled each timeprog.cc is compiled so there is no advantage
to the separation (program is still monolithic).

• Hence, must separatecomplex.cc into interface for import and implementation for code.

• Complex interface placed into filecomplex.h, for inclusion (import) into TUs.

complex.h
#ifndef COMPLEX H
#define COMPLEX H // protect against multiple inclusion
#include <iostream> // import
// NO “using namespace std”, use qualification to prevent polluting scope
class Complex {

friend Complex operator +( Complex a, Complex b );
friend std::ostream &operator <<( std::ostream &os, Complex c );
static int objects; // shared counter
double re, im; // implementation

public :
Complex( double r = 0.0, double i = 0.0 );
double abs() const ;
static void stats();

};
extern Complex operator +( Complex a, Complex b );
. . . // other arithmetic and logical operator descriptions
extern std::ostream &operator <<( std::ostream &os, Complex c );
extern const Complex C 1;
#endif // COMPLEX H

• (Usually) no code, just descriptions : preprecessor variables, C/C++ types and forward dec-
larations (see Section2.20, p. 112).

• extern qualifier means variable or routine definition is located elsewhere (not for types).
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• Complex implementation placed in filecomplex.cc.

complex.cc
#include "complex.h" // do not copy interface
#include <cmath> // import
using namespace std; // ok to pollute implementation scope
int Complex::objects; // defaults to 0
void Complex::stats() { cout << Complex::objects << endl; }
Complex::Complex( double r, double i ) { objects += 1; . . .}
double Complex::abs() const { return sqrt ( re * re + im * im ); }
Complex operator +( Complex a, Complex b ) {

return Complex( a.re + b.re, a.im + b.im );
}
ostream &operator <<( ostream &os, Complex c ) {

return os << c.re << "+" << c.im << "i";
}
const Complex C 1( 1.0, 0.0 );

• Implementation is composed of actual declarations and code.

• .cc file includes the.h file so that there is only one copy of the constants, declarations, and
prototype information.

• Why is #include <cmath> in complex.cc instead ofcomplex.h?

• Compile TUcomplex.cc to generatecomplex.o.

$ g++ -c complex.cc

• What variables/routines are exported fromcomplex.o?

$ nm -C complex.o | egrep ′ T | B ′

C 1
Complex::stats()
Complex::objects
Complex::Complex(double, double)
Complex::Complex(double, double)
Complex::abs() const
operator<<(std::ostream&, Complex)
operator+(Complex, Complex)

• In general, type names are not in the.o file?

• To compileprog.cc, it must importcomplex.h
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prog.cc
#include "complex.h"
#include <iostream> // included twice!
using namespace std;

int main() {
Complex a( 1.3 ), b( 2., 4.5 ), c( -3, -4 );
cout << a + b + c + C 1 << c.abs () << endl ;
Complex::stats ();

}

• Why is #include <iostream> in prog.cc when it is already imported bycomplex.h?

• Compile TUprog.cc to generateprog.o.

$ g++ -c prog.cc

• Link together TUscomplex.o andprog.o to generateexec.

$ g++ prog.o complex.o -o exec

• All .o files MUST be compiled for the same hardware architecture, e.g., all x86.

• To hide global variables/routines (but NOT class members) in TU, qualify withstatic .

complex.cc
. . .
static Complex operator +( Complex a, Complex b ) {. . .}
static ostream &operator <<( ostream &os, Complex c ) {. . .}
static Complex C 1( 1.0, 0.0 );

◦ herestatic means linkage NOT allocation (see Section2.18.7, p. 109).

• Encapsulation is provided by giving a user access to the include file(s) (.h) and the compiled
source file(s) (.o), but not the implementation in the source file(s) (.cc).

• Note, while the.h file encapsulates the implementation, the implementation is still visible.

• To completely hide the implementation requires a (more expensive) reference:
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complex.h
#ifndef COMPLEX H
#define COMPLEX H // protect against multiple inclusion
#include <iostream> // import
// NO “using namespace std”, use qualification to prevent polluting scope
class Complex {

friend Complex operator +( Complex a, Complex b );
friend std::ostream &operator <<( std::ostream &os, Complex c );
static int objects; // shared counter
struct ComplexImpl; // hidden implementation, nested class
ComplexImpl &impl; // indirection to implementation

public :
Complex( double r = 0.0, double i = 0.0 );
Complex( const Complex &c ); // copy constructor
~Complex(); // destructor
Complex &operator=( const Complex &c ); // assignment operator
double abs() const ;
static void stats();

};
extern Complex operator +( Complex a, Complex b );
extern std::ostream &operator <<( std::ostream &os, Complex c );
extern const Complex C 1;
#endif // COMPLEX H

complex.cc
#include "complex.h" // do not copy interface
#include <cmath> // import
using namespace std; // ok to pollute implementation scope
int Complex::objects; // defaults to 0
struct Complex::ComplexImpl { double re, im; }; // implementation
Complex::Complex( double r, double i ) : impl( *new ComplexImpl) {

objects += 1; impl .re = r; impl .im = i;
}
Complex::Complex( const Complex &c ) : impl( *new ComplexImpl) {

objects += 1; impl.re = c.impl.re; impl.im = c.impl.im;
}
Complex::~Complex() { delete &impl; }
Complex &Complex::operator=( const Complex &c ) {

impl.re = c.impl.re; impl.im = c.impl.im; return *this;
}
double Complex::abs() { return sqrt( impl.re * impl.re + impl.im * impl.im ); }
void Complex::stats() { cout << Complex::objects << endl; }
Complex operator +( Complex a, Complex b ) {

return Complex( a.impl.re + b.impl.re, a.impl.im + b.impl.im );
}
ostream &operator <<( ostream &os, Complex c ) {

return os << c.impl.re << "+" << c.impl.im << "i";
}

• A copy constructor and assignment operator are used becausecomplex objects now contain
a reference pointer to the implementation (see page106).
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2.24 Inheritance

• Object-orientedlanguages provideinheritance for writing reusable program-components.

Java C++

class Base { . . . }
class Derived extends Base { . . . }

struct Base { . . . }
struct Derived : public Base { . . . };

• Inheritance has two orthogonal sharing concepts: implementation and type.

• Implementation inheritance provides reuse of codeinside an object type; type inheritance
provides reuseoutsidethe object type by allowing existing code to access the base type.

2.24.1 Implementation Inheritance

• Implementation inheritance reuses program components by composing a new object’s im-
plementation from an existing object, taking advantage of previously written and tested code.

• Substantially reduces the time to generate and debug a new object type.

• One way to understand implementation inheritance is to model it via composition:

Composition Inheritance

struct Base {
int i;
int r(. . .) { . . . }
Base() { . . . }

};
struct Derived {

Base b; // explicit composition
int s(. . .) { b.i = 3; b.r(. . .); . . . }
Derived() { . . . }

} d;
d.b.i = 3; // composition reference
d.b.r(. . .); // composition reference
d.s(. . .); // direct reference

struct Base {
int i;
int r(. . .) { . . . }
Base() { . . . }

};
struct Derived : public Base { // implicit

// composition
int s(. . .) { i = 3; r(. . .); . . . }
Derived() { . . . }

} d;
d.i = 3; // direct reference
d.r(. . .); // direct reference
d.s(. . .); // direct reference

• Composition implies explicitly create an object member,b, to aid in the implementation, i.e.,
Derived has-aBase.

• Inheritance, “public Base” clause, implies implicitly:

◦ create an anonymous base-class object-member,

◦ openthe scope of anonymous member so its members are accessible without qualifi-
cation, both inside and outside the inheriting object type.
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• Constructors and destructors must be invoked for all implicitly declared objects in the inher-
itance hierarchy as done for an explicit member in the composition.

Derived d;
. . .

implicitly
rewritten as

Base b; b.Base(); // implicit, hidden declaration
Derived d; d.Derived();
. . .
d.~Derived(); b.~Base(); // reverse order of construction

• If base type has members with the same name as derived type, itworks like nested blocks:
inner-scope name overrides outer-scope name (see Section2.3.3, p. 34).

• Still possible to access outer-scope names using “::” qualification (see Section2.18, p.97) to
specify the particular nesting level.

Java C++

class Base1 {
int i;

}
class Base2 extends Base1 {

int i;
}
class Derived extends Base2 {

int i;
void s() {

int i = 3;
this .i = 3;
((Base2)this ).i = 3; // super.i
((Base1)this ).i = 3;

}
}

struct Base1 {
int i;

};
struct Base2 : public Base1 {

int i; // overrides Base1::i
};
struct Derived : public Base2 {

int i; // overrides Base2::i
void r() {

int i = 3; // overrides Derived::i
Derived::i = 3; // this.i
Base2::i = 3;
Base2::Base1::i = 3; // or Base1::i

}
};

• E.g., Derived declaration first creates an invisibleBase object in theDerived object, like
composition, for the implicit references toBase::i andBase::r in Derived::s.

• Friendship is not inherited.

class C {
friend class Base;
. . .

};
class Base {

// access C′s private members
. . .

};
class Derived : public Base {

// not friend of C
};

• Unfortunately, having to inherit all of the members is not always desirable; some members
may be inappropriate for the new type (e.g, large array).
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• As a result, both the inherited and inheriting object must bevery similar to have so much
common code.

2.24.2 Type Inheritance

• Type inheritance extends name equivalence (see Section2.7, p. 54) to allow routines to
handle multiple types, calledpolymorphism, e.g.:

struct Foo { struct Bar {
int i; int i;
double d; double d;

. . .
} f; } b;
void r( Foo f ) { . . . }
r( f ); // allowed
r( b ); // disallowed, name equivalence

• Since typesFoo andBar are structurally equivalent, instances of either type should work as
arguments to routiner (see Section2.7.4, p.64).

• Even if typeBar has more members at the end, routiner only accesses the common ones at
the beginning as its parameter is typeFoo.

• However, name equivalence precludes the callr( b ).

• Type inheritance relaxes name equivalence by aliasing the derived name with its base-type
names.

struct Foo { struct Bar : public Foo { // inheritance
int i; // remove Foo members
double d;

. . .
} f; } b;
void r( Foo f ) { . . . }
r( f ); // valid call, derived name matches
r( b ); // valid call because of inheritance, base name matches

• E.g., create a new typeMycomplex that counts the number of timesabs is called for each
Mycomplex object.

• Use both implementation and type inheritance to simplify building typeMycomplex:

struct Mycomplex : public Complex {
int cntCalls; // add
Mycomplex() : cntCalls(0) {} // add
double abs() { // override, reuse complex′s abs routine

cntCalls += 1;
return Complex::abs();

}
int calls() { return cntCalls; } // add

};
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• Derived typeMycomplex uses the implementation of the base typeComplex, adds new mem-
bers, and overridesabs to count each call.

• Why is the qualificationComplex:: necessary inMycomplex::abs?

• Allows reuse ofComplex’s addition and output operation forMycomplex values, because of
the relaxed name equivalence provided by type inheritance between argument and parameter.

• RedeclareComplex variables toMycomplex to get newabs, and membercalls returns the
current number of calls toabs for anyMycomplex object.

• Two significant problems with type inheritance.

1. ◦ Complex routineoperator + is used to add theMycomplex values because of the
relaxed name equivalence provided by type inheritance:

int main() {
Mycomplex x;
x = x + x;

}

◦ However, result type fromoperator + is Complex, notMycomplex.

◦ Assignment of acomplex (base type) toMycomplex (derived type) disallowed be-
cause theComplex value is missing thecntCalls member!

◦ Hence, aMycomplex can mimic aComplex but not vice versa.

◦ This fundamental problem of type inheritance is calledcontra-variance.

◦ C++ provides various solutions, all of which have problems and are beyond this
course.

2. void r( Complex &c ) {
c.abs();

}
int main() {

Mycomplex x;
x.abs(); // direct call of abs
r( x ); // indirect call of abs
cout << "x:" << x.calls() << endl;

}

◦ While there are two calls toabs on objectx, only one is counted! (see Sec-
tion 2.24.6, p.137)

• public inheritance means both implementation and type inheritance.

• private inheritance means only implementation inheritance.

class bus : private car { . . .

Use implementation fromcar, butbus is not acar.

• No direct mechanism in C++ for type inheritance without implementation inheritance.
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2.24.3 Constructor/Destructor

• Constructors areimplicitly executed top-down, from base to most derived type.

• Mandated by scope rules, which allow a derived-type constructor to use a base type’s vari-
ables so the base type must be initialized first.

• Destructors areimplicitly executed bottom-up, from most derived to base type.

• Mandated by the scope rules, which allow a derived-type destructor to use a base type’s
variables so the base type must be uninitialized last.

• Javafinalize must beexplicitlycalled from derived to base type.

• Unlike Java, C++ disallows calls to other constructors at the start of a constructor (see Sec-
tion 2.18.6, p.108).

• To pass arguments to other constructors, use same syntax as for initializing const members.

Java C++

class Base {
Base( int i ) { . . . }

};
class Derived extends Base {

Derived() { super ( 3 ); . . . }
Derived( int i ) { super ( i ); . . . }

};

struct Base {
Base( int i ) { . . . }

};
struct Derived : public Base {

Derived() : Base( 3 ) { . . . }
Derived( int i ) : Base( i ) {. . .}

};

2.24.4 Copy Constructor / Assignment

• If a copy constructor or assignment operator is not defined inthe derived class, it inherits
from the base class (see page105).

struct B {
B() {}
B( const B &c ) { cout << "B(&) "; }
B &operator =( const B &rhs ) { cout << "B= "; }

};
struct D : public B { // inherit copy and assignment

int i; // basic type, bitwise
};
int main() {

D d = d; // bitwise/memberwise copy
d = d; // bitwise/memberwise assignment

}

outputs the following:

B(&) B=
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• If D defines a copy-constructor/assignment, it is used rather than that in any base class.

struct D : public B {
int i; // basic type, bitwise
D( const D &c ) : B( c ), i( c.i ) {}
D &operator =( const D &rhs ) {

i = rhs.i; (B &)*this = rhs; return *this ;
}

};

Must manually copy each subobject (same output as before).Note coercion!

2.24.5 Overloading

• Overloading a member routine in a derived class overrides all overloaded routines in the base
class with the same name.

class Base {
public :

void mem( int i ) {}
void mem( char c ) {}

};
class Derived : public Base {

public :
void mem() {} // overrides both versions of mem in base class

};

• Hidden base-class members can still be accessed:

◦ Provide explicit wrapper members for each hidden one.

class Derived : public Base {
public :

void mem() {}
void mem( int i ) { Base::mem( i ); }
void mem( char c ) { Base::mem( c ); }

};

◦ Collectively provide implicit members for all of them.

class Derived : public Base {
public :

void mem() {}
using Base::mem; // all base mem routines visible

};

◦ Use explicit qualification to call members (violates abstraction).

Derived d;
d.Base::mem( 3 );
d.Base::mem( ′a′ );
d.mem();
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2.24.6 Virtual Routine

• When a member is called, it is usually obvious which one is invoked even with overriding:

struct Base {
void r() { . . . }

};
struct Derived : public Base {

void r() { . . . } // override Base::r
};
Base b;
b.r(); // call Base::r
Derived d;
d.r(); // call Derived::r

• However, it is not obvious for arguments/parameters and pointers/references:

void s( Base &b ) { b.r(); }
s( d ); // inheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); // Base::r or Derived::r ?

• Inheritance masks the actual object type, but both calls should invokeDerived::r because
argumentb and referencebp point at an object of typeDerived.

• If variabled is replaced withb, the calls should invokeBase::r.

• To invoke routine defined in referenced object, qualify member routine withvirtual .

• To invoke routine defined by type of pointer/reference, do not qualify member routine with
virtual .

• C++ uses non-virtual as the default because it is more efficient.

• Javaalwaysuses virtual for all calls to objects.

• Once a base type qualifies a member as virtual,it is virtual in all derived types regardless
of the derived type’s qualification for that member.

• Programmer may want to access members inBase even if the actual object is of typeDerived,
which is possible becauseDerived containsa Base.

• C++ provides mechanism to override the default at the call site.
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Java C++

class Base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual

}
class Derived extends Base {

public void g() {} // virtual
public void h() {} // virtual

}
final Base bp = new Derived();
bp.f(); // Base.f
((Base)bp).g(); // Derived.g
bp.g(); // Derived.g
((Base)bp).h(); // Derived.h
bp.h(); // Derived.h

struct Base {
void f() {} // non-virtual
void g() {} // non-virtual
virtual void h() {} // virtual

};
struct Derived : public Base {

void g() {}; // non-virtual
void h() {}; // virtual

};
Base &bp = *new Derived(); // polymorphic assignment
bp.f(); // Base::f, pointer type
bp.g(); // Base::g, pointer type
((Derived &)bp).g(); // Derived::g, pointer type
bp.Base::h(); // Base::h, explicit selection
bp.h(); // Derived::h, object type

• Java casting does not provide access to base-type’s member routines.

• Virtual members are only necessary to access derived members through a base-type refer-
ence or pointer.

• If a type is not involved in inheritance (final class in Java), virtual members are unnecessary
so use more efficient call to its members.

• C++ virtual members are qualified in the base type as opposed to the derived type.

• Hence, C++ requires the base-type definer to presuppose how derived definers might want
the call default to work.

• Good practice for inheritable object types is to make all routine members virtual.

• Any type with virtual members and a destructor needs to make the destructor virtual so the
most derived destructor is called through a base-type pointer/reference.

• Virtual routines are normally implemented by routine pointers (see Section2.17, p. 95).

class Base {
int x, y; // data members
virtual void m1(. . .); // routine members
virtual void m2(. . .);

};

• May be implemented in a number of ways:
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m2

m1

y

x

copy

y

x

direct routine pointer

y

x

m1

m2

m1

m2

indirect routine pointer

Virtual Routine Table

2.24.7 Downcast

• Type inheritance can mask the actual type of an object through a pointer/reference (see Sec-
tion 2.24.2, p.133).

• A downcastdynamically determines the actual type of an object pointedto by a polymorphic
pointer/reference.

• The Java operatorinstanceof and the C++dynamic cast operator perform a dynamic check
of the object addressed by a pointer/reference (not coercion):

Java C++

Base bp = new Derived();

if ( bp instanceof Derived )
((Derived)bp).rtn();

Base *bp = new Derived;
Derived *dp;
dp = dynamic cast<Derived *>(bp) ;
if ( dp != 0 ) { // 0 => not Derived

dp->rtn(); // only in Derived

• To usedynamic cast on a type, the type must have at least one virtual member.

2.24.8 Slicing

• Polymorphic copy or assignment can result in object truncation, calledslicing.

struct B {
int i;

};
struct D : public B {

int j;
};
void f( B b ) {. . .}
int main() {

B b;
D d;
f( d ); // truncate D to B
b = d; // truncate D to B

}

• Avoid polymorphic value copy/assignment; use polymorphicpointers.
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2.24.9 Protected Members

• Inherited object types can access and modify public and protected members allowing access
to some of an object’s implementation.

class Base {
private :

int x;
protected :

int y;
public :

int z;
};
class Derived : public Base {

public :
Derived() { x; y; z; }; // x disallowed; y, z allowed

};
int main() {

Derived d;
d.x; d.y; d.z; // x, y disallowed; z allowed

}

2.24.10 Abstract Class

• Abstract classcombines type and implementation inheritance for structuring new types.

• Contains at least one pure virtual member thatmustbe implemented by derived class.

class Shape {
int colour;

public :
virtual void move( int x, int y ) = 0; // pure virtual member

};

• Strange initialization to 0 means pure virtual member.

• Define type hierarchy (taxonomy) of abstract classes movingcommon data and operations
are high as possible in the hierarchy.
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Java C++

abstract class Shape {
protected int colour = White;
public

abstract void move(int x, int y);
}
abstract class Polygon extends Shape {

protected int edges;
public abstract int sides();

}
class Rectangle extends Polygon {

protected int x1, y1, x2, y2;

public Rectangle(. . .) {. . .}
public void move( int x, int y ) {. . .}
public int sides() { return 4; }

}
class Square extends Rectangle {

// check square
Square(. . .) { super (. . .); . . .}

}

class Shape {
protected : int colour;
public :

Shape() { colour = White; }
virtual void move(int x, int y) = 0;

};
class Polygon : public Shape {

protected : int edges;
public : virtual int sides() = 0;

};
class Rectangle : public Polygon {

protected : int x1, y1, x2, y2;
public :

Rectangle(. . .) {. . .} // init corners
void move( int x, int y ) {. . .}
int sides() { return 4; }

};
struct Square : public Rectangle {

// check square
Square(. . .) : Rectangle(. . .) {. . .}

};

• Usepublic /protected to define interface and implementation access for derived classes.

• Provide (pure) virtual member to allow overriding and forceimplementation by derived
class.

• Provide default variable initialization and implementation for virtual routine (non-abstract)
to simplify derived class.

• Provide non-virtual routine toforcespecific implementation;derived class should not over-
ride these routines.

• Concrete classinherits from one or more abstract classes defining all pure virtual members,
i.e., can be instantiated.

• Cannot instantiate an abstract class, but can declare pointer/reference to it.

• Pointer/reference used to write polymorphic data structures and routines:

void move3D( Shape &s ) { . . . s.move(. . .); . . . }
Polygon *polys[10] = { new Rectangle(), new Square(), . . . };
for ( unsigned int i = 0; i < 10; i += 1 ) {

cout << polys[i]->sides() << endl; // polymorphism
move3D( *polys[i] ); // polymorphism

}
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• To maximize polymorphism,write code to the highest level of abstraction3, i.e. useShape
overPolygon, usePolygon overRectangle, etc.

2.24.11 Multiple Inheritance

• Multiple inheritance allows a new type to apply type and implementation inheritance mul-
tiple times.

class X : public Y, public Z, private P, private Q { . . . }

• X type is aliased to typesY andZ with implementation, and also uses implementation from
P andQ.

• Interface class (pure abstract-class) provides only types and constants, providing type
inheritance.

• Java only allows multiple inheritance for interface class.

Java C++

interface Polygon {
int sides();
void move( int x, int y );

}
interface Rectilinear {

final int angle = 90;
}
class Rectangle implements Rectilinear,

Polygon {
private int x1, y1, x2, y2;

public void move( int x, int y ) {}
public int sides() { return 4; }

}
class Square extends Rectangle {

public void move( int x, int y ) {}
}

struct Polygon {
virtual int sides() = 0;
virtual void move( int x, int y ) = 0;

};
struct Rectilinear {

enum { angle = 90 };
};
class Rectangle : public Polygon,

public Rectilinear {
int x1, y1, x2, y2;

public :
void move( int x, int y ) {}
int sides() { return 4; }

};
struct Square : public Rectangle {

void move( int x, int y ) {}
};

• Multiple inheritance hasmanyproblems (beyond this course).

• Safe if restrict multiple inheritance to onepublic type and one or twoprivate types.

2.24.12 UML

• Generalization : reuse through forms of inheritance.

3Also called “program to an interface not an implementation”, which does not indicate the highest level of abstrac-
tion.
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Square

+move( ... )

inheritancemultiple

Rectilinearabstract class

+move( in x : Integer, in y : Integer )
+sides : Integer

+angle : 90

Polygon

single inheritance

concrete class superclass
(base)

Rectangle Trapezoid

single inheritance

+move( ... )
+sides : Integer

+move( ... )
+sides : Integer

(derived)
subclass

◦ Inheritance establishes “is-a” relationship on type, and reuse of attributes and opera-
tions.

◦ Association class can be implemented with forms of multipleinheritance (mixin).

• For abstract class, the class name and abstract operations are italicized.

• For concrete class, abstract operations that are implemented appear in the class diagram.

2.25 Inheritance / Composition Design

• Duality between “has-a” (composition) and “is-a” (inheritance) relationship (see page131).

• Types created from multiple composite classes; types created from multiple superclasses.

Composition Inheritance

class A {. . .};
class B { A a; . . .};
class C {. . .};
class D { B b; C c; . . .};

class A {. . .};
class B : A {. . .};
class C {. . .};
class D : B, C {. . .};

• Both approaches:

◦ remove duplicated code (variable/code sharing)

◦ have separation of concern into components/superclasses.

• Choose inheritance when evolving hierarchical types (taxonomy) needing polymorphism.
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Vehicle
Construction

Heavy Machinery
Crane, Grader, Back-hoe

Haulage
Semi-trailer, Flatbed

Passenger
Commercial

Bus, Fire-truck, Limousine, Police-motorcycle
Personal

Car, SUV, Motorcycle

• For maximum reuse and to eliminate duplicate code, place variables/operations as high in
the hierarchy as possible.

• Polymorphism requires derived class maintain base class’sinterface (substitutability).

◦ derived class should also havebehavioural compatibility with base class.

• However, all taxonomies are an organizational compromise:when is a car a limousine and
vice versa.

• Not all objects fit into taxonomy: flying-car, boat-car.

• Inheritance is rigid hierarchy.

• Choose composition when implementation can bedelegated.

class Car {
SteeringWheel s; // fixed
Donut spare;
Wheel *wheels[4]; // dynamic
Engine *eng;
Transmission *trany;

public :
Car( Engine *e = fourcyl, Transmission *t = manual ) :

eng( e ), trany( t ) { wheels[i] = . . .}
rotate() {. . .} // rotate tires
wheels( Wheels *w[4] ) {. . .} // change wheels
engine( Engine *e ) {. . .} // change engine

};

• Composition may be fixed or dynamic (pointer/reference).

• Composition still uses hierarchical types to generalize components.

◦ Engine is abstract class that is specialized to different kinds of engines, e.g., 3,4,6,8
cylinder, gas/diesel/hybrid, etc.
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2.26 Template
• Inheritance provides reuse for types organized into a hierarchy that extends name equiva-

lence.

• Template provides alternate kind of reuse with no type hierarchy and types are not equiva-
lent.

• E.g., overloading (see Section2.16, p. 94), where there is identical code but different types:

int max( int a, int b ) { return a > b ? a : b; }
double max( double a, double b ) { return a > b ? a : b; }

• Template routine eliminates duplicate code by using types as compile-time parameters:

template <typename T> T max( T a, T b ) { return a > b ? a : b }

• template introduces type parameterT used to declare return and parameter types.

• At a call, compiler infers typeT from argument(s), and constructs a specialized routine with
inferred type(s):

cout << max( 1, 3 ) << " " << max( -1, -4 ) << endl; // T -> int
cout << max( 1.1, 3.5 ) << " " << max( -1.1, -4.5 ) << endl; // T -> double

• Inferred type must supply all operations used within the template routine.

◦ e.g., types used with template routinemax must supplyoperator >.

• Template typeprevents duplicating code that manipulates different types.

• E.g., collection data-structures (e.g., stack), have common code to manipulate data structure,
but type stored in collection varies:

template <typename T=int , unsigned int N=10> // default type/value
struct Stack { // NO ERROR CHECKING

T elems[N]; // maximum N elements
unsigned int size; // position of free element after top
Stack() { size = 0; }
T top() { return elems[size - 1]; }
void push( T e ) { elems[size] = e; size += 1; }
T pop() { size -= 1; return elems[size]; }

};
template <typename T, unsigned int N> // print stack

ostream &operator <<( ostream &os, const Stack<T, N> &stk ) {
for ( int i = 0; i < stk.size; i += 1 ) os << stk.elems[i] << " ";
return os;

}

• Type parameter,T, specifies the element type of arrayelems, and return and parameter types
of the member routines.

• Integer parameter,N, denotes the maximum stack size.
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• Unlike template routines, the compiler cannot infer the type parameter for template types, so
it must be explicitly specified:

Stack<> si; // stack of int, 10
Stack<double > sd; // stack of double, 10
Stack<Stack<int >,20> ssi; // stack of (stack of int, 10), 20
si.push( 3 ); // si : 3
si.push( 4 ); // si : 3 4
sd.push( 5.1 ); // sd : 5.1
sd.push( 6.2 ); // sd : 5.1 6.2
ssi.push( si ); // ssi : (3 4)
ssi.push( si ); // ssi : (3 4) (3 4)
ssi.push( si ); // ssi : (3 4) (3 4) (3 4)
cout << si.top() << endl; // 4
cout << sd << endl; // 5.1 6.2
cout << ssi << endl; // 3 4 3 4 3 4
int i = si.pop(); // i : 4, si : 3
double d = sd.pop(); // d : 6.2, sd : 5.1
si = ssi.pop(); // si : 3 4, ssi : (3 4) (3 4)

Why doescout << ssi << endl have 2 spaces between the stacks?

• Specified type must supply all operations used within the template type.

• There must be a space between the two ending chevrons or>> is parsed asoperator>> .

template <typename T> struct Foo { . . . };
Foo<Stack<int >> foo; // syntax error
Foo<Stack<int > > foo; // space between chevrons

• Compiler requires a template definition for each usage so both the interface and imple-
mentation of a template must be in a.h file, precluding some forms of encapsulation.

2.26.1 Standard Library

• C++ Standard Library is a collection of (template) classes and routines providing: I/O, strings,
data structures, and algorithms (sorting/searching).

• Data structures are calledcontainers: vector, map, list (stack, queue, deque).

• In general, nodes of a data structure are either in a container or pointed-to from the container.

• To copy a node requires its type have a default and/or copy constructor so instances can be
created without constructor arguments.

• Standard library containers use copying⇒ node type must have default constructor.

• All containers are dynamic sized so nodes are allocated in the heap.

• To provide encapsulation (see Section2.21, p. 115), containers use a nestediterator type
(see Section2.7.5, p. 65) to traverse nodes.

◦ Knowledge about container implementation is completely hidden.
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• Iterator capabilities often depend on kind of container:

◦ singly-linked list has unidirectional traversal

◦ doubly-linked list has bidirectional traversal

◦ hashing list has random traversal

• Iterator operator “++” moves forward to the next node, untilpastthe end of the container.

• For bidirectional iterators, operator “--” moves in the reverse direction to “++”.

2.26.1.1 Vector

• vector has random access, length, subscript checking (at), and assignment (like Java array).

std::vector<T>
vector() create empty vector
vector( int N ) create vector with N empty elements
int size() vector size
bool empty() size() == 0
T &operator [ ]( int i ) access ith element, NO subscript checking
T &at( int i ) access ith element, subscript checking
vector &operator =( const vector & ) vector assignment
void push back( const T &x ) add x after last element
void pop back() remove last element
void resize( int n ) add or erase elements at end so size() == n
void clear() erase all elements

0 21 43

push
pop

• vector is alternative to C/C++ arrays (see Section2.7.3.1, p. 60).

#include <vector>
int i, elem;
vector<int > v; // think: int v[0]
for ( ;; ) { // create/assign vector

cin >> elem;
if ( cin.fail() ) break ;

v.push back( elem ); // add elem to vector
}
vector<int > c; // think: int c[0]
c = v; // array assignment
for ( i = c.size() - 1; 0 <= i; i -= 1 ) {

cout << c.at(i) << " "; // subscript checking
}
cout << endl;
v.clear(); // remove ALL elements
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• Vector declarationmayspecify an initial size, e.g.,vector<int > v(size), like a dimension.

• To reduce dynamic allocation, it is more efficient to dimension, when the size is known.

int size;
cin >> size; // read dimension
vector<int > v(size); // think int v[size]

• Matrix declaration is a vector of vectors (see also page93):

vector< vector<int > > m;

• Again, it is more efficient to dimension, when size is known.
#include <vector>
vector< vector<int> > m( 5, vector<int>(4) );
for ( int r = 0; r < m.size(); r += 1 ) {

for ( int c = 0; c < m[r].size(); c += 1 ) {
m[r][c] = r+c; // or m.at(r).at(c)

}
}
for ( int r = 0; r < m.size(); r += 1 ) {

for ( int c = 0; c < m[r].size(); c += 1 ) {
cout << m[r][c] << ", ";

}
cout << endl;

}

7

0 1 2 3

1 2 3

2 3 4

4

5

3 4 5

4 5

6

6

• Optional second argument is initialization value for each element, i.e., 5 rows of vectors each
initialized to a vector of 4 integers initialized to zero.

• All loop bounds use dynamic size of row or column (columns maynot be same length).

• Alternatively, each row is dynamically dimensioned to a specific size, e.g., triangular matrix.
vector< vector<int > > m( 5 ); // 5 rows
for ( int r = 0; r < m.size(); r += 1 ) {

m[r].resize( r + 1 ); // different length
for ( int c = 0; c < m[r].size(); c += 1 ) {

m[r][c] = r+c; // or m.at(r).at(c)
}

} 7

0

1 2

2 3 4

3 4 5

4 5

6

6 8

• Iterator allows traversal in insertion order or random order.

std::vector<T>::iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert( iterator posn, const T &x ) insert x before posn
iterator erase( iterator posn ) erase element at posn
++, --, +, +=, -, -= (insertion / random order) forward/backward operations
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begin()

φ

rend()

0 21

φ

end()

4

rbegin()

3
- - ++

++ - -

• Iterator’s value is a pointer to its current vector element⇒ dereference to access element.

vector<int > v(3);
vector<int >::iterator it;
v[0] = 2; // initialize first element
it = v.begin(); // intialize iterator to first element
cout << v[0] << " " << *v.begin() << " " << *it << endl;

• If erase and insert took subscript argument, no iterator necessary!

• Use iterator like subscript by adding/subtracting frombegin/end.

v.erase( v.begin() ); // erase v[0], first
v.erase( v.end() - 1 ); // erase v[N - 1], last (why “- 1”?)
v.erase( v.begin + 3 ); // erase v[3]

• Insert or erase during iteration using an iterator causes failure.

vector<int > v;
for ( int i = 0 ; i < 5; i += 1 ) // create

v.push back( 2 * i ); // values: 0, 2, 4, 6, 8

v.erase( v.begin() + 3 ); // remove v[3] : 6

int i; // find position of value 4 using subscript
for ( i = 0; i < 5 && v[i] != 4; i += 1 );
v.insert( v.begin() + i, 33 ); // insert 33 before value 4

// print reverse order using iterator (versus subscript)
vector<int >::reverse iterator r;
for ( r = v.rbegin(); r != v.rend(); r ++ ) // ++ move towards rend

cout << *r << endl; // values: 8, 4, 33, 2, 0

2.26.1.2 Map

• map (dictionary) has random access, sorted, unique-key container of pairs (Key, Val).
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std::map<Key,Val> / std::pair<Key,Val>
map() create empty map
int size() map size
bool empty() size() == 0
Val &operator [ ]( const Key &k ) access pair with Key k
int count( Key key ) 0⇒ no key, 1⇒ key (unique keys)
map &operator =( const map & ) map assignment
insert( pair<Key,Val>( k, v ) ) insert pair
erase( Key k ) erase key k
void clear() erase all pairs

blue
green
red

2
1
0

first second

keys values

pair

#include <map>
map<string, int > m, c; // Key => string, Val => int
m["green"] = 1; // create, set to 1
m["blue"] = 2; // create, set to 2
m["red"]; // create, set to 0 for int
m["green"] = 5; // overwrite 1 with 5
cout << m["green"] << endl; // print 5
c = m; // map assignment
m.insert( pair<string,int >( "yellow", 3 ) ); // m[“yellow”] = 3
if ( m.count( "black" ) ) // check for key “black”
m.erase( "blue" ); // erase pair( “blue”, 2 )

• First subscript for key creates an entry and initializes it to default or specified value.

• Iterator can search and return values in key order.

std::map<T>::iterator / std::map<T>::reverse iterator
iterator begin() iterator pointing to first pair
iterator end() iterator pointingAFTER last pair
iterator rbegin() iterator pointing to last pair
iterator rend() iterator pointingBEFORE first pair
iterator find( Key &k ) find position of key k
iterator insert( iterator posn, const T &x ) insert x before posn
iterator erase( iterator posn ) erase pair at posn
++, -- (sorted order) forward/backward operations

• Iterator returns a pointer to apair, with fieldsfirst (key) andsecond (value).
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#include <map>
map<string,int >::iterator f = m.find( "green" ); // find key position
if ( f != m.end() ) // found ?

cout << "found " << f->first << ′ ′ << f->second << endl;

for ( f = m.begin(); f != m.end(); f ++ ) // increasing order
cout << f->first << ′ ′ << f->second << endl;

map<string,int >::reverse iterator r;
for ( r = m.rbegin(); r != m.rend(); r ++ ) // decreasing order

cout << r->first << ′ ′ << r->second << endl;
m.clear(); // remove ALL pairs

2.26.1.3 List

• If random access is not required, use more efficient single (stack/queue/deque) or double
(list) linked-list container.

• Examinelist (arbitrary removal);stack, queue, deque are similar (restricted insertion/removal).

std::list<T>
list() create empty list
list( int n ) create list with n default nodes
int size() list size
bool empty() size() == 0
list &operator =( const list & ) list assignment
T front() first node
T back() last node
void push front( const T &x ) add x before first node
void push back( const T &x ) add x after last node
void pop front() remove first node
void pop back() remove last node
void clear() erase all nodes

push
pop

back

node
push

pop
front

. . .

• Iterator returns a pointer to a node.

std::list<T>::iterator / std::list<T>::reverse iterator
iterator begin() iterator pointing to first node
iterator end() iterator pointingAFTER last node
iterator rbegin() iterator pointing to last node
iterator rend() iterator pointingBEFORE first node
iterator insert( iterator posn, const T &x ) insert x before posn
iterator erase( iterator posn ) erase node at posn
++, -- (insertion order) forward/backward operations
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#include <list>
struct Node {

char c; int i; double d;
Node( char c, int i, double d ) : c(c), i(i), d(d) {}

};
list<Node> dl; // doubly linked list
for ( int i = 0; i < 10; i += 1 ) { // create list nodes

dl.push back( Node( ′a′+i, i, i+0.5 ) ); // push node on end of list
}
list<Node>::iterator f;
for ( f = dl.begin(); f != dl.end(); f ++ ) { // forward order

cout << "c:" << (*f).c << " i:" << f->i << " d:" << f->d << endl;
}
while ( 0 < dl.size() ) { // destroy list nodes

dl.erase( dl.begin() ); // remove first node
} // same as dl.clear()

2.26.1.4 for each

• Template routinefor each provides an alternate mechanism to iterate through a container.

• An action routine is called for each node in the container passing the node to the routine for
processing (Lispapply).

#include <iostream>
#include <list>
#include <vector>
#include <algorithm> // for each
using namespace std;
void print( int i ) { cout << i << " "; } // print node
int main() {

list< int > int list;
vector< int > int vec;
for ( int i = 0; i < 10; i += 1 ) { // create lists

int list.push back( i );
int vec.push back( i );

}
for each( int list.begin(), int list.end(), print ); // print each node
for each( int vec.begin(), int vec.end(), print );

}

• Type of the action routine isvoid rtn( T ), whereT is the type of the container node.

• E.g.,print has anint parameter matching the container node-type.

• More complex actions are possible using a functor (see page111).

• E.g., an action to print on a specified stream must store the stream and have anoperator ()
allowing the object to behave like a function:
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struct Print {
ostream &stream; // stream used for output
Print( ostream &stream ) : stream( stream ) {}
void operator ()( int i ) { stream << i << " "; }

};
int main() {

list< int > int list;
vector< int > int vec;
. . .
for each( int list.begin(), int list.end(), Print(cout) );
for each( int vec.begin(), int vec.end(), Print(cerr) );

}

• ExpressionPrint(cout) creates a constantPrint object, andfor each calls operator ()(Node)
in the object.

2.27 Namespace
• C++ namespaceis used to organize programs and libraries composed of multiple types and

declarationsto deal with naming conflicts.

• E.g., namespacestd contains all the I/O declarations and container types.

• Names in a namespace form a declaration region, like the scope of block.

• Analogy in Java is a package, butnamespace does NOT provide abstraction/encapsulation
(use.h/.cc files).

• C++ allows multiple namespaces to be defined in a file, as well as among files (unlike Java
packages).

• Types and declarations do not have to be added consecutively.

Java source files C++ source file

package Foo; // file
public class X . . . // export one type
// local types / declarations

package Foo; // file
public enum Y . . . // export one type
// local types / declarations

package Bar; // file
public class Z . . . // export one type
// local types / declarations

namespace Foo {
// types / declarations

}
namespace Foo {

// more types / declarations
}
namespace Bar {

// types / declarations
}

• Contents of a namespace are accessed using full-qualified names:

Java C++

Foo.T t = new Foo.T(); Foo::T *t = new Foo::T();
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• Or by importing individual items or importing all of the namespace content.

Java C++

import Foo.T;
import Foo.*;

using Foo::T; // declaration
using namespace Foo; // directive

• using declarationunconditionally introduces an alias (liketypedef , see Section2.7.4, p.64)
into the current scope for specified entity in namespace.

◦ If name already exists in current scope,using fails.

namespace Foo { int i = 0; }
int i = 1;
using Foo::i; // i exists in scope, conflict failure

◦ May appear in any scope.

• using directiveconditionally introduces aliases to current scope for all entities in names-
pace.

◦ If name already exists in current scope, alias is ignored; ifname already exists from
using directive in current scope,using fails.

namespace Foo { int i = 0; }
namespace Bar { int i = 1; }
{

int i = 2;
using namespace Foo; // i exists in scope, alias ignored

}
{

using namespace Foo;
using namespace Bar; // i exists from using directive
i = 0; // conflict failure, ambiguous reference to ′ i′

}

◦ May appear in namespace and block scope, but not class scope.
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namespace Foo { // start namespace
enum Colour { R, G, B };
int i = 3;

}
namespace Foo { // add more

class C { int i; };
int j = 4;
namespace Bar { // start nested namespace

typedef short int shrint;
char j = ′a′ ;
int C();

}
}
int j = 0; // external
int main() {

int j = 3; // local
using namespace Foo; // conditional import: Colour, i, C, Bar (not j)
Colour c; // Foo::Colour
cout << i << endl; // Foo::i
C x; // Foo::C
cout << ::j << endl; // external
cout << j << endl; // local
cout << Foo::j << " " << Bar::j << endl; // qualification
using namespace Bar; // conditional import: shrint, C() (not j)
shrint s = 4; // Bar::shrint
using Foo::j; // disallowed : unconditional import
C(); // disallowed : ambiguous “class C” or “int C()”

}

• Never put anamespace in a header file (.h) (pollute local namespace) or before#include
(can affect names in header file).
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3 Tools

3.1 C/C++ Composition
• C++ is composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edits) the programbeforecompilation
(see Section2.12, p.83).

2. The template (generic) language adds new types and routinesduring compilation (see
Section2.26, p. 145).

3. The C programming language specifying basic declarations and control flow to be ex-
ecutedafter compilation.

4. The C++ programming language specifying advanced declarations and control flow to
be executedafter compilation.

• A programmer uses the four programming languages as follows:

user edits→ preprocessor edits→ templates expand→ compilation
(→ linking/loading→ execution)

• C is composed of languages 1 & 3.

• The compiler interface controls all of these steps.

3.2 Compilation

cpp

preprocessed source code

cc1plus

assembly code

as

ld

object code

-o, -l, -L

-W, -v, -g, -S, -O1/2/3, -c

object./a.out

other object-code
files and libraries

-E, -D, -I

C/C++ source filesC/C++ header files

(preprocessor)

(linker)

(translator)

(assembler)

• Compilation is the process of translating a program from human to machinereadable form.

c© Peter A. Buhr
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• The translation is performed by a tool called acompiler.

• Compilation is subdivided into multiple steps, using a number of tools.

• Often a number of options to control the behaviour of each step.

• Option are presented forg++, but other compilers have similar options.

• General format:

g++ option-list *.cc *.o . . .

3.2.1 Preprocessor

• Preprocessor (cpp) takes a C++ source file, removes comments, and expands#include , #define ,
and#if directives (see Section2.12, p.83).

• Options:

◦ -E run only the preprocessor step and writes the preprocessor output to standard out.

$ g++ -E *.cc . . .
... much output from the preprocessor

◦ -D define and optionally initialize preprocessor variables from the compilation com-
mand:

$ g++ -DDEBUG=2 -DASSN . . . *.cc *.o . . .

same as putting the following#define s in a program without changing the program:

#define DEBUG 2
#define ASSN

• -Idirectorysearch directory for include files;

◦ files within the directory can now be referenced by relative name using#include <file-name>.

3.2.2 Translator

• Translator takes a preprocessed file and converts the C++ language into assembly language
for the target machine.

• Options:

◦ -Wkind generate warning message for this “kind” of situation.

∗ -Wall print ALL warning messages.

∗ -Werror make warnings into errors so program does not compile.

◦ -v show each compilation step and its details:

$ g++ -v *.cc *.o . . .
... much output from each compilation step

E.g., system include-directories wherecpp looks for system includes.
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#include <. . .> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/i486-linux
/usr/include/c++/3.3/backward
/usr/local/include
/usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

◦ -g add symbol-table information to object file for debugger

◦ -S compile source file, writing assemble code to filesource-file.s

◦ -O1/2/3 optimize translation to different levels, where eachlevel takes more compila-
tion time and possibly more space in executable

◦ -c compile/assemble source file but do not link, writing objectcode to filesource-file.o

3.2.3 Assembler

• Assembler (as) takes an assembly language file and converts it to object code (machine
language).

3.2.4 Linker

• Linker (ld) takes the implicit.o file from translated source and explicit.o files from the
command line, and combines them into a new object or executable file.

• Linking options:

◦ -Ldirectory is a directory containing library files of precompiled code.

◦ -llibrary search in library directories for givenlibrary.

◦ -o gives the file name where the combined object/ executable is placed.

∗ If no name is specified, default namea.out is used.

• Look in library directory “/lib” for math library “m” containing precompiled “sin” routine
used in “myprog.cc” naming executable program “calc”.

$ gcc myprog.cc -L/lib -lm -o calc

3.3 Compiling Complex Programs

• As number of TUs grow, so do the references to type/variables(dependencies) among TUs.

• When one TU is changed, other TUs that depend on it must changeand be recompiled.

• For a large numbers of TUs, the dependencies turn into a nightmare with respect to re-
compilation.
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3.3.1 Dependencies

• A dependenceoccurs when a change in one location (entity) requires a change in another.

• Dependencies can be:

◦ loosely coupled, e.g., changing source code may require a corresponding change in
user documentation, or

◦ tightly coupled, changing source code may require recompiling of some or all of the
components that compose a program.

• Dependencies in C/C++ occur as follows:

◦ executable depends on.o files (linking)

◦ .o files depend on.C files (compiling)

◦ .C files depend on.h files (including)

source code dependence graph

x.h #include "y.h"
x.C #include "x.h"

y.h #include "z.h"
y.C #include "y.h"

z.h #include "y.h"
z.C #include "z.h"

a.out

z.o z.C z.h

y.o y.C y.h

x.o x.C x.h

• Cycles in#include dependences are broken by#ifndef checks (see page85).

• The executable (a.out) is generated by compilation commands:

$ g++ -c z.C # generates z.o
$ g++ -c y.C # generates y.o
$ g++ -c x.C # generates x.o
$ g++ x.o y.o z.o # generates a.out

• However, it is inefficient and defeats the point of separate compilation to recompile all pro-
gram components after a change.

• If a change is made toy.h, what is the minimum recompilation necessary? (all!)

• Doesanychange toy.h require these recompilations?

• Often no mechanism to know the kind of change made within a file, e.g., changing a com-
ment, type, variable.

• Hence, “change” may be coarse grain, i.e., based onanychange to a file.

• One way to denote file change is withtime stamps.
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• UNIX stores in the directory the time a file is last changed, with second precision (see Sec-
tion 1.6, p. 15).

• Using time to denote change means the dependency graph is a temporal ordering where the
root has the newest (or equal) time and the leafs the oldest (or equal) time.

a.out

z.o z.C z.h

1:00

1:00 12:30 12:15

y.o y.C y.h
12:35 12:40

x.o x.C x.h

a.out

z.o z.C z.h

1:00

1:00 12:30 12:15

y.o y.C y.h
12:35 12:40

x.o x.C x.h

1:01

1:00 12:30 12:00

3:01

3:00 2:002:30

◦ Filesx.o, y.o andz.o created at 1:00 from compilation of files created before1:00.

◦ File a.out created at 1:01 from link ofx.o, y.o andz.o.

◦ Changes are subsequently made tox.h andx.C at 2:00 and 2:30.

◦ Only filesx.o anda.out need to be recreated at 3:00 and 3:01. (Why?)

3.3.2 Make

• make is a system command that takes a dependence graph and uses filechange-times to
trigger rules that bring the dependence graph up to date.

• A make dependence-graph expresses a relationship between a product and a set of sources.

• make does not understand relationships among sources, one that exists at the source-
code level and is crucial.

• Hence, make dependence-graph loses some of the relationships (dashed lines):

y.o

x.o

a.out

x.h

x.C

y.C

y.h

z.h

z.o z.C

• E.g., sourcex.C depends on sourcex.h but x.C is not a product ofx.h like x.o is a product of
x.C andx.h.

• Two most common UNIX makes are: make and gmake (on Linux,make is gmake).

• Like shells, there is minimal syntax and semantics formake, which is mostly portable across
systems.

• Most common non-portable features are specifying dependencies and implicit rules.
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• A basic makefile consists of string variables with initialization, and a list of targets and rules.

• This file can have any name, butmake implicitly looks for a file calledmakefile or Makefile
if no file name is specified.

• Each target has a list of dependencies, and possibly a set of commands specifying how to
re-establish the target.

variable = value # variable
target : dependency1 dependency2 . . . # target / dependencies

command1 # rules
command2
. . .

• Commands must be indented by one tab character.

• make is invoked with a target, which is the root or subnode of a dependence graph.

• make builds the dependency graph and decorates the edges with time stamps for the specified
files.

• If any of the dependency files (leafs) is newer than the targetfile, or if the target file does
not exist, the commands are executed by the shell to update the target (generating a new
product).

• Makefile for previous dependencies:

a.out : x.o y.o z.o
g++ x.o y.o z.o -o a.out

x.o : x.C x.h y.h z.h
g++ -g -Wall -c x.C

y.o : y.C y.h z.h
g++ -g -Wall -c y.C

z.o : z.C z.h y.h
g++ -g -Wall -c z.C

• Check dependency relationship (assume source files just created):

$ make -n -f Makefile a.out
g++ -g -Wall -c x.C
g++ -g -Wall -c y.C
g++ -g -Wall -c z.C
g++ x.o y.o z.o -o a.out

All necessary commands are triggered to bring targeta.out up to date.

◦ -n builds and checks the dependencies, showing rules to be triggered (leave off to exe-
cute rules)

◦ -f Makefile is the dependency file (leave off if named[Mm]akefile)

◦ a.out target name to be updated (leave off if first target)



3.3. COMPILING COMPLEX PROGRAMS 163

• Generalize and eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = x.o y.o z.o # object files forming executable
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

x.o : x.C x.h y.h z.h # targets / dependencies / commands
${CXX} ${CXXFLAGS} x.C

y.o : y.C y.h z.h
${CXX} ${CXXFLAGS} y.C

z.o : z.C z.h y.h
${CXX} ${CXXFLAGS} z.C

• Eliminate common rules:

◦ make can deduce simple rules when dependency files have specific suffixes.

◦ E.g., given target with dependencies:

x.o : x.C x.h y.h z.h

make deduces the following rule:

${CXX} ${CXXFLAGS} x.C # special variable names

◦ This rule use variables${CXX} and${CXXFLAGS} for generalization.

◦ Therefore, all rules forx.o, y.o andz.o can be removed.

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.o y.o z.o # object files forming executable
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

x.o : x.C x.h y.h z.h # targets / dependencies
y.o : y.C y.h z.h
z.o : z.C z.h y.h

• Because dependencies are extremely complex in large programs, programmers seldom con-
struct them correctly or maintain them.

• Without complete and update dependencies,make is useless.

• Automate targets and dependencies:
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CXX = g++ # compiler
CXXFLAGS = -g -Wall -MMD # compiler flags
OBJECTS = x.o y.o z.o # object files forming executable
DEPENDS = ${OBJECTS:.o=.d} # substitute “.o” with “.d”
EXEC = a.out # executable name

${EXEC} : ${OBJECTS} # link step
${CXX} ${OBJECTS} -o ${EXEC}

-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)

.PHONY : clean # not a file name
clean : # remove files that can be regenerated

rm -rf ${DEPENDS} ${OBJECTS} ${EXEC} # alternative *.d *.o

◦ Preprocessor traverses all include files, so it knows all source-file dependencies.

◦ g++ flag -MMD writes out a dependency graph for user source-files to filesource-file.d

file contents
x.d x.o: x.C x.h y.h z.h
y.d y.o: y.C y.h z.h
z.d z.o: z.C z.h y.h

◦ g++ flag -MD generates a dependency graph for user/system source-files.

◦ -include reads the.d files containing dependencies.

◦ .PHONY indicates a target that is not a file name and never created; itis a recipe to be
executed every time the target is specified.

∗ A phony target avoids a conflict with a file of the same name.

◦ Phony targetclean removes product files that can be rebuilt (save space).

$ make clean # remove all products (don′ t create “clean”)

• Hence, it is possible to have a universalMakefile for a singleor multipleprograms.

3.4 Source-Code Management
• As a program develops/matures, it changes in many ways.

◦ UNIX files do not support the temporal development of a program (version control),
i.e., history of program over time.

◦ Access to older versions of a program is useful, e.g., backing out of changes because
of design problems.

• Program development is often performed by multiple developers each making independent
changes.

◦ Sharing using files can damage file content for simultaneous writes.

http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/Makefile.1
http://www.student.cs.uwaterloo.ca/~cs246/current/codeExamples/Makefile.2
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◦ Merging changes from different developers is tricky and time consuming.

• To solve these problems, asource-code management-systemis used to provide versioning
and control cooperative work.

3.4.1 SVN

• Subversion(SVN 1.6) is a source-code management-system using thecopy-modify-merge
model.

◦ master copy of allproject files kept in arepository,

◦ multiple versions of the project files managed in the repository,

◦ developerscheckoutaworking copy of the project for modification,

◦ developerscheckin changes from working copy with helpful integration usingtext
merging.

SVN works on file content not file time-stamps.

V1

V1

V2

V2

V3

working copies

programmer2

programmer3

programmer1

V3

V2

V2
checkout

repository

project1

project2

checkout

checkout

checkin

checkin

checkin
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SVN Command Action
mkdir repository-dir-name-m "string" make new directory in repository
ls repository-name list files in repository
import directory-name repository-namecopies unversioned directory into repository
checkout repository-name extract working copy from the repository
add file/dir-list schedules files for addition to repository
commit -m "string" update the repository with changes in working copy
rm file/dir-list remove files from working copy and schedule removal from

repository
status displays changes between working copy and repository
revert file/dir-list undo scheduled operations on repository
mv file/dir-list rename file in working copy and schedule renaming in

repository
cp file/dir-list copy file in working copy and schedule copying in reposi-

tory
cat file print file in repository
update update working copy from repository
resolve --accept ARG file resolve conflict for file as specified byARG

3.4.2 Repository

• The repository is a directory containing multiple projects.

courses repository
cs246 meta-project

assn1 project
x.h, x.C, . . . project files

assn2 project
. . . project files

more meta-projects / projects

• svnadmin create command creates and initializes a repository.

$ svnadmin create courses

• svn mkdir command creates subdirectories for meta-projects and projects.

$ svn mkdir file:///u/jfdoe/courses/cs246 -m "create directory cs246 "
Committed revision 1.
$ svn mkdir file:///u/jfdoe/courses/cs246/assn1 -m "create subdirectory assn1 "
Committed revision 2.

◦ files in repository are designated using URL, so must use absolute pathname

◦ -m (message) flag documents repository change.

◦ if no -m (message) flag specified, prompts for documentation (using an editor if shell
environment variableEDITOR set).
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• svn ls command lists directories.

$ svn ls file:///u/jfdoe/courses/cs246
assn1/
$ svn ls file:///u/jfdoe/courses/cs246/assn1

• If project directoryassn1 already exists, it can be added directly to the repository.

• svn import command copies an unversioned directory of files into a repository.

$ svn import assn1 file:///u/jfdoe/courses/cs246/assn1
Adding assn1/z.h
Adding assn1/x.C
Adding assn1/y.C
Adding assn1/z.C
Adding assn1/Makefile
Adding assn1/x.h
Adding assn1/y.h
Committed revision 2.

$ svn ls file:///u/jfdoe/courses/cs246/assn1
Makefile
x.C
x.h
y.C
y.h
z.C
z.h

• For students working together, the shared repository must be made accessible in the file
system (see page16).

$ chgrp -R cs246 75 courses # set group on directory and subfiles
$ chmod -R g+rwx courses # allow group members access to ALL files

and for the path to the repository.

• Group namecs246 75 is acquired on a per course basis for each team of students.

3.4.3 Checking Out

• svn checkout command extracts a working copy of a project from the repository.

$ svn checkout file:///u/jfdoe/courses/cs246/assn1
Checked out revision 2.
$ ls -AF assn1
.svn/

• For first checkout, directoryassn1 is created in the current directory (unless it already exists).

• Subdirectory.svn contains administrative information for SVN andmust not be modified.

• Working copy is then modified before being merged back into the repository.
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• Other developers do not see each others working copy, and will only see modifications when
committed.

• To create a working-copy off-campus, usessh URL:

$ svn checkout svn+ssh://jfdoe@student.cs.uwaterloo.ca /u/jfdoe/courses/cs246/assn1

(Replace file URL in subsequent commands withssh URL.)

3.4.4 Adding

• Introduce files into project directoryassn1.

$ cd assn1
$ . . . # create files: Makefile x.C x.h y.C y.h z.h z.C
$ ls -AF
.svn/ Makefile x.C x.h y.C y.h z.C z.h

• svn add commandschedulesaddition of files (in current directory) into the repository.

$ svn add Makefile x.C x.h y.C y.h z.h z.C
A Makefile
A x.C
A x.h
A y.C
A y.h
A z.h
A z.C

Addition only occurs on next commit.

• Forgettingsvn add is a common mistake.

• Put only project source-files into repository.

• Product files, e.g.,*.o, *.d, a.out, do not need to be versioned.

3.4.5 Checking In

• svn commit command updates the repository with the changes in working copy.

$ svn commit -m "initial project files "
Adding Makefile
Adding x.C
Adding x.h
Adding y.C
Adding y.h
Adding z.C
Adding z.h
Transmitting file data . . . . . . .
Committed revision 3.
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• if no -m (message) flag specified, prompts for commit documentation.

$ svn ls file:///u/jfdoe/courses/cs246/assn1
Makefile
x.C
x.h
y.C
y.h
z.C
z.h

• Always make sure your code compiles and runs before committing; it is unfair to pollute a
project with bugs.

3.4.6 Modifying

• Editted files in working copy are implicitlyscheduledfor update on next commit.

$ vi y.h y.C

• svn rm command removes files from working copy andschedulesremoval of files from the
repository.

$ ls -AF
.svn/ Makefile x.C x.h y.C y.h z.C z.h
$ svn rm z.h z.C
D z.h
D z.C
$ ls -AF
.svn/ Makefile x.C x.h y.C y.h

• svn status command displays changes between working copy and repository.

$ svn status
D z.h
M y.C
D z.C
M y.h

Filesy.h / y.C have local modifications “M”, andz.h / z.C are deleted “D”.

• Possible to undo scheduled changes by reverting to files fromrepository.

• svn revert command copies unchanged files from repository to working copy.

$ svn revert y.C z.h
Reverted ′y.C′

Reverted ′z.h′

$ ls -AF
.svn/ Makefile x.C x.h y.C y.h z.h
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• Commit edits and removals.

$ svn commit -m "changes to y.h and remove z.C "
Sending y.h
Deleting z.C
Transmitting file data .
Committed revision 4.
$ svn ls file:///u/jfdoe/courses/cs246/assn1
Makefile
x.C
x.h
y.C
y.h
z.h

• Files in the repository can be renamed and copied.

• svn mv command renames file in working copy andschedulesrenaming in the repository.

$ svn mv x.h w.h
A w.h
D x.h
$ ls -AF
.svn/ Makefile w.h x.C y.C y.h

• svn cp command copies file in working copy andschedulescopying in the repository:

$ svn cp w.h k.h
A k.h
$ ls -AF
.svn/ Makefile k.h w.h x.C y.C y.h

• Commit renaming and copying.

$ svn commit -m "renaming and copying "
Adding k.h
Adding w.h
Deleting x.h
Committed revision 5.
$ svn ls file:///u/jfdoe/courses/cs246/assn1
Makefile
k.h
w.h
x.C
y.C
y.h

3.4.7 Revision Number

• Each commit receives a revision number (currently 5).

• Information in older versions is accessible using suffix@N on URL.
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• E.g., print filez.C, which last existed in revision 3.

• svn cat command prints specified file from the repository.

$ svn cat file:///u/jfdoe/courses/cs246/assn1/z.C @3
#include "z.h"

• Copy deleted filez.C from repository into working copy and modify.

$ svn copy file:///u/jfdoe/courses/cs246/assn1/z.C @3 z.C
A z.C
$ ls -AF
.svn/ Makefile k.h w.h x.C y.C y.h z.C z.h
$ . . . # change z.C
$ svn commit -m "bring back z.C and modify "
Adding z.C
Transmitting file data .
Committed revision 6.
$ svn cat file:///u/jfdoe/courses/cs246/assn1/z.C @6
#include "z.h"
new text

3.4.8 Updating

• Synchronize working copy with commits in the repository from other developers.

jfdoe kdsmith
modify x.C modify x.C & y.C

removek.h
addt.C

• Assumekdsmith has committed their changes.

• jfdoe attempts to committed their changes.

$ svn commit -m "modify x.C "
Sending x.C
svn: Commit failed (details follow):
svn: File ′ /cs246/assn1/x.C′ is out of date

• jfdoe must resolve differences between their working copy and thecurrent revision in the
repository.

• svn update command attempts to update working copy from most recent revision.
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$ svn update
D k.h file k.h deleted
U y.C file y.C updated without conflicts
A t.C file t.C added
Conflict discovered in ′x.C′ .
Select: (p) postpone, (df) diff-full, (e) edit,

(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: df

--- .svn/text-base/x.C.svn-base Sun May 2 09:54:08 2010
+++ .svn/tmp/x.C.tmp Sun May 2 11:28:42 2010
@@ -1 +1,6 @@
#include "x.h"

+<<<<<<< .mine
+jfdoe new text
+=======
+kdsmith new text
+>>>>>>> .r7
Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,

(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: tc

G x.C file x.C merGed with kdsmith version
Updated to revision 7.

◦ (p) postpone : mark conflict to be resolved later

◦ (df) diff-full : show changes to merge file

◦ (e) edit : change merged file in an editor

◦ (r) resolved : after editing version

◦ (mc) mine-conflict : accept my version for conflicts

◦ (tc) theirs-conflict : accept their version for conflicts

◦ (mf) mine-full : accept my file (no conflicts resolved)

◦ (tf) theirs-full : accept their file (no conflicts resolved)

• Merge algorithm is generally very good if changes do not overlap.

• Overlapping changes result in a conflict, which must be resolved.

• If unsure about how to deal with a conflict, it can be postponedfor each file.
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$ svn update
D k.h file k.h deleted
U y.C file y.C updated without conflicts
A t.C file t.C added
Conflict discovered in ′x.C′ .
Select: (p) postpone, (df) diff-full, (e) edit,

(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: p

C x.C file x.C conflict
Updated to revision 7.
Summary of conflicts:

Text conflicts: 1

• Working copy now contains the following files:

x.C x.C.mine

#include "x.h"
<<<<<<< .mine
jfdoe new text
=======
kdsmith new text
>>>>>>> .r7

#include "x.h"
jfdoe new text

x.C.r3 x.C.r7

#include "x.h" #include "x.h"
kdsmith new text

◦ x.C : with conflicts
◦ x.C.mine : jfdoe version ofx.C
◦ x.C.r3 : previous jfdoe version ofx.C
◦ x.C.r7 : kdsmith version ofx.C in repository

• No further commits allowed until conflict is resolved.

• svn resolve --accept ARG command resolves conflict with version specified byARG, for
ARG options:

◦ base :x.C.r3 previous version in repository
◦ working : x.C current version in my working copy (needs modification)
◦ mine-conflict :x.C.mine accept my version for conflicts
◦ theirs-conflict :x.C.r7 accept their version for conflicts
◦ mine-full : x.C.mine accept my file (no conflicts resolved)
◦ theirs-full : x.C.r7 accept their file (no conflicts resolved)

$ svn resolve --accept theirs -conflict x.C
Resolved conflicted state of ′x.C′
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• Removes 3 conflict files,x.C.mine, x.C.r3, x.C.r7, and setsx.C to theARG version.

$ svn commit -m "modified x.C"
Sending x.C
Transmitting file data .
Committed revision 8.

3.5 Debugger
• An interactive, symbolicdebuggereffectively allows debug print statements to be added and

removed to/from a program dynamically.

• You should not rely solely on a debugger to debug a program.

• You may work on a system without a debugger or the debugger maynot work for certain
kinds of problems.

• A good programmer uses a combination of debug print statements and a debugger when
debugging a complex program.

• A debugger does not debug your program for you, it merely helps in the debugging process.

• Therefore, you must have some idea about what is wrong with a program before starting to
look or you will simply waste your time.

3.5.1 GDB

• The two most common UNIX debuggers are: dbx and gdb.

• File test.cc contains:

1 int r( int a[ ] ) {
2 int i = 100000000;
3 a[i] += 1; // really bad subscript error
4 return a[i];
5 }
6 int main() {
7 int a[10] = { 0, 1 };
8 r( a );
9 }

• Compile program using the -g flag to include names of variables and routines for symbolic
debugging:

$ g++ -g test.cc

• Start gdb:

$ gdb ./a.out
. . . gdb disclaimer
(gdb) ← gdb prompt
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• Like a shell, gdb uses a command line to accept debugging commands.

GDB Command Action
<Enter> repeat last command
run [shell-arguments] start program with shell arguments
backtrace print current stack trace
print variable-name print value in variable-name
frame [n] go to stack frame n
break routine / file-name:line-no set breakpoint at routine or line in file
info breakpoints list all breakpoints
delete [n] delete breakpoint n
step [n] execute next n lines (into routines)
next [n] execute next n lines of current routine
continue [n] skip next n breakpoints
list list source code
quit terminate gdb

• <Enter> without a command repeats the last command.

• run command begins execution of the program:

(gdb) run
Starting program: /u/userid/cs246/a.out
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error

◦ If there are no errors in a program, running in GDB is the same as running in a shell.

◦ If there is an error, control returns to gdb to allow examination.

◦ If program is not compiled with -g flag, only routine names given.

• backtrace command prints a stack trace of called routines.

(gdb) backtrace
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:8

◦ stack has 2 framesmain (#1) andr (#0) because error occurred in call tor.

• print command prints variables accessible in the current routine, object, or external area.

(gdb) print i
$1 = 100000000

• Can print any C++ expression:
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(gdb) print a
$2 = (int *) 0xffbefa20
(gdb) p *a
$3 = 0
(gdb) p a[1]
$4 = 1
(gdb) p a[1]+1
$5 = 2

• set variable command changes the value of a variable in the current routine, object or exter-
nal area.

(gdb) set variable i = 7
(gdb) p i
$6 = 7
(gdb) set var a[0] = 3
(gdb) p a[0]
$7 = 3

Change the values of variables while debugging to:

◦ investigate how the program behaves with new values withoutrecompile and restarting
the program,

◦ to make local corrections and then continue execution.

• frame [n] command moves thecurrent stack frame to thenth routine call on the stack.

(gdb) f 0
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) f 1
#1 0x00010764 in main () at test.cc:8
8 r( a );

◦ If n is not present, prints the current frame

◦ Once moved to a new frame, it becomes the current frame.

◦ All subsequent commands apply to the current frame.

• To trace program execution,breakpoints are used.

• break command establishes a point in the program where execution suspends and control
returns to the debugger.

(gdb) break main
Breakpoint 1 at 0x10710: file test.cc, line 7.
(gdb) break test.cc:3
Breakpoint 2 at 0x106d8: file test.cc, line 3.

◦ Set breakpoint using routine name or source-file:line-number.
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◦ info breakpoints command prints all breakpoints currently set.

(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x00010710 in main at test.cc:7
2 breakpoint keep y 0x000106d8 in r(int*) at test.cc:3

• Run program again to get to the breakpoint:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /u/userid/cs246/a.out
Breakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };
(gdb) p a[7]
$8 = 0

• Once a breakpoint is reached, execution of the program can becontinued in several ways.

• step [n] command executes the nextn lines of the program and stops, so control enters
routine calls.

(gdb) step
8 r( a );
(gdb) s
r (a=0xffbefa20) at test.cc:2
2 int i = 100000000;
(gdb) s
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) <Enter>
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) s
Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

◦ If n is not present, 1 is assumed.

◦ If the next line is a routine call, control enters the routineand stops at the first line.

• next [n] command executes the nextn lines of the current routine and stops, so routine calls
are not entered (treated as a single statement).
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(gdb) run
. . .
Breakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };
(gdb) next
8 r( a );
(gdb) n
Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) n
Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3
3 a[i] += 1; // really bad subscript error

• continue [n] command continues execution until the next breakpoint is reached.

(gdb) run
. . .
Breakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };
(gdb) c
Breakpoint 2, r (a=0x7fffffffe7d0) at test.cc:3
3 a[i] += 1; // really bad subscript error
(gdb) p i
$9 = 100000000
(gdb) set var i = 3
(gdb) c
Continuing.
Program exited normally.

• list command lists source code.

(gdb) list
1 int r( int a[ ] ) {
2 int i = 100000000;
3 a[i] += 1; // really bad subscript error
4 return a[i];
5 }
6 int main() {
7 int a[10] = { 0, 1 };
8 r( a );
9 }

◦ with no argument, list code around current execution location

◦ with argument line number, list code around line number

• quit command terminate gdb.
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(gdb) run
. . .
Breakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };
1: a[0] = 67568
(gdb) quit
The program is running. Exit anyway? (y or n) y
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4 Software Engineering

• Software Engineering (SE) is the social process of designing, writing, and maintaining
computer programs.

• SE attempts to find good ways to help people understand and develop software.

• However, what is good for people is not necessarily good for the computer.

• Many SE approaches are counter productive in the development of high-performance soft-
ware.

1. The computer does not execute the documentation!

◦ Documentation is unnecessary to the computer, and significant amounts of time
are spent building it so it can be ignored (program comments).

◦ Remember, thetruth is always in the code.

◦ However, without documentation, developers have difficulty designing and under-
standing software.

2. Designing by anthropomorphizing the computer is seldom agood approach (desk-
tops/graphical interfaces).

3. Compiler spends significant amounts of timeundoingSE design and coding approaches
to generate efficient programs.

• It is important to know these differences to achieve a balance between programs that are
good for people and good for the computer.

4.1 Software Crisis
• Large software systems (> 100,000 lines of code) require many people and months to de-

velop.

• These projects too often emerge late, over budget, and do notwork well.

• Today, hardware costs are low, and people costs are high.

• While commodity software is available, someone still has towrite it.

• Since people produce software⇒ software cost is great.

• Coupled with a shortage of software personnel⇒ problems.

• Unfortunately, software is complex and precise, which requires time and patience.

• Errors occur and cost money if not lives, e.g., Ariane 5, Therac–25, Intel Pentium division
error, Mars Climate Orbiter, UK Child Support Agency, etc.

c© Peter A. Buhr
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4.2 Software Development

• Techniques for program development for small, medium, and large systems.

• Objectives:

◦ plan and schedule project (requirements documents, UML, time-lines)

◦ produce reliable, flexible, efficient programs

◦ produce programs that are easily maintained

◦ reduce the cost of software

◦ reduce program failure

• E.g., a typical software project:

◦ estimate 12 months of work

◦ hire 3 people for 4 months

◦ make up milestones for the end of each month

• However, first milestone is reached after 2 months instead of1.

• To finish on time, hire 2 more people, but:

◦ new people require training

◦ work must be redivided

This takes at least 1 month.

• Now 2 months behind with 9 months of work to be done in 1 month by5 people.

• To get the project done:

◦ must reschedule

◦ trim project goals

• Often, adding manpower to a late software project makes it later.

• Illustrates the need for a methodology to aid in the development of software projects.

4.3 Development Processes

• There are different conceptual approaches for developing software:
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F1/3/4 F2/3 F2/4/5 F4/6
DC DCT RADCTD

F1/3/4
RADC

F1/5/6
RADCTD TD

agile

Time

RequirementsAnalysis Design Coding Testing Debugging

F1 F2 F3 F4 F5 F6
RADCTD RADCTD RADCTD RADCTD RADCTD RADCTD

F1/2 F3/4 F5/6
CTD CTD CTD

RequirementsAnalysis Design

waterfall

iterative

staged

waterfall : break down project based on activities that flow (down stream) across a timeline.

◦ activities : (cycle of) requirements, analysis, design, coding, testing, debugging
(RADCTD).

◦ timeline : assign time to accomplish each activity up to project completion time

iterative/spiral : break down project based on functionality and divide functions across a
timeline

◦ functions : (cycle of) acquire/verify data, process data, generate data reports

◦ timeline : assign time to perform software cycle on each function up to project
completion time

staged delivery : combination of waterfall and iterative

◦ start with waterfall for analysis/design, and finish with iterative for coding/testing

agile/extreme : short, intense iterations focused largely on code (versusdocumentation)

◦ often analysis and design are done iteratively

◦ often coding/testing done in pairs

• Pure waterfall is problematic because all coding/testing comes at end⇒major problems can
appear near project deadline.

• Pure agile can leave a project with “just” working code, and little or no testing / documenta-
tion.

• Selecting a process depends on:

◦ kind/size of system

◦ quality of system (mission critical?)

◦ hardware/software technology used

◦ kind/size of programming team



184 CHAPTER 4. SOFTWARE ENGINEERING

◦ working style of teams

◦ nature of completion risk

◦ consequences of failure

◦ culture of company

• Meta-processes specifying the effectiveness of processes:

◦ Capability Maturity Model Integration (CMMI)

◦ International Organization for Standardization (ISO) 9000

• Meta-requirements

◦ procedures cover key aspects of processes

◦ monitoring mechanisms

◦ adequate records

◦ checking for defects, with appropriate and corrective action

◦ regularly reviewing processes and its quality

◦ facilitating continual improvement

4.4 Software Methodology
• System Analysis (next year)

◦ Study the problem, the existing systems, the requirements,the feasibility.

◦ Analysis is a set of requirements describing the system inputs, outputs, processing, and
constraints.

• System Design

◦ Breakdown of requirements into modules, with their relationships and data flows.

◦ Results in a description of the various modules required, and the data interrelating
these.

• Implementation

◦ writing the program

• Testing & Debugging

◦ get it working

• Operation & Review

◦ was it what the customer wanted and worth the effort?

• Feedback

◦ If possible, go back to the above steps and augment the project as needed.
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4.4.1 System Design

• Two basic strategies exist to systematically modularize a system:

◦ top-down or functional decomposition

◦ bottom-up

• Both techniques have much in common and so examine only one.

4.4.2 Top-Down

• Start at highest level of abstraction and break down probleminto cohesive units, i.e., divide
& conquer.

• Then refine each unit further generating more detail at each division.

• Each subunit is divided until a level is reached where the parts are comprehensible, and can
be coded directly.

• This recursive process is calledsuccessive refinementor factoring.

• Unit are independent of a programming language, but ultimately must be mapped into con-
structs like:

◦ generics (templates)

◦ modules

◦ classes

◦ routines

• Details look at data and control flow within and among units.

• Implementation programming language is often chosen only after the system design.

• Factoring goals:

◦ reduce module size :≈ 30-60 lines of code, i.e., 1-2 screens with documentation

◦ make system easier to understand

◦ eliminate duplicate code

◦ localize modifications

• Stop factoring when:

◦ cannot find a well defined function to factor out

◦ interface becomes too complex

• Avoid having the same function performed in more than one module (create useful general
purpose modules)



186 CHAPTER 4. SOFTWARE ENGINEERING

• Separate work from management:

◦ Higher-level modules only make decisions (management) andcall other routines to do
the work.

◦ Lower-level modules become increasingly detailed and specific, performing finer grain
operations.

• In general:

◦ do not worry about little inefficiencies unless the code is executed a LARGE number
of times

◦ put thought into readability of program

4.5 Design Quality
• System design is a general plan for attacking a problem, but leads to multiple solutions.

• Need the ability to compare designs.

• 2 measures: coupling and cohesion

• Low (loose) coupling is a sign of good structured and design;high cohesion supports read-
ability and maintainability.

4.5.1 Coupling

• Coupling measures the degree of interdependence among programming “modules”.

• Aim is to achieve lowest coupling or highest independence (i.e., each module can stand alone
or close to it).

• A module can be read and understood as a unit, so that changes have minimal effect on other
modules and possible to isolate it for testing purposes (like stereo components).

• 5 types of coupling in order of loose to tight (low to high):

1. Data : modules communicate using arguments/parameters containing minimal data.

◦ E.g.,sin( x ), avg( marks )

2. Stamp : modules communicate using only arguments/parameters containing extra data.

◦ E.g., pass aggregate data (array/structure) with some elements/fields unused

◦ problem: accidentally change other data

◦ modules may be less general (e.g., average routine passed anarray of records)

◦ stamp coupling is common because data grouping is more important than coupling

3. Control : pass data using arguments/parameters to effect control flow.

◦ E.g., module calculate 2 different things depending on a flag

◦ bad when flag is passed down, worse when flag is passed up
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4. Common : modules share global data.

◦ cannot control access since scope rule allows many modules to access the global
variables

◦ difficult to find all references reading/writing global variables

5. Content : modules share information about type, size and structure of data, or methods
of calculation

◦ changes effect many different modules (good/bad)

◦ avoid friend routine/class unless friend module is logically nested butextracted
for technical reasons.

4.5.2 Cohesion

• Cohesionmeasures degree of association among elements within a module (how focused).

• Elements can be a statement, group of statements, or calls toother modules.

• Alternate names for cohesion: binding, functionality, modular strength.

• Highly cohesive module has strongly and genuinely related elements.

• If modules have low cohesion (module elements are related)⇒ tight coupling.

• If modules have high cohesion (module elements are NOT related)⇒ loose coupling.

• 7 types of cohesion (high to low):

1. Functional : modules elements all contribute to computation of one and only one
problem related task (Single Responsibility Principle).

◦ E.g.,sin( x ), avg( marks ), Car {. . .}, Driver {. . .}

◦ coupling is excellent

2. Sequential : module elements interact as producer/consumer, i.e., output data from
one activity is input data to next.

print( process( getword( word ) ) ); // read -> process -> print (shell pipe)

◦ similar to functional, except possibly mandates sequencesof use

◦ coupling is good

3. Communicational : module elements contribute to activities that use the samedata.

find( book, title );
find( book, price );
find( book, ISBN );
find( book, author );

◦ all have same input data

◦ like sequential but order is not important

◦ coupling is acceptable
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◦ usually improve maintainability by splitting common module into separate, func-
tional ones

4. Procedural : module elements involved in different and possibly unrelated activities,
but which flow from one activity to the next.

file = open( filename ); // open connection to file name
read( file ); // read file contents
close( file ); // close connection to file name

◦ related by order of execution rather than by any single problem-related function

◦ typically data sent to procedure modules is unrelated to data sent back

◦ procedural modules pass around partial results

5. Temporal : module elements involved in activities related in time.

initialization
- turn things on
- turn things off
- set things to 0
- set things to 1
- set things to ′ ′

◦ unrelated except carried out at particular time

◦ each initialization is more closely related to the modules that make use of it⇒
tight coupling

◦ want to re-initialize only some of the entities in initialization routine

◦ like procedural, except order of execution is more important in procedural

6. Logical : module elements contribute to same general category, where activity is se-
lected from outside the module.

#include <algorithms>
find . . .
swap . . .
search . . .
sort . . .
inner product . . .

◦ modules contain number of activities of some general kind

◦ to use, pick out just one of the pieces needed

◦ interface weak, and contains code sharing common lines of code and/or data areas

7. Coincidental : module elements grouped arbitrarily.

◦ activities are related neither by flow of data nor control

◦ like logical, internal activity must be externally selected, but worse since categories
in the module are very weakly related

4.6 Design Principles
• low coupling, high cohesion (logical modularization)
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• good interfaces (abstraction and encapsulation)

• type reuse (type inheritance)

• code reuse (implementation inheritance, physical modularization)

• indirection (data/routine pointers) to generalize objects

4.7 Design Patterns
• Design patternshave existed since people/trades developed formal approaches.

• E.g., chef’s cooking meals, musician’s writing/playing music, mason’s building pyramid/cathedral.

• Pattern is a common/repeated issue; it can be a problem or a solution.

• Name and codify common patterns for educational and communication purposes.

• Software pattern are solutions to problems:

◦ name : descriptive name

◦ problem : kind of issues pattern can solve

◦ solution : general elements composing the design, with relationships, responsibilities,
and collaborations

◦ consequences : results/trade-offs of pattern (alternative/implementation issues)

• Patterns help:

◦ extend developers’ vocabulary

Squadron Leader : Top hole. Bally Jerry pranged his kite right in the how’s
your father. Hairy blighter, dicky-birdied, feathered back on his Sammy, took
a waspy, flipped over on his Betty Harper’s and caught his can in the Bertie.
– RAF Banter, Monty Python

◦ offer higher-level abstractions than routines or classes

4.7.1 Pattern Catalog

creational structural behavioural
class factory method adapter interpreter

template
object abstract factory adapter responsibility chain

builder bridge command
prototype composite iterator
singleton decorator mediator

facade memento
flyweight observer
proxy state

strategy
visitor
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• Scope : applies to classes or objects

◦ class pattern– relationships among classes and subclasses (static inheritance)

◦ object pattern – relationships among objects (dynamic creation and association)

• Purpose : what a pattern does

◦ creational : classes defer construction through inhertiance / objects defer creation to
other objects

◦ structural : composition via inherited classes or assembled objects

◦ behavioural : classes describes algorithm or control-flow /objects cooperate to perform
task

4.7.1.1 Class Patterns

factory method : generalize creation of product with multiple variants

struct Pizza {. . .}; // product
struct Pizzeria { // creator

enum Kind { It, Mg, Ch, Dd }; // styles
virtual Pizza *order( Kind p ) = 0;

};
struct Italian : public Pizzeria { // concrete creator (factory)

Pizza *order( Kind p ); // create italian/margarita style
};
struct Chicago : public Pizzeria { // concrete creator

Pizza *order( Kind p ); // create chicago/deep-dish style
};

Italian italian; Chicago chicago; // factories
enum Kind { It, Mg, Ch, Dd };
Pizza *dispatch( Kind pizza ) { // parameterized creator

switch ( pizza ) {
case It: case Mg: return italian.order( Pizzeria::Mg );
case Ch: case Dd: return chicago.order( Pizzeria::Dd );
default : ; // error

}
}
Pizza *p = dispatch( It );
p = dispatch( Ch );

• product (Pizza) objects are consistent across all factories (could be subclassed)

• clients get a concrete product (Pizza) from the creator (directly or indirectly), but prod-
uct type is unknown

• client interacts with product object through its abstract interface (Pizza)

adapter/wrapper : convert interface into another
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struct Stack { struct Vector {
virtual void push(. . .); virtual push back(. . .);
virtual void pop(. . .); virtual pop back(. . .);

}; };
struct VStack : public Stack, private Vector { // adapter/wrapper

void push(. . .) { . . . push back(. . .); . . . }
void pop(. . .) { pop back(. . .); }

};
void p( Stack &s ) { . . . }
VStack vs; // use VStack code with Stack routine
p( vs );

• VStack is polymorphic withStack but implementspush/pop with Vector::push back/
Vector::pop back.

template method : provide algorithm but defer some details to subclass

class PriceTag { // template method
virtual string label() = 0; // details for subclass
virtual string price() = 0;
virtual string currency() = 0;

public :
string tag() { return label() + price() + currency(); }

};
class FurnitureTag : public PriceTag { // actual method

string label() { return "furniture "; }
string price() { return "$1000 "; }
string currency() { return "Cdn"; }

};
FurnitureTag ft;
cout << ft.tag() << endl;

• template-method routines are non-virtual, i.e., not overridden

4.7.1.2 Object Patterns

abstract factory : generalize creation of family of products with multiple variants
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struct Food {. . .}; // abstract product
struct Pizza : public Food {. . .}; // concrete product
struct Burger : public Food {. . .}; // concrete product
struct Restaurant { // abstract factory product

enum Kind { Pizza, Burger };
virtual Food *order( Kind f ) = 0;
virtual int staff() = 0;

};
struct Pizzeria : public Restaurant { // concrete factory product

Food *order( Kind f ) {}
int staff() {. . .}

};
struct Burgers : public Restaurant { // concrete factory product

Food *order( Kind f ) {}
int staff() {. . .}

};

enum Type { PizzaHut, BugerKing };
struct RestaurantFactory { // abstract factory

Restaurant *create( Type t ) {}
};
struct PizzeriaFactory : RestaurantFactory { // concrete factory

Restaurant *create( Type t ) {}
};
struct BurgerFactory : RestaurantFactory { // concrete factory

Restaurant *create( Type t ) {}
};

PizzeriaFactory pizzeriaFactory;
BurgerFactory burgerFactory;
Restaurant *pizzaHut = pizzeriaFactory.create( PizzaHut );
Restaurant *burgerKing = burgerFactory.create( BugerKing );
Food *dispatch( Restaurant::Kind food ) { // parameterized creator

switch ( food ) {
case Restaurant::Pizza: return pizzaHut->order( Restaurant::Pizza );
case Restaurant::Burger: return burgerKing->order( Restaurant::Burger );
default : ; // error

}
}

• use factory-method pattern to construct generated product(Food)

• use factory-method pattern to construct generated factory(Restaurant)

• clients obtains a concrete product (Pizza, Burger) from a concrete factory (PizzaHut,
BugerKing), but product type is unknown

• client interacts with product object through its abstract interface (Food)

singleton : single instance of class
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.h file .cc file

class Singleton {
struct Impl {

int x, y;
Impl( int x, int y );

};
static Impl impl;

public :
void m();

};

#include "Singleton.h"
Singleton::Impl Singleton::impl( 3, 4 );
Singleton::Impl::Impl( int x, int y )

: x(x), y(y) {}
void Singleton::m() { . . . }

Singleton x, y, z; // all access same value

• Allow different users to have they own declaration but stillaccess same value.

Database database; // user 1
Database db; // user 2
Database info; // user 3

• Alternative is global variable, which forces name and may violate abstraction.

composite : interface for complex composite object

struct Assembly { // composite type
string partNo();
string name();
double price();
void insert( Assembly assm );
void remove( string partNo );
struct Iterator {. . .};

};

class Engine : public Assembly {. . .};
class Transmission : public Assembly{. . .};
class Wheel : public Assembly {. . .};
class Car : public Assembly {. . .};
class Stove : public Assembly {. . .};
// create parts for car
Car c; // composite object
c.insert( engine );
c.insert( transmission );
c.insert( wheel );
c.insert( wheel );

• recursive assembly type creates arbitrary complex assembly object.

• vertices are subassemblies; leafs are parts

• since composite type defines both vertices and leaf, all members may not apply to both

iterator : abstract mechanism to traverse composite object
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double price = 0.0;
Assembly::Iterator c( car );
for ( part = c.begin( engine ); part != c.end(); ++part ) { // engine cost

price += part->price();
}

• iteration control: multiple starting/ending locations; depth-first/breath-first, forward/backward,
etc.; level of traversal

• iterator may exist independently of a composite design-pattern

adapter : convert interface into another

struct Stack { struct Vector {
virtual void push(. . .); virtual push back(. . .);
virtual void pop(. . .); virtual pop back(. . .);

}; };
struct VecToStack : public Stack { // adapter/wrapper

Vector &vec;
VectortoStack( Vector &vec ) : vec( vec ) {}
void push(. . .) { . . . vec.push back(. . .); . . . }
void pop(. . .) { vec.pop back(. . .); }

};
void p( Stack &s ) { . . . }
Vector vec;
VecToStack vtos( vec ); // any Vector
p( vtos );

• specific conversion fromVector to Stack

proxy : frontend for another object to control access

struct DVD {
void play(. . .);
void pause(. . .);

};
struct SPVR : public DVD { // static

void play(. . .) { . . . DVD::play(. . .); . . . }
void pause(. . .) { . . . DVD::pause(. . .); . . . }

};
struct DPVR : public DVD { // dynamic

DVD *dvd;
DPVR() { dvd = NULL; }
~DPVR() { if ( dvd != NULL ) delete dvd; }
void play(. . .) { if ( dvd == NULL ) dvd = new T; dvd->play(. . .); . . . }
void pause(. . .) { . . . don’t need dvd, no pause . . . }

};

• proxy extends object’s type

• reverse structure of template method

• dynamic approach lazily creates control object
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decorator : attach additional responsibilities to an object dynamically

struct Window {
virtual void move(. . .) {. . .}
virtual void lower(. . .) {. . .}
. . .

}; };
struct Scrollbar : public Window { // specialize

enum Kind { Hor, Ver };
Window &window;
Scrollbar( Window &window, Kind k ) : window( &window ), . . . {}
void scroll( int amt ) {. . .}

};

struct Title : public Window { // specialize
. . .
Title( Window &window, . . . ) : window( window ), . . . {}
setTitle( string t ) {. . .}

};
Window w;
Title( Scrollbar( Scrollbar( w, Ver ), Hor ), "title" ) decorate;

• decorator only mimics object’s type through base class

• allows decorator to be dynamically associated with different object’s, or same object to
be associated with multiple decorators

observer : 1 to many dependency⇒ change updates dependencies

struct Fan { // abstract
Band &band;
Fan( Band &band ) : band( band ) {}
virtual void update( CD cd ) = 0;

};
struct Band {

list<Fan *> fans; // list of fans
static void perform( Fan *fan ) { fan->update(); }
void attach( Fan &fan ) { fans.push back( &fan ); }
void deattach( Fan &fan ) { fans.remove( &fan ); }
void notify() { for each( fans.begin(), fans.end(), perform ); }

};
struct Groupie : public Fan { // specialize

Groupie( Band &band ) : Fan( band ) { band.attach( *this ); }
~Groupie() { band.deattach( *this ); }
void update( CD cd ) { buy/listen new cd }

};
Band dust;
Groupie g1( dust ), g2( dust ); // register
dust.notify(); // inform fans about new CD

• manage list of interested objects, and push new events to each

• alternative design has interested objects pull the events from the observer

◦ ⇒ observer must store events until requested
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visitor : perform operation on elements of heterogeneous container

struct PrintVisitor {
void visit( Wheel &w ) { print wheel }
void visit( Engine &e ) { print engine }
void visit( Transmission &t ) { print transmission }
. . .

};
struct Part {

virtual void action( Visitor &v ) = 0;
};
struct Wheel : public Part {

void action( Visitor &v ) { v.visit( *this ); } // overload
};
struct Engine : public Part {

void action( Visitor &v ) { v.visit( *this ); } // overload
};
. . .

PrintVisitor pv;
list<Part *> ps;
for ( int i = 0; i < 10; i += 1 ) {

ps.push back( add different car parts );
}
for ( list<Part *>::iterator pi = ps.begin(); pi != ps.end(); ++pi ) {

(*pi)->action( pv );
}

• each part has a generalaction that is specialized by visitor

• different visitors perform different actions or dynamically vary the action

• compiler statically selects appropriate overloaded version ofvisit in action

4.8 Testing

• A major phase in program development is testing (> 50%).

• This phase often requires more time and effort than design and coding phases combined.

• Testing is not debugging.

• Testing is the process of “executing” a program with the intent of determining differences
between the specification and actual results.

◦ Good test is one with a high probability of finding a difference.

◦ Successful test is one that finds a difference.

• Debugging is the process of determining why a program does not have an intended testing
behaviour and correcting it.
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4.8.1 Human Testing

• Human Testing : systematic examination of program to discover problems.

• Studies show 30–70% of logic design and coding errors can be detected in this manner.

• Code inspectionteam of 3-6 people led by moderator (team leader) looking forproblems,
often “grilling” the developer(s):

◦ data errors: wrong types, mixed mode, overflow, zero divide,bad subscript, initializa-
tion problems, poor data-structure

◦ logic errors: comparison problems (== / !=, < / <=), loop initialization / termination,
off-by-one errors, boundary values, incorrect formula, end of file, incorrect output

◦ interface errors: missing members or member parameters, encapsulation / abstraction
issues

• Walkthrough : less formal examination of program, possibly only 2-3 developers.

• Desk checking: single person “plays computer”, executing program by hand.

4.8.2 Machine Testing

• Machine Testing: systematic running of program using test data designed to discover prob-
lems.

◦ speed up testing, occur more frequently, improve testing coverage, greater consistency
and reliability, use less people-time testing

• Commercial products are available.

• Should be done after human testing.

• Exhaustive testing is usually impractical (too many cases).

• Test-case designinvolves determining subset of all possible test cases withthe highest prob-
ability of detecting the greatest number of errors.

• Two major approaches:

◦ Black-Box Testing : program’s design / implementation is unknown when test cases
are drawn up.

◦ White-Box Testing : program’s design / implementation is used to develop the test
cases.

◦ Gray-Box Testing : only partial knowledge of program’s design / implementation
know when test cases are drawn up.

• Start with the black-box approach and supplement with white-box tests.

• Black-Box Testing
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◦ equivalence partitioning : completeness without redundancy

∗ partition all possible input cases into equivalence classes

∗ select only one representative from each class for testing

∗ E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

∗ 3 equivalence classes, plus invalid hours

∗ Since there are many types of invalid data, invalid hours canalso be partitioned
into equivalence classes

◦ boundary value testing

∗ test cases which are below, on, and above boundary cases

39, 40, 41 (hours) valid cases
44, 45, 46 ”
0, 1, 2 ”

-2, -1, 0 ” invalid cases
59, 60, 61 ”

◦ error guessing

∗ surmise, through intuition and experience, what the likelyerrors are and then test
for them

• White-Box (logic coverage) Testing

◦ develop test cases to cover (exercise) important logic paths through program

◦ try to test every decision alternative at least once

◦ test all combinations of decisions (often impossible due tosize)

◦ test every routine and member for each type

◦ cannot test all permutations and combinations of execution

• Test Harness: a collection of software and test data configured to run a program (unit)
under varying conditions and monitor its outputs.

4.8.3 Testing Strategies

• Unit Testing : test each routine/class/module separately before integrated into, and tested
with, entire program.

◦ requires construction of drivers to call the unit and pass ittest values

◦ requires construction of stub units to simulate the units called during testing

◦ allows a greater number of tests to be carried out in parallel

• Integration Testing : test if units work together as intended.

◦ after each unit is tested, integrate it with tested system.
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◦ done top-down or bottom-up : higher-level code is drivers, lower-level code is stubs

◦ In practice, a combination of top-down and bottom-up testing is usually used.

◦ detects interfacing problems earlier

• Once system is integrated:

◦ Functional Testing : test if performs function correctly.

◦ Regression Testing: test if new changes produce different effects from previous ver-
sion of the system (diff results of old / new versions).

◦ System Testing: test if program complies with its specifications.

◦ Performance Testing: test if program achieves speed and throughput requirements.

◦ Volume Testing : test if program handles difference volumes of test data (small ⇔
large), possibly over long period of time.

◦ Stress Testing: test if program handles extreme volumes of data over a shortperiod of
time with fixed resources, e.g., can air-traffic control-system handle 250 planes at same
time?

◦ Usability Testing : test whether users have the skill necessary to operate the system.

◦ Security Testing : test whether programs and data are secure, i.e., can unauthorized
people gain access to programs, files, etc.

◦ Acceptance Testing: checking if the system satisfies what the client ordered.

• If a problem is discovered, make up additional test cases to zero in on the issue and ultimately
add these tests to the test suite for regression testing.

4.8.4 Tester

• A program should not be tested by its writer, but in practice this often occurs.

• Remember, the tester only tests whattheythink it should do.

• Any misunderstandings the writer had while coding the program are carried over into testing.

• Ultimately, any system must be tested by the client to determine if it is acceptable.

• Points to the need for a written specification to protect boththe client and developer.
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gdb

backtrace, 175
break, 176
breakpoint,176

continue, 178
next, 177
step, 177

continue, 178
frame, 176
info, 177
list, 178
next, 177
print, 175
run, 175
step, 177

gdb, 174
generalization,142
generate,118
globbing,4, 13, 14, 26
gmake, 161
goto , 51

label,51
graphical interface,1
gray-box testing,197
group,15

has-a,131, 143
heap,72, 91, 92, 146

array,92
help , 7
heterogeneous values,62, 63
hex, 76
hidden file,5, 10, 11
history , 7
home directory,3, 7
homogeneous values,60
hot spot,86
human testing,197

I/O
cerr, 75
cin, 75
clear, 79
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cout, 75
fail, 76
formatted,75
fstream, 76
ifstream, 76
ignore, 79
iomanip, 76
iostream, 75
manipulators,76

boolalpha, 76
dec, 76
endl, 76
fixed, 76
hex, 76
left, 76
noboolalpha, 76
noshowbase, 76
noshowpoint, 76
noskipws, 76
oct, 76
right, 76
scientific, 76
setfill, 76
setprecision, 76
setw, 76
showbase, 76
showpoint, 76
skipws, 76

ofstream, 76
identifier,33, 51
if , 25, 43

?:, 45
dangling else,43
else , 43

ifstream, 76
ignore, 79
implementation,127
implementation inheritance,131
implicit conversion,39, 72, 95, 102
import,125, 127
import, 167
indirection,57
info, 177
Inheritance,145
inheritance,131, 143

implementation,131
type,131, 133

initialization,66, 100, 102, 104, 105, 108,
132, 135
array,66
forward declaration,114
string,67
structure,66

inline , 84
input,31, 74, 77

>>, 103
end of file,78
eof, 78
fail, 78
feof, 79
formatted,75
manipulators

iomanip, 76
noskipws, 76
skipws, 76

standard input
cin, 75

input/output redirection,16
filter

|, 16
input

<, 16
output

>, 16
>&, 16

int , 33, 34, 36
INT16 MAX, 35
INT16 MIN, 35
int16 t, 35
INT32 MAX, 35
INT32 MIN, 35
int32 t, 35
INT64 MAX, 35
INT64 MIN, 35
int64 t, 35
INT8 MAX, 35
INT8 MIN, 35
int8 t, 35
INT MAX, 34
INT MIN, 34
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integral type,63
integration testing,198
interaction model,119
interface,70, 98, 127
interface class,142
interfaces,70
iomanip, 76
iostream, 31, 75
is-a,143
iteration statement

break , 46
continue , 46

iterative,183
iterator,146, 193

++, 147
--, 147
for each, 152

Java,95

keyword,33
keywords,19
ksh,1

label,51
label variable,51
language

preprocessor,157
programming,157
template,157

lazy evaluation,45
ld, 159
left, 76
less, 12
linker, 159
list, 146, 151, 178

back, 151
begin, 151
clear, 151
empty, 151
end, 151
erase, 151
front, 151
insert, 151
pop back, 151
pop front, 151

push back, 151
push front, 151
begin, 151
end, 151
size, 151

literal, 35, 36, 66, 67, 77
bool , 36
char , 36
double , 36
escape sequence,36
initialization,66
int , 36
string,36, 67
type constructor,66

literals,54
LLONG MAX, 34
LLONG MIN, 34
logical,188
login, 1, 2
login shell,24
logout,2
long , 34
LONG MAX, 34
LONG MIN, 34
loop

mid-test,47
multi-exit, 47

looping statement,45
break , 28
continue , 28
do , 46
for , 27, 46
while , 27, 45

lp, 12
lpstat, 12
ls, 10, 15, 167

machine testing,197
macros,84
main, 31, 80, 113
make,161
make, 161
malloc, 90
man, 10
managed language,90
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manipulators,76
map, 146, 149

begin, 150
end, 150
erase, 150
find, 150
insert, 150
begin, 150
end, 150

math library,159
matrix,60, 74, 93, 148
member,62

anonymous,131
const , 108
constructor,100
destruction,103, 132, 135
initialization,100, 132, 135
object,98
operator,99
overloading,99
pure virtual,140, 141
static member,109
virtual, 137, 139

member selection,63
memberwise copy,105
memory leak,91, 93, 107
mid-test loop,47
mixin, 143
mkdir, 10, 166
modularization,70
modularize,185
module,70
modules,70
more, 12
multi-exit

loop,47
mid-test,47
multi-level

static,51
multiple inheritance,142
mutually recursive,112, 113
mv, 11, 170

name equivalence,64, 133, 134, 145
namespace,31, 153

std, 31
narrowing,40
navigable,121
nesting,132

blocks,42, 43
comments,32
initialization,66
preprocessor,85
routines,72
type,65

new , 90
next, 177
noboolalpha, 76
non-contiguous,103, 104
noshowbase, 76
noshowpoint, 76
noskipws, 76
npos, 68
NULL, 66, 84
null address,57
null character,68

object,97
anonymous member,131
assignment,104, 135
const member,108
constructor,100, 132, 135
copy constructor,104, 116, 135
default constructor,100
destructor,103, 132, 135
initialization,100, 135
literal, 102
member,98
pure virtual member,140, 141
static member,109
virtual member,137, 139

object code,159
object diagram,121
object model,119
object pattern,190
object-oriented,97, 131
observer,195
oct, 76
ofstream, 76
open,76
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file, 76
operation,120
operators

*, 38, 56
<<, 76, 103
>>, 76, 103
&, 38, 56
arithmetic,37
assignment,37
bit shift, 37
bitwise,37
cast,37
comma expression,37
control structures,37
logical,37
overloading,76, 99
pointer,37, 38, 56
priority, 37
relational,37
selection,65, 132
string,68
struct , 37

selection,114
other,15
output,31, 74, 79

<<, 103
endl, 31
formatted,75
manipulators

boolalpha, 76
dec, 76
endl, 76
fixed, 76
hex, 76
iomanip, 76
left, 76
noboolalpha, 76
noshowbase, 76
noshowpoint, 76
oct, 76
right, 76
scientific, 76
setfill, 76
setprecision, 76
setw, 76

showbase, 76
showpoint, 76

standard error
cerr, 75

standard output
cout, 31, 75

overload,80
overloading,76, 94, 99, 100, 103
override,132, 133, 137
overriding,43

paginate,12
parameter,72

array,74
constant,73
default value,73
pass by reference,72
pass by value,72
prototype,113

parameter passing
array,74

pass by reference,72
pass by value,72
pattern,26, 189
pattern matching,4
performance testing,199
pointer,54, 56, 66

0, 66
array,61, 92
matrix,93
NULL, 66, 84

pointer variable,57
polymorphic,139
polymorphism,133
Polymorphism,144
preprocessor,33, 83, 157, 158, 164

#define , 83
#elif , 85
#else , 85
#endif , 85
#if , 85
#ifdef , 85
#ifndef , 85
#include , 84
comment-out,33
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file inclusion,84
macros,84
variable,83, 158

print, 175
priority, 37
private , 115
procedural,188
procedure,71
program

structure,32
program structure,32

block,31
main, 31

project,165
promotion,39
prompt,1

$, 1
%, 1
>, 6

protected , 115
prototype,112
proxy,194
pseudo random-number generator,110
pseudo random-numbers,110
public , 62, 115
pure abstract-class,142
pure virtual member,140, 141
pwd , 7

queue, 146, 151
quoting,6

random number,110
generator,110
pseudo-random,110
seed,111

random-number generator,110
read,15
real time,9
recursive type,63
reference,38, 54, 56

initialization,58
reference parameter,72
referencing,56
regression testing,199

regular expressions,4
reinterpret cast , 80
relative pathname,3
replace, 68
repository,165, 166
resolve, 173
return , 31, 71
return code,9
Return key,1
return type,71
reuse,131
revert, 169
rfind, 68
right, 76
rm, 11, 169
routine,70

argument/parameter passing,72
array parameter,74
function,71
member,98
parameter,71

pass by reference,72
pass by value,72

procedure,71
prototype,112
return , 71
return type,71
routine overloading,94
routine prototype

forward declaration,112
scope,98

routine member,62
routine pointer,95
routine prototype,112
run, 175

scientific, 76
scope,98, 114, 153
script,19
search,15
security testing,199
sed, 18
selection operator,65
selection statement,43

break , 44
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case , 26, 44
default , 44
else , 43
if , 25, 43
pattern,26
switch , 44, 81

self-assignment,107
semantic error,89
semi-colon,25
semicolon,33, 42, 62
sentinel,68
separate compilation,85, 124

-c, 126
sequential,187
setfill, 76
setprecision, 76
setw, 76
sh,1, 19
sh, 9
sha-bang,19
shell,1

bash,1, 24
csh,1, 24
ksh,1
login, 24
prompt,1

$, 1
%, 1
>, 6

sh,1
tcsh,1

shell program,19
shift , 22
short , 34
short-circuit,24, 45
short-circuit expression evaluation,45
showbase, 76
showpoint, 76
SHRT MAX, 34
SHRT MIN, 34
signature,112
signed , 34
single quote,6
singleton,192
size type, 68

sizeof , 38
sketch,118
skipws, 76
slicing,139
software development

.cc, 128

.h, 127

.o, 126
separate compilation,124

software engineering,70, 181
source , 23
source file,113, 115
source-code management,164
source-code management-system,165
spiral,183
ssh, 14
stack,43, 72
stack, 146, 151
stack allocation,92
staged delivery,183
stamp coupling,186
statement,33
static , 129
static block,72, 109
static multi-level exit,51
static cast , 40
status, 169
std, 31
stderr, 75
stdin, 75
stdout, 75
step, 177
strcat, 68
strcpy, 68
strcspn, 68
stream

cerr, 75
cin, 75
clear, 79
cout, 75
fail, 76
formatted,75
fstream, 76
ifstream, 76
ignore, 79
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input,31
cin, 75
end of file,78
eof, 78
fail, 78

manipulators
boolalpha, 76
dec, 76
endl, 76
fixed, 76
hex, 76
iomanip, 76
left, 76
noboolalpha, 76
noshowbase, 76
noshowpoint, 76
noskipws, 76
oct, 76
right, 76
scientific, 76
setfill, 76
setprecision, 76
setw, 76
showbase, 76
showpoint, 76
skipws, 76

ofstream, 76
output,31

cout, 31
endl, 31

stream file,75
stress testing,199
string,36, 67

C++
!=, 68
+, 68
<, 68
<=, 68
=, 68
==, 68
>, 68
>=, 68
[ ], 68
c str, 68
find, 68

find first not of, 68
find first of, 68
find last not of, 68
find last of, 68
npos, 68
replace, 68
rfind, 68
size type, 68
substr, 68

C
[ ], 68
strcat, 68
strcpy, 68
strcspn, 68
strlen, 68
strncat, 68
strncpy, 68
strspn, 68
strstr, 68

literal, 67
null termination,68

stringstream, 81
strlen, 68
strncat, 68
strncpy, 68
strspn, 68
strstr, 68
struct , 97, 116
structurally equivalent,64
structure,54, 62, 66, 97

member,62, 97
data,62
function,62
initialization,62
routine,62

visibility
default,62
public , 62

struct , 37
structured programming,47
subscript,60
subshell,9, 19, 24
substitutability,144
substr, 68
subversion,165
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successive refinement,185
suffix

.C, 31

.c, 31

.cc, 31

.cpp, 31
svn, 165

add, 168
cat, 171
checkout, 167
commit, 168
cp, 170
import, 167
ls, 167
mkdir, 166
mv, 170
resolve, 173
revert, 169
rm, 169
status, 169
update, 171

svnadmin
create, 166

switch , 44, 81
break , 44
case , 44
default , 44

syntax error,89
system command,161
system modelling,118
system testing,199
system time,9

tab key,5
target value,57
target variable,57
tcsh,1
tcsh, 9
template,145, 157

routine,145
type,145

template method,191
template routine,145
template type,145
temporal,188

terminal,1, 2
test , 24
test harness,198
test-case design,197
Testing

Integration,198
testing,196

acceptance,199
black-box,197
functional,199
gray-box,197
harness,198
human,197
machine,197
performance,199
regression,199
security,199
stress,199
system,199
unit, 198
usability,199
volume,199
white-box,197

text merging,165
this , 98
time , 9
time stamp,160
token,83
translation unit,125
translator,158
true , 39
type , 8
type aliasing,64
type coercion,80
type constructor,54

array,60
enumeration,54, 83
literal, 66
pointer,56
reference,56
structure,62
type aliasing,64
union,63

type conversion,40, 95, 102, 139
type equivalence,133, 134
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type inheritance,131, 133
type nesting,65
type qualifier,34, 35, 59

const , 36, 59
long , 34
short , 34
signed , 34
static , 129
unsigned , 34

type-constructor literal
array,66
pointer,66
structure,66

typedef , 64, 154

UINT16 MAX, 35
uint16 t, 35
UINT32 MAX, 35
uint32 t, 35
UINT64 MAX, 35
uint64 t, 35
UINT8 MAX, 35
uint8 t, 35
UINT MAX, 34
ULLONG MAX, 34
ULONG MAX, 34
undefined,57
unformatted I/O,74, 80
unidirectional association,120
unified modelling language,119
uninitialization,103
uninitialized variable,34, 57, 66, 90, 91
union,63
unit testing,198
unmanaged language,90
unsigned , 34
update, 171
usability testing,199
user,15
user time,9
USHRT MAX, 34
using

declaration,154
directive,154

value parameter,72

variable declarations
type qualifier,34, 35

variables
constant,37
dereference,38, 56
reference,38, 56

vector, 146, 147
[ ], 147
at, 147
begin, 148
clear, 147
empty, 147
end, 148
erase, 148
insert, 148
pop back, 147
push back, 147
rbegin, 148
rend, 148
resize, 147, 148
size, 147

version control,164
virtual , 137, 139
virtual members,137, 139–141
visibility, 65

default,62
private , 115
protected , 115
public , 62, 115

visitor, 196
void , 71
void *, 91
volume testing,199

walkthrough,197
waterfall,183
wchar t, 33
which, 8
while , 27, 45
white-box testing,197
whitespace,32, 77, 83
widening,39
wildcard,4, 14

qualifier,14
working copy,165
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wrapper,190
wrapper member,136
write, 15

xterm,1, 2

zero-filled,66
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