University of

Waterloo

%

School of Computer Science

Course Notes
CS 246

Object-Oriented Software Development

http: //www.student.cs.uwaterloo.ca/ ~cs246

Fall 2010

Contents

1 Shell
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

1

FilleSystem 5
Pattern Matching 8
Quoting e 10
ShellCommands 12
SystemCommands, 1¢
File Permission, 25
Input/Output Redirection 28
Programming e 30
1.8.1 \Variables 31
1.8.2 Routine, 34
1.8.3 Arithmetic 39
1.8.4 Control Structures, . 40

1.841 Test 40

CS 246 i

1.8.4.2 Selection. 42

1.8.43 Looping, 45

2 C++ 51

2.1 Program Structure Lo oo o]
211 Comment, 5l

212 Statement o 0oL 53

2.2 FirstProgram e 54
2.3 Declaration 0 56
2.3.1 ldentifier 0L 56

2.3.2 BasicTypes 57

2.3.3 \Variable Declaration 57

2.3.4 TypeQualifier 59

235 Constants o0 62

2.3.6 TypeConstructor 64

2.3.6.1 Enumeration 65

2.3.6.2 Pointer/Reference 66

2.3.6.3 Aggregation (Array/Structure) 73

2.3.7 TypeEquivalence 81

2.3.8 TypeNesting 82

2.3.9 Type-ConstructorConstant 84

CS 246

2.4

2.5

2.6

2.7

2.8

v

2.3.10 String, 85
Expression. 90
241 Conversion 94
2.4.2 MathOperations 96
Control Structures Lo 08
251 Block 99
25.2 Conditional 99
253 Selection0 0 100
2.5.4 Conditional Expression Evaluation. 10z
255 Looping., 104
Structured Programming, 107
2.6.1 Multi-ExitLoop 110
2.6.2 Static Multi-Level Exit 117
Input/Output 121
2.7.1 Formatted!/O. 122

2.7.11 Formats 123

2.7.1.2 Input, 124

2.7.1.3 Output, 130
2.7.2 Unformatted!l/O 131

Command-line Arguments 134

CS 246 Y

2.9 Preprocessor. 13¢
2.9.1 Substitutiono 139
29.2 FilelInclusion, 142
2.9.3 Conditional Inclusion. 143

2.10 Debugging. 145
2.10.1 Debug Print Statements. 141
2.10.2 Assertions. 149
2.10.3 Errorso 151

2.11 Dynamic Storage Management 15

2.12 Modularization Lo 161

2.13 Routine e 163
2.13.1 Argument/ParameterPassing 16
2.13.2 Array Parameter 16C
2.13.3 Overloading. 171

2.14 Routine Pointer 00 174

2.15 Object 178
2.15.1 ObjectMember 180
2.15.2 OperatorMember. 183
2.15.3 Constructor 0oL 184

2.15.3.1 Constant 187

CS 246 Vi

2.15.3.2 Conversion. 188

2.15.4 Destructor. 0o 191
2.15.5 Copy Constructor / Assignment 19:
2.15.6 Initialize const/ Object Member 201
2.15.7 StaticMember, 203
2.16 RandomNumbers, 20/
2.17 DeclarationBeforeUse 206
2.18 Encapsulation o 214
2.19 SystemModelling 221
219.1 UML 223
2.20 Separate Compilation 00000, 23¢
2.21 Inheritanceo 247
2.21.1 Implementation Inheritance 24
2.21.2 Typelnheritance 251
2.21.3 Constructor/Destructor 25€
2.21.4 Copy Constructor / Assignment 25
2215 QOverloading. 258
2.21.6 VirtualRoutine 260
2.21.7 Downcast 0 265

2.21.8 Slicing 266

CS 246 Vil

2.21.9 ProtectedMembers, 26
2.21.10AbstractClass 268
2.21.11 Multiple Inheritance 272
221.12UML e 274

2.22 Inheritance / Composition Design 27!
223 Template 278
2.23.1 Standard Library 280
2.23.1.1 Vector 282

223.1.2 Map 287

2.23.1.3 Single/Double Linked 291

2.23.1.4 foreach 294

2.24 Namespace i i i e e 29(

3 Tools 302

3.1 C/C++Composition. e 302
3.2 Compilation 303
3.2.1 Preprocessor e 304
3.2.2 Compiler e 305
3.23 Assembler 0L, 307
3.24 Linker. 307

3.3 Compiling Complex Programs 30¢

CS 246 Vil

3.3.1 Dependences, 30¢
3.3.2 Make 311
3.4 Source-Code Management 31
341 SVN . .. 319
3.4.2 Repository, 320
3.4.3 CheckingOut 323
344 Adding 324
3.45 Checkingln. 326
346 Modifying 327
3.4.7 RevisionNumber 331
3.4.8 Updating 332
3.5 Debugger 338
351 GDB, 339
4 Software Engineering 349
4.1 SoftwareCrisis e 350
4.2 Software Development 351
4.3 DevelopmentProcesses 35
4.4 Software Methodology 355
4.4.1 SystemDesign 356

442 Top-Down 356

CS 246
4.5

4.6
4.7

4.8

IX

DesignQuality 358
451 Coupling 359
45.2 Cohesion, 360
DesignPrinciples, 364
DesignPatterns, 364
47.1 PatternCatalog 366

4.7.1.1 ClassPatterns 361

4.7.1.2 ObjectPatterns. 37C
Testing e e 381
48.1 HumanTesting 382
4.8.2 MachineTesting 383
4.8.3 Testing Strategies 38¢

4.8.4 Tester e 387

1 Shell

e After signing onto a computer (login), a mechanism musttdrislisplay
iInformation and perform operations.

e The two main approaches are graphical and command line.
e Graphical interface (desktop):

o use icons to represent programs (actions),
o click on icon launches (starts) a program,
o program may pop up a dialog box for arguments to specify gseaton.

e Command-line interface (shell):

o use text strings (names) to represent programs (commands),
o command is typed after a prompt in an interactive area toistar
o arguments follow the command to specify its execution.

e Graphical interface is convenient, but seldom programmabl
e Command-line interface requires more typing, but allowsypmming.
e A shellis a program that reads commands and interprets them.

© Peter A. Buhr

CS 246 2

e It provides a simple programming-language wathng variables and a few
statements.

e Unix shells falls into two basic campsh (ksh, bash) andcsh (tcsh), each
with slightly different syntax and semantics.

e Focus on bash with some tcsh.
e Area (window) where shell runs is calledexminal or xterm.

e Shell line begins with @arompt denoted by (sh) or% (csh) (often
customized).

e A command is typed after the prompt it executed untiEnter /Return
key Is pressed:

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009

$ whoamiEnter # print userid
Ccs246

$ echo Hi There!Enter # print any string
Hi There!

e Comment begins with a hash)(and continues to the end of line.

e Multiple commands can be typed on the command line sepalbgtdte
semi-colon.

CS 246 3

$ date : whoami ;: echo Hi There! # 3 commands

Sat Dec 19 07:36:17 EST 2009
csS246

Hi There!
e Use commandhsh to set the login shell (bash, tcsh, etc.).

$ chsh

Password: XXXXXX

Changing the login shell for jfdoe

Enter the new value, or press ENTER for the default
Login Shell [/bin/tcsh]: /bin/bash

For UW environment, use path namgisbin/tcsh or /xhbin/bash for newest
commands.

e Commands can be editted on the command line:

o position cursor), with <t andr> arrow keys,
o remove characters before cursor whtitkspace/delete key,
o type new characters before cursor,

o pressEnter at any point along the command line to execute modified
command.

CS 246 4

e Most commands have options, specified with a minus followedrie or
more characters, which specify how the command operates.

$ uname -m # machine type

x86_64 / sun4u

$ uname -s # operating system
Linux / SunOS

$ uname -a # all system information

Linux linux008.student.cs 2.6.31-21-server #59-Ubuntu SMP x86_64 GNU/Linux
SunOS servicesl6.student.cs 5.8 Generic_117350-56 sun4u sparc SUNW,UIltra-60

e Options are normally processed left to right; one option weycel another.
¢ No standardization for option syntax and names.
e Shell terminates with commaretit .

$ exit # exit shell and terminal
o when the shell of terminal/xterm terminates, the termxtatin
terminates.

o when the login terminal/xterm terminates, you sign off toeputer
(logout).

CS 246 5
1.1 File System

e Shell commands interact extensively with the file system.
e Files are containers for data stored on secondary storagal(y disk).

¢ File names are organized in an N-ary tree: directories atees, files are
leaves.

e Information is stored at specific locations in the hierarchy

CS 246 6

/ root of the local file system

bin basic system commands

lib system libraries

usr
bin more system commands
lib more system libraries
Include system include files, .h files

tmp system temporary files

u or home user files

j.f.d.oe home directory

.bashrc, .emacs, .login,... hidden files
cs246 course files
al assignment 1 files

gl1x.C, g2y.h, g2y.cc, q3z.cpp

e Directory named/” is the root of the file system.
e bin, lib, usr, include : system commands, system library and include files.
e tmp : temporary files created by commandkdred among all usens
e U Or home : user files are distributed across these directories.

e Directory for a particular user is called th&iome directory.

CS 246 7

e Each file has a unique path-name in the file system, referemtiecn
absolute pathname.

e An absolute pathnamels a list of all the directory names from the root to
the file name separated by the charactér “

/u/jffdoe/cs246/al/glx.C # => file q1x.C
e The shell provides short names for a file using an implicrtstg location.

e At sign on, the shell createscairrent directory variable set to the user’s
home directory.

e Any file name not starting with/” is automatically prefixed with the
current directory to create the necessary absolute patnam

e A relative pathnameis a list of all the directory names from the current
directory to the file name separated by the character “

e E.g., if useljfdoe signs on, home and current directory are setffdoe:

cs246/al/qlx.C # => /ul/jfdoe/cs246/al/qlx.C
e Shell special character” (tilde) expands to user’s home directory.

~/cs246/al/glx.C # => /u/jfdoe/cs246/al/qix.C

CS 246 8
e Every directory contains 2 special directories:

o “.” points to current directory.

Jcs246/al/glx.C # => /u/jfdoe/cs246/al/qlx.C
o “..” points to parent directory above the current directory.

..I. .Jusr/include/stdio.h # => [usr/include/stdio.h

1.2 Pattern Matching

e Shells provide pattern matching of file namg®&{Qbing) to reduce typing
lists of file names.

e Different shells and commands support slightly differemtis and syntax
for patterns.

e Pattern matching is provided through special characters, {}, [],
denoting differentvildcards.

e Patterns are composable: multiple wildcards joined intoglex pattern.

e E.g., if the current directory isi/jfdoe/cs246/al with leaf filesqlx.C, g2y.h,
g2y.cc, q3z.cpp
o « matches O or more characters

CS 246
g # => g1x.C, g2y.h, g2y.cc, q3z.cpp
o ? matches 1 character
g*.?7? # => (g2y.cc
o {...} matches any alternative in the set

x.{cc,cpp,C} # => g1x.C, g2y.cc, g3z.cpp
o [...] matches 1 character in the set

q[12]« # => g1x.C, g2y.h, gq2y.cc
o[l...] (* csh) matches 1 characteot in the set
g[!1]x # => g2y.h, g2y.cc, g3z.cpp
o Create ranges using hyphen (dash)
[0-3] # =>0,1,2,3
[a-zA-Z] # => lower or upper case letter
[la-zA-Z] # => any character not a letter

o Hyphen is escaped by putting it at start or end of set
[-?«]x # => matches any file nhames starting with -, ?, or «

e Hidden files contain administrative information and start with (dot).

CS 246 10

e These files are ignored by globbing patterns, e.daes not match all file
names in a directory.

e Pattern matches all hidden files, e.ghashrc, .login, etc.,and “.”, “ ..
e Pattern[!.]x does not match.” and “..” directories.

e On the command line, pressing tlad key after typing several characters of
a command/file name requests the shell to automatically Eefne name.

$ ectab # cause completion of command name to echo
$ echo gltab # cause completion of file name to gix.C

e If the completion is ambiguous, the shell “beeps”, and yostype more
characters to uniquely identify the name.

1.3 Quoting
e Quoting controls how the shell interprets strings of characters.
e Backslash(\) : escapeany character, including special characters:

$echo \Ww\g W« \?2\[\]\$ WLV X
wgsx?[]%\ X

Normally multiple spaces are compressed.

CS 246 11

e Backquote (') : execute the text as a command, and replace it with the
command output:

$ echo ‘whoami'
csS246

e Single quote(”) : do not interpret the string, even backslash:

$echo A\wlg\lx \2 V[\]\$ WLV L\ X
WG W A2 [V A WAL X

A single quote cannot appear inside single quotes.
e A file name containing special characters is enclosed inesipgptes.
$ rm ‘Book Report #2” # file name with spaces and comment characte

e Double quote(") : interpret escapes, backquotes, and variables in string:

$ echo ! * r)[] \\ \"\V\hoam \\ non
« 2 [1\ "cs246

e Put newline into string for multi-line text.

CS 246 12

$ echo "abc

> cdf " # prompt > means current line is incomplete
abc
cdf

1.4 Shell Commands

e Some commands are executed directly by the shell rathettiiea@S
because they read/write the shell’s state.

e help : display information about bash commands (not sh or csh).

help [command-name]

o without argument, lists all bash commands.
e cd : change the current directory.

cd [directory]

o argument must be a directory and not a file

o cd : move to home directory, same &b ~

ocd -: move to previous current directory

ocd ~/bin : move to thebin directory contained in the home directory

CS 246 13

o cd /usr/include : move to/usr/include directory
ocd ..: move up one directory level
o If path does not existd fails and current directory is unchanged.

e pwd : print the current directory.

$ pwd
/u/cs246/teaching/notes

e history and “” (bang!) : print a numbered history of most recent
commands entered and access them.

$ history $ 12

1 date whoami

2 whoami|cs246

3 cd .. $ 1!

4 |s xxx |whoami

5 cat XxX |cs246

6 history |$ lls
IS XXX
XXX

o IN rerun commandl
o Il rerun last command

CS 246 14

o Ixyz rerun last command starting with the string?2”
o Arrow keys A/V move forward/backward through history commands on
command line.

e alias : string substitutions for command names (not argumenia)3m).

alias [command-name=string |]

o no spaces before/after™ (csh does not have=").

o string IS substituted for commanmnbmmand-name.

o without argument, print all currently defined alias names stnings.
o provide nickname for frequently used or variations of a canch

$ alias d="date"

$d

Mon Oct 27 12:56:36 EDT 2008

$ alias off="cl ear; | ogout”

$ off # clear screen before logging off

Why are quotes necessary for alef
o Always use quotes to prevent problems.
o aliases are composable:

CS 246 15

$ alias now="d"
$ now
Mon Oct 27 12:56:37 EDT 2008

o useful for setting command options for particular commands
$ alias cp="cp -i

$ alias mv="nv - "
$ alias rm="rm-i"

which always uses thé eption on commandsp, mv andrm.
o alias can be overridden by quoting or escaping the commame na
$°rm -r xyz
$ \rm -r xyz
which does not add thé eption.
o alias entered on a command line is only in effect for a shekisa.
o two options for making aliases persist across sessions:

1. insert thaalias commands in the appropriathellirc file,

2. place a list oklias commands in a file (ofteraliases) andsource that
file from the.shellrc file.

e type (cshwhich) : print pathname of a command.

CS 246 16

$ type make
/usr/ccs/bin/make

$ type gmake
/software/.admin/bins/bin/gmake

$ type rm
rm IS aliased to ‘rm -I’

e echo : write arguments, separated by a space and terminated swimne.

$ echo | like ice cream
| like ice cream
$echo " | like ice cream"”

| like ice cream
e printf . write arguments, under control of a format.
printf format [arguments |

o format is C-style printf format-codes.

$ printf "real : 9%. 2f hex: %x\n" 3.5 32
real: 3.50 hex: 20

e eval : process each argument and then execute.

CS 246 17

$ echo “‘dateY “whoam

‘date' ‘whoami'

$ eval echo “dateY ”“whoamV
Sat Dec 19 09:12:20 EST 2009 cs246

o removes guotes, expands variables, etc., then executesamin
e time : execute a command and print a time summary.
o printsuser time (program CPU)system time(OS CPU)eal time

(wall clock)
o different shells print these values differently:
$ time a.out % time a.out
real 1.210.94u 0.22s 0:01.2
user 0.9
SysS 0.2

o user + systemv real-time (uniprocessor, no OS delay)
e exit : terminates shell, with optional integer exit status (netcode)N.
exit [N]

o[N]Isinrange 0-255; larger values are truncated, negativeesdif
allowed) become unsigned (=% 255).

CS 246
o exit status defaults to zero if unspecified.

1.5 System Commands

e Commands executed by operating system (UNIX).
¢ A shell can be nested within another, callesiéshell

$... # bash commands

$ tcsh # start tcsh in bash

% ... # tcsh commands

% bash # start bash in tcsh

$... # bash commands

$ exit # exit bash

% exit # exit tcsh

$ exit # exit original bash and terminal

o Allows switching among shells for different purposes.
e man : print information about command.

$ man bash # print information about “bash” command
$ man man # print information about “man” command

e Is : list the directories and files in the specified directory.

18

CS 246

Is [-al][file or directory name-list |

o -a lists all files, including those that begin with a dot
o -l generates bong listing (details) for each file
o no file/directory name implies current directory

e mkdir : create a new directory at specified location in file hiergrch

mkdir directory-name-list

e cp . copy files, and with ther-option, copy directories.

cp [-1] source-file target-file
cp [-1] source-file-list target-directory
cp [-1] -r source-directory-list target-directory

o -i prompt for verification if a target file is being replaced.

o -r recursively copy the contents of a source directory to thgeta
directory.

$cpfl 2 # copy file f1 to 2
$cpfl f2f3d # copy files f1, f2, f3 under directory d

19

$ cp -r d1 d2 d3 # copy directories d1, d2 recursively under directory d3

CS 246 20

e mv . move files and/or directories to another location in theHikrarchy.
mv [-I] source-file target-file
mv [-1] source-file/directory-list target-directory

o If the target-file does not exist, the source-file is renanogterwise the
target-file is replaced.

o -i prompt for verification if a target file is being replaced.
e rm : remove (delete) files, and with theoption, remove directories.

rm [-ifr] file/directory-list

o -i prompt for verification for each file/directory being remdve
o -f do not prompt for verification for each file/directory beiregnmoved.
o -r recursively delete the contents of a directory.

o UNIX does not give a second chance to recover deleted files;dreful
when usingrm, especially with globbing, e.gim « (for UW
environment checksnapshot).

e more/less/cat : print files.

more file-list

o more/less paginate the contents one screen at a time.

CS 246 21

o cat Shows the contents in one continuous stream.
e Ipr/lpg/lprm : add, query and remove files from the printer queues.
lpr [-P printer-name] file-list

lpg [-P printer-name |
lprm [-P printer-name | job-number

o If no printer is specified, the queue is a default printer.
o each job on a printer’'s queue has a unique number.
o use this number to remove a job from a print queue.

$ lpr -P 1jp_3016 uml.ps # print file to printer ljp_3016

$ Ipg # check status, default printer ljp_3016
Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

2nd cs246 403 uml.ps 41262 bytes

$ lprm 403 # cancel printing

services203.math: cfA403servicesl16.student.cs dequeued

$ Ipg # check if cancelled

Spool queue: Ip (ljp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

CS 246 22
e cmp/diff : compare 2 files and print minimal differences.

cmp filel file2
diff filel file2
o cmp generates the first difference between the files.
file x |filey
a a $ cmp x y |
b b x y differ: char 7, line 4
C C
d e
g h
h i
g

o diff generates output describing the changes need to changestHidi
Into the second file (used Ipatch).

CS 246 23

$ diff x y
4,5c4 # replace lines 4 and 5 of 1st file
<d # with line 4 of 2nd file

<dg

> e

6a6,7 # add lines 6 and 7 of 2nd file
> # after line 6 of 1st file

> g

e grep . (global regular &pression pnt) search & print lines matching
pattern in files (google). B

grep -i -r "pattern-string" file-list

o -i Ignore case In both pattern and input files

o -r recursively examine files in directories.

o grep pattern is different from globbing pattern (seeman grep).
$ grep -i fred names.txt # list all lines containing fred in any case
$ grep M\ \\ (begin\|end\){.*}" xtex

A match start of line, match™, match “begin” or “end”, match {”,
match O or more characters (notic®, match *}".

CS 246 24
e find : search for names in the file hierarchy.

find [path...] expr]

o \(expr \) evaluation order

o -not expr, expr -a expr, expr -o expr logicalnot, and andor
(precedence order)

o-type d | f select files of type idectory or fle

o -maxdepth N recursively descend at madstdirectory levels

o -name pattern restrict file names to pattern

$ find » -maxdepth 3 -a -type f -a \(-name "x. C' -0 -name "x.cc" \)

Search all non-hidden names in current directefytd a maximum
recursion depth of 3, and only select file names (not dirgatames), and
restrict these names to those ending with suffior .cc.

e ssh : (secure skll) safe, encrypted, remote-login between client/server
hosts.

ssh [-Y][-l]user [user@] hosthame

o -Y enables trusted X11 forwarding to allow server applicaitincreate
windows on the client host.

CS 246 25

o -l login user on the server machine.
o To login from home to UW environment:

ssh -Y -l jfdoe linux.student.cs.uwaterloo.ca
ssh -Y jfdoe@linux.student.cs.uwaterloo.ca

1.6 File Permission

e UNIX file structure supports 3 levels of security on each fil@ioectory:

o user : owner of the file,
o group : arbitrary name associated with a number of userids,
o other : any other user.

e A file or directory can have the following permissions: readte, and
execute/search.

e Readable and writable allow any of the specified users tooead
write/change a file/directory.

e Executable for files means the file can be executed as a commmagndile
contains a program or shell script.

e Executable for directories means the directory can be Bedroy certain
system operations but not read in general.

CS 246
e Is -| prints file-permission information for the current diregto

drwxr-x--- 2 cs246 cs246t 4096 Cct 19 18:19 C++/
drwxr-x--- 2 cS246 cs246t 4096 COct 21 08:51 Tool s/
-TW------ 1 ¢s246 cs246 22714 Oct 21 08: 50 notes. aux
T W= - - - 1 ¢s246 cs246 63332 Oct 21 08:50 notes. dvi

e Columns are: permissions, #-of-sub-directory (includifigand “..”),
owner, group, file size, change date, file name.

e Permission information is:

d = directory user permission
-=Tile group permissions
lﬁ I other permissions

dirwx| [r-x| |--X

e E.g.,drwxr-x---, indicates

o directory in which the user has read, write and execute [®stons,
o group has only read and execute permissions,
o others have no permissions at all.

e In general, never allow “other” users to read or write your 8bs.

26

CS 246 27

e Default permissions on a file an@-r----- (usually), which means owner has
read/write permission, and group has only read permission.

e Default permissions on a directory awex------ , which means owner has
read/write/execute.

e chgrp : change group-name associated with file:
chgrp [-R] group-name file-list
o -R recursively modify the group of a directory.

e Creating/deleting group-names is done by system admiitstr.
e chmod : add or remove from any of the 3 security levels.

chmod [-R] mode-list file-list
o -R recursively modify the security of a directory.

e mode-list has the fornsecurity-level operator permission.

e Security levels are denoted hyfor you userg for group,o for other,a for
all (ugo).

e Operator adds permission, - removes permission.

e Permissions are denoted bfor readablew for writable andx for
executable.

CS 246 28

e The elements of theode-list are separated by commas.

e E.9., to remove read and write permissions from securitgléegroup and
other for filexyz.

chmod g-r,0-r,g-w,0-W Xyz # long form

chmod go-rw Xxyz # short form

chmod -R a+r assn2 # make directory and its subfiles
readable to everyone

1.7 Input/Output Redirection

e Every command has three standard files: input (0), outpudrfd)error (2).

e By default, these are connected to the keyboard (input) erekn
(output/error).

e Shell provides redirection operaterdor input and> / >> for output
to/from other sources.

e < means read input from file rather than keyboard.
e > means (create) output file and write to file rather than scfeestructive).
e >> means (create) output file and append to file rather thanrscree
e Command is (usually) unaware of redirection.

CS 246 29

e Normally, standard error (e.g., error messages) is notaeitid because of
Its importance.

$ more < XXX

$ more < xXxx > yyy

$ Is -al >> yyy

$ Is -al 1> xxx

$ a.out 2>> errs

$ a.out 1> data 2> errs
$ a.out > yyy 2>&1

iInput from file xxx; output to standard output
iInput from file xxx; output to file yyy

append output to file yyy

output to file yyy

append errors to file errs

output to file data; errors to file errs
output/errors to file yyy

T H HHFHHFH

e 2>&1 means write standard error to same place as standard ospurfiler
IS Important.

$ a.out 2>&1 > xxx # redirect stderr to stdout, stdout to xxx
$ a.out > xxx 2>&1 # redirect stdout to xxx, stderr to stdout => XXX

e To ignore output, redirect to pseudo-fitev/null.

$ a.out 2> /dev/null # Ignore error messages

e Shell pipe operatgrmakes standard output for a command the standard
Input for the next command, without creating an intermexifeé.

CS 246 30

$ cat xxx | nl # print xxx with line numbers
$ man Is | more # paginate manual information for Is

e Standard error is not piped unless redirected to standdpadibu

$ a.out 2>&1 | nl # both standard output and error go through piy
¢ A pipeline can be arbitrarily long.

1.8 Programming

e A shell program or script is a file containing shell commands that can be
executed.

#!/bin/bash [-x]
shell and OS commands

e First line should begin with magic comment!” (sha-bang) with shell
pathname for executing the script.

e It forces a specific shell to be used, which is run as a subshell

o If the “#!” line i1s missing, a subshell of the same kind as the invokimgjls
IS used for sh shells or sh is used for csh shells.

e Optional x Is for debugging and prints trace of the script during execut

CS 246 31

e A script can be invoked directly using a specific shell, or asmmand if it
has executable permissions:

$ bash scriptfile # direct invocation
$ chmod u+x scriptfile # make script file executable
$./scriptfile # command execution

e Interactive shell session is just a script reading from stard input.

1.8.1 Variables
e syntax :(letter | ") (letter | " | digit)«
e case-sensitive
VeryLongVariableName Pagel Income_Tax _75

e Some identifiers are reserved (eify.while), and hencekeywords.
¢ Variables ONLY hold string values (arbitrary length).
e Variable is declaredynamicallyby assigning a value with operatot™

path=/u/cs246/ # declare and assign
No spaces before or after=".

CS 246 32

e A variable’s value is dereferenced using operar “

$ echo $path ${path}
fu/cs246/ /ulcs246/

braces, {...}", allow unambiguous specification of name.
e Dereferencing an undefined variables returns the emptgstri

$ echo $pathAl
blank line

e Always use braces to allow concatenation with other text:

$ echo $pathAl ${path}A1l # $pathAl undefined
/u/cs246/A1

e Each shell has a list of script and environment (global)alzas.
e New variables are added to the script variable-list.
e Script variables are only visible within a script’'s exeouticontext.

e Shell begins by copying containing shell’s environmentataes (works
across different shells).

e Login shell starts with a number of useful environment Valag, e.q.:

CS 246 33

HOME=/u/cs246 # home directory
HOST=linux006.student.cs # host computer

PATH=... # lookup directories for OS commands
SHELL=/bin/bash # login shell

e For UW Solaris environment, augmepiTH with:

PATH=/software/gnu/bin :${PATH} # add GNU shell commands
e Script variable can be moved to shell’'s environment list.

export path
e A variable can be removed from the script/environment list.

unset path

¢ \When a shell ends, changes to its environment variables affiect its
containing shell¢nvironment variables only affect subshe)ls

e Beware commands composed in variables.

CS 246 34

$ cmd="I s | nore” # command as value

$ ${cmd} # execute command

Is: cannot access |: No such file or directory

Is: cannot access more: No such file or directory

$ eval ${cmd} # evaluate and execute command
: # list of file paginated by more

e This behaviour results because the shell tokenieésreperforming
substitution.

e Initially, the shell sees only one tokerg{t¢md}”, so the 9" within the
variable is not marked as a pipe token.

e Subsequently, variable substitution occurs, giving takes’” ’| * ‘'nor e’, so
| andmore are file names.

e “eval ${cmd}’ takes the tokend s” ‘| “nor e’, and processes them again.
e Hence, new tokenizing markss a pipe, makinghore a command.

1.8.2 Routine
e A routine is defined as follows:

CS 246 35

routine_name() { # number of parameters depends on call
commands
}

e Routines may be defined in any order.
e E.g.: create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g -einput-file[output-file]"
exit 1 # terminate script with non-zero exit code

}

e INnvoke like a command.

routine_name [args ... |

e New variables are dynamically added to the script’'s vaedist and visible
regardless of creation point.

CS 246 36

rnl() {
var=3 # add to script list
rtn2 # call rtn2

}

rn2() {

echo ${var} # see all variables in script list
unset var # remove from the script list

}

e Special script variables to access arguments/result:

o ${#} number of command arguments, not including command name.
o ${0} refers to script's name.

$ echo ${0} # which shell are you using (except csh)

bash
o ${n} refers to the command argument by position, i.e., 1st, 2rg,.3
o ${x} command arguments as a single string, ¢ ${. 1} ${2} .. .", not

Including command name

o ${@} command arguments as separate strings,"&kgl}" "${2}" ...,
not including command name

o ${?} exit status of the last command executed; O ofteexited normally.

CS 246

37

o ${$} process id of executing shell-command.
e Routine may return an integer exit status, which is examusaalg ${?}.

$ cat scriptfile

number of command-line arguments

echo ${0} ${1} ${2} ${3} ${4} # arguments

#!/bin/bash

rtn() {
echo ${#}
echo ${x}
echo ${@}
echo ${$}
return 17

}

rtn al a2 a3 a4 a5

echo ${?}

$./scriptfile

)

arguments as a single string
arguments as separate strings
process id of executing shell
exit status

invoke routine
print return value

number of arguments

scriptfile al a2 a3 a4 # args 0-5

al a2 a3 a4 a5
al a2 a3 a4 a5

27028
17

args 1-5, 1 string
args 1-5, 5 strings
process id

status

CS 246 38

e shift [N] : destructively shift parameters to the Isfpositions, i.e.,
${1}=${N+1}, ${2}=${N+2}, etc., ands{#} is reduced b\.
olfno N, 1is assumed.
o If N is O or greater thans{#}, there is no shift.
e source filename : execute commands from a file in the current shell.
o A script can be subdivided into multiple files, e.g., pa&ge routine into
separate file.
o NO “#!..." necessary.

o Sourcing the filancludesthe file into the current shell and executes the
lines.

source ./aliases # include aliases into .shellrc file
source ./usage.bash # include usage routine into scriptfile

o Any created or modified variables are associated with the cuent
shell.

o If Invoked as a command:

Jusage.bash # invoke rather than source
runs as a subshell with different variable environment.

CS 246 39
1.8.3 Arithmetic

e Shell variables have type string, which has no arithmeégc: + " 17".

$ i=3 # 1 has string value “3” not integer 3

e To perform arithmetic a string is converted to an integep@$sible), an
Integer operation performed, and the integer result coasldrack to a
string.

¢ bash supports arithmetic as a shell command to performs #ieps:
$ echo $((3 + 4 - 1))
>

g echo $((3 + ${i} x 2))

$ echo $((3 + ${k})) # k is unset
bash: 3 + : syntax error: operand expected (error token is " ")

e Basic integer operations, -, %, /, % (modulus), with usual precedence,
and().

e For shells without arithmetic (e.g., sh, csh), use systemncandexpr.

CS 246 40
$ echo ‘expr 3 + 4 -1

6
$ echo ‘expr 3 + ${i} « 2' # escape *
9
$ echo ‘expr 3 + ${k}' # k is unset

expr. non-numeric argument

1.8.4 Control Structures

e Shell supports several control constructs; syntax for Imphesented (csh
IS different).

1.8.4.1 Test

e Strings, integers and files can be tested to affect contnl flo
e expr IS test expression, not arithmetic expression.

CS 246
test operation
\(expr \) evaluation orderrfust be escapgd
I expr not

exprl -a expr2
exprl -o expr2

logical and ot short-circuit)
logical or (hot short-circuit)

stringl = string2
stringl != string2

equal (ot ==
not equal

Integerl -eq integer2
Integerl -ne integer2
integerl -ge integer2

equal
not equal
greater or equal

integerl -gt integer2 | greater

integerl -le integer2 |less or equal

integerl -lt integer2 |less

-d file exists and directory

-e file exists

-f file exists and reqgular file

-r file exists with read permission

-w file exists with write permission

-x file exists with executable or searchable

e Logical operatorsa (and) and e (or) evaluate both operands.

41

CS 246
1.8.4.2 Selection

e An if statement provides conditional control-flow.

if [test] If [test] ; then
then
commands commands
elif [test] elif [test] ; then
then
commands commands
else else
commands commands
fi fi

Semi-colon is necessary to separate “test” from keyword.
e Usetest to check for different conditions.

if ["‘whoam™ = "cs246"] ; then # string compare
echo "valid userid"”

else
echo "invalid userid"

fi

42

CS 246 43

grep "${user}" /etc/passwd > /dev/null # ignore output

if [${?} -eq 0] ; then # integer compare, check exit status
echo "${user} has an account”

else
echo "${user} does not have an account”

fi

If [-x /usr/bin/cat] ; then # file check
echo "cat command avail abl e”

else
echo "no cat command”

fi

e Beware unset variables or values with blanks.

if [${var} = 'yes’] ; then ... # var unset => if [= yes’]

bash: [. =: unary operator expected

if [${var} = ’yes’];then ... #var="abc =>if[abc = "yes]
bash: [too many arguments

if ["${var}" = 'yes’];then ... # var unset => if [" = "yes’]

if ["${var}" ='yes’];:then ... #var=Ffabc =>if[“abc’ = "yes"

When dereferencing, always quote variables!
e A case statement selectively executes ondNodlternatives based on

CS 246 44
matching a string expression with a series of patterns foha), e.g.:

case expression in

pattern | pattern | ...) commands ;;
*) commands ;; # optional match anything
esac

¢ \When a pattern is matched, the commands are executed yjy &n'd
control exits thecase statement.

e If N0 pattern is matched, thmse statement does nothing.

CS 246

usage() {
echo "Usage: ${0} -h -v -f input-file"
exit 1 # terminate script with non-zero exit code
case "${1}" in # process command-line argument

-h” | --hel p”) usage ;;
‘-v’ | ’--ver bose”) verbose=yes ;;

£ -file)
shift 1 # access argument
file="${ 1}"
*)”usage - # default
esac

1.8.4.3 Looping
e while statement executes its commands zero or more times.

while [test] ; do
commands
done

e Usetest to check for different conditions.

45

CS 246 46

search command-line arguments

while ["${1}" 1= "-x"]; do # string compare
shift # destructive

done

=1

while [${i} -It 5] ; do # Integer compare
echo ${i}
I=5((${i} + 1))

done

while [-f "${file}"]; do # file check
update file variable
done

e for statement is a specializedhile statement for iterating with an index
over list of strings.

for index [in list] ; do
commands
done

If no list, iterate over arguments, 1.&{@}.
e Or over a set of values:

CS 246 47

for ((init-expr; test-expr; incr-expr)); do # double parenthesis
commands
done

e E.g.: In a script

for args in "${ @" ; do # process arguments, non-destructive
echo ${args}

done

for (i=1;i<=${#};i+=1)); do
eval echo "\${${i}}" # ${1-#}

done

or on command line:

$ for count in "one" "two

one
two
three & four

$ for file in «.C ; do cp "${file}" "${file}".old ; done

e A while /for loop may contairtontinue andbreak to advance to the next
loop iteration or terminate loop.

three & four” ; do echo ${count} ; done

CS 246 48

for count in "one" "two" “"three &four” ; do
if ["‘whoam " = "cs246"] ; then continue ; fi # next iteration
if [$(?} -ne 0] : then break : fi # exit loop

done

CS 246 49
#!/bin/bash

#

List and remove unnecessary files in directories

#

Usage: cleanup [[-r[R] [-1|f] directory-name]+

-rlR clean specified directory and all subdirectories

-I|f prompt or not prompt for each file removal

Examples:

$ cleanup -R .

$ cleanup -r xxx -i yyy -r -i zzz

Limitations:

* only removes files named: core, a.out, .0, *.d

« does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | R] [-1 | f] directory-name]+"
exit 1

}

defaults() { # defaults for each directory
prompt="-i " # prompt for removal
depth="-maxdept h 1" # not recursive

CS 246 50

remove() {
for file in find "${1}" ${depth} -type f \(-name “core” -o \
-name ‘a. out” -o -name "+.0” -0 -name x.d” \)’

do
echo "${file}" # print removed file
rm "${pronpt}" "${file}"
done
if [${#} -eq 0] ; then usage ; fi # no arguments ?
while ["${1}" =""]; do # process command-line arguments
defaults # reset defaults for directory
case "${1}" in
"-h") usage ;; # help ?
or" | "-R") depth="" :; # recursive ?
Lt - prompt="${1}" ;; # prompt for deletion ?
*) # directory name ?
remove "${1}" # remove files in this directory
esac
shift # remove argument

done

2 CH

2.1 Program Structure

e A C+H program is composed of comments for people, and statsnher
both people and the compiler.

e A source file contains a mixture of comments and statements.
e The C/C+ compiler only reads the statements and ignoresaimenents.

2.1.1 Comment

e Comments document what a program does and how it does it.

e A comment may be placed anywhere a whitespace (space, talneygs
allowed.

e There are two kinds of comments in C/C+ (same as Java):

Java/ C /[C+H
[... %/
/I remainder of line

N =

© Peter A. Buhr

51

CS 246 52

e First comment begins with the start symbe),and ends with the terminator
symbol,+/, and hence, can extend over multiple lines.

e Cannot be nested one within another

[« .. Ix =l
T 1

end comment treated as statements
e Be extremely careful in using this comment to elide/comnrmaritcode:

[+ attempt to comment-out a number of statements
while (...) {
[« ... nested comment causes errors x/

it (...){

[+ ... nested comment causes errors x/

}
*/

e Second comment begins with the start symlipand continues to the end
of the line, i.e., only one line long.

e Can be nested one within another:

/[l ... Il ... nested comment

CS 246
SO It can be used to comment-out code:

/[while (...) {
/l [+ ... nested comment does not cause errors =/

i)

/l /l ... nested comment does not cause errors
/l }
/l'}

2.1.2 Statement

e The syntax for a C/CH+ statement is a series of tokens seublat
whitespace and terminated by a semicolon.

53

CS 246 54
2.2 First Program
e Java

import java.lang.x; /[implicit
class hello {
public static void main(String[] args) {
System.out.printin("Hel | o Wor | d! *);
System.exit(0);
}
}

o CH

#include <iostream> // insert contents of file iostream
using namespace std; // direct naming of I/O facilities

iInt main() { /[program starts here

cout << "Hello Wrld!'" << endl;

return O; // return O to shell, optional
}

e #include <iostream> copies (imports) basic I/O descriptions (no equivalen
In Java).

CS 246 55

e using namespace std allows imported 1/O names to be accessed directly,
l.e., without qualification.

e int main() Is the routine where execution starts.
e curly braces{ ... }, denote a block of code, i.e., routine bodynadin.

ecout << "Hello Wrld!'" << endlprints"Hel | o Wrl d!" to standard
output, callectout (System.out in Java).

e endl start newline aftefHel | o Wor | d!'™ (printin in Java).

e Optionalreturn 0 returns zero to the shell indicating successful completiol
of the program; non-zero usually indicates an error.

e main magic! If no value is returned, 0 is implicitly returned.

e Routineexit (JavaSystem.exit) stops a program at any location and returns
a code to the shell, e.gxit(0) (#include <cstdlib>).

e Compile withg++ command:

% g++ firstprogram.cc # compile program
% a.out # execute program; execution permission

C program-files use suffix; C+ program-files use suffixes / .cpp / .cc.

CS 246
2.3 Declaration

¢ A declaration introduces names or redeclares names froviopee
declarations in a program.

2.3.1 Identifier
e Name used to refer to a variable or type.
e syntax :(letter | ") (letter | " | digit)«
e case-sensitive:
VeryLongVariableName Pagel Income_Tax _75

e Some identifiers are reserved (eify.while), and hencekeywords.

56

¥4

CS 246
2.3.2 Basic Types
Java C/CH
boolean | bool (C <stdbool.h>)
char char / wchar _t
byte char / wchar _t Integral types
Int Int
float float real-floating types
double | double
label type, implicit

e C/C+H treatchar andwchar _t (unicode characters) as an integral type.
e Java typeshort andlong are created using type qualifiers.

2.3.3 Variable Declaration

e Declaration in C/CH+ same as Java: type followed by list ehidfiers.

Java/ C/ CH
char a, b, c, d;
int i, j, k;

double X, vy, z;
Id :

CS 246

e Declarations may have an initializing assignment (exceipfi¢lds in
struct /class):

Int 1 = 3;

e C/C+ do not check for uninitialized variables. (maybe)
Int i
cout << i << endl; /I i has undefined value

e Declarations occur in blocks, and there is an imphceatic block
containing all variable declared outside of routines (asmmode-files).

Int 1; /[static block
Int main() { /l routine block
Int J;
{ /[local/nested block
iInt K;
}
}

e Static block is a separate memory from the stack and heapahdays
zero filled

CS 246 59

e Static variables are allocated in declaration order andatzded in reverse
order at program exjper file but no order among files

e Variable names can be reused in different blocks, I.e.,iblyssverriding
(hiding) prior variables.

Int 1; ... /] first |

{int k=1,1,... /I second i (override first), both i’s used in block!
{inti=1... /[third 1 (override second)

e Declarations may be intermixed among executable statesmeatblock.

2.3.4 Type Qualifier

e C/C+H+ provide two basic integral typebar andint.
e Other integral types are generated using type qualifiers.

e C/C+H+ provide signed (positive/negative) and unsignedi{pe only)
Integral types.

CS 246

60

Integral types

range

signed char / char
unsigned char

signed short int / short
unsigned short int
signed int /int
unsigned int
signed long int /long

unsigned long int
signed long long int

unsigned long long int

/ unsigned short

/ unsigned long
/ long long

/ unsigned long long

at least 127 to 127 (SCHAR_MIN / SCHAR_MAX)

at leas to 255 (UCHAR_MAX)

at least 32767 t0 32767 (SHRT_MIN / SHRT_MAX)
at leas to 65535 (USHRT_MAX)

at least 32767 t0 32767 (INT_MIN / INT_MAX)

at leasi to 65535 (UINT_MAX)

at least 2147483647 t0 2147483647

(LONG_MIN / LONG_MAX)

at leasiD t0 4294967295 (ULONG_MAX)

at least 9223372036854775807

t0 9223372036854775807 (LLONG_MIN / LLONG_M
at leas0 t0 18446744073709551615 (ULLONG_MAX

e Range of values fant is machine specific: 2 bytes for 16-bit computers
and 4 bytes for 32/64-bit computers.

e long Is 4 bytes for 16-bit computers and 8 bytes for 32/64-bit coters.
e #include <climits> provides boundary-value names for types (e.g.,

INT_MAX, etc.).

e #include <stdint.h> providesabsolutetypes[u]intN_t for signed /unsigned
N =8, 16, 32, 64 bits.

CS 246 61

Integral typesrange

INt8_t -127 t0 127 (INT8_MIN / INT8_MAX)

uint8_t 0 to 255 (UINT8_MAX)

INt16_t -32767 t0 32767 (INT16_MIN / INT16_MAX)

uint16_t 0 t0 65535 (UINT16_MAX)

INt32_t -2147483647 10 2147483647 (INT32_MIN / INT32_MAX)

uint32_t 0 t0 4294967295 (UINT32_MAX)

INt64_t -9223372036854775807 10 9223372036854 775807
(INT64_MIN / INT64_MAX)

uint64_t 0 10 18446744073709551615 (UINT64_MAX)

e C/C+ provide two basic real-floating typfisat anddouble .
e One additional real-floating type is generated using a tyaifier.

real-float typesrange, precision, architecture

float ~ 1038 to 10°8, ~ 7 digits, IEEE (4 bytes)
double ~ 103%8to 10°%8 ~ 16 digits, IEEE (8 bytes)
long double |~ 107493210 10*9%2 ~ 34 digits, IEEE (12-16 bytes)

e C/CH+ support write-once/read-only constant variabldah tyipe qualifier
const (Javafinal), in any variable declaration context.

CS 246 62

Java C/CH
final short x = 3, y;|lconst short int X =3,y =X + 7;
y =X+ 7; disallowed
final char ¢ = ’X’; | const char ¢ = X

e C/CH+-const identifiermustbe assigned a value at declaration (or by a
constructor’s declaration); the value can be the resulhahgoression:

e A constant variable can appear in read-only contexts dfteinitialized.

2.3.5 Constants

e C uses the termonstant C+ uses the terrnteral .
e A constant/literal is fixed and cannot change.

e Java and C/C+ share almost all the same constants for tletyyass
(except for unsigned).

e A designated constanindicates its type with suffixes:/l for long, LL/II for
long long,U/u for unsigned, and/f for float.

e Unlike Java, there is nD/d suffix for double constants.

CS 246 63

e The type of an integralndesignated constant
(octal/decimal/hexadecimal) is the smallesttype that holds the value,
and the type of an undesignated real-floating constaitusle .

boolean false, true
decimal 123, -456L, 789u, 21UL
octal, prefix0 | 0144, -045l, 0223U, 067ULL
hexadecimal, prefigX or 0x | Oxfe, -0X1fL, Ox11leU, OxffUL
real-floating .1, 1., -1., -7.3E3, -6.6e-2F, E/e exponent
character, single charactea’, '\ ”
string, multi-character abc™, "\ "\ " "

e Use the right constant with types character or string:

char ch = "a"; // use ‘a’
const char «str = ‘a”; /| use “a”
string str = ‘a’; /I use “a@”

e An escape seguence allows special characters to appeananacter or
string constant and starts with a backslash,

e The most common escape sequences are (see a C+H textbodtikei®) o

CS 246 64

W\ backslash

A7 "\ I single and double quote

\t7,\'n” | tab, newline

N0’ Zero, string termination character
\ooo” |octal valuepoo up to 3 octal digits
\ xhh’ hexadecimal valudhh up to 2 hexadecimal digits (not Java)

cout << '\ << endl;
cout << "\\ \"\" \t\tx \ny \12z \ xaw' << endl; // newline 10

\ o X

y
Z

W

e Sequence of octal/hex digits is terminated by length or dinstracter not an
octal/hex digit.

2.3.6 Type Constructor

e A type constructor is a declaration that builds a more complex type from
the basic types.

CS 246 65

constructor Java C/CH
enumerationenum Colour { R, G, B} | enum Colour { R, G, B}
pointer any-type =p;
referenceclass-type r; any-type &r; (C+ only)
array|int v[] = new int [10]; int v[10];
Int m[][] = new int [10][10]; | int m[10][10];
structure class struct oOr class

2.3.6.1 Enumeration

e An enumerationis a type defining a set of named constants with only
assignment, comparison, and conversion to integer:

enum Days {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit humbering

Days day = Sat; /[variable declaration, initialization

enum {Yes, No} vote = Yes; /[anonymous type and variable declaration
enum Colour {R=0x1, G=0x2, B=0x4} colour; // type/variable declaration, explicit nu
colour = B; /[assignment

day = colour; /[disallowed C++, allowed C

e Names in an enumeration are calltmerators.

e First enumerator is implicitly numbered O; thereafter,lreagumerator is
Implicitly numbered +1 the previous enumerator.

CS 246 66
e Enumerators can be numbered explicitly.

enum {A=3,B,C=A-5 D=3,E},//34-2314
e Enumeration in C+ denotes a new type; enumeration in Cas &drint.

e C/C+H enumeration only has underlying tyipg, Java enumeration can give
names (and operations) to any value.

e Java enumerator names must always be qualified.
e C/CH enumerator names are ungualifiedunique in a lexical scope.
e Trick to count enums (if no explicit numbering):

enum Colour { Red, Green, Yellow, Blue, Black, No_Of_Colours },

No_Of_Colours is 5, which is the number of enumerator colours (looping
over enums).

e In C, enum must always be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

2.3.6.2 Pointer/Reference
e pointer/referenceis an indirect mechanism to access a type instance.

CS 246 67
e All variables have an address in memory, éngl.x = 5, y = 7:

type Int Int
variable/value x 5 y 7
address 100 200

e Value of a pointer/reference is the address of a variable.
e Accessing this address is different for a pointer or refeeen
e Two basic pointer/reference operations:
1.referencing. obtain address of a variable; unary opera&an C+:

&x — 100
&y — 200

2.dereferencing retrieve value at an address; unary operatorC+:

*(&x) — *(100) — 5
x(&y) — %(200) — 7

e Compiler automatically does first dereferencexs®really «(&x).

e Note, unary and binary use of operatéys for reference/deference and
conjunction/multiplication.

CS 246

638

e By convention, no variable is placed at thell address(pointer),null in

Java, 0 in C/C+.

e Pointer/reference variable contains the memory addreasather variable
(indirection) or null pointer (or an undefined address if uninitialized).

int * int
pl 100 7 5 X
50 g 100
P2 200 > 7 y
60 200

P30/ Ox34fe7

70

e Because of implicit 1st dereferengs, is 100 andxpl is 5.

null/undefined
address (pointer)

&pl — 50
&p2 — 60
&p3 — 70
x(&pl) — 100
*(&p3) — O
*(x(&p1)) — 3
*(x(&p2)) — 7
*(x(&p3)) — 7?

Pl = &X;

p2 = &y; p2 = pl;
p3 = 0;

*pl

*p2

*p3

e Multiple pointers/references may point to the same memddyess

(dashed line).

CS 246 69

e Dereferencing null/undefined pointer is undefined as nabziat the
addressliut not necessarily an errgr

e EXplicit dereference is an operation usually associatéil a/pointer:

xp2 = xpl;
«pl = «p2 * 3;

e Address assignment does not require dereferencing:

y = X; [/l value assignment
X =Y % 3

p2 = pl,; // address assignment

e p2 is assigned the same memory addregslase., p2 points atx; values of
x andy do not change.

e Having to perform explicit dereferencing can be tedious emdr prone.
pl = p2 = 3; /I implicit deference
unreasonable gsl is assigned addressm2 times 3.

e Reasonable if value pointed to by is assigned value pointed to bg
times 3.

e A pointer that provides implicit dereferencing is a referen
e However, implicit dereferencing generates an ambigudusatson for:

CS 246 70
p2 = pl,;

e Should this expression perform address or value assigniaemhhow are
both cases specified?

e C provides only a pointer; C+ provides a pointer and a r@stlireference;
Java provides only a general reference.

e C/C+ pointer:

1. created using thetype-constructor,

2. may point to any type (i.e., basic or object type) in anyage location
(i.e., static, stack or heap storage),

3. and no implicit referencing or dereferencing.
o Type qualifiers can be used to modify pointer types:

CS 246 71

const short int w = 25; p3| 300 [—= 25 1w
const short int «p3 = &w; o

int const_ p.4 = &X; p4. 100 |—— 5 X
(int &p4 = x;) L -

const long int z = 37; . ano | 0 am K
const long int * const p5 = &z; 5, 308 31 1z

o p3 may point at anyonst short int variable.

« Pointer can change to point at different variables, but tiaevof the
variables cannot be changed through the pointer.

o p4 may only point at variable.

x Pointer cannot change to point at a different variable, beivalue of
the variable can be changed through the pointer.

o p5 may only point at variable.

x Pointer cannot change to point at a different variable, ard/alue of
the variablez cannot be changed through the pointer.

e C+ reference
1. created using th& type-constructor,

CS 246 72

2. may point to any type (i.e., basic or object type) in anyage location
(I.e., static, stack or heap storage),

3. restricted to a constant pointer to user created
(non-temporary/non-constant) storage,

4. and always has implicit dereferencing.

o Constant-pointer restriction of a C+ reference is egentato a Java
final reference ok const pointer with implicit dereferencing.

o Java reference can vary what it points to, but it can only tdoilobjects
In heap storage.

o C+ constant-pointer restriction has two implications:

1. A C+ reference must be initialized at the point of dedlara

x Initializing expression has implicit referencing becaaseaddress is
alwaysrequired,;

Int &rl = &x; // error, unnecessary & before x
2. No need for address assignment after a C+ referencedtaia
because the address cannot change.
x Java interprets reference assignm@nt rl as address assignment
and has no mechanism to perform value assignment between
reference types.

CS 246 73

e Pointer/reference type-constructor is not distributed acoss the
identifier list:

int pl, p2; plis a pointer, p2 is an integerint *pl, *p2;
int & rx =i, ry = i; rxis areference, ry is an integéit &rx =i, &ry = i;
e C+ idiom for declaring pointers/references is misleagdormy works for
single versus list of variables.
Intx 1, K;
double & x = d, y = d;
Gives false impression of distribution across the idemtifss.

2.3.6.3 Aggregation (Array/Structure)

Array IS a mechanism to group together homogeneous values.

e Unlike Java, a C/C+ array is a contiguous sequence of costta
reference to the object sequence.

Java C/C+
Int X[] = new int [6] Int X[6]

x| —t6 1| 7|5 0] 8 -1 x| 1] 7,5 0] 8 -1

CS 246 74

e Hence, array variables can have dimensions specified onaragan and
all the array elements are implicitly allocated.

e Be careful not to write
int b[10, 20]:; // not int b[10][20]

e C+ only supports a compile-time dimension valget+ allows a runtime
expression.

int r, c;

cin >>r >> c; // Input dimensions

Int array(r]; /[dynamic dimension, g++ only
Int matrix[r][c]; /[dynamic dimension, g++ only

e Subscripting, [], selects an array element, and can be used on the left ant
right of assignment.

X[3]; /I 4th element!
X[i]; /I ith+1 element
X[+ 1] =x[t/ 3] -y, [l left/right of assignment

e An array name without a subscript meahs i.e., the starting address of the
first element.

CS 246 75

e An array Is subscripted from O to dimension-1.

e However, a C/C+ array is simple because dimension informain is not
stored with an array object.

e Hence, no equivalent to Javdéngth member for arraysjo subscript
checking and no array assignment.

e Declaration of a pointer to an array is complex in C/C+ .
e Because no array-size information, the dimension valuariaarray pointer
IS unspecified:
int arr[10];
int xparr = arr; /[think parr[], pointer to array of N ints
e However, no dimension information results in the followegbiguity:
int xpvar = &i; /I think pvar[] and i[1]
int xparr = arr; Il think parr[]

e Variablespvar and parr have the same type but one is pointing at a
variable and the other an array!

e To read a complex declaration, parenthesize type qualliesed on
priority, read inside parenthesis outwards, start withalde name and end
with type name on the left.

CS 246 /6

const long int « const a[5] = {0,0,0,0,0}; x| —L—wl I 1 1 0
const long int « const (&x)[5] = a; L--2 L —'—$—'—$—I— -
const long int (= const ((&X)[5])) = &; T oo ra

x . reference to an array of 5 constant pointers to constagtilttegers

Structure is a mechanism to group together heterogeneous valuesding|
(nested) structures, with only assignment:

Java C/CH
class Foo { struct Foo {
int 1 = 3; Int 1; // no initialization
... Il more fields ... Il more members
} }, /I semi-colon terminated

e Components of a structure are calleémbers subdivided into data and
routine/function membetsn C+.

¢ All members of a structure are accessible (public) by déefaxcluding
Javapackage visibility).

¢ A structure member cannot be directly initialized (unliked) , and a
structure is terminated with a semicolon.

1Java subdivides members into fields (data) and methodsr(esiit

CS 246 77

e As for enumerations, a structure can be defined and instalecdsred in a
single statement.

struct S {int i; } s; // definition and declaration

e In C, struct must always be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration
e Structures with the same type can be assigned.

struct S {
double d;
int a[10]; /I array
struct N { /I nested structure
Colour c[3]; /[array
}s;
} s1, s2;
sl = s2; /[allowed, assignment bitwise copy
sl.a = s2.a; /[disallowed, no array assignment
sl == s2; /[disallowed, no structure relational operations

e Recursive types (lists, trees) are defined using a pointer in a structure:

CS 246 /8

struct Node {
/[data members
Node =xlink; /[pointer to another Node

J

e A bit field allows direct access to individual bits of memory:

struct S {
Int 1 : 3; /Il 3 bits
Int j : 7; Il 7 Dbits
Int kK:6;, /6 bits

3

1 =2: [/l 10
j=5 /101
k =9: // 1001

¢ A bit field must be an integral type.
e Unfortunately, bit-fields are not portable.

¢ On little-endian architectures (e.g., like Intel/AMD x8®)e compiler
reverses the bit order (shell commaoui -t x1).

e However, the compiler does not implicitly reverse the bdear
e Hence, the bit-fields in variabkabove must be reversed for little-endian

CS 246 79
architectures.

e While it is unfortunate C/C+ bit-fields lack portability)ey are the
highest-level mechanism to manipulate bit-specific infation.

Union Is a heterogeneous aggregation mechanism, where all member
overlay the same storage:

union U {
char c; _
int i u C I d
double d;
}u;

e Used to access internal representation or save storageismgat for
different purposes at different times.

CS 246 30

union U {
float f;
struct {
unsigned int sign : 1;
unsigned int exp : 8;
unsigned int val : 23;

}s;
int i;
by
u.f = 3.5; cout << hex << u.f << "\t" << u.i << endl;
u.i = 3; cout << u.i << "\t" << u.f << endl;
u.f = 3.5e3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val << er
uf = -3.5e-3; cout << u.s.sign << "\t" << u.s.exp << "\t" << u.s.val << er

produces:

3.5 40600000
3 4.2039e-45
O 8a 5ac000
1 76 656042

e Reusing storage is dangerous and can usually be accomplisthia other
techniques.

CS 246 81
2.3.7 Type Equivalence

e In Java/C/C+, two types are equivalent if they have the saanee, called
name equivalence

struct T1 { struct T2 { // identical structure
int 1, j, k; int 1, j, k;
double X, vy, z; double x, vy, z;

} }

T1 t1, t11 = t1; /I allowed, t1, t11 have compatible types

T2 t2 = t1; /[disallowed, t2, t1 have incompatible types

T2 t2 = (T2)t1;, /I disallowed, no conversion from type T1 to T2

e TypesT1 andT2 arestructurally equivalent, but have different names so
they are incompatible, i.e., initialization of variah#is disallowed.

e An aliasis a different name for same type, so alias types are equivale
e C/CH+ providegypedef to create a synonym for an existing type:

CS 246 82

typedef short int shrintl; /[shrintl => short int
typedef shrintl shrint2; // shrint2 => short int
typedef short int shrint3; // shrint3 => short int
shrintl si; /[implicitly rewritten as: short int sl
shrint2 s2; /[implicitly rewritten as: short int s2
shrint3 s3; /[implicitly rewritten as: short int s3

¢ All combinations of assignments are allowed amenhgs2 ands3, because
they have the same type nanmshért int .

e Java provides no mechanism to alias types.

2.3.8 Type Nesting

e Type nesting is useful for organizing and controlling vistiyp for type
names:

CS 246 83

enum Colour { R, G, B };
struct Foo {
enum Colour { R, G, B }; I/l nested type

struct Bar { I/l nested type
Colour c[5]; I/l type defined outside (1 level)
%
.:Colour c[5]; I/l type defined outside (top level)
Bar bars[10]; I/l type defined same level
I}
Colour cl1 = R; /Il type/enum defined same level
Foo::Colour c2 = Foo::R; /I type/enum defined inside
Foo::Bar bar; /I type defined inside

e Variables/types at top nesting-level are accessible wittualified “:”.

e References to types inside the nested type do not requitdicataon (like
declarations in nested blocks).

e References to types nested inside another type must bdiegiahth type
operator %",

e Do not pollute lexical scopes with unnecessary names (nanasites).

e With nested types, onlioo in top-level scope; without nested typ€sp,
Colour, R, G, B, Bar.

CS 246 84
2.3.9 Type-Constructor Constant

enumerationenumerators

pointer 0 or NULL Indicates a null pointer
structure struct { double r, i; } ¢c ={3.0, 2.1 },
array int v[3] ={ 1, 2, 3}

e C/C+ useD to Initialize pointers versusull in Java.
e System include-files define the preprocessor varishlel aso.
e Structure and array initialization can only occur as pad declaration.

struct {int I; struct { double r,i;}s;}d={1, {30, 21} }, /I nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; [/ multidimensional array

e Values in initialization list are placed into a variableriteg at the
beginning of the structure or array.

e Not all the members/elements must be initialized.
¢ A nested structure or multidimensional array is createdgibraces.
e String constants can be used as a shorthand array initiahhge:

char s[6] = "abcde"; rewritten as char s[6] = { “a’, ’b’, ¢/, ’d’, e/, \ 0" };

CS 246 85

e It IS possible to leave out the first dimension, and its vasuafierred from
the number of constants in that dimension:

char s[] = "abcde”; /I 1st dimension inferred as 6 (Why 6?)
int v[]={0, 1, 2, 3, 4}/ 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

2.3.10 String

e A string is a mechanism to group and manipulate sequences of characte
(text).

e Text strings are supported in C by arrays, and languagadildacilities.

char s[10]; /[string of at most 10 characters
const char xcs = "abc"; // pointer to string literal

e Language facility ensures string constant is terminateld svcharactet 0.

e E.g., string constantabc” is actually an array of the 4 charactei®’, 'b’,
‘c’, and’\ 07, which occupies 4 bytes of storage.

e Zero value is asentinelused by C string routines to locate the string end.
e Drawbacks:

CS 246 86

1. A string cannot contain a character with the valu.

2. String operations needing the length of a string musaliyesearch for
\ 07, which is expensive for long strings.

3. Management of variable-sized strings is the progransmesponsibility,
with complex storage management problems.

e C+ solves these drawbacks by providingtiéng type using a length
member and managing all of the storage for the variabledszangs.

e Unlike Java, instances of the Cstring type are not constant.

¢ Values can change so a companion type $kéngBuffer in Java Is
unnecessatry.

e It Is seldom necessary to iterate through the characters atang
variable!

CS 246

87

Java String methods

C char [] routines

C+H string members

+, concat
compareTlo

length

charAt

substring

replace

IndexOf, lastindexOf

strcpy, strncpy
strcat, strncat
strcmp, strncmp
strlen

[]

strstr
strcspn
strspn

+

== I=
length
[]
substr
replace

find, rfind

find_first_of, find_last_of

<, <=, >, >=

find_first_not_of, find_last_not_of

c_str

e All of the C+ stringfind members return values of typeing::size_type

and valuestring::npos If a search is unsuccessful.

CS 246 38

string a, b, c; // declare string variables

cin >> c; I/l read white-space delimited sequence of characters
cout << ¢ << endl; // print string

a="abc"; /I set value, a is “abc”

b = a; /[copy value, b is “abc”

c=a+ b; /[concatenate strings, c is “abcabc”

if (a==0D0b) /[compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; /I subscript, ch is ‘b’, zero origin

c[4] = X”; I/l subscript, ¢ Is “abcaxc”, must be character constant

string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length
c.replace(2, 1, d); /I replace starting at position 2 for length 1 and insert d, c Is
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p |
c.rfind("ax"); /I search for last occurrence of string “ax”, p is 5
c.find_first_of("aei ou”); // search for first vowel, p is O

c.find_first_not_of("aei ou"); // search for first consonant (not vowel), p is :
c.find_last_of("aei ou"); // search for last vowel, p is 5

c.find_last_not_of("aei ou”); // search for last consonant (not vowel), p is 7

© C O T
A I I N

e Memberc_str returns a pointer tohar = value in a string (\ 0" delimited).

e Routinegetline(stream, string, char) allows different delimiting
characters on input:

CS 246 89

getline(cin, ¢, 7 7); // read characters until ©~” => cin >> ¢
getline(cin, ¢, ‘@); // read characters until ‘@’
getline(cin, ¢, \'n”); // read characters until newline (default)

e Contrast C and C+ style strings (note, management of sstorgge):

#include <string> /[C++ string routines
using namespace std;

#include <string.h> /[C string routines
Int main() {

/[C++ string

const string A = "abc", B = "def", C ="ghi ";
string D = A+ B + C;

/I C string

const char xa = "abc", «b = "def", »c = "ghi ";

char d[strlen(a)+strlen(b)+strlen(c)+1]; // pre-compute worst-case size
strepy(d, "); // initialize to null string

strcat(strcat(strcat(d, a), b), c);

}

Why “+1” for dimension ofd?

CS 246 90
2.4 EXpression
Java C/CH prior
unary., (), [], call 2, ., >, (), [], call, dynamic _cast high
cast+, -, !, ~ cast+, -, |, ~, &, *
new new, delete, sizeof
binaryx, /, % x 1, %
+, - +, -
bit shift<<, >>, >>> <<, >>
relationalkk, <=, >, >=, instanceof <, <=, >, >=
equality==, I= == I=
bitwise& and &
A exclusive-or A
| or |
logical&& short-circuit &&
1 1
conditional?: ?:
assignmenmnt, +=, -=, +=, /=, %= = +=, -=, %=, [=, %=
<<=, >>=, >>>=, &=, =, =<z, >>=, &=, M, |=
comma low

CS 246 91

e Like algebra, operators are prioritized and performed fhogi to low.

e Operators with same priority are done left to right, exceptnary,?, and
assignment operators, which associate right to left.

Int xxa, *xxb, c, d, *w[10];
=»a = b >Cc? (xa=x«b,d-1): =wW)[3] 7 + 3;
(x(xa)) = ((x(+xb)) > c) ? ((((xa) = (+b)), (d - 1))) : ((GW)[3]) = 7) + 3));
e Order of evaluation of subexpressions and argument evaituigt
unspecified (Java left to right).

(i+j)~(k+j) /I either + done first
(i=])+()=1) /[either = done first
g(i)+f(k)+nh(j), [/ g,f orhcalled in any order

f(p++, pt++, p++); /[arguments evaluated in any order

e Referencing (address-of§, and dereference, operators do not exist in
Java because access to storage is restricted.

e Find address of any variable in any storage context, &g&s.d, &v[5].

e C/CH+ are unigue for having the priority of selection operdt” incorrectly
higher than dereference operater.

o Hence x«p.f executes agp.f) instead of(p).f.

CS 246 92

o -> operator performs a dereference and member selection ocothect
order, i.e.p->f is implicitly rewritten as(xp).f.

e Pseudo-routinsizeof returns the number of bytes for a type or variable
(not in Java):

long Iint I;
sizeof (long int); /Il type, at least 4
sizeof (i); /l variable, at least 4

Thesizeof a pointer (type or variable) is the size of the pointer on that
particular computer and not the size of the type the poimErences.

e The remainder (modulus) operates, only accepts integral operands.
o If either operand is negative, the sign of the remainder gementation
defined, e.q.,3 % 4,3 % -4, -3 % -4 can be3 or -3.

e Do not confuse the selectiori’‘and type “:” operators (Java uses’‘for
both).

struct S {
enum Kind { A, B, C };
Kind k;

}'s
s.k = S::A;

CS 246 93

s.k selects variabl& in instances, while S::A selects type& nested in type
S.

e Assignment is an operator; useful foascade assignmerto initialize
multiple variables of the same type:

a=Db=c=0,; /I cascade assignment
X =Yy =2+ 4

o Other uses of assignment in an expression are discouragedk.,
assignments only on left side.

e C/C+ allows any expression to appear as a statement:
3: j+ i (i+j)«(k+j); sin(x);
e Complex assignment operators, eligs, += rhs, are implicitly rewritten:

temp = &(lhs); *temp = s«temp + rhs;
hence, the left-hand sidihs, is evaluated only once:

vl rand() % 5 | += 1, /[only calls random once
virand)) % 5] =v[rand() % 5] + 1; // calls random twice

e Comma expression allows multiple expressions to be evaduata context
where only a single expression is allowed.

CS 246 94

a, f+9g, k3/2 m[i][j] <+ valuereturned

o Expressions evaluated left to right with the value of righsitnexpression
returned as result.

o Dimension problenm[10, 20] actually means[20] becausdo0, 20 is a
comma expression not a dimension list.

o Subscripting problemm[3, 4] meansan[4], 4th row of matrix.
e Operators-+ / -- are discouraged because subsumed by genreral-=.

| += 1: versus i ++
| += 3; versus 1| ++ ++ ++: // disallowed

2.4.1 Conversion

e Conversion implicitly/explicitly transforms a value froome type to
another.

e Two kinds of conversions:

o widening/promotion conversion, no information is lost:

char — short int — long int — double
\ X7’ 7 7 7.000000000000000

o harrowing conversion, information can be lost:

CS 246 95

double — long int — short int — char
(7777.77777777777 77777 12241 \ xd1’

e C/CH+ support both implicit widening and narrowing convens (Java only
implicit widening).
e Implicit narrowing conversions can cause problems:

nt 11 double r;
r=35; /[r->35
| = 3.5 [/ r-> 3.0 ???

e Better to perform narrowing conversions explicitly using#@>toperator or
C+ static _cast operator.

Int 1, double x =7.2, y = 3.5;

| = (int) X; /[explicit narrowing conversion

| = (int) x / (int) y; /I explicit narrowing conversions for integer division
| = static _cast<int>(x / y); // alternative technique after integer division

e C/C+ supports casting among the basic types and user déyesl

e g++ has a cast extension allowing construction of structuresairay/
constants in executable statements not just declarations:

r

CS 246 96

void rtn(const int m[2][3]);

struct Complex { double r, i; } c;
rin((int [2][3]){ {93, 67, 72}, {77, 81, 86} }); [/ g++ only
c = (Complex){ 2.1, 3.4 }; /Il g++ only

e In both cases, a cast indicates the meaning and structune cbhstant.

2.4.2 Math Operations

e #include <cmath> provides overloaded real-float mathematical-routines fc
typesfloat , double andlong double .

operation routine operation routine

1X| abs/fabs(x) | xmody |fmod(x, y)

arccox |acos(x) In X log(x)

arcsirx |asin(x) log X log10(x)

arctarx |atan(x) XY pow(X, y)pow(X, i)
[X] ceil(x) sinx sin(x)

COSX cos(X) sinhx sinh(x)

coshx cosh(x) VX sqrt(x)

<3 exp(X) tanx tan(x)

| X] floor(x) tanhx tanh(x)

CS 246
e Standard math constants are also available.

M_E 2.7182818284590452354 Il e
M_LOG2E 1.4426950408889634074 /l log_2 e
M_LOG10E 0.43429448190325182765 // log_10 e
M_LN2 0.69314718055994530942 // log_e 2
M_LN10 2.30258509299404568402 /I log_e 10
M_PI 3.14159265358979323846 /I pi
M_PI_2 1.57079632679489661923 /[pi/2
M_PI_4 0.78539816339744830962 // pil4
M_1_PlI 0.31830988618379067154 /I 1/pi
M_2_PI 0.63661977236758134308 /I 2/pi
M_2_SQRTPI 1.12837916709551257390 // 2/sqrt(pi)
M_SQRT?2 1.41421356237309504880 // sqrt(2)

M_SQRT1_2 0.70710678118654752440 /I 1/sqrt(2)

e These constants are inadequate for computation ustagdouble .
e Some systems provideng double versions, e.gM_PII.
e Must explicitly link in the math library:

% g++ program.cc -Im # link math library

CS 246
2.5 Control Structures

98

Java

C/IC+H

block| { intermixed decls/stmts }

{ intermixed decls/stmts }

selection't (pool-exprl) stmtl

else if (bool-expr2) stmt2

else stmtN

if (cond-exprl) stmtl
else if (cond-expr2) stmt2

else stmtN

switch (integral-expr) {
case cl: stmtsl; break:

case cN: stmtsN: break:
default : stmtsO:

}

switch (integral-expr) {
case cl: stmtsl; break:

case cN: stmtsN: break:
default : stmtsO:;

}

100PING| \yhile (bool-expr) stmt

while (cond-expr) stmt

do stmt while (bool-expr) ;

do stmt while (cond-expr) ;

for (init-expr;bool-expr;incr-expr) stmt

for (init-expr;cond-expr;incr-expr) stmt

transfen break [label]

break

continue [label]

continue

goto label

return [expr]

return [expr]

throw [expr]

throw [expr]

label| label : stmt

label : stmt

CS 246 99
2.5.1 Block

e Block is a series of statements bracketed by brace$, which can be
nested.

¢ A block forms a complete statement so it does not have to hanated
with a semicolon.

e Block serves two purposes: bracket several statementa sitagle
statement and introduce local declarations.

e \When a statement is required, good practice is to always useldock to
allow easy insertion and removal of statements to or from blok.

e Putting local declarations precisely where they are needadelp reduce
declaration clutter at the beginning of an outer block.

e However, it can also make locating them more difficult.

2.5.2 Conditional

e C/C+ uses a@onditional expressionin control structures to cause
conditional transfer (Java uses a boolean expression).

¢ A conditional expression is evaluated and implicitly teldier not equal to
zero, l.e.cond-expr = expr != 0.

CS 246 100

e Boolean expressions are converted to Otftse and 1 fortrue before
comparison to zero, e.g.:

if (x>y)... implicitly rewritten as if ((x>y)!=0)...
e Hence, other expressions are allowed in a conditional ¢Qiam):

if (x) ... Implicitly rewritten as if ((x)!=0)...

while (X)... while ((x) = 0)...

e \Watch for the common mistake in a conditional:

if (x=y)... implicitly rewritten as if ((x=y)!=0)...
which assignyg to x and testx != 0 (possible in Java for one type).

2.5.3 Selection

e C/C+ selection statements af@ndswitch (same as Java, except for
boolean versus conditional expression).

e An if statement selectively executes one of two alternativesdcais the
result of a comparison, e.g.:

if (X >y) max = x;
else max =y,

CS 246

101

e Java/C/CH+ have theangling elseproblem of associating aise clause
with its matchingf in nestedf statements.

e E.g., reward WIDGET salesperson who sold more than $10,@0thvof
WIDGETS and dock pay of those who sold less than $5,000.

Dangling Else

Fix Using Null Else

Fix Using Blocks

If (sales < 10000)
if (sales < 5000)
Income -= penalty;
else // incorrect match!!!
iIncome += bonus;

If (sales < 10000)
If (sales < 5000)
Income -= penalty;
else ;: /I null statement
else
income += bonus;

If (sales < 10000) {
if (sales < 5000) {
Income -= penalty;

} else {
Income += bonus;
}

e A switch statement selectively executes ond\dadilternatives based on
matching an integral value with a series of case clauses, e.g

CS 246 102

switch (day) { I/l integral expression

case MON: case TUE: case WED: case THU: /I case value list
cout << " PROGRAM' << endl;
break ; /I exit switch

case FRI:
wallet += pay;
/l FALL THROUGH

case SAT:
cout << "PARTY" << endl;
wallet -= party;

break ; /I exit switch
case SUN:

cout << "REST" << endl;

break ; /I exit switch
default :

cerr << "ERROR' << endl;

exit(-1); I/l terminate program

}

e Once a case clause is matched, its statements are execudexnrdrol
continues to th@ext statement.

e break statement is used at end of a case clause tx@kith statement.

CS 246 103

e It IS @ common error to forget the break.

e If N0 case clause is matched and theredefault clause, its statements are
executed, and control continues to tiext statement.

e Otherwise, thewitch statement does nothing.
e Only one label for eachase clause but a list ofase clauses is allowed.

2.5.4 Conditional Expression Evaluation

e Conditional expression evaluationperforms partial evaluation
(short-circuit) of expressions.

&& | only evaluates the right operand if the left operand is true
|| | only evaluates the right operand if the left operand is false
?. |only evaluates one of two alternative parts of an expression

e && and|| are similar to logicak and| for bitwise (boolean) operands, i.e.,
both produce a logical conjunctive or disjunctive result.

e However, short-circuit operators evaluate operandsylamitil a result is
determined, short circuiting the evaluation of other opdsma

| < size && key != array]|i] // may only evaluate left operand of &&

CS 246 104

e Hence, short-circuit operators are control structures@middle of an
expression becausd && e2 = &&(el, e2) (unless lazy evaluation).

e Logical & and| evaluate operands eagerly, evaluating both operands.

e Conditional?: evaluates one of two expressions, and returns the result of
the evaluated expression.

e Acts like anif statement in an expression:

abs2 = (a<0?-a:a)+2/if (a<0){
abs2 = -a;
} else {
abs2 = a;:
}
abs2 += 2;

2.5.5 Looping

e C/C+ looping statements awdile , do andfor (same as Java, except for
boolean versus conditional expression).

e While statement executes its statement zero or more times.

CS 246 105
e Beware of accidental infinite loops.

x = 0; X = 0;
while (x < 5); /[extra semicolon! while (x < 5) // missing block
X =X+ 1; y=y+X
X =X+ 1;
e do statement executes its statement one or more times.
do {

... [/l executed at least once
} while (x<5);
e for statement is a specializadile statement for iterating with an index.

Init-expr;

while (cond-expr) { for (init-expr; cond-expr; incr-expr) {
stmt; stmt;
Incr-expr;

} }

e If init-expr IS a declaration, the scope of its variables is the remaiotire
declaration, the other two expressions, and the loop body.

CS 246 106

for (iInt1=0,)=11<j1+=1){ /1 and j allocated
/[1 and | visible
} /1 and | deallocated

e Many ways to use thfar statement to construct iteration:

for (1 =1;,1<=10;1+=1) { /[count up
// loop 10 times

} /1 has value 11 on exit

for (1=10; 1 <=1 1-=1){ /[count down
// loop 10 times

} /' has value 0 on exit

enum Colour { Red, Green, Yellow, Blue, Cyan, Colours };

const char sname[Colours] = {"R", "G", "Y", "B", "C", %

for (Colour ¢ = Red; ¢ < Colours; ¢ = (Colour)(c + 1)) {
cout << namejc] << end];

} /I ¢ does not exist on exit

for (p=s; p!=NULL, p=p->link){ /I pointer index
// loop through list structure

} /I p has the value NULL on exit

for (1=1,p=s;1<=10& p!= NULL; i += 1, p = p->link) { /I 2 InC
// loop until 10th node or end of list encountered

}

CS 246 107

e Comma expression is used to initialize and increment 2 @xlic a context
where normally only a single expression is allowed.

e Defaulttrue value inserted if no conditional is specifiedfem statement.
for (; ;) /[rewritten as: for (; true ;)

e continue /break statements available in all iteration constructs to adeanc
to the next loop iteration or terminate loop.

for (1 =0;;1+=1){ /[infinite loop, conditional is “true”
if (x >y) break: /I exit loop
If (x ==y) continue ; /[start next iteration

}

2.6 Structured Programming

e Structured programming Is about managing (restricting) control flow
using a fixed set of well-defined control-structures.

e A small set of control structures used with a particular pangming style
make programs easier to write and understand, as well agamain

CS 246 108

e Most programmers adopt this approach so there is a uni@saimon)
approach to managing control flow (e.g., like traffic rules).

e Developed during the 1970’s to overcome the indiscriminesat of the
GOTO statement.

e GOTO leads to convoluted logic in programs (i.e., does NQipsut a
methodical thought process).

e |.e., arbitrary transfer of control makes programs diffi¢alunderstand and
maintain.

e Restricted transfer reduces the points where flow of contrahges, and
therefore, is easy to understand.

CS 246 109

8
i Qo
,,{%_;}‘; &N : 93
L T R i3 e Bt
: E>S [=9 3
g8 g <5z
Q€ a
o
al S
<]
0
e
]
)
-
o
>
o
H
-
-
°
on
3
S — L
- i
- = i
]] a® 3 2
EE s .8
g2 S 8
o 9 3 .S
o © Q g s
] ad ® 2 &)
L - -% E <
i [= o Qe 2
] - 4 OG9%=E
e e T] S
2
ir

L - |

ST GaT ey Leg)

519

CS 246 110

e There are 3 levels of structured programming:

classical
o sequence: series of statements
o if-then-else: conditional structure for making decisions
o While: structure for loops with test at top
Can write any program (actually only neetlile or onewhile andifs).
extended
o use the classical control-structures and add:
+ case/switch: conditional structure for making decisions
* repeat-until/do-while: structure for loops with test attbm
modified
o use the extended control-structures and add:
*x one or more exits from arbitrary points in a loop
* exits from multiple nested control structures
x exits from multiple nested routine calls

2.6.1 Multi-Exit Loop

e A multi-exit loop (or mid-test loop) is a loop with one or more exit
locations occurringvithin the body of the loop.

CS 246 111
e While-loop has 1 exit located at the top:

while i < 10 do loop -- infinite loop
exit when 1 >= 10; -- loop exit
| reverse condition
end while end loop
e Repeat-loop has 1 exit located at the bottom:

do loop -- Infinite loop
exi.t.\./vhen | >= 10; -- loop exit
while (i < 10) end loop | reverse condition

e EXit condition can appear in other locations in the loop body

loop
exi.t. When i >= 10;
end]bbp
e Or allow multiple exit conditions:

CS 246

loop
exi.t. When | >= 10;
exi.t. When] >= 10;

end]bbp

¢ Eliminates priming (copied) code necessary wittile :

read(input, d);
while ! eof(input) do

read(input, d):
end while

end I.o.c;p
e C/C+ idioms for this situation are:

read(input, d);
exit when eof(input);

C

CH

while ((d = getc(stdin)) !I= EOF)

while (cin >> d)

112

e Results in expression side-effects and precludes analfydisvithout code

duplication.

e E.g., print the status of streasin after every read for debugging:

CS 246 113

while (cin >> d) { loop
cout << cin.good() << endl; cin >> d;
cout << cin.good() << endl;
exit when cin.fail();

}

cout << cin.good() << endl; end .|(.);)p

e The loop exit is always outdented or clearly commented (¢in)o0 it can
be found without having to search the entire loop body.

e This Is the same indentation rule as for thee of the if-then-else:

If ... then If ... then
XXX XXX
else else
XXX XXX

end if end if

e A multi-exit loop can be written in C/C+ in the following way

CS 246 114

for (;;) { while (true) { do {
if (i >=10) break: if (i >= 10) break; if (i >= 10) break:
if (j >= 10) break; If (”j'>: 10) break; If (”j'>: 10) break;
y y 1 while (true):

e Thefor version is more general as it can be easily modified to haveg lo
Index or a while condition.

for (int 1 =0;1<10;1+=1) {// loop index
for (; x <vy;) {/l while condition

¢ In general, the programming language and code-typing shoeld allow
Insertion of new code without having to change existing code

e E.g., write linear search such that:

o no invalid subscript for unsuccessful search
o Index points at the location of the key for successful search

e Using onlyif andwhile :

CS 246 115

| = -1; found = O;

while (1 < size - 1 & ! found) { // rewrite: &(i<size-1, !found)
| += 1;
found = key == list[i];

}

if (found) { ... /[found

} else { ... // not found

}

e Why must the program be written this way?
¢ Allow short-circuit operators.

for (i =0;i< size & key != list[i]; i += 1){};
Il rewrite: if (1 < size) if (key != list[i])

if (1 <size) {... // found
} else { ... /[not found
}

e Logical & is incorrect because it evaluates both operands.
e Alternatively, use multi-exit loop.

CS 246 116

for (1=0;;1+=21){/lor for (I =0;1<size;i1+=1)
If (1 >= size) break;
if (key == list[i]) break;

}

if (1 <size) {... // found
}else { ... /[not found
}

e The extra test after the loop can be eliminated by introdydimto the
loop body.

for (i=0:i+=1)/{

if (1 >=size) {... /I not found
break ;
} I exit
if (key == list[i]) { ... // found
break ;
} I exit
} [l for

e E.g., an element is looked up in a list of items, if it is nothe list, it is
added to the end of the list, If it exists in the list its asated list counter is
Incremented.

CS 246 117

for (int 1 =0;;1+=1){
if (1 >=size) {
list[size].count = 1;
list[size].data = key;
size += 1; [/ check for array overflow
break ;
} I exit
If (key == list[i].data) {
list[i].count += 1,
break ;
} I exit
} Il for

2.6.2 Static Multi-Level Exit

e Static multi-level exit exits multiple control structures where exit points
areknown at compile time.

e Labelled exit break/continue) often provides this capability (Java):

CS 246 118

L1: {
... declarations ...
L2: switch (...) {
L3: for (...) {
... break L1; ... /] exit block
... break L2: .../l exit switch
. break L3; ... /I exit loop

}

e Labelledbreak/continue transfer control out of the control structure with
the corresponding label, terminating any block that it pagerough.

e Commonly used with nested loops:

CS 246 119
Java C/CH
L1: for (;;) { /Il while (flagl && ...) for (;;){
L2: for (;;) { /[while (flag2 && ...) for (;;) {
L3: for (;;) { /l while (flag3 && ...) for (;;) {
if (...) break L1: // exit 3 levels it (...) gc')t'é L1:
it (.) break L2; /] exit 2 levels f(.) goto L2;
If (.) break L3; // or break, exit 1 level (.) goto L3;
\ \ s ;
} } L2,
} } L1

e Indentation matches with control-structure terminated.

¢ Eliminatesflag variables, which are used solely to affect control flow, i.e.,
do not contain data associated with the computation.

e Flag variables are the variable equivalent to a goto.
e The simple case (exit 1 level) of multi-level exit is a mudti# loop.

e Why is it good practice to label all exits?

e C/C+ do not have labelleareak /continue ; must simulate withyoto .

CS 246 120

e goto label allows arbitrary transfer of contralithin a routine from the
goto to statement marked with label variable.

e Label variable is declared by prefixing an identifier with d to a
statementwhere the label has routine scope

L1: 1 += 1, /[associated with expression
L2:if (...) ... /[associated with if statement
L3: ; /[associated with empty statement

e Labels can only be declared in a routine and cannot be odemid.e., each
label is unique within a routine body.

e goto transfers control backwards/forwards to labelled statgme

L1: ;
Q.o.to L1; /I transfer backwards, up
goto L2Z; /[transfer forward, down
L2: ;

e Why is it good practice to associate a label with an emptestant?
e Normal and labellethreak are agoto with restrictions:
o Cannot be used to create a loop (i.e., cause a backward hratieh

CS 246 121

program); hence, all situations that result in repeatedugi@n of
statements in a program are clearly delineated.

o Cannot be used to branafito a control structure.
e Only usegoto to simulate labelledbreak and continue .
e return statements can simulate multi-exit loop and multi-level.ex

e Static multi-level exits appear infrequently, but are ertely concise and
execution-time efficient.

2.7 Input/Output

e Input/Output (1/0) is divided into two kinds:
1. Formatted I/O transfers data with implicit conversion of internal values
to/from human-readable form.
o Conversion is based on the type of variables and format codes

2. Unformatted I/O transfers data without conversion, e.g., internal intege
and real-floating values.

CS 246
2.7.1 Formatted I/O

122

Java

C

CH

import java.io.x;
Import java.util.Scanner;

#include <stdio.h>

#include <iostream>

File, Scanner, PrintStream

FILE

ifstream, ofstream

Scanner in = new
Scanner(new File("f"))

in = fopen("f", "r"):

ifstream in("f");

PrintStream out = new

PrintStream(g)

out = fopen("g", "W)

ofstream out(g)

In.close() close(in) scope endsn.close()
out.close() close(out) scope endsyut.close()
nextint() fscanf(in, " %", &) in >> T
nextFloat() fscanf(in, "% ", &f)
nextByte() fscanf(in, "%", &c)
next() fscanf(in, "%", &s)
hasNext() feof(In) in.fail()
hasNextT() fscanf return value in.fail()
In.clear()

skip(" regexp) fscanf(in, "% [regexd") |in.ignore(n, c)
out.print(String) forintf(out, " %l", i) out << T

forintf(out, "% ", f)

forintf(out, " %", c)

forintf(out, " %", s)

CS 246

123

e Parameters in C are always passed by value, so argumédstaibmust be
preceded witl& (except arrays) so they can be changed.

e Both I/O libraries can cascade multiple 1/O operations, irgut or output
multiple values in a single expression.

2.7.1.1 Formats

e Format of input/output values is controlled vranipulators defined in

#include <iomanip>.

oct

dec

hex

left / right (default)

boolalpha / noboolalpha (default)
showbase / noshowbase (default)
fixed (default) /scientific
setprecision(N)

setfill("ch)

setw(N)

end|

skipws (default) /noskipws

Integral values in octal

Integral values in decimal

integral values in hexadecimal

values with padding after / before values

bool values as false/true instead of 0/1

values with / without prefix O for octal & Ox for hex
float-point values without / with exponent

fraction of float-point values in maximum of N colum
padding character before/after value (default blank)
NEXT VALUE ONLY in minimum of N columns
flush output buffer and start new lineytput only)
skip whitespace charactensut only)

l

CS 246 124

e Manipulators are not variables for input/output , but control I/O
formatting for all constants/variables after it, even te tlext I/O
expression for a specific stream file.

e Except manipulator setw, which only applies to the next value in the
/O expression.

e endl is not the same dsn’, as’\ n” does not flush buffered data.

e During input,skipsw/noskipws toggle between ignoring whitespace
between input tokens and reading the whitespace chardceersokenize
versus raw input).

2.7.1.2 Input

¢ Java formatted input uses arplicit Scanner attached to an input file to
convert characters to basic types.

e C/C+ formatted input haisnplicit character conversion for all basic types
and is extensible to user-defined types.

CS 246

125

Java

C

C+H

import java.io.x;
import java.util.Scanner;
Scanner in =

new Scanner(new File("f"));
PrintStream out =

new PrintStream("g");
int 1, j;
while (in.hasNext()) {

| = In.nextInt();] = in.nextIint();

out.printin("i : " +i+" | "+);
}
in.close();
out.close();

#include <stdio.h>
FILE «in = fopen("f", "r");

FILE »out = fopen("g", "W');

int 1, j;
for (;;) {
fscanf(in, "%%", &i, &j);
if (feof(in)) break;
fprintf(out,” i : % | : %@\ n" ,i,));
}
close(in);
close(out);

#include <fstream>
ifstream in("f");

ofstream out(g);

int i, j;
for (5;) {
in >> i >> |
if (in.fail()) break;
out << "i:" <<
<<"] " <<j<<en

}

/[infout closed implicith

e Input values for a stream file are C/C+ undesignated cotsstaB.5e-1,
etc., separated by whitespace.

e EXxcept for characters and character stringsich are not in quotescannot
read strings containing white spaces.

e Type of operand indicates the kind of constant expectedarstieam, e.qg.,
an integer operand means an integer constant is expected.

e Input starts reading where the last read left off, and saars Lo obtain

CS 246 126

necessary number of constants.
e Hence, the placement of input values on lines of a file is cdidrtrary.

e Unlike Java, C/C+ must attempt to relagforeend-of-file is set and can be
tested for.

e End of file is the detection of the physical end of a fileere is no
end-of-file character.

e From a keyboardkctrl>-d (press thectrl> andd keys simultaneously)
causes the shell to close the current input file marking iysiolal end.

e In C+, end of file can be detected in two ways:

o stream membezof returnstrue If the end of file I1s reached arfdise
otherwise.

o stream membéhmil returnstrue for invalid constant OR no constant if
end of file is reached, arfdlse otherwise.

e Safer to checkail and then checkof.

for (;;) {
cin >> i;
if (cin.eof()) break; /[should use “fail()”
cout << | << endl;

CS 246 127

o If "abc” is entered (invalid integer constangil becomesrue buteof is
false.

e Generates infinite loop as invalid data is not skipped foseghent reads.
e When bad data is readiream must be reset and bad data cleared

CS 246 128

#include <iostream>

#include <limits> /[numeric_limits
using namespace std;
Int main() {
Int n;
cout << showbase; Il prefix hex with Ox
cin >> hex; /l hex constants
for (;;) {
cout << "Enter hexadeci mal nunber: ";
cin >> n;
if (cin.fail()) { /[problem ?
If (cin.eof()) break; /Il eof ?
cout << "I nvalid hexadeci mal nunber” << endl;
cin.clear(); /] reset stream failure
cin.ignore(numeric_limits<int>::max(), \' n”); // skip until newlin
} else {

<< n << dec << " dec:" << n << en

cout << hex << "hex:'
}
}
cout << endl;

}

e After an unsuccessful reacdear() resets the stream.

CS 246 129

e ignore skipsn characters, e.gcjn.ignore(5) or until a specified character.

e Alternatively, streams have a conversionvtad »: If fail(), a null pointer;
otherwise non-null pointer.

cout << cin; /I print fail() status of stream cin
while (cin >>1) ... /I read and check pointer to = 0

e In C, routinefeof returnstrue when eof is reached aristanf returnseOF.
e Read in file-names, which may contain spaces, and proceldileac

#include <fstream>

using namespace std;

iInt main() {
ifstream fileNames("fi | eNanes”); // requires char » argument
string fileName;

for (;;) { /I process each file
getline(fileNames, fileName); /[may contain spaces
if (fleNames.fail()) break; /[handle no terminating newlin
ifstream file(fileName.c_str()); // access char *
/I read file
}

CS 246 130
2.7.1.3 Output

e Java output style converts values to strings, concatesttags, and prints
final long string:

System.out.printin(1 +

e C/C+ output style supplies a list of formats and values, autgut
operation generates the strings:

+ 1) // build a string and print it

cout << | << << | << end]; /I print each string when formed

e There is no implicit conversion from the basic types to stimC+ (but
one can be constructed).

e While it Is possible to use the Java string-concatenation gle in C+, it
IS Incorrect style.

e Use manipulators to generate specific output formats:

CS 246 131

#include <iostream> /[cin, cout, cerr
#include <iomanip> /[manipulators
using namespace std;

int i = 7; double r = 2.5; char ¢ = ’Z”: const char s = "abc":
cout << "1:" << setw(2) << |

<< I << fixed << setw(7) << setprecision(2) << r

<< (. << Cc<< S << s << end

#include <stdio.h>
fprintf(stdout, "1:9%2d r: %.2f ¢c:% s:%\n", i, r, c, s);

. 7 r. 250 c:z s:abc

2.7.2 Unformatted I/O

e Unformatted I/O transfers data without conversion, ergernal integer and
real-floating values.

e Uses same mechanisms as formatted 1/O to connect progral® to fi
(open/close).

e read andwrite routines transfer bytes without conversion from/to a filed a
each takes ahar « pointer and length.

CS 246 132

read(char xbuffer, streamsize num);
write(char «buffer, streamsize num);

e To pass any kind of pointer for unformatted I/O requiresarcion, which
IS a caswithout a conversion, using a C cast or Ceinterpret _cast.

CS 246 133

#include <iostream>
#include <fstream>
using namespace std;

Int main() {
ofstream outfile(" XxXX"); /I open output file “xxx”
If (outfile.fail()) ... // unsuccessful open ?

double d = 3.0;
outfile.write((char «)&d, sizeof(d)); // coercion

outfile.close(); I/l close file before attempting read
ifstream infile(" xxx"); /I open input file “xxx”

if (infile.fail()) ... /[unsuccessful open ?

infile.read(reinterpret _cast<char »>(&d), sizeof(d)); // coercion
if (dl=e) ... /[problem

infile.close();

}

e Coercion breaks the type system; use it very sparin@gd would be
unnecessary if buffer type wasid «).

CS 246 134
2.8 Command-line Arguments
e Starting routinenain has exactly two overloaded prototypes.

int main(); // “void” parameter type for C
Int main(int argc, char xargv[]); // parameter names may be different

e The second form is used by the shell to pass command-lineremgjs,
where the command line string-tokens are transformed iIi@+C
arguments.

e argc Is the number of string-tokens on the command line, inclgdine
command name.

e With command name, number of tokens is one greater than in dav

e argv IS an array of pointers to C character strings that make ugrntok
arguments.

CS 246 135

% ./a.out -option infile.cc outfile.cc

0 1 2 3
argc =4 // number of command-line tokens
argv[0] = ./a.out\O /[not included in Java
argv[l] = -option\O
argv[2] = infile.cc\O
argv[3] = outfile.cc\O
argv[4d] =0 // mark end of variable length list

e Because shell only has string variables, a shell argumer&2f does not
mean integer 32, and may have to converted.

e Routinemain usually begins by checkingrgc for command-line
arguments.

CS 246

136

Java

C/IC+H

class Prog {
public static void main(String[] args) {
switch (args.length) {

case O: ... /l no args
break ;

case 1. ... args[O] ... /I 1 arg
break ;

case ... /I others args
break ;

default : ... /l usage message

System.exit(-1);

int main(int argc, char «argv[]) {
switch (argc) {

case 1: ... /l no args
break ;

case 2: ... args[l] ... // 1 arg
break ;

case ... /I others args
break ;

default : ... // usage message
exit(-1);

e Arguments are processed in the raagg/[1] throughargv[argc - 1], I.e.,

starting one greater than Java.

e Process following arguments from shell command line:

cmd [size (> 0) [code (> 0) [input-file [output-file]]]]

e Note, dynamic allocatiorstrtol (atoi does not indicate errors), and no

duplicate code.

CS 246 137

#include <iostream>
#include <fstream>
#include <sstream>

using namespace std; // direct access to std

#include <cstdlib> Il exit

bool convert(int &val, char xbuffer) { /[convert C string to integer
std::stringstream ss(buffer); /[connect stream and buffer
Ss >> dec >> val; /[convert integer from buffer
return ! ss.fail() && I/l conversion successful ?

// characters after conversion all blank ?

string(buffer).find_first_not_of(" ", ss.tellg()) == string::npos;
} /I convert
enum { sizeDeflt = 20, codeDeflt = 5 }; I/l global defaults

void usage(char =argv[]) {

cerr << "Usage: " << argv[0] << " [size (>0 : " << sizeDeflt << "
<< codeDeflt << ") [input-file [output-file]]]]" << endl
exit(-1); /[TERMINATE

} /I usage

Int main(int argc, char *argv[]) {
Int size = sizeDeflt, code = codeDeflt; /I default value
Istream «infile = &cin: /I default value

CS 246 138

switch (argc) {

case 5:
outfile = new ofstream(argv[4]);
If (outfile->fail()) usage(argv); // open failed ?
// FALL THROUGH

case 4.
Infile = new ifstream(argv[3]);
if (infile->fail()) usage(argv); // open failed ?
// FALL THROUGH

case 3:
If (! convert(code, argv[2])) usage(argv) ; // invalid integer ?
// FALL THROUGH

case 2.
if (! convert(size, argv[l])) usage(argv); // invalid integer ?
// FALL THROUGH

case 1: // all defaults
break ;
default : Il wrong number of options
usage(argv);
}
/I program body
If (infile '= &cin) delete infile; /Il close file, do not delete cir
If (outfile '= &cout) delete outfile; /I close file, do not delete co

} /I main

CS 246 139
2.9 Preprocessor

e Preprocessor manipulates the text of the progoafrecompilation.
e Program you see is not what the compiler sees!

e A preprocessor statement ist@haracter, followed by a series of tokens
separated by whitespace, which is usually a single line abhtenminated
by punctuation.

e The three most commonly used preprocessor facilities drstisution, file
Inclusion, and conditional inclusion.

2.9.1 Substitution

e #define statement declares a preprocessor variable, and its \&éliehe
text after the name up to the end of line.

CS 246 140

#define Integer int
#define begin {
#define end }
#define Pl 3.14159
#define gets =

#define set

#define with =

Integer main() begin /[same as: int main() {
Integer x gets 3, v; /[same as: int X = 3, v,
X gets PI; /[same as: x = 3.14159;
set y with X; /[same as. y = X;

end /[same as: }

e Preprocessor can transform the syntax of C/C+ progoAscguraged.
e Variables can be defined and initialized on the compilat@mmand with
option D.
% g++ -DDEBUG=2 -DASSN ... source-files
Same as putting the followingdefine s in a program without changing the
program:

#define DEBUG 2
#define ASSN

CS 246 141

e Cannot have both D and #define for the same variable.

e Predefined preprocessor-variables exist identifyingward and software
environment, e.gmcpu is kind of CPU.

e Replacetdefine with enum for integral types; otherwise usenst
declarations (Javiinal).

enum { arraySize = 100 }; #define arraySize 100

enum { PageSize = 4 x 1024 }; #define PageSize = (4 » 1024)
const double Pl = 3.14159; #define Pl 3.14159

Int array[arraySize], pageSize = PageSize,

double x = PI;

e enum uses no storage whikmnst declarations do.

e #define can declare macros with parameters, which expand during
compilation, textually substituting arguments for paréeng e.g.:

#define MAX(a, b) ((a>Db) ? a: b)
z = MAX(X, V¥), /[implicitly rewritten as: z = (X > y) ?2 X . y)

e Useinline routines in C/C+ rather thatlefine macros.
Inline int MAX(int a, int b) {return a>b ?a: b}

CS 246 142
2.9.2 File Inclusion

e File inclusion copies text from a file into a C/C+ program.
¢ An included file may contain anything.

¢ An include file normally imports preprocessor and C/C+
templates/declarations for use in a program.

¢ All included text goes through every compilation step, peeprocessor,
compiler, etc.

e Java implicitly includes by matching class names with filenra in
CLASSPATH directories, then extracting and including declarations.

e The#include statement specifies the file to be included.

e C convention uses suffixii” for include files containing C declarations.

e C+ convention drops suffixi” for its standard libraries and has special
file names for equivalent C files, e.gstdio versusstdio.h.

#include <stdio.h> /[C style
#include <cstdio> /[C++ style
#include "user.h"

e A file name can be enclosed4» or"".

CS 246 143

e <> means preprocessor only looks in the system include diesto

"" means preprocessor starts looking for the file in the saneetoiry as
the file being compiled, then in the system include direesori

e System filedimits.h andunistd.h contains many usefuidefine s, like the
null pointer constaniULL (e.g., sedusr/include/limits.h).

2.9.3 Conditional Inclusion

e Preprocessor has #mstatement, which may be nested, to conditionally
add/remove code from a program.

e Conditionalif uses the same relational and logical operators as C/C+, but
operands can only be integer or character values.

CS 246 144

#define DEBUG 0 I/l declare and initialize preprocessor variable
#if DEBUG == 1 /I level 1 debugging

include "debugl. h"

;#.ellif DEBUG == /Il level 2 debugging

include "debug2.h”

#élse /l non-debugging code

#rendif

e By changing value of preprocessor variableBUG, different parts of the
program are included for compilation.

e To exclude code (comment-out), useonditional a® implies false.
#if O
/l code commented out
#endif
Independent of language structure, can overlap definiaosroutines.

e It IS also possible to check if a preprocessor variable isxddfor not
defined by usingtifdef or #ifndef :

CS 246 145

#ifndef __MYDEFS_H__ /[1f not defined
#define __MYDEFS_H__ 1 // make it so
#tendif
e Used in artinclude file to ensure its contents are only expanded once.

e Note difference between checking if a preprocessor varisdlefined and
checking the value of the variable.

e The former capability does not exist in most programminglayes, i.e.,
checking if a variable is declared before trying to use it.

2.10 Debugging

e Debuggingis the process of determining why a program does not have ar
Intended behaviour.

e Often debugging is associated with fixing a program afterlaria

e However, debugging can be applied to fixing other kinds obf@ms, like
poor performance.

e Before using debugger tools it is important to understandtwhbu are
looking for and if you need them.

CS 246 146
2.10.1 Debug Print Statements

e An excellent way to debug a program isdtart by inserting debug print
statements (i.e., as the program is written).

e It takes more time, but the alternative is wasting hourstgyto figure out
what the program is doing.

e The two aspects of a program that you need to know are: where th
program is executing and what values it is calculating.

e Debug print statements show the flow of control through a anogand
print out intermediate values.

e E.g., every routine should have a debug print statemenedigginning and
end, as in:

int p(...) {
/I declarations

cerr << "Enter p " << parameter variables << endl;

cerr << "EXit p " << return value(s) << endl;
return r;

CS 246 147

e Result is a high-level audit trail of where the program iscemag and what
values are being passed around.

e Finer resolution requires more debug print statements ponant control
structures:

if (a>Db){
cerr << "a > b" << endl ; /I debug print

for (...) {

cerr << "x=" << x << ", y=" <<y << endl; // debug print

} else {
cerr << "a <= p" << end|; /I debug print

}

e By examining the control paths taken and intermediate gagi@merated, it
IS possible to determine if the program is executing colyect

e Unfortunately, debug print statements can generate enm@mounts of
output.

It is of the highest importance in the art of detection to be able to
recognize out of a number of facts which are incidental and which

CS 246 148
vital. (Sherlock Holmes, The Reigate Squires)

e Gradually comment out debug statements as parts of thegmolgegin to
work to remove clutter from the output, but do not delete thel the
program works.

e \When you go for help, your program should contain debug {mtatements
to indicate some attempted at understanding the problem.

e Use a preprocessor macro to simplify debug prints:

#define DPRT(title, expr) \
{ std::cerr << #itle "\t\"" << __PRETTY_FUNCTION__ << "\" " <<
expr << " In" << __FILE__ << " at line " << __LINE__ << std

for printing entry, intermediate, and exit locations anthda

CS 246 149

#include <iostream>
#include "DPRT. h"
Int test(int a, int b) {
DPRT(ENTER, a << " " << b);
if (a<b)/{
DPRT(a <b,a<<" " <<b);
}

DPRT(, a + b); /[empty title
DPRT(HERE, ""); // empty expression
DPRT(EXIT, a):

return a;

}

which generates debug output:

ENTER "int test(int, int)" 3 4 in test.cc at line 4

a<b "inttest(int, int)" 3 4 in test.cc at line 6
“Int test(int, int)" 7 in test.cc at line 8

HERE "int test(int, int)" in DPRT.cc at line 9

EXIT "int test(int, int)" 3 in test.cc at line 10

2.10.2 Assertions

CS 246 150

e Assertions enforce pre-conditions, post-conditions, and invasianhich
document program assumptions.

e Macroassert provides a mechanism to perform a check, and if the check
fails, to print the check and abort the program.

#include <cassert>
Int main() {
Int asize, bsize;
cin >> asize >> bsize;
assert(("bad array size for A", 5 <= asize && asize <= 20));
assert(("bad array size for B', 5 <= bsize && bsize <= 20));
assert(("array size for A& B nust be sane”, asize == bsize));
Int alasize], b[bsize];
// read values into a, b
for (int 1=0;;1+=1) {
assert((" must have an unequal el ement”, i < asize));
if (afi] '= b[i]) break;

}
}

e Note, use of comma expression to document the assertion.
e \WWhen run with incorrect data produces:

CS 246 151

% ./a.out

34

Assertion failed: ("bad array size for A", 5 <= asize && asize <= 20
file testl.cc, line 9

Abort (core dumped)

e Assertions imot spot, I.e., point of high execution, can significantly
Increase program cost.

e Compiling a program with preprocessor variaRIlREBUG defined removes
all asserts.

% g++ -DNDEBUG ... # all asserts removed

2.10.3 Errors

e Debug print statements do not prevent errors, they simplyngiinding
errors.

e What you do about an error depends on the kind of error.
e Errors fall into two basic categories: syntax and semantic.

e Syntax error Is in the arrangement of the tokens in the programming
language.

CS 246 152

e These errors correspond to spelling or punctuation errbeswwriting in a
human language.

e Fixing syntax errors is usually straight forward espegidlthe compiler
generates a meaningful error message.

e Alwaysreadthe error message carefully addeckthe statement in error.

You see (Watson), but do not observe. (Sherlock Holmes, A Scandal in
Bohemia)

e Difficult syntax errors are:

o Forgetting a closing or «/, as the remainder of the progransigallowed
as part of the character string or comment.

o Missing a{ or }, especially if the program is properly indented (editors
can help here)

e Semantic error Is incorrect behaviour or logic in the program.

e These errors correspond to incorrect meaning when writirsghuman
language.

e Semantic errors are harder to find and fix than syntax errors.

e A semantic or execution error message only tells why thenarmgtopped
not what caused the error.

CS 246 153

e In general, when a program stops with a semantic error, dteraent in
error is often not the one that must be fixed.

e Must work backwards from the error to determine the causheptoblem.

In solving a problem of this sort, the grand thing is to able to reason
backwards. Thisis very useful accomplishment, and a very easy one,
but people do not practise it much. In the everyday affairs of lifeit is
more useful to reason forward, and so the other comes to be neglected.
(Sherlock Holmes, A Sudy in Scarlet)

e Reason from the particular (error symptoms) to the generabi(cause).

o locate pertinent data : categorize as correct or incorrect

o look for contradictions

o list possible causes

o devise a hypothesis for the cause of the problem

o use data to find contradictions to eliminate hypotheses

o refine any remaining hypotheses

o prove hypothesis is consistent with both correct and immmesults, and
accounts for all errors

e E.g., an infinite loop with nothing wrong with the loop; thetialization is
wrong.

CS 246 154
| = 10;
while (i!=5) {
I+= 2;
}

e Difficult semantic errors are:

o uninitialized variables
o Invalid subscript or pointer value

e Finally, if a statement appears not to be working propeny,|doks correct,
check the syntax.

if (a=0Db){
cerr << "a == h" << endl:
}

When you have eiminated the impossible whatever remains, however
Improbable must be the truth. (Sherlock Holmes, Sgn of Four)

2.11 Dynamic Storage Management

e Java/Scheme areanaged languags because the language controls all
memory management, e.garbage collectionto free dynamically

CS 246 155
allocated storage.

e C/C+H areunmanaged languags because the programmer is involved in

memory management, e.g., no garbage collection so dynaonage must
be explicitly freed.

e C+ provides dynamic storage-management operatiengdelete and C
providesmalloc/free.

e Do not mix the two forms in a C+ program.

Java C CH

class Foo { char cl, c2; }|struct Foo { char cl, c2; } struct Foo { char cl,

Foo r = new Foo(); Foo xp = (Foo x)malloc(sizeof (Foo)); | Foo xp = new Foo();

r.cl = X p->cl = ‘X p->cl = ‘X

I/l r garbage collected free(p); // explicit free delete p; // explicit fre
Foo &r = xnew Foo();
r.cl = X
delete &r; // explicit fr

¢ Allocation has 3 steps:

1. determine size/alignment of allocation,
2. allocate heap storage of correct size/alignment,
3. coerce undefined storage to correct type.

CS 246 156

e Each step is explicit in C; CH+ operatogw performs all 3 steps implicitly.
e Parenthesis after the type name in tlee operation are optional.
e For reference, why is there a+” beforenew and an &” in the delete ?
e Storage for dynamic allocation comes from an area calleti¢lag.
e Before storage can be usedpmtistbe allocated.
Foo *p; // forget to initialize pointer with “new”
p->c = 'R /I places 'R’ at some random location in memory

e After storage is no longer neededntstbe explicitly deleted.

Foo xp = new Foo;
p = new Foo; /I forgot to free previous storage

Called amemory leak
e After storage is deleted, mustnot be used:
delete p;
p->c = 'R /I result of dereference is undefined
Called adangling pointer.

e Unlike Java, C/C+ allovall types to be dynamically allocated not just
object types, e.gnew int.

CS 246

157

e As well, C/C+ allowall types to be allocated on the stack, i.e., local
variables of a block:

Java

C+H

{ /Il basic & reference

int i;
double d;:

ObjType obj =
new ObjType();

} // | Qarbage collected

A

Y

stack

heap

d

obj

{ /I all types
int I;
double d;
ObjType obj;

} /./. implicit delete

stack heap

i
d
obj

Y

e Stack allocation eliminates explicit storage-managemer{simpler) and
IS more efficient than heap allocation — use it whenever podde.

e Dynamic allocation in C+ should be used only when:
o a variable’s storage must outlive the block in which it i®a#ited:

ObjType »rtn(...) {
ObjType *x0obj = new ObjType();
... Il use obj
return obj; // storage outlives block
} /I obj deleted later

CS 246 158
o when each element of an array of objects needs initializatio

ObjType *v[10]; // array of object pointers
for (int i =0;i1<10;i1+=1) {

v[i] = new ObjType(i); // each element has different initialization
}

e Declaration of a pointer to an array is complex in C/C+ .
e Because no array-size information, the dimension valuariaarray pointer
IS unspecified:
int xparr = new int [10]; // think parr[], pointer to array of 10 ints
e Java notation:
Int parr[] = new int [10];

cannot be used because parr[] is actually rewritten ast parr[N], where
N is the size of the initializer value.

e As well, no dimension information results in the followingnhiguity:

Int xpvar = new int; I/l basic “new”
Int xparr = new int [10]; /I parr[], array “new”

CS 246 159

e Variablespvar andparr have the same type but one is allocated with the
basicnew and the other with the arrayew.

e Special syntaxnustbe used to call the corresponding deletion operation fc
a variable or an array (any dimension):

delete pvar; I/l basic delete : single element
delete [] parr;, /I array delete : multiple elements (any dimension)

e If basicdelete Is used on an array, only the first element is freed (memory
leak).

e If array delete Is used on a variable, storage after the variable is alsd free
(often failure).

e Never do this:

delete [] parr, pvar; // => (delete [] parr), pvar;
which is an incorrect use of a comma expressmyay is not deleted.

e Declaration of a pointer to a matrix is complex in C/C+, girg. «x[5]
could mean:

CS 246 160

X |19 ;_J X L ——"926(4 0
__>8 ...: : :
-~ | |
4={1] - | |
___| L - - — J
- -
T8

e Left: array of 5 pointers to an array of unknown number of gates.

¢ Right: pointer to matrix of unknown number of rows with 5 coins of
Integers.

e For« and[] which applied first?

e Dimension is higher priority (as subscript), so declarmatginterpreted as
int (x(x[5])) (left).

e Only the left example (above) of declaring a matrix can besgaiized to
allow a dynamically-sized matrix.

CS 246 161

iInt main() {
int «m[5]; Il'5 rows
for (intr=0;,r<5;r+=1){
m[r] = new Iint [4]; /[4 columns per row

for (int c =0;c<4;,c+=1){/ initialize matrix
mir][c] = r + c;

}
for (Int r=0;r<5;r+=1){ /[print matrix
for (int ¢c =0; c< 4,c+:1){
cout << m[r][c] << ", ";
}
cout << endl,
}
for (intr=0;,r<5;r+=1){
delete [] m[r]; /[delete each row
}
} /[implicitly delete array “m”

2.12 Modularization

CS 246 162

e Modularization is the division of a system into interconnecting smaller
parts (components), based on some systematic basis, dmdf@imdation
of software engineering.

e Medium and large systems must be modularized.

e Modules provide a separation of concerns and improve maintairgloyi
enforcing logical boundaries between components.

e These boundaries are providedibierfacesdefined through various
programming-language mechanisms.

e Hence, modularization provides a mechanismlietract data-structures
and algorithms through interfaces.

e Modules eliminate duplicated code ctoring common code into a
single location.

e Essentially any contiguous block of code can be factoremanbutine or
classand given a name (or vice versa).

CS 246 163

2.13 Routine
C CH
[inline] void p(OR T f(|[inline] void p(OR T f(
T1 a /| pass by value T1 a, /[pass by value
T2 &b, /[pass by reference
\ T3 ¢ =3 /[optional, default value
|)
{ // routine body { // routine body
/I intermixed decls/stmts /I intermixed decls/stmts
} }

e C+ routines are not part of aggregation (not combined inBaa), e.g.,
routinemain is not defined in a type.

e A routine’s interface is defined by its input and output paggars, called a
prototype or signature.

e A routine is either arocedure or afunction based on the return type.

e A procedure does NOT return a value that can be use in an expnes
Indicated with return type ofoid :

void proc(...) { ...}

CS 246 164

e A procedure can return values through the argument/paesmetchanism.

e A procedure terminates when control runs off the end of neuliody or a
return statement is executed:

void proc() {
. return; ...

/I run off end

}

¢ A function returns a value that can be used in an expressmuhhance,
mustexecute aeturn statement specifying a value:

int func() {
. return 3; ...
return a + b;

}

e A return statement can appear anywhere in a routine body, and neultipl
return statements are possible.

e A routine with no parameters has parametad in C and empty parameter
list in C+:

.rtn(void) { ...} /[C: no parameters
.rtn() { ...} /[C++. no parameters

CS 246 165

e In C, empty parameters mean no information about the numitgpes of
the parameters is supplied.

e If a routine is qualified withnline , the routine is expanded at the call site
(maybe) to increase speed at the cost of storage (no call).

e Routines cannot be nested in other routines.
e All routines are embedded in the static block in a source file.

int rtn(double d) { /[static block
. return 4;
}
iInt main() { /[static block
ren(3.5);

2.13.1 Argument/Parameter Passing

e Arguments are passed to parameters by:

o value: parameter is initialized by the argument (usually bitwasey).

o reference parameter is a reference to the argument and is initiatzed
the argument’s address.

CS 246 166

pass by value pass by reference
argument

parameter

copyy ﬁaddress-of (&)

e Java/C, parameter passing is by value, i.e., basic typeslgadt references
are copied.

e C+, parameter passing is by value or reference dependitigedype of
the parameter.

e Argument expressions are evaluatedny order.

e For value parameters, each argument-expression resuisiied on the
stack to become the corresponding parameteich may involve an
Implicit conversion

e For reference parameters, each argument-expressiohisagferenced
(address of) and this address is pushed on the stack to béheme
corresponding reference parameter.

CS 246

void swapl(int a, int b) {int c=a;,a= b; b=c;
void swap2(int &a, int &) {int c = a; a= Db; b =c;
void swap3(int *a, int xb) { int ¢ = xa; »a = xb; xb = ¢c; }
void swap4(int «xa, Int =b) { Int xC = xa; »a = xb; xb = C

;)
Int main() {

int a=1, b = 3;

swapl(a, b); /[after swapl: a =1, b =3

swap2(a, b); /| after swap2: a =3, b =1

swap3(&a, &b); /[after swap3: a =1, b =3

Int xpl = &a, *xp2 = &b;

swap4(&pl, &p2); /I after swap4: a =1, b =3

} /[after swap4: pl = &b, p2 = &a

struct S { double d; }

void r1(S's, S &rs, S = const ps) {
ps->d = rs.d = s.d = 3.0;

}

iInt main() {
Ss1={10} s2={20} s3={751}
rl(si, s2, &s3); // after rl: s1.d = 1, s2.d = 3, s3.d = 3

CS 246 168

e C-style pointer-parameter simulates the reference paeanelt forces
on argument and use of with parameter.

e Value passing is most efficient for small values or for largeigs with high
referencing because the values are accessed directly rauhee (not
through pointer).

e Reference passing is most efficient for large values withiroedium
referencing because the values are not duplicated in thimeou

e Problem: cannot change a constant or temporary variablearemeter!

void r2(int &I, Complex &c, int v[]);
r2(i + j, (Complex){ 1.0, 7.0 }, (int [3]){ 3, 2, 7 }); /I disallowed!

e Use type qualifiers to create read-only reference paramstethe
corresponding argument is guaranteed not to change:

void r2(const int &I, const Complex &c, const int Vv[]) {
| = 3; /] disallowed, read only!
c.r = 3.0
v[0] = 3;

}

r2(1+ j, (Complex){ 1.0, 7.0 }, (int [5]){ 3, 2, 7, 9, 0 });

CS 246 169

¢ Provides efficiency of pass by reference for large varialslesurity of pass
by value because argument cannot change, and allows ctsatah
temporary variables as arguments.

e C+ parameter can havedafault value, which is passed as the argument
value if no argument is specified at the call site.

void r3(int i, double g, char ¢ = */, double h=35){...}

r3(1, 2.0, 'b’, 9.3); /I maximum arguments
r3(1, 2.0, 'b"); /I h defaults to 3.5
r3(1, 2.0); /I ¢ defaults to "+, h defaults to 3.5

e In a parameter list, once a parameter has a default valysar@meters to
the right must have default values.

e In a call, once an argument is omitted for a parameter withfautlevalue,
Nno more arguments can be specified to the right of it.

2.13.2 Array Parameter

e Array copy is unsupported so arrays cannot be passed by ealyby
reference.

e Therefore, all array parameters are implicitly referena@ameters, and

CS 246 170
hence, do not have a reference symbol.

¢ A formal parameter array declaration can specify the finstasision with a
dimension value[10] (which is ignored), an empty dimension i}, or a
pointer,x:

double sum(double v[5]); double sum(double v[]); double sum(double v);
double sum(double «m[5]); double sum(double xm[]); double sum(double sxm)

e Good practice uses the middle form because it clearly inescidne variable
IS going to be subscripted.

e An actual declaration cannot uge it must use:

double sum(double v[]) { // formal declaration
double xcv; /I actual declaration, think cv|[]
CV =V, // address assignment

e Routine to add up the elements of an arbitrary-sized arrawyadrix:

CS 246 171

double sum(int cols, double v[]) { double sum(int rows, int cols, double «m[])

double total = 0.0; double total = 0.0;
for (int c=0;c<cols;c+=1) for (int r=0;r<rows;r+=1)
total += v[c]; for (int c=0;c<cols;c+=1)
return total; total += m{r][c];
} return total;
}

2.13.3 Overloading

e Overloading occurs when a name has multiple meanings in the same
context.

e Most languages have overloading.

e E.g., most built-in operators are overloaded on both iatiemnd
real-floating operands, I.e., theoperator is different fot + 2 than for
1.0 + 2.0.

e Overloading requires the compiler to disambiguate amoegtidal names
based on some criteria.

e The normal criterion is type information.
e In general, overloading is done on operations not variables

CS 246 172

Int I; // disallowed : variable overloading
double i

void r(int) {} // allowed : routine overloading
void r(double) {}

e Power of overloading occurs when a variable’s type is chadge
operations on the variable are implicitly reselected foretivariable’s new

type.

e E.g., after changing a variable’s type fram to double , all operations
Implicitly change from integral to real-floating.

e Number andunique parameter typelsut not the return typeare used to
select among a name’s different meanings:

int r(int i, int j) { ...}/l overload name r three different ways
int r(double x, double y) { ...}
int r(int k) {...}

(1, 2); /[iInvoke 1st r based on integer arguments
r(1.0, 2.0); /[invoke 2nd r based on double arguments
r¢ 3); I/l invoke 3rd r based on number of arguments

e Parameter types with qualifiers other thsort /long /signed /unsigned or
reference with same base type are not unique:

CS 246 173

int rCint 1) {...}

int r(signed inti) {...} // disallowed : redefinition
Int r(const int 1) {...} /I disallowed : redefinition
Int r(int &) {...} // disallowed : ambiguous

int r(const int &) {...} /I disallowed : ambiguous
r(1); /I all routines look the same

e Implicit conversions between arguments and parametersaizse
ambiguities:
r(1, 2.0); // ambiguous, convert either argument to integer or double
e Use explicit cast to disambiguate:

r(1, (int)2.0) /| 1st r
r((double)1, 2.0) // 2nd r

e Overload/conversion confusion: 1/O operataris overloaded witlthar «
to print a C string andoid = to print pointers.

char c; Int i;
cout << &c << << &I << endl; /I print address of variables

type of&c is char «, so printed as C string, which is undefinedlype of&i
ISint *, which is converted t@oid x, SO printed as an address.

CS 246 174
e Fix using coercion.

cout << (void %)&c << << &l << endl; // print address of variables

e Overlap between overloading and default arguments fompaiers with
same type:

Overloading Default Argument

int r(int i, int j){...} int r(int i, int j=2){...}
int r(int1){intj=2,...}

r(3);// 2nd r r(3); /l default argument of 2

If the overloaded routine bodies are essentially the samsg a default
argument, otherwise use overloaded routines.

2.14 Routine Pointer

e The flexibility and expressiveness of a routine comes froen th
argument/parameter mechanism, which generalizes a eoatiross any
argument variables of matching type.

e However, the code within the routine is the same for all dathese
variables.

CS 246 175

e To generalize a routine further, code can be passed as amanguvhich is
executed within the routine body.

e Most programming languages allow a routine pointer forrfert
generalization and reuse. (Java does not as its routinggappear in a
class.)

e As for data parameters, routine pointers are specified wiybe (return
type, and number and types of parameters), and any routitehma this
type can be passed as an argument, e.g.:

int f(int v, lint (xp)(Iint)|) {return p(v x«2) + 2; }

Int g(int 1) {return 1 -1;}

int h(int 1) {return 1/ 2;}

cout << f(4, g) << endl; /[pass routines g and h as arguments
cout << f(4, h) << endi;

e Routinef is generalized to accept any routine argument of the fortorme
anint and takes aimt parameter.

e Within the body off, the parametay is called with an appropriatiet
argument, and the result of callipgs further modified before it is returned.

e A routine pointer is passed as a constant reference in ihrtailh
programming languages; in general, it makes no sense t@el@rcopy

CS 246 176
routine code, like copying a data value.

e C/C+ require the programmer to explicitly specify the refece via a
pointer, while other languages implicitly create a refesen

e Two common uses of routine parameters are fix-up and cak-wmadgines.

e A fix-up routine iIs passed to another routine and called if an unusual
situation is encountered during a computation.

e E.g., a matrix is not invertible if its determinant is O (sihay).

e Rather than halt the program for a singular matrixert routine calls a user

supplied fix-up routine to possibly recover and continudnaicorrection
(e.g., modify the matrix):

Int singularDefault(int matrix[][10], int rows, int cols) { return O; }
Int invert(int matrix[][10], int rows, int cols,

Int (xsingular)(int matrix[]J[10], int rows, int cols) = singularDefault)

If (determinant(matrix, rows, cols) == 0) {
correction = singular(matrix, rows, cols); // compute correction

}

CS 246 177

e A fix-up parameter generalizes a routine as the correctitreracs specified
for each call, and the action can be tailored to a particidaga.

e Giving the fix-up parameter a default value eliminates hgqwvanprovide a
fix-up argument.

e A call-back routine is used in event programming.

e \When an event occurs, one or more call-back routines aredcd@higgered)
and each one performs an action specific for that event.

e E.g., a graphical user interface has an assortment of athezawidgets”,
such as buttons, sliders and scrollbars.

e When a user manipulates the widget, events are generatessegting the
new state of the widget, e.g., button down or up.

e A program registers interest in transitions for differemigets by creating
and registering a call-back routine.

Int closedown(/= info about event «/) {
/I close down because close button press
/I return status of callback action

}

/[inform when close button pressed for “widget”
registerCB(widget, closeButton, closedown);

CS 246 178

¢ widget maintains list of registered callbacks.

e A widget calls specific call-back routine(s) when the widgednges state,
passing new state of the widget to each call-back routine.

2.15 Object

e Objectoriented programming was developed in the mid-1960s by Bradh
Nygaard and first implemented in SIMULAGY.

e Object programming is based on structures, used for orgpniagically
related data:

unorganized organized
struct Person {
Int people_age[30]; Int age;
bool people_sex[30]; bool sex;
char people_name[30][50]; char name[50];

} people[30];

e Both approaches create an identical amount of information.
e Difference is solely in the information organization (andmory layout).

CS 246 179

e Computer does not care as the information and its manipuladilargely
the same.

e Structuring is an administrative tool for programmer uistiending and
convenience.

e ODbjects extend organizational capabilities of the stmechy allowing
routine members.

e C+ does not subscribe to the Java notion that everythinighsrea basic
type or an object, i.e., routines can exist without being edded in a
struct /class.

structure form object form

struct Complex { struct Complex {
double re, im; double re, im;

3 double abs() const {

double abs(const Complex &This) { return sqgrt(re = re +
return sqgrt(This.re = This.re + im % im);

This.im % This.im); }

} 1}

Complex x; // structure Complex x; // object

abs(x); // call abs x.abs(); /[call abs

CS 246 180

e Each object provides both data and the operations necessary
manipulate that data in one self-contained package.

e Both approaches use routines as an abstraction mechanceate an
Interface to the information in the structure.

e Interface separates usage from implementation at thdantboundary,
allowing an object’s implementation to change without eiffeg usage.

e E.g., if programmers do not accassmplex’s implementation, it can
change from Cartesian to polar coordinates and maintaie saerface.

e Developing good interfaces for objects is important.

2.15.1 Object Member

e A routine member in a class is constant, and cannot be ask(groe,const
member).

e \What is the scope of a routine member?

e Structure creates a scope, and therefore, a routine memb@ccess the
structure members, e.ghs member can refer to membeaesandim.

e Structure scope is implemented vid a const this parameter, implicitly
passed to each routine member (like left example).

CS 246 181

double abs() const { return sqrt(this->re * this->re + this->Iim x this ->

Since implicit parameter this " is a const pointer, it should be a
reference.

e Except for the syntactic differences, the two forms aretidah
e The use of implicit parametethis, e.qg.,this ->f, Is seldom necessary.

e Member routine declaregbnst is read-only, i.e., cannot change member
variables.

e Member routines are accessed like other members, using erealection,
x.abs, and called with the same formabs().

e NO parameter needed because of implicit structure scopaitis
parameter.

e Nesting of object types only allows static not dynamic scapiJava allows
dynamic scoping).

CS 246 182

struct Foo {

Int g;
int r) { ...}
struct Bar { I/l nested object type
int s() { g =3; r(); } [/ disallowed, dynamic reference
} /[to specific object
P XY,z

References is to memberg andr in Foo disallowed because must know
thethis for specificFoo object, i.e., whiclx, y or z.

e Extend typeComplex by inserting an arithmetic addition operation:

struct Complex {

éémplex add(Complex c) {
return (Complex){ re + c.re, im + c.im };
}

}
e TOo sumx andy, write x.add(y), which looks different from normal addition,
X + .

e Because addition is a binary operatiadd needs a parameter as well as the
Implicit context in which it executes.

CS 246 183
e Like outside a type, C+ allows overloading members in a.type

2.15.2 Operator Member
e It IS possible to use operator symbols for routine names:

struct Complex {

éémplex operator +(Complex ¢) { // replace add member
return (Complex){ re + c.re, im + c.im };
}

J

e Addition routine is called, andx andy can be added by.operator +(y) or
y.operator +(x), which looks slightly better.

e Fortunately, C+ implicitly rewriteg + y asx.operator +(y).
Complex x = {3.0,52 1}, y={-91, 74 };

cout << "X:" << x.re << "+' << x.im << """ << end|;
cout << "y:" << yre << "+" << y.im << """ << endl;
Complex sum = x + v;

cout << "sum"” << sum.re << "+" << sum.im << "|" << endl:

CS 246 184
2.15.3 Constructor

e A constructor is a special member useditaplicitly perform initialization
after object allocation to ensure the object is valid befme.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
... Il other members

I3
e Constructor name is overloaded with the type name of thetsire
(normally disallowed).

e Constructor without parameters is thiefault constructor, for initializing
a new object to a default value.

Complex x; x.Complex();
Complex xy = new Complex;
y->Complex();

Complex x; implicitly
Complex xy = new Complex; rewritten as

e Unlike Java, C+ does not initialize all object members tfadk values.

e Constructor is responsible for initializing memberd initialized via other
constructors I.e., some members are objects with their own constructors

CS 246 185

e Because a constructor Is a routine, arbitrary executiorbegrerformed
(e.g., loops, routine calls, etc.) to perform initializati

e A constructor may have parameters but no return type (not wie).
e Never put parentheses to invoke default constructor fordbdeclarations.

Complex x(); /I routine with no parameters and returning a complex
e Once a constructor is specified, structure initializatioa disallowed:

Complex x = { 3.2 }; // disallowed
Complex y = { 3.2, 45 } // disallowed

e Replaced using constructor(s) with parameters:

struct Complex {
double re, im;
Complex(double r = 0.0, double 1 =00) {re=1r Im=1; }

I3
e Note, use of default values for parameters.

e Unlike Java, constructor argument(s) can be specditt a variable for
local declarations:

CS 246 186

implicitl Complex x; x.Complex(0.0, 0.0);
Complex x, y(1.0), z(6.1, 7.2); MP - y Complex y; y.Complex(1.0, 0.0);
rewritten as Complex z; z.Complex(6.1, 7.2);

e Dynamic allocation is same as Java:

Complex xx = new Complex(); // parentheses optional
Complex »y = new Complex(1.0);
Complex »z = new Complex(6.1, 7.2);

e If only non-default constructors are specified, i.e., oneghvwarameters,
an object cannot be declared without an initialization vadu

struct Foo {
/I no default constructor
Foo(int 1) {...}

Foo x: // disallowed!!
Foo x(1); // allowed

e Unlike Java, constructor cannot be called explicitly int#weo constructor,
SO constructor reuse is done through a separate member:

CS 246 187

Java CH-
class Foo { struct Foo {
int 1, J; int i, j;
void common(int p) {1 =p;] =1;}
Foo() { this(2); } /I explicit call Foo() { common(2); }
\ Foo(int p){i=p;]=1;} Foo(int p) { common(p); }
I3

2.15.3.1 Constant

e Constructors can be used to create object constantgfiike
type-constructor constants):

Complex x, vy, z;

X = Complex(3.2); // complex constant value 3.2+0.0i

y = x + Complex(1.3, 7.2); [/ complex constant 1.3+7.2i

z = Complex(2); // 2 widened to 2.0, complex constant value 2.0+0.0i

e Previous operator for Complex is changed because type-constructor
constants are disallowed for a type with constructors:

CS 246 188

Complex operator +(Complex ¢) {
return Complex(re + c.re, im + c.im); // create new complex value
}

2.15.3.2 Conversion
e Constructors are implicitly used for conversions:

Int I,

double d;

Complex X, v;

X = 3.2 x = Complex(3.2);

y = x + 1.3; implicitly y = x.operator +(Complex(1.3));

y =X+ 1; rewrittenas Y = X.operator +(Complex((double)i);
y = X + d; y = x.operator +(Complex(d));

¢ Allows built-in constants and types to interact with usefxaed types.

e Note, two implicit conversions are performed on variabtex + i: int to
double and therdouble to Complex.

e Can require only explicit conversions with qualifexplicit on constructor:

CS 246 189

struct Complex {
/[turn off implicit conversion
explicit Complex(double r = 0.0, double 1 =0.0) {re =r;, Im =i

I3
e Problem: implicit conversion disallowed for commutativadry operators.

e 1.3 + x, disallowed because it is rewritten @s3).operator +(x), but
memberouble operator +(Complex) does not exist in built-in type
double .

e Solution, move operator out of the
object type and made into a routine, which can also be catledixed form:

struct Complex { ... }; /| same as before, except operator + removed
Complex operator +(Complex a, Complex b) { // 2 parameters
return Complex(a.re + b.re, a.im + b.im);

}
X +V; : . operator +(Xx, V)

1.3 + X; implicitly operator +(Complex(1.3), X)
X+ 1

X .
3, rewritten as operator +(x, Complex(1.3))

e Compiler first checks for an appropriate operator in objgetf and if

CS 246 190
found, applies conversions only on the second operand.

e If N0 appropriate operator in object type, the compiler &sdor an
appropriate routine (it is ambiguous to have both), anduhfih applies
applicable conversions tmth operands.

¢ In general, commutative binary operators should be wrdieroutines to
allow implicit conversion on both operands.

e /O operators< and>> often overloaded for user types:

ostream &operator <<(ostream &os, Complex c) {
return os << c.re << "+" << c.im << "1 ";
}
cout << "X:" << x; /I rewritten as: <<(cout.operator<<(“x:"), X)
e Standard C+ convention for I/O operators to take and retigineam
reference to allow cascading stream operations.

e << operator in objectout Is used to first print string value, then overloaded
routine<< to print the complex variable.

e Why write as a routine versus a member?

CS 246 191
2.15.4 Destructor

e A destructor (finalize in Java) is a special member used to perform
uninitialization at object deallocation:

Java CH
class Foo { struct Foo {
finalize) { ... }| ~Foo() { ...} // destructor

e An object type has one destructor; its name is the charactdoflowed by
the type name (like a constructor).

e A destructor has no parameters nor return type (not ewie):

e A destructor Is only necessary if an object depends uponfulpes its
environment e.g., opening/closing files, allocating/freeing dynaatiyc
allocated storage, etc.

e An independent object like aComplex object, requires no destructor.

e A destructor is invokedbefore an object is deallocated, either implicitly at
the end of a block or explicitly by delete :

CS 246 192

{ { /I allocate local storage
Foo X, y(X); Foo X, y; X.Foo(); y.Foo(x);
Foo xz = new Fo0O; Foo xz = new Foo; z->Foo();
. implicitly .
delete z; rewritten as z->~Foo(); delete z;

y.~Foo(); x.~Foo();
} } /I deallocate local storage

e For local variables in a block, destructomsist becalled in reverse order to
constructors because of dependencies, gdppends on.

e A destructor is more common in C+ than a finalize in Java dubddack
of garbage collection in C+.

e If an object type performs dynamic storage allocation, itdependenand
needs a destructor to free the storage:

CS 246 193

struct Foo {
int «1; /[think int i[]
Foo(int size) { I = new int[size]; } // dynamic allocation
~Foo() { delete [] I; } // must deallocate storage

%
unless the dynamic object is transfered to another objectdallocation.

e C+ destructor is invoked at a deterministic time (blockrteration or
delete), ensuring prompt cleanup of the execution environment.

¢ Javafinalize Is invoked at a non-deterministic time during garbage

collection ornot at all, so cleanup of the execution environment is
unknown.

2.15.5 Copy Constructor / Assignment

e There are multiple contexts where an object is copied.

1. declaration initialization@bjType obj2 = obj1)

2. pass by value (argument to parameter)

3. return by value (routine to temporary at call site)
4. assignmentopj2 = objl)

CS 246 194
e Cases 1 to 3 involve a newly allocated object with undefinddes

e Case 4 involves an existing object that may contain prelyoz@mputed
values.

o C+ differentiates between these situations: initial@atnd assignment.

e Constructor with a&onst reference parameter of class type is used for
Initialization (declarations/parameters/return), edlthecopy constructor.

Complex(const Complex &c) { ... }
e Declaration initialization:

Complex y = x; Implicitly rewritten as Complex y; y.Complex(x);

o “="1s misleading as copy constructor is called not assignropatator.
o value on the right-hand side of™is argument to copy constructor.

e Parameter/return initialization:

Complex rtn(Complex a, Complex b) { ... return a; }
Complex X, v;
X =rtn(X, y), /[creates temporary before assignment

o call results in the following implicit action inn:

CS 246 195

Complex rtn(Complex a, Complex b) {
a.Complex(x); b.Complex(y); // initialize parameters with argume

o return results in a temporary created at the call site to timddesult:

Complex temp;
x =rn(...); implicitly rewritten as temp.Complex(rtn(...));
X = temp;

e Assignment routine is used for assignment:

Complex &operator =(const Complex &rhs) { ... }
o value on the right-hand side of™is argument to assignment operator.
x = vy; Iimplicitly rewritten as x.operator =(y);
o usually most efficient to use reference for parameter analréype.

e If @ copy constructor or assignment operator is not definednalicit one
IS generated that doessaallow (bitwise) copy for basic types antgkeep
(memberwisg copy for object types.

CS 246 196

struct B {

B(O) {}
B(const B &c) { cout << "B(&) "}

B &operator =(const B &rhs) { cout << "B="; }

I3
struct D { /[implicit copy and assignment
int 1; /[basic type, bitwise
B bl, b2; /I object types, memberwise
I3
iInt main() {
D d=d /Il bitwise/memberwise copy
d = d; /Il bitwise/memberwise assignment
}

outputs the following:
B(&) B(&) B= B=

e Often only a bitwise copy occurs because no declared oldjewes a copy
constructor or assignment operator.

e \When an object type has pointers, it is often necessary todd@p copy,
l.e, copy the contents of the pointed-to storage rathertiapointers.

CS 246 197

struct Shallow {
Int *i;
Shallow(int v) {1 =new int; %« = v, }
~Shallow() { delete I, }

struct Deep {
Int *i;
Deep(int v){i=newint; « =v; }
~Deep() { delete i; }
Deep(Deep &d) {i = new int; xi = xd.i; } /[copy value
Deep &operator =(const Deep &rhs) {
«l = *xrhs.i; return «this; /[copy value
}

3

CS 246 198

Initialization
Shallow x(3), y = Xx; Deep x(3), y = X;

L™ "L 4 "L
shallcm\ l l l
new x.i| 3 3 = deep copy 3

assignment
Shallow x(3), y(7); y=X; Deep x(3), y(7); Yy =X;
L™ "L 4 "L
shallow copy—_ | ¢ ¢
newvyi| 7 newx.i| 3 K 3= deep copy 3

memory leak dangling pointer

e For shallow copy:

CS 246 199

o memory leak occurs on the assignment

o dangling pointer occurs afterory is deallocated; when the other object
IS deallocated, it reuses this pointer to delete the sannagso

e Deep copy does not change the pointers only the values assdevithin
the pointers.

e Bewareself-assignmenfor variable-sized types:

CS 246 200

struct Varray { // variable-sized array
unsigned int size;
int xa;
Varray(unsigned int size) : size(size), a(new Int [size]) {}
... Il other members
Varray &operator =(const Varray &rhs) { // deep copy

delete [] a; // delete old storage

Size = rhs.size; /| set new size

a = new int [size]; /| create storage for new array

for (unsigned int 1 =0; 1 < size; i += 1) a[i] = rhs.a[i]; // copy

return =this:

}
I3
Varray x(5), y(10);
X =vy; [l works
y =vy; [l fails

e How can this problem be fixed?
¢ \Which pointer problem is this, and why can it go undetected?

e For deep copy, it is often necessary to define a equality tmpera
(operator ==) performing a deep compare, i.e., compare values not peinte

CS 246 201
2.15.6 Initialize const / Object Member
e C/C+const members and local objects of a structure must be initialated

declaration:
ldeal (Java-like)

Structure

struct Bar {
Bar(int 1) {...}
/l no default constructor
} bar(3);
struct Foo {
const int 1| = 3;
Bar » const p = &bar;
Bar &rp = bar;
Bar b(7);
} X

struct Bar {
Bar(int 1) {...}
// no default constructor
} bar(3);
struct Foo {
const int 1
Bar « const p;
Bar &rp;
Bar b;
} x = { 3, &bar, bar, 7 }

e Left: disallowed because fields cannot be directly inizedl.
¢ Right: disallowed becaudgar has a constructor Somust use constructor

syntax.
e Try using a constructor:

CS 246 202

Constructor/assignment Constructor/initialize
struct Foo { struct Foo {
const int I; const int I;
Bar x const p; Bar = const p;
Bar &rp; Bar &rp;
Bar b; Bar b;
Foo() { Foo() : // declaration order
| = 3; /I after declaration I(3),
p = &bar; p(&bar),
rp = bar; rp(bar),
} b(7); // not a statement b(7) {
}
¥ }

e Left: disallowed becaussnst has to be initialized at point of declaration.
e Right: special syntax to indicate initialized at point ottation.

e Ensuresonst /object members are initialized before used in constructor
body.

e Must be initialized in declaration order to prevent use bedo
Initialization.
e Syntax may also be used to initialize any local members:

CS 246 203

struct Foo {

Complex c;

Int k;

Foo() : c(1, 2), k(14) { /[initialize c, k
c = Complex(1, 2); /[or assign c, k
k = 14;

}

I3
Initialization may be more efficient versus default constion and
assignment.

2.15.7 Static Member

e Members qualified witlstatic are declared in the static block not within an
object.

CS 246 204

struct Foo { static block

it | :F00:]

static int j;

void mem() { .:Foo::rtn
j = 4; [l allowed
ren(); /[allowed i

} X

static void rtn() { mem
] = 4; /I allowed
| = 3; /I disallowed i
mem(); // disallowed

! Y| mem

XY,
e Object membersmem can referencgandrtn in static block.

e Static membertn not logically nested in typ#o, so it cannot reference
members andmem.

2.16 Random Numbers

e Random numbersare values generated independently, i.e., new values di
not depend on previous values (independent trials).

CS 246 205

e E.g., lottery numbers, suit/value of shuffled cards, valuslbed dice, coin
flipping.

e While programmers spend most of their time ensuring congpouddues are
not random, random values are useful:

o gambling, simulation, cryptography, games, etc.

e A random-number generatoris an algorithm that computes independent
values.

e If the algorithm uses deterministic computation, it getespseudo
random-numbersversus “true” random numbers, as sequence Is
predictable.

e All pseudo random-number generatos (PRNG) involve some technique
that scrambles the bits of a value, e.g., multiplicativairesnce:

seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble bits

e Multiplication of large values adds new least-significai$ Bnd drops
most-significant bits.

CS 246 206

bits 63-32 bits 31-0
0| 3e8e36

5f | 718c25el

ad3e | 7b5f 1dbe
bc3b|ac69ff 19
1070f | 2d258dc6

e By dropping bits 63-32, bits 31-0 become scrambled aften eadltiply.

e E.9., clasPRNG generates &xed sequence of LARGE random values that
repeats after? values (but might repeat earlier):

CS 246 207

class PRNG {
uint32_t seed_: /[l same results on 32/64-bit architectures
public :

PRNG(uint32_t s = 362436069) {
seed_ = s; /I set seed

!

void seed(uint32_t s) { Il reset seed
seed_ = s; /| set seed

!

uint32_t operator ()() { Il [O,UINT_MAX]

seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble
return seed_;

}
uint32_t operator ()(uint32_t u) { I/l [0,u]
return operator ()() % (u + 1); // call operator()()
}
uint32_t operator ()(uint32_t |, uint32_t u) { // [l,u]
return operator ()(u -1) + I /[call operator()(uint32_t
}

%
e Creating a member with the function-call operator nagnd€functor)
allows these objects to behave like a routine.

CS 246 208

PRNG prng; /I often create single generator
prng(); Il [O,UINT_MAX]
prng(5); /1'[0,9]

prng(5, 10); // [5,10]

e Large values are scaled using modulus; e.g., generate d6manumber
between 5-21.:

PRNG prng;

for (inti=0;i<10;i+=1){
cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << end];
cout << prng(5, 21) << end;

}

e By initializing PRNG with a different “seed” each time the program is run,
the generated sequence is different:

PRNG prng(getpid()); // process id of program
prng.seed(time()); /I current time

CS 246 209
2.17 Declaration Before Use

e C/C+ haveDeclaration Before UsgDBU), e.g., a variable declaration
must appear before its usage in a block:

e In theory, a compiler could handle some DBU situations:

{
cout << i << endl; /I prints 4 ?
int 1 = 4; /[declaration after usage
}
but ambiguous cases make this impractical:
int i = 3;
{

cout << | << endl; /I which 1?
int 1 = 4:;
cout << | << endl;

}

e C always requires DBU.
e C+ requires DBU in a block and among types but not within a&typ
e Java only requires DBU in a block, but not for declarationsniamong

CS 246 210
classes.
e DBU has a fundamental problem specifyimgitually recursive references:

void f() { /I fcallsg
90); /I g is not defined and being used

}
void g)) { // g callsf

f(); /[f is defined and can be used
}

Caution: these calls cause infinite recursion as there Is nade case.

e Cannot type-check the call tpin f to ensure matching number and type of
arguments and the return value is used correctly.

e Interchanging the two routines does not solve the problem.

e A forward declaration introduces a routine’s type before its actual
declaration:

Int f(int i, double); // routine prototype: parameter names optional
/[and no routine body
|nt f(Int 1, double d) { // type repeated and checked with prototype

}

CS 246 211
e Prototype parameter names are optional (good documemyatio

e Actual routine declaration repeats routine type, whichtrmstch
prototype.

e Routine prototypes also useful for organizing routines soarce file.

Int main(); /[forward declarations, any order
void g(int 1);
void f(int i);
iInt main() { // actual declarations, any order
f(5);
9(4);

}
void g(int i) {...}
void f(int i) {...}

e E.g., allowingmain routine to appear first, and for separate compilation.
e Like Java, C+ does not always require DBU within a type:

CS 246 212

Java CH
void g() {} // not selected by call in T:f
class T { struct T {
void f() { ¢ = Colour.R; g(); } void f) {c =R; g(); } // c, R, g not DBU
void g() { ¢ = Colour.G; f(); } void g)) {c=G; f(); } // c, G not DBU
Colour c; enum Colour { R, G, B }; // type must be DBL
enum Colour { R, G, B }; Colour c;
I3 I

e Unlike Java, C+ requires a forward declaration for muiuedicursive
declaration@mongtypes:

Java CH
class T1 { struct T1 {
T2 t2; T2 t2; // DBU failure, T2 size?
T1(0) { t2 = new T2(); }
: }
class T2 { struct T2 {
T1 t1; T1 t1;
T2(0) { t1 = new T1(); } \
T1 t1 = new T1(); T1 t1;

Caution: these types cause infinite expansion as there is asdcase.

CS 246 213

e Java version compiles becausé2 are references not objects, and Java cal
look ahead atr2; C+ version disallowed because DBU ©a means it does
not know the size of 2.

e An object declaration and usage requires the object’s sidar@mbers so
storage can be allocated, initialized, and usages typekelde

e Solve using Java approach: break definition cycle usingvasiat
declaration and pointer.

Java CH
struct T2; // forward

class T1 { struct T1 {

T2 t2; T2 «t2; [/ pointer, break cycle

T1(0) { t2 = new T2(); } T1(0) { t2 = new T2; } // DBU failure, size?
c’lass T2 { s’truct T2 {

T1 t1; T1 t1;

T2() { t1 = new T1(); } K
I3

e Forward declaration of2 allows the declaration of variabtel::t2.
e Note, a forward declaration only introduces the name of a.typ

CS 246 214

e Given just a type name, only pointer/reference declaratiorihe type are
possible, which allocate storage for an address versusjaatob

e C+’'s solution still does not work as the constructor carusa typer2.

e Use forward declaration and syntactic trick to move memieéndion
after both types are defined

struct T2; // forward

struct T1 {
T2 «t2; [/ pointer, break cycle
T1(); /[forward declaration

I3

struct T2 {
T1 t1;

%

T1::T1() { t2 = new T2; } /[can now see type T2

e Use of qualified nam&1::T1 allows a member to be logically declared in
T1 but physically located later.

2.18 Encapsulation
e Encapsulationhides implementation to force abstracti@at¢ess contrdl.

CS 246 215

e Access control applies to types NOT objects, i.e., all disjetthe same
type have identical levels of encapsulation.

e Abstraction and encapsulation are neither essential noqgrered to
develop software.

e E.g., programmers could follow a convention of not direeitgessing the
Implementation.

e However, relying on programmers to follow conventions isgkerous.

e Abstract data-type (ADT) is a user-defined type that practices abstraction
and encapsulation.

e Encapsulation is provided by a combination of C and C+ festu

e C features work largely among source files, and are indydiettl into
separate compilation.

e C+ features work both within and among source files.
e Like Java, C+ provides 3 levels of visibility control forjebt types:

CS 246 216

Java CH-

class Foo { struct Foo {

private ... private : /I within and friends

/[private members

protected ...| protected : /I within, friends, inherited

cee /I protected members

public ... public : /I within, friends, inherited, users
1 /I public members
’ I3

e Java requires encapsulation specification for each member.

e C+ groups members with the same encapsulation, i.e., allbees after a
label, private , protected or public , have that visibility.

e Visibility labels can occur in any order and multiple timasan object type.

e To enforce abstraction, all implementation members araf@j and all
Interface members are public.

e Nevertheless, private and protected members are stilblesbut cannot be
accessed.

CS 246 217

struct Complex {
private :
double re, im; [/ cannot access but still visible
public :
/I interface routines
¥

e struct has an implicitpublic inserted at the beginning, i.e., by default all
members are public.

e class has an implicifprivate inserted at the beginning, i.e., by default all
members are private.

struct S{ |class C {
/[public: /[private:
int z; int Xx;
private : protected :
Int X; int vy;
protected :| public :
Int v; Int z;
I3 I3

e Use encapsulation to preclude object copying by hiding aamstructor
and assignment operator:

CS 246 218

class Foo {

Foo(const Foo &); /[definitions not required
Foo &operator =(Foo &);
public :

Foo() {...}

I3
void rtn(Foo f) {...}
Foo X, vV,

rin(x); /I disallowed, no copy constructor for pass by value
x =y, [/l disallowed, no assignment operator for assignment

e Prevent object forgery (lock, boarding-pass, receipt)omymng that does
not make sense (file, database).

e Encapsulation introduces problems when factoring for navtaation, e.g.,
previously accessible data becomes inaccessible.

CS 246 219

class Cartesian { // implementation type
double re, im;

¥
class Complex { class Complex {
double re, im; Cartesian impl;
public : public :
Complex operator +(Complex c); .
I;
|3 Complex operator +(Complex a, Complex b);
ostream &operator <<(ostream &O0s, ostream &operator <<(ostream &Os,
Complex c); Complex c);

e Implementation is factored into a new ty@artesian, “+” operator Is
factored into a routine outside and outpuak” operator must be outside.

e Both Complex and “+” operator need to acceSartesian implementation,
l.e.,re andim.

e Creatingget andset interface members faCartesian provides no
advantage over full access.

e C+ provides a mechanism to state that an outside typeheigiallowed
access to its implementation, calliggtndship (similar to package
visibility in Java).

CS 246 220

class Complex; // forward

class Cartesian { // implementation type
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
friend class Complex;
double re, im;

I3

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
Cartesian impl;

public :

I}

Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);

}

ostream &operator <<(ostream &o0s, Complex c) {
return os << c.impl.re << "+" << c.implim << "1 ";

e Cartesian makese/im accessible to friends, am@bmplex makesmpl
accessible to friends.

CS 246 221

e Alternative design is to nest the implementation typ€amplex and
remove encapsulation (useuct).

class Complex {

friend Complex operator +(Complex a, Complex b);

friend ostream &operator <<(ostream &os, Complex c);

struct Cartesian { // implementation type
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
double re, im;

} impl;

public :

Complex(double r = 0.0, double | = 0.0) {
impl.re = r; impl.im = i;

}

I3
Complex makesCartesian, re, im andimpl accessible to friends.

2.19 System Modelling

CS 246 222

e System modellinginvolves modelling a complex system in an abstract wa
to provide a specific description of how the system works.

e Design grows from nothing to become a model of sufficientititde
transformed into a functioning system.

e Design provides high-level documentation of the systemufmlerstanding
(education) and for making changes in a systematic manner.

e Top-down successive refinement is a foundational mechamssu in all
system design.

e System modelling has multiple viewpoints:

o class model describes static kinds and structure of system

o object model: describes dynamic (temporal) behaviour of system
objects

o interaction model : describes the kinds of interactions among objects
e Multiple design tools (past and present) for supportindesysdesign, most

are graphical and all are programming language independent

o flowcharts (1920-1970)

o pseudo-code

o Warnier-Orr Diagrams

CS 246 223

o Hierarchy Input Process Output (HIPO)
o UML

e Design tools can be used in various ways:

o sketchout high-level design or complex parts of a system,
o blueprint the entire system abstractly with high accuracy,
o generateinterfaces/code directly.

e Key advantage is design tool provides a generic, abstradehad a
system, which is transformable into any format.

e Key disadvantage is design tool seldom linked to implenterta
mechanism so two often diffefCODE = TRUTH)

e As with design strategies, design tools have much in commdrsa only
one is studied.

2.19.1 UML

e Unified Modelling Language (UML) is a graphical notation for describing
and designing software systems, with emphasis on the ebjesited style.

e UML can handle class, object and interaction modellingfoon class
modelling).

CS 246 224
e Note/comment

commenttext----- target

e Class diagramcollection of class templates and associated relatiosship
e Class specifies a template for objects : name, attribut@satopns.

class/struct name routine operation

attribute-list

optional -

operation-list

e aftribute : value description (field)
[visibility] name [“.” [type] [“[" multiplicity “]”]
[“=" default] [“ {” property-list “}"]]
o Visibility : access of attribute information by other class
+ = public, — = private, #= protected,~ = package
o hame : required identifier for attribute (like field name irusture)

CS 246 225
o type : restriction on kind of objects associated with atiigb
Boolean, Integer, Float, String, class-name

o multiplicity : restriction on number of objects associateth attribute
0..(N|x), from O toN or unlimited,N short forN..N, * short for 0.x
Defaults to 1, but good practice to always specify.

o default : value of newly created object
o property : additional aspects of attribute, e{greadonly}

e Operation : action changing or returning object state (method)
[visibility]| name [“(" [parameter-list] “)"] [“” return-type]
[“[” multiplicity “]"1[* {” property-list “}"]
o visibility : access of attribute information by other class
+ = public, — = private, #= protected,~ = package
o hame : required identifier for operation (like method namstincture)

o parameter-list : input/output values for operation
| direction | parameter-name “:” type [“[" multiplicity “]"]
[“="default] [“ {” property-list “}"]]
o direction : direction of parameter data flow
“In” (default) | “out” | “inout”

o return-type : output from operation

CS 246 226
o property-list : additional aspects of operation, e{geadonly}

VendingMachine

attributes - Id : Integer

- sodaCost : Integer

- maxStockPerFlavour : Integer
- stock : Integer [1..4]

+ buy(In flavour : Flavours, inout card : WATCard) : Boolean
+ inventory : Integer[1..4]
operations+ restocked

+ cost : Integer

+ getld : Integer

e Include attributes defining model structure (no countersoraries, etc.)

e Often leave out constructor operations as they do not danéito the
model.

e Object diagram : instance of a classiéme: Type, underlined).

objectname:classname
optional { attributes : values

CS 246 227
e Association: establishes alfas-& relationship between types and objects.

~ class Person *ownershie Car

diagram name : String 1 1 5| kind : String
owned owns

_ owned owns _
object fred: Person honda:Car
diagram name="Fredrick kind="Civic”
mary: Person honda:Car
name="Mary” Kind="CRV”
peg:Person honda:Car
name="Margaret’ kind="CRV”

e Class association is “ownership”.

o personowns O or more cars (*)
personowns 1 to 5 cars

o car isowned by O or more people (*)

CS 246
car isowned by 1 person

228

e Objects associated with “ownership” are linked.

e Association is unidirectional (single arrowhead) or kedtronal (double or
no arrowheads), calleghvigation:

worksFor

Employer

ownership

Employee

Person

Car

unidirectional

bidirectional

Always specify arrowheads unless navigation is unimportan
e Association can be represented as an attribute or a line.

Person Car
name : String Kind : String
owner : Car owned : Person
Person ownership Car
name : String - Ll kind: String

CS 246 229
Use attribute if many lines to a single class.
e Association may be implemented in a number of ways:

o pointer/reference from one object to another
o related elements in arrays

e Association Class association that is also a class

CS 246

Person Car
name I kind
Sale
dealership
serialno
mary: Person honda:Car
name="Mary’ I kind="Civic”
billof: Sale
Ted’'s Honda
L.345YH454

o people without cars do not need “Sale” fields
cars without owners do not need “Sale” fields

o class cannot logically exist without association (dasives) |

230

CS 246 231

e Aggregationis an association between an aggregate attribute and its
members.

* *
array & elements
o aggregate members are independent (exist outside of adgyemd
sharable
Obj xop /[allocate/deallocate elements independently

Obj xvop[10];
o aggregate may not manage its members

e Compositionis stronger aggregation where components exist inside of
composite.

0.1 &
array | elements

o composition members are dependent (only exist inside oposition)
and unsharable

Obj o; // allocate/deallocate elements dependent
Obj vo[10];

o composition manages its members

CS 246 232

e Multiplicity is implemented with single declaration); or dynamic
data-structurefor many(.«).

e UML is significantly more general, supporting very complesdriptions
of relationships among entities.

¢ VERY large visual mechanisms, with several confusing gicgh
representations.

e Generally, a diagram is too complex if it contains more than 8 boxes.

CS 246
Class Diagram

Client

1 - name: String

- phone: String

233

Insurance

1 1| - company: String

+ rate(): Double

- policy: String
- expiry: String

Corporate

Individual

System
* *
\Vehicle
- make: String | *
- model: String |
- colour: String |
A\ Contract
- start: Date
- end: Date
Truck| |SUV|| Car 1
*
Accessory

- surcharge: Double

+ surcharge(): Double

A

FloorMat

GPS

SatelliteRadio

CS 246

Object Diagram

:Contract

start="2009/09/07"
end="2012/09/07’

Car |
make="Honda” .

jfdoe:Individual

name="John F. Doe”

model="Civic”
colour="silver

‘Insurance

phone="204 888-202

)”

policy="X-JAJ1567"

company="SUN Lite”

expiry="2011/05/31"

:System
:Truck lom:Corporate .SUV
make="Ford" | name="IBM" | make="Nissan’
model="F1507 phone="519 744-3121" | model="Quest’
colour="red” i i colour="black”
:Contract | .Insurance | .Contract

start="2010/10/13

end="2013/10/13

company="Pilote”
policy="123-ABC”

expiry="2010/12/01"

‘GPS

:FloorMat

- surcharge=500

- surcharge=50

start="2008/01/25"
end="2014/01/25

234

CS 246 235
Invalid Object Diagram

20000007 Insurance
S ar —) 7

_» b company="All Gate

Car | ffdoe Individual SXPIY=
make="Honda”__. [name="John F. Doe” :
model="Civic” phone="204 888—20213”\ .Insu’r,ance —
colour="silver] company="SUN Lite
policy="X-JAJ1567”"
expiry="2011/05/31"
:System
. Truck iIbm:Corporate SUV
make="Ford” I name="IBM” I make="Nissan|
model="F1507 phone="519 744-3121" model="Quest’
colour="red” S ! colour="black”
-Contract SUV — .Contract
start="2010/10/13" make="Honda” start="2008/01/25"
end="2013/10/13] model="CRV” end="2014/01/257
colour="blue” /
:GPS .FloorMat

- surcharge=500 - surcharge=50

CS 246 236
2.20 Separate Compilation

e Java/C/CH+ useource files to provide another mechanism for
encapsulation.

file.java file.cc
enum Colour { R, G, B }; I/l export lenum Colour { R, G, B }; /I private
class C { Il export
private static int i /| private | static int i; /I private
private static void f() {} // private |static void f() {} /I private
public static int j; /I export |int j; /I export
public static void g() {} // export |void g() {} /I export
}
class D { /I export |class D { [/ private
private int i Il private int i /I private
private void f() {} /I private void f(); /I private
public :
public int j; /Il public Int j; Il public
public void g() {} /Il public void g(); Il public
} }

e External variables and routines are implicitly exporteddm a source file.

CS 246 237

e To encapsulate external variables and routines in a solecegtialify a
variable/routine withstatic .

e Unlike Java, C/C+ do NOT implicitly export types from a soeifile.

o Java implicitly looks inx.class files for exported content.

o C/C+ require the use of the preprocessor and forward deas to
access exported content.

e C/CH+ programs must be explicitly divided into interfacelan
Implementation in two (or more) files.

e Interface is composed of the prototype declaration(s)gbssibly some
Implementation).

e Implementation is composed of actual declarations and.code

e Interface is entered into one or more include filésfi{es), and the
Implementation is entered into one or more source fisfiles).

238

CS 246
file.java
enum Colour { R, G, B }; /Il export
class Extern { /Il export

private static int |; /I private
private static void f() {} // private
public static int j; Il export

public static void g() {} // export

}

class D { /Il export
private int i; /[private
private void f() {} /I private
public int j; /Il public
public void g() {} /Il public

}

file.h
enum Colour { R, G, B }; // export
extern int |; Il export
extern void g(); Il export
class D { Il export
Int 1; /[private
void f(); /[private
public :
int j; /[public
void g(); /I public
}
file.cc
static int i; /I private
static void f() {} /[private
int j; Il public
void g() {} // public
void D:f() {} /I private
void D:g() {} Il public

CS 246 239

e extern qualifier means the actual variable or routine definitiorated
elsewhere.

e Static class-variables must be declared once (versus ddjinea .cc file.
n .CC

class C {
static char c; // defn|char C::c = “a”; /I decl

e Encapsulation is provided by giving a user access to thedecfile(s) (h)
and the compiled source file(s¢€), but not the implementation in the
source file(s).

e E.g.,Complex prototype information is placed into fimsmplex.h, which
programmers include in their programs.

CS 246 240
#ifndef __COMPLEX_H__

#define __COMPLEX_H__ I/l protect against multiple inclusion
#include <iostream> /| access: ostream

// NO “using namespace std”, use qualification to prevent polluting scope
extern void complexStats(); Il interfaces

class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std:..ostream &os, Complex c);
double re, im; /I exposed implementation
public :
Complex(double r = 0.0, double 1 = 0.0);
double abs();
I3
extern Complex operator +(Complex a, Complex b);
extern std:..ostream &operator <<(std::ostream &os, Complex c);
#endif // __COMPLEX_H__

e Complex implementation information is placed in fitemplex.cc.

CS 246 241

#include "conpl ex. h" /I do not copy interface
#include <cmath> /[access: sqrt

using namespace std; /[ok within file scope
I/l external, private declarations

static int cplxObjCnt = O; /I private, defaults to O

/I interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
Complex::Complex(double r, double 1) {re = r; im = i; cplxObjCnt += 1;}
double Complex::abs() { return sqgrt(re = re + im = Im); }
Complex operator +(Complex a, Complex b) {

return Complex(a.re + b.re, a.im + b.im);
}

ostream &operator <<(ostream &o0s, Complex c) {

return os << c.re << "+" << c.im << "1 ";
}
e .cc file includes the.h file so that there is only one copy of the constants,
declarations, and prototype information.

e cplxObjCnt is qualified withstatic to make it a private variable to this
source file.

e NO user can access it, but each constructor implementagioimcrement it
when aComplex object is created.

CS 246 242

e Users calkomplexStats to print the number o€omplex objects created so
far in a program.

e All Complex member routines are separated into a forward declaration an
an implementation after the object type, allowing the impdatation to be
placed in thecc file.

e Note, while theh file encapsulates the implementation, the implementatio
IS still visible.

e To completely hide the implementation requires a (more espe)
reference:

CS 246 243
#ifndef __COMPLEX_H__

#define __COMPLEX_H__ I/l protect against multiple inclusion
#include <iostream> /| access: ostream

// NO “using namespace std”, use qualification to prevent polluting scope
extern void complexStats(); Il interfaces

class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std:..ostream &os, Complex c);

struct Compleximpl; /[hidden implementation, nested class
Compleximpl &impl; /[indirection to implementation

public :
Complex(double r = 0.0, double i = 0.0);
Complex(const Complex &c); /[copy constructor
~Complex();

Complex &operator=(const Complex &c); /[assignment operator
double abs();

I3

extern Complex operator +(Complex a, Complex b);

extern std::ostream &operator <<(std:.ostream &os, Complex c);

#endif // __COMPLEX_H__

CS 246 244

#include "conpl ex. h" /I do not copy interface
#include <cmath> /[access: sqrt

using namespace std; /[ok within file scope
I/l external, private declarations

static int cplxObjCnt = O; /I private, defaults to O

struct Complex::Compleximpl { // actual implementation, nested class
double re, im;
I3

/I interface declarations

void complexStats() { cout << cplxObjCnt << endl; }

Complex::Complex(double r, double 1) : impl(xnew Compleximpl) {
impl.re = r; impl.im = i; cplxOb)Cnt += 1;

}

Complex::Complex(const Complex &c) : impl(xnew Compleximpl) {
Impl.re = c.impl.re; impl.im = c.impl.im; cpIxObjCnt += 1;
}

Complex::~Complex() { delete &impl; }

CS 246 245

Complex &Complex:.operator =(const Complex &c) {
Impl.re = c.impl.re; impl.im = c.impl.im; return xthis;
}

double Complex::abs() {
return sqrt(impl.re = impl.re + implim = impl.im);
}

Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &o0s, Complex ¢) {
return os << c.impl.re << "+" << c.impl.im << "1 ";

e A copy constructor and assignment operator are used becang#ex
objects now contain a reference pointer to the implemeanrtati

e An encapsulated object is compiled using theempilation flag and
subsequently linked with other compiled source files to farprogram:

g++ -c complex.cc

e Creates filecomplex.o containing a compiled version of the source code.

e TO use an encapsulated object, a program specifies the apcesgdude
file(s) to access the object’s interface:

CS 246 246

#include "conpl ex. h”
#include <iostream>

using namespace std;
int main() {
Complex x, vy, z;
X = Complex(3.2);
y = x + Complex(1.3, 7.2);
z = Complex(2);

cout << "X:" << x << " y." <<y << " z2:" << 7z << end;

}

e Then links with any necessary executables:

g++ usecomplex.cc complex.o # other .o files if necessary

e All .o files MUST be compiled for the same hardware architecturey.e.
all x86 or SPARC.

e Notice,iostream is included twice, once in this program and once in

complex.h, which is why each include file needs to prevent multiple
Inclusions.

CS 246 247
2.21 Inheritance

e Objectorientedlanguages providanheritance for writing reusable
program-components.

Java CH
class Base { ... } struct Base { ...}
class Derived extends Base { ... }|struct Derived : public Base { ... };

¢ Inheritance has two orthogonal sharing concepts: impléatien and type.

e Implementation inheritance provides reuse of ciodale an object type;
type inheritance provides reusatsidethe object type by allowing existing
code to access the base type.

2.21.1 Implementation Inheritance

e Implementation inheritance reuses program componentsimpasing a
new object’s implementation from an existing object, tgkatvantage of
previously written and tested code.

e Substantially reduces the time to generate and debug a newat type.

CS 246

248

e One way to understand implementation inheritance is to mbdea

composition:
Composition Inheritance
struct Base { struct Base {
Int 1; Int 1;
int r(...) { ...} int r(...) {...}
Base() { ... } Base() { ... }

s’truct Derived {
Base b; // explicit composition

int s(...) {bi=23 br(.) ...

Derived() {...}

1 = 3; // composition reference
I(...); /I composition reference
.S(...); /I direct reference

}

struct Derived : public Base { // implicit
/[composition

int s...){1=3;r(_..); ...}
Derived() { ... }

}d;

d.i = 3; /I direct reference

d.r(...); /I direct reference

d.s(...); /I direct reference

e Composition implies explicitly create an object memlbetp aid in the
Implementation, i.e Derived has-aBase.

e Inheritance, public Base” clause, implies implicitly:

CS 246 249

o create an anonymous base-class object-member,

o openthe scope of anonymous member so its members are accessible
without qualification, both inside and outside the inhagtobject type.

e Constructors and destructors must be invoked for all intptideclared
objects in the inheritance hierarchy as done for an expheinber in the
composition.

Base b; b.Base(); // implicit, hidden declaration
Derived d; Implicitly Derived d; d.Derived();
. rewritten as ...

d.~Derived(); b.~Base(); // reverse order of constri

e If base type has members with the same name as derived typmki like
nested blocks: inner-scope name overrides outer-scope.nam

e Still possible to access outer-scope names usthgdalification to specify
the particular nesting level.

CS 246 250
Java CH
class Basel { struct Basel {
int 1; int 1;
} It .
class Base2 extends Basel { struct Base2 : public Basel {
int 1; int 1; /[overrides Basel:i
} 3
class Derived extends Base2 { struct Derived : public Base2 {
int 1; int I, /[overrides BaseZ2:i
void s() { void r() {
int 1 = 3; int 1 = 3; /] overrides Derived::i
this.i = 3; Derived::i = 3; // this.i
((Base2)this).i = 3; /] super. Base2::i = 3;
((Basel)this).i = 3; Base2::Basel::ii = 3; // or Basel::
} }
} 13

e E.g.,Derived declaration first creates an invisilBase object in theDerived
object, like composition, for the implicit referencesBase::i andBase::r in

Derived::s.

e Friendship is not inherited.

CS 246 251

class C {
friend class Base;

J

class Base {
/I access C’s private members

I3

class Derived : public Base {
// not friend of C

I3

e Unfortunately, having to inherit all of the members is natays desirable;
some members may be inappropriate for the new type (e.gs &argy).

e As a result, both the inherited and inheriting object mustdry similar to
have so much common code.

2.21.2 Type Inheritance

e Type inheritance extends name equivalence to allow rositméandle
multiple types, callegholymorphism, e.g.:

CS 246 252

struct Foo { struct Bar {
Int I, Int I,
double d; double d;
} b

void r(Foo f) { ...}
r(f); [/ allowed
r(b); // disallowed, name equivalence

e Since types$oo andBar are structurally equivalent, instances of either type
should work as arguments to routine

e Even If typeBar has more members at the end, routimaly accesses the
common ones at the beginning as its parameter isfkgpe

e However, name equivalence precludes thergail).

e Type inheritance relaxes name equivalence by aliasing tlegiged name
with its base-type names.

CS 246 253

struct Foo { struct Bar : public Foo { // inheritance
Int i // remove Foo members
double d;

} Vb

void r(Foo f) { ...}
r(f); [/ valid call, derived name matches
r(b); // valid call because of inheritance, base name matches

e E.g., create a new typdycomplex that counts the number of timabs is
called for eactMycomplex object.

e Use both implementation and type inheritance to simplifydnog type
Mycomplex:

struct Mycomplex : public Complex {
int cntCalls; // add

Mycomplex() : cntCalls(0) {} /[add

double abs() { // override, reuse complex’s abs routine
cntCalls += 1;
return Complex::abs();

}
Int calls() { return cntCalls; } // add

CS 246 254

e Derived typeMycomplex uses the implementation of the base type
Complex, adds new members, and overrids to count each call.

e Why is the qualificatiorComplex:: necessary iiMycomplex::abs?

¢ Allows reuse ofComplex’s addition and output operation fétycomplex
values, because of the relaxed name equivalence providggéy
Inheritance between argument and parameter.

e RedeclareComplex variables taMycomplex to get newabs, and member
calls returns the current number of callsabs for any Mycomplex object.

e Two significant problems with type inheritance.

1. o Complex routineoperator + is used to add th®lycomplex values
because of the relaxed name equivalence provided by tyeeitanhce:

Int main() {
Mycomplex X;
X = X + X;

}

o However, result type fromperator + is Complex, hot Mycomplex.

o Assignment of @&omplex (base type) tdycomplex (derived type)
disallowed because ti@mplex value is missing thentCalls member!

CS 246 255

o Hence, avlycomplex can mimic aComplex but not vice versa.
o This fundamental problem of type inheritance is called

contra-variance.
o C+ provides various solutions, all of which have problemd are

beyond this course.
2. void r(Complex &c) {

c.abs();
}
iInt main() {
Mycomplex X;
x.abs(); /[direct call of abs
r(X), /[indirect call of abs
cout << "X:" << x.calls() << endl;
}

o While there are two calls tabs on objectx, only one is counted!
e public inheritance means both implementation and type inhemanc
e private inheritance means only implementation inheritance.

class bus : private car { ...
Use implementation frormar, butbus is not acar.

CS 246 256

e No direct mechanism in C+ for type inheritance without iemkntation
Inheritance.

2.21.3 Constructor/Destructor

e Constructors aranplicitly executed top-down, from base to most derived
type.

e Mandated by scope rules, which allow a derived-type coaosirudo use a
base type’s variables so the base type must be initializetd fir

e Destructors arenplicitly executed bottom-up, from most derived to base
type.

e Mandated by the scope rules, which allow a derived-typerdetsir to use a
base type’s variables so the base type must be uninitiasztd

e Javafinalize must beexplicitly called from derived to base type.

e Unlike Java, C+ disallows calls to other constructors atdtart of a
constructor.

e TO pass arguments to other constructors, use same syntaxiagiélizing
const members.

CS 246 257

Java CH
class Base { struct Base {
Base(int i) {...} Base(int i) {...}
c;lass Derived extends Base { s,truct Derived : public Base {
Derived() { super(3); ... } Derived() : Base(3) { ... }
Derived(int i) { super(i); ...} Derived(int i) : Base(1) {...}
% I}

2.21.4 Copy Constructor / Assignment

e Since copy constructor and assignment operator are alvemnerated
Implicitly, copy and assignment are not inherited.

CS 246 258

struct B {

B(O) {}
B(const B &c) { cout << "B(&) "}

B &operator =(const B &rhs) { cout << "B="; }

I3

struct D : public B { /I implicit copy and assignment
int J; /[basic type, bitwise

I3

int main() {
D d=d; Il bitwise/memberwise copy
d = d; Il bitwise/memberwise assignment

}

outputs the following:
B(&) B=

2.21.5 Overloading

e Overloading a member routine in a derived class overridessatioaded
routines in the base class with the same name.

CS 246 259

class Base {
public :
void mem(int i) {}
void mem(char c) {}

I3
class Derived : public Base {
public :
void mem() {} // overrides both versions of mem in base class
%

e Hidden base-class members can still be accessed:
o Provide explicit wrapper members for each hidden one.

class Derived : public Base {
public :
void mem() {}
void mem(int i) { Base:mem(1); }
void mem(char ¢) { Base::mem(c); }
I3

o Collectively provide implicit members for all of them.

CS 246 260

class Derived : public Base {
public :
void mem() {}
using Base::mem; // all base mem routines visible

I3

o Use explicit qualification to call members (violates abstian).
Derived d;
d.Base::mem(3);

d.Base::mem(‘a”);
d.mem();

2.21.6 Virtual Routine

e When a member is called, it is usually obvious which one iskex even
with overriding:

CS 246 201

struct Base {

void r() { ...}
s’truct Derived : public Base {
void r() { ...} /[override Base::r
B’ase b;
b.r(); // call Base::r
Derived d;

d.r(); /[call Derived::r

e However, it is not obvious for arguments/parameters and
pointers/references:

void s(Base &b) { b.r(); }

s(d); /[iInheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); /[Base::r or Derived::r ?

¢ Inheritance masks the actual object type, but both callsldhovoke
Derived::r because argumehtand referencep point at an object of type
Derived.

e If variabled is replaced withb, the calls should invokBase::r.

CS 246 262

e To invoke routine defined in referenced object, qualify mentoutine with
virtual .

¢ To invoke routine defined by type of pointer/reference, doqualify
member routine witlvirtual .

e CH uses non-virtual as the default because it is more gfficie
e Javaalwaysuses virtual for all calls to objects.

e Once a base type qualifies a member as virttad,virtual in all derived
types regardless of the derived type’s qualification for timember

e Programmer may want to access membeBase even if the actual object
IS of typeDerived, which is possible becau®®rived contains a Base.

e C+ provides mechanism to override the default at the dall si

CS 246

263

Java

C+H

class Base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual

}

class Derived extends Base {
public void g() {} // virtual
public void h() {} // virtual

}

final Base bp = new Derived();
bp.f0); /[Base.f
(Base)bp).g(); // Derived.g
bp.g(); /[Derived.g
(Base)bp).h(); /I Derived.h
bp.h(); /[Derived.h

struct Base {

void f() {} /[non-virtual
void g() {} /[non-virtual
virtual void h() {} // virtual

I3

struct Derived : public Base {
void g() {}; /[non-virtual
void h() {}; /I virtual

Base &bp = «new Derived(); // polymorphic as:
bp.f0); /[Base::f, pointer type
bp.g(); /[Base:.g, pointer type
((Derived &)bp).g(); // Derived:.g, pointer type
bp.Base::h(); /[Base::h, explicit selection
bp.h(); /[Derived::h, object type

e Java casting does not provide access to base-type’s meautgres.

¢ Virtual members are only necessary to access derived mesttepugh a
base-type reference or pointer.

e If a type is not involved in inheritancdirfal class in Java), virtual members

CS 246 264
are unnecessary so use more efficient call to its members.

e C+ virtual members are gualified in the base type as oppaskt tderived
type.

e Hence, CH+ requires the base-type definer to presuppose éroved
definers might want the call default to work.

e Good practice for inheritable object types is to make all tone members
virtual.

e Any type with virtual members and a destructor needs to made t
destructor virtual so the most derived destructor is cdledugh a
base-type pointer/reference.

e Virtual routines are normally implemented by routine penst

class Base {
Int X, vy; /[data members
virtual void mi(...); // routine members
virtual void m2(...);

%

e May be implemented in a number of ways:

CS 246 265

X X X

y y y Virtual Routine Table
ml - ml - - ml

m2 [T m2 —t—=m2
copy direct routine pointer indirect routine pointer

2.21.7 Downcast

e Type inheritance can mask the actual type of an object tliraug
pointer/reference.

e A downcastdynamically determines the actual type of an object poitted
by a polymorphic pointer/reference.

e The Java operatanstanceof and the CHdynamic _cast operator perform a
dynamic check of the object addressed by a pointer/refer@rat
coercion):

CS 246

266

Java

C+H

Base bp = new Derived();

If (bp instanceof Derived
((Derived)bp).rtn();

)

Base xbp = new Derived,

Derived *dp;

dp = dynamic _cast<Derived x>(bp);
if (dp!=0) {// 0 => not Derived

dp->rtn();

/[only in Derived

e TO usedynamic _cast on a type, the type must have at least one virtual

member.

2.21.8 Slicing

e Polymorphic copy or assignment can result in object truonatalled

slicing.

CS 246 267

struct B {
Int 1;

I3

struct D : public B {
Int j;

I3

void f(B b) {...}
Int main() {
B b;

); /[truncate D to B
d; /I truncate D to B

}

¢ Avoid polymorphic value copy/assignment; use polymorppainters.

2.21.9 Protected Members

e Inherited object types can access and modify public aneépred members
allowing access to some of an object’s implementation.

CS 246 268

class Base {
private :
int Xx;
protected :
Int v;
public :
int z;
%

class Derived : public Base {
public :
Derived() { x; y; z; }; /I x disallowed; y, z allowed

int main() {
Derived d;
d.x; d.y; d.z; Il X, y disallowed; z allowed

}

2.21.10 Abstract Class

e Abstract classcombines type and implementation inheritance for
structuring new types.

e Contains at least one abstragttual) member thatnustbe implemented

CS 246 269
by derived class.

class Shape {
Int colour;
public :
virtual void move(int x, int y) = 0; /I abstract member
%

e Strange Initialization to O means abstract member.

e Define type hierarchy (taxonomy) of abstract classes maosamgmon data
and operations are high as possible in the hierarchy.

CS 246 270

Java CH
abstract class Shape { class Shape {
protected int colour = White; protected : int colour;
public public :
_ | _ Shape() { colour = White; }
abstract void move(int x, int y); virtual void move(int x, int y) = 0;
} 3
abstract class Polygon extends Shape { | class Polygon : public Shape {
protected int edges; protected : int edges;
public abstract int sides(); public : virtual int sides() = O;
} 3
class Rectangle extends Polygon { class Rectangle : public Polygon {
protected int x1, yl, X2, y2; protected : int x1, y1, x2, y2;
_ public :
public Rectangle(...) {...} Rectangle(...) {...} // init corners
public void move(int x, int y) {...} void move(int x, int y) {...}
\ public int sides() { return 4; } int sides() { return 4;}
I3
class Square extends Rectangle { struct Square : public Rectangle {
/I check square /I check square
\ Square(...) { super(...); ...} Square(...) : Rectangle(...) {...}
I3

e Usepublic /protected to define interface and implementation access for

CS 246 271
derived classes.

e Providevirtual /abstract member to allow overriding and force
Implementation by derived class.

e Provide default variable initialization and implemenpatfor virtual
routine (non-abstract) to simplify derived class.

e Provide non-virtual routine torce specific implementatiorgerived class
should not override these routines

e Concrete clasdnherits from one or more abstract classes defining all
abstract members, i.e., can be instantiated.

e Cannot instantiate an abstract class, but can declare penmiteference to
It.
e Pointer/reference used to write polymorphic data strestand routines:

void move3D(Shape &s) { ... s.move(...); ... }
Polygon xpolys[10] = { new Rectangle(), new Square(), ... };
for (unsigned int 1 =0;1<10;1+=1) {
cout << polys[i]->sides() << endl; // polymorphism
move3D(*polysl[i]); // polymorphism

CS 246 2172

e To maximize polymorphismjyrite code to the highest level of abstractipn
l.e. useShape overPolygon, usePolygon overRectangle, etc.

2.21.11 Multiple Inheritance

e Multiple inheritance allows a new type to apply type and implementation
Inheritance multiple times.

class X : public Y, public Z, private P, private Q { ...}

e X type is aliased to types andz with implementation, and also uses
Implementation fronP andQ.

e Interface class(pure abstract-clasg provides only types and constants,
providing type inheritance.

e Java only allows multiple inheritance for interface class.

CS 246

273

Java

CH

interface Polygon {

Int sides();

void move(int X, int y);
}
Interface Rectilinear {

final int angle = 90;

}
class Rectangle implements Rectilinear,
Polygon {
private int x1, yl1, x2, y2;
public void move(int x, int y) {}
public int sides() { return 4; }
}

class Square extends Rectangle {
public void move(int X, int y) {}
}

struct Polygon {

virtual int sides() = O;

virtual void move(int x, int y) = 0;
I3
struct Redctilinear {

enum { angle = 90 },
I3
class Rectangle : public Polygon,
public Rectilinear {

int x1, yl1, x2, y2,

public :

void move(int x, int y) {}

int sides() { return 4; }

I3
struct Square : public Rectangle {
void move(int x, int y) {}

1§

e Multiple inheritance hasiany problems (beyond this course).
e Safe if restrict multiple inheritance to ongublic type and one or two

private types.

CS 246 274
2.21.12 UML
e Generalization : reuse through forms of inheritance.

Polygon

abstract class | Rectilinear | | gqes Integer

+angle : 90 HFmove(inX: Integer, iny: Integer)
? 7 i

multiple | inheritance

| =4

superclass Rectangle

f single inheritance

subclass Square Trapezolc

o Inheritance establishess“a’ relationship on type, and reuse of attributes
and operations.

o Association class can be implemented with forms of multipkeeritance

CS 246 275
(mixin).
e For abstract class, name and abstract operationsahicezed.

2.22 Inheritance / Composition Design

e Duality between “has-a” (composition) and “is-a” (inhante)
relationship.

e Types created from multiple composite classes; typesendedm multiple
superclasses.

Composition Inheritance
class A {...}; class A {...};
class B{ A a; ...}; class B : A{..}
class C {...}; class C {...};
class D{B Db; Cc; ...};/class D : B, C{..}

e Both approaches:

o remove duplicated code (variable/code sharing)
o have separation of concern into components/superclasses.

e Choose inheritance when evolving hierarchical types (taray) needing
polymorphism.

CS 246 276

Vehicle
Construction
Heavy Machinery
Crane, Grader, Back-hoe
Haulage
Semi-trailer, Flatbed
Passenger
Commercial
Bus, Fire-truck, Limousine, Police-motorcycle
Personal
Car, SUV, Motorcycle

e For maximum reuse and to eliminate duplicate code, place
variables/operations as high in the hierarchy as possible.

e Polymorphism requires derived class maintain base classtsrface
(substitutability).

o derived class should also havehavioural compatibility with base class.

e However, all taxonomies are an organizational compronvgen is a car a
limousine and vice versa.

e Not all objects fit into taxonomy: flying-car, boat-car.
e Inheritance is rigid hierarchy.

CS 246 277
e Choose composition when implementation canlbegated

class Car {
SteeringWheel s; /I fixed
Donut spare;
Wheel xwheels[4]; /I dynamic

Engine xeng;
Transmission xtrany;
public :
Car(Engine xe = fourcyl, Transmission «t = manual) :
eng(e), trany(t) { wheels[i] = ...}
rotate() {...} // rotate tires

wheels(Wheels xw[4]) {...} // change wheels
engine(Engine xe) {...} // change engine
I3
e Composition may be fixed or dynamic (pointer/reference).
e Composition still uses hierarchical types to generalizeponents.

o Engine is abstract class that is specialized to different kindswjirees,
e.g., 3,4,6,8 cylinder, gas/diesel/hybrid, etc.

CS 246 278
2.23 Template

e Inheritance provides reuse for types organized into a fubyathat extends
name equivalence.

¢ Alternate kind of reuse with no type hierarchy and types atesquivalent.
e E.g., overloading, where there is identical code but dsifetypes:

Int max(int a,int b) {retun a>b?a:b}
double max(int a, int b) {return a>b ?a : b}

e Template routine eliminates duplicate code by using tygesapile-time
parameters:

template <typename T> T max(Ta, Tb){return a>b ?a:b}

e template introduces type paramet€mused to declare return and parameter
types.

e At a call, compiler infers typ@& from argument(s), and constructs a
specialized routine with inferred type(s):

cout << max(1, 3) << << max(-1, -4) << endl; // T -> int
cout << max(1.1, 3.5) << " " << max(-1.1, -4.5) << endl; // T -> doL

e Inferred type must supply all operations used within thegiate routine.

CS 246 279
e Template type prevents duplicating code that manipulatesent types.

e E.g., collection data-structures (e.g., stack), have comoode to
manipulate data structure, but type stored in collectiaresa

template <typename T = int, int N = 10> struct Stack { // default value
T elems[N]; // maximum N elements
unsigned int size;
Stack() { size = 0; }
void push(T e) { elems]size] = e; size += 1; }
T pop() { size -= 1; return elems[size]; }

I3

template <typename T, int N>

ostream& operator <<(ostream &o0s, const Stack<T> &stack) {
for (unsigned int i =0;i < N;i+=1) os << stack.elems]i];
return os;

}

e Type parametef, declares the element type of aryms, and return and
parameter types of the member routines.

e Integer parametelN, denotes the maximum stack size.

e Unlike template routines, the compiler cannot infer theetparameter for
template types, so it must be explicitly specified:

CS 246 280

Stack<> si; /[stack of int, 10

Stack<double > sd; /| stack of double, 10

Stack< Stack<int>, 20 > ssi; // stack of (stack of int, 10), 20
si.push(3);

sd.push(3.0);
ssi.push(si);

int i = si.pop();
double d = sd.pop():
si = ssi.pop();

e Specified type must supply all operations used within theptata type.

e There must be a space between the two ending chevrons-as parsed as
operator>> .

e Compiler requires a template definition for each usage solbtie
Interface and implementation of a template must be inrefile,
precluding some forms of encapsulation.

2.23.1 Standard Library

e C+ Standard Library provides different kinds of contageector, map,
list, stack, queue, deque.

CS 246 281

¢ In general, nodes are either copied into the container ait@oito from the
container.

e Copying implies node type must have default and/or copytcoci®r so
Instances can be created without having to know constractpments.

e Standard library containers use copying and requires nogeé¢ to have a
default constructor.

e Most containers use aterator to traverse its nodes so knowledge about
container implemented is hidden.

e Ilterator capabilities depend on container, e.g., a sihgked list has
unidirectional traversal, doubly-linked list has bidimeaal traversal, etc.

e Containers provide iterators as a nested object type listgNode> has
list<Node>::iterator.

e Iterator operator++” moves forward to the next node, ungibstthe end of
the container.

e For bidirectional iterators, operator “--" moves in the@ese direction to

++",

CS 246
2.23.1.1 \ector

282

e Like Java arrayyector has random access, length, subscript checkit)g (
and assignmentector also has dynamic sizing.

std::vector<T>

vector() create empty vector
vector(int n) create vector with n empty elements
int size() vector size

bool empty()
T operator [](int 1)
T at(int i)

size() ==
access ith element, NO subscript check
access ith element, subscript checking

vector &operator =(const vector &)
void push_back(const T &x)

void pop_back()

void resize(int n)

void clear()

vector assignment

add x after last element

remove last element

add or erase elements at end so size() :
erase all elements

e vector IS alternative to C/C+ arrays.

CS 246 283

#include <vector>

int i, elem;
vector<int> v; [/ think: int v[O]
for (5;) {
cin >> elem;
if (cin.fail()) break;
v.push_back(elem); /[add elem to vector
}
vector<int> c; // think: int c[O]
C =V, /[array assignment
for (1=csize() -1, 0<=11-=1){
cout << c.at(i) << " "; /I subscript checking
}
cout << endl,
v.clear(); /[remove ALL elements

e Dynamic sizing impliesector’'s elements are allocated on the heap.

¢ \Vector declaratiommay specify an initial size, e.gvector<int> v(size), like
a dimension.

e To reduce dynamic allocation, it is more efficient to dimenswhen the
size is known.

CS 246

int size:
cin >> size; /I read dimension
vector<int> v(size); /I think int v[size]

e Matrix declaration is a vector of vectors:

vector< vector<int> > m;

e Again, it is more efficient to dimension, when size is known.

#include <vector>
vector< vector<int> > m(5); // 5 rows
for (int r=0;r<msize)); r += 1) {

mlr].resize(4), /I 4 columns per row
for (int ¢ = 0; ¢ < m[r].size(); ¢ += 1) {
mlr][c] = r+c; // or m.at(r).at(c)

}
for (int r=0;r<msize); r += 1) {
for (int ¢ = 0; ¢ < m[r].size(); ¢ += 1) {

}

cout << m[r][c] << *, ;
cout << endl;

284

CS 246 285
e Cannot specify number of columns at declaration, so eachgaaro sized.

e Before values are assigned into a row, a row is dimensionadpecific
size,mr].resize(4).

¢ All loop bounds are controlled using dynamic size of the reve@umn.
e Iterator Is a pointer to a vector element (subscript).

std::vector<T>::terator

iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first elemel
iterator insert(iterator posn, const T &x)|insert x before posn

iterator erase(iterator posn) erase element at posn

++, --, +, +=, -, -= (Insertion / random orderjorward/backward operations

CS 246
begin() end()
l - - - i
P @
o 1 2 3 a4
rend() -- —*= -— *t rbegin()

o If erase andinsert took subscript argument, no iterator necessary!
e Use iterator like subscript by adding/subtracting frioegin/end.

v.erase(v.begin()); /I erase v[0], first
v.erase(v.end() - 1); /[erase V[N - 1], last (why “- 1"7?)
v.erase(v.begin + 3); /I erase Vv[3]

e Insert or erase during iteration using an iterator causesifare.

286

CS 246 287

vector<int> v;
for (iInt 1=0;1<5;1+= 1)/l create

v.push_back(2 * i); // values: O, 2, 4, 6, 8
v.erase(v.begin() + 3); /Il remove V[3] : 6
Int i /I find position of value 4 using iterator
for (1=0;1<5&& V[i]!=4;i1+=1);
v.insert(v.begin() + i, 33); /I Insert 33 before value 4

I/l print reverse order using iterator (versus subscript)

vector<int >::reverse_.iterator r;

for (r = v.rbegin(); r !'= v.rend(); r ++) // ++ move towards rend
cout << xr << endl:

2.23.1.2 Map

e map (dictionary) has random access, sorted, unigue-key awrttaf pairs
(Key, Val).

CS 246 288

std::map<Key,Val> / std::pair<Key,Val>
map() create empty map
int size() map size
bool empty() size() ==
Val &operator [](const Key &k) |access element with Key k
int count(Key key) 0 = no key, 1= key
map &operator =(const map &)| map assignment
insert(pair<Key,Val>(k, v)) Insert pair
erase(Key k) erase key k
void clear() erase all elements

e First subscript for key creates an entry and initializes défault or
specified value.

CS 246

#include <map>
map<str|ng int> m, c;

m[red"];

m[green"] = 1;

m:"bl ue"] = 2;

m[green’] = 5

cout << m[green”] << endl;
C = m;

/I Key => string, Val => int
/Il create, set to O for Int

/|l create, set to 1

/l create, set to 2

/[overwrite 1 with 5

[l map assignment

m.insert(pair<string,int>("yel l ow', 3)); // m[‘yellow”] = 3

if (m.count(“bl ack”))
m.erase("bl ue");

// check for key “black”
/[erase pair(“blue”, 2)

e Iterator to search and return values in key order.

289

CS 246 290

std::map<T>::iterator / std::map<T>::reverse_iterator

iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first eleme
iterator find(Key &k) find position of key k

iterator insert(iterator posn, const T &x)|insert x before posn

iterator erase(iterator posn) erase element at posn

++, -- (sorted order) forward/backward operations

e Iterator returns a pointer to an elemeatr, with fieldsfirst (key) and
second (value).

CS 246 291

#include <map>
map<string,int>:iterator f = m.find("green"); // find key position
if (f!= m.end()) /I found ?

cout << "found " << f->first << 7’ << f->second << endl;

for (f = m.begin(); f '= m.end(); f ++) /Il Increasing order
cout << f->first << 7 << f->second << endl;

map<string,int >::reverse_iterator r;

for (r = m.rbegin(); r = m.rend(); r ++) /I decreasing order
cout << r->first << ”” << r->second << endl;
m.clear(); // remove ALL elements

2.23.1.3 Single/Double Linked

e If random access is not required, use more efficient single
(stack/queue/deque) or double (list) linked-list corgain

e Examinelist; stack, queue, deque are simpler.

CS 246
std::list<T>
list() create empty list
list(int n) create list with n default elemen
int size() list size

bool empty()

size() ==

list &operator =(const list &)
T front()

T back()

void push_front(const T &x)
void push_back(const T &x)
void pop_front()

void pop_back()

void clear()

list assignment

first element

last element

add x before first element
add x after last element
remove first element
remove last element

erase all elements

e Iterator returns a pointer to a node.

292

ts

CS 246 293

std::list<T>::iterator / std::list<T>::reverse_.iterator

iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first eleme
iterator insert(iterator posn, const T &x)|insert x before posn

iterator erase(iterator posn) erase element at posn

++, -- (Insertion order) forward/backward operations

CS 246 294

#include <list>
struct Node {
char c; int i; double d;
Node(char c, int i, double d) : c(c), i(i), d(d) {}

I}
list<Node> dl; /I doubly linked list
for (int 1=0;i1<10;i1i+=1){ /I create list nodes
Node n(‘a’+i, i, i+0.5); /I node to be added
dl.push_back(n); /[copy node at end of list
}

list<Node>::iterator f;
for (f = dl.begin(); f !'= dl.end(); f ++) { // forward order

cout << "C:" << (#f)lc << " 11" << i< 0" << f->d << end];
}
while (0 < dl.size()) { // destroy list nodes

dl.erase(dl.begin()); /I remove first node

} /I same as dl.clear()

2.23.1.4 for _each

e Template routindor_each provides an alternate mechanism to iterate
through a container.

e An action routine is called for each node in the containesipgsthe node

CS 246 295
to the routine for processing (Lisgpply).

#include <iostream>
#include <list>
#include <vector>
using namespace std;
void print(int i) { cout << i << " ";} // print node
Int main() {
list< int > int_list;
vector< int > int_vec;
for (int i=0;i1i<10;i1i+=1){ /I create lists
Int_list.push_back(i);
Int_vec.push_back(I);
}
for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}

e Type of the action routine igid rtn(T), whereT is the type of the
container node.

e E.g.,print has annt parameter matching the container node-type.
e More complex actions are possible using a functor.

CS 246 296

e E.g., an action to print on a specified stream must store tbarstand have
anoperator () allowing the object to behave like a function:

struct Print {

ostream &stream; /[stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i<<" ";}
I3
int main() {
list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));
}

e EXpressiorPrint(cout) creates a constaRtint object, andor_each calls
operator ()(Node) in the object.

2.24 Namespace

e CH namespacas used to organize programs and libraries composed of
multiple types and declarations deal with naming conflicts

CS 246 297
e E.g., namespacsd contains all the 1/O declarations and container types.
e Names in a namespace form a declaration region, like theesaioplock.

e Analogy in Java is a package, lm#mespace does NOT provide
abstraction/encapsulation (usécc files).

e Unlike Java packages, C+ allows multiple namespaces tefeed in a
file, as well as among files.

e Types and declarations do not have to be added consecutively

Java source files C+ source file
package Foo; // file namespace Foo {
public class X ... /] export one type /I types / declarations
// local types / declarations }

_ namespace Foo {
package Foo; // file /I more types / declarations
public enum Y ... /[export one type]

/I local types / declarations namespace Bar {
package Bar: // file /I types / declarations
public class Z ... /Il export one type }

// local types / declarations

CS 246 298
e Contents of a namespace are accessed using full-qualifredsa

Java CH
Foo.T t = new Fo00.T(); | Foo::T «t = new Foo:T();

e Or by importing individual items or conditionally imporgrall of the
namespace content.

Java CH
Import Foo.T; | using Foo::T,; /I declaration
Import Foo.*; | using namespace Foo; // directive

e using declaratiorunconditionally introduces an alias (likgpedef) to the
current scope for specified entity in namespace.

o If name already exists in current scopeing fails.
namespace Foo {int 1 = 0; }
int 1 = 1;
using Foo::i; // | exists in scope, conflict failure
o May appear in any scope.

e using directiveconditionally introduces aliases to current scope for all
entities in namespace.

CS 246 299

o If name already exists in current scope, alias is ignoragame already
exists fromusing directive in current scope@sing fails.

namespace Foo {int i = 0; }
namespace Bar {int | = 1; }
{
int 1 = 2;
using namespace Foo; // 1 exists in scope, alias ignored
}
o
using namespace Foo;
using namespace Bar; // | exists from using directive, conflict failu
}

o May appear in namespace and block scope, but not class scope.

CS 246 300

namespace Foo { /[start namespace
enum Colour { R, G, B };
int i = 3;
}
namespace Foo { /[add more
class C { int i; };
int | = 4;
namespace Bar { /[start nested namespace
typedef short int shrint;
char j = “a’;
int C();
}
}
int j = 0; /Il external
int main() {
int | = 3; /[local
using namespace Foo; // conditional import: Colour, i, C, Bar (not |)
Colour c; I/l Foo::Colour
cout << | << endl; /Il Foo::i
C x; /Il Foo::C
cout << :ij << endl; /[external
cout << j << endl; /[local

cout << Foo:j << << Bar:;j << endl; /I qualification

using namespace Bar; // conditional import: shrint, C() (not |)
shrint s = 4; /[Bar::shrint

using Foo:ij; /[disallowed : unconditional import

C(); // disallowed : ambiguous “class C” or “int C()”

CS 246 301

e Never put anamespace In a header file.f) (pollute local namespace) or
before#include (can affect names in header file).

3 Tools

3.1 C/C+H Composition
e C+ Is composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edigsprbgranbefore
compilation .

2. The template (generic) language adds new types and esdtiming
compilation .

3. The C programming language specifying basic declarstama control
flow to be executedfter compilation.

4. The C+H programming language specifying advanced demas and
control flow to be executedfter compilation.

e A programmer uses the four programming languages as fallows

user edits— preprocessor edits— templates expand— compilation
(— linking/loading— execution)

e C is composed of languages 1 & 3.
e The compiler interface controls all of these steps.

(© Peter A. Buhr

302

CS 246 303

3.2 Compilation

C/C++ header files C/C++ source files
— =

(preprocessor)cpp
I -E, -D, -
e

preprocessed source c

¢

compiler) g++
(comp)9¢ W, -y, -g, -S, -01/2/3, -¢

assembly code |

(assembler) as

object code
other object-cod ¢ : } -0, -, -L
“flee ant libraries ~ !d (linker)

Ja.out object

CS 246 304

e Compilation is the process of translating a program from human to
machine readable form.

e The translation is performed by a tool calledampiler.

e Compilation is subdivided into multiple steps, using a nemdi tools.

e Often a number of options to control the behaviour of each. ste

e Option are presented fgr+, but other compilers have similar options.
e General format:

g++ option-list x.cc .0 ...

3.2.1 Preprocessor

e Preprocessor (cpp) takes a C+ source file, removes comna@ntexpands
#include , #define , and#if directives.

e Options:

o -E run only the preprocessor step and writes the preproces§outdo
standard out.

$ g++ -E «.cc ...
... much output from the preprocessor

CS 246 305

o -D define and optionally initialize preprocessor variablesfithe
compilation command:

$ g++ -DDEBUG=2 -DASSN ... *.CC *.0 ...

same as putting the followingdefine s in a program without changing
the program:

#define DEBUG 2
#define ASSN

e -Idirectory search directory for include files;

o files within the directory can now be referenced by relatiaee using
#include <file-name>.

3.2.2 Compiler

e Compiler takes a preprocessed file and converts the C+ d@gegato
assembly language for the target machine.

e Options:
o -Wkind generate warning message for thkattd” of situation.

x -Wall print ALL warning messages.
x -Werror make warnings into errors so program does not compile.

CS 246 306
o -v show each compilation step and its details:

$ g++ -V %.CC *.0 ...
... much output from each compilation step

E.g., system include-directories wheg looks for system includes.

#include <...> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/1486-linux
/usr/include/c++/3.3/backward
/usr/local/include
/usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

o -g add symbol-table information to object file for debugger
o -S compile source file, writing assemble code to fibairce-file.s

o -01/2/3 optimize translation to different levels, where ebxsiel takes
more compilation time and possibly more space in executable

o -c compile/assemble source file but do not link, writing objemde to file
source-file.o

CS 246 307
3.2.3 Assembler

e Assembler (as) takes an assembly language file and converishject
code (machine language).

3.2.4 Linker

e Linker (Id) takes the implicito file from translated source and expliait
files from the command line, and combines them into a new bbjec
executable file.

e Linking options:

o -Ldirectory is a directory containing library files of precompiled code.
o -llibrary search in library directories for givdrbrary.
o -0 gives the file name where the combined object/ executablaceg.

x If no name Is specified, default nara@ut is used.

e Look in library directory 7lib” for math library “m” containing precompiled
“sin” routine used in fyprog.cc” naming executable progranedic”.

$ gcc myprog.cc -L/lib -Im -0 calc

CS 246 308
3.3 Compiling Complex Programs

e As program size increases, so does the cost of compilation.

e Separate compilationdivides a program into units, where each unit can be
iIndependently compiled.

e Advantage: saves significant amounts of computer and péoptedy
recompiling only the portions of a program that change.

o In theory, if an expression is changed, only that expressesus to be
recompiled.

o In practice, the unit of compilation is much coarseanslation unit
(TU), which is a file in C/C+.

o In theory, each line of code (expression) could be put in arsep file,
but impractical.

o S0 a TU should not be too big and not be too small.

e Disadvantage: TUs depend on each other because a progress 8ieny
forms of information, especially types.

o Not a problem when all the code is in a single TU (all type/ahles are
visible).

CS 246 309
o As the number of TUs grow, so does the references to typahlas
(dependencies) among TUS.

o When one TU is changed, it may require other TUs to change that
depend on shared information.

o For a large numbers of TUs, the dependencies turn into a nigtdre
with respect to recompilation.

3.3.1 Dependences

e Dependences in C/C+H normally occur as follows:

o executable depends anmfiles (linking)
o .0 files depend oncC files (compiling)
o .C files depend orh files (including)

CS 246 310
source tree dependencies

X.h #include "y.h" 3:00 2:00 2:30
x.C #include "“x.h" =80 1930 100
] o lude "7 b 301 X.0—X.C—x.h

V. include .

a.out y.0o—=y.C—=v.h
z.h #include "y.h" 1:00 12:30 12: >
z.C #include "z.h" z.0—=z.C—=1z.h

e Hierarchicalsource treeis compiled as follows:

$ g++ -c z.C # generates z.0
$ g++ -c y.C # generates y.0
$ g++ -¢c x.C # generates Xx.0

$ g++ Xx.0 y.0 z.0 # generates a.out

e If a change is made tph, which files need to be recompiled? (all!)
e Doesany change tg.h require these recompilations?

e There is no mechanism to know the kind of change made withile a&fig.,
changing a comment, type, variable.

e S0 dependence is coarse grain, basedroichange to a file.

CS 246 311

e One way to denote file changes is witime stamys.

e UNIX stores in the directory the time a file is last changedhwecond
precision.

o Filesx.o0, y.0 andz.o created at 1:00 from compilation of files created
beforel:00.
o File a.out created at 1:01 from link of.o, y.0o andz.o.
o Changes are subsequently made.@®andx.h at 2:00 and 2:30.
o Only filesx.o anda.out are recreated at 3:00 and 3:01.
e Establishingdependenciesneans establishing a temporal ordering in the

dependence graph so the root has the newest (or equal) tohtbaleafs
the oldest (or equal) time.

3.3.2 Make

e Makeis a system command that takes a dependence graph and uses file
change-times to trigger rules that bring the dependengengra to date.

e A make dependence-graph expresses a relationship between apandia
set of sources.

e make does not understand relationships among sources, one thatists
at the source-code level and is crucial.

CS 246 312

e E.g., source.C depends on sourceh butx.C is not a product ok.h like
X.0 IS a product ok.C andx.h.

e Two most common UNIX makes are: make and gmake (on Limake IS
gmake).

e Like shells, there is minimal syntax and semanticafiake, which is
mostly portable across systems.

e Most common non-portable features are specifying depemneieand
implicit rules.

¢ A basic makefile consists of string variables with initiatibn, and a list of
targets and rules.

e This file can have any name, hutke implicitly looks for a file called
makefile or Makefile if no file name is specified.

e Each target has a list of dependencies, and possibly a sethrohands
specifying how to re-establish the target.

variable = value # variable
target : dependencyl dependency? ... # target / dependencies
commandl # rules

command?2

CS 246 313
e Commands must be indented by one tab character.

e make IS invoked with a target, which is the root or subnode of a depace
graph.

e make builds the dependency graph and decorates the edges wéh tim
stamps for the specified files.

e If any of the dependency files (leafs) is newer than the tdigebr if the
target file does not exist, the commands are executed by éleslipdate
the target (generating a new product).

e Makefile for previous dependencies:

a.out : X.0 y.0 z.0
g++ X.0 y.0 2.0 -0 a.out
X.0 : X.C x.h y.h z.h
g++ -g -Wall -c x.C
y.0 : y.C y.h z.h
g++ -g -Wall -c y.C
z.0 : 2.C z.h y.h
g++ -g -Wall -c z.C

e Check dependency relationship (assume source files juseche

CS 246 314

$ make -n -f Makefile a.out
g++ -g -Wall -c x.C

g++ -g -Wall -c y.C

g++ -g -Wall -c z.C

g++ X.0 y.0 2.0 -0 a.out

All necessary commands are triggered to bring tasigett up to date.

o -n builds and checks the dependencies, showing rules to petad
(leave off to execute rules)
o -f Makefile is the dependency file (leave off if nampim]akefile)

o a.out target name to be updated (leave off if first target)
¢ Eliminate duplication using variables:

CS 246 315

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} H{CXXFLAGS} ${OBJECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets / dependencies / commands

FH{CXX} ${CXXFLAGS} x.C
y.0 : y.C y.h z.h

F{CXX} ${CXXFLAGS} y.C
z.0 . z.C z.h y.h

P{CXX} ${CXXFLAGS} z.C

e Eliminate common rules:

o make can deduct simple rules when dependency files have specific
suffixes.
o E.g., given target with dependencies:

X.0 : X.C x.h y.h z.h
make deducts the following rule:

${CXX} ${CXXFLAGS} x.C # special variable names

CS 246 316

o This rules use variable§CXX} and${CXXFLAGS} for generalization.
o Therefore, all rules fox.o, y.o andz.o can be removed.

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step

H{CXX} H{CXXFLAGS} ${OBIECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets / dependencies

y.0 : y.C y.h z.h
z.0 : z.C z.h y.h

e Because dependencies are extremely complex in large pnsgra
programmers seldom construct them correctly or maintaamth

e Without complete and update dependenciesnake Is useless.
e Automate targets and dependencies:

CS 246 317

CXX = g++ # compiler
CXXFLAGS = -g -Wall -MMD # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
DEPENDS = ${OBJECTS:.0=.d} # substitute “.0” with “.d”
EXEC = a.out # executable name
${EXEC} : ${OBJIECTS} # link step
${CXX} H{CXXFLAGS} ${OBIJECTS} -0 ${EXEC}
-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)
.PHONY : clean # not a file name
clean : # remove files that can be regenerated

rm -rf ${DEPENDS} ${OBJECTS} ${EXEC} # alternative =.d *.0
o Preprocessor traverses all include files, so it knows alicsstile
dependencies.

o g++ flag -MMD writes out a dependency graph for user source-files to fil
source-file.d

CS 246 318

file contents
X.d | X.0: Xx.C x.h y.h z.h
y.d|y.0o: y.C y.h z.h
z.d|z.0: z.C z.h y.h

o g++ flag -MD generates a dependency graph for user/system source-file
o -include reads thed files containing dependencies.
o .PHONY indicates a target that is not a file name and never creatsd it
recipe to be executed every time the target is specified.
x A phony target avoids a conflict with a file of the same name.
o Phony targetlean removes product files that can be rebuilt (save space

$ make clean # remove all products (don’t create “clean”)

e Hence, it is possible to have a universtlkefile for a single or multiple
programs.

3.4 Source-Code Management

e As a program develops/matures, it changes in many ways.

o UNIX files do not support the temporal development of a progra
(version control), I.e., history of program over time.

CS 246 319

o Access to older versions of a program is useful, e.g., bgabut of
changes because of design problems.

e Program development is often performed by multiple dev&isgach
making independent changes.
o Sharing using files can damage file content for simultaneaussy
o Merging changes from different developers is tricky anceticonsuming.

e To solve these problemssaurce-code management-systers used to
provide versioning and control cooperative work.

3.4.1 SVN

e Subversion(SVN 1.6) is a source-code management-system using the
copy-modify-merge model
o master copy of alproject files kept in arepository,
o multiple versions of the project files managed in the repogit
o developersheckoutaworking copy of the project for modification,
o developersheckin changes from working copy with helpful integration
usingtext merging.
SVN works on file content not file time-stamps.

CS 246 320
working copies repository

\/2
rogramm <—>CheCkOUt V;/ :
Prog = checkin

project

oaramm V2 checkout
Prog < checkin V1
\/2

V3

rojec
oaramm V3 checkout project
Prog = checkin

3.4.2 Repository
e The repository Is a directory containing multiple projects

CS 246 321

courses repository
Ccs246 meta-project
assnl project
x.h, x.C, ... project files
assn2 project
project files

more meta-projects / projects
e svnadmin create command creates and initializes a repository.

$ svnadmin create courses

e svn mkdir command creates subdirectories for meta-projects andqisoj

$ svn mkdir file:///u/iffdoe/courses/cs246 -m " create directory cs246 "
Committed revision 1.
$ svn mkdir file:///u/jfdoe/courses/cs246/assnl -m " create subdirector

Committed revision 2.

o files in repository are designated using URL, so must uselatieso
pathname

o -m (message) flag documents repository change.

o If no -m (message) flag specified, prompts for documentation (using a
editor if shell environment variabIEDITOR set).

CS 246 322
e svn Is command lists directories.

$ svn Is file:///u/jfdoe/courses/cs246
assnl/
$ svn Is file:///u/jfdoe/courses/cs246/assnl

e If project directoryassnl already exists, it can be added directly to the
repository.

e svn import command copies an unversioned directory of files into a
repository.

$ svn import assnl file:///u/jfdoe/courses/cs246/assnl

Adding assnl/z.h
Adding assnl/x.C
Adding assnl/y.C
Adding assnl/z.C
Adding assnl/Makefile
Adding assnl/x.h
Adding assnl/y.h

Committed revision 2.

CS 246 323

$ svn Is file:///u/jfdoe/courses/cs246/assnl
Makefile

X.C

X.h

y.C

y.h
z.C

Z.h

e For students working together, the shared repository neigtdde
accessible in the file system.

$ chgrp -R cs246_75 courses # set group on directory and subfiles
$ chmod -R g+rwx courses # allow group members access to ALL f

and for the path to the repository.

e Group names246_75 Is acquired on a per course basis for each team of
students.

3.4.3 Checking Out

e svn checkout command extracts a working copy of a project from the
repository.

CS 246 324

$ svn checkout file:///u/jfdoe/courses/cs246/assnl
Checked out revision 2.

$ Is -AF assnl

.svn/

e For first checkout, directorgssnl is created in the current directory (unless
It already exists).

e Subdirectory.svn contains administrative information for SVN antlst
not be modified

¢ \Working copy is then modified before being merged back ingo th
repository.

e Other developers do not see each others working copy, ahdmniyl see
modifications when committed.

e To create a working-copy off-campus, ush URL.:

$ svn checkout svn+ssh://jfdoe @student.cs.uwaterloo.ca/u/jfdoe/course
(Replace file URL in subsequent commands wih URL.)

3.4.4 Adding
e Introduce files into project directomlssnl.

CS 246 325

$ cd assnil

$... # create files: Makefile x.C x.h y.C y.h zh z.C
$Is -AF

.svn/ Makefile x.C x.h y.C y.h z.C z.h

e svn add commandschedulesaddition of files (in current directory) into the
repository.

$ svn add Makefile x.C x.h y.C y.h z.h z.C
Makefile

x.C

X.h

y.C

y.h
z.h

z.C
Addition only occurs on next commit.

e Forgettingsvn add is a common mistake.
e Put only project source-files into repository.
e Product files, e.gx.0, +.d, a.out, do not need to be versioned.

>>>>> >

CS 246 326
3.4.5 Checking In

e svn commit command updates the repository with the changes in working
copy.

$ svn commit -m "initial project files

Adding Makefile
Adding X.C
Adding X.h
Adding y.C
Adding y.h
Adding z.C
Adding z.h

Transmitting file data
Committed revision 3.

e if N0 -m (message) flag specified, prompts for commit documentation.

CS 246 327

$ svn Is file:///u/jfdoe/courses/cs246/assnl
Makefile

X.C

X.h

y.C

y.h
z.C

z.h
e Always make sure your code compiles and runs before comnmttit is
unfair to pollute a project with bugs.
3.4.6 Modifying

e Editted files in working copy are implicitlgcheduledor update on next
commit.

$ viyhyC

e svn rm command removes files from working copy aswhedulesemoval
of files from the repository.

CS 246 328

$ Is -AF

.svn/ Makefile x.C x.h y.C y.h z.C z.h
$ svn rm z.h z.C

D Z.h
D z.C
$Is -AF

.svn/ Makefile x.C x.h y.C y.h

e svn status command displays changes between working copy and
repository.

$ svn status

D z.h
M y.C
D z.C
M y.h

Filesy.h / y.C have local modificationsM”, andz.h / z.C are deletedD”.
e Possible to undo scheduled changes by reverting to files fepository.

e svn revert command copies unchanged files from repository to working
copy.

CS 246 329

$ svn revert y.C z.h
Reverted y.C’

Reverted “z.h’
$Is -AF
.svn/ Makefile x.C x.h y.C y.h z.h

e Commit edits and removals.

$ svn commit -m " changes to y.h and remove z.C
Sending y.h

Deleting z.C

Transmitting file data .

Committed revision 4.

$ svn Is file:///u/jfdoe/courses/cs246/assnl

Makefile

e Files in the repository can be renamed and copied.
e svn mv command renames file in working copy aschedulegenaming in

CS 246 330
the repository.

$ svn mv x.h w.h

A w.h
D X.h
$ Is -AF

.svn/ Makefile w.h x.C y.C y.h

e svn cp command copies file in working copy asdhedulesopying in the
repository:

$ svn cp w.h k.h

A K.h

$Is -AF

.svn/ Makefile k.h w.h x.C y.C y.h

e Commit renaming and copying.

CS 246 331

$ svn commit -m " renaming and copying

Adding K.h
Adding w.h
Deleting X.h

Committed revision 5.

$ svn Is file:///u/jfdoe/courses/cs246/assnl
Makefile

K.h

w.h

X.C

y.C

y.h

3.4.7 Revision Number

e Each commit receives a revision number (currently 5).

e Information in older versions is accessible using suéX on URL.
e E.g., print filez.C, which last existed in revision 3.

e svn cat command prints specified file from the repository.

$ svn cat file:///u/jfdoe/courses/cs246/assnl/z.C @3
#include " z.h"

CS 246 332
e Copy deleted file.C from repository into working copy and modify.

$ svn copy file:///u/jfdoe/courses/cs246/assnl1/z.C @3 z.C
A z.C

$Is -AF

.svn/ Makefile kh wh x.C y.C y.h z.C zh

$... # change z.C

$ svn commit -m " bring back z.C and modify
Adding z.C

Transmitting file data .

Committed revision 6.

$ svn cat file:///u/jfdoe/courses/cs246/assnl/z.C @6

#include " z.h"
new text

3.4.8 Updating

e Synchronize working copy with commits in the repositorynfrother
developers.

CS 246 333

jfdoe kdsmith
modify x.C | modify x.C & y.C
removek.h
addt.C

e Assumekdsmith has committed their changes.
e jfdoe attempts to committed their changes.

$ svn commit -m " modify x.C "
Sending X.C
svn: Commit failed (details follow):

svn: File “/cs246/assn1/x.C” is out of date

e jfdoe must resolve differences between their working copy andtineent
revision in the repository.

e svn update command attempts to update working copy from most recent
revision.

CS 246 334

$ svn update

D K.h file k.h deleted
U y.C file y.C updated without conflicts
A t.C file t.C added

Conflict discovered in 'x.C".
Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: df
--- .svn/text-base/x.C.svn-base Sun May 2 09:54:08 2010
+++ .svn/tmp/x.C.tmp Sun May 2 11:28:42 2010
@@ -1 +16 @@
#include " x.h"
+<<<<<<< . mine

+jifdoe new text

+kdsmith new text
+>>>>>>> 17
Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: tc
G X.C file Xx.C merGed with kdsmith version
Updated to revision 7.

CS 246 335

o (p) postpone : mark conflict to be resolved later

o (df) diff-full : show changes to merge file

o (e) edit : change merged file in an editor

o (r) resolved : after editing version

o (mc) mine-conflict : accept my version for conflicts

o (tc) theirs-conflict : accept their version for conflicts
o (mf) mine-full : accept my file (no conflicts resolved)
o (tf) theirs-full : accept their file (no conflicts resolved)

e Merge algorithm is generally very good if changes do not layer
e Overlapping changes result in a conflict, which must be wesbl
e If unsure about how to deal with a conflict, it can be postpdioeaach file.

CS 246 336

$ svn update

D K.h file k.h deleted
U y.C file y.C updated without conflicts
A t.C file t.C added

Conflict discovered in 'x.C".

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: p

C X.C file x.C conflict

Updated to revision 7.

Summary of conflicts:

Text conflicts: 1

e \Working copy now contains the following files:

CS 246 337

X.C xX.C.mine

#include "Xx.h" |#include "Xx.h"
<<<<<<< .mine |jfdoe new text
jfdoe new text

kdsmith new text
>>S>S>S>S>S> 17

X.C.r3 X.C.r7

#include "x.h" |#include "Xx.h"
kdsmith new text

o X.C : with conflicts

o x.C.mine : jfdoe version of.C

o Xx.C.r3 : previous jfdoe version of.C

o X.C.r7 : kdsmith version ok.C in repository

e No further commits allowed until conflict is resolved.

e svn resolve --accept ARG command resolves conflict with version
specified byARG, for ARG options:

o base x.C.r3 previous version in repository
o working : x.C current version in my working copyhnéeds modificatioh

CS 246 338

o mine-conflict :x.C.mine accept my version for conflicts
o theirs-conflict :x.C.r7 accept their version for conflicts
o mine-full : x.C.mine accept my file (no conflicts resolved)
o theirs-full : x.C.r7 accept their file (no conflicts resolved)

$ svn resolve --accept theirs -conflict x.C
Resolved conflicted state of X. C’

e Removes 3 conflict filex.C.mine, x.C.r3, x.C.r7, and setx.C to theARG
version.

$ svn commit -m "nodi fied x. C
Sending X.C

Transmitting file data .

Committed revision 8.

3.5 Debugger

¢ An interactive, symboliclebuggereffectively allows debug print
statements to be added and removed to/from a program dyakynic

¢ You should not rely solely on a debugger to debug a program.

CS 246 339

e You may work on a system without a debugger or the debuggemuiay
work for certain kinds of problems.

e A good programmer uses a combination of debug print statenaerl a
debugger when debugging a complex program.

e A debugger does not debug your program for you, it merelyshigiphe
debugging process.

e Therefore, you must have some idea about what is wrong witbgram
before starting to look or you will simply waste your time.

3.5.1 GDB

e The two most common UNIX debuggers are: dbx and gdb.
e File test.cc contains:

CS 246 340

1 int r(int af]) {

2 int i = 100000000;

3 afil += 1; // really bad subscript error
4 return afij;

5 }

6 Int main() {

7 int a[10] ={ 0, 1 };

8 rC a);

o }

e Compile program using the flag to include names of variables and
routines for symbolic debugging:
$ g++ -g test.cc

e Start gdb:

$ gdb ./a.out
... gdb disclaimer
(gdb) < gdb prompt

e Like a shell, gdb uses a command line to accept debugging amus
e <Enter> without a command repeats the last command.
e r'un command begins execution of the program:

CS 246 341

(gdb) run

Starting program: /u/userid/cs246/a.out

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 ali] += 1; // really bad subscript error

o If there are no errors in a program, running in GDB Is the sase a
running in a shell.
o If there is an error, control returns to gdb to allow examorat

o If program is not compiled withg-flag, only routine names given.
e backtrace command prints a stack trace of called routines.

(gdb) backtrace
#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:8

o stack has 2 frameasain (#1) andr (#0) because error occurred in callrto

e print command prints variables accessible in the current roubibect, or
external area.

(gdb) print |
$1 = 100000000

CS 246 342
e Can print any C+ expression:

(gdb) print a

$2 = (int x) Oxffbefa20
(gdb) p *a

$3 =0

(gdb) p a[1]

$4 = 1

(gdb) p a[1]+1

$5 =2

e frame [N] command moves theurrent stack frame to thenth routine call
on the stack.

(gdb) f O

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 ali] += 1; // really bad subscript error
(gdb) f 1

#1 0x00010764 in main () at test.cc:8

8 r(a);
o If nis not present, prints the current frame
o Once moved to a new frame, it becomes the current frame.
o All subsequent commands apply to the current frame.

CS 246 343
e TO trace program executionreakpoints are used.

e break command establishes a point in the program where execution
suspends and control returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 7.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

o Set breakpoint using routine name or source-file:line-remmb

o info breakpoints command prints all breakpoints currently set.
(gdb) info break
Num Type Disp Enb Address What

1 Dbreakpoint keep y 0x00010710 in main at test.cc:7
2 breakpoint keep y 0x000106d8 in r(intx) at test.cc:3

e Run program again to get to the breakpoint:

CS 246 344

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /u/userid/cs246/a.out

Breakpoint 1, main () at test.cc:7

7 int a[10] = { 0, 1 };
(gdb) p a[7]
$8 = 0

e Once a breakpoint is reached, execution of the program caordaued In
several ways.

e Step [N] command executes the nexlines of the program and stops, so
control enters routine calls.

CS 246 345

(gdb) step

8 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 ali] += 1; // really bad subscript error

(gdb) <Enter>

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 ali] += 1; // really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

o If nis not present, 1 is assumed.
o If the next line Is a routine call, control enters the routamel stops at the
first line.

e Next [N] command executes the nexlines of the current routine and stops,
so routine calls are not entered (treated as a single statgme

CS 246 346
(gdb) run

Breakpoint 1, main () at test.cc:7

7 int a[10] = { 0, 1 };

(gdb) next

8 rc a);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 ali] += 1; // really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 ali] += 1; // really bad subscript error

e continue [N] command continues execution until the next breakpoint is
reached.

CS 246 347

(gdb) run

Breakpoint 1, main () at test.cc:7

7 int a[10] = { 0, 1 };

(gdb) s

8 rc a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 ali] += 1; // really bad subscript error
(gdb) p |

$9 = 100000000
e list command lists source code.

CS 246 348
(gdb) list

1 intr(inta[]) {

2 int i = 100000000;

3 ali] += 1; // really bad subscript error
4 return ali;

S5]

6 int main() {

7 int a[10] = { 0, 1 };

8 r(a);

9 }

o With no argument, list code around current execution |locati
o with argument line number, list code around line number

e (uit command terminate gdb.

(gdb) run

iBIrIeakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };

1: a[0] = 67568

(gdb) quit

The program is running. Exit anyway? (y or n) y

4 Software Engineering

e Software Engineering(SE) Is the social process of designing, writing, and
maintaining computer programs.

e SE attempts to find good ways to help people understand armatiogev
software.

e However, what is good for people is not necessarily goodfercomputer.

e Many SE approaches are counter productive in the develdpofen
high-performance software.

1. The computer does not execute the documentation!
o Documentation is unnecessary to the computer, and sigmifestaounts
of time are spent building it so it can be ignored (program ic@nts).
o Remember, the&uth is always in the code.
o However, without documentation, developers have dificdésigning
and understanding software.
2. Designing by anthropomorphizing the computer is seld@guoa
approach (desktops/graphical interfaces).
3. Software tools spend significant amounts of time undolgl&sign and
coding approaches to generate efficient programs.

© Peter A. Buhr
349

CS 246 350

e It IS Important to know these differences to achieve a badostween
programs that are good for people and good for the computer.

4.1 Software Crisis

e Large software systems-(100,000 lines of code) require many people and
months to develop.

e These projects normally emerge late, over budget, and deaordt well.
e Today, hardware costs are nil, and people costs are great.

e While commodity software is available, someone still hawiibe it.

e Since people produce softwase software cost is great.

e Coupled with a shortage of software personseproblems.

e Unfortunately, software is complex and precise, which negpuime and
patience.

e Errors occur and cost money if not lives, e.g., Ariane 5, dbeR5, Intel
Pentium division error, Mars Climate Orbiter, UK Child SappAgency,
etc.

CS 246 351
4.2 Software Development

e Techniques for program development for small, medium, amgel systems.
e Objectives:

o plan and schedule software projects

o produce reliable, flexible, efficient programs
o produce programs that are easily maintained
o reduce the cost of software

o reduce program failure

e E.g., a typical software project:

o estimate 12 months of work
o hire 3 people for 4 months
o make up milestones for the end of each month

e However, first milestone is reached after 2 months instedd of
e To finish on time, hire 2 more people, but:

o new people require training
o work must be redivided

This takes at least 1 month.

CS 246 352

e Now 2 months behind with 9 months of work to be done in 1 montb by
people.

e TO get the project done:
o must reschedule
o trim project goals
e Often, adding manpower to a late software project makesai.la

e lllustrates the need for a methodology to aid in the deveklmof software
projects.

4.3 Development Processes

e There are different conceptual approaches for develomftg/are, e.g.:

waterfall : break down project based on activity and divide activiaesss
a timeline
o activities : (cycle of) requirements, analysis, desigmlicg, testing,
debugging
o timeline : assign time to accomplish each activity up to @coj
completion time

CS 246 353

iterative/spiral : break down project based on functionality and divide
functions across a timeline

o functions : (cycle of) acquire/verify data, process daemagate data
reports

o timeline : assign time to perform software cycle on each tioncup to
project completion time

staged delivery. combination of waterfall and iterative

o start with waterfall for analysis/design, and finish witbrétive for
coding/testing

agile/lextreme: short, intense iterations focused largely on code (versus
documentation)

o often analysis and design are done dynamically
o often coding/testing done in pairs

e Pure waterfall is problematic because all coding/testmmes at end-
major problems can appear near project deadline.

e Pure agile can leave a project with “just” working code, attéelor no
testing / documentation.

e Selecting a process depends on:
o kind/size of system

CS 246 354
o quality of system (mission critical?)
o hardware/software technology used
o kind/size of programming team
o working style of teams
o nature of completion risk
o consequences of failure
o culture of company

e Meta-processes specifying the effectiveness of processes

o Capability Maturity Model Integration (CMMI)
o International Organization for Standardization (ISO) @00

e Meta-requirements

o procedures cover key aspects of processes

o monitoring mechanisms

o adequate records

o checking for defects, with appropriate and correctiveoscti
o regularly reviewing processes and its quality

o facilitating continual improvement

CS 246 355
4.4 Software Methodology

e System Analysis (next year)

o Study the problem, the existing systems, the requiremdradgeasibility.

o Analysis is a set of requirements describing the systemsputputs,
processing, and constraints.

e System Design

o Breakdown of requirements into modules, with their reladgimps and
data flows.

o Results in a description of the various modules required the data
Interrelating these.

e Implementation
o writing the program
e Testing & Debugging
o get it working
e Operation & Review
o was it what the customer wanted and worth the effort?
e Feedback

CS 246 356
o If possible, go back to the above steps and augment the pegewxeded.

4.4.1 System Design

e TWO basic strategies exist to systematically modularizgstem:

o top-down or functional decomposition
o bottom-up

e Both technigues have much in common and so examine only one.

4.4.2 Top-Down

e Start at highest level of abstraction and break down prolteoncohesive
units, i.e., divide & conquer.

e Then refine each unit further generating more detail at eac$iah.

e Each subunit is divided until a level is reached where thé&sae
comprehensible, and can be coded directly.

e This recursive process is calledccessive refinemenar factoring.

e Unit are independent of a programming language, but ulehgahust be
mapped into constructs like:

o generics (templates)

CS 246 357

o modules
o classes
o routines

¢ Detalils look at data and control flow within and among units.

e Implementation programming language is often chosen digy the
system design.

e Factoring goals:

o reduce module size~: 30-60 lines of code, i.e., 1-2 screens with
documentation

o make system easier to understand

o eliminate duplicate code

o localize modifications

e Stop factoring when:

o cannot find a well defined function to factor out
o Interface becomes too complex

¢ Avoid having the same function performed in more than oneute(treate
useful general purpose modules)

CS 246 358
e Separate work from management:

o Higher-level modules only make decisions (managementrahdther
routines to do the work.

o Lower-level modules become increasingly detailed andipgc
performing finer grain operations.

e In general:

o do not worry about little inefficiencies unless the code isoeited a
LARGE number of times

o put thought into readability of program

4.5 Design Quality

e System design is a general plan for attacking a problem galdl to
multiple solutions.

e Need the ability to compare designs.
e 2 measures: coupling and cohesion

e Low (loose) coupling is a sign of good structured and dedwgh cohesion
supports readability and maintainability.

CS 246 359
4.5.1 Coupling

e Coupling measures the degree of interdependence among programming
“modules”.

e Aim is to achieve lowest coupling or highest independenee, @ach
module can stand alone or close to it).

e A module can be read and understood as a unit, so that chaages h
minimal effect on other modules and possible to isolateritdésting
purposes (like stereo components).

e 5 types of coupling in order of loose to tight (low to high):

1. Data : modules communicate using arguments/parameters corgain
minimal data.
o E.g.,sin(x), avg(marks)

2. Stamp : modules communicate using only arguments/parameters
containing extra data.
o E.g., pass aggregate data (array/structure) with somesaksffields

unused

o problem: accidentally change other data

o modules may be less general (e.g., average routine passechsrof
records)

CS 246 360
o stamp coupling iIs common because data grouping is more tangor
than coupling
3. Control : pass data using arguments/parameters to effect contnol flo

o E.g., module calculate 2 different things depending on a flag
o bad when flag is passed down, worse when flag is passed up

4. Common : modules share global data.

o cannot control access since scope rule allows many modubescess
the global variables

o difficult to find all references reading/writing global valles

5. Content : modules share information about type, size and structiure o
data, or methods of calculation

o changes effect many different modules (good/bad)

o avoidfriend routine/class unless friend module is logically nested but
extracted for technical reasons.

4.5.2 Cohesion

e Cohesionmeasures degree of association among elements within alenodt
(how focused).

e Elements can be a statement, group of statements, or caliséomodules.

CS 246 361
¢ Alternate names for cohesion: binding, functionality, miada strength.
¢ Highly cohesive module has strongly and genuinely relakexahents.
e If modules have low cohesion (module elements are relatetght
coupling.
e If modules have high cohesion (module elements are NOTew@)lat loose
coupling.
e 7 types of cohesion (high to low):
1. Functional : modules elements all contribute to computation of one anc
only one problem related task (Single Responsibility Rpieg.
o E.g.,sin(x), avg(marks), Car {...}, Driver {...}
o coupling is excellent

2. Sequential: module elements interact as producer/consumer, i.gubut
data from one activity is input data to next.

print(process(getword(word))); // read -> process -> print (shell pi
o similar to functional, except possibly mandates sequeotase
o coupling is good
3. Communicational : module elements contribute to activities that use the
same data.

CS 246 362

find(book, title);
find(book, price);
find(book, ISBN);
find(book, author);
o all have same input data
o like sequential but order is not important
o coupling is acceptable
o usually improve maintainability by splitting common moduto
separate, functional ones
4.Procedural : module elements involved in different and possibly
unrelated activities, but which flow from one activity to thext.

file = open(filename); /[open connection to file name
read(file); /I read file contents
close(file); I/l close connection to file name
o related by order of execution rather than by any single gmobielated
function

o typically data sent to procedure modules is unrelated ta skt back

o procedural modules pass around partial results
5. Temporal : module elements involved in activities related in time.

CS 246 363
Initialization
- turn things on
turn things off

set things to O
set things to 1

set things to ”’
o unrelated except carried out at particular time
o each initialization is more closely related to the moduled take use
of it = tight coupling
o want to re-initialize only some of the entities in initiadizon routine
o like procedural, except order of execution is more impdrtian
procedural
6. Logical : module elements contribute to same general category.ewvher
activity is selected from outside the module.

#include <algorithms>
find ...

swap ...

search ...

sort ...

iInner_product ...

o modules contain number of activities of some general kind

CS 246 364

o to use, pick out just one of the pieces needed

o Interface weak, and contains code sharing common linesd# aad/or
data areas

7. Coincidental : module elements grouped arbitrarily.

o activities are related neither by flow of data nor control
o like logical, internal activity must be externally seledt®ut worse
since categories in the module are very weakly related

4.6 Design Principles

¢ low coupling, high cohesion (logical modularization)

¢ good interfaces (abstraction and encapsulation)

e type reuse (type inheritance)

e code reuse (implementation inheritance, physical mocaaon)
e indirection (data/routine pointers) to generalize olgect

4.7 Design Patterns

e Design patternshave existed since people/trades developed formal
approaches.

CS 246 365

e E.g., chef’s cooking meals, musician’s writing/playing $sraj mason’s
building pyramid/cathedral.

e Pattern is a common/repeated issue; it can be a problem or a solution.

e Name and codify common patterns for educational and comratian
purposes.

e Software pattern are solutions to problems:

o name : descriptive name

o problem : kind of issues pattern can solve

o solution : general elements composing the design, withiogiships,
responsibilities, and collaborations

o consequences : results/trade-offs of pattern (altemyaimplementation
ISsues)

e Patterns help:

o extend developers’ vocabulary

Squadron Leader: Top hole. Bally Jerry pranged his kite right in
the how’s your father. Hairy blighter, dicky-birdied, féated back
on his Sammy, took a waspy, flipped over on his Betty Harpa&rds a
caught his can in the Bertie.

— RAF Banter, Monty Python

CS 246

o offer higher-level abstractions than routines or classes

4.7.1 Pattern Catalog

creational structural behavioural
class factory method |adapter | interpreter
template
object| abstract factory | adapter |responsibility chair
builder bridge command
prototype composite iterator
singleton decorator | mediator
facade memento
flyweight |observer
proxy State
strategy
visitor

—

e Scope : applies to classes or objects

e Purpose : class/object creation issues, structural fanohpahavioural

Interaction

366

CS 246 367
4.7.1.1 Class Patterns

factory method : generalize creation of product with multiple variants

struct Pizza {...}; // abstract

struct Pizzeria { /I factory
virtual Pizza create() = 0;

I3

struct Italian : public Pizzeria { // factory method
Pizza create(); // create ltalian style

I3

struct Chicago : public Pizzeria { // factory method
Pizza create(); // create Chicago style

I}

Pizza takeout(Pizzeria &p) {... return p.create(); }
Italian italian; Chicago chicago;

Pizza p = takeout(italian);

p = takeout(chicago);

e each pizza factory creates different kinds of pizza

CS 246 368
adapter/wrapper : convert interface into another

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
% '

struct VStack : public Stack, priva’te Vector { /I adapter/wrapper
void push(...) { ... push_back(...); ...}

void pop(...) { pop_back(...); }

void p(Stack &s) { ...}
VStack vs; [/ use VStack code with Stack routine

p(vs);

e VVStack IS polymorphic withStack but implementgush/pop with
Vector::push_back/ Vector::pop_back.

CS 246 369
template method: provide algorithm but defer some details to subclass

class PriceTag { I/l template method
virtual string label() = O; /[details for subclass
virtual string price() = O;
virtual string currency() = O;

public :

void string currency() { return "currency " + currency(); }
void string tag() { return label() + price() + currency(); }

%

class FurnitureTag : public PriceTag { // actual method
string label() { return "furniture "; }
string price() { return "$1000 "; }
string currency() { return "Cdn"; }

%

FurnitureTag ft;

cout << ft.tag() << endl,

e template-method routines are non-virtual, i.e., not addan

CS 246 370
4.7.1.2 Object Patterns

abstract factory : generalize creation of family of products with multiple
variants

struct Restaurant { // abstract factory
virtual void food() = O;
virtual void staff() = O;
I3
struct Pizzeria : public Restaurant { // concrete factory
virtual void food() = O;
virtual void staff() = O;
virtual void takeout() = O;
I3
struct Burgers : public Restaurant { // concrete factory
virtual void food() = O;
virtual void staff() = O;

CS 246

371
singleton: single instance of class
h file .cc file
class Singleton { #include " Singl eton. h”
struct Impl { Singleton::Impl Singleton::impl(3, 4);
Int X, v, Singleton::Impl::Impl(int X, int y)
Impl(int X, int y), > X(x), y(y) {}

: void Singleton:m() { ... }
static Impl impl;

public :
y void m();

Singleton X, vy, z; /[all access same value

¢ Allow different users to have they own declaration but stdtess same
value.

Database database: // user 1
Database db: /l user 2
Database info: /[l user 3

¢ Alternative is global variable, which forces name and majate
abstraction.

CS 246 372
composite: interface for complex composite object

struct Assembly { /[composite type
string partNo();
string name();
double price();
void insert(Assembly assm);
void remove(string partNo);
struct Iterator {...};
I3
class Engine : public Assembly {...};
class Transmission : public Assembly{...};
class Wheel : public Assembly {...};
class Car : public Assembly {...};
class Stove : public Assembly {...};
/I create parts for car
Car c; /[composite object
c.insert(engine);
c.insert(transmission);
c.insert(wheel);
c.insert(wheel);

e recursive assembly type creates arbitrary complex asyewbgct.

CS 246 373

e vertices are subassemblies; leafs are parts
e since composite type defines both vertices and leaf, all neemthay not
apply to both

iterator : abstract mechanism to traverse composite object

double price = 0.0;

Assembly::lterator c(car);

for (part = c.begin(engine); part = c.end(); ++part) { // engine cost
price += part->price();

}

e iteration control: multiple starting/ending locations;
depth-first/breath-first, forward/backward, etc.; levielraversal

e iterator may exist independently of a composite desigtepat

CS 246 374
adapter : convert interface into another

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
I3 '

struct VecToStack : public Stack { // adapter/wrapper
Vector &vec;
VectortoStack(Vector &vec) : vec(vec) {}
void push(...) { ... vec.push_back(...); ... }
void pop(...) { vec.pop_back(...); }
I3
void p(Stack &s) { ...}
Vector vec;
VecToStack vtos(vec); /[l any Vector
p(vtos);

e specific conversion frorwector to Stack

CS 246 375
proxy : frontend for another object to control access

struct DVD {
void play(...);
void pause(...);

J

struct SPVR : public DVD { /[static
void play(...) { ... DVD:play(...); ... }
void pause(...) { ... DVD:pause(...); ... }
I3
struct DPVR : public DVD { /[dynamic
DVD xdvd:;
DPVR() { dvd = NULL; }
~DPVR() { if (dvd !'= NULL) delete dvd; }
void play(...) { If (dvd == NULL) dvd = new T; dvd->play(...); ...
void pause(...) { ... don’t need dvd, no pause ... }
I3

e proxy extends object’s type
e reverse structure of template method
e dynamic approach lazily creates control object

CS 246 376
decorator : attach additional responsibilities to an object dynaithyca

struct Window {
virtual void move(...) {...}
virtual void lower(...) {...}

5 I3
struct Scrollbar : public Window { // specialize
enum Kind { Hor, Ver };
Window &window;
Scrollbar(Window &window, Kind k) : window(&window), ... {}
void scroll(int amt) {...}

I3

struct Title : public Window { I/l specialize
Title(Window &window, ...) : window(window), ... {}
setTitle(string t) {...}

I3

Window w;

Title(Scrollbar(Scrollbar(w, Ver), Hor), "title") decorate;

e decorator only mimics object’s type through base class
e allows decorator to be dynamically associated with diffiéebject’s, or

CS 246 377
same object to be associated with multiple decorators

CS 246 378
observer: 1 to many dependency change updates dependencies

struct Fan { // abstract
Band &band,;
Fan(Band &band) : band(band) {}
virtual void update(CD cd) = O;

I3
struct Band {

list<Fan => fans; /I list of fans

static void perform(Fan «fan) { fan->update(); }

void attach(Fan &fan) { fans.push_back(&fan); }

void deattach(Fan &fan) { fans.remove(&fan); }

void notify() { for_each(fans.begin(), fans.end(), perform); }
%

struct Groupie : public Fan { Il specialize
Groupie(Band &band) : Fan(band) { band.attach(xthis); }
~Groupie() { band.deattach(xthis); }
void update(CD cd) { buy/listen new cd }

I}

Band dust;

Groupie g1(dust), g2(dust); // reqgister

dust.notify(); I/l iInform fans about new CD

e manage list of interested objects, and push new events ko eac

CS 246 379

e alternative design has interested objects pull the eveors the observer
o = observer must store events until requested

CS 246 380
visitor : perform operation on elements of heterogeneous container

struct PrintVisitor {
void visit(Wheel &w) { print wheel }
void visit(Engine &e) { print engine }
void visit(Transmission &t) { print transmission }

I3
struct Part {

virtual void action(Visitor &v) = O;
I3

struct Wheel : public Part {
void action(Visitor &v) { v.visit(xthis); } // overload
I3

struct Engine : public Part {
void action(Visitor &v) { v.visit(«this); } // overload

J

CS 246 381

PrintVisitor pv;

list<Part «> ps;

for (inti=0;1<10;i1+=1){
ps.push_back(add different car parts);

}

for (list<Part x>:iterator pi = ps.begin(); pi '= ps.end(); ++pi) {
(xpi)->action(pv);

e each part has a geneatdtion that is specialized by visitor
e different visitors perform different actions or dynamigalary the action
e compiler statically selects appropriate overloaded warsf visit in action

4.8 Testing

e A major phase in program development is testingg(0%).

e This phase often requires more time and effort than desidrcading
phases combined.

e Testing is not debugging.

e Testingis the process of “executing” a program with the intent of
determining differences between the specification anchhotgults.

CS 246 382

o Good test is one with a high probability of finding a differenc
o Successful test is one that finds a difference.

e Debugging is the process of determining why a program doebawe an
Intended testing behaviour and correcting it.

4.8.1 Human Testing

e Human Testing: systematic examination of program to discover problem:s

e Studies show 30-70% of logic design and coding errors carteztkd in
this manner.

e Code inspectionteam of 3-6 people led by moderator (team leader)
looking for problems, often “grilling” the developer(s):

o data errors: wrong types, mixed mode, overflow, zero divioae,
subscript, initialization problems, poor data-structure

o logic errors: comparison problems=/ =, </ <=), loop initialization /
termination, off-by-one errors, boundary values, incorfermula, end
of file, incorrect output

o Interface errors: missing members or member parametarapsulation
/ abstraction issues

CS 246 383

e \Walkthrough : less formal examination of program, possibly only 2-3
developers.

e Desk checking: single person “plays computer”, executing program by
hand.

4.8.2 Machine Testing

e Machine Testing: systematic running of program using test data designe
to discover problems.

o Speed up testing, occur more frequently, improve testingrame,
greater consistency and reliability, use less people-tewtng

e Commercial products are available.
e Should be done after human testing.
e Exhaustive testing is usually impractical (too many cases)

e Test-case desigimvolves determining subset of all possible test cases witl
the highest probability of detecting the greatest numberafrs.

e TWO major approaches:

o Black-Box Testing: program’s design / implementation is unknown
when test cases are drawn up.

CS 246 384
o White-Box Testing : program’s design / implementation is used to
develop the test cases.
o Gray-Box Testing : only partial knowledge of program’s design /
Implementation know when test cases are drawn up.
e Start with the black-box approach and supplement with wihabe tests.
e Black-Box Testing

o equivalence partitioning : completeness without redundancy
x partition all possible input cases into equivalence classe
x select only one representative from each class for testing
x E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

x 3 equivalence classes, plus invalid hours

x Since there are many types of invalid data, invalid hoursatam be
partitioned into equivalence classes

o boundary value testing
x test cases which are below, on, and above boundary cases

CS 246 385

39, 40, 41 (hours) valid cases
44, 45, 46 ’

0, 1, 2

-2,-1, O ” invalid cases
59, 60, 61

o error guessing

x surmise, through intuition and experience, what the lileglprs are
and then test for them
e White-Box (logic coverage) Testing

o develop test cases to cover (exercise) important logicspgatiough
program

o try to test every decision alternative at least once

o test all combinations of decisions (often impossible dugize)

o test every routine and member for each type

o cannot test all permutations and combinations of execution

e Test Harness: a collection of software and test data configured to run a
program (unit) under varying conditions and monitor itspous.

4.8.3 Testing Strategies

CS 246 386

e Unit Testing : test each routine/class/module separately before mtedr
Into, and tested with, entire program.
o requires construction of drivers to call the unit and pasgssit values

o requires construction of stub units to simulate the uniledaluring
testing

o allows a greater number of tests to be carried out in parallel
e Integration Testing : test if units work together as intended.

o after each unit is tested, integrate it with tested system.

o done top-down or bottom-up : higher-level code is drivergidr-level
code Is stubs

o In practice, a combination of top-down and bottom-up tesisnusually
used.

o detects interfacing problems earlier
e Once system is integrated:

o Functional Testing: test if performs function correctly.

o Regression Testing test if new changes produce different effects from
previous version of the system (diff results of old / new a1s).

o System Testing: test if program complies with its specifications.

CS 246 387
o Performance Testing: test if program achieves speed and throughput
requirements.

o Volume Testing: test if program handles difference volumes of test date
(small< large), possibly over long period of time.

o Stress Testing test if program handles extreme volumes of data over a
short period of time with fixed resources, e.g., can aiffitraf
control-system handle 250 planes at same time?

o Usability Testing : test whether users have the skill necessary to operat
the system.

o Security Testing: test whether programs and data are secure, i.e., can
unauthorized people gain access to programs, files, etc.

o Acceptance Testing checking if the system satisfies what the client
ordered.

e If a problem is discovered, make up additional test casesrioin on the
Issue and ultimately add these tests to the test suite foessmn testing.

4.8.4 Tester

e A program should not be tested by its writer, but in practigs dften
occurs.

CS 246 388
e Remember, the tester only tests wilay thinks it should do.

e Any misunderstandings the writer had while coding the piogare carried
over into testing.

e Ultimately, any system must be tested by the client to dateemit is
acceptable.

¢ Points to the need for a written specification to protect hloghclient and
developer.

