University of

Waterloo

%

School of Computer Science
Course Notes

CS 246

Object-Oriented Software Development

http: //www.student.cs.uwaterloo.ca/ ~cs246

Fall 2010

October 1, 2010

Outline

Introduction to object-oriented programming in C+ andbaBNIX software development-
tools to facilitate designing, coding, debugging, testiagd documenting of medium-sized
programs. Students will learn to read a specification an@jdewftware to implement it. Im-
portant skills are selecting appropriate data structunelscantrol structures, writing reusable
code, reusing existing code, understanding basic perfuwen&gsues, developing debugging
skills, and learning to test a program.

“Permission is granted to make copies for personal or edunztiise.

http://www.student.cs.uwaterloo.ca/~cs246

Contents

1 Shell

11
1.2
1.3
1.4
15
1.6
1.7
1.8

2.1

2.2
2.3

1

File System. e 3
Pattern Matching. 4
QUOLING 5
ShellCommands. e 6
SystemCommands 9
File Permission. 12
Input/Output Redirection 14
Programming. e 15
1.8.1 \Variables. 15
1.8.2 Routine. e 17
1.8.3 Arithmetic 19
1.8.4 Control Structures. 19

1.84.1 Test. 19

1.8.4.2 Selection 20

1.8.4.3 Looping. e 22

25

Program Structure. e e 25
211 Comment. e e 25
2.1.2 Statement e 26
First Program. e e 26
Declaration. e 27
2.3.1 ldentifier e 27
2.3.2 BaSiCTYPES o e e e 27
2.3.3 \Variable Declaration. o 27
2.3.4 TypeQualifier 28
235 Constants e 30
2.3.6 TypeConstructor e 31

2.3.6.1 Enumeration 31

2.3.6.2 Pointer/Reference 32

2.3.6.3 Aggregation (Array/Structure). 35
2.3.7 TypeEquivalence. 38
2.3.8 TypeNesting. e 39
2.3.9 Type-ConstructorConstant. 39

CONTENTS

2.3.10 String. e e 40

2.4 EXPressSion e e 42
2.4.1 CONVersion. i e e 44
2.4.2 MathOperations. e 45

2.5 Control Structures 46
251 Block. e 47
2.5.2 Conditional. 47
25.3 Selection. 47
2.5.4 Conditional Expression Evaluation 49
255 LoopiNg. 49

2.6 Structured Programming e 51
2.6.1 Multi-ExitLoop 52
2.6.2 Static Multi-Level Exit. 54

2.7 Input/Output e 56
271 Formatted /O 57
27.1.1 Formats. e 58

2.7.1.2 Input. e 59

2.7.1.3 Output. 62

2.7.2 UnformattedI/O. 62

2.8 Command-line Arguments 63
2.9 Preprocessor. e e e 65
2.9.1 Substitution 65
2.9.2 FilelInclusion. 67
2.9.3 ConditionalInclusion 67
2.10 Debugging 68
2.10.1 DebugPrintStatements 68
2.10.2 ASSertions 70
2.10.3 EIOrs. 71
2.11 Dynamic Storage Management 72
2.12 Modularization. e 76
213 RoOUtINE e e 77
2.13.1 Argument/ParameterPassing. 78
2.13.2 Array Parameter. 80
2.13.3 Overloading 81
2.14 Routine Pointer. e 82
2.15 Object. e 84
2.15.1 ObjectMember 85
2.15.2 Operator Member. e 86
2.15.3 CoNnsStructor e e 87
2.15.3.1 Constant 88

2.15.3.2 Conversion 89

2.15.4 Destructor e e 90
2.15.5 Copy Constructor/Assignment. 91
2.15.6 Initialize const/ Object Member. 94

2.15.7 Static Member. 95

CONTENTS %

2.16 Random Numbers. 96
2.17 DeclarationBeforeUse 97
2.18 Encapsulation 100
2.19 SystemModelling 103
2.19.1 UML e 104
2.20 Separate Compilation. 109
221 Inheritance 114
2.21.1 Implementation Inheritance L. 115
2.21.2 Typelnheritance. 116
2.21.3 Constructor/Destructar. 118
2.21.4 Copy Constructor/Assignment. 119
2.21.5 Overloading 119
2.21.6 Virtual Routine. 120
2.21.7 Downcast e 122
2.21.8 Slicing 123
2.21.9 Protected Members. 123
2.21.10Abstract Class. 123
2.21.11 Multiple Inheritance. L 125
22L.12UML . . . o 126
2.22 Inheritance / CompositionDesign o oo 126
223 Template e 128
2.23.1 Standard Library. 129
2.23.1.1 Vector. 129

2.23.1.2 Map 132

2.23.1.3 Single/DoubleLinked 133

2.23.1.4 foreach 134

2.24 NamMeSPACE. o e e 135

3 Tools 139

3.1 C/C++Composition e 139
3.2 Compilation. 139
3.2.1 PreproCessSor i i e e e 140
3.2.2 Compiler. 140
3.23 Assembler. 141
3.24 Linker. 141

3.3 CompilingComplexPrograms 141
3.3.1 Dependences 142
332 Make 143

3.4 Source-Code Management. 146
341 SVN . e 146
3.4.2 RepoSItory 147
3.4.3 CheckingOut e 149
344 Adding 149
3.45 CheckinglIn 150

346 Modifying 150

Vi

CONTENTS

3.4.7 RevisionNumber 152
348 Updating. 152

3.5 Debugger. e 155
351 GDB 155

4 Software Engineering 161

4.1 Software CriSiS. v o e 161
4.2 Software Development 162
4.3 DevelopmentProcesses e 162
4.4 Software Methodology. 164
4.4.1 SystemDesign 164
442 Top-Down e e e 164

45 DesignQuality e 165
451 Coupling 166
452 Cohesion. 166

4.6 DesignPrinciples. 168
4.7 DesignPatterns e e 168
471 PatternCatalog 169
4711 ClassPatternso 169

4.7.1.2 ObjectPatterns.o 170

4.8 Testing e 174
4.8.1 HumanTesting 175
4.8.2 MachineTesting. 175
4.8.3 TestingStrategies. 176
4.8.4 Tester.o e 177

Index 179

1 Shell

e After signing onto a computer (login), a mechanism musttewiglisplay information and
perform operations.

e The two main approaches are graphical and command line.
e Graphical interface (desktop):

o use icons to represent programs (actions),
o click on icon launches (starts) a program,
o program may pop up a dialog box for arguments to specify gsetion.

e Command-line interface (shell):

o use text strings (names) to represent programs (commands),
o command is typed after a prompt in an interactive area toistar
o arguments follow the command to specify its execution.

e Graphical interface is convenient, but seldom programmabl

¢ Command-line interface requires more typing, but allowsgpamming.

e A shellis a program that reads commands and interprets them.

e It provides a simple programming-language wsthing variables and a few statements.

e Unix shells falls into two basic campsh (ksh, bash) andcsh (tcsh), each with slightly
different syntax and semantics.

e Focus on bash with some tcsh.
e Area (window) where shell runs is calledeaminal or xterm.
e Shell line begins with @arompt denoted by (sh) or% (csh) (often customized).

e A command is typed after the prompt buit executed untiEnter /Return key is pressed:

$ dateEnter # print current date
Thu Aug 20 08:44:27 EDT 2009

$ whoamiEnter # print userid
Cs246

$ echo Hi There!Enter # print any string
Hi There!

e Comment begins with a hash)(and continues to the end of line.

© Peter A. Buhr

CHAPTER 1. SHELL

e Multiple commands can be typed on the command line sepabgtédte semi-colon.

$ date ; whoami ; echo Hi There! # 3 commands
Sat Dec 19 07:36:17 EST 2009

cs246

Hi There!

e Use commandhsh to set the login shell (bash, tcsh, etc.).

$ chsh

Password: XXXXXX

Changing the login shell for jfdoe

Enter the new value, or press ENTER for the default
Login Shell [/bin/tcsh]: /bin/bash

For UW environment, use path namelbin/tcsh or /xhbin/bash for newest commands.
e Commands can be editted on the command line:

o position cursorl], with < andr> arrow keys,

o remove characters before cursor wititkspace/delete key,

o type new characters before cursor,

o pressEnter at any point along the command line to execute modified condman

e Most commands have options, specified with a minus followeedre or more characters,
which specify how the command operates.

$ uname -m # machine type
x86_64 / sun4u

$ uname -s # operating system
Linux / SunOS

$ uname -a # all system information

Linux linux008.student.cs 2.6.31-21-server #59-Ubuntu SMP x86_64 GNU/Linux
SunOS servicesl6.student.cs 5.8 Generic_117350-56 sun4u sparc SUNW,UIltra-60

e Options are normally processed left to right; one option weycel another.
¢ No standardization for option syntax and names.

e Shell terminates with commaredtit .

$ exit # exit shell and terminal

o when the shell of terminal/xterm terminates, the termiiatm terminates.

o when the login terminal/xterm terminates, you sign off tbenputer (logout).

. FILE SYSTEM 3

File System
Shell commands interact extensively with the file system.

Files are containers for data stored on secondary storagel(y disk).
File names are organized in an N-ary tree: directories ateces, files are leaves.

Information is stored at specific locations in the hierarchy

/ root of the local file system

bin basic system commands

lib system libraries

usr
bin more system commands
lib more system libraries
include system include files, .h files

tmp system temporary files

u or home user files

j.f.d.oe home directory

.bashrc, .emacs, .login,... hidden files
€s246 course files
al assignment 1 files

g1x.C, g2y.h, g2y.cc, g3z.cpp

Directory named/” is the root of the file system.

bin, lib, usr, include : system commands, system library and include files.

tmp : temporary files created by commandbdred among all usefs

u or home : user files are distributed across these directories.

Directory for a particular user is called théiome directory.

Each file has a unique path-name in the file system, referemitbén absolute pathname.

An absolute pathnameis a list of all the directory names from the root to the file am
separated by the charactéf .

/uljfdoe/cs246/al/qlx.C # => file gq1x.C
The shell provides short names for a file using an implicittstg location.
At sign on, the shell createscairrent directory variable set to the user’'s home directory.

Any file name not starting with/” is automatically prefixed with the current directory to
create the necessary absolute pathname.

A relative pathnameis a list of all the directory names from the current diregtir the file
name separated by the character “

4 CHAPTER 1. SHELL

e E.g., if useijfdoe signs on, home and current directory are sétfjédoe:

cs246/al/qlx.C # => |uljffdoe/cs246/al/qlx.C

e Shell special character” (tilde) expands to user’s home directory.
~/cs246/allqlx.C # => |uljffdoe/cs246/al/qlx.C
e Every directory contains 2 special directories:

o “.” points to current directory.
Jcs246/allqix.C # => /uljffdoe/cs246/allqlx.C

o “..” points to parent directory above the current directory.

..I. .Jusr/include/stdio.h # => /usr/include/stdio.h

1.2 Pattern Matching
Shells provide pattern matching of file namgkpbing) to reduce typing lists of file names.

Different shells and commands support slightly differemtris and syntax for patterns.

Pattern matching is provided through special characters, {}, [1, denoting differentvild-
cards.

Patterns are composable: multiple wildcards joined intoglex pattern.

E.qg., if the current directory i/jfdoe/cs246/al with leaf filesqlx.C, g2y.h, q2y.cc, q3z.cpp
o » matches 0 or more characters
O # => q1x.C, g2y.h, g2y.cc, q3z.cpp
o ? matches 1 character
g*.?? # => g2y.cc
o {...} matches any alternative in the set
={cc,cpp,C} # => q1x.C, g2y.cc, g3z.cpp
o [...] matches 1 character in the set
q[12]= # => q1x.C, g2y.h, g2y.cc

o [l...] (" csh) matches 1 characteot in the set

q['1]« # => g2y.h, q2y.cc, q3z.cpp
o Create ranges using hyphen (dash)
[0-3] #=> 0,123
[a-zA-Z] # => lower or upper case letter

[la-zA-Z] # => any character not a letter

1.3.

1.3

QUOTING 5

o Hyphen is escaped by putting it at start or end of set

[-?«]* # => matches any file names starting with -, ?, or =

Hidden files contain administrative information and start with (dot).

These files are ignored by globbing patterns, e.dges not match all file names in a direc-
tory.

Patterns matches all hidden files, e.gbashrc, .login, etc.,and“.”, * ..”
Pattern['.]» does not match.” and “..” directories.

On the command line, pressing tlad key after typing several characters of a command/file
name requests the shell to automatically complete the name.

$ ectab # cause completion of command name to echo
$ echo qltab # cause completion of file name to q1x.C

If the completion is ambiguous, the shell “beeps”, and yowsintype more characters to
uniquely identify the name.

Quoting
Quoting controls how the shell interprets strings of characters.
Backslash(\) : escapeany character, including special characters:

$ echo W \g W \2 \[\]\$ WA\ X
wag«?[]$\ X

Normally multiple spaces are compressed.
Backquote () : execute the text as a command, and replace it with the commatput:

$ echo ‘whoami'
cs246

Single quote(”) : do not interpret the string, even backslash:

$echo \w\g*x \2\[\]\$\L VX
WG e V2 LTS WAL X

A single quote cannot appear inside single quotes.
A file name containing special characters is enclosed inesimpgptes.

$ rm ‘Book Report #2’ # file name with spaces and comment character

Double quote(") : interpret escapes, backquotes, and variables in string:

$echo " +?2[]\\ \"‘whoami\""
*»?2[]\ "cs246"

6 CHAPTER 1. SHELL

e Put newline into string for multi-line text.

$ echo "abc

> cdf” # prompt > means current line is incomplete
abc

cdf

1.4 Shell Commands

e Some commands are executed directly by the shell rathethleddS because they read/write
the shell’s state.

e help : display information about bash commands (not sh or csh).

help [command-name]

o without argument, lists all bash commands.

e cd : change the current directory.

cd [directory]

o argument must be a directory and not a file

o cd : move to home directory, same @ ~

o cd -: move to previous current directory

o cd ~/bin : move to thebin directory contained in the home directory
o cd /usr/include : move tol/ust/include directory

o cd ..: move up one directory level

o If path does not existd fails and current directory is unchanged.

e pwd : print the current directory.

$ pwd
/u/cs246/teaching/notes

e history and “” (bang!) : print a numbered history of most recent commarndsred and
access them.

$ history $ 12
1 date whoami
2 whoami | cs246
3 cd .. $!
4 Is xxx whoami
5 cat xxx | cs246
6 history | $lls
Is xxx
XXX

o IN rerun commanadl

1.4. SHELL COMMANDS 7

o !'rerun last command
o Ixyz rerun last command starting with the stringZ2”

o Arrow keysA/v move forward/backward through history commands on comrtiaad

e alias : string substitutions for command names (not argumentg)im).

alias [command-name=string]

n

o no spaces before/after™(csh does not have=").

o string is substituted for commar@mmand-name.

o without argument, print all currently defined alias named stnings.
o provide nickname for frequently used or variations of a canth

$ alias d="date"

$d

Mon Oct 27 12:56:36 EDT 2008

$ alias off="cl ear; | ogout"”

$ off # clear screen before logging off

Why are quotes necessary for alaif®
o Always use quotes to prevent problems.
o aliases are composable:

$ alias now="d"
$ now
Mon Oct 27 12:56:37 EDT 2008

o useful for setting command options for particular commands

$ alias cp="cp -i "
$ alias mv="nv -i "
$ alias rm="rm-i"

which always uses théeption (see pag8) on commandsp, mv andrm.
o alias can be overridden by quoting or escaping the commaména

$"rm -r xyz
$\rm -r xyz

which does not add théeption.
o alias entered on a command line is only in effect for a sheliea.
o two options for making aliases persist across sessions:

1. insert thaalias commands in the appropriathellrc file,

2. place a list otllias commands in a file (ofteraliases) andsource (see pagé.8)
that file from theshellrc file.

e type (cshwhich) : print pathname of a command.

CHAPTER 1. SHELL

$ type make
{usr/ccs/bin/make

$ type gmake
[software/.admin/bins/bin/gmake
$ type rm

rm is aliased to ‘rm -V’

e echo : write arguments, separated by a space and terminated ewtlne.

$ echo | like ice cream
| like ice cream
$echo" | like ice cream"”

| like ice cream

printf : write arguments, under control of a format.

printf format [arguments]
o format is C-style printf format-codes.

$ printf "real : 9%. 2f hex: %x\n" 3.5 32
real: 3.50 hex: 20

e eval : process each argument and then execute.

$ echo "‘dateY “whoam
‘date' ‘whoami'

$ eval echo “date“ “‘whoam v
Sat Dec 19 09:12:20 EST 2009 cs246

o removes quotes, expands variables (see pégetc., then executes command

time : execute a command and print a time summary.

o printsuser time (program CPU)system time(OS CPU),real time (wall clock)
o different shells print these values differently:

$ time a.out % time a.out

real 1.2 | 0.94u 0.22s 0:01.2
user 0.9

Sys 0.2

o user + system real-time (uniprocessor, no OS delay)
e exit : terminates shell, with optional integer exit status (netcode)N.
exit [N]

o [N]isinrange 0-255; larger values are truncated, negativeegdif allowed) become
unsigned (-1= 255).

o exit status defaults to zero if unspecified (see pEgjend page?0 for status usage).

1.5. SYSTEM COMMANDS

1.5 System Commands
e Commands executed by operating system (UNIX).

e A shell can be nested within another, calleslidoshell

$... # bash commands

$ tcsh # start tcsh in bash

% ... # tcsh commands

% bash # start bash in tcsh

$... # bash commands

$ exit # exit bash

% exit # exit tcsh

$ exit # exit original bash and terminal

o Allows switching among shells for different purposes.

man : print information about command.

$ man bash # print information about “bash” command
$ man man # print information about “man” command

Is : list the directories and files in the specified directory.
Is [-al][file or directory name-list]
o -alistsall files, including those that begin with a dot

o -l generates bbnglisting (details) for each file
o no file/directory name implies current directory

mkdir : create a new directory at specified location in file hiergrch

mkdir directory-name-list

cp . copy files, and with ther-option, copy directories.
cp [-i] source-file target-file
cp [-i] source-file-list target-directory
cp [-i] -r source-directory-list target-directory
o -i prompt for verification if a target file is being replaced.
o -r recursively copy the contents of a source directory to thgetadirectory.
$cpflf2 # copy file f1 to f2

$cpflf2f3d # copy files fl1, f2, f3 under directory d
$ cp -r d1 d2 d3 # copy directories d1, d2 recursively under directory d3

e mv : move files and/or directories to another location in thetikrarchy.

mv [-i] source-file target-file
mv [-i] source-file/directory-list target-directory

10

CHAPTER 1. SHELL

o if the target-file does not exist, the source-file is renanmderwise the target-file is
replaced.

o -i prompt for verification if a target file is being replaced.
e rm : remove (delete) files, and with theoption, remove directories.

rm [-ifr] file/directory-list

o -i prompt for verification for each file/directory being remdve

o -f do not prompt for verification for each file/directory beiregmoved.

o -r recursively delete the contents of a directory.

o UNIX does not give a second chance to recover deleted files;dreful when using
rm, especially with globbing, e.grm « (for UW environment checksnapshot).

e more/less/cat : print files.

more file-list

o more/less paginate the contents one screen at a time.
o cat shows the contents in one continuous stream.
e lpr/lpg/lprm : add, query and remove files from the printer queues.
Ipr [-P printer-name] file-list

Ipg [-P printer-name]
Iprm [-P printer-name] job-number

o if no printer is specified, the queue is a default printer.
o each job on a printer’s queue has a unique number.
o use this number to remove a job from a print queue.

$ Ipr -P ljp_3016 uml.ps # print file to printer ljp_3016

$ Ipq # check status, default printer ljp_3016
Spool queue: Ip (jp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes
2nd cs246 403 uml.ps 41262 bhytes

$ Iprm 403 # cancel printing
services203.math: cfA403servicesl6.student.cs dequeued

$ Ipq # check if cancelled

Spool queue: Ip (jp_3016)

Rank Owner Job Files Total Size

1st rggowner 308 tt22 10999276 bytes

e cmp/diff : compare 2 files and print minimal differences.

cmp filel file2
diff filel file2

1.5. SYSTEM COMMANDS 11

o cmp generates the first difference between the files.
file x | filey
a a

$cmp xy
x y differ: char 7, line 4

ooQ o O T
Q —7 OO O T

o diff generates output describing the changes need to changesttigefinto the second
file (used bypatch).

$ diff x y
4,5¢c4 # replace lines 4 and 5 of 1st file
<d # with line 4 of 2nd file

<g

> e

6a6,7 # add lines 6 and 7 of 2nd file
> # after line 6 of 1st file

>9

e grep: (global regular epression pint) search & print lines matching pattern in files (google)

grep -i -r "pattern-string" file-list

o -iignore case in both pattern and input files
o -r recursively examine files in directories.
o grep pattern is different from globbing pattern (seeman grep).

$ grep -i fred names.txt # list all lines containing fred in any case
$ grep \\\ (begin\|end\){.*}" tex

A match start of line, match*; match “begin” or “end”, match ‘{", match 0 or more
characters (notice™), match ‘}".

e find : search for names in the file hierarchy.

find [path...] expr]

o \(expr \) evaluation order

o -not expr, expr -a expr, expr -o expr logicalnot, andandor (precedence order)
o -type d | f select files of type idectory or fle

o -maxdepth N recursively descend at mdstdirectory levels

o -name pattern restrict file names to pattern

12

1.6

CHAPTER 1. SHELL

$ find » -maxdepth 3 -a -type f -a \(-name "*.C' -0 -name "*.cc" \)

Search all non-hidden names in current directeiytdé a maximum recursion depth of 3,
and only select file names (not directory names), and réstrdse names to those ending
with suffix .C or .cc.

ssh : (secure skll) safe, encrypted, remote-login between client/senests.
ssh [-Y][-l]user [user@] hostname

o -Y enables trusted X11 forwarding to allow server applicaitmcreate windows on
the client host.

o -llogin user on the server machine.
o To login from home to UW environment:

ssh -Y -l jfdoe linux.student.cs.uwaterloo.ca
ssh -Y jfdoe@linux.student.cs.uwaterloo.ca

File Permission
UNIX file structure supports 3 levels of security on each filelioectory:

o user : owner of the file,
o group : arbitrary name associated with a number of userids,
o other : any other user.

A file or directory can have the following permissions: readte, and execute/search.
Readable and writable allow any of the specified users toaeadte/change a file/directory.

Executable for files means the file can be executed as a commandfile contains a pro-
gram or shell script.

Executable for directories means the directory can be Bedroy certain system operations
but not read in general.

Is -I prints file-permission information for the current diregto

drwxr-x--- 2 cs246 cs246t 4096 Cct 19 18:19 C++/

drwxr-x--- 2 cs246 cs246t 4096 Oct 21 08:51 Tool s/

“TW------ 1 cs246 cs246 22714 COct 21 08:50 notes. aux

STW---- - 1 ¢cs246 cs246 63332 COct 21 08:50 notes. dvi

Columns are: permissions, #-of-sub-directory (includirigand “..”), owner, group, file
size, change date, file name.

Permission information is:

1.6. FILE PERMISSION 13

d = directory —— user permission
- =file group permissions
lﬁ i other permissions
dirw| r-x| --x

E.g.,drwxr-x---, indicates

o directory in which the user has read, write and execute [Esions,
o group has only read and execute permissions,
o others have no permissions at all.

In general, never allow “other” users to read or write your &ks.

Default permissions on a file ar@-r----- (usually), which means owner has read/write per-
mission, and group has only read permission.

Default permissions on a directory avex------ , which means owner has read/write/execute.
chgrp : change group-name associated with file:
chgrp [-R] group-name file-list
o -R recursively modify the group of a directory.
Creating/deleting group-names is done by system admiitstr.
chmod : add or remove from any of the 3 security levels.
chmod [-R] mode-list file-list
o -R recursively modify the security of a directory.
mode-listhas the fornsecurity-level operator permission
Security levels are denoted hbyfor you userg for group,o for other,a for all (ugo).
Operator+ adds permission, - removes permission.
Permissions are denoted bfor readablew for writable andx for executable.
The elements of themode-listare separated by commas.

E.g., to remove read and write permissions from securitgltegroup and other for fileyz.

chmod g-r,0-r,g-w,0-w Xyz # long form

chmod go-rw xyz # short form

chmod -R a+r assn2 # make directory and its subfiles
readable to everyone

14

1.7

CHAPTER 1. SHELL

Input/Output Redirection
Every command has three standard files: input (0), outpur{d)error (2).

By default, these are connected to the keyboard (input) ereds (output/error).

Shell provides redirection operatergor input and> / >> for output to/from other sources.
< means read input from file rather than keyboard.

> means (create) output file and write to file rather than scfeestructive).

>> means (create) output file and append to file rather thanrscree

Command is (usually) unaware of redirection.

Normally, standard error (e.g., error messages) is noteetdid because of its importance.

$ more < xxx # input from file xxx; output to standard output
$ more < xxx > yyy # input from file xxx; output to file yyy

$Is -al >> yyy # append output to file yyy

$ Is -al 1> xxx # output to file yyy

$ a.out 2>> errs # append errors to file errs

$ a.out 1> data 2> errs # output to file data; errors to file errs

$ a.out > yyy 2>&1 # output/errors to file yyy

2>&1 means write standard error to same place as standard ostpariler is important.

$ a.out 2>&1 > xxx # redirect stderr to stdout, stdout to xxx
$ a.out > xxx 2>&1 # redirect stdout to xxx, stderr to stdout => xxx

To ignore output, redirect to pseudo-fiteev/null.

$ a.out 2> /dev/null # ignore error messages

Shell pipe operatofmakes standard output for a command the standard inputdanehkt
command, without creating an intermediate file.

$ cat xxx | nl # print xxx with line numbers
$ man Is | more # paginate manual information for Is

Standard error is not piped unless redirected to standdpdibu

$ a.out 2>&1 | nl # both standard output and error go through pipe

A pipeline can be arbitrarily long.

1.8. PROGRAMMING 15

1.8 Programming

e A shell program or script is a file containing shell commands that can be executed.

#l/bin/bash [-x]
shell and OS commands

First line should begin with magic comment#!* (sha-bang) with shell pathname for exe-
cuting the script.

It forces a specific shell to be used, which is run as a subshell

If the “#!” line is missing, a subshell of the same kind as the invokimgjlds used for sh
shells or sh is used for csh shells.

Optional x is for debugging and prints trace of the script during execut

A script can be invoked directly using a specific shell, or asmmand if it has executable

permissions:
$ bash scriptfile # direct invocation
$ chmod u+x scriptfile # make script file executable
$./scriptfile # command execution

Interactive shell session is just a script reading from stéard input.

1.8.1 Variables
e syntax :(letter | _") (letter | “_" | digit)«
e case-sensitive

VeryLongVariableName Pagel Income_Tax _75

Some identifiers are reserved (eify.while), and hencekeywords.

Variables ONLY hold string values (arbitrary length).

Variable is declaredynamicallyby assigning a value with operator™
path=/u/cs246/ # declare and assign

No spaces before or after=".

A variable’s value is dereferenced using operatjr “

$ echo $path ${path}
lulcs246/ /ulcs246/

braces, {...}", allow unambiguous specification of name.

16

CHAPTER 1. SHELL

Dereferencing an undefined variables returns the emptygstri

$ echo $pathAl
blank line

Always use braces to allow concatenation with other text:

$ echo $pathAl ${path}A1 # $pathAl undefined
/u/cs246/A1

Each shell has a list of script and environment (global)alags.
New variables are added to the script variable-list.
Script variables are only visible within a script’'s exeonticontext.

Shell begins by copying containing shell’s environmentalales (works across different
shells).

Login shell starts with a number of useful environment Malga, e.qg.:

HOME=/u/cs246 # home directory
HOST=linux006.student.cs # host computer

PATH=. .. # lookup directories for OS commands
SHELL=/bin/bash # login shell

For UW Solaris environment, augme?KTH with:

PATH=/software/gnu/bin :${PATH} # add GNU shell commands

Script variable can be moved to shell’'s environment list.

export path

A variable can be removed from the script/environment list.

unset path

When a shell ends, changes to its environment variables taffext its containing shell
(environment variables only affect subshells

Beware commands composed in variables.

$ cmd="l s | more’ # command as value

$ ${cmd} # execute command

Is: cannot access |: No such file or directory

Is: cannot access more: No such file or directory

$ eval ${cmd} # evaluate and execute command
list of file paginated by more

This behaviour results because the shell tokerizeésreperforming substitution.

1.8. PROGRAMMING 17

¢ Initially, the shell sees only one tokerg{¢tmd}”, so the " within the variable is not marked
as a pipe token.

e Subsequently, variable substitution occurs, giving tekes” ‘| * ‘nor e’, so| andmore are
file names.

e “eval ${cmd}” takes the tokend s’ ’|” ‘nor e’, and processes them again.
e Hence, new tokenizing markss a pipe, makingrore a command.

1.8.2 Routine
e A routine is defined as follows:

routine_name() { # number of parameters depends on call
commands
}

Routines may be defined in any order.

E.g.: create a routine to print incorrect usage-message.

usage() {
echo "Usage: ${0} -t -g -e input-file[output-file]"
exit 1 # terminate script with non-zero exit code

}

Invoke like a command.

routine_name [args ... |

New variables are dynamically added to the script’s vaeidist and visible regardless of
creation point.

rinl() {
var=3 # add to script list
rtn2 # call rtn2

}

rin2() {

echo ${var} # see all variables in script list
unset var # remove from the script list

}
e Special script variables to access arguments/result:

o ${#} number of command arguments, not including command name.
o ${0} refers to script’'s name.

$ echo ${0} # which shell are you using (except csh)
bash

o ${n} refers to the command argument by position, i.e., 1st, 2rdj,.3

CHAPTER 1. SHELL

@)

${x} command arguments as a single string, €.8{,1} ${2} . ..
command name

${@} command arguments as separate strings,"&f1}" "${2}" ..., notincluding
command name

, hot including

@)

o

${?} exit status of the last command executed; O ofteexited normally.
${$} process id of executing shell-command.

@)

e Routine may return an integer exit status, which is examusaalg${?}.

$ cat scriptfile

#!/bin/bash

rtn() {
echo ${#} # number of command-line arguments
echo ${0} ${1} ${2} ${3} ${4} # arguments
echo ${x} # arguments as a single string
echo ${@} # arguments as separate strings
echo ${$} # process id of executing shell
return 17 # exit status

}

rtn al a2 a3 a4 a5 # invoke routine

echo ${?} # print return value

$./scriptfile

5 # number of arguments

scriptfile al a2 a3 a4 # args 0-5

al a2 a3 a4 a5 # args 1-5, 1 string
al a2 a3 a4 a5 # args 1-5, 5 strings
27028 # process id

17 # status

e shift [N]: destructively shift parameters to the Isfpositions, i.e. ${1}=${N+1}, ${2}=${N+2},
etc., andb{#} is reduced b.

o IfnoN, 1is assumed.
o If Nis O or greater thars{#}, there is no shift.

e source filename : execute commands from a file in the current shell.

@)

A script can be subdivided into multiple files, e.g., ps&ge routine into separate file.
o No “#!...”" necessary.

o

Sourcing the filencludesthe file into the current shell and executes the lines.

source ./aliases # include aliases into .shellrc file
source ./usage.bash # include usage routine into scriptfile

@)

Any created or modified variables are associated with the cuent shell.
If invoked as a command:

@)

Jusage.bash # invoke rather than source
runs as a subshell with different variable environment.

1.8. PROGRAMMING 19

1.8.3 Arithmetic

e Shell variables have type string, which has no arithmég¢: + " 17".

$ =3 # i has string value “3” not integer 3

e To perform arithmetic a string is converted to an integep@sésible), an integer operation
performed, and the integer result converted back to a string

e bash supports arithmetic as a shell command to performe #teps:

$ echo $(3 + 4 - 1))
7

$ echo $((3 + ${i} » 2)
9

$ echo $((3 + ${k})) # k is unset
bash: 3 + : syntax error: operand expected (error token is " ")

e Basic integer operations, -, %, /, % (modulus), with usual precedence, afd

e For shells without arithmetic (e.g., sh, csh), use systemnsandexpr.

$ echo ‘expr 3 +4 -1

6
$ echo ‘expr 3 + ${i} « 2" # escape
9
$ echo ‘expr 3 + ${k}' # k is unset

expr: non-numeric argument

1.8.4 Control Structures

e Shell supports several control constructs; syntax for lphesented (csh is different).

1.8.4.1 Test

e Strings, integers and files can be tested to affect contwl flo

e expristest expression, not arithmetic expression.

test operation
\(expr \) evaluation orderrfiust be escapgd
I expr not
exprl -a expr2 logical and fiot short-circuitf)
exprl -0 expr2 logical or (hot short-circuit)
stringl = string2 equal (ot ==
stringl != string2 not equal
integerl -eq integer2 | equal
integerl -ne integer2 | not equal
integerl -ge integer2 | greater or equal
integerl -gt integer2 | greater
integerl -le integer2 | less or equal
integerl -It integer2 | less
-d file exists and directory
-e file exists
-f file exists and regular file
-r file exists with read permission
-w file exists with write permission
-x file exists with executable or searchable

CHAPTER 1. SHELL

e Logical operatorsa (and) and e (or) evaluate both operands (see Sec8dn4 p.49).

1.8.4.2 Selection

e An if statement provides conditional control-flow.

if [test] if [test] ; then

then
commands commands
elif [test] elif [test] ; then
then
commands commands
else else
commands commands
fi fi

Semi-colon is necessary to separate “test” from keyword.

e Usetest to check for different conditions.

if ["‘whoam ™ = "cs246"] ; then
echo "valid userid"

else
echo "invalid userid"

fi

string compare

1.8. PROGRAMMING 21

grep "${user}" /etc/passwd > /dev/null # ignore output

if [${?} -eq 0] ; then # integer compare, check exit status
echo "${user} has an account”

else
echo "${user} does not have an account"”

fi

if [-x /usr/bin/cat] ; then # file check
echo "cat command avai |l abl e"

else
echo "no cat conmand"

fi

e Beware unset variables or values with blanks.

if [${var} = ’yes’] ; then ... # var unset => if [= ‘yes’]

bash: [: =: unary operator expected

if [${var} = ’yes’];then ... #var=tabc =>if[abc = "yes]
bash: [: too many arguments

if ["${var}" =’yes’];then ... # var unset => if [" = "yes’]

if ["${var}" =’yes’];then ... #var="abc =>if[“abc’ = yes’]

When dereferencing, always quote variables!

e A case statement selectively executes oneNbfalternatives based on matching a string
expression with a series of patterns (globbing), e.g.:

case expression in

pattern | pattern | ...) commands ;;
x*) commands ;; # optional match anything
esac

e When a pattern is matched, the commands are executed yj) Bntl control exits thease
statement.

¢ If no pattern is matched, thease statement does nothing.

usage() {
echo "Usage: ${0} -h -v -f input-file"
exit 1 # terminate script with non-zero exit code
case "${1}" in # process command-line argument

’-h” | "--hel p”) usage ;;
’-v’ | ’--ver bose’) verbose=yes ;;
7 -file”)

shift 1 # access argument
file="${ 1}"
*)”usage : # default

esac

22 CHAPTER 1. SHELL

1.8.4.3 Looping
e while statement executes its commands zero or more times.

while [test] ; do
commands
done

e Usetest to check for different conditions.

search command-line arguments

while ["${1}" !="-x"]; do # string compare
shift # destructive

done

i=1

while [${i} -It 5] ; do # integer compare
echo %{i}
i=$((${i} + 1))

done

while [-f "${file}"]; do # file check
update file variable
done

o for statement is a specializedile statement for iterating with an index over list of strings.

for index [in list] ; do
commands
done

If no list, iterate over arguments, i.&{@}.
e Or over a set of values:

for ((init-expr; test-expr; incr-expr)); do # double parenthesis
commands
done

e E.g.:ina script

for args in "${@" ; do # process arguments, non-destructive
echo ${args}

done

for ((i=1;i<=$#;i+=1)); do
eval echo "\${${i}}" # ${1-#}

done

or on command line:

$ for count in "one" "two
one

two

three & four

$ for file in «.C ; do cp "${file}" "${file}".old ; done

three & four" ; do echo ${count} ; done

1.8. PROGRAMMING 23

¢ A while /for loop may contaircontinue andbreak to advance to the next loop iteration or
terminate loop.

for count in "one" "two" "three & four" ; do
if ["whoam ™ = "cs246"] ; then continue ; fi # next iteration
if [${?} -ne 0] ; then break ; fi # exit loop
done
#!/bin/bash
#
List and remove unnecessary files in directories
#

Usage: cleanup [[-r|[R] [-i|f] directory-name]+

-r|R clean specified directory and all subdirectories
-i|f prompt or not prompt for each file removal

Examples:

$ cleanup -R .

$ cleanup -r xxx -i yyy -r -i zzz

Limitations:

« only removes files named: core, a.out, .0, *.d

x does not handle file names with special characters

usage() { # print usage message & terminate
echo "Usage: ${0} [[-r | R] [-i | f] directory-name]+"
exit 1

defaults() { # defaults for each directory
prompt="-i " # prompt for removal
depth="-nmaxdept h 1" # not recursive

}

remove() {

for file in “find "${1}" ${depth} -type f \(-name ‘core’ -o \
-name “a. out’ -o -name "+. 0" -0 -name “x.d” \)*

do
echo "${file}" # print removed file
rm "${pronpt}" "${file}"

done

24

if [${#} -eq 0] ; then usage ; fi
while ["${1}" 1="" 1 do
defaults
case "${1}" in
"-h") usage ;;
"or" | "-R") depth="" ;;

A prompt=" {1}

*)
remove "${1}"
esac.
shift
done

CHAPTER 1. SHELL

no arguments ?
process command-line arguments
reset defaults for directory

help ?

recursive ?

prompt for deletion ?

directory name ?

remove files in this directory

remove argument

2 CH+

2.1 Program Structure

e A CH program is composed of comments for people, and statesta both people and the
compiler.

e A source file contains a mixture of comments and statements.

e The C/C+ compiler only reads the statements and ignoresoiimenents.

2.1.1 Comment

e Comments document what a program does and how it does it.

A comment may be placed anywhere a whitespace (space, talnekis allowed.

There are two kinds of comments in C/C+ (same as Java):

| Java/C/CH |

1| /...«
2 | /I remainder of line

First comment begins with the start symbe],and ends with the terminator symbgl,and
hence, can extend over multiple lines.

Cannot be nested one within another

/* /* */ */
T

end comment treated as statements

Be extremely careful in using this comment to elide/comnaaritcode:

[+ attempt to comment-out a number of statements
while (...) {
I+ ... nested comment causes errors =/

it (...) 1]

/+ ... nested comment causes errors x/

}
+l

e Second comment begins with the start symbiplnd continues to the end of the line, i.e.,
only one line long.

© Peter A. Buhr

25

26 CHAPTER 2. C++

e Can be nested one within another:
/I ... Il ... nested comment

so it can be used to comment-out code;:

/I while (...){

1 I« ... nested comment does not cause errors x/
1l if (...){

1 /l ... nested comment does not cause errors
Il }

I}

(Section2.9.3 p. 67 presents another way to comment-out code.)

2.1.2 Statement

e The syntax for a C/C+ statement is a series of tokens segpdrgtwhitespace and terminated
by a semicolon.

2.2 First Program

| Java | C+
import java.lang.x; /I implicit #include <iostream> /I insert contents of file iostream
class hello { using namespace std; // direct naming of I/O facilities
public static void main(String[] args) {
System.out.printin(“Hel | o Wor | d!'"); int main() { /I program starts here
System.exit(0); cout << "Hello World!'" << endl;
} return O; /I return O to shell, optional
} }

e #include <iostream> copies (imports) basic I/O descriptions (no equivalengiva).

e using namespace std allows imported I/O names to be accessed directlyighout qual-
ification.

e int main() is the routine where execution starts.
e curly braces{ ... }, denote a block of code, i.e., routine bodynadin.

e cout << "Hello Wrld!'" << endl prints"Hel | o Worl d!'" to standard output, callesbut
(System.out in Java).

e endl start newline aftetHel | o Wor | d!'" (println in Java).

e Optionalreturn 0 returns zero to the shell indicating successful compleaticthe program;
non-zero usually indicates an error.

e main magic! If no value is returned, 0 is implicitly returned.

2.3. DECLARATION 27

e Routineexit (JavaSystem.exit) stops a program at any location and returns a code to the
shell, e.g.gxit(0) (#include <cstdlib>).

e Compile withg++ command:

% g++ firstprogram.cc # compile program
% a.out # execute program; execution permission

C program-files use suffix; C+ program-files use suffixeS / .cpp / .cc.

2.3 Declaration
e Adeclaration introduces names or redeclares names froropedeclarations in a program.

2.3.1 Identifier
e name used to refer to a variable or type.
e syntax :(letter | "_") (letter | '_" | digit)«
e case-sensitive:
VeryLongVariableName Pagel Income_Tax _75

e Some identifiers are reserved (eify.while), and hencekeywords.

2.3.2 Basic Types

Java C/C+
boolean || bool (C <stdbool.h>)
char char / wchar _t
byte char / wchar _t integral types
int int
float float real-floating types
double double

label type, implicit

e C/CH+ treatchar andwchar _t (unicode characters) as an integral type.

e Javatypeshort andlong are created using type qualifiers (see Seci@¥).

2.3.3 Variable Declaration
e Declaration in C/C+ same as Java: type followed by list ehidfiers.

| Java/C/CH |
char a, b, c, d;
int i, j, k;

double x, vy, z;
id :

28 CHAPTER 2. C++

e Declarations may have an initializing assignment (exceptiélds instruct /class , see Sec-
tion 2.3.6.3 p. 35):

int i = 3;

e C/CH+ do not check for uninitialized variablés.
int i;

cout << i << endl; /I i has undefined value

e Declarations occur in blocks, and there is an implit#tic block containing all variable
declared outside of routines (across code-files).

int i; /I static block
int main() { /I routine block
int j;
{ /I local/nested block
int k;
}
}

Static block is a separate memory from the stack and heasahdays zero filled

Static variables are allocated in declaration order antlateded in reverse order at program
exit per file but no order among files

Variable names can be reused in different blocks, i.e.,iblyssverriding (hiding) prior

variables.
int i; ... /I first i
{int k=1, i... Il second i (override first), both i’s used in block!
{inti=1... /I third i (override second)

Declarations may be intermixed among executable statenmeatblock.

2.3.4 Type Qualifier

e C/CH provide two basic integral typebar andint.
e Other integral types are generated using type qualifiers.

e C/CH+ provide signed (positive/negative) and unsignegifwe only) integral types.

1Using the wall and -O compilation flags checks for uninitialized variablesjin+, which are not optimized away.

2.3. DECLARATION 29

integral types | range
signed char / char at least 127 to 127 (SCHAR_MIN / SCHAR_MAX)
unsigned char at leasto to 255 (UCHAR_MAX)
signed short int / short at least 32767 to0 32767 (SHRT_MIN / SHRT_MAX)
unsigned short int / unsigned short at leasto to 65535 (USHRT_MAX)
signed int /int at least 32767 t0 32767 (INT_MIN / INT_MAX)
unsigned int at leasto to 65535 (UINT_MAX)
signed long int /long at least 2147483647 t0 2147483647

(LONG_MIN / LONG_MAX)
unsigned long int /unsigned long at leasi to 4294967295 (ULONG_MAX)
signed long long int /long long at least 9223372036854775807

t0 9223372036854775807 (LLONG_MIN / LLONG_MAX)
unsigned long long int /unsigned long long at leasi to 18446744073709551615 (ULLONG_MAX)

e Range of values foint is machine specific: 2 bytes for 16-bit computers and 4 bydes f
32/64-bit computers.

e long is 4 bytes for 16-bit computers and 8 bytes for 32/64-bit cotars.
e #include <climits> provides boundary-value names for types (e, _MAX, etc.).

e #include <stdint.h> providesabsolutetypes[u]intN_t for signed /unsigned N = 8, 16, 32,
64 bits.

| integral types| range |

int8_t -127 to 127 (INT8_MIN / INT8_MAX)

uint8_t 0 t0 255 (UINT8_MAX)

int16_t -32767 t0 32767 (INT16_MIN / INT16_MAX)

uint16_t 0 t0 65535 (UINT16_MAX)

int32_t -2147483647 t0 2147483647 (INT32_MIN / INT32_MAX)

uint32_t 0 t0 4294967295 (UINT32_MAX)

int64_t -9223372036854775807 t0 9223372036854775807
(INT64_MIN / INT64_MAX)

uint64_t 0 t0 18446744073709551615 (UINT64_MAX)

e C/CH+ provide two basic real-floating typfisat anddouble .

e One additional real-floating type is generated using a tyadifier.

real-float typeg range, precision, architecture

float ~ 103810 10?8, ~ 7 digits, IEEE (4 bytes)
double ~ 103%8to 10°98 ~ 16 digits, IEEE (8 bytes)
long double ~ 107493210 10"932 ~ 34 digits, IEEE (12-16 bytes)

30 CHAPTER 2. C++

e C/CH support write-once/read-only constant variableh tyipe qualifierconst (Javafinal),
in any variable declaration context.

| Java | CICH |
final short x = 3,vy; || const shortint x =3,y =x + 7;
y =X+ 7; disallowed
final char ¢ = X’ const char ¢ = X’

e C/C+const identifiermustbe assigned a value at declaration (or by a constructoria-dec
ration); the value can be the result of an expression:

e A constant variable can appear in read-only contexts dfteinitialized.

2.3.5 Constants

e C uses the termonstant C+ uses the territeral .

¢ A constant/literal is fixed and cannot change.

Java and C/C+ share almost all the same constants for tleetyyaess (except for unsigned).

A designated constanindicates its type with suffixeg:/I for long, LL/Il for long long,U/u
for unsigned, and/f for float.

Unlike Java, there is nD/d suffix for double constants.

The type of an integralndesignated constan(octal/decimal/hexadecimal) is the smallest
int type that holds the value, and the type of an undesignatéfloating constant islouble .

boolean| false, true
decimal| 123, -456L, 789u, 21UL
octal, prefix0 | 0144, -045I, 0223U, 067ULL
hexadecimal, prefiRX or 0x | Oxfe, -0X1fL, Ox1leU, OxffUL
real-floating| .1, 1., -1., -7.3E3, -6.6e-2F, E/e exponent
character, single charactera’, "\
string, multi-character "abc", "\ "\ ""

e Use the right constant with types character or string:

char ch = "a"; /l use ‘a’
const char «str = ‘a”; // use “@’
string str = ‘a”; /I use “a”

e An escape sequence allows special characters to appeahanacter or string constant and
starts with a backslash,

e The most common escape sequences are (see a CH textbotkei®)o

2.3. DECLARATION 31
7 backslash
A"\ """ | single and double quote
\t7,\n” | tab, newline
N0’ zero, string termination character
\ 000’ octal valuepoo up to 3 octal digits
\ xhh” hexadecimal valuégrth up to 2 hexadecimal digits (not Java)
cout << '\ << endl;

cout << "\\ V7 \" \t\tx \ny \ 12z \ xaw' << endl; // newline 10

\ X
y

z
W

e Sequence of octal/hex digits is terminated by length or éinstracter not an octal/hex digit.

2.3.6 Type Constructor

e A type constructor is a declaration that builds a more complex type from thediggies.

constructor]| Java C/C+
enumeration enum Colour { R, G, B } enum Colour { R, G, B}
pointer any-type «p;
reference| class-type r; any-type &r; (C+ only)
array | int v[] = new int [10]; int v[10];

int m[][] = new int [10][10];

int m[10][10];

structure

class

struct or class

2.3.6.1 Enumeration

e An enumerationis a type defining a set of named constants with only assighroempar-
ison, and conversion to integer:

enum Day {Mon,Tue,Wed,Thu,Fri,Sat,Sun}; // type declaration, implicit numbering

Day day = Sat; /I variable declaration, initialization

enum {Yes, No} vote = Yes; /I anonymous type and variable declaration

enum Colour {R=0x1, G=0x2, B=0x4} colour; // typelvariable declaration, explicit numbering
colour = B; /I assignment

day = colour; /I disallowed C++, allowed C

e Names in an enumeration are callstlmerators.

e First enumerator is implicitly numbered O; thereafter,lreaaumerator is implicitly num-
bered +1 the previous enumerator.

e Enumerators can be numbered explicitly.

enum {A=3,B,C=A-5D=3,E},//34-234

32

CHAPTER 2. C++

Enumeration in C+ denotes a new type; enumeration in Cas &brint .

C/C+ enumeration only has underlying tyjpe; Java enumeration can give names (and
operations) to any value.

Java enumerator names must always be qualified.
C/C+ enumerator names are unqualifiedunique in a lexical scope.

Trick to count enums (if no explicit numbering):

enum Colour { Red, Green, Yellow, Blue, Black, No_Of_Colours };
No_Of_Colours is 5, which is the number of enumerator colours (looping @rems).
In C, enum must always be specified for a declaration:

enum Days day = Sat; // repeat “enum” on variable declaration

2.3.6.2 Pointer/Reference

pointer/referenceis an indirect mechanism to access a type instance.

All variables have an address in memory, éx.x = 5,y = 7:

type int int
variable/value x 5 y 7
address 100 200

Value of a pointer/reference is the address of a variable.
Accessing this address is different for a pointer or refegen

Two basic pointer/reference operations:

1. referencing: obtain address of a variable; unary operatan C+:

&x — 100
&y — 200

2. dereferencing retrieve value at an address; unary operatorC+:

*(&xX) — %(100) — 5
W&Y) — +(200) — 7

Compiler automatically does first dereferencex soreally «(&x).
Note, unary and binary use of operat@rsfor reference/deference and conjunction/multiplication
By convention, no variable is placed at thell address (pointer),null in Java, 0 in C/C+.

Pointer/reference variable contains the memory addreasaiher variableiGdirection) or
null pointer (or an undefined address if uninitialized).

2.3. DECLARATION 33

int* int
&pl — 50
pl| 100) S X &p2 — 60
50 .7 100 &p3 — 70
*(&pl) — 100 pl = &x;
p2| 200 7 y *E&ng — 200 p2 = &y; p2 = pl;
*(&p3) — O p3 = 0;
» nuII/uzr?((j)efined H(«(&pl)) = 5 »pl
p3|0 / 0x34fe7 dd inter; (&P2)) = 7 «p2
address (pointer),(,(&p3)) — ? «p3

70

Because of implicit 1st dereferengs, is 100 and«p1 is 5.

Multiple pointers/references may point to the same memddyess (dashed line).

Dereferencing null/undefined pointer is undefined as nocabeiat the addresift not
necessarily an erroy.

Explicit dereference is an operation usually associatel avpointer:

x; /I value assignment
y + 3;

*p2
*pl

*p1;
*P2 * 3;

y
X

Address assignment does not require dereferencing:

p2 = pil; /l address assignment

p2 is assigned the same memory addresslase., p2 points atx; values ofx andy do not
change.

Having to perform explicit dereferencing can be tediousemdr prone.
pl = p2 = 3; /I implicit deference
unreasonable gsl is assigned addresspa times 3.

Reasonable if value pointed to by is assigned value pointed to bg times 3.

A pointer that provides implicit dereferencing is a referen

However, implicit dereferencing generates an ambigudusatson for:

p2 = pl;

Should this expression perform address or value assignedthow are both cases speci-
fied?

C provides only a pointer; C+ provides a pointer and a retstli reference; Java provides
only a general reference.

C/C+ pointer:

34 CHAPTER 2. C++

1. created using thetype-constructor,

2. may point to any type (i.e., basic or object type) in anyage location (i.e., static,
stack or heap storage),

3. and no implicit referencing or dereferencing.

o Type qualifiers (see Sectidh3.4 p. 28) can be used to modify pointer types:

const short int w = 25; p3 300 (7257 W
const short int +p3 = &w; L=

int « const p4 = &x; pal 100 | . 5 y
(int &p4 = x;) Lo_TZZ . J

const long int z = 37; 05| 308 = 37 |z

const long int % const p5 = &z;

o p3 may point at anygonst short int variable.

x Pointer can change to point at different variables, but @leesof the variables
cannot be changed through the pointer.

o p4 may only point at variable.

« Pointer cannot change to point at a different variable, beivalue of the variable
can be changed through the pointer.

o p5 may only point at variable.

« Pointer cannot change to point at a different variable, Aedsalue of the variable
z cannot be changed through the pointer.

e C+ reference

1. created using th& type-constructor,

2. may point to any type (i.e., basic or object type) in anyaje location (i.e., static,
stack or heap storage),

3. restricted to a constant pointer to user created (nopdeany/non-constant) storage,
4. and always has implicit dereferencing.

o Constant-pointer restriction of a C+ reference is eqgentlo a Javéinal reference or
« const pointer with implicit dereferencing.

o Java reference can vary what it points to, but it can onlytdoinbjects in heap storage
(see SectiorR.11, p.72).

o CH constant-pointer restriction has two implications:
1. A C+ reference must be initialized at the point of dediara
x initializing expression has implicit referencing becaaseaddress islways
required,;
int &l = &x; /I error, unnecessary & before x

2.3. DECLARATION 35

2. No need for address assignment after a C+ referenceragoiabecause the ad-
dress cannot change.

x Java interprets reference assignment r1 as address assignment and has no
mechanism to perform value assignment between referepes.ty

e Pointer/reference type-constructor is not distributed acoss the identifier list:

int = pl, p2; plis a pointer, p2 is an integer int spl, «p2;
int & rx =i, ry = i; rxisareference, ry is an integeint &rx =i, &ry = i;

e C+ idiom for declaring pointers/references is misleagdmgy works for single versus list
of variables.

int« i, k;
double & x = d, y = d;

Gives false impression of distribution across the idemtifg.
2.3.6.3 Aggregation (Array/Structure)
Array is a mechanism to group together homogeneous values.

e Unlike Java, a C/C+ array is a contiguous sequence of abjetta reference to the object

sequence.
Java | C/CH
int X[] = new int [6] int x[6]
X 61| 7] 5| 0| 8 -1 x|1| 75 0 8 -1

e Hence, array variables can have dimensions specified onlaraigen and all the array ele-
ments are implicitly allocated.

e Be careful not to write(see Sectior2.4, p.42):

int b[10, 20]; /I not int b[10][20]

e C+ only supports a compile-time dimension valges allows a runtime expression (see
vector, pagel29).

int r, c;

cin >>r >> c; /I input dimensions

int array|r]; /I dynamic dimension, g++ only
int matrix[r][c]; /I dynamic dimension, g++ only

e Subscripting, [], selects an array element, and can be used on the left artcbfighsign-
ment.

X[3]; /I 4th element!
X[il; /I ith+1 element
X[i+1] =x[t/3]-y; [/l leftlright of assignment

36 CHAPTER 2. C++

e An array name without a subscript meahs i.e., the starting address of the first element.
e An array is subscripted from 0 to dimension-1.

e However, a C/C+ array is simple because dimension informatn is not stored with an
array object.

e Hence, no equivalent to Javdshgth member for arraysno subscript checkingand no
array assignment.

e Declaration of a pointer to an array is complex in C/CH (dee pager4).

e Because no array-size information, the dimension valuaricarray pointer is unspecified:

int arr[10];
int «parr = arr; /I think parr[], pointer to array of N ints

e However, no dimension information results in the followengbiguity:

int xpvar = &i; /I think pvar[] and i[1]
int «parr = arr; /I think parr[]

e Variablespvar andparr have the same type but one is pointing at a variable and theeoth
an array!

e To read a complex declaration, parenthesize type qualifi@ased on priority, read inside
parenthesis outwards, start with variable name and endtyphname on the left.

const long int « const a[5] = {0,0,0,0,0}; P }r"i"*i’”l"’i”j

e

const long int const (&x)[5] = a; Lo Liw

const long int (+ const ((&X)[5])) = &; LOJ LOJ LOJ LOJ LOJ

x : reference to an array of 5 constant pointers to constagtittegers

Structure is a mechanism to group together heterogeneous valuesdingl(nested) structures,
with only assignment:

| Java | C/C+ |
class Foo { struct Foo {
int i = 3; int i; // no initialization
... Il more fields ... Il more members
} }; I/ semi-colon terminated

e Components of a structure are callegmbers subdivided into data and routine/function
member$in C+.

e All members of a structure are accessible (public) by défaxicluding Javgackage Vvisi-
bility).

2Java subdivides members into fields (data) and methodsr{esiit

2.3. DECLARATION 37

e A structure member cannot be directly initialized (unliked) (see Sectio.3.9 p.39and
2.15.3 p. 87), and a structure is terminated with a semicolon.

e As for enumerations, a structure can be defined and instaecésed in a single statement.
struct S {int i; } s; /I definition and declaration
e In C, struct must always be specified for a declaration:

struct Complex a, b; // repeat “struct” on variable declaration

e Structures with the same type can be assigned.

struct S {
double d;
int a[10]; I/l array
struct N { /I nested structure
Colour c[3]; /I array
}s;
} s, s2;
sl = s2; /I allowed, assignment bitwise copy
sl.a = s2.a; /I disallowed, no array assignment
sl == s2; /I disallowed, no structure relational operations

e Recursive types (lists, trees) are defined using a pointer in a structure:

struct Node {
/I data members
Node xlink; /I pointer to another Node

2
e A bit field allows direct access to individual bits of memory:
struct S {
int i:3; /I 3 bits
int j:7; /I 7 bits
int k:6; //6 bits

h

i=2. /10
j=5 /101
k=9; // 1001

e A Dbit field must be an integral type.
¢ Unfortunately, bit-fields are not portable.

e On little-endian architectures (e.qg., like Intel/AMD x8@)e compiler reverses the bit order
(shell commandad -t x1).

e However, the compiler does not implicitly reverse the bdear

e Hence, the bit-fields in variabkabove must be reversed for little-endian architectures.

38 CHAPTER 2. C++

e While itis unfortunate C/C+ bit-fields lack portabilityyey are the highest-level mechanism
to manipulate bit-specific information.

Union is a heterogeneous aggregation mechanism, where all memNeEntay the same storage:

union U {
char c;
int i
double d;
}u

e Used to access internal representation or save storageisingeat for different purposes at
different times.

union U {
float f;
struct {
unsigned int sign : 1;
unsigned int exp : 8;
unsigned int val : 23;

}s;
int i;
Hu;
u.f = 3.5; cout << hex << u.f << "\t" << u.i << endl;
u.i=3; cout << u.i << "\t" << u.f << endl;
u.f = 3.5e3; cout << u.s.sign << "\t" << us.exp << "\t" << u.s.val << endl;
u.f = -3.5e-3; cout << u.s.sign << "\t" << us.exp << "\t" << u.s.val << endl;

produces:

3.5 40600000
3 4.2039e-45
0 8a 5ac000
1 76 656042

e Reusing storage is dangerous and can usually be accomplistia other techniques.

2.3.7 Type Equivalence
¢ In Java/C/C+, two types are equivalent if they have the saamee, callechame equiva-

lence
struct T1 { struct T2 { // identical structure
int i, j, k; int i, j, k;
double x, vy, z; double x, vy, z;
} }
T1 t1, t11 = t1; // allowed, t1, t11 have compatible types
T2 t2 = t1; /I disallowed, t2, t1 have incompatible types

T2 t2 = (T2)t1; /I disallowed, no conversion from type T1 to T2

e TypesT1 andT2 arestructurally equivalent, but have different names so they are incom-
patible, i.e., initialization of variable is disallowed.

2.3. DECLARATION 39

e An aliasis a different name for same type, so alias types are equivale

e C/CH providesypedef to create a synonym for an existing type:

typedef short int shrintl; /I shrintl => short int
typedef shrintl shrint2; /I shrint2 => short int
typedef short int shrint3; /I shrint3 => short int
shrintl s1; /I implicitly rewritten as: short int sl
shrint2 s2; /I implicitly rewritten as: short int s2
shrint3 s3; /I implicitly rewritten as: short int s3

e All combinations of assignments are allowed amangs2 ands3, because they have the
same type nameshort int ” (see “name equivalence” in Secti@i3.6 p. 31).

e Java provides no mechanism to alias types.

2.3.8 Type Nesting

e Type nesting is useful for organizing and controlling vikip for type names (see Sec-
tion 2.18 p. 100):

enum Colour { R, G, B };
struct Foo {
enum Colour { R, G, B }; /I nested type

struct Bar { /I nested type
Colour c[5]; /I type defined outside (1 level)
h
::Colour c[5]; /I type defined outside (top level)
Bar bars[10]; Il type defined same level
I3
Colour cl1 = R; /I typelenum defined same level
Foo::Colour c2 = Foo::R; /I typelenum defined inside
Foo::Bar bar; /I type defined inside

Variables/types at top nesting-level are accessible witjualified “:”.

References to objects inside the nested type do not requéldigation (like declarations in
nested blocks, see Secti@rB.3 p. 27).

References to objects nested inside another type must ti@egbaith type operator .

Do not pollute lexical scopes with unnecessary names (naasltes).

With nested types, onligoo in top-level scope; without nested typ&sp, Colour, R, G, B,
Bar.

2.3.9 Type-Constructor Constant

enumeration enumerators

pointer 0 or NULL indicates a null pointer
structure struct { double r, i;} ¢ ={3.0, 21 };
array int v[3]={1, 2, 3}

40

CHAPTER 2. C++

C/C+ useD to initialize pointers versusull in Java.
System include-files define the preprocessor varisblel aso (see Sectior2.9, p. 65).

Structure and array initialization can only occur as pas declaration.

struct { int i; struct { double r,i;}s;}d={1,{3.0,21}} / nested structure
int m[2][3] = { {93, 67, 72}, {77, 81, 86} }; // multidimensional array

Values in initialization list are placed into a variablersiteg at the beginning of the structure
or array.

Not all the members/elements must be initialized.
A nested structure or multidimensional array is createdgibraces.
String constants can be used as a shorthand array initighhage:
char s[6] = "abcde"; rewritten as char s[6] = { ‘a’, ’b’, ’¢’, ‘d’, e/, \0" };

It is possible to leave out the first dimension, and its vatumierred from the number of
constants in that dimension:

char s[] = "abcde"; // 1st dimension inferred as 6 (Why 67?)
int v[]={0, 1, 2, 3, 4}/ 1st dimension inferred as 5
int m[][3] = { {93, 67, 72}, {77, 81, 86} }; // 1st dimension inferred as 2

2.3.10 String

A string is a mechanism to group and manipulate sequences of charfete).

Text strings are supported in C by arrays, and languagafiiacilities.

char s[10]; /I string of at most 10 characters
const char «cs = "abc"; // pointer to string literal

Language facility ensures string constant is terminatel aicharactef\ 0.

E.g., string constaritabc" is actually an array of the 4 charactera!, ’b’, ‘c’, and"\ 0’,
which occupies 4 bytes of storage.

Zero value is aentinelused by C string routines to locate the string end.
Drawbacks:

1. A string cannot contain a character with the valug.

2. String operations needing the length of a string musaliyesearch for\ 0’, which is
expensive for long strings.

3. Management of variable-sized strings is the progransmesponsibility, with complex
storage management problems.

2.3. DECLARATION 41
e C+ solves these drawbacks by providingtréng type using a length member and managing
all of the storage for the variable-sized strings.
e Unlike Java, instances of the Cstring type are not constant.
e Values can change so a companion type 8kingBuffer in Java is unnecessary.

e Itis seldom necessary to iterate through the characters afteng variable!

| JavaString methods|| C char []routines| C+ string members

strcpy, strncpy =
+, concat strcat, strncat +
compareTo strcmp, strncmp ==, I=, <, <=, > >=
length strlen length
charAt [] []
substring substr
replace replace
indexOf, lastindexOf || strstr find, rfind
strcspn find_first_of, find_last_of
strspn find_first_not_of, find_last_not_of
c_str

e All of the C+ stringfind members return values of typting::size_type and valuestring::npos
if a search is unsuccessful.

string a, b, c; /I declare string variables

cin >> c; /I read white-space delimited sequence of characters
cout << ¢ << endl; // print string

a = "abc"; /Il set value, a is “abc”

b =a; /I copy value, b is “abc”

c=a+b; /I concatenate strings, c is “abcabc”

if (a==Db) /Il compare strings, lexigraphical ordering
string::size_type | = c.length(); // string length, | is 6

char ch = c[4]; /I subscript, ch is 'b’, zero origin

c[4] = x’; /I subscript, ¢ is “abcaxc”, must be character constant

string d = c.substr(2, 3); // extract starting at position 2 (zero origin) for length 3, d is “cax”
c.replace(2, 1, d); // replace starting at position 2 for length 1 and insert d, c is “abcaxaxc”
string::size_type p = c.find("ax"); // search for 1st occurrence of string “ax”, p is 3

p = c.rfind("ax"); // search for last occurrence of string “ax”, p is 5

c.find_first_of("aei ou"); // search for first vowel, p is 0

c.find_first_not_of("aei ou"); // search for first consonant (not vowel), p is 1
c.find_last_of("aei ou"); // search for last vowel, p is 5

c.find_last_not_of("aei ou"); // search for last consonant (not vowel), p is 7

p
p
p
p

e Memberc_str returns a pointer tohar = value in a string (\ 0" delimited).

e Routinegetline(stream, string, char) allows different delimiting characters on input:

42 CHAPTER 2. C++

s

getline(cin, c,); I/ read characters until ©” => cin >> ¢
getline(cin, ¢, ‘@); // read characters until ‘@’
getline(cin, ¢, \'n”); // read characters until newline (default)

e Contrast C and C+ style strings (note, management of sitorgge):

#include <string> /I C++ string routines
using namespace std;

#include <string.h> /I C string routines
int main() {

/I C++ string

const string A = "abc", B = "def", C ="ghi ";
string D = A + B + C;

/I C string

const char <a = "abc", b = "def", »«c = "ghi ";

char d[strlen(a)+strlen(b)+strlen(c)+1]; // pre-compute worst-case size
strepy(d, ""); // initialize to null string

strcat(strcat(strcat(d, a), b), ¢);

}
Why “+1” for dimension ofd?

2.4 Expression

| Java | C/CH |priority
unary., (), [], call . =>, 0, [1, call, dynamic _cast |high
cast+, -, I, ~ cast+, -, |, ~, &, *
new new, delete, sizeof
binary*, /, % % 1, %
+, - +, -
bit shift <<, >> >>> <<, >>
relational<, <=, >, >=, instanceof <, <=, >, >=
equality==, != ==, I=
bitwise/& and &
~ exclusive-or A
| or I
logical && short-circuit &&
[l [
conditional?: ?:
assignment, +=, -=, =, /=, %= =, +=, -=, =, I=, %=
<<=, >>=, >>>= &=, A= =)<z, S>>, &=, =, |=
comma : low

e Like algebra, operators are prioritized and performed frogh to low.

e Operators with same priority are done left to right, exceptudnary,?, and assignment
operators, which associate right to left.

2.4. EXPRESSION 43

int «xa, xb, c, d, *w[10];
sa=«b>Cc? (+a=xb, d-1): W3] 7+ 3;
(+(+a)) = ((«(+b)) > ¢) ? ((((x) = (b)), (d - 1))) : (((GW)[3]) = 7) + 3));

e Order of evaluation of subexpressions and argument evaituist unspecified (Java left to
right).

I+

(i+j)*(k+j); /I either + done first
(i=j)+(j=1i); /| either = done first
gli)+f(k)+h(j);, [/lg f orhcalled in any order

f(pt++, p++, p++); /I arguments evaluated in any order

e Referencing (address-of, and dereference, operators (see Secti@i3.6.2 p. 32) do not
exist in Java because access to storage is restricted.

e Find address of any variable in any storage context, &gé&s.d, &v[5].

e C/CH are unique for having the priority of selection operdt” incorrectly higher than

dereference operatos™

o Hencep.f executes agp.f) instead of(xp).f.

o -> operator performs a dereference and member selection oothect order, i.e p->f
is implicitly rewritten ag(xp).f.

e Pseudo-routineizeof returns the number of bytes for a type or variable (not in Java

long int i;
sizeof (long int); /I type, at least 4
sizeof (i); /I variable, at least 4

Thesizeof a pointer (type or variable) is the size of the pointer on gaaticular computer
and not the size of the type the pointer references.

e The remainder (modulus) operates, only accepts integral operands.

o If either operand is negative, the sign of the remainder [gementation defined, e.g.,
-3 % 4,3 % -4, -3 % -4 can be3 or -3.

e Do not confuse the selectiori‘and type “:” operators (Java uses’‘for both).

struct S {
enum Kind { A, B, C }
Kind k;

}s;

s.k = S:A;

s.k selects variablg in instances, while S::A selects typ& nested in type.

e Assignment is an operator; useful fmascade assignmeno initialize multiple variables of
the same type:

44 CHAPTER 2. C++

b = ¢ = 0; [/l cascade assignment
y=z+4

a
X

o Other uses of assignment in an expression are discouragede., assignments only
on left side.

e C/C+ allows any expression to appear as a statement:
3 j+ih (i+j)x(k+]) sinx);
e Complex assignment operators, eligs, += rhs, are implicitly rewritten:
temp = &(lhs); *temp = stemp + rhs;
hence, the left-hand sidias, is evaluated only once:

v[rand() % 5] += 1; /I only calls random once
vfrand() % 5] =v[rand() % 5] + 1; // calls random twice

e Comma expression allows multiple expressions to be ewaduat a context where only a
single expression is allowed (see p&d.

a, f+g, k@B /2 mli]j] <+ valuereturned

o Expressions evaluated left to right with the value of rigbsinexpression returned as
result.

o Dimension problemm[10, 20] actually meansn[20] becausel0, 20 is a comma ex-
pression not a dimension list (see p&§.

o Subscripting problerm[3, 4] meansan[4], 4th row of matrix.
e Operators-+ / -- are discouraged because subsumed by gereral-.
i += 1, versus i ++

i += 3; versus i ++ ++ ++; // disallowed

2.4.1 Conversion

e Conversion implicitly/explicitly transforms a value froome type to another (see Secti5.3.2
p. 89).

e Two kinds of conversions:

o widening/promotion conversion, no information is lost:

char — shortint — longint — double
X7’ 7 7 7.000000000000000

o narrowing conversion, information can be lost:

double — long int — shortint — char
TT777.77777777777 77777 12241 \ xd1’

2.4. EXPRESSION 45

e C/CH+ support both implicit widening and narrowing convens (Java only implicit widen-
ing).

¢ Implicit narrowing conversions can cause problems:
int i; double r;

i=r=35; //[r->35
r=i=35; /lr->3.0???

e Better to perform narrowing conversions explicitly using#@toperator or C+static _cast
operator.

—

in
i
i
i

i; double x =72,y =3.5;

(int) x; /I explicit narrowing conversion

(int) x / (int) y; /I explicit narrowing conversions for integer division
static _cast<int>(x / y); /I alternative technique after integer division

e C/C+ supports casting among the basic types and user défpesi(see Sectich 15 p.84).

e g++ has a cast extension (see Secd® 9 p. 39allowing construction of structure and array
constants in executable statements not just declarations:

void rtn(const int m[2][3]);

struct Complex { double r, i; } c;

rin((int [2][3]{ {93, 67, 72}, {77, 81, 86} }); [/l g++ only
¢ = (Complex){ 2.1, 3.4 }; [/l g++ only

In both cases, a cast indicates the meaning and structune obnstant.

2.4.2 Math Operations

e #include <cmath> provides overloaded real-float mathematical-routines/foesfloat , double
andlong double .

operation routine operation routine

X abs/fabs(x) xmody | fmod(x, y)

arccox | acos(x) InXx log(x)

arcsirnx asin(x) logx log10(x)

arctarx atan(x) xY pow(X, y)pow(X, i)
[X] ceil(x) sinx sin(x)

COSX cos(X) sinhx sinh(x)

coshx cosh(x) VX sqrt(x)

el exp(X) tanx tan(x)

|X] floor(x) tanhx tanh(x)

e Standard math constants are also available.

46

CHAPTER 2. C++

M_E 2.7182818284590452354 /e
M_LOG2E 1.4426950408889634074 /l log_2 e
M_LOG10E 0.43429448190325182765 // log_10 e
M_LN2 0.69314718055994530942 // log_e 2
M_LN10 2.30258509299404568402 // log_e 10
M_PI 3.14159265358979323846 // pi
M_PI_2 1.57079632679489661923 // pi/2
M_PI_4 0.78539816339744830962 /I pil4
M_1_PI 0.31830988618379067154 /I 1/pi
M_2_PI 0.63661977236758134308 /I 2/pi
M_2_SQRTPI 1.12837916709551257390 /I 2/sqrt(pi)
M_SQRT2 1.41421356237309504880 // sqrt(2)
M_SQRT1_2 0.70710678118654752440 [/ 1/sqrt(2)

e These constants are inadequate for computation Utsiggdouble .

e Some systems provideng double versions, e.gM_PII.

e Must explicitly link in the math library:

% g++ program.cc -Im # link math library

2.5 Control Structures

| Java | C/CH
block | { intermixed decls/stmts } { intermixed decls/stmts }
selection| if (bool-exprl) stmtl if (cond-exprl) stmtl
else if (bool-expr2) stmt2 else if (cond-expr2) stmt2
éllée stmtN éllée stmtN
switch (integral-expr) { switch (integral-expr) {
case cl: stmtsl; break; case cl: stmtsl; break;
case cN: stmtsN; break; case cN: stmtsN; break;
default : stmtsO; default : stmtsO;
} }
looping | while (bool-expr) stmt while (cond-expr) stmt
do stmt while (bool-expr) ; do stmt while (cond-expr) ;
for (init-expr;bool-expr;incr-expr) stmt || for (init-expr;cond-expr;incr-expr) stmt
transfer| break [label] break
continue [label] continue
goto label

return [expr]

return [expr]

throw [expr]

throw [expr]

label

label : stmt

label : stmt

2.5. CONTROL STRUCTURES a7

2.5.1 Block
e Block is a series of statements bracketed by brgce$, which can be nested.

e A block forms a complete statement so it does not have to b@rated with a semicolon.

e Block serves two purposes: bracket several statementa isitqyle statement and introduce
local declarations.

e When a statement is required, good practice is to always use l@lock to allow easy
insertion and removal of statements to or from block.

e Putting local declarations precisely where they are neededhelp reduce declaration clutter
at the beginning of an outer block.

e However, it can also make locating them more difficult.

2.5.2 Conditional
e C/CH uses aonditional expressionin control structures to cause conditional transfer (Java
uses a boolean expression).

A conditional expression is evaluated and implicitly teldta not equal to zero, i.ecpnd-expr
=expr = 0.

Boolean expressions are converted to Ofétge and 1 fortrue before comparison to zero,
e.g..

if (x>y)... implicitly rewritten as if (x>y)!=0)...

Hence, other expressions are allowed in a conditional ¢Cidaem):

if (x)... implicitly rewritten as if ((x)!=0)...
while (x)... while ((x) = 0)...

Watch for the common mistake in a conditional:

if (x=y)... implicitly rewritten as if (x=y)!=0)...

which assigny to x and testx != 0 (possible in Java for one type).

2.5.3 Selection
e C/CH+ selection statements df@ndswitch (same as Java, except for boolean versus condi-
tional expression (see Secti@rb.2).
e An if statement selectively executes one of two alternativesdoas the result of a compar-
ison, e.g.:

if (x>y) max = x;
else max = vy;

CHAPTER 2. C++

e Java/C/C+ have théangling elseproblem of associating aglse clause with its matching
if in nestedf statements.

e E.g., reward WIDGET salesperson who sold more than $10,0f¢hvef WIDGETS and
dock pay of those who sold less than $5,000.

| Dangling Else | Fix Using Null Else | Fix Using Blocks |

if (sales < 10000) if (sales < 10000) if (sales < 10000) {

if (sales < 5000) if (sales < 5000) if (sales < 5000) {

income -= penalty; income -= penalty; income -= penalty;

else // incorrect match!!! else ; // null statement

income += bonus; else } else {

income += bonus; income += bonus;
}

e A switch statement selectively executes ondddlternatives based on matching an integral
value with a series of case clauses, e.g.:

switch (day) { /I integral expression

case MON: case TUE: case WED: case THU: // case value list
cout << "PROGRAM' << endl;
break; /I exit switch

case FRI:
wallet += pay;
/I FALL THROUGH

case SAT:
cout << "PARTY" << endl;
wallet -= party;

break; /I exit switch
case SUN:

cout << "REST" << endl;

break; /I exit switch
default :

cerr << "ERROR" << endl;

exit(-1); /I terminate program

}

e Once a case clause is matched, its statements are exeadadrdrol continues to theext
statement.

e break statement is used at end of a case clause teekith statement.
e Itis a common error to forget the break .

e If no case clause is matched and there tefault clause, its statements are executed, and
control continues to theext statement.

e Otherwise, thawitch statement does nothing.

e Only one label for eachase clause but a list ofase clauses is allowed.

2.5. CONTROL STRUCTURES 49

2.5.4 Conditional Expression Evaluation

e Conditional expression evaluationperforms partial evaluatiorsfiort-circuit) of expres-
sions.

&& | only evaluates the right operand if the left operand is trye
|| | only evaluates the right operand if the left operand is false
?: | only evaluates one of two alternative parts of an expression

e && and|| are similar to logicak and| for bitwise (boolean) operands, i.e., both produce a
logical conjunctive or disjunctive result.

e However, short-circuit operators evaluate operandsylamitil a result is determined, short
circuiting the evaluation of other operands.

i < size && key != array]i] /I may only evaluate left operand of &&

e Hence, short-circuit operators are control structuresénniddle of an expression because
el && e2 # &&(el, e2) (unless lazy evaluation).

e Logical & and| evaluate operands eagerly, evaluating both operands.

e Conditional?: evaluates one of two expressions, and returns the resuieadaluated ex-
pression.

e Acts like anif statement in an expression:

abs2 = (a<0?-a:a)+2]|if(a<0){
abs2 = -a;
} else {
abs2 = a;
}
abs2 += 2;

2.5.5 Looping

e C/CH looping statements arvehile, do andfor (same as Java, except for boolean versus
conditional expression (see Sectd®.2 p.47)).

e while statement executes its statement zero or more times.

e Beware of accidental infinite loops.

X = 0; X = 0;
while (x < 5); /I extra semicolon! while (x < 5) /I missing block
X=x+1; y=y+X
X=X+ 1;

e do statement executes its statement one or more times.

do {
... 1l executed at least once
} while (x <5);

50 CHAPTER 2. C++

o for statement is a specializedhile statement for iterating with an index.

init-expr;

while (cond-expr) { for (init-expr; cond-expr; incr-expr) {
stmt; stmt;
incr-expr;

} }

e If init-expr is a declaration, the scope of its variables is the remaiofitre declaration, the
other two expressions, and the loop body.

for (inti=0,j=1i;i<ji+=21){//iand] allocated
/I 1 and j visible
} //'i and j deallocated

e Many ways to use thfar statement to construct iteration:

for (i=1;,i<=10;i+=1) { /I count up
/l loop 10 times
} /i has value 11 on exit

for (i=10; 1 <=i;i-=1){ /I count down
/l loop 10 times
} /i has value 0 on exit

enum Colour { Red, Green, Yellow, Blue, Cyan, Colours },

const char sname[Colours] = {"R", "G', "Y', "B", "C", }

for (Colour ¢ = Red; ¢ < Colours; ¢ = (Colour)(c + 1)) {
cout << name]c] << endl;

} /I c does not exist on exit

for (p =s; p!= NULL;, p = p->link) { /I pointer index
Il loop through list structure
} /I p has the value NULL on exit

for (i=1, p=s;i<=10& p != NULL; i += 1, p = p->link) { // 2 indices
/l loop until 10th node or end of list encountered
}

e Comma expression (see pad is used to initialize and increment 2 indices in a context
where normally only a single expression is allowed.

e Defaulttrue value inserted if no conditional is specifiedfem statement.

for () /I rewritten as: for (; true ;)

e continue /break statements available in all iteration constructs to adedondhe next loop
iteration or terminate loop.

2.6. STRUCTURED PROGRAMMING 51

2.6

for (i=0;;i+=1){ /I infinite loop, conditional is “true”
if (x >y) break; /I exit loop
if (x ==y) continue ; /I start next iteration

}

Structured Programming
Structured programming is about managing (restricting) control flow using a fixedafet
well-defined control-structures.

A small set of control structures used with a particular paogming style make programs
easier to write and understand, as well as maintain.

Most programmers adopt this approach so there is a univ@samon) approach to man-
aging control flow (e.qg., like traffic rules).

Developed during the 1970’s to overcome the indiscriminaetof the GOTO statement.

GOTO leads to convoluted logic in prograrfi®., does NOT support a methodical thought
process).

l.e., arbitrary transfer of control makes programs diffitalunderstand and maintain.

Restricted transfer reduces the points where flow of cootiahges, and therefore, is easy
to understand.

There are 3 levels of structured programming:

classical
o seqguence: series of statements
o if-then-else: conditional structure for making decisions
o while: structure for loops with test at top
Can write any programagtually only needvhile or onewhile andifs).
extended
o use the classical control-structures and add:
x case/switch: conditional structure for making decisions
x repeat-until/do-while: structure for loops with test attom
modified
o use the extended control-structures and add:
x one or more exits from arbitrary points in a loop
x exits from multiple nested control structures
x exits from multiple nested routine calls

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362947&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17962264&CFTOKEN=40004382
http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=365646&type=pdf&coll=GUIDE&dl=GUIDE&CFID=17493625&CFTOKEN=51955079

52 CHAPTER 2. C++

2.6.1 Multi-Exit Loop

e A multi-exit loop (or mid-test loop) is a loop with one or more exit locationgucing
within the body of the loop.

While-loop has 1 exit located at the top:

while i < 10 do loop -- infinite loop
exit when i >= 10; -- loop exit

. . T reverse condition

end while end loop

Repeat-loop has 1 exit located at the bottom:

do loop -- infinite loop
exit when i >= 10; -- loop exit
while (i< 10) end loop T reverse condition

Exit condition can appear in other locations in the loop body

loop
exit when i >= 10;

end .I(.);)p

Or allow multiple exit conditions:
loop
exi't' When i >= 10;
exi.t. When j >= 10;
end .I(.);)p
¢ Eliminates priming (copied) code necessary witfile :
read(input, d); loop
while ! eof(input) do read(input, d);
exit when eof(input);

read(input, d):
end while end loop

e C/C+ idioms for this situation are:

| c | Ct |
while ((d = getc(stdin)) != EOF) | while (cin >> d)

e Results in expression side-effects and precludes anallydisvithout code duplication.

2.6. STRUCTURED PROGRAMMING 53

e E.g., print the status of streacin after every read for debugging:

while (cin >> d) { loop
cout << cin.good() << endl; cin >> d;
cout << cin.good() << endl;
exit when cin.fail();

}

cout << cin.good() << endl; end .I(.);)p

e The loop exit is always outdented or clearly commented (d¢in)oso it can be found without
having to search the entire loop body.

e This is the same indentation rule as for the= of the if-then-else:

if ... then if ... then
XXX XXX
else else
XXX XXX
end if end if

e A multi-exit loop can be written in C/C+ in the following way

for (;;) { while (true) { do {
if (i>=10) break: if (i>= 10) break; if (i >= 10) break:
if (j>=10) break: if (j >= 10) break; if (] >= 10) break:
y y } while (true);

e Thefor version is more general as it can be easily modified to havemitudex or a while
condition.

for (int i=0;i<10;i+=1) {// loop index
for (; x <vy;) { /I while condition

¢ In general, the programming language and code-typing sthydelld allow insertion of new
code without having to change existing code.

e E.g., write linear search such that:

o no invalid subscript for unsuccessful search
o index points at the location of the key for successful search

e Using onlyif andwhile :

i = -1; found = O;

while (i < size -1 & ! found) { // rewrite: &(i<size-1, !found)
i +=1;
found = key == list[i];

}

if (found) {... /I found

} else { ... /I not found

}

54 CHAPTER 2. C++

Why must the program be written this way?

Allow short-circuit operators (see Secti@rb.4 p. 49).

for (i =0;i < size && key != list[i]; i += 1){};
Il rewrite: if (i < size) if (key != list[i])

if (i<size){... /I found

}else { ... /I not found

}

Logical & is incorrect because it evaluates both operands.

Alternatively, use multi-exit loop.

for (i=0;;i+=21){//or for (i=0;i<size;i+=1)
if (i>= size) break;
if (key == list[i]) break;

}
if (i<size){... /I found
} else { ... /I not found

}

The extra test after the loop can be eliminated by introdyitimto the loop body.

for (i=0;;i+=1){
if (i>=size) {... /I not found
break ;
} 1 exit
if (key ==list[i]) { ... /I found
break;
} /I exit
} /I for

e E.g., an element is looked up in a list of items, if it is nothe tist, it is added to the end of
the list, if it exists in the list its associated list countemcremented.

for (inti=0;;i+=1){
if (i>=size) {
list[size].count = 1;
list[size].data = key;
size += 1; /I check for array overflow
break;
} 1l exit
if (key == list[i].data) {
list[i].count += 1;
break ;
} 1 exit
} /I for

2.6.2 Static Multi-Level Exit

e Static multi-level exit exits multiple control structures where exit points kn@wnat com-
pile time.

2.6. STRUCTURED PROGRAMMING 55

e Labelled exit break/continue) often provides this capability (Java):

L1: {
... declarations ...
L2: switch (...) {
L3: for (...){
... break L1; ... /] exit block
... break L2; ... /] exit switch
... break L3; ... /I exit loop

}

e Labelledbreak/continue transfer control out of the control structure with the cepending
label, terminating any block that it passes through.

e Commonly used with nested loops:

Java C/CH
L1: for (;;) { /I while (flagl && ...) for (;;) {
L2: for () { Il while (flag2 && ...) for () {
L3: for (;) { /I while (flag3 && ...) for (;;){
if (...) break L1: // exit 3 levels if (...) goto L1;
if (...) break L2: // exit 2 levels if (...) goto L2;
if () break L3; // or break, exit 1 level if () goto L3;
} \ = .;.
} } L2
} } L1

e Indentation matches with control-structure terminated.

e Eliminatesflag variables, which are used solely to affect control flow, i.e., do nottaim
data associated with the computation.

e Flag variables are the variable equivalent to a goto.

e The simple case (exit 1 level) of multi-level exit is a mudtiit loop.
e Why is it good practice to label all exits?

e C/C+ do not have labelldareak /continue ; must simulate withyoto .

e goto label allows arbitrary transfer of contretlithin a routine from theyoto to statement
marked with label variable.

http://proxy.lib.uwaterloo.ca/login?url=http://portal.acm.org/ft_gateway.cfm?id=362337&type=pdf&coll=ACM&dl=ACM&CFID=19394860&CFTOKEN=33044646

56

2.7

CHAPTER 2. C++

Label variable is declared by prefixing an identifier with & ‘to a statementywhere the
label has routine scopésee Sectio2.3.3 p. 27).

L1: i += 1; /I associated with expression
L2:if (...) .. /I associated with if statement
L3: ; /| associated with empty statement

Labels can only be declared in a routine and cannot be odemid.e., each label is unique
within a routine body.

goto transfers control backwards/forwards to labelled statéme

L1: ;
Q.o.to L1; /I transfer backwards, up
goto L2; /I transfer forward, down
L2: ;

Why is it good practice to associate a label with an emptyestant?
Normal and labellethreak are agoto with restrictions:

o Cannot be used to create a loop (i.e., cause a backward bratiehprogram); hence,
all situations that result in repeated execution of statémim a program are clearly
delineated.

o Cannot be used to branatito a control structure.
Only usegoto to simulate labelledbreak and continue .
return statements can simulate multi-exit loop and multi-levéd.ex

Static multi-level exits appear infrequently, but are exiely concise and execution-time
efficient.

Input/Output
Input/Output (I/O) is divided into two kinds:
1. Formatted I/O transfers data with implicit conversion of internal valt@$rom human-
readable form.
o Conversion is based on the type of variables and format codes

2. Unformatted /O transfers data without conversion, e.g., internal inteyed real-
floating values.

2.7. INPUT/OUTPUT

2.7.1 Formatted I/O

Java

| €

C+

import java.io.x;
import java.util.Scanner;

#include <stdio.h>

#include <iostream>

File, Scanner, PrintStream

| FILE

ifstream, ofstream

Scanner in = new
Scanner(new File("f"))

in = fopen("f", "r");

ifstream in("f");

PrintStream out = new out = fopen("g", "W') ofstream out("¢")
PrintStream(" ¢")
in.close() close(in) scope endsn.close()
out.close() close(out) scope endsyut.close()
nextint() fscanf(in, "%", &i) in>>T
nextFloat() fscanf(in, "% ", &f)
nextByte() fscanf(in, "%", &c)
next() fscanf(in, "%", &s)
hasNext() feof(in) in.fail()
hasNextT() fscanf return value in.fail()
in.clear()

skip(" regexp) fscanf(in, " %[regexd") | in.ignore(n, c)
out.print(String) fprintf(out, " %", i) out << T

fprintf(out, "% ",)

fprintf(out, "9%", ¢)

fprintf(out, "9%", s)

e Formatted I/O occurs to/fromstream file.

e C+ has three implicit stream filesin, cout andcerr, which are automatically declared and
opened (Java has, out anderr).

e C hasstdin, stdout andstderr, which are automatically declared and opened.

e #include <iostream> imports all necessary declarations to aca@sscout andcerr.

e cin reads input from the keyboard (unless redirected by shell).

e cout writes to the terminal screen (unless redirected by shell).

e cerr writes to the terminal screen even whet output is redirected.

e Error and debugging messages should always be writtendo :

o normally not redirected by the shell,

o unbuffered so output appears immediately.

57

58 CHAPTER 2. C++

e Stream files other than 3 implicit ones require declarindndde object:

#include <fstream> // required for stream-file declarations
ifstream infile(“nyinfile"); /I input file
ofstream outfile("nyoutfile"); /I output file

¢ File typesifstream/ofstream, indicate whether the file can be read or written.
e File-name type nyinfile"/"myoutfile",ischar «(notstring , see pagél).

e Declaratioropers a file making it accessible through the variable name, iefitp ,andoutfile
are used for file access.

e Check for successful opening of a file using the stream meralee.g.,infile.fail(), which
returnstrue if the open failed anéhlse otherwise.

e Connection between the file name in the program and operaisigm file is done at the
declaration:

o infile reads from filenyi nfil e

o outfile writes to filenyoutfil e
where both files are located in the directory where the pragsarun.

e C+ 1/O library overloads (see Sectiéhl3.3 p. 81) the bit-shift operators< and>> to
perform 1/O.

e C I/O library usedscanf(outfile,...) andfprintf(infile,...), which have short formscanf(...)
andprintf(. . .) for stdin andstdout.

e Parameters in C are always passed by value (see Setti@nl, p. 78), so arguments to
fscanf must be preceded witt (except arrays) so they can be changed.

e Both I/O libraries can cascade multiple I/O operations, irgout or output multiple values
in a single expression.

2.7.1.1 Formats

e Format of input/output values is controlled vieanipulators defined in#include <iomanip>.

2.7. INPUT/OUTPUT 59

oct integral values in octal

dec integral values in decimal

hex integral values in hexadecimal

left / right (default) values with padding after / before values

boolalpha / noboolalpha (default) | bool values as false/true instead of 0/1
showbase / noshowbase (default) | values with / without prefix O for octal & Ox for hex

fixed (default) /scientific float-point values without / with exponent
setprecision(N) fraction of float-point values in maximum of N columns
setfill("ch) padding character before/after value (default blank)
setw(N) NEXT VALUE ONLY in minimum of N columns

end| flush output buffer and start new lineutput only)

skipws (default) /noskipws skip whitespace charactetisgut only)

e Manipulators are not variables for input/output , but control 1/0O formatting for all con-
stants/variables after it, even to the next I/0O expressiom fspecific stream file.

e Except manipulator setw, which only applies to the next value in the I/O expression.
e endl is not the same d§n’, as’\ n” does not flush buffered data.

e During input, skipsw/noskipws toggle between ignoring whitespace between input tokens
and reading the whitespace characters (i.e., tokenizeveasv input).

2.7.1.2 Input

e Java formatted input uses amplicit Scanner attached to an input file to convert characters
to basic types.

e C/C+ formatted input haisnplicit character conversion for all basic types and is extensible
to user-defined types.

| Java | C | C+
import java.io.x; #include <stdio.h> #include <fstream>
import java.util.Scanner; FILE «in = fopen("f", "r"), |ifstream in("f");

Scanner in =
new Scanner(new File("f"));||FILE »out = fopen("g", "W'); |ofstream out("g");
PrintStream out =

new PrintStream("g"); int i, j; int i, j;
int i, j; for (5 { for (5) {
while (in.hasNext()) { fscanf(in, "%%", &i, &); in >>i>>j
i = in.nextint(); j = in.nextInt(); || if (feof(in)) break; if (in.fail()) break:
out.printin("i:"+i+" j:"+j); fprintf(out," i : % j : %\ n" i,j); out << "i:" <<
} <<"j " <<j<<end];
in.close(); close(in); }

out.close(); close(out); /I infout closed implicitly

60

CHAPTER 2. C++

Input values for a stream file are C/C+ undesignated cotsstars.5e-1, etc., separated by
whitespace.

Except for characters and character stringsich are not in quotes cannot read strings
containing white spaces (see Sectib8.1Q p. 40for reading entire lines).

Type of operand indicates the kind of constant expected énsthream, e.g., an integer
operand means an integer constant is expected.

Input starts reading where the last read left off, and sdaes ko obtain necessary number
of constants.

Hence, the placement of input values on lines of a file is cdditrary.
Unlike Java, C/CH must attempt to relaeforeend-of-file is set and can be tested for.
End of file is the detection of the physical end of a filbere is no end-of-file character

From a keyboardsctri>-d (press the<ctrl> andd keys simultaneously) causes the shell to
close the current input file marking its physical end.

In C+, end of file can be detected in two ways:

o stream membezof returnstrue if the end of file is reached arfdise otherwise.

o stream membefail returnstrue for invalid constant OR no constant if end of file is
reached, anéhlse otherwise.

Safer to checkail and then checkof.

for (5){
cin >> i;
if (cin.eof()) break; /I should use *“fail()”
cout << i << endl,

If "abc” is entered (invalid integer constarfgij becomesrue buteof is false .
Generates infinite loop as invalid data is not skipped fossghent reads.

When bad data is readiream must be reset and bad data cleared

2.7. INPUT/OUTPUT 61

#include <iostream>

#include <limits> /I numeric_limits
using namespace std;
int main() {
int n;
cout << showbase; /I prefix hex with Ox
cin >> hex; /I hex constants
for (5;){
cout << "Enter hexadeci mal number: ";
cin >> n;
if (cin.fail()) { /I problem ?
if (cin.eof()) break; /I eof ?
cout << "I nval i d hexadeci mal nunmber” << endi;
cin.clear(); /I reset stream failure
cin.ignore(numeric_limits<int >::max(), \ n”); // skip until newline
} else {

cout << hex << "hex:'

<< n << dec << " dec:

<< n << endl;

}
}

cout << endl;

After an unsuccessful readear() resets the stream.

ignore skipsn characters, e.gcjn.ignore(5) or until a specified character.

e Alternatively, streams have a conversionvé@ »: if fail(), a null pointer; otherwise non-nul
pointer.
cout << cin; /I print fail() status of stream cin
while (cin >> i) ... /I read and check pointer to != 0

In C, routinefeof returnstrue when eof is reached arscanf returnseOF.

Read in file-names, which may contain spaces, and procelsdileac

#include <fstream>

using nhamespace std;

int main() {
ifstream fileNames("fil eNanes"); // requires char » argument
string fileName;

for (;;){ /I process each file
getline(fileNames, fileName); /l may contain spaces
if (fileNames.fail()) break; /I handle no terminating newline
ifstream file(fileName.c_str()); // access char «
/I read file
}

62 CHAPTER 2. C++

2.7.1.3 Output

e Java output style converts values to strings, concatestitegs, and prints final long string:

System.out.printin(i + +); /I build a string and print it

C/C+ output style supplies a list of formats and values, @ungut operation generates the
strings:

cout << i << << j << endl; /[print each string when formed

There is no implicit conversion from the basic types to sgftrim C+ (but one can be con-
structed).

While it is possible to use the Java string-concatenation gke in C+, it is incorrect style.

Use manipulators to generate specific output formats:

#include <iostream> /I cin, cout, cerr
#include <iomanip> /I manipulators
using hamespace std;

int i = 7; double r = 2.5; char ¢ = “z”; const char s = "abc":
cout << "I:" << setw(2) << i
<< " r:" << fixed << setw(7) << setprecision(2) << r

<< " " <<c<<" 5" << s << endl

#include <stdio.h>
fprintf(stdout, "i:%d r: %.2f c:% s:%\n", i, r, c, s);

i 71 250 c:z s:abc

2.7.2 Unformatted I/O

e Unformatted I/O transfers data without conversion, emfernal integer and real-floating
values.

e Uses same mechanisms as formatted 1/O to connect prograla toden/close).

e read andwrite routines transfer bytes without conversion from/to a filed @ach takes a
char « pointer and length.

read(char xbuffer, streamsize num);
write(char «buffer, streamsize num);

e To pass any kind of pointer for unformatted I/O requiresarcion, which is a castvithout
a conversion (see Secti@¥.1, p.44), using a C cast or CHeinterpret _cast.

2.8. COMMAND-LINE ARGUMENTS 63

2.8

#include <iostream>
#include <fstream>
using namespace std;

int main() {
ofstream outfile(" xxx"); /I open output file “xxx”
if (outfile.fail()) ... /I unsuccessful open ?

double d = 3.0;
outfile.write((char «)&d, sizeof (d)); // coercion

outfile.close(); /I close file before attempting read
ifstream infile(" xxx"); // open input file “xxx”
if (infile.fail()) ... /I unsuccessful open ?

infile.read(reinterpret _cast<char «>(&d), sizeof (d)); // coercion
if(d'!=e) ... /I problem
infile.close();

}
Coercion breaks the type system; use it very sparin@gd would be unnecessary if buffer

type wasvoid).

Command-line Arguments
Starting routinemain has exactly two overloaded prototypes.

int main(); // “void” parameter type for C
int main(int argc, char =argv[]); // parameter names may be different

The second form is used by the shell to pass command-lineremgis, where the command
line string-tokens are transformed into C/C+ arguments.

argc is the number of string-tokens on the command line, inclgdive command name.
With command name, number of tokens is one greater than in dav

argv is an array of pointers to C character strings that make ugntakguments.

% ./a.out -option infile.cc outfile.cc

0 1 2 3
argc =4 /I number of command-line tokens
argv[0] = ./a.out\0 /I not included in Java
argv[l] = -option\0
argv[2] = infile.cc\O
argv[3] = outfile.cc\O
argv[4] =0 /I mark end of variable length list

e Because shell only has string variables, a shell argumeri23f does not mean integer 32,

and may have to converted.

64

CHAPTER 2. C++

e Routinemain usually begins by checkingrgc for command-line arguments.

Java

C/C+

class Prog {
public static void main(String[] args) {
switch (args.length) {

case O: ... /I no args
break;

case 1. ... args[0] ... // 1 arg
break;

case ... /I others args
break ;

default: ... /I usage message

System.exit(-1);

int main(int argc, char =argv[]) {
switch (argc) {

case 1: ... /I no args
break;

case 2. ... args[l] ... // 1 arg
break;

case ... /I others args
break ;

default: ... /I usage message
exit(-1);

e Arguments are processed in the raagg/[1] throughargvlargc - 1], i.e., starting one greater

than Java.

cmd [size (> 0) [code (> 0) [input-file

#include <iostream>
#include <fstream>
using namespace std;
#include <cstdlib>
#include <cerrno>

bool convert(int &val, char =buffer) {
char xendptr;
val = strtol(buffer, &endptr, 10);
return errno !'= ERANGE && endptr !=
} /I convert

enum { sizeDeflt = 20, codeDeflt = 5 };

void usage(char xargv[]) {
cerr << "Usage " << al’gV[O] <<

[size(>0:

Process following arguments froshell command line

[outputfile 1 117 1]

Note, dynamic allocatiorstrtol (atoi does not indicate errors), and no duplicate code.

/I direct access to std
/I strtol, exit
/I errno, ERANGE

/I convert C string to integer
/I buffer pointer
/I convert string to integer

buffer && sendptr == "\ 0’; // valid integer ?

/I global defaults

<< codeDeflt << ") [input-file[output-file]]]]" << endl

exit(-1);
} /I usage

int main(int argc, char xargv[]) {
int size = sizeDeflt, code = codeDeflt;
istream «infile = &cin;
ostream *outfile = &cout;

/I TERMINATE

/I default value
/I default value
/I default value

<< sizeDeflt << ") [code (>0 :

http://www.student.cs.uwaterloo.ca/~cs246/current/code_examples/commandline_arguments.cc

2.9. PREPROCESSOR 65

switch (argc) {

case 5:
outfile = new ofstream(argv[4]);
if (outfile->fail()) usage(argv); // open failed ?
/I FALL THROUGH

case 4:
infile = new ifstream(argv[3]);
if (infile->fail()) usage(argv); // open failed ?
/I FALL THROUGH

case 3:
if (! convert(code, argv[2])) usage(argv) ; // invalid integer ?
/I FALL THROUGH

case 2:
if (! convert(size, argv[l])) usage(argv); // invalid integer ?
/I FALL THROUGH

case 1: /I all defaults
break;
default : /I wrong number of options
usage(argv);
}
/I program body
if (infile !I= &cin) delete infile; /I close file, do not delete cin!
if (outfile '= &cout) delete outfile; /I close file, do not delete cout!
} /I main

2.9 Preprocessor

e Preprocessor manipulates the text of the progvafmrecompilation.

e Program you see is not what the compiler sees!

e A preprocessor statement ig aharacter, followed by a series of tokens separated by g¢hite
pace, which is usually a single line and not terminated bycfuation.

e The three most commonly used preprocessor facilities dvstisution, file inclusion, and
conditional inclusion.

2.9.1 Substitution

e #define statement declares a preprocessor variable, and its wélighe text after the name
up to the end of line.

66

CHAPTER 2. C++

#define Integer int
#define begin {
#define end }
#define Pl 3.14159
#define gets =

#define set

#define with =

Integer main() begin /I same as: int main() {
Integer x gets 3, v; /l same as: int x = 3, vy;
X gets PI; /I same as: x = 3.14159;
set y with x; /l same as: y = Xx;

end /l same as: }

Preprocessor can transform the syntax of C/C+ prograse@uraged.

Variables can be defined and initialized on the compilatmmmand with optionDB.
% g++ -DDEBUG=2 -DASSN ... source-files
Same as putting the followingdefine s in a program without changing the program:

#define DEBUG 2
#define ASSN

Cannot have both D and #define for the same variable.

Predefined preprocessor-variables exist identifyingward and software environment, e.g.,
mcpu is kind of CPU.

Replacetdefine with enum (see Sectior2.3.6.1 p. 31) for integral types; otherwise use
const declarations (see Secti@3.4 p. 28) (Javafinal).

enum { arraySize = 100 }; #define arraySize 100

enum { PageSize = 4 » 1024 }; #define PageSize = (4 » 1024)
const double Pl = 3.14159; #define Pl 3.14159

int array[arraySize], pageSize = PageSize;

double x = PI;

enum uses no storage whitmnst declarations do.

#define can declare macros with parameters, which expand duringitaton, textually
substituting arguments for parameters, e.g.:

#define MAX(a, b) ((a >b) ? a: b)
z = MAX(X, ¥y); /I implicitly rewritten as: z = (x > y) ? X : V)

Useinline routines in C/C+ rather thatlefine macros (see pade28).

inline int MAX(int a, int b){return a>b?a:b}

2.9. PREPROCESSOR 67

2.9.2 File Inclusion

e File inclusion copies text from a file into a C/C+ program.
e An included file may contain anything.

¢ Aninclude file normally imports preprocessor and C/C+ tltgs/declarations for use in a
program.

¢ Allincluded text goes through every compilation step, peeprocessor, compiler, etc.

e Javaimplicitly includes by matching class names with filsmea iInCLASSPATH directories,
then extracting and including declarations.

e The#include statement specifies the file to be included.
e C convention uses suffixi” for include files containing C declarations.

e C+ convention drops suffix.” for its standard libraries and has special file names for
equivalent C files, e.gcstdio versusstdio.h.

#include <stdio.h> /I C style
#include <cstdio> /[C++ style
#include "user.h"

e Afile name can be enclosedd» or"".
e <>means preprocessor only looks in the system include diiesto

° means preprocessor starts looking for the file in the sanmextdiry as the file being
compiled, then in the system include directories.

e System filedimits.h andunistd.h contains many usefétdefine s, like the null pointer constant
NULL (e.g., sedusr/include/limits.h).

2.9.3 Conditional Inclusion

e Preprocessor has dinstatement, which may be nested, to conditionally add/rencmde
from a program.

e Conditionalif uses the same relational and logical operators as C/C+opeuands can only
be integer or character values.

#define DEBUG 0 /I declare and initialize preprocessor variable

#lf DEBUG == /I level 1 debugging
include "debugl. h"

#elif DEBUG == /I level 2 debugging
include "debug2.h"

#.élse /I non-debugging code

#endif

68

CHAPTER 2. C++

By changing value of preprocessor variaDIEBUG, different parts of the program are in-
cluded for compilation.

To exclude code (comment-out), useonditional a® implies false.
#if O
/Il code commented out
#endif
Independent of language structure, can overlap definiaodsoutines.

Itis also possible to check if a preprocessor variable isiddfor not defined by usingifdef
or #ifndef :

#ifndef __MYDEFS_H__ /I if not defined
#define __MYDEFS_H__ 1 // make it so

#rendif
Used in an#include file to ensure its contents are only expanded once (see 8&cfiQ,
p. 109.

Note difference between checking if a preprocessor vaiabdefined and checking the
value of the variable.

The former capability does not exist in most programmingylaages, i.e., checking if a
variable is declared before trying to use it.

2.10 Debugging

e Debuggingis the process of determining why a program does not havetandad be-

haviour.

e Often debugging is associated with fixing a program afterlaréa
e However, debugging can be applied to fixing other kinds obfams, like poor performance.

e Before using debugger tools it is important to understandtwiou are looking for and if

you need them.

2.10.1 Debug Print Statements

e An excellent way to debug a program isdtart by inserting debug print statements (i.e., as

the program is written).

¢ |t takes more time, but the alternative is wasting hourstyyto figure out what the program

is doing.

e The two aspects of a program that you need to know are: wherprtigram is executing

and what values it is calculating.

2.10. DEBUGGING 69

e Debug print statements show the flow of control through agamgand print out intermediate
values.

e E.g., every routine should have a debug print statemenedielyinning and end, as in:

int p(...){
/I declarations
cerr << "Enter p " << parameter variables << endl;

cerr << "Exit p" << returnvalue(s) << endl;
return ;

}

e Resultis a high-level audit trail of where the program isexeg and what values are being
passed around.

e Finer resolution requires more debug print statements pomant control structures:

if (a>b){
cerr << "a > b" << endl ; /I debug print

for (...){ ')

cerr << "x=" << x << ", y=" <<y << endl; // debug print

} else {
cerr << "a <= b" << endl; /I debug print

}

e By examining the control paths taken and intermediate wgenerated, it is possible to
determine if the program is executing correctly.

e Unfortunately, debug print statements can generate eng@mounts of output.

It is of the highest importance in the art of detection to béedb recognize out
of a number of facts which are incidental and which vital. €8tck Holmes, The
Reigate Squires)

e Gradually comment out debug statements as parts of thegmolgegin to work to remove
clutter from the output, but do not delete them until the pangworks.

e When you go for help, your program should contain debug ftatements to indicate some
attempted at understanding the problem.

e Use a preprocessor macro to simplifgbug prints

#define DPRT(title, expr) \
{ std::cerr << #title "\t\"" << __PRETTY_FUNCTION__ << "\" " <<\
expr << " in" << __FILE__ << " at line" << __LINE__ << std::endl; }

for printing entry, intermediate, and exit locations anthda

http://www.student.cs.uwaterloo.ca/~cs246/current/code_examples/DPRT.h

70 CHAPTER 2. C++

#include <iostream>
#include "DPRT. h"
int test(int a, int b) {
DPRT(ENTER, a << " " << b);
if (a<b){
DPRT(a<b,a<<" " <<b);
}

DPRT(,a + b); Il empty title
DPRT(HERE, ""); // empty expression
DPRT(EXIT, a);

return a;

}

which generates debug output:

ENTER "int test(int, int)" 3 4 in test.cc at line 4

a<b "inttest(int, int)" 3 4 in testcc at line 6
“int test(int, int)" 7 in test.cc at line 8

HERE "int test(int, int)" in DPRT.cc at line 9

EXIT "int test(int, int)" 3 in testcc at line 10

2.10.2 Assertions

e Assertions enforce pre-conditions, post-conditions, and invasiamthich document pro-
gram assumptions.

e Macroassert provides a mechanism to perform a check, and if the check failprint the
check and abort the program.

#include <cassert>
int main() {
int asize, bsize;
cin >> asize >> bsize;
assert(("bad array size for A", 5 <= asize && asize <= 20));
assert(("bad array size for B', 5 <= bsize && bsize <= 20));
assert(("array size for A& B nust be sane", asize == bsize));
int alasize], b[bsize];
/Il read values into a, b
for (inti=0;;i+=1){
assert(("must have an unequal elenent”, i < asize));
if (afi] != b[i]) break;

}

¢ Note, use of comma expression (see pé&fjeio document the assertion.

e When run with incorrect data produces:

2.10.

DEBUGGING 71

% ./a.out

34

Assertion failed: ("bad array size for A", 5 <= asize && asize <= 20),
file testl.cc, line 9

Abort (core dumped)

Assertions irot spot, i.e., point of high execution, can significantly increasegoam cost.

Compiling a program with preprocessor variaRIBEBUG defined removes all asserts.

% g++ -DNDEBUG ... # all asserts removed

2.10.3 Errors

Debug print statements do not prevent errors, they simplyngiinding errors.

What you do about an error depends on the kind of error.

Errors fall into two basic categories: syntax and semantic.

Syntax error is in the arrangement of the tokens in the programming laggua

These errors correspond to spelling or punctuation errbeswriting in a human language.

Fixing syntax errors is usually straight forward espeygidlthe compiler generates a mean-
ingful error message.

Always readthe error message carefully addeckthe statement in error.
You see (Watson), but do not observe. (Sherlock Holmes,#&i&lda Bohemia)
Difficult syntax errors are:

o Forgetting a closing or «/, as the remainder of the progransisallowedas part of the
character string or comment.

o Missing a{ or}, especially if the program is properly indented (editons balp here)
Semantic error is incorrect behaviour or logic in the program.
These errors correspond to incorrect meaning when writirghuman language.
Semantic errors are harder to find and fix than syntax errors.

A semantic or execution error message only tells why theraragtopped not what caused
the error.

In general, when a program stops with a semantic error, #teraent in error is often not
the one that must be fixed.

Must work backwards from the error to determine the causbeptoblem.

72 CHAPTER 2. C++

In solving a problem of this sort, the grand thing is to ableg¢ason backwards.
This is very useful accomplishment, and a very easy one goyi@ do not prac-
tise it much. In the everyday affairs of life it is more usédueason forward, and
so the other comes to be neglected. (Sherlock Holmes, A tBt&dwprlet)

e Reason from the particular (error symptoms) to the generedi(cause).

o locate pertinent data : categorize as correct or incorrect
look for contradictions

o

o

list possible causes

@)

devise a hypothesis for the cause of the problem

@)

use data to find contradictions to eliminate hypotheses

@)

refine any remaining hypotheses

o

prove hypothesis is consistent with both correct and ir@mesults, and accounts for
all errors

e E.g., aninfinite loop with nothing wrong with the loop; thetialization is wrong.
i = 10;
while (i!=5){
I+: 2;
}

e Difficult semantic errors are:

o uninitialized variables
o invalid subscript or pointer value
e Finally, if a statement appears not to be working propedy)d&oks correct, check the syntax
(see pagd?).

if (a=b){
cerr << "a == b" << endl;
}

When you have eliminated the impossible whatever remadmge\Ver improbable
must be the truth. (Sherlock Holmes, Sign of Four)

2.11 Dynamic Storage Management

e Java/Scheme amanaged languags because the language controls all memory manage-
ment, e.g.garbage collectionto free dynamically allocated storage.

e C/CH areunmanaged languags because the programmer is involved in memory manage-
ment, e.g., ho garbage collection so dynamic storage muestfdesitly freed.

2.11. DYNAMIC STORAGE MANAGEMENT

73

e C+ provides dynamic storage-management operatiengielete and C providesnalloc/free.

¢ Do not mix the two forms in a C+ program.

Java |

C

CH

class Foo { char cl, c2; }
Foo r = new Foo();

rcl =X

/[r garbage collected

struct Foo { char cl, c2; };

Foo «p = (Foo x)malloc(sizeof (F00));

p->cl = X
free(p); /I explicit free

struct Foo { char c1, c2; };
Foo «p = new Foo();

p->cl = X}

delete p; // explicit free

Foo &r = xnew Foo();
rcl =X}
delete &r; // explicit free

e Allocation has 3 steps:

1. determine size/alignment of allocation,
2. allocate heap storage of correct size/alignment,
3. coerce undefined storage to correct type.

e Each step is explicitin C; CH operatagw performs all 3 steps implicitly.
e Parenthesis after the type name in tle@ operation are optional.

e Forreference, why is there a+” beforenew and an &” in the delete ?

e Storage for dynamic allocation comes from an area calleti¢he.

e Before storage can be usediitistbe allocated.

Foo «*p;
p->c = R;

/I forget to initialize pointer with “new”
/I places ‘R” at some random location in memory

e After storage is no longer neededitstbe explicitly deleted.

Foo «p = new Foo;

p = new Foo; /I forgot to free previous storage

Called amemory leak.

e After storage is deleted, ihustnot be used:

delete p;

p->c = R; /I result of dereference is undefined

Called adangling pointer.

e Unlike Java, C/C+ allovall types to be dynamically allocated not just object types., e.g
new int .

e As well, C/C+ allowall types to be allocated on the stack, i.e., local variableshdbek:

74 CHAPTER 2. C++
| Java | CH |
{ /I basic & reference gtack heap { /I all types stack heap

int i) int i :
double d; ' double d; :

ObjType obj = d ObjType obj; d

new ObjType();) -

obj 7= } /I implicit delete ||__OPI

} /I garbage collected : :

e Stack allocation eliminates explicit storage-managemergsimpler) and is more efficient

than heap allocation — use it whenever possible.

e Dynamic allocation in C+ should be used only when:

o avariable’s storage must outlive the block in which it iDedted:

ObjType »rtn(...) {
ObjType x0bj = new ObjType();
... Il use obj
return obj; // storage outlives block
} I/ obj deleted later
o when each element of an array of objects needs initialiagtiee Sectiof.15.3 p.87):

ObjType xv[10]; // array of object pointers
for (inti=0;i<10;i+=1){
v[i] = new ObjType(i); // each element has different initialization

}
e Declaration of a pointer to an array is complex in C/CH (dee page36).

e Because no array-size information, the dimension valuaricarray pointer is unspecified:
int «parr = new int [10]; /I think parr[], pointer to array of 10 ints

e Java notation:

int parr[] = new int [10];
cannot be used becadise parr[] is actually rewritten ast parr[N], whereN is the size of

the initializer value (see Sectié3.9 p. 39).

e As well, no dimension information results in the followinghiguity:

/I basic “new”

int «xpvar = new int;
int «parr = new int [10]; Il parr[], array “new”

e Variablespvar andparr have the same type but one is allocated with the basicand the

other with the arrayew.

2.11.

DYNAMIC STORAGE MANAGEMENT 75

Special syntaxnustbe used to call the corresponding deletion operation foriamg or an
array (any dimension):

delete pvar; /I basic delete : single element
delete [] parr; /I array delete : multiple elements (any dimension)

If basicdelete is used on an array, only the first element is freed (memok).lea
If array delete is used on a variable, storage after the variable is alsd fi@#en failure).

Never do this:
delete [] parr, pvar; // => (delete [] parr), pvar;

which is an incorrect use of a comma expresspar is not deleted.

Declaration of a pointer to a matrix is complex in C/C+-, gig. *x[5] could mean:

(W[N] [0 [©]

Left: array of 5 pointers to an array of unknown number of gietes.

Right: pointer to matrix of unknown number of rows with 5 calas of integers.
For« and[] which applied first?

Dimension is higher priority (as subscript, see Seccof) p. 42), so declaration is inter-
preted asnt («(x[5])) (left).

Only the left example (above) of declaring a matrix can beegalized to allow a dynamically-
sized matrix.

76

CHAPTER 2. C++

int main() {
int «m[5]; /I'5 rows
for (intr=0;r<5r+=1){
m[r] = new int [4]; /I 4 columns per row

for (int ¢ =0; c<4;c+=1){/ initialize matrix
m[r][c] = r + ¢;

}
for (int r=0;r<5;r+=1){ /I print matrix
for (int c=0;¢c<4;c+=1){
cout << m[r][c] << ", *;
}
cout << endl;
}
for (int r=0;r<5;r+=1){
delete [] m]r]; /I delete each row
}
} /I implicitly delete array “m”

2.12 Modularization

Modularization is the division of a system into interconnecting smalletpéromponents),
based on some systematic basis, and is the foundation efeseftengineering (see Sec-
tion4.4.1 p. 164).

Medium and large systems must be modularized.

Modules provide a separation of concerns and improve maintairabyi enforcing logical
boundaries between components.

These boundaries are providedibierfacesdefined through various programming-language
mechanisms.

Hence, modularization provides a mechanisnalstract data-structures and algorithms
through interfaces.

Modules eliminate duplicated code fgctoring common code into a single location.

Essentially any contiguous block of code can be factorea antoutine or class (see Sec-
tion 2.15 p. 84) and given a name (or vice versa).

2.13. ROUTINE 77
2.13 Routine
| C | C+
[inline] void p(OR T f(| [inline] void p(OR T f(
Tl a [/l pass by value T1 a, /I pass by value
T2 &b, /I pass by reference
T3 ¢ =3 [/l optional, default value
))
{ /I routine body { Il routine body
/I intermixed decls/stmts /I intermixed decls/stmts
} }

C+ routines are not part of aggregation (see Se@i@6.3 p. 35 (not combined in an
object), e.g., routinenain is not defined in a type.

A routine’s interface is defined by its input and output pagters, called arototype or
signature.

A routine is either arocedure or afunction based on the return type.

A procedure does NOT return a value that can be use in an ekpnegdicated with return
type ofvoid :

void proc(...) { ...}
A procedure can return values through the argument/paesmetchanism (see Sectiari3.]).

A procedure terminates when control runs off the end of nmutiody or aeturn statement
is executed:

void proc() {
. return; ...
... Il run off end

}

A function returns a value that can be used in an expressimhhance must execute a
return statement specifying a value:

int func() {
. return 3; ...
return a + b;

}

A return statement can appear anywhere in a routine body, and neuiBplrn statements
are possible.

A routine with no parameters has parametgd in C and empty parameter list in C+-:

.rin(void) { ...} /I C: no parameters
.rtn() { ...} /[C++: no parameters

78

CHAPTER 2. C++

In C, empty parameters mean no information about the nunmiigpes of the parameters is
supplied.

If a routine is qualified withnline , the routine is expanded at the call site (maybe) to increase
speed at the cost of storage (no call).

Routines cannot be nested in other routines.

All routines are embedded in the static block in a source file.

int rtn(double d) { /I static block
. return 4;
}
int main() { /| static block
rtn(3.5);

}

2.13.1 Argument/Parameter Passing

Arguments are passed to parameters by:

o value: parameter is initialized by the argument (usually bitwgsgy).

o reference parameter is a reference to the argument and is initiatzélae argument’s
address.

pass by value pass by reference

argument
copy address-of (&)
parameter

Java/C, parameter passing is by value, i.e., basic typeslgadt references are copied.
C+, parameter passing is by value or reference dependitigedype of the parameter.
Argument expressions are evaluate@dny order(see SectioR2.4, p.42).

For value parameters, each argument-expression resuisied on the stack to become the
corresponding parametevhich may involve an implicit conversian

For reference parameters, each argument-expressiohisagfiérenced (address of) and this
address is pushed on the stack to become the corresponténgnee parameter.

2.13. ROUTINE 79

void swapl(int a,int b){int c = a; a= b=c}
void swap2(int &a, int &b) {int ¢ = a; a— b; b =¢;
void swap3(int #a, int «b) {int ¢ = «a; xa = «b; xb = ¢; }

void swap4(int #a, int «=xb) { int xc = »a; xa = «b; xb = c; }

int main() {
inta=1,b=3;
swapl(a, b); /| after swapl: a =1, b =3
swap2(a, b); /I after swap2: a =3, b =1
swap3(&a, &b); /I after swap3: a =1, b = 3

int xpl = &a, *p2 = &b;
swap4(&pl, &p2); /I after swap4: a =1, b
} /| after swap4: pl = &b, p2 = &a

struct S { double d; };
void r1(S's, S &rs, S « const ps) {
ps->d = rs.d = s.d = 3.0;

1
w

}
int main() {

Ssl={1.0},32={2.0},33={ 5%

ri(sl, s2, &s3); /I after rl: sl.d = 1, s2.d = 3, s3.d = 3
}

e C-style pointer-parameter simulates the reference pdesyrmit forcesk on argument and
use of > with parameter.

e What if routine call is changed to:

ri(cl, (Complex){ 1.0, 7.0 }, c3); /I disallowed!
ri(cl, ¢l + c2, c3); |/l disallowed!

Cannot change a constant or temporary variable!

e Value passing is most efficient for small values or for largéugs with high referencing
because the values are accessed directly in the routinéhfiooigh pointer).

e Reference passing is most efficient for large values withoedium referencing because
the values are not duplicated in the routine.

e Use type qualifiers to create read-only reference paramstethe corresponding argument
is guaranteed not to change:

void r2(const int &i, const Complex &c, const int Vv[5]) {
i = 3; /I disallowed, read only!
c.r = 3.0;
v[0] = 3;

}

r2(i + j, (Complex){ 1.0, 7.0 }, (int [5]){ 3, 2, 7, 9, 0 });

e Provides efficiency of pass by reference for large varialslesurity of pass by value because
argument cannot change, and allows constants and temp@n@afples as arguments.

80 CHAPTER 2. C++

e C+ parameter can havedafault value, which is passed as the argument value if no argu-
ment is specified at the call site.

void r3(int i, double g, char ¢ = "+, double h =35){ ...}

r3(1, 2.0, 'b’, 9.3); /I maximum arguments
r3(1, 2.0, ‘b’); /I h defaults to 3.5
r3(1, 2.0); Il ¢ defaults to "+", h defaults to 3.5

e In a parameter list, once a parameter has a default valupaedimeters to the right must
have default values.

e In a call, once an argument is omitted for a parameter withfaultevalue, no more argu-
ments can be specified to the right of it.

2.13.2 Array Parameter

e Array copy is unsupported (see Secti®13.6 p. 31) so arrays cannot be passed by value
only by reference.

e Therefore, all array parameters are implicitly referenammeters, and hence, do not have
a reference symbol.

e Aformal parameter array declaration can specify the firstegision with a dimension value,
[10] (which is ignored), an empty dimension ligL, or a pointers:

double sum(double v[5]); double sum(double v[]); double sum(double =xv);
double sum(double «m[5]); double sum(double «m[]); double sum(double x«m);

e Good practice uses the middle form because it clearly inelécthe variable is going to be
subscripted.

e An actual declaration cannot ugeit must use:

double sum(double v[]) { // formal declaration
double =xcv; /I actual declaration, think cv[]
cV = v, /I address assignment

e Routine to add up the elements of an arbitrary-sized arrayairix:

double sum(int cols, double Vv[]) { double sum(int rows, int cols, double «m[]) {

double total = 0.0; double total = 0.0;
for (int c=0;c<cols;c+=1) for (int r=20;r<rows;r+=1)
total += v[c]; for (int c=0;c<cols;c+=1)
return total; total += m{r][c];
} return total;

2.13. ROUTINE 81

2.13.3 Overloading

Overloading occurs when a name has multiple meanings in the same context.
Most languages have overloading.

E.g., most built-in operators are overloaded on both iatiegmd real-floating operands, i.e.,
the+ operator is different fot + 2 than for1.0 + 2.0.

Overloading requires the compiler to disambiguate amoegtidal names based on some
criteria.

The normal criterion is type information.

In general, overloading is done on operations not variables

int I /I disallowed : variable overloading
double i;

void r(int) {} // allowed : routine overloading
void r(double) {}

Power of overloading occurs when a variable’s type is chadgeperations on the variable
are implicitly reselected for the variable’s new type.

E.g., after changing a variable’s type fram to double , all operations implicitly change
from integral to real-floating.

Number andunique parameter typebut not the return typeare used to select among a
name'’s different meanings:

int r(int i,int j){ ...}/l overload name r three different ways
int r(double x, double y){...}
int r((int k) {...}

r(1, 2); /I invoke 1st r based on integer arguments
r(1.0, 2.0); /I invoke 2nd r based on double arguments
r¢ 3); /I invoke 3rd r based on number of arguments

Parameter types with qualifiers other thetort /long /signed /unsigned or reference with
same base type are not unique:

int r(int i) 4{..}

int r(signed inti) {...} [/ disallowed : redefinition
int r(constint i) {...} /I disallowed : redefinition
int r(int &) {...} /I disallowed : ambiguous

int r(const int &) {...} /I disallowed : ambiguous
r(i); /I all routines look the same

Implicit conversions between arguments and parametersaizse ambiguities:

r(1, 2.0); // ambiguous, convert either argument to integer or double

82

CHAPTER 2. C++

Use explicit cast to disambiguate:

r(1, (int)2.0) /I 1str
r((double)l, 2.0) // 2nd r

Overload/conversion confusion: 1/0O operataris overloaded witlethar «to print a C string
andvoid « to print pointers.

char c; int i
cout << &c <<

<< &i << endl; // print address of variables

type of&c ischar x, so printed as C string, which is undefinedype of&i isint «, which is
converted tovoid *, SO printed as as address.

Fix using coercion.

cout << (void #)&C << << &i << endl; // print address of variables

Overlap between overloading and default arguments fompetexrs with same type:

| Overloading | Default Argument |
int r(int i,int j){...} int r((inti,intj=2){...}
int r(inti){intj=2;...}

r(3);//2nd r r(3); /I default argument of 2

If the overloaded routine bodies are essentially the samse & default argument, other-
wise use overloaded routines.

2.14 Routine Pointer

The flexibility and expressiveness of a routine comes froenaityument/parameter mecha-
nism, which generalizes a routine across any argumentolasi@f matching type.

However, the code within the routine is the same for all dathése variables.

To generalize a routine further, code can be passed as amanguvhich is executed within
the routine body.

Most programming languages allow a routine pointer forHfertgeneralization and reuse.
(Java does not as its routines only appear in a class.)

As for data parameters, routine pointers are specified wigipa (return type, and number
and types of parameters), and any routine matching thisdgpde passed as an argument,

e.g.:

int f(int v, ‘int (+p)(int)\ Y {return p(v «2) + 2; }

int g(int i) {retun i-1;}

int h(int i) {retun i/ 2;}

cout << f(4, g) << endl; /I pass routines g and h as arguments
cout << f(4, h) << end|;

2.14.

ROUTINE POINTER 83

Routinef is generalized to accept any routine argument of the fortarme anint and takes
anint parameter.

Within the body off, the parametep is called with an appropriatet argument, and the
result of callingp is further modified before it is returned.

A routine pointer is passed as a constant reference in \hyrtath programming languages;
in general, it makes no sense to change or copy routine dedesdpying a data value.

C/C+ require the programmer to explicitly specify the refece via a pointer, while other
languages implicitly create a reference.

Two common uses of routine parameters are fix-up and cak-tmadines.

A fix-up routine is passed to another routine and called if an unusual situetiencountered
during a computation.

E.g., a matrix is not invertible if its determinant is O (Sutay).

Rather than halt the program for a singular matrixert routine calls a user supplied fix-up
routine to possibly recover and continue with a correctmg.(modify the matrix):

int singularDefault(int matrix[][10], int rows, int cols) { return O; }
int invert(int matrix[][10], int rows, int cols,
int (xsingular)(int matrix[][10], int rows, int cols) = singularDefault) {
if (determinant(matrix, rows, cols) == 0) {
correction = singular(matrix, rows, cols); // compute correction

}
_—

A fix-up parameter generalizes a routine as the correctitierats specified for each call,
and the action can be tailored to a particular usage.

Giving the fix-up parameter a default value eliminates hgtinprovide a fix-up argument.
A call-back routine is used in event programming.

When an event occurs, one or more call-back routines aredcétliggered) and each one
performs an action specific for that event.

E.g., a graphical user interface has an assortment of otiezd'widgets”, such as buttons,
sliders and scrollbars.

When a user manipulates the widget, events are generatexsesping the new state of the
widget, e.g., button down or up.

84 CHAPTER 2. C++

e A program registers interest in transitions for differemdgets by creating and registering a
call-back routine.

int closedown(/« info about event «/) {
/I close down because close button press
/I return status of callback action

}

/I inform when close button pressed for “widget”
registerCB(widget, closeButton, closedown);

e widget maintains list of registered callbacks.

e A widget calls specific call-back routine(s) when the widgetnges state, passing new state
of the widget to each call-back routine.

2.15 Object

e Objectoriented programming was developed in the mid-1960s byl Bati Nygaard and
first implemented in SIMULAG?.

e Object programming is based on structures, used for organiagically related data (see
Section2.3.6.3 p. 35):

| unorganized | organized |
struct Person {

int people_age[30]; int age;

bool people_sex[30]; bool sex;

char people_name[30][50]; char name[50];

} people[30];

e Both approaches create an identical amount of information.

¢ Difference is solely in the information organization (andmmory layout).

e Computer does not care as the information and its manipul&ilargely the same.

e Structuring is an administrative tool for programmer ustiending and convenience.

e Objects extend organizational capabilities of the stmgchy allowing routine members.

e C+ does not subscribe to the Java notion that everythinghisrea basic type or an object,
i.e., routines can exist without being embedded #tract /class (see Sectio2.13 p. 77).

2.15. OBJECT 85

| structure form | object form |

struct Complex { struct Complex {
double re, im; double re, im;

h double abs() const {

double abs(const Complex &This) { return sqrt(re = re +
return sqrt(This.re = This.re + im im);

This.im * This.im); }

} %

Complex x; /I structure Complex x; /I object

abs(x); /I call abs x.abs(); /I call abs

Each object provides both data and the operations necessamnanipulate that data in
one self-contained package.

Both approaches use routines as an abstraction mechanismate an interface to the in-
formation in the structure.

Interface separates usage from implementation at thefaseeboundary, allowing an ob-
ject’'s implementation to change without affecting usage.

E.g., if programmers do not accessmplex’s implementation, it can change from Cartesian
to polar coordinates and maintain same interface.

Developing good interfaces for objects is important.

2.15.1 Object Member

A routine member in a class is constant, and cannot be ask{grge,const member).
What is the scope of a routine member?

Structure creates a scope, and therefore, a routine membarccess the structure members,
e.g.,abs member can refer to membeatsandim.

Structure scope is implemented vial'a- const this parameter, implicitly passed to each
routine member (like left example).

double abs() const { return sqrt(this->re « this->re + this->im = this->im); }
Since implicit parameter this ” is a const pointer, it should be a reference.
Except for the syntactic differences, the two forms are tidah
The use of implicit parametethis, e.g.,this ->f, is seldom necessary.
Member routine declarecbnst is read-only, i.e., cannot change member variables.

Member routines are accessed like other members, using erelectionx.abs, and called
with the same formx.abs().

No parameter needed because of implicit structure scopais parameter.

CHAPTER 2. C++

¢ Nesting of object types only allows static not dynamic segp(see Sectior?2.3.8 p. 39)
(Java allows dynamic scoping).

struct Foo {

int g;
int r) { ...}
struct Bar { /I nested object type
int s) { g=3;r(); } /l disallowed, dynamic reference
h /Il to specific object
}Xy, z;

References is to memberg andr in Foo disallowed because must know the for specific
Foo object, i.e., whiclx, y or z.

e Extend typeComplex by inserting an arithmetic addition operation:

struct Complex {

éémplex add(Complex ¢) {
return (Complex){ re + c.re, im + c.im }
}

%
e To sumx andy, write x.add(y), which looks different from normal additior, + .

e Because addition is a binary operatiadd needs a parameter as well as the implicit context
in which it executes.

e Like outside a type, C+ allows overloading members in a.type

2.15.2 Operator Member

e Itis possible to use operator symbols for routine names:

struct Complex {

ébmplex operator +(Complex c) { // replace add member
return (Complex){ re + c.re, im + c.im };
}

h

e Addition routine is called-, andx andy can be added by.operator +(y) Or y.operator +(x),
which looks slightly better.

e Fortunately, C+ implicitly rewrites + y asx.operator +(y).

Complex x = {3.0,52} y={-91, 74}

cout << "X:" << xre << "+" << xim << "i" << end]

cout << "y:" << yre << "+" << yim << "i" << endl
Complex sum = x + v;

cout << "sum" << sum.re << "+" << sum.im << "i" << endl;

2.15. OBJECT 87

2.15.3 Constructor

e A constructor is a special member useditoplicitly perform initialization after object allo-
cation to ensure the object is valid before use.

struct Complex {
double re, im;
Complex() { re = 0.; im = 0.; } // default constructor
... Il other members

2
e Constructor name is overloaded with the type name of thetstrel (normally disallowed).

e Constructor without parameters is thefault constructor, for initializing a new object to a
default value.

Complex x; x.Complex();
Complex »y = new Complex;
y->Complex();

Complex X; implicitly
Complex »y = new Complex; rewritten as

e Unlike Java, C+ does not initialize all object members tfadk values.

e Constructor is responsible for initializing memberst initialized via other constructors
i.e., some members are objects with their own constructors.

e Because a constructor is a routine, arbitrary executiorbegrerformed (e.g., loops, routine
calls, etc.) to perform initialization.

e A constructor may have parameters but no return type (noteie).

e Never put parentheses to invoke default constructor forébdeclarations.

Complex x(); // routine with no parameters and returning a complex

e Once a constructor is specified, structure initializatios disallowed:

Complex x = { 3.2 }; /I disallowed
Complex y = { 3.2, 45 }; /I disallowed

e Replaced using constructor(s) with parameters:
struct Complex {
double re, im;
Complex(double r = 0.0, double i =00){re=r;,im=1i}
3

e Note, use of default values for parameters (see géajye

88 CHAPTER 2. C++

e Unlike Java, constructor argument(s) can be specditat a variable for local declarations:
imolicitl Complex x; x.Complex(0.0, 0.0);
Complex x, y(1.0), z(6.1, 7.2); implicitly Complex y; y.Complex(1.0, 0.0);
rewritten as Complex z; z.Complex(6.1, 7.2);

(see declaring stream files page page

e Dynamic allocation is same as Java:

Complex »x = new Complex(); // parentheses optional

Complex »y = new Complex(1.0);

Complex »z = new Complex(6.1, 7.2);

¢ If only non-default constructors are specified, i.e., oneghvparameters, an object cannot
be declared without an initialization value:

struct Foo {
/I no default constructor
Foo(int i) {...}

5

Foo x; // disallowed!!

Foo x(1); /I allowed

e Unlike Java, constructor cannot be called explicitly in @0 constructor, so constructor
reuse is done through a separate member:

| Java | CH+ |
class Foo { struct Foo {
int i, j; int i, j;
void common(int p) {i=p;j=1;}
Foo() { this(2); } /I explicit call Foo() { common(2); }
Foo(int p){i=p;j=11} Foo(int p) { common(p); }
} 2

2.15.3.1 Constant

e Constructors can be used to create object constantsgikeype-constructor constants in
Section2.4.1, p.44):

Complex x, vy, z;

X = Complex(3.2); /I complex constant value 3.2+0.0i

y = x + Complex(1.3, 7.2); // complex constant 1.3+7.2i

z = Complex(2); // 2 widened to 2.0, complex constant value 2.0+0.0i

e Previous operator for Complex (see pag86) is changed because type-constructor constants
are disallowed for a type with constructors:

Complex operator +(Complex ¢) {
return Complex(re + c.re, im + c.im); // create new complex value
}

2.15. OBJECT 89

2.15.3.2 Conversion

e Constructors are implicitly used for conversions (seeiSe@.4.1, p. 44):

int i;

double d;

Complex x, v;

X = 3.2; X = Complex(3.2);

y = x + 1.3; implicitly y = x.operator +(Complex(1.3));

y = X + i rewritten as y = X.operator +(Complex((double)i);
y = X + d; y = X.operator +(Complex(d));

¢ Allows built-in constants and types to interact with usefhded types.

¢ Note, two implicit conversions are performed on varialilex + i: int to double and then
double to Complex.

e Can require only explicit conversions with qualifexplicit on constructor:

struct Complex {
/I turn off implicit conversion
explicit Complex(double r = 0.0, double i=0.0){re=r;,im=1}

e Problem: implicit conversion disallowed for commutativadry operators.

e 1.3 + x, disallowed because it is rewritten a@l.3).operator +(x), but member
double operator +(Complex) does not exist in built-in typéouble .

e Solution, move operator out of the object type and made into a routine, which can atso b
called in infixed form (see Sectich13.3 p.81):
struct Complex { ... }; // same as before, except operator + removed

Complex operator +(Complex a, Complex b) { // 2 parameters
return Complex(a.re + b.re, a.im + b.im);

}

X+ y; N operator +(x, y)

1.3 + x; 'mp“_c'tly operator +(Complex(1.3), x)
X + 1.3; rewritten as operator +(x, Complex(1.3))

e Compiler first checks for an appropriate operator in objgoet and if found, applies con-
versions only on the second operand.

e If no appropriate operator in object type, the compiler &sdor an appropriate routine (it
is ambiguous to have both), and if found, applies applicablerersions ttothoperands.

¢ In general, commutative binary operators should be wriggmoutines to allow implicit
conversion on both operands.

90 CHAPTER 2. C++

I/O operators< and>> often overloaded for user types:

ostream &operator <<(ostream &o0s, Complex ¢) {

}

return os << c.re << "+" << cim << "i";
cout << "x:'

<< x; /I rewritten as: <<(cout.operator<<(“x:"), X)

Standard C+ convention for 1/0O operators to take and resustream reference to allow
cascading stream operations.

<< operator in objectout is used to first print string value, then overloaded routireo
print the complex variablg.

Why write as a routine versus a member?

2.15.4 Destructor
e A destructor (finalize in Java) is a special member used to perform uninitialireitobject

deallocation:
| Java | C+ |
class Foo { struct Foo {
finalize() { ... } ~Foo() { ... } /I destructor
} h

e An object type has one destructor; its name is the charactdoliowed by the type name
(like a constructor).

A destructor has no parameters nor return type (not evien):

A destructor is only necessary if an object depends uponfaies its environmente.g.,
opening/closing files, allocating/freeing dynamicallipahted storage, etc.

An independent object like a Complex object, requires no destructor (see Sect2o?q,
p. 109for a version ofComplex requiring a destructor).

A destructor is invoketbeforean object is deallocated, either implicitly at the end ofechl
or explicitly by adelete :

{ { /I allocate local storage
Foo x, y(x); Foo x, y; x.Foo(); y.Foo(x);
Foo xz = new Foo; Foo xz = new Foo; z->Foo();
= implicitly e

S/..;Foo(); x.~Foo();
} } /I deallocate local storage

2.15. OBJECT 91

e For local variables in a block, destructorsist becalled in reverse order to constructors
because of dependencies, eygdepends on.

e A destructor is more common in C+ than a finalize in Java dubeadack of garbage col-
lection in C+.

¢ If an object type performs dynamic storage allocation, itdependenaind needs a destruc-
tor to free the storage:

struct Foo {
int «i; // think int i[]
Foo(int size) { i = new int[size]; } // dynamic allocation
~Foo() { delete []i; } /I must deallocate storage

%
unless the dynamic object is transfered to another objectdallocation.

e C+ destructor is invoked at a deterministic time (blockrteration ordelete), ensuring
prompt cleanup of the execution environment.

e Javdfinalize is invoked at a non-deterministic time during garbage ctib& ornot at all, so
cleanup of the execution environment is unknown.

2.15.5 Copy Constructor / Assignment
e There are multiple contexts where an object is copied.

1. declaration initialization@bjType obj2 = obj1)

2. pass by value (argument to parameter)

3. return by value (routine to temporary at call site)
4. assignmentopj2 = objl)

Cases 1 to 3 involve a newly allocated object with undefinddesa

Case 4 involves an existing object that may contain prelWamnputed values.

C+ differentiates between these situations: initiai@aand assignment.

Constructor with aonst reference parameter of class type is used for initialiraftecla-
rations/parameters/return), called thwoy constructor.

Complex(const Complex &c) { ... }

Declaration initialization:

Complex y = x; implicitly rewritten as Complex y; y.Complex(x);

o “="is misleading as copy constructor is called not assignropaetator.
o value on the right-hand side of™is argument to copy constructor.

92 CHAPTER 2. C++

e Parameter/return initialization:

Complex rtn(Complex a, Complex b) { ... return a; }

Complex x, v;

x=rtn(X, y); /I creates temporary before assignment
o call results in the following implicit action intn:

Complex rtn(Complex a, Complex b) {
a.Complex(x); b.Complex(y); // initialize parameters with arguments

o return results in a temporary created at the call site to tidesult:

Complex temp;

x = rn(...); implicitly rewritten as temp.Complex(rtn(....));
X = temp;

e Assignment routine is used for assignment:

Complex &operator =(const Complex &rhs) { ... }

o value on the right-hand side of™ is argument to assignment operator.
x =y; implicitly rewritten as x.operator =(y);
o usually most efficient to use reference for parameter andréype.

e If a copy constructor or assignment operator is not definednalicit one is generated that
does ashallow (bitwise) copy for basic types andkep(memberwiseg copy for object types.

struct B {

B() {}
B(const B &c) { cout << "B(&) ";}

B &operator =(const B &rhs) { cout << "B="; }

2
struct D { /I implicit copy and assignment
int i; /I basic type, bitwise
B bl, b2; // object types, memberwise
%
int main() {
Dd=d, /I bitwise/memberwise copy
d=d; /I bitwise/memberwise assignment
}

outputs the following:

B(&) B(&) B= B=

e Often only a bitwise copy occurs because no declared obljests a copy constructor or
assignment operator.

e When an object type has pointers, it is often necessary to deep copy, i.e, copy the
contents of the pointed-to storage rather than the poi(gessalso Sectio?.2Q p. 109).

2.15. OBJECT 93

struct Shallow {
int «i;
Shallow(int v){i=newint; « = v; }
~Shallow() { delete i; }

struct Deep {
int *i;
Deep(int v){i=newint; « =v;}
~Deep() { delete i; }
Deep(Deep &d) { i = new int; «i = »d.i; } // copy value
Deep &operator =(const Deep &rhs) {

xl = «rhs.i; return =«this; /I copy value
}
%
initialization
Shallow x(3), y = X; Deep x(3), y = x;
y —~ X y X
shallow cop ! ! !
deep co
newx.i| 3 3= b Eopy 3
assignment
Shallow x(3), y(7); y=X; Deep x(3), y(7); y =X
y —~ X y X
shallow cop ! ! !
deep co
newvy.i| 7 newx.i| 3 X 3= b Eopy 3
memory leak dangling pointer

e For shallow copy:

o memory leak occurs on the assignment

o dangling pointer occurs afterory is deallocated; when the other object is deallocated,
it reuses this pointer to delete the same storage.

e Deep copy does not change the pointers only the values asswevithin the pointers.

e Bewareself-assignmenfor variable-sized types:

94

struct Varray {
unsigned int size;
int xa;

CHAPTER 2. C++

/I variable-sized array

Varray(unsigned int size) : size(size), a(new int[size]) {}

. I/ other members

Varray &operator =(const Varray &rhs) { // deep copy

delete [] a;
size = rhs.size;
a = new int [size];

/I delete old storage
Il set new size
/I create storage for new array

for (unsigned int 1= 0; i< size; i += 1) ali] = rhs.a[i]; // copy values

return =this ;
}
|5
Varray x(5), y(10);

x =vy; Il works
y =vy; [l fails

e How can this problem be fixed?

e Which pointer problem is this, and why can it go undetected?

e For deep copy, it is often necessary to define a equality tpefperator ==) performing a
deep compare, i.e., compare values not pointers.

2.15.6 Initialize const / Object Member

e C/CHconst members and local objects of a structure must be initialeteclaration:

Ideal (Java-like)

Structure

struct Bar {
Bar(int i) {..}
/I no default constructor
} bar(3);
struct Foo {
const int i = 3;
Bar » const p = &bar;
Bar &rp = bar;
Bar b(7);
P X

struct Bar {
Bar(int i) {..}
/I no default constructor
} bar(3);
struct Foo {
const int i;
Bar + const p;
Bar &rp;
Bar b;
} x = {3, &bar, bar, 7 };

e Left: disallowed because fields cannot be directly initiedi.

e Right: disallowed becauggar has a constructor domust use constructor syntax (see Sec-

tion 2.15.3 p. 87).

e Try using a constructor:

2.15. OBJECT
Constructor/assignment Constructor/initialize
struct Foo { struct Foo {
const int i const int i
Bar x const p; Bar + const p;
Bar &rp; Bar &rp;
Bar b; Bar b;
Foo() { Foo() : // declaration order
i = 3; [/l after declaration i(3),
p = &bar; p(&bar),
rp = bar; rp(bar),
b(7); /I not a statement b(7) {
} }
¥ ¥

Left: disallowed becausspnst has to be initialized at point of declaration.

Right: special syntax to indicate initialized at point ottiation.

Ensuregonst /object members are initialized before used in construmbaoly.

Must be initialized in declaration order to prevent use beéanitialization.

Syntax may also be used to initialize any local members:

struct Foo {

Complex c;

int k;

Foo() : c(1, 2), k(14) { /Il initialize c, k
c = Complex(1, 2); /I or assign c, k
k = 14;

}

2
Initialization may be more efficient versus default constion and assignment.

2.15.7 Static Member

e Members qualified witlstatic are declared in the static block not within an object.

struct Foo { static block
int i, ::Fo0:;]
static int j; - -
void mem() { ::Foo::rtn
j = 4; [/l allowed i
rtn(); /I allowed X
) mem

static void rtn() {
j =4, Il allowed i
i =3; [/l disallowed | Y | mem
mem(); // disallowed

XY,

95

96

CHAPTER 2. C++

Object membermem can referencgandrtn in static block.

Static membertn not logically nested in typfo, so it cannot reference membéandmem.

2.16 Random Numbers

Random numbersare values generated independently, i.e., new values ddep&nd on
previous values (independent trials).

E.g., lottery numbers, suit/value of shuffled cards, valu®ked dice, coin flipping.

While programmers spend most of their time ensuring contpugtues are not random,
random values are useful:

o gambling, simulation, cryptography, games, etc.
A random-number generatoris an algorithm that computes independent values.

If the algorithm uses deterministic computation, it getespseudo random-numbersver-
sus “true” random numbers, as sequence is predictable.

All pseudo random-number generatos (PRNG) involve some technique that scrambles
the bits of a value, e.g., multiplicative recurrence:

seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble bits

Multiplication of large values adds new least-significaits nd drops most-significant bits.

bits 63-32| bits 31-0
0 3e8e36

5f | 718c25el

ad3e | 7b5f 1dbe
bc3b | ac69ff 19
1070f | 2d258dc6

By dropping bits 63-32, bits 31-0 become scrambled aftein eadtiply.

E.g.,classPRNG generates fixed sequence of LARGE random values that repeats affer 2
values (but might repeat earlie?):

Shtt p: // www. bobwheel er. com st ati stics/Password/ Marsagl i aPost . t xt

http://www.student.cs.uwaterloo.ca/~cs246/current/code_examples/PRNG.h
http://www.bobwheeler.com/statistics/Password/MarsagliaPost.txt

2.17. DECLARATION BEFORE USE 97

class PRNG {
uint32_t seed_; /I same results on 32/64-bit architectures
public :

PRNG(uint32_t s = 362436069) {
seed_ = s; /I set seed

void seed(uint32_t s) { /I reset seed
seed_ = s; /I set seed

}

uint32_t operator ()() { /I [0,UINT_MAX]

seed_ = 36969 x (seed_ & 65535) + (seed_ >> 16); // scramble bits
return seed_;

}
uint32_t operator ()(uint32_t u) { // TO,u]
return operator ()() % (u + 1); /I call operator()()
}
uint32_t operator ()(uint32_t |, uint32_t u) { // [l,u]
return operator)(u - 1) + [; /I call operator()(uint32_t)
}

J»

e Creating a member with the function-call operator naghgfunctor) allows these objects
to behave like a routine.

PRNG prng; /I often create single generator
prng(); /I [0,UINT_MAX]
prng(5); 11'10,5]

prng(5, 10); // [5,10]

e Large values are scaled using modulus; e.g., generate d0rmmanumber between 5-21.:

PRNG prng;

for (int i =0;1<10;i+=1){
cout << prng() % 17 + 5 << endl; // values 0-16 + 5 = 5-21
cout << prng(16) + 5 << endl;
cout << prng(5, 21) << endl;

}

e By initializing PRNG with a different “seed” each time the program is run, the gateel
sequence is different:

PRNG prng(getpid()); /I process id of program
prng.seed(time()); /I current time

2.17 Declaration Before Use

e C/CH haveDeclaration Before Usg(DBU), e.g., a variable declaration must appear before
its usage in a block:

¢ In theory, a compiler could handle some DBU situations:

98

CHAPTER 2. C++

{
cout << i << endl; // prints 4 ?
int i = 4; /I declaration after usage
}
but ambiguous cases make this impractical:
int i = 3;
{

cout << i << endl; /I which i?
int i = 4;
cout << i << endl;

C always requires DBU.
C+ requires DBU in a block and among types but not within a&typ
Java only requires DBU in a block, but not for declarationsriamong classes.

DBU has a fundamental problem specifyimgitually recursive references:

void f) { [/ fcallsg
a(); /I g is not defined and being used

}
void g() { /I g calls f

f0); /I fis defined and can be used
}

Caution: these calls cause infinite recursion as there is nade case.

Cannot type-check the call tpin f to ensure matching number and type of arguments and
the return value is used correctly.

Interchanging the two routines does not solve the problem.

A forward declaration introduces a routine’s type before its actual declaration:

int f(int i, double); // routine prototype: parameter names optional
/[and no routine body
int f(int i, double d) { // type repeated and checked with prototype

}
Prototype parameter names are optional (good documemyatio
Actual routine declaration repeats routine type, whichtmuatch prototype.

Routine prototypes also useful for organizing routines soarce file.

2.17. DECLARATION BEFORE USE 99

int main(); /I forward declarations, any order
void g(int i);
void f(int i);
int main() { /I actual declarations, any order
f(5);
a(4);

}
void g(int i) {...}
void f(int i) {...}

e E.g., allowingmain routine to appear first, and for separate compilation (sei@e2.20
p. 109.

e Like Java, C+ does not always require DBU within a type:

| Java | CH
void g() {} // not selected by call in T::f
class T { struct T {
void f() { ¢ = Colour.R; g(); } void f) {c = R; g9(); } // ¢, R, g not DBU
void g() { ¢ = Colour.G; f(); } void g() { ¢ =G; f(); } // ¢, G not DBU
Colour c; enum Colour { R, G, B }; // type must be DBU
enum Colour { R, G, B }; Colour c;
h ¢
e Unlike Java, C+ requires a forward declaration for muguadicursive declarationsmong
types:
| Java | CH+ |
class T1 { struct T1 {
T2 t2; T2 t2; // DBU failure, T2 size?
T1() { t2 = new T2(); }
; h
class T2 { struct T2 {
T1 t1; T1 t1;
T2() { t1 = new T1(); }
% h
T1 t1 = new T1(); T1 t1;

Caution: these types cause infinite expansion as there is asdcase.

e Java version compiles becaudé? are references not objects, and Java can look ahead at
T2; C+ version disallowed because DBU o2 means it does not know the sizeT.

e An object declaration and usage requires the object’s sideneembers so storage can be
allocated, initialized, and usages type-checked.

e Solve using Java approach: break definition cycle usingvadiat declaration and pointer.

100 CHAPTER 2. C++

| Java | CH |
struct T2; /I forward
class T1 { struct T1 {
T2 t2; T2 «t2; [/ pointer, break cycle
T1() { t2 = new T2(); } T1() { t2 = new T2; } // DBU failure, size?
class T2 { struct T2 {
T1 t1; T1 t1;
T2() {t1 = new T1(; } || K
%

Forward declaration of2 allows the declaration of variabfetL::t2.

Note, a forward declaration only introduces the name of a.typ

Given just a type name, only pointer/reference declarattorthe type are possible, which
allocate storage for an address versus an object.

C+’s solution still does not work as the constructor canrsat typer2.

Use forward declaration and syntactic trick to move memleéindion after both types are
defined

struct T2; // forward
struct T1 {
T2 «t2; [/ pointer, break cycle
T1(); /I forward declaration
3
struct T2 {
T1 t1;

T1:T1() { t2 = new T2; } // can now see type T2

e Use of qualified nam&1::T1 allows a member to be logically declaredTinh but physically
located later (see Secti@i2Q p. 109).

2.18 Encapsulation

e Encapsulationhides implementation to force abstracti@tess contrg.

Access control applies to types NOT objects, i.e., all alsjetthe same type have identical
levels of encapsulation.

Abstraction and encapsulation are neither essential nogrered to develop software.

E.g., programmers could follow a convention of not direettgessing the implementation.

However, relying on programmers to follow conventions iagkrous.

2.18. ENCAPSULATION 101

e Abstract data-type (ADT) is a user-defined type that practices abstraction awdgsula-
tion.

e Encapsulation is provided by a combination of C and C+ festu

o C features work largely among source files, and are indyréiettl into separate compilation
(see Sectiorz.2Q p. 109).

e C+ features work both within and among source files.

e Like Java, C+ provides 3 levels of visibility control forjelbt types:

| Java | C+

class Foo { struct Foo {
private ... private : /I within and friends
/I private members
protected ... protected : /I within, friends, inherited
/I protected members
public ... public : /I within, friends, inherited, users
. /I public members

} }

e Java requires encapsulation specification for each member.

e C+ groups members with the same encapsulation, i.e., atibees after a labeprivate ,
protected or public , have that visibility.

e Visibility labels can occur in any order and multiple timesain object type.

e To enforce abstraction, all implementation members aneaf®j and all interface members
are public.

e Nevertheless, private and protected (see SecBdl.9 p. 123) members are still visible
but cannot be accessed.

struct Complex {
private :
double re, im; // cannot access but still visible
public :
/I interface routines
5

e struct has animplicipublic inserted at the beginning, i.e., by default all members abdip.

e class has an implicitprivate inserted at the beginning, i.e., by default all members are
private.

102 CHAPTER 2. C++

struct S { class C {
I/l public: /I private:
int z; int x;
private : protected :
int x; int y;
protected : public :
int y; int z;
¥ ¥
e Use encapsulation to preclude object copying by hiding capystructor and assignment
operator:
class Foo {
Foo(const Foo &); /I definitions not required
Foo &operator =(Foo &);
public :
Foo() {...}
%
void rtn(Foo f) {...}
Foo X, v;

rtn(x); /I disallowed, no copy constructor for pass by value
x =vy; [/l disallowed, no assignment operator for assignment

e Prevent object forgery (lock, boarding-pass, receipt)apymg that does not make sense
(file, database).

e Encapsulation introduces problems when factoring for nextization, e.g., previously ac-
cessible data becomes inaccessible.

class Cartesian { // implementation type
double re, im;

h
class Complex { class Complex {
double re, im; Cartesian impl;
public : public :
Complex operator +(Complex c);
h
h Complex operator +(Complex a, Complex b);
ostream &operator <<(ostream &0s, oOstream &operator <<(ostream &o0s,
Complex c); Complex c);

¢ Implementation is factored into a new typartesian, “+” operator is factored into a routine
outside and outputd<” operator must be outside (see Sectibh5.3.2 p. 89).

e Both Complex and “+” operator need to acceSartesian implementation, i.ere andim.

e Creatingget andset interface members faZartesian provides no advantage over full access.

2.19. SYSTEM MODELLING 103

e C+ provides a mechanism to state that an outside typef®igiallowed access to its im-
plementation, calle@fiendship (similar to package visibility in Java).

class Complex; // forward

class Cartesian { // implementation type
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex ¢);
friend class Complex;
double re, im;

%

class Complex {
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex ¢);
Cartesian impl;

public :

I3

Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);

}

ostream &operator <<(ostream &o0s, Complex ¢) {

}

return os << c.impl.re << "+" << c.implim << "i";

e Cartesian makese/im accessible to friends, artbmplex makesmpl accessible to friends.

o Alternative design is to nest the implementation typ€amplex and remove encapsulation
(usestruct).

class Complex {

friend Complex operator +(Complex a, Complex b);

friend ostream &operator <<(ostream &os, Complex ¢);

struct Cartesian { // implementation type
friend Complex operator +(Complex a, Complex b);
friend ostream &operator <<(ostream &os, Complex c);
double re, im;

} impl;

public :

Complex(double r = 0.0, double i = 0.0) {
impl.re = r; impl.im = i;

}

%
Complex makesCartesian, re, im andimpl accessible to friends.

2.19 System Modelling

e System modellinginvolves modelling a complex system in an abstract way twvigea
specific description of how the system works.

104

CHAPTER 2. C++

Design grows from nothing to become a model of sufficientitigidbe transformed into a
functioning system.

Design provides high-level documentation of the systemufmlerstanding (education) and
for making changes in a systematic manner.

Top-down successive refinement is a foundational mechamssa in all system design.
System modelling has multiple viewpoints:

o class model describes static kinds and structure of system

o object model: describes dynamic (temporal) behaviour of system objects

o interaction model : describes the kinds of interactions among objects
Multiple design tools (past and present) for supportingesysdesign, most are graphical
and all are programming language independent:

o flowcharts (1920-1970)

o pseudo-code

o Warnier-Orr Diagrams

o Hierarchy Input Process Output (HIPO)

o UML

Design tools can be used in various ways:

o sketchout high-level design or complex parts of a system,
o blueprint the entire system abstractly with high accuracy,
o generateinterfaces/code directly.

Key advantage is design tool provides a generic, abstradehad a system, which is trans-
formable into any format.

Key disadvantage is design tool seldom linked to implentertanechanism so two often
differ. (CODE = TRUTH)

As with design strategies, design tools have much in commdrsa only one is studied.

2.19.1 UML

Unified Modelling Language (UML) is a graphical notation for describing and designing
software systems, with emphasis on the object-orientde. sty

UML can handle class, object and interaction modellingfoon class modelling).

Note/comment

2.19. SYSTEM MODELLING

comment texr ***** target

e Class diagramcollection of class templates and associated relatiosship

e Class specifies a template for objects : name, attributesatpns.

class/struct name routine operation

, attribute-list
optional T
operation-list

e attribute : value description (field)
[visibility] name [“:” [type] [“[" multiplicity “]”]
[“=" default] [{" property-list “}"]]
o visibility : access of attribute information by other class
+ = public, — = private, #= protected~ = package
o name : required identifier for attribute (like field name irusture)

o type : restriction on kind of objects associated with atit&
Boolean, Integer, Float, String, class-name

o multiplicity : restriction on number of objects associateith attribute
0..(N|*), from O toN or unlimited,N short forN..N, * short for 0.x
Defaults to 1, but good practice to always specify.

o default : value of newly created object
o property : additional aspects of attribute, e{greadonly}

e operation : action changing or returning object state (method)
[visibility] name [“(" [parameter-list])"] [“:” return-type]
[“[”’ multiplicity “I"][{” property-list “}"]
o visibility : access of attribute information by other class
+ = public, — = private, #= protected~ = package
o name : required identifier for operation (like method namstincture)

o parameter-list : input/output values for operation
[direction | parameter-name “:” type [“[” multiplicity “]]
[“=" default] [“ {” property-list “}"]]
o direction : direction of parameter data flow
“in” (default) | “out” | “inout”

o return-type : output from operation

o property-list : additional aspects of operation, e{ggadonly}

105

106

CHAPTER 2. C++

VendingMachine

attributes

- 1d : Integer

- sodaCost : Integer
- maxStockPerFlavour : Integer
- stock : Integer [1..4]

operations

+ buy(in flavour : Flavours, inout card : WATCard) : Boole
+inventory : Integer [1..4]
+ restocked

+ cost : Integer
+ getld : Integer

optional{

Include attributes defining model structure (no counterstoraries, etc.)
Often leave out constructor operations as they do not dar&ito the model.

Object diagram : instance of a classéme: Type, underlined).

objectname:classname

attributes : values

Association: establishes alfas-d relationship between types and objects.

_class Person *ownershie Car

diagram name : String 1 5| kind : String
owned owns

: owned owns :
Jobject fred: Person honda:Car
diagraml name="Fredrick kind="Civic”
mary: Person honda:Car
name="Mary” kind="CRV”
peg:Person honda:Car
name="Margaret’ kind="CRV”

e Class association is “ownership”.

o personowns0 or more cars (*)
personownsl to 5 cars

o car isownedby O or more people (*)
car isownedby 1 person

e Objects associated with “ownership” are linked.

2.19. SYSTEM MODELLING 107

e Association is unidirectional (single arrowhead) or kedironal (double or no arrowheads),
callednavigation:

worksFor .
Employer Employee| unidirectional

ownership
Person Car bidirectional

Always specify arrowheads unless navigation is unimportan

e Association can be represented as an attribute or a line.

Person Car
name : String kind : String
owner : Car owned : Person
Person ownership Car
name : String 1 11 kind: String

Use attribute if many lines to a single class.
e Association may be implemented in a number of ways:

o pointer/reference from one object to another
o related elements in arrays

e Association Class association that is also a class

Person Car
name 1 kind
Sale
dealership
serialno
mary: Person honda:Car
name="Mary’ 1 kind="Civic”
billof: Sale
Ted’s Honda
L345YH454

o people without cars do not need “Sale” fields
cars without owners do not need “Sale” fields

108 CHAPTER 2. C++

o class cannot logically exist without association (dasies) |

e Aggregationis an association between an aggregate attribute and itbarem

* *
array <>———=> elements

o aggregate members are independent (exist outside of adgyemd sharable

Obj =op /I allocate/deallocate elements independently
Obj *vop[10];

o aggregate may not manage its members
e Compositionis stronger aggregation where components exist insideraposite.

0.1 *
array [e elements

o composition members are dependent (only exist inside opoaition) and unsharable

Obj o; /I allocate/deallocate elements dependent
Obj vo[10];

o composition manages its members

Multiplicity is implemented with single declaration)(or dynamic data-structure (see Sec-
tion 2.23.7 p. 129 for many 0. .x).

UML is significantly more general, supporting very complesdriptions of relationships
among entities.

VERY large visual mechanisms, with several confusing gicahepresentations.

Generally, a diagram is too complex if it contains more than 8 boxes.

Class Diagram

System
* *
Vehicle Client Insurance
- make: String | * 1 -name: String |1 1| - company: String
- model: String ! - phone: String - policy: String
- colour: String ! + rate(): Double - expiry: String
Contract :
’7—‘ - start: Date
- end: Date
Truck| |SUV|| Car 1 Corporate| | Individual
Accessory

- surcharge: Double
+ surcharge(): Double

I |
FloorMat GPS SatelliteRadio

2.20. SEPARATE COMPILATION 109

Object Diagram

:Contract

start="2009/09/07"
end="2012/09/07’

:Car i jfdoe:Individual :Insurance
make="Hondg” name="John F. Doe” company="SUN Lite”
model="Civic” phone="204 888-2020" policy="X-JAJ1567"
colour="silver explry:”2011/05/31”

:System
:Truck ibm:Corporate :SUV
make="Ford” ‘ name="IBM” ‘ make="Nissan
model="F150" phone="519 744-3121" model="Quest’
colour="red” | | colour="black”
‘Contract :Insurance "~ :Contract
start="2010/10/13" | company="Pilote” start="2008/01/25"
end="2013/10/13] | policy="123-ABC” end="2014/01/25’
expiry="2010/12/01"
:GPS :FloorMat
- surcharge=500 | | - surcharge=50

Invalid Object Diagram

200900107 Ansurance
start= — z
= company="All Gate

end= 20,12/09/07 pO”Cy:—Tég%(z)?l?o%gi]’K
Car | ffdoe:Individual EXpIy=
make="Honda"__. name="John F. Doe” :
model="Civic" phone="204836-2020%_ | :nsurance
colour="silver] company="SUN Lite
policy="X-JAJ1567”"
expiry="2011/05/31"
:System
:Truck ibm:Corporate SUV
make="Ford” || name="IBM” | make="Nissan/
model="F1507 | phone="519 744-3121" | model="Quest’
colour="red” R R ! colour="black”
‘Contract _ :SUV "~ Contract
start="2010/10/13" make="Honda" start="2008/01/25"
end="2013/10/13 model="CRV" end="2014/01/25
colour="blue” /
:GPS :FloorMat
- surcharge=500 - surcharge=50

2.20 Separate Compilation
e Java/C/C+ useource files to provide another mechanism for encapsulation.

110

CHAPTER 2. C++

file.java file.cc
enum Colour { R, G, B }; /I export | enum Colour { R, G, B }; // private
class C { I/l export
private static int i; /I private | static int i /I private
private static void f() {} // private | static void f() {} /I private
public static int |; /I export | int j; /I export
public static void g() {} // export | void g() {} /I export
}
class D { /I export | class D { /I private
private int i /I private int i /I private
private void f() {} /I private void f(); /I private
public :
public int j; /I public int j; /I public
public void g() {} /I public void g(); /I public
} }

External variables and routines are implicitly exporteddm a source file.

To encapsulate external variables and routines in a solgcqialify a variable/routine with
static .

Unlike Java, C/C+ do NOT implicitly export types from a sceiffile.

o Java implicitly looks in-.class files for exported content.

o C/C+ require the use of the preprocessor (see Se2t®p. 65) and forward declara-
tions (see SectioB.17, p. 97) to access exported content.

C/C+ programs must be explicitly divided into interfacedamplementation in two (or
more) files.

Interface is composed of the prototype declaration(s)gbssibly some implementation).

Implementation is composed of actual declarations and.code

Interface is entered into one or more include filedi(es), and the implementation is entered
into one or more source filex€ files).

2.20. SEPARATE COMPILATION 111

file.java file.h
enum Colour { R, G, B }; /I export | enum Colour { R, G, B }; // export
class Extern { /I export
private static int i /I private
private static void f() {} // private
public static int | /I export | extern int j; Il export
public static void g() {} // export | extern void g(); Il export
}
class D { /I export | class D { Il export
private int i /I private int i /I private
private void f() {} /I private void f(); /I private
public :
public int j; /I public int j; /I public
public void g() {} /I public void g(); /I public
} }
file.cc
static int i /I private
static void f() {} /I private
int j; /I public
void g() {} /I public
void D:f() {} /I private
void D:g() {} /I public

e extern qualifier means the actual variable or routine definitiorotated elsewhere.

e Static class-variables must be declared once (versus ddjinea .cc file.

.h .CC

class C {
static char c; // defn | char C::c = “a”; // decl

e Encapsulation is provided by giving a user access to thadedile(s) (h) and the compiled
source file(s) .€c), but not the implementation in the source file(s).

e E.g.,Complex prototype information is placed into fiemplex.h, which programmers in-
clude in their programs.

112

CHAPTER 2. C++

#ifndef __COMPLEX_H__

#define __COMPLEX_H__ /I protect against multiple inclusion
#include <iostream> /I access: ostream

/I NO “using namespace std”, use qualification to prevent polluting scope
extern void complexStats(); /I interfaces

class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);
double re, im; /I exposed implementation
public :
Complex(double r = 0.0, double i = 0.0);
double abs();
¥
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::ostream &os, Complex c);
#endif // __COMPLEX_H__

e Complex implementation information is placed in fil@mplex.cc.

#include "conpl ex. h" /I do not copy interface
#include <cmath> /I access: sqrt

using nhamespace std; /I ok within file scope
/I external, private declarations

static int cplxObjCnt = 0; /I private, defaults to 0

/I interface declarations
void complexStats() { cout << cplxObjCnt << endl; }
Complex::Complex(double r, double i) {re = r; im = i; cpIxObjCnt += 1;}
double Complex::abs() { return sqgrt(re = re + im % im); }
Complex operator +(Complex a, Complex b) {

return Complex(a.re + b.re, a.im + b.im);
}

ostream &operator <<(ostream &os, Complex c) {

}

return os << c.re << "+" << c.im << "i

.cc file includes the.h file so that there is only one copy of the constants, declavas, and
prototype information.

cplxObjCnt is qualified withstatic to make it a private variable to this source file.

No user can access it, but each constructor implementaiomcrement it when @omplex
object is created.

Users calkomplexStats to print the number o€omplex objects created so far in a program.
All Complex member routines are separated into a forward declaratidraanimplemen-
tation after the object type, allowing the implementationbe placed in thecc file (see
Section2.17, p.97).

Note, while theh file encapsulates the implementation, the implementasiatili visible.

2.20. SEPARATE COMPILATION 113

e To completely hide the implementation requires a (more egpe) reference:
#ifndef __COMPLEX_H__

#define __COMPLEX_H__ /I protect against multiple inclusion
#include <iostream> /I access: ostream

/I NO “using namespace std”, use qualification to prevent polluting scope
extern void complexStats(); /I interfaces

class Complex {
friend Complex operator +(Complex a, Complex b);
friend std::ostream &operator <<(std::ostream &os, Complex c);

struct Compleximpl; /I hidden implementation, nested class
Compleximpl &impl; /I indirection to implementation
public :

Complex(double r = 0.0, double i = 0.0);
Complex(const Complex &c); /I copy constructor
~Complex();
Complex &operator=(const Complex &c); /I assignment operator
double abs();
%
extern Complex operator +(Complex a, Complex b);
extern std::ostream &operator <<(std::.ostream &os, Complex c);
#endif // __COMPLEX_H__

#include "conpl ex. h" /I do not copy interface
#include <cmath> /I access: sqrt

using namespace std; /I ok within file scope
/I external, private declarations

static int cplxObjCnt = 0; /I private, defaults to 0

struct Complex::Compleximpl { // actual implementation, nested class
double re, im;
¥

/I interface declarations

void complexStats() { cout << cplxObjCnt << endl; }

Complex::Complex(double r, double i) : impl(xnew Compleximpl) {
impl.re = r; impl.im = i; cplxObjCnt += 1;

}

Complex::Complex(const Complex &c) : impl(xnew Compleximpl) {
impl.re = c.impl.re; impl.im = c.impl.im; cpIxObjCnt += 1,
}

Complex::~Complex() { delete &impl; }

Complex &Complex::operator =(const Complex &c) {
impl.re = c.impl.re; impl.im = c.impl.im; return =«this;
}

double Complex::abs() {
return sqrt(impl.re = impl.re + impl.im = impl.im);
}

Complex operator +(Complex a, Complex b) {
return Complex(a.impl.re + b.impl.re, a.impl.im + b.impl.im);
}

ostream &operator <<(ostream &os, Complex c) {

}

return os << c.impl.re << "+" << c.impl.im << "i";

114 CHAPTER 2. C++

e A copy constructor and assignment operator are used becamg#ex objects now contain
a reference pointer to the implementation (see [2iye

e An encapsulated object is compiled using the&eempilation flag and subsequently linked
with other compiled source files to form a program:

g++ -c complex.cc

e Creates fileomplex.o containing a compiled version of the source code.

e To use an encapsulated object, a program specifies the agcexssude file(s) to access the
object’s interface:

#include "conpl ex. h"
#include <iostream>
using namespace std;
int main() {
Complex x, vy, z;
X = Complex(3.2);
y = x + Complex(1.3, 7.2);
z = Complex(2);

cout << "X:" << x << " yi" <<y<<" 72:" << z << end;

}

e Then links with any necessary executables:

g++ usecomplex.cc complex.o # other .o files if necessary

e All .o files MUST be compiled for the same hardware architectureg.eall x86 or SPARC.

e Notice, iostream is included twice, once in this program and oncecamplex.h, which is
why each include file needs to prevent multiple inclusions.

2.21 Inheritance

e Objectorientedlanguages provideheritance for writing reusable program-components.

| Java | CH |

class Base { ...} struct Base { ...}
class Derived extends Base { ... } || struct Derived : public Base { ... };

¢ Inheritance has two orthogonal sharing concepts: imple¢atiem and type.

e Implementation inheritance provides reuse of cotede an object type; type inheritance
provides reuseutsidethe object type by allowing existing code to access the hgse t

2.21.

2211

INHERITANCE

Implementation Inheritance

115

Implementation inheritance reuses program component®impasing a new object’s im-
plementation from an existing object, taking advantagee¥ipusly written and tested code.

Substantially reduces the time to generate and debug a rjeat type.

One way to understand implementation inheritance is to tibdien composition:

\ Composition Inheritance
struct Base { struct Base {
int i int i
int r(...){...} int r(...){...}
Base() { ... } Base() { ...}
h J§
struct Derived { struct Derived : public Base { // implicit
Base b; // explicit composition /I composition
int s(...){bi=3;br.); ...} int s(...){i=3;r..); ...}
Derived() { ... } Derived() { ... }

}d;

d.b.i = 3; // composition reference
d.b.r(...); // composition reference
d.s(...); // direct reference

}d;

d.i = 3; /I direct reference
d.r(...); // direct reference
d.s(...); // direct reference

Composition implies explicitly create an object memibetp aid in the implementation, i.e.,
Derived has-aBase.

Inheritance, public Base” clause, implies implicitly:

o create an anonymous base-class object-member,

o openthe scope of anonymous member so its members are accesgheitvqualifi-
cation, both inside and outside the inheriting object type.

Constructors and destructors must be invoked for all intplideclared objects in the inher-
itance hierarchy as done for an explicit member in the comipos

Base b; b.Base(); / implicit, hidden declaration

Derived d; implicitly Derived d; d.Derived();

rewritten as e .
d.~Derived(); b.~Base(); // reverse order of construction

If base type has members with the same name as derived typerkis like nested blocks:
inner-scope name overrides outer-scope name (see SBAIG. 27).

Still possible to access outer-scope names usiigualification (see SectioR.15 p. 84) to
specify the particular nesting level.

116 CHAPTER 2. C++

| Java | CH |
class Basel { struct Basel {
int i int i
} %
class Base2 extends Basel { struct Base2 : public Basel {
int i int i /I overrides Basel:i
} 2
class Derived extends Base2 { struct Derived : public Base2 {
int i int i /I overrides Base2::i
void s() { void r() {
int i = 3; int i = 3; /I overrides Derived::i
this.i = 3; Derived::i = 3; // this.i
((Base2)this).i = 3; /I super.i Base2::i = 3;
((Basel)this).i = 3; Base2::Basel::i = 3; // or Basel::i
} }
} %

e E.g., Derived declaration first creates an invisibBase object in theDerived object, like
composition, for the implicit references Base::i andBase::r in Derived::s.

e Friendship is not inherited.

class C {
friend class Base;

%
class Base {
/I access C’s private members

%

class Derived : public Base {
/I not friend of C

%

¢ Unfortunately, having to inherit all of the members is navays desirable; some members
may be inappropriate for the new type (e.g, large array).

e As a result, both the inherited and inheriting object musvéey similar to have so much
common code.

2.21.2 Type Inheritance

e Type inheritance extends name equivalence (see Sezi®§ p. 31) to allow routines to
handle multiple types, callggblymorphism, e.g.:

2.21. INHERITANCE 117

struct Foo { struct Bar {
int i int i;
double d; double d;
}E, bb

void r(Foo f) { ...}
r(f); /I allowed
r(b); /I disallowed, name equivalence

e Since types-oo andBar are structurally equivalent, instances of either type &haork as
arguments to routine(see Sectio2.3.7, p. 38).

e Even if typeBar has more members at the end, routimaly accesses the common ones at
the beginning as its parameter is tyfm.

e However, name equivalence precludes thergail).

e Type inheritance relaxes name equivalence by aliasing tleeided name with its base-type

names.
struct Foo { struct Bar : public Foo { // inheritance
int i; /I remove Foo members
double d;
}H; }b;

void r(Foo f) { ...}
r(f); // valid call, derived name matches
r(b); // valid call because of inheritance, base name matches

e E.g., create a new typdycomplex that counts the number of timess is called for each
Mycomplex object.

e Use both implementation and type inheritance to simplifydang type Mycomplex:

struct Mycomplex : public Complex {
int cntCalls; /I add
Mycomplex() : cntCalls(0) {} /I add

double abs() { // override, reuse complex’s abs routine
cntCalls += 1,
return Complex::abs();

int calls() { return cntCalls; } /I add
%
e Derived typeMycomplex uses the implementation of the base t@eenplex, adds new mem-
bers, and overridesbs to count each call.
e Why is the qualificatiorComplex:: necessary itMycomplex::abs?

e Allows reuse ofComplex’s addition and output operation ftdycomplex values, because of
the relaxed name equivalence provided by type inheritaatveden argument and parameter.

118 CHAPTER 2. C++

e RedeclareComplex variables toMycomplex to get newabs, and membectalls returns the
current number of calls tabs for any Mycomplex object.

e Two significant problems with type inheritance.

1. o Complex routineoperator + is used to add th&ycomplex values because of the
relaxed name equivalence provided by type inheritance:

int main() {
Mycomplex X;
X =X+ X;

}

o However, result type fromperator + is Complex, notMycomplex.

o Assignment of @omplex (base type) tiycomplex (derived type) disallowed be-
cause th&omplex value is missing thentCalls member!

o Hence, aMycomplex can mimic aComplex but not vice versa.
o This fundamental problem of type inheritance is caltedtra-variance.
o CH provides various solutions, all of which have problemd are beyond this

course.
2. void r(Complex &c) {

c.abs();

int main() {
Mycomplex X;
x.abs(); /I direct call of abs
r¢ x); /I indirect call of abs
cout << "X:" << x.calls() << endl;

}

o While there are two calls tabs on objectx, only one is counted! (see Sec-
tion 2.21.6 p.120)

e public inheritance means both implementation and type inhergtanc

e private inheritance means only implementation inheritance.
class bus : private car { ...

Use implementation fromar, butbus is not acar.
e No direct mechanism in C+ for type inheritance without ierpkentation inheritance.
2.21.3 Constructor/Destructor
e Constructors aranplicitly executed top-down, from base to most derived type.

e Mandated by scope rules, which allow a derived-type congiruo use a base type’s vari-
ables so the base type must be initialized first.

e Destructors aremplicitly executed bottom-up, from most derived to base type.

2.21. INHERITANCE 119

Mandated by the scope rules, which allow a derived-typerdetstr to use a base type’s
variables so the base type must be uninitialized last.

Javafinalize must beexplicitly called from derived to base type.

Unlike Java, C+ disallows calls to other constructors atdtart of a constructor (see Sec-
tion 2.15.6 p. 94).

To pass arguments to other constructors, use same syntaxiagiélizing const members.

| Java | CH+ |

class Base { struct Base {
Base(inti){...} Base(int i) {...}

¥ ¥

class Derived extends Base { struct Derived : public Base {
Derived() { super(3); ...} Derived() : Base(3) { ...}
Derived(int i) { super(i); ...} Derived(int i) : Base(i) {...}

¥ ¥

2.21.4 Copy Constructor / Assignment

e Since copy constructor and assignment operator are alveayesated implicitly (see page),
copy and assignment are not inherited.

struct B {
B({}
B(const B &c) { cout << "B(&) ";}
B &operator =(const B &rhs) { cout << "B="; }

3

struct D : public B { /I implicit copy and assignment
int j; /I basic type, bitwise

int main() {
Dd=d, /I bitwise/memberwise copy
d=d; /I bitwise/memberwise assignment

}

outputs the following:

B(&) B=

2.21.5 Overloading

e Overloading a member routine in a derived class overridevatloaded routines in the base
class with the same name.

120 CHAPTER 2.

class Base {
public :
void mem(int i) {}
void mem(char ¢) {}

%
class Derived : public Base {
public :
void mem() {} // overrides both versions of mem in base class
3

e Hidden base-class members can still be accessed:

o Provide explicit wrapper members for each hidden one.

class Derived : public Base {
public :
void mem() {}
void mem(int i) { Base:mem(i); }
void mem(char ¢) { Base:mem(c); }

%
o Collectively provide implicit members for all of them.

class Derived : public Base {
public :
void mem() {}
using Base::mem; // all base mem routines visible

3
o Use explicit qualification to call members (violates absticn).

Derived d;
d.Base::mem(3);
d.Base:mem(‘a’);
d.mem();

2.21.6 Virtual Routine

C++

e When a member is called, it is usually obvious which one isked even with overriding:

struct Base {

void r() { ...}
h
struct Derived : public Base {
void r() { ...} /I override Base::r
h
Base b;
b.r(); /I call Base::r
Derived d;

d.r(); /I call Derived::r

e However, it is not obvious for arguments/parameters andtprs/references:

2.21.

INHERITANCE 121

void s(Base &b) { b.r(); }

s(d); /I inheritance allows call: Base::r or Derived::r ?
Base &bp = d; // assignment allowed because of inheritance
bp.r(); /I Base::r or Derived::r ?

Inheritance masks the actual object type, but both callsilgdhiovoke Derived::r because
argumenb and referencép point at an object of typPerived.

If variabled is replaced wittb, the calls should invokBase::r.
To invoke routine defined in referenced object, qualify memibutine withvirtual .

To invoke routine defined by type of pointer/reference, dbqualify member routine with
virtual .

C+ uses non-virtual as the default because it is more dfficie
Javaalwaysuses virtual for all calls to objects.

Once a base type qualifies a member as virttiad, virtual in all derived types regardless
of the derived type’s qualification for that member

Programmer may want to access membeBage even if the actual object is of tyerived,
which is possible becaus®rived containsa Base.

C+ provides mechanism to override the default at the dal si

| Java | C+

class Base {
public void f() {} // virtual
public void g() {} // virtual
public void h() {} // virtual

class Derived extends Base {
public void g() {} // virtual
public void h() {} // virtual

}

final Base bp = new Derived();
bp.f(); /I Base.f
((Base)bp).g(); /I Derived.g
bp.g(); /I Derived.g
((Base)bp).h(); /I Derived.h
bp.h(); /I Derived.h

struct Base {

void f() {} /I non-virtual
void g() {} /I non-virtual
virtual void h() {} // virtual

3

struct Derived : public Base {
void g() {}; /I non-virtual
void h() {}; /I virtual

3

Base &bp = xnew Derived(); // polymorphic assignment
bp.f(); /I Base::f, pointer type

bp.g(); /| Base:.g, pointer type

((Derived &)bp).g(); /I Derived::g, pointer type
bp.Base::h(); /I Base::h, explicit selection

bp.h(); /I Derived::h, object type

e Java casting does not provide access to base-type’s meauieres.

¢ Virtual members are only necessary to access derived memthgough a base-type refer-

ence or pointer.

122

CHAPTER 2. C++

If a type is not involved in inheritancdifal class in Java), virtual members are unnecessary
so use more efficient call to its members.

C+ virtual members are qualified in the base type as oppast tderived type.

Hence, C+ requires the base-type definer to presuppose @&ved definers might want
the call default to work.

Good practice for inheritable object types is to make all tome members virtual.

Any type with virtual members and a destructor needs to mia&eléstructor virtual so the
most derived destructor is called through a base-type @dieterence.

Virtual routines are normally implemented by routine pemst(see SectioB.14 p. 82).

class Base {

int x,vy; /I data members
virtual void m1(...); /I routine members
virtual void ma2(...);
¥
e May be implemented in a number of ways:
X X X
y y y Virtual Routine Table
ml — T ml — 1= ml
m2 — T =m2 — 1= m2
copy direct routine pointer indirect routine pointer

2.21.7 Downcast
e Type inheritance can mask the actual type of an object thraygpinter/reference (see Sec-

tion 2.21.2 p.116).

e A downcastdynamically determines the actual type of an object poitdadxy a polymorphic

pointer/reference.

e The Java operatamstanceof and the CHdynamic _cast operator perform a dynamic check

of the object addressed by a pointer/reference (not ca®tcio

| Java | C+ |
Base bp = new Derived(); Base xbp = new Derived;
Derived dp;
if (bp instanceof Derived) || dp = dynamic _cast<Derived >(bp);
((Derived)bp).rtn(); if (dp!=0){// 0 =>not Derived
dp->rtn(); // only in Derived

e To usedynamic _cast on a type, the type must have at least one virtual member.

2.21. INHERITANCE 123

2.21.8 Slicing
e Polymorphic copy or assignment can result in object truonatalledslicing.
struct B {
int i
2
struct D : public B {
int j;

5
void f(B b) {...}

int main() {
B b;
D d;
f(d); /I truncate D to B
b =d; /I truncate D to B
}

¢ Avoid polymorphic value copy/assignment; use polymorppanters.

2.21.9 Protected Members

¢ Inherited object types can access and modify public anaépred members allowing access
to some of an object’s implementation.

class Base {
private :
int x;
protected :
int y;
public :
int z;
3

class Derived : public Base {
public :
Derived() { x; y; z; }; /I x disallowed; vy, z allowed

int main() {
Derived d;
d.x; dy; d.z; /I x, y disallowed; z allowed

}

2.21.10 Abstract Class
e Abstract classcombines type and implementation inheritance for strumgunew types.

e Contains at least one abstragtt{ial) member thatnustbe implemented by derived class.

class Shape {
int colour;
public :
virtual void move(int x, int'y) = 0; // abstract member
2

124 CHAPTER 2. C++

e Strange initialization to 0 means abstract member.

e Define type hierarchy (taxonomy) of abstract classes mostmgmon data and operations
are high as possible in the hierarchy.

| Java | C+

abstract class Shape { class Shape {
protected int colour = White; protected : int colour;
public public :

Shape() { colour = White; }

abstract void move(int x, int y); virtual void move(int x, int y) = 0;

} h

abstract class Polygon extends Shape { || class Polygon : public Shape {
protected int edges; protected : int edges;
public abstract int sides(); public : virtual int sides() = 0;

} %

class Rectangle extends Polygon { class Rectangle : public Polygon {
protected int x1, yl, X2, y2; protected : int x1, yl, X2, y2;

public :

public Rectangle(...) {...} Rectangle(...) {...} // init corners
public void move(int x, int y) {...} void move(int x, int y) {...}
public int sides() { return 4; } int sides() { return 4; }

} h

class Square extends Rectangle { struct Square : public Rectangle {
/I check square /I check square
Square(...) { super(...); ...} Square(...) : Rectangle(...) {...}

} %

Usepublic /protected to define interface and implementation access for derivasksels.

Providevirtual /abstract member to allow overriding and force implemeaoiaby derived
class.

Provide default variable initialization and implemensatifor virtual routine (non-abstract)
to simplify derived class.

Provide non-virtual routine ttorce specific implementatiorgerived class should not over-
ride these routines

Concrete clasgnherits from one or more abstract classes defining all abistnembers, i.e.,
can be instantiated.

Cannot instantiate an abstract class, but can declare pernfteference to it.

Pointer/reference used to write polymorphic data strestand routines:

2.21. INHERITANCE 125

void move3D(Shape &s) { ... s.move(...); ... }
Polygon xpolys[10] = { new Rectangle(), new Square(), ... };
for (unsigned int i=0;i<10;i+=1) {
cout << polysJi]->sides() << endl; // polymorphism
move3D(=polys[i]); // polymorphism
}

e To maximize polymorphismyrite code to the highest level of abstractityri.e. useShape
overPolygon, usePolygon overRectangle, etc.

2.21.11 Multiple Inheritance

e Multiple inheritance allows a new type to apply type and implementation inheciéamul-
tiple times.

class X : public Y, public Z, private P, private Q { ...}

e X type is aliased to types andz with implementation, and also uses implementation from
P andQ.

e Interface class(pure abstract-clas9 provides only types and constants, providing type
inheritance.

e Java only allows multiple inheritance for interface class.

| Java | C+ |
interface Polygon { struct Polygon {
int sides(); virtual int sides() = 0;
void move(int x, int y); virtual void move(int X, int y) = 0;
} %
interface Rectilinear { struct Rectilinear {
final int angle = 90; enum { angle = 90 };
} h
class Rectangle implements Rectilinear, || class Rectangle : public Polygon,
Polygon { public Rectilinear {
private int x1, y1, x2, y2; int x1, y1, x2, y2;
public :
public void move(int x, int y) {} void move(int x, int y) {}
public int sides() { return 4; } int sides() { return 4; }
} %
class Square extends Rectangle { struct Square : public Rectangle {
public void move(int x, int y) {} void move(int x, int y) {}
} h

e Multiple inheritance hashanyproblems (beyond this course).

e Safe if restrict multiple inheritance to on@ublic type and one or tw@rivate types.

4Also called “program to an interface not an implementatjaviiich does not indicate the highest level of abstrac-
tion.

126 CHAPTER 2. C++

2.21.12 UML

e Generalization: reuse through forms of inheritance.

Polygon

abstract class | Rectilinear| |, ciges Integer
+angle: 90 #move(in X : Integer, iny : Integer

(N 7

multiple | inheritance

superclass Rectangle

single inheritance

subclass Square Trapezoid

o Inheritance establishess*a’ relationship on type, and reuse of attributes and opera-
tions.

o Association class can be implemented with forms of multipkeritance (mixin).

e For abstract class, name and abstract operationtadioized

2.22 Inheritance / Composition Design

e Duality between “has-a” (composition) and “is-a” (inharte) relationship (see pag5.

e Types created from multiple composite classes; typesenldadm multiple superclasses.

Composition \ Inheritance
class A {...} class A {...}
class B { A a; ...} class B : A {..}
class C {...}; class C {...};

class D{Bb; Cc; ...};|class D: B, C{..}

e Both approaches:

o remove duplicated code (variable/code sharing)

o have separation of concern into components/superclasses.

e Choose inheritance when evolving hierarchical types (tarwy) needing polymorphism.

2.22. INHERITANCE / COMPOSITION DESIGN 127

Vehicle
Construction
Heavy Machinery
Crane, Grader, Back-hoe
Haulage
Semi-trailer, Flatbed
Passenger
Commercial
Bus, Fire-truck, Limousine, Police-motorcycle
Personal
Car, SUV, Motorcycle

e For maximum reuse and to eliminate duplicate code, placahlas/operations as high in
the hierarchy as possible.

e Polymorphism requires derived class maintain base clagsterface (Substitutability).
o derived class should also havehavioural compatibility with base class.

e However, all taxonomies are an organizational compromigeen is a car a limousine and
vice versa.

e Not all objects fit into taxonomy: flying-car, boat-car.
¢ Inheritance is rigid hierarchy.

e Choose composition when implementation canibkegated

class Car {
SteeringWheel s; /I fixed
Donut spare;
Wheel xwheels[4]; /I dynamic
Engine xeng;
Transmission xtrany;
public :
Car(Engine xe = fourcyl, Transmission st = manual) :
eng(e), trany(t) { wheels[i] = ...}
rotate() {...} /I rotate tires
wheels(Wheels sw[4]) {...} // change wheels
engine(Engine e) {...} // change engine

¥
o Composition may be fixed or dynamic (pointer/reference).
e Composition still uses hierarchical types to generalizaponents.

o Engine is abstract class that is specialized to different kindsngfiees, e.g., 3,4,6,8
cylinder, gas/diesel/hybrid, etc.

128 CHAPTER 2. C++

2.23 Template

¢ Inheritance provides reuse for types organized into a tubyathat extends name equiva-
lence.

e Alternate kind of reuse with no type hierarchy and types ateequivalent.

e E.g., overloading (see Secti@ril3.3 p.81), where there is identical code but different types:

int max(int a, int b)) {retum a>b?a:b}
double max(int a, int b){return a>b?a:b}

e Template routine eliminates duplicate code by using tygesoanpile-time parameters:

template <typename T> T max(Ta, Tbh){return a>b ?a:b}

e template introduces type paramet€mused to declare return and parameter types.

e At a call, compiler infers typ& from argument(s), and constructs a specialized routine wit
inferred type(s):

cout << max(1, 3) << << max(-1, -4) << endl; /| T -> int
cout << max(1.1, 3.5) << " " << max(-1.1, -4.5) << endl; // T -> double

¢ Inferred type must supply all operations used within thegiate routine.
e Template type prevents duplicating code that manipulafesehnt types.

e E.g., collection data-structures (e.g., stack), have comoode to manipulate data structure,
but type stored in collection varies:

template <typename T = int, int N = 10> struct Stack { // default values
T elems[N]; // maximum N elements
unsigned int size;
Stack() { size = 0; }
void push(T e) { elems[size] = e; size += 1; }
T pop() { size -= 1; return elems][size]; }

2

template <typename T, int N>

ostreamé& operator <<(ostream &o0s, const Stack<T> &stack) {
for (unsigned int i =0;i<N;i+=1) os << stack.elemgJi];
return os;

}

e Type parametefl, declares the element type of ardgms, and return and parameter types
of the member routines.

e Integer parametel, denotes the maximum stack size.

¢ Unlike template routines, the compiler cannot infer thestpprameter for template types, so
it must be explicitly specified:

2.23. TEMPLATE 129

Stack<> si; /I stack of int, 10

Stack<double > sd; /I stack of double, 10

Stack< Stack<int>, 20 > ssi; // stack of (stack of int, 10), 20
si.push(3);

sd.push(3.0);
ssi.push(si);

int i = si.pop();
double d = sd.pop();
si = ssi.pop();

Specified type must supply all operations used within theptate type.
There must be a space between the two ending chevrons>as parsed asperator>> .

Compiler requires a template definition for each usage solbtite interface and imple-
mentation of a template must be in & file, precluding some forms of encapsulation.

2.23.1 Standard Library

C+ Standard Library provides different kinds of contageector, map, list, stack, queue,
deque.

In general, nodes are either copied into the container atpoito from the container.

Copying implies node type must have default and/or copy tcoc®r so instances can be
created without having to know constructor arguments.

Standard library containers use copying and requires nogdgé to have a default con-
structor.

Most containers use aterator to traverse its nodes so knowledge about container imple-
mented is hidden (see Sectiari8 p.100).

Iterator capabilities depend on container, e.g., a sifigked list has unidirectional traversal,
doubly-linked list has bidirectional traversal, etc.

Containers provide iterators as a nested object type (sg®B82.3.8 p.39), e.g. list<Node>
haslist<Node>::iterator.

Iterator operator++" moves forward to the next node, unpibstthe end of the container.

For bidirectional iterators, operator “--” moves in theeese direction to++".

2.23.1.1 Vector

Like Java arrayyector has random access, length, subscript checkitjg énd assignment;
vector also has dynamic sizing.

130 CHAPTER 2. C++

std::vector<T>
vector() create empty vector
vector(int n) create vector with n empty elements
int size() vector size
bool empty() size() ==
T operator [](int i) access ith element, NO subscript checking
T at(int i) access ith element, subscript checking
vector &operator =(const vector &) | vector assignment
void push_back(const T &x) add x after last element
void pop_back() remove last element
void resize(int n) add or erase elements at end so size() 3=n
void clear() erase all elements

e vector is alternative to C/C+ arrays (see SectihB.6.3 p. 35).

#include <vector>

int i, elem;
vector<int> v; /I think: int v[0]
for () {
cin >> elem;
if (cin.fail()) break;
v.push_back(elem); /l add elem to vector
}
vector<int> c; /I think: int c[0]
cC =y /I array assignment
for (i=csize() -1, 0<=1i;i-=1){
cout << c.at(i) << " "; /I subscript checking
}
cout << endl;
v.clear(); /I remove ALL elements

Dynamic sizing impliesector’'s elements are allocated on the heap.

Vector declaratiomay specify an initial size, e.gvector<int> v(size), like a dimension.

To reduce dynamic allocation, it is more efficient to dimensiwhen the size is known.

int size;
cin >> size; /Il read dimension
vector<int> v(size); /I think int v[size]

Matrix declaration is a vector of vectors:

vector< vector<int> > m;

Again, it is more efficient to dimension, when size is known.

2.23. TEMPLATE 131

#include <vector>
vector< vector<int> > m(5); // 5 rows
for (int r=0;r<msize();r += 1) {
m[r].resize(4); /I 4 columns per row
for (int ¢ =0; ¢c < mr].size(); c += 1) {
m[r][c] = r+c; /I or m.at(r).at(c)

}
for (int r=0;r<msize();r += 1) {
for (int ¢ =0; c < mfr].size(); c += 1) {

}

cout << mjr][c] << °, *;
cout << endl;

Cannot specify number of columns at declaration, so eachgaero sized.

Before values are assigned into a row, a row is dimensionadpecific sizem[r].resize(4).

All loop bounds are controlled using dynamic size of the rewa@umn.

Iterator is a pointer to a vector element (subscript).

std::vector<T>::iterator

iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase element at posn
++, --, +, +=, -, -= (insertion / random order) forward/backward operations

begin() end()

i ++ — - - - i
Y Q
o 1 2 3 af
rend) -- —= —=— ++ rbegin()

e If erase andinsert took subscript argument, no iterator necessary!

e Use iterator like subscript by adding/subtracting frbegin/end.

v.erase(v.begin()): /I erase v[0], first
v.erase(v.end() - 1); /I erase V[N - 1], last (why “- 1"?)
v.erase(v.begin + 3); /I erase Vv[3]

132 CHAPTER 2. C++

e Insert or erase during iteration using an iterator causesifare.

vector<int> v;
for (int i =0;i<5;i+=1)/ create

v.push_back(2 = i); /l values: 0, 2, 4, 6, 8
v.erase(v.begin() + 3); /I remove V[3] : 6
int i /I find position of value 4 using iterator
for (1i=0;i<5&&V[i]!=4;1i+=1);
v.insert(v.begin() + i, 33); /I insert 33 before value 4

/I print reverse order using iterator (versus subscript)

vector<int >::reverse_iterator r;

for (r = v.rbegin(); r != v.rend(); r ++) // ++ move towards rend
cout << «r << endl;

2.23.1.2 Map

e map (dictionary) has random access, sorted, unique-key auattaf pairs Key, Val).

std::map<Key,Val> / std::pair<Key,Val>
map() create empty map
int size() map size
bool empty() size() ==
Val &operator [J(const Key &k) | access element with Key |k
int count(Key key) 0= no key, 1= key
map &operator =(const map &) | map assignment
insert(pair<key,val>(k, v)) insert pair
erase(Key k) erase key k
void clear() erase all elements

e First subscript for key creates an entry and initializes diéfault or specified value.

#include <map>

map<string, int> m, c; /Il Key => string, Val => int
m['red"]; /Il create, set to O for int
m['green"] = 1; Il create, set to 1

m[" bl ue"] = 2; Il create, set to 2
m['green"] = 5; Il overwrite 1 with 5

cout << m["green"] << endl;

c=m; /I map assignment

m.insert(pair<string,int>("yel | ow', 3)); // m[“yellow’] = 3
if (m.count("bl ack")) Il check for key “black”
m.erase(" bl ue"); Il erase pair(“blue”, 2)

e Iterator to search and return values in key order.

2.23. TEMPLATE 133

std::map<T>::iterator / std::map<T>:reverse_iterator
iterator begin() iterator pointing to first element
iterator end() iterator pointingAFTER last element
iterator rbegin() iterator pointing to last element
iterator rend() iterator pointingBEFORE first element
iterator find(Key &k) find position of key k
iterator insert(iterator posn, const T &x) | insert x before posn
iterator erase(iterator posn) erase element at posn
++, -- (sorted order) forward/backward operations

e lterator returns a pointer to an elemeatr, with fieldsfirst (key) andsecond (value).

#include <map>
map<string,int >::iterator f = m.find("green"); // find key position
if (f!=m.end()) /I found ?

cout << "found " << f->first << 7 7 << f->second << endl;

for (f = m.begin(); f = m.end(); f ++) /I increasing order
cout << f->first << 7 << f->second << endl;

map<string,int>::reverse_iterator r;

for (r = m.rbegin(); r != m.rend(); r ++) /I decreasing order
cout << r->first << 77 << r->second << endl;
m.clear(); /I remove ALL elements

2.23.1.3 Single/Double Linked

e If random access is not required, use more efficient singéeK&ueue/deque) or double
(list) linked-list container.

e Examinelist; stack, queue, deque are simpler.

std::list<T>
list() create empty list
list(int n) create list with n default elements
int size() list size
bool empty() size() ==
list &operator =(const list &) | list assignment
T front() first element
T back() last element

void push_front(const T &x) | add x before first element
void push_back(const T &x) | add x after last element

void pop_front() remove first element
void pop_back() remove last element
void clear() erase all elements

e Iterator returns a pointer to a node.

134

CHAPTER 2. C++

std::list<T>::iterator / std::list<T>::reverse_iterator

iterator begin()

iterator end()

iterator rbegin()

iterator rend()

iterator insert(iterator posn, const T &Xx)
iterator erase(iterator posn)

++, -- (insertion order)

iterator pointing to first element
iterator pointingAFTER last element
iterator pointing to last element
iterator pointingBEFORE first element
insert x before posn

erase element at posn
forward/backward operations

#include <list>

struct Node {
char c; int i; double d;
Node(char c, int i, double d)

I3

list<Node> dl;

for (int i =0;1<10;i+=1){
Node n(“a’+i, i, i+0.5);
dl.push_back(n);

}

list<Node>::iterator f;

: c(c), (i), d(d) {

/I doubly linked list
/| create list nodes

/I node to be added
/I copy node at end of list

for (f = dl.begin(); f != dl.end(); f ++) { // forward order

cout << "c:" << (sf)l.c << " i
}
while (0 < dl.size()) {

dl.erase(dl.begin());
} /I same as dl.clear()

2.23.1.4 for _each

<< f->i << " di" << f->d << endl;

/I destroy list nodes
/I remove first node

e Template routindor_each provides an alternate mechanism to iterate through a cuentai

e An action routine is called for each node in the containesipgsthe node to the routine for

processing (Lismpply).

#include <iostream>
#include <list>
#include <vector>
using nhamespace std;

void print(int i) { cout << i<<" ";}

int main() {
list< int > int_list;
vector< int > int_vec;
for (int i=0;i<10;i+=1){
int_list.push_back(i);
int_vec.push_back(i);

}

/I print node

/I create lists

for_each(int_list.begin(), int_list.end(), print); // print each node
for_each(int_vec.begin(), int_vec.end(), print);

}

e Type of the action routine igid rtn(T), whereT is the type of the container node.

2.24. NAMESPACE 135

e E.g.,print has arint parameter matching the container node-type.
e More complex actions are possible using a functor (see pédge

e E.g., an action to print on a specified stream must store tharstand have aoperator ()
allowing the object to behave like a function:

struct Print {

ostream &stream; /I stream used for output
Print(ostream &stream) : stream(stream) {}
void operator ()(int i) { stream << i<<" ";}
3
int main() {
list< int > int_list;
vector< int > int_vec;
for_each(int_list.begin(), int_list.end(), Print(cout));
for_each(int_vec.begin(), int_vec.end(), Print(cerr));
}

e EXxpressiorPrint(cout) creates a constamtint object, andor_each calls operator ()(Node)
in the object.

2.24 Namespace

e CH namespacds used to organize programs and libraries composed of preiliypes and
declarationso deal with naming conflicts

e E.g., namespacsed contains all the I/O declarations and container types.
e Names in a namespace form a declaration region, like theesaioplock.

e Analogy in Java is a package, m#mespace does NOT provide abstraction/encapsulation
(use.h/.cc files).

e Unlike Java packages, C+ allows multiple namespaces tcebeed in a file, as well as
among files.

e Types and declarations do not have to be added consecutively

| Java source files | C+ source file
package Foo; // file namespace Foo {
public class X ... // export one type /I types / declarations
/I local types / declarations }
. namespace Foo {
package Foo; // file /I more types / declarations

public enum Y ... // export one type }
/I local types / declarations namespace Bar {

package Bar; // file /I types / declarations

public class Z ... /] export one type }
/I local types / declarations

136 CHAPTER 2. C++

e Contents of a namespace are accessed using full-qualifredsa

| Java | CH |

Foo.T t = new Foo.T(); || Foo:T st = new Foo::T();

e Or by importing individual items or conditionally imporgyrall of the namespace content.

| Java | T |

import Fo0o.T; || using Foo::T; /I declaration
import Foo.x; || using namespace Foo; // directive

e using declaratiorunconditionallyintroduces an alias (likgpedef , see Sectio.3.7, p. 38)
to the current scope for specified entity in namespace.

o If name already exists in current scopeing fails.
namespace Foo {int i = 0; }
int i =1,
using Foo::i; // i exists in scope, conflict failure

o May appear in any scope.

e using directive conditionally introduces aliases to current scope for all entities in rame
pace.

o If name already exists in current scope, alias is ignoredarhe already exists from
using directive in current scopesing fails.

namespace Foo {int i = 0; }
namespace Bar {int i = 1; }
{
int i = 2;
using namespace Foo; // i exists in scope, alias ignored
}
L
using namespace Foo;
using namespace Bar; // i exists from using directive, conflict failure
}

o May appear in namespace and block scope, but not class scope.

2.24. NAMESPACE 137

namespace Foo { /I start namespace
enum Colour { R, G, B };
int i = 3;
}
namespace Foo { /I add more
class C {int i; };
int j = 4;
namespace Bar { /I start nested namespace
typedef short int shrint;
char j = "a’;
int C();
}
}
int j = 0; /I external
int main() {
int j = 3; I local
using namespace Foo; // conditional import: Colour, i, C, Bar (not j)
Colour c; /I Foo::Colour
cout << i << endl; /I Foo::i
C x; /I Foo::C
cout << :j << endl; /I external
cout << j << endl; /I local

cout << Foo:;j << << Bar::j << endl; // qualification
using namespace Bar; // conditional import: shrint, C() (not j)

shrint s = 4; /I Bar::shrint
using Foo::j; /I disallowed : unconditional import
C(); /I disallowed : ambiguous “class C” or “int C()”

}

e Never put anamespace in a header file.f) (pollute local namespace) or befatiaclude
(can affect names in header file).

138 CHAPTER 2. C++

3 Tools

3.1 C/C+ Composition
e C+ is composed of 4 languages:

1. The preprocessor language (cpp) modifies (text-edigsptogranbeforecompilation
(see SectiorR.9, p. 65).

2. The template (generic) language adds new types and esdtiming compilation (see
Section2.23 p. 128).

3. The C programming language specifying basic declaratiom control flow to be ex-
ecutedafter compilation.

4. The CH programming language specifying advanced deadas and control flow to
be executedfter compilation.

e A programmer uses the four programming languages as fallows

user edits— preprocessor edits— templates expand— compilation
(— linking/loading— execution)

e Cis composed of languages 1 & 3.

e The compiler interface controls all of these steps.

3.2 Compilation
C/C++ header filesC/C++ source files

— =
(preprocessor)cpp
'

preprocessed source ¢

-E, -D, -l
e

compiler) g++
(compiler) g W, -v, -g, -S, -O1/2/3, -c
assembly code

(assembler) as

object code
o%iherobjeﬁt-codL, Iil (linker) }-o, -, -L

les and libraries

Ja.out object

e Compilation is the process of translating a program from human to macksxable form.

© Peter A. Buhr

139

140 CHAPTER 3. TOOLS

e The translation is performed by a tool calledanpiler.

Compilation is subdivided into multiple steps, using a nemdi tools.

Often a number of options to control the behaviour of eacp. ste

Option are presented fgr-+, but other compilers have similar options.

General format:

g++ option-list x.cc .0 ...

3.2.1 Preprocessor
e Preprocessor (cpp) takes a C+ source file, removes compmaedtexpandginclude , #define ,
and#if directives (see Sectidh9, p. 65).
e Options:

o -E run only the preprocessor step and writes the preprocesgoutdo standard out.

$ g++ -E «.ccC ...
... much output from the preprocessor

o -D define and optionally initialize preprocessor variablesrirthe compilation com-
mand:

$ g++ -DDEBUG=2 -DASSN ... x.cC %.0 ...
same as putting the followinggefine s in a program without changing the program:

#define DEBUG 2
#define ASSN

e -ldirectorysearch directory for include files;

o files within the directory can now be referenced by relatame usingtinclude <file-name>.

3.2.2 Compiler
o Compiler takes a preprocessed file and converts the C+ dgregato assembly language for
the target machine.
e Options:

o -Wkind generate warning message for thkand” of situation.

« -Wall print ALL warning messages.
x -Werror make warnings into errors so program does not compile.

o -v show each compilation step and its details:

$ g++ -V x.CC %.0 ...
... much output from each compilation step

E.g., system include-directories wheyp looks for system includes.

3.3. COMPILING COMPLEX PROGRAMS 141

#include <...> search starts here:
/usr/include/c++/3.3
/usr/include/c++/3.3/i486-linux
{usr/include/c++/3.3/backward
{usr/local/include
{usr/lib/gcc-lib/i486-linux/3.3.5/include
/usr/include

o

-g add symbol-table information to object file for debugger
o -S compile source file, writing assemble code to $it@rce-file.s

o -01/2/3 optimize translation to different levels, where eblel takes more compila-
tion time and possibly more space in executable

o -c compile/assemble source file but do not link, writing objeate to filesource-file.o

3.2.3 Assembler

e Assembler (as) takes an assembly language file and convedabject code (machine
language).

3.2.4 Linker

e Linker (Id) takes the implicito file from translated source and expliait files from the
command line, and combines them into a new object or exeleufitéd

e Linking options:
o -Ldirectoryis a directory containing library files of precompiled code.
o -llibrary search in library directories for givdibrary.

o -0 gives the file name where the combined object/ executablaceg.
« If no name is specified, default nara@ut is used.

e Look in library directory 7lib” for math library “m” containing precompiledsin” routine
used in ‘myprog.cc” haming executable progranedic”.

$ gcc myprog.cc -L/lib -Im -o calc

3.3 Compiling Complex Programs

e As program size increases, so does the cost of compilation.

e Separate compilationdivides a program into units, where each unit can be indepehd
compiled.

e Advantage: saves significant amounts of computer and p&apdeby recompiling only the
portions of a program that change.

o Intheory, if an expression is changed, only that expressesus to be recompiled.

142 CHAPTER 3. TOOLS

o In practice, the unit of compilation is much coarseeanslation unit (TU), which is a
file in C/C+.

o Intheory, each line of code (expression) could be put in arsee file, but impractical.
o So a TU should not be too big and not be too small.
e Disadvantage: TUs depend on each other because a progress sieny forms of informa-
tion, especially types.
o Not a problem when all the code is in a single TU (all type/ables are visible).

o As the number of TUs grow, so does the references to typahlas (dependencies)
among TUs.

o When one TU is changed, it may require other TUs to changedéaend on shared
information.

o For a large numbers of TUs, the dependencies turn into a nigtdre with respect to
recompilation.

3.3.1 Dependences
e Dependences in C/C+ normally occur as follows:

o executable depends amfiles (linking)
o .o files depend orc files (compiling)
o .C files depend orh files (including)

source tree dependencies
x.h #include "y.h" 3:00 2:00 2:30
x.C #include "Xx.h" =60 1230 200

X.0—=X.C—=x.h

y.h #include "z.h" . : :
y.C #include "y.h" 1y'_%o_>1§§5_>1y?h4
z.h #include "y.h" L 00_,12:32,12 >
z.C #include "z.h" 20 z.C zh

Hierarchicalsource treeis compiled as follows:

$ g++ -c z.C # generates z.0
$ g++ -c y.C # generates y.o
$ g++ -c x.C # generates X.0

$ g++ X.0 y.0 z.0 # generates a.out

If a change is made tph, which files need to be recompiled? (all!)

Doesany change tg.h require these recompilations?

There is no mechanism to know the kind of change made withiteadig., changing a
comment, type, variable.

3.3. COMPILING COMPLEX PROGRAMS 143

So dependence is coarse grain, basedrgirchange to a file.
One way to denote file changes is witime stamps.

UNIX stores in the directory the time a file is last changedhwiecond precision (see Sec-
tion 1.6, p.12).

o Filesx.o, y.0 andz.o created at 1:00 from compilation of files created befoge®.

o File a.out created at 1:01 from link of.o, y.0 andz.o.

o Changes are subsequently made.@andx.h at 2:00 and 2:30.

o Only filesx.o anda.out are recreated at 3:00 and 3:01.

Establishinglependenciesneans establishing a temporal ordering in the dependeapé gr
so the root has the newest (or equal) time and the leafs tlestqlor equal) time.

3.3.2 Make

make is a system command that takes a dependence graph and usgwfite-times to
trigger rules that bring the dependence graph up to date.

A make dependence-graph expresses a relationship between acpavdia set of sources.

make does not understand relationships among sources, one thatists at the source-
code level and is crucial.

E.g., source.C depends on sourceh butx.C is not a product ok.h like x.o is a product of
x.C andx.h.

Two most common UNIX makes are: make and gmake (on Linake is gmake).

Like shells, there is minimal syntax and semanticsiiake, which is mostly portable across
systems.

Most common non-portable features are specifying depeneeand implicit rules.
A basic makefile consists of string variables with initialion, and a list of targets and rules.

This file can have any name, hutke implicitly looks for a file calledmakefile or Makefile
if no file name is specified.

Each target has a list of dependencies, and possibly a sehahands specifying how to
re-establish the target.

variable = value # variable

target . dependencyl dependency?2 ... # target / dependencies
commandl # rules
command?2

Commands must be indented by one tab character.

144 CHAPTER 3. TOOLS

e make is invoked with a target, which is the root or subnode of a depace graph.

e make builds the dependency graph and decorates the edges wistamps for the specified
files.

¢ If any of the dependency files (leafs) is newer than the tdilgetor if the target file does
not exist, the commands are executed by the shell to updateatbet (generating a new
product).

o Makefile for previous dependencies:

a.out : x.0 y.0 z.0

g++ X.0 y.0 z.0 -0 a.out
X.0 : X.C x.h y.h z.h

g++ -g -Wall -¢c x.C
y.0 : y.C y.h z.h

g++ -g -Wall -c y.C
z.0:zC zhyh

g++ -g -Wall -¢c z.C

e Check dependency relationship (assume source files jued)e

$ make -n -f Makefile a.out
g++ -g -Wall -c x.C

g++ -g -Wall -c y.C

g++ -g -Wall -¢ z.C

g++ X.0 y.0 2.0 -0 a.out

All necessary commands are triggered to bring taagett up to date.

o -n builds and checks the dependencies, showing rules to lgetad (leave off to exe-
cute rules)
o -f Makefile is the dependency file (leave off if nampim]akefile)

o a.out target name to be updated (leave off if first target)

¢ Eliminate duplication using variables:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -c # compiler flags
OBJECTS = Xx.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${CXXFLAGS} ${OBJECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets / dependencies / commands

${CXX} ${CXXFLAGS} x.C
y.0 : y.C y.h z.h

${CXX} ${CXXFLAGS} y.C
z.0:z2C zhy.h

${CXX} ${CXXFLAGS} z.C

e Eliminate common rules:

3.3. COMPILING COMPLEX PROGRAMS 145

@)

@)

o

@)

make can deduct simple rules when dependency files have spediixesu
E.g., given target with dependencies:

X.0 : X.C x.h y.h z.h

make deducts the following rule:

${CXX} ${CXXFLAGS} x.C # special variable names

This rules use variablegCXX} and${CXXFLAGS} for generalization.
Therefore, all rules fox.o, y.o andz.o can be removed.

CXX = g++ # compiler
CXXFLAGS = -g -Wall # compiler flags, remove -c
OBJECTS = x.0 y.0 z.0 # object files forming executable
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step

${CXX} ${CXXFLAGS} ${OBJIECTS} -0 ${EXEC}
X.0 : X.C x.h y.h z.h # targets / dependencies

y.0 : y.C y.h z.h
z.0:zC zhyh

e Because dependencies are extremely complex in large pnegmogrammers seldom con-
struct them correctly or maintain them.

e Without complete and update dependenciesnake is useless.

e Automate targets and dependencies:

CXX = g++ # compiler
CXXFLAGS = -g -Wall -MMD # compiler flags
OBJECTS = x.0 y.0 z.0 # object files forming executable
DEPENDS = ${OBJECTS:.0=.d} # substitute “.0” with “.d”
EXEC = a.out # executable name
${EXEC} : ${OBJECTS} # link step
${CXX} ${CXXFLAGS} ${OBJECTS} -0 ${EXEC}
-include ${DEPENDS} # copies files x.d, y.d, z.d (if exists)
.PHONY : clean # not a file name
clean : # remove files that can be regenerated

rm -rf ${DEPENDS} ${OBJECTS} ${EXEC} # alternative .d .0

o Preprocessor traverses all include files, so it knows alicsatile dependencies.

o g++ flag MMD writes out a dependency graph for user source-files tadilece-file.d

file | contents
x.d | x.0: x.C x.h y.h z.h
y.d | y.0: y.C y.h z.h
zd | z.o: z.C z.h y.h

146 CHAPTER 3. TOOLS

g++ flag MD generates a dependency graph for user/system source-files.

@)

o

-include reads thed files containing dependencies.

o

.PHONY indicates a target that is not a file name and never createda itecipe to be
executed every time the target is specified.

x A phony target avoids a conflict with a file of the same name.

Phony targetlean removes product files that can be rebuilt (save space).

@)

$ make clean # remove all products (don’t create “clean”)

e Hence, itis possible to have a universtlkefile for a singleor multiple programs.

3.4 Source-Code Management
e As a program develops/matures, it changes in many ways.
o UNIX files do not support the temporal development of a progtaersion control),
i.e., history of program over time.
o Access to older versions of a program is useful, e.g., bgockut of changes because

of design problems.

e Program development is often performed by multiple develsgach making independent
changes.
o Sharing using files can damage file content for simultaneaitesy
o Merging changes from different developers is tricky andeticonsuming.

e To solve these problemssaurce-code management-systers used to provide versioning
and control cooperative work.

3.4.1 SVN
e Subversion(SVN 1.6) is a source-code management-system usincpine-modify-merge
model.
o master copy of alproject files kept in arepository,
o multiple versions of the project files managed in the repogit
o developergheckoutaworking copy of the project for modification,
o developerscheckin changes from working copy with helpful integration usitegt

merging.

SVN works on file content not file time-stamps.

http://www.student.cs.uwaterloo.ca/~cs246/current/code_examples/Makefile.1
http://www.student.cs.uwaterloo.ca/~cs246/current/code_examples/Makefile.2

3.4. SOURCE-CODE MANAGEMENT 147
working copies repository
2
programmey Checkout V2 -
checkin project
V2 checkout
programmey :
checkin
2
V3 ;
rojec
V3 checkout project
programmef :
checkin
SVN Command Action

mkdir repository-dir-namem " string"

Is repository-name

import directory-name repository-nam
checkout repository-name

add file/dir-list

commit -m " string"

rm file/dir-list

status
revert file/dir-list
mv file/dir-list

cp file/dir-list

cat file
update

resolve --accept ARG file

3.4.2 Repository

make new directory in repository
list files in repository

ecopies unversioned directory into repository
extract working copy from the repository
schedules files for addition to repository
update the repository with changes in working copy
remove files from working copy and schedule removal from
repository
displays changes between working copy and repository
undo scheduled operations on repository
rename file in working copy and schedule renaming in
repository
copy file in working copy and schedule copying in reposi-
tory
print file in repository
update working copy from repository
resolve conflict for file as specified ARG

e The repository is a directory containing multiple projects

courses
cs246
assnl
x.h, x.C, ...
assn2

more meta-projects / proje

repository

meta-project

project

project files

project

project files
cts

e svnadmin create command creates and initializes a repository.

148 CHAPTER 3. TOOLS

$ svnadmin create courses

e svn mkdir command creates subdirectories for meta-projects andqisoj

$ svn mkdir file:///u/jffdoe/courses/cs246 -m " create directory cs246
Committed revision 1.
$ svn mkdir file:///uljfdoe/courses/cs246/assnl ~ -m " create subdirectory assnl "

Committed revision 2.

o files in repository are designated using URL, so must uselatespathname
o -m (message) flag documents repository change.

o if no -m (message) flag specified, prompts for documentation (usiregéor if shell
environment variabl€DITOR set).

e svn Is command lists directories.

$ svn Is file:///ufjffdoe/courses/cs246
assnl/
$ svn Is file:///ufjffdoe/courses/cs246/assnl

e If project directoryassnl already exists, it can be added directly to the repository.

e svn import command copies an unversioned directory of files into a liepys

$ svn import assnl file:///u/jfdoe/courses/cs246/assnl

Adding assnl/z.h
Adding assnl/x.C
Adding assnlly.C
Adding assnl/z.C
Adding assnl/Makefile
Adding assnl/x.h
Adding assnlly.h

Committed revision 2.

$ svn Is file:///ulifdoe/courses/cs246/assnl
Makefile

x.C

x.h

y.C

y.h

z.C

z.h

e For students working together, the shared repository meishade accessible in the file
system (see padi).

$ chgrp -R c¢s246 75 courses # set group on directory and subfiles
$ chmod -R g+rwx courses # allow group members access to ALL files

and for the path to the repository.

e Group names246_75 is acquired on a per course basis for each team of students.

3.4. SOURCE-CODE MANAGEMENT 149

3.4.3 Checking Out

e svn checkout command extracts a working copy of a project from the repogit

$ svn checkout file:///u/jfdoe/courses/cs246/assnl
Checked out revision 2.

$ Is -AF assnl

.svn/

For first checkout, directoryssnl is created in the current directory (unless it already sxist

Subdirectorysvn contains administrative information for SVN andust not be modified

Working copy is then modified before being merged back inéorépository.

Other developers do not see each others working copy, ahdmylsee modifications when
committed.

To create a working-copy off-campus, ussh URL:

$ svn checkout svn+ssh://ffdoe@student.cs.uwaterloo.ca /uljfdoe/courses/cs246/assnl

(Replace file URL in subsequent commands wih URL.)

3.4.4 Adding
¢ Introduce files into project directorssnl.
$ cd assnl
$... # create files: Makefile x.C x.h y.C y.h zh zC
$ Is -AF

.svn/ Makefile x.C xh y.C yh zC zh

e svn add commandschedulesaddition of files (in current directory) into the repository

$ svn add Makefile x.C x.h y.C y.h z.h z.C
Makefile

x.C

x.h

y.C

y.h

z.h

z.C

>r>>>>>>

Addition only occurs on next commit.
e Forgettingsvn add is a common mistake.
e Put only project source-files into repository.

e Product files, e.gx.0, ».d, a.out, do not need to be versioned.

150 CHAPTER 3. TOOLS

3.4.5 Checking In
e svn commit command updates the repository with the changes in worlopg.c

$ svn commit -m "initial project files

Adding Makefile
Adding x.C
Adding x.h
Adding y.C
Adding y.h
Adding z.C
Adding z.h

Transmitting file data
Committed revision 3.

e if no -m (message) flag specified, prompts for commit documentation.

$ svn Is file:///ulifdoe/courses/cs246/assnl
Makefile

x.C

x.h

y.C

y.h
z.C
z.h

e Always make sure your code compiles and runs before comnmitit is unfair to pollute a
project with bugs.
3.4.6 Modifying
o Editted files in working copy are implicitlgcheduledfor update on next commit.
$viyhyC
e svn rm command removes files from working copy auhedulegemoval of files from the
repository.

$ Is -AF
.svn/ Makefile x.C xh y.C yh zC zh
$ svn rm z.h z.C

D z.h
D z.C
$ Is -AF

.svn/ Makefile x.C x.h y.C y.h

e svn status command displays changes between working copy and reppsito

$ svn status

D z.h
M y.C
D z.C
M y.h

3.4. SOURCE-CODE MANAGEMENT 151

Filesy.h /y.C have local modificationsM”, andz.h / z.C are deletedD”.
e Possible to undo scheduled changes by reverting to files fepsitory.

e svn revert command copies unchanged files from repository to workinpy.co

$ svn revert y.C z.h
Reverted "y.C’

Reverted "z.h’
$ Is -AF
.svn/ Makefile x.C x.h y.C y.h zh

e Commit edits and removals.

$ svn commit -m "changes to y.h and remove z.C
Sending y.h

Deleting z.C

Transmitting file data .

Committed revision 4.

$ svn Is file:///ulifdoe/courses/cs246/assnl

Makefile

x.C

x.h

Files in the repository can be renamed and copied.

e svn mv command renames file in working copy aschedulegenaming in the repository.

$ svn mv x.h w.h

A w.h
D x.h
$ Is -AF

.svn/ Makefile w.h x.C y.C y.h

svn cp command copies file in working copy asdhedulescopying in the repository:

$ svn cp w.h k.h

A k.h

$ Is -AF

.svn/ Makefile k.h w.h x.C y.C y.h

Commit renaming and copying.

152 CHAPTER 3. TOOLS

$ svn commit -m "renaming and copying

Adding k.h
Adding w.h
Deleting x.h

Committed revision 5.

$ svn Is file:///ulifdoe/courses/cs246/assnl
Makefile

k.h

w.h

x.C

y.C

y.h

3.4.7 Revision Number
e Each commit receives a revision number (currently 5).

Information in older versions is accessible using suéiX on URL.

E.g., print filez.C, which last existed in revision 3.

svn cat command prints specified file from the repository.

$ svn cat file:///u/jfdoe/courses/cs246/assnl/z.C @3
#include " z.h"

Copy deleted file.C from repository into working copy and modify.

$ svn copy file:///ul/jffdoe/courses/cs246/assnl/z.C @3 z.C
A z.C

$ Is -AF

.svn/ Makefile k.h w.h x.C y.C y.h zC zh

$... # change z.C

$ svn commit -m " bring back z.C and modify
Adding z.C

Transmitting file data .

Committed revision 6.

$ svn cat file:///u/jfdoe/courses/cs246/assnl/z.C @6
#include " z.h"

new text

3.4.8 Updating
e Synchronize working copy with commits in the repositorynfrother developers.

jfdoe | kdsmith
modify x.C | modify x.C & y.C
removek.h
addt.C

e Assumekdsmith has committed their changes.

3.4. SOURCE-CODE MANAGEMENT 153

e jfdoe attempts to committed their changes.

$ svn commit -m " modify x.C "
Sending x.C
svn: Commit failed (details follow):

svn: File "/cs246/assnl/x.C” is out of date

e jfdoe must resolve differences between their working copy andcthveent revision in the
repository.

e svn update command attempts to update working copy from most receigiogv

$ svn update

D k.h file k.h deleted
U y.C file y.C updated without conflicts
A t.C file t.C added

Conflict discovered in 'x.C".
Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: df
--- .svn/text-base/x.C.svn-base Sun May 2 09:54:08 2010
+++ .svn/tmp/x.C.tmp Sun May 2 11:28:42 2010
@@ -1 +16 @@

#include " x.h"
+<<<<<<< mine

+jfdoe new text

+kdsmith new text
+>>S>>>>> 17

Select: (p) postpone, (df) diff-full, (e) edit, (r) resolved,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: tc
G x.C file x.C merGed with kdsmith version
Updated to revision 7.
o (p) postpone : mark conflict to be resolved later
o (df) diff-full : show changes to merge file
o (e) edit: change merged file in an editor
o (r) resolved : after editing version
o (mc) mine-conflict : accept my version for conflicts
o (tc) theirs-conflict : accept their version for conflicts
o (mf) mine-full : accept my file (no conflicts resolved)

o (tf) theirs-full : accept their file (no conflicts resolved)
e Merge algorithm is generally very good if changes do not layer

e Overlapping changes result in a conflict, which must be wesbl

154

e If unsure about how to deal with a conflict, it can be postpdoeeach file.

CHAPTER 3.

$ svn update

D k.h file k.h deleted
U y.C file y.C updated without conflicts
A t.C file t.C added

Conflict discovered in 'x.C".

Select: (p) postpone, (df) diff-full, (e) edit,
(mc) mine-conflict, (tc) theirs-conflict,
(mf) mine-full, (tf) theirs-full,
(s) show all options: p

C x.C file x.C conflict

Updated to revision 7.

Summary of conflicts:

Text conflicts: 1

e Working copy now contains the following files:

x.C x.C.mine

#include "x.h" | #include "x.h"
<<<<<<< mine jfdoe new text

jfdoe new text

kdsmith new text
>S>S>S>S>>> 17

x.C.r3 x.C.r7

#include "x.h" #include "x.h"

o O O O

kdsmith new text

x.C : with conflicts

x.C.mine : jfdoe version o.C

x.C.r3 : previous jfdoe version of.C

x.C.r7 : kdsmith version ok.C in repository

e No further commits allowed until conflict is resolved.

TOOLS

e svn resolve --accept ARG command resolves conflict with version specifiedARG, for
ARG options:

o O O O O O

base x.C.r3 previous version in repository

working : x.C current version in my working copyéeds modificatioh

mine-conflict :x.C.mine accept my version for conflicts
theirs-conflict :x.C.r7 accept their version for conflicts
mine-full : x.C.mine accept my file (no conflicts resolved)
theirs-full : x.C.r7 accept their file (no conflicts resolved)

$ svn resolve --accept theirs -conflict x.C
Resolved conflicted state of x. C’

3.5. DEBUGGER 155

Removes 3 conflict filex.C.mine, x.C.r3, x.C.r7, and setx.C to theARG version.

$ svn commit -m "nodi fi ed x. C'
Sending x.C

Transmitting file data .

Committed revision 8.

3.5 Debugger
e An interactive, symbolicebuggereffectively allows debug print statements to be added and
removed to/from a program dynamically.
¢ You should not rely solely on a debugger to debug a program.
e You may work on a system without a debugger or the debuggermoayork for certain
kinds of problems.
e A good programmer uses a combination of debug print statesreerd a debugger when
debugging a complex program.
e A debugger does not debug your program for you, it merelysielphe debugging process.
e Therefore, you must have some idea about what is wrong witlogram before starting to
look or you will simply waste your time.
3.5.1 GDB

e The two most common UNIX debuggers are: dbx and gdb.

e File test.cc contains:

1 int r(Cint a[]) {

2 int i = 100000000;

3 afi] += 1; /I really bad subscript error
4 return alif;

5}

6 int main() {

7 int a[10] = {0, 1 };

8 r¢a);

o }

e Compile program using they flag to include names of variables and routines for symbolic

debugging:

$ g++ -g test.cc

e Start gdb:

$ gdb ./a.out
... gdb disclaimer
(gdb) «— gdb prompt

156 CHAPTER 3. TOOLS

e Like a shell, gdb uses a command line to accept debugging emuim

GDB Command Action
<Enter> repeat last command
run [shell-arguments] start program with shell arguments
backtrace print current stack trace
print variable-name print value in variable-name
frame [N] go to stack frame n
break routine / file-name:line-na set breakpoint at routine or line in file
info breakpoints list all breakpoints
delete [Nn] delete breakpoint n
step [n] execute next n lines (into routines)
next [n] execute next n lines of current routine
continue [n] skip next n breakpoints
list list source code
quit terminate gdb

e <Enter> without a command repeats the last command.

e run command begins execution of the program:

(gdb) run

Starting program: /u/userid/cs246/a.out

Program received signal SIGSEGV, Segmentation fault.

0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error
o If there are no errors in a program, running in GDB is the sasreianing in a shell.
o If there is an error, control returns to gdb to allow examorat

o If program is not compiled withg-flag, only routine names given.

e backtrace command prints a stack trace of called routines.
(gdb) backtrace

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
#1 0x00010764 in main () at test.cc:8

o stack has 2 frameasain (#1) andr (#0) because error occurred in callto

e print command prints variables accessible in the current roudibject, or external area.

(gdb) print i
$1 = 100000000

e Can print any C+ expression:

3.5. DEBUGGER 157

(gdb) print a

$2 = (int %) Oxffbefa20
(gdb) p +a

$3 =0

(gdb) p a[i]

$4 =1

(gdb) p a[1]+1

$5 =2

e frame [n] command moves theurrent stack frame to thenth routine call on the stack.

(gdb) f O

#0 0x000106f8 in r (a=0xffbefa08) at test.cc:3
3 afi] += 1; /I really bad subscript error
(gdb) f 1

#1 0x00010764 in main () at test.cc:8

8 r¢a);

o If nis not present, prints the current frame
o Once moved to a new frame, it becomes the current frame.
o All subsequent commands apply to the current frame.

e To trace program executiohreakpoints are used.

e break command establishes a point in the program where executigpesds and control
returns to the debugger.

(gdb) break main

Breakpoint 1 at 0x10710: file test.cc, line 7.
(gdb) break test.cc:3

Breakpoint 2 at 0x106d8: file test.cc, line 3.

o Set breakpoint using routine name or source-file:line-remb
o info breakpoints command prints all breakpoints currently set.

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00010710 in main at test.cc:7
2 breakpoint keep y 0x000106d8 in r(intx) at test.cc:3

e Run program again to get to the breakpoint:

(gdb) run

The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /u/userid/cs246/a.out

Breakpoint 1, main () at test.cc:7

7 int a[10] ={ 0, 1 };

(gdb) p a[7]

$8 =0

158 CHAPTER 3. TOOLS

e Once a breakpoint is reached, execution of the program canriewued in several ways.

e step [n] command executes the nextlines of the program and stops, so control enters
routine calls.

(gdb) step

8 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error

(gdb) <Enter>

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error

(gdb) s

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.

o If nis not present, 1 is assumed.

o If the next line is a routine call, control enters the routamel stops at the first line.

e next [n] command executes the nextines of the current routine and stops, so routine calls
are not entered (treated as a single statement).

(gdb) run

Breakpoint 1, main () at test.cc:7

7 int a[10] ={ 0, 1 };

(gdb) next

8 r(a);

(gdb) n

Breakpoint 2, r (a=0xffbefa20) at test.cc:3

3 afi] += 1; /I really bad subscript error
(gdb) n

Program received signal SIGSEGV, Segmentation fault.
0x000106f8 in r (a=0xffbefa20) at test.cc:3

3 afil += 1; /I really bad subscript error

e continue [n] command continues execution until the next breakpointashred.

3.5. DEBUGGER 159

(gdb) run

Breakpoint 1, main () at test.cc:7

7 int a[10] ={ 0, 1 };

(gdb) s

8 r(a);

(gdb) s

r (a=0xffbefa20) at test.cc:2

2 int i = 100000000;

(gdb) s

Breakpoint 2, r (a=0xffbefa20) at test.cc:3
3 afi] += 1; /I really bad subscript error
(gdb) p i

$9 = 100000000

e list command lists source code.

(gdb) list

int r(int a[]) {

int i = 100000000;

afi] += 1; /I really bad subscript error
return ali];

int main() {

int a[10] ={ 0, 1 };

1

2

3

4

5 1}
6

7

8 r(a);
9

}

o with no argument, list code around current execution locati
o with argument line number, list code around line number

e quit command terminate gdb.

(gdb) run

i3.r.eakpoint 1, main () at test.cc:7
7 int a[10] = { 0, 1 };

1: a[0] = 67568

(gdb) quit

The program is running. Exit anyway? (y or n) y

160 CHAPTER 3. TOOLS

4 Software Engineering

4.1

Software Engineering (SE) is the social process of designing, writing, and maiirg
computer programs.

SE attempts to find good ways to help people understand aredogesoftware.
However, what is good for people is not necessarily goodifercomputer.

Many SE approaches are counter productive in the developohéngh-performance soft-
ware.
1. The computer does not execute the documentation!

o Documentation is unnecessary to the computer, and sigmifamaounts of time
are spent building it so it can be ignored (program comments)

o Remember, theuth is always in the code.

o However, without documentation, developers have difficd#signing and under-
standing software.

2. Designing by anthropomorphizing the computer is seldogoad approach (desk-
tops/graphical interfaces).

3. Software tools spend significant amounts of time undoiBgd&sign and coding ap-
proaches to generate efficient programs.

It is important to know these differences to achieve a badmetween programs that are
good for people and good for the computer.

Software Crisis

Large software systems-(100,000 lines of code) require many people and months to de-
velop.

These projects normally emerge late, over budget, and deorbtwell.

Today, hardware costs are nil, and people costs are great.

While commodity software is available, someone still hawtibe it.

Since people produce software software cost is great.

Coupled with a shortage of software personaeproblems.

Unfortunately, software is complex and precise, which nexputime and patience.

Errors occur and cost money if not lives, e.g., Ariane 5, abeR5, Intel Pentium division
error, Mars Climate Orbiter, UK Child Support Agency, etc.

© Peter A. Buhr

161

162

4.2

CHAPTER 4. SOFTWARE ENGINEERING

Software Development

e Techniques for program development for small, medium, argkl systems.

e Objectives:

4.3

o plan and schedule software projects

o produce reliable, flexible, efficient programs
o produce programs that are easily maintained
o reduce the cost of software

o reduce program failure

E.g., a typical software project:

o estimate 12 months of work
o hire 3 people for 4 months
o make up milestones for the end of each month

However, first milestone is reached after 2 months instedd of
To finish on time, hire 2 more people, but:

o new people require training
o work must be redivided

This takes at least 1 month.
Now 2 months behind with 9 months of work to be done in 1 montb lpgople.
To get the project done:

o must reschedule
o trim project goals

Often, adding manpower to a late software project makeset.la

lllustrates the need for a methodology to aid in the develamiof software projects.

Development Processes
There are different conceptual approaches for developfigare, e.g.:

waterfall : break down project based on activity and divide activiiesoss a timeline

o activities : (cycle of) requirements, analysis, desigrdieg, testing, debugging
(see Sectiorz.1Q p. 69

o timeline : assign time to accomplish each activity up to @copompletion time

4.3. DEVELOPMENT PROCESSES 163

iterative/spiral : break down project based on functionality and divide fiorg across a
timeline

o functions : (cycle of) acquire/verify data, process datmegate data reports

o timeline : assign time to perform software cycle on each fiencup to project
completion time

staged delivery : combination of waterfall and iterative
o start with waterfall for analysis/design, and finish witkrétive for coding/testing
agilelextreme : short, intense iterations focused largely on code (veidsgamentation)

o often analysis and design are done dynamically
o often coding/testing done in pairs

e Pure waterfall is problematic because all coding/testorges at enés- major problems can
appear near project deadline.

e Pure agile can leave a project with “just” working code, atttelor no testing / documenta-
tion.

e Selecting a process depends on:

o kind/size of system

o quality of system (mission critical?)
o hardware/software technology used
o kind/size of programming team

o working style of teams

o nature of completion risk

o consequences of failure

o culture of company

e Meta-processes specifying the effectiveness of processes

o Capability Maturity Model Integration (CMMI)
o International Organization for Standardization (ISO) @00

e Meta-requirements

o procedures cover key aspects of processes

o

monitoring mechanisms

@)

adequate records

o

checking for defects, with appropriate and correctiveaarcti

o

regularly reviewing processes and its quality

@)

facilitating continual improvement

164 CHAPTER 4. SOFTWARE ENGINEERING

4.4 Software Methodology

e System Analysis (next year)

o Study the problem, the existing systems, the requiremtradeasibility.

o Analysis is a set of requirements describing the systent&putputs, processing, and
constraints.

System Design

o Breakdown of requirements into modules, with their relasioips and data flows.

o Results in a description of the various modules required, the data interrelating
these.

Implementation

o writing the program

Testing & Debugging

o get it working

Operation & Review
o was it what the customer wanted and worth the effort?

Feedback

o If possible, go back to the above steps and augment the pegeweded.

4.4.1 System Design

e Two basic strategies exist to systematically modularizgstesn:

o top-down or functional decomposition
o bottom-up

e Both techniques have much in common and so examine only one.

4.4.2 Top-Down

e Start at highest level of abstraction and break down proleoncohesive units, i.e., divide
& conquer.

e Then refine each unit further generating more detail at eatcsiah.

e Each subunit is divided until a level is reached where théspe comprehensible, and can
be coded directly.

e This recursive process is calledccessive refinementr factoring.

4.5. DESIGN QUALITY 165

4.5

Unit are independent of a programming language, but uletgathust be mapped into con-
structs like:

o generics (templates)
o modules
o classes
o routines

Details look at data and control flow within and among units.
Implementation programming language is often chosen ditdy the system design.
Factoring goals:

o reduce module sizex: 30-60 lines of code, i.e., 1-2 screens with documentation
o make system easier to understand

o eliminate duplicate code

o localize modifications

Stop factoring when:

o cannot find a well defined function to factor out
o interface becomes too complex

Avoid having the same function performed in more than oneuteo(treate useful general
purpose modules)

Separate work from management:

o Higher-level modules only make decisions (managementtahdther routines to do
the work.

o Lower-level modules become increasingly detailed andipggerforming finer grain
operations.

In general:

o do not worry about little inefficiencies unless the code isaeted a LARGE number
of times

o put thought into readability of program

Design Quality
System design is a general plan for attacking a problem gawtsl to multiple solutions.
Need the ability to compare designs.
2 measures: coupling and cohesion

Low (loose) coupling is a sign of good structured and desigglh cohesion supports read-
ability and maintainability.

166 CHAPTER 4. SOFTWARE ENGINEERING

45.1 Coupling
e Coupling measures the degree of interdependence among programmduyles”.

e Aimisto achieve lowest coupling or highest independeneeg, @ach module can stand alone
or close to it).

e A module can be read and understood as a unit, so that chaagesimimal effect on other
modules and possible to isolate it for testing purposes @iereo components).

e 5 types of coupling in order of loose to tight (low to high):

1. Data: modules communicate using arguments/parameters corgamnimal data.
o E.g.,sin(x), avg(marks)
2. Stamp: modules communicate using only arguments/parametetaioamy extra data.

o E.g., pass aggregate data (array/structure) with someeelsffields unused
problem: accidentally change other data

modules may be less general (e.g., average routine passechgrof records)
stamp coupling is common because data grouping is more targdhan coupling

@)

@)

o

3. Control : pass data using arguments/parameters to effect contmol flo

o E.g., module calculate 2 different things depending on a flag
o bad when flag is passed down, worse when flag is passed up

4. Common: modules share global data.

o cannot control access since scope rule allows many moduksscess the global
variables

o difficult to find all references reading/writing global valoles

5. Content: modules share information about type, size and strucfidtata, or methods
of calculation

o changes effect many different modules (good/bad)

o avoid friend routine/class unless friend module is logically nestedextacted
for technical reasons.

4.5.2 Cohesion
e Cohesionmeasures degree of association among elements within alen@auw focused).

Elements can be a statement, group of statements, or callseéomodules.

Alternate names for cohesion: binding, functionality, miad strength.

Highly cohesive module has strongly and genuinely relatechents.

If modules have low cohesion (module elements are relatetiyht coupling.

If modules have high cohesion (module elements are NOTad)a$ loose coupling.

4.5. DESIGN QUALITY 167

e 7 types of cohesion (high to low):

1. Functional : modules elements all contribute to computation of one amg one
problem related task (Single Responsibility Principle).
o E.g.,sin(x), avg(marks), Car {...}, Driver {...}
o coupling is excellent

2. Sequential: module elements interact as producer/consumer, i.epubuatata from
one activity is input data to next.

print(process(getword(word))); // read -> process -> print (shell pipe)
o similar to functional, except possibly mandates sequeotase
o coupling is good
3. Communicational : module elements contribute to activities that use the Shate

find(book, title);
find(book, price);
find(book, ISBN);
find(book, author);

o

all have same input data
like sequential but order is not important
coupling is acceptable

usually improve maintainability by splitting common moduhto separate, func-
tional ones

o

o

o

4. Procedural : module elements involved in different and possibly urtezlaactivities,
but which flow from one activity to the next.

file = open(filename); /I open connection to file name
read(file); /I read file contents
close(file); /I close connection to file name

o related by order of execution rather than by any single probtelated function
o typically data sent to procedure modules is unrelated ta skeit back

o procedural modules pass around partial results
5. Temporal : module elements involved in activities related in time.
initialization
- turn things on
turn things off
set things to 0
- set things to 1
- set things to */

o unrelated except carried out at particular time

o each initialization is more closely related to the modulest imake use of i
tight coupling

o want to re-initialize only some of the entities in initiadizon routine

168

4.6

CHAPTER 4. SOFTWARE ENGINEERING

o like procedural, except order of execution is more impdriiaprocedural

6. Logical : module elements contribute to same general category,endwivity is se-
lected from outside the module.

#include <algorithms>
find ...

swap ...

search ...

sort ...

inner_product ...

o modules contain number of activities of some general kind
o to use, pick out just one of the pieces needed
o interface weak, and contains code sharing common linesd# aad/or data areas

7. Coincidental : module elements grouped arbitrarily.

o activities are related neither by flow of data nor control

o like logical, internal activity must be externally selesttbut worse since categories
in the module are very weakly related

Design Principles
low coupling, high cohesion (logical modularization)

good interfaces (abstraction and encapsulation)
type reuse (type inheritance)
code reuse (implementation inheritance, physical mochaaon)

indirection (data/routine pointers) to generalize olgect

Design Patterns

Design patternshave existed since people/trades developed formal appeeac

E.g., chef’'s cooking meals, musician’s writing/playingsicy mason’s building pyramid/cathedral.
Pattern is a common/repeated issue; it can be a problem or a solution.

Name and codify common patterns for educational and coneation purposes.

Software pattern are solutions to problems:

o name : descriptive name
o problem : kind of issues pattern can solve

o solution : general elements composing the design, withioglships, responsibilities,
and collaborations

o consequences : results/trade-offs of pattern (alteratiplementation issues)

4.7. DESIGN PATTERNS 169

e Patterns help:

o extend developers’ vocabulary

Squadron Leader: Top hole. Bally Jerry pranged his kite right in the how’s
your father. Hairy blighter, dicky-birdied, feathered kam his Sammy, took
a waspy, flipped over on his Betty Harper’s and caught his iedhe Bertie.

— RAF Banter, Monty Python

o offer higher-level abstractions than routines or classes

4.7.1 Pattern Catalog

creational structural behavioural
class|| factory method | adapter interpreter
template
object|| abstract factory | adapter responsibility chain
builder bridge command
prototype composite| iterator
singleton decorator | mediator
facade memento
flyweight | observer
proxy State
strategy
visitor

e Scope : applies to classes or objects

e Purpose : class/object creation issues, structural fanchpahavioural interaction

47.1.1 Class Patterns

factory method : generalize creation of product with multiple variants

struct Pizza {...}; /I abstract

struct Pizzeria { /I factory
virtual Pizza create() = 0;

%

struct Italian : public Pizzeria { // factory method
Pizza create(); /I create Italian style

3

struct Chicago : public Pizzeria { // factory method
Pizza create(); /I create Chicago style

3

Pizza takeout(Pizzeria &p) {... return p.create(); }
Italian italian; Chicago chicago;

Pizza p = takeout(italian);

p = takeout(chicago);

e each pizza factory creates different kinds of pizza

170 CHAPTER 4. SOFTWARE ENGINEERING

adapter/wrapper : convert interface into another

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
3 }

struct VStack : public Stack, priva’te Vector { // adapter/wrapper
void push(...) { ... push_back(...); ... }

void pop(...) { pop_back(...); }

%
void p(Stack &s) { ...}
VStack vs; // use VStack code with Stack routine

p(vs);

e VStack is polymorphic withStack but implementsgush/pop with Vector::push_back/
Vector::pop_back.

template method : provide algorithm but defer some details to subclass

class PriceTag { /I template method
virtual string label() = 0; /I details for subclass
virtual string price() = 0;
virtual string currency() = 0;

public :

void string currency() { return "currency " + currency(); }
void string tag() { return label() + price() + currency(); }

%

class FurnitureTag : public PriceTag { // actual method
string label() { return "furniture ";}
string price() { return "$1000 "; }
string currency() { return "Cdn"; }

I3

FurnitureTag ft;

cout << ft.tag() << endl;

e template-method routines are non-virtual, i.e., not adden
4.7.1.2 Object Patterns
abstract factory : generalize creation of family of products with multiplerizants

struct Restaurant { /I abstract factory
virtual void food() = 0;
virtual void staff() = 0O;
%
struct Pizzeria : public Restaurant { // concrete factory
virtual void food() = 0;
virtual void staff() = 0O;
virtual void takeout() = O;
%
struct Burgers : public Restaurant { // concrete factory
virtual void food() = 0;
virtual void staff() = 0O;

4.7. DESIGN PATTERNS 171

singleton : single instance of class

.h file .cc file
class Singleton { #include "Singl eton. h"
struct Impl { Singleton::Impl Singleton::impl(3, 4);
int x,v; Singleton::Impl::Impl(int X, int y)
Impl(int X, int y); D xX(X), yiy) {
h void Singleton:m() { ... }
static Impl impl;
public :
void m();
3
Singleton x, vy, z; /I all access same value

¢ Allow different users to have they own declaration but stidtess same value.

Database database; // user 1
Database db; /I user 2
Database info; /I user 3

e Alternative is global variable, which forces name and majate abstraction.

composite : interface for complex composite object

struct Assembly { /l composite type
string partNo();
string name();
double price();
void insert(Assembly assm);
void remove(string partNo);
struct lterator {...};
%
class Engine : public Assembly {...};
class Transmission : public Assembly{...};
class Wheel : public Assembly {...};
class Car : public Assembly {...};
class Stove : public Assembly {...};
/I create parts for car
Car c; /I composite object
c.insert(engine);
c.insert(transmission);
c.insert(wheel);
c.insert(wheel);

e recursive assembly type creates arbitrary complex asyerbj@ct.
e vertices are subassemblies; leafs are parts

e since composite type defines both vertices and leaf, all reesithay not apply to both

iterator : abstract mechanism to traverse composite object

172 CHAPTER 4. SOFTWARE ENGINEERING

double price = 0.0;
Assembly::lterator c(car);
for (part = c.begin(engine); part != c.end(); ++part) { // engine cost

price += part->price();

}

e iteration control: multiple starting/ending locationgpdh-first/breath-first, forward/backward,
etc.; level of traversal

e iterator may exist independently of a composite desigtepat

adapter : convert interface into another

struct Stack { struct Vector {
virtual void push(...); virtual push_back(...);
virtual void pop(...); virtual pop_back(...);
3 ;

struct VecToStack : public Stack { // adapter/wrapper
Vector &vec;

VectortoStack(Vector &vec) : vec(vec) {}

void push(...) { ... vec.push_back(...); ... }

void pop(...) { vec.pop_back(...); }

3

void p(Stack &s) { ...}

Vector vec;

VecToStack vtos(vec); /I any Vector

p(vtos);
e specific conversion frordector to Stack

proxy : frontend for another object to control access

struct DVD {
void play(...);
void pause(...);

¥
struct SPVR : public DVD { /I static
void play(...) { ... DVD:play(...); ... }
void pause(...) { ... DVD:pause(...); ... }
¥
struct DPVR : public DVD { /I dynamic
DVD xdvd;
DPVR() { dvd = NULL; }
~DPVR() { if (dvd !'= NULL) delete dvd; }
void play(...) { if (dvd == NULL) dvd = new T, dvd->play(...); ... }
void pause(...) { ... don’t need dvd, no pause ... }
%

e proxy extends object’s type
e reverse structure of template method
e dynamic approach lazily creates control object

4.7. DESIGN PATTERNS 173

decorator : attach additional responsibilities to an object dynathica

struct Window {
virtual void move(...) {...}
virtual void lower(...) {...}

¥ I3
struct Scrollbar : public Window { // specialize
enum Kind { Hor, Ver };
Window &window;
Scrollbar(Window &window, Kind k) : window(&window), ... {}
void scroll(int amt) {...}

%

struct Title : public Window { /I specialize
Title(Window &window, ...) : window(window), ... {}
setTitle(string t) {...}

%

Window w;

Title(Scrollbar(Scrollbar(w, Ver), Hor), "title") decorate;

e decorator only mimics object’s type through base class

¢ allows decorator to be dynamically associated with difieabject’s, or same object to
be associated with multiple decorators

observer : 1 to many dependency change updates dependencies

struct Fan { /I abstract
Band &band,
Fan(Band &band) : band(band) {}
virtual void update(CD cd) = 0;

2
struct Band {

list<Fan +> fans; /I list of fans

static void perform(Fan «fan) { fan->update(); }

void attach(Fan &fan) { fans.push_back(&fan); }

void deattach(Fan &fan) { fans.remove(&fan); }

void notify() { for_each(fans.begin(), fans.end(), perform); }
3

struct Groupie : public Fan { /I specialize
Groupie(Band &band) : Fan(band) { band.attach(«this); }
~Groupie() { band.deattach(xthis); }
void update(CD cd) { buy/listen new cd }

%

Band dust;

Groupie g1(dust), g2(dust); // register

dust.notify(); /I inform fans about new CD

e manage list of interested objects, and push new events ko eac
¢ alternative design has interested objects pull the events the observer
o = observer must store events until requested

174

CHAPTER 4. SOFTWARE ENGINEERING

visitor : perform operation on elements of heterogeneous container

struct PrintVisitor {
void visit(Wheel &w) { print wheel }
void visit(Engine &e) { print engine }
void visit(Transmission &t) { print transmission }

%
struct Part {

virtual void action(Visitor &v) = 0;
3

struct Wheel : public Part {
void action(Visitor &v) { v.visit(«this); } // overload
%

struct Engine : public Part {
void action(Visitor &v) { v.visit(«this); } // overload

J»

PrintVisitor pv;

list<Part «> ps;

for (int i =0;1<10;i+=1) {
ps.push_back(add different car parts);

}

for (list<Part +>:iterator pi = ps.begin(); pi != ps.end(); ++pi) {
(xpi)->action(pv);

e each part has a geneeattion that is specialized by visitor
¢ different visitors perform different actions or dynamigatary the action
e compiler statically selects appropriate overloaded warsf visit in action

4.8 Testing

e A major phase in program development is testings0%).

This phase often requires more time and effort than desigrcading phases combined.
Testing is not debugging.

Testing is the process of “executing” a program with the intent ofedetining differences
between the specification and actual results.

o Good test is one with a high probability of finding a differenc

o Successful test is one that finds a difference.

Debugging is the process of determining why a program doelane an intended testing
behaviour and correcting it.

4.8. TESTING 175

4.8.1 Human Testing
e Human Testing : systematic examination of program to discover problems.

e Studies show 30-70% of logic design and coding errors careteetéd in this manner.

e Code inspectionteam of 3-6 people led by moderator (team leader) lookingpfoblems,
often “grilling” the developer(s):

o data errors: wrong types, mixed mode, overflow, zero diviael, subscript, initializa-
tion problems, poor data-structure

o logic errors: comparison problems=/ !=, </ <=), loop initialization / termination,
off-by-one errors, boundary values, incorrect formulal ehfile, incorrect output

o interface errors: missing members or member parameterapsulation / abstraction
issues

e Walkthrough : less formal examination of program, possibly only 2-3 depers.
e Desk checking: single person “plays computer”, executing program by hand

4.8.2 Machine Testing

e Machine Testing: systematic running of program using test data designestoder prob-
lems.

o speed up testing, occur more frequently, improve testivgi@me, greater consistency
and reliability, use less people-time testing

Commercial products are available.

Should be done after human testing.

Exhaustive testing is usually impractical (too many cases)

Test-case desiginvolves determining subset of all possible test casestivélihighest prob-
ability of detecting the greatest number of errors.

Two major approaches:
o Black-Box Testing: program’s design / implementation is unknown when tesesas
are drawn up.

o White-Box Testing : program’s design / implementation is used to develop tke te
cases.

o Gray-Box Testing : only partial knowledge of program’s design / implemerdati
know when test cases are drawn up.

e Start with the black-box approach and supplement with wihite tests.

e Black-Box Testing

176 CHAPTER 4. SOFTWARE ENGINEERING

o equivalence partitioning : completeness without redundancy
« partition all possible input cases into equivalence ckasse
x select only one representative from each class for testing
x E.g., payroll program with input HOURS

HOURS <= 40
40 < HOURS <= 45 (time and a half)
45 < HOURS (double time)

x 3 equivalence classes, plus invalid hours
x Since there are many types of invalid data, invalid hoursaiaa be partitioned
into equivalence classes

o boundary value testing
x test cases which are below, on, and above boundary cases

39, 40, 41 (hours) valid cases
44, 45, 46 K

0, 1, 2 K

-2,-1, 0 " invalid cases
59, 60, 61 K

o error guessing
x surmise, through intuition and experience, what the lilealprs are and then test
for them
¢ White-Box (logic coverage) Testing

develop test cases to cover (exercise) important logicsgatiough program
try to test every decision alternative at least once
test all combinations of decisions (often impossible dugize)

@)

@)

o

test every routine and member for each type

o

cannot test all permutations and combinations of execution

@)

e Test Harness: a collection of software and test data configured to run g@nam (unit)
under varying conditions and monitor its outputs.

4.8.3 Testing Strategies

e Unit Testing : test each routine/class/module separately before atedrinto, and tested
with, entire program.

o requires construction of drivers to call the unit and pagssit values
o requires construction of stub units to simulate the uniiedaluring testing
o allows a greater number of tests to be carried out in parallel

e Integration Testing : test if units work together as intended.

o after each unitis tested, integrate it with tested system.

4.8. TESTING 177

o

o

e}

done top-down or bottom-up : higher-level code is driveygidr-level code is stubs
In practice, a combination of top-down and bottom-up tesisnusually used.
detects interfacing problems earlier

e Once system is integrated:

(0]

o

e}

Functional Testing: test if performs function correctly.

Regression Testing test if new changes produce different effects from presioer-
sion of the system (diff results of old / new versions).

System Testing: test if program complies with its specifications.
Performance Testing: test if program achieves speed and throughput requirement

Volume Testing : test if program handles difference volumes of test dataallss
large), possibly over long period of time.

Stress Testing test if program handles extreme volumes of data over a pleoidd of
time with fixed resources, e.g., can air-traffic controltegshandle 250 planes at same
time?

Usability Testing : test whether users have the skill necessary to operatg$hens.

Security Testing: test whether programs and data are secure, i.e., can wnaeth
people gain access to programs, files, etc.

Acceptance Testing checking if the system satisfies what the client ordered.

e Ifaproblemis discovered, make up additional test casesrtwim on the issue and ultimately
add these tests to the test suite for regression testing.

4.8.4 Tester
A program should not be tested by its writer, but in practidge bften occurs.

Remember, the tester only tests wttaythinks it should do.

Any misunderstandings the writer had while coding the peiagare carried over into testing.

Ultimately, any system must be tested by the client to detezrfiit is acceptable.

Points to the need for a written specification to protect bloghclient and developer.

178 CHAPTER 4. SOFTWARE ENGINEERING

Index

1, 6,42
1=,41,42
"t e7

", 5,30
#,1

#, 65
#define , 65
#elif, 68
#else, 68
#endif , 68
#if, 68
#ifdef , 68
#ifndef , 68
#include , 67
$,1,15

%, 1

&, 32,42, 43,49, 54
&&, 42, 49
&=,42
’,5,30

x 32,42, 43
+l, 25

*=, 42
+,41,42
++, 44,129
+=,42, 44
42,44, 50
-, 42

--, 44,129
-=, 42,44
->, 42

-L, 141
-MD, 146
-MMD, 145
-0, 141

-S, 141

-W, 140

179

-c, 141

-g, 141, 155
-1, 141

-0, 141

-v, 140

., 42

., 43

.C, 27

.c, 27

.cc, 27,110
.cpp, 27

.h, 67,110
/,3,42

\, 5, 30

/%, 25

I, 25

/=, 42

;, 56

i1, 39,42, 43,100 115

:, 26

i 21

<, 14,41, 42
<<, 42,58, 90
<<=, 42

<=, 41,42

<>, 67
=,7,15, 41, 42
==,41,42, 94
>, 6,14, 41, 42
>&, 14

>=, 41,42

>> 42,58, 90
>>=, 42

?:, 42,49
[1,41, 75

%, 42

%=, 42

180

&, 32 43
{1}, 47

A, 42

n=, 42

\5

|, 14, 42, 49
=, 42

~, 4,42

a.out, 63, 141
absolute pathnam8, 148
abstract/6
abstract clasg,23
pure,125
abstract data-typd,01
abstract factory]l 70
abstraction85, 100
acceptance testing/7
access controll00
adapterl70 172
add, 149
ADT, 101
aggregation35s, 77, 108
agile,163
alias,39, 117,136
alias, 7
allocation
array,36, 74
dynamic,72
array, 74
heap,73, 74, 130
array, 74
matrix, 75
stack,74
argc, 63, 64
argument/8
argv, 63, 64
Array, 35
array, 31, 36, 39, 40, 45, 58, 63, 74, 75,
80
2-D, 75
deallocationy5
dimension35, 36, 40, 44, 74, 80, 130
parameter80
as,141

CHAPTER 4. SOFTWARE ENGINEERING

assemblerl41
assertion70
assignment39, 42, 44,91, 119
address33
array,36, 129
cascade43
initializing, 28
operator102 114
pointer,35
association106
association clas4,07
atoi, 64
attribute, 105

backquoteb
backslash5
backspace key,
backtrace, 156
bang,6
bash/2, 19
basic types27, 31
bool, 27
char, 27
double , 27
float, 27
int, 27
wchar _t, 27
behavioural 127
bit field, 37
bitwise copy92
black-box testingl75
block, 26, 40, 47
{1}, 47
blueprint,104
bool, 27, 30
boolalpha, 59
boolean expressiod,/
false, 47
true, 47
boundary value testind,76
break, 48, 50
break, 157
breakpoint,157
continue, 158
next, 158

4.8. TESTING

step, 158

c_str, 41
call-back routine83
cascade58
cascade assignmed3
case, 21,48

o 21

pattern,21
case-sensitive,5, 27
cast,42, 45, 62,82, 122
cat, 152
cd, 6
cerr, 57
char, 27, 29, 30
checkin,146
checkout146
checkout, 149
chevron42, 58, 90, 129
chgrp, 13
chmod, 13
chsh, 2
cin, 57
class, 84, 101
class diagraml05
class modell104
clear, 61
cmp, 10
code inspectionl 75
coercion62, 73, 82
cohesion]166
coincidental 168
comma expressiod4, 50, 75
command option
command-line argument§3

argc, 63, 64

argv, 63, 64

main, 63
command-line interfacd,
comment/]l, 25

#, 1

«, 25

/%, 25

I, 25

nesting,25, 26

out, 25, 68
commit, 150
common coupling166
communicationall67
compilation,139
g++, 27
compiler,25, 140
options
-D, 66, 140
-E, 140
-1, 140
-L, 141
-MD, 146
-MMD, 145
-0, 28, 141
-S, 141
-W, 140
-Wall, 28
-c, 114, 141
-g, 141, 155
-1, 141
-0, 141
-v, 140
separate compilatio®8, 99
composite 171
composition108 115 126
explicit, 115
concrete clasd,24
conditional 47
conditional expressio7
conditional expression evaluatiof9
&&, 49
?:,49
partial evaluation49
short-circuit,49
conditional inclusiong7
const , 30, 34, 66, 79, 85
constant30, 34, 39, 40, 85, 112
bool, 30
char, 30
designated30
double , 30
escape sequencg)
initialization, 39, 66
int, 30

182

parameter79
pointer,34
string,30, 40
type constructor39
undesignated30, 60
variable,30
construction115
constructor3l, 87, 115 118
const member94
constant38
copy,91, 102 119
implicit conversion 89
passing arguments to other construc-
tors,119
type,31
content coupling166
continue , 50
continue, 158
contra-variancel18
control coupling, 166
control structure46
block, 46, 47
{1}, 47
conditional 47
conditional expression evaluatioff
&&, 49
?:,49
partial evaluation49
short-circuit,49
looping,46, 49
break, 23
continue , 23
do, 49
for, 22,50
while , 22, 49
selection46, 47
break , 48
case, 21, 48
dangling else48
default , 48
else, 47
if, 20, 47
pattern,21
switch , 48, 64
test,19

CHAPTER 4. SOFTWARE ENGINEERING

short-circuit expression evaluatioff
transfer,46
conversion44, 89
cast42, 45, 62
dynamic _cast, 122
explicit, 44, 45, 62, 82
implicit, 44, 47, 78, 81, 89
narrowing,44
promotion,44
reinterpret _cast, 62
static _cast, 45
widening,44
copy constructo9l, 102 114
copy-modify-merge model, 46
coupling,166
cout, 57
cp, 9,151
cpp, 140
create, 147
csh,1, 15 19
current directory3, 4, 6, 9, 12
current stack framel,57

dangling else48
dangling pointer73, 93
data coupling166
data membe36
dbx, 155
debug print statement83
debuggerl55
Debugging68
debuggingp8, 174
dec, 59
declaration27
basic types27
const , 66
type constructoi3l
type qualifier,28
variable,27
Declaration Before Us&9
declaration before uséy
decoratorl73
deep compar&€4
deep copy92, 94
default

4.8. TESTING

parameterg2
default , 48
default constructo87
default value80, 87

parameter80
delegation]127
delete, 73

(1,75
delete key2
dependencied43
dependent91, 108
deque, 129, 133
dereference32, 43
dereferencing32
design patterns,68
designated constar80
desk checkingl 75
desktop1
destruction115

explicit, 90

implicit, 90

order,91
destructor90, 115 118
diff, 10
dimension35, 36, 40, 44, 74, 80, 130
do, 49
documentation25
double , 27, 30
double quote5
downcast;]122
duplicated code/6
dynamic storage managemeng, 91
dynamic _cast, 122

eager evaluatior9
echo, 8

else, 47
encapsulationl00
end of file,60

end of line,26

endl, 26, 59

Enter key,1

enum, 31, 66
enumeration31, 37
enumerator31

eof, 60
equivalence
name 38, 39
structural 38
equivalence partitionind,76
error guessingl76
escapes
escape sequencg)
escapedz20
evaluation
eager49
lazy, 49
partial,49
short-circuit,49, 54
event programming33
execute12
execution error71
exit, 8
exit, 27
exit statusg, 18
explicit conversion44, 45, 62, 82
expression42
extreme,163

factoring,76, 164
factory method169
fail, 58, 60
false, 47
feof, 61
file
.h, 67
opening 58
file inclusion,67
file management
file permission12
input/output redirectionl 4
<14
>&, 14
> 14
[, 14
file permission
execute12
group,12
other,12
read,12

183

184

search]12

user,12

write, 12
file suffix

.C, 27

.c, 27

.cc, 27,110

.cpp, 27

.h, 110

.0,114
files,3

input/output redirectionl 4
find, 11, 41
find_first_not_of, 41
find_first_of, 41
find_last_not_of, 41
find_last_of, 41
fix-up routine,83
fixed, 59
flag variable 55
float, 27, 29
for, 22, 50
for_each, 134
format

I/O, 58
formatted 1/0 56, 57
forward declaration98
frame, 157
free, 72
free, 73
friend , 103
friendship,103 116
fstream, 58
function, 77
function member36
function-call operato7
functional, 167
functional testing177
functor,97, 135

g++, 27, 35, 45, 88, 140
garbage collectior2
gdb
backtrace, 156
break, 157

CHAPTER 4. SOFTWARE ENGINEERING

breakpoint157
continue, 158
next, 158
step, 158
continue, 158
frame, 157
info, 157
list, 159
next, 158
print, 156
run, 156
step, 158
gdb, 155
generalization126
generatel04
globbing,4, 11, 21
gmake, 143
goto, 55
label,55
graphical interfacel
gray-box testingl75
grep, 11
group,12

has-a106 115 126

heap,28, 73, 74, 130
array, 74

help, 6

hex, 59

hidden files5

history , 6

home directory3, 6

hot spot,71

human testingl 75

I/O
cerr, 57
cin, 57
clear, 61
cout, 57
fail, 58
formatted 57
fstream, 58
ifstream, 58
ignore, 61

4.8. TESTING

iomanip, 58
iostream, 57
manipulators58
boolalpha, 59
dec, 59
endl, 59
fixed, 59
hex, 59
left, 59
noboolalpha, 59
noshowbase, 59
noskipws, 59
oct, 59
right, 59
scientific, 59
seftfill, 59
setprecision, 59
setw, 59
showbase, 59
skipws, 59
ofstream, 58
identifier,27, 56
if, 20, 47
?:,49
dangling else48
else, 47
ifstream, 58
ignore, 61
implementation110

implementation inheritancé14, 115
implicit conversion44, 47, 78, 81, 89

import, 148
independent] 08
independent objec0
indirection,32

info, 157
inheritance 114, 126

implementation114, 115

type,114 116

initialization, 39, 87, 88,91, 94, 115 118,

119

array,40

forward declaration]100
string,40

structure 40

inline , 66
input, 26, 56, 59
>> 90
end of file,60
eof, 60
fail, 60
feof, 61
formatted 57
manipulators
iomanip, 58
noskipws, 59
skipws, 59
standard input
cin, 57
input/output redirectionl 4
filter
[, 14
input
<, 14
output
> 14
>&, 14
int, 27, 29, 30
INT16_MAX, 29
INT16_MIN, 29
intl6_t, 29
INT32_MAX, 29
INT32_MIN, 29
int32_t, 29
INT64_MAX, 29
INT64_MIN, 29
int64_t, 29
INT8_MAX, 29
INT8_MIN, 29
int8_t, 29
INT_MAX, 29
INT_MIN, 29
integral type 37
integration testingl 76
interaction model104
interface,’7, 85, 110
interface classl25
interfaces/6
iomanip, 58
iostream, 26, 57

185

186

is-a,126
iteration statement
break, 50
continue , 50
iterative,163
iterator,129, 171
++,129
--, 129
for_each, 134

Java82

keyword,27
keywords,15
ksh,1

label,55

label variable56

language
preprocessod 39
programming,139
template 139

lazy evaluation49

Id, 141

left, 59

linker, 141

list, 129, 133 159
back, 133
begin, 134
clear, 133
empty, 133
end, 134
erase, 134
front, 133
insert, 134
iterator,129
pop_back, 133
pop_front, 133
push_back, 133
push_front, 133
begin, 134
end, 134
size, 133

literal, 30

LLONG_MAX, 29

LLONG_MIN, 29

CHAPTER 4. SOFTWARE ENGINEERING

logical, 168
login, 1, 2
login shell,16
logout,2
long, 29
LONG_MAX, 29
LONG_MIN, 29
loop
mid-test,52
multi-exit, 52
looping statemeny9
break, 23
continue , 23
do, 49
for, 22, 50
while , 22, 49
Ipg, 10
lpr, 10
lprm, 10
Is, 9,12, 148

machine testingl75
macros66
main, 26, 63, 99
make,143
make, 143
malloc, 73
man, 9
managed languagé?
manipulators58
map, 129 132
begin, 133
end, 133
erase, 133
find, 133
insert, 133
begin, 133
end, 133
math library,141

matrix, 35, 44, 75, 80, 130

member36
anonymousl15
const, 94
constructor87

destruction90, 115 118

4.8. TESTING

initialization, 87, 115 118
object,85
operator36
overloading 86
pure virtual, 124
static member95
virtual, 121, 122
memberwise copy92
memory leaky73, 75, 93
mid-test loop52
mixin, 126
mkdir, 9, 148
modularization/6
modularize 164
modules,76
multi-exit
loop, 52
mid-test,52
multi-level
static,54
multiple inheritancel25
mutually recursive98, 99
mv, 9, 151

name equivalenc&g, 39, 116-118 128

namespace’6, 135
std, 26

narrowing,44

navigation,107

nesting,115
blocks,47
comments25, 26
initialization, 40
preprocessof7
routines,’78
type, 39

new, 73

next, 158

noboolalpha, 59

noshowbase, 59

noskipws, 59

npos, 41

NULL, 39, 67

null address32

null character40

object,84
anonymous membet15
assignment9l, 119
const member94
constant88
constructor87, 115, 118
copy constructo9l, 102 119
default constructo87
destructor90, 115,118
initialization, 87, 118
member85
pure virtual membe] 24
static member95
type
nesting,129
virtual member]121, 122
object codel41
object diagram106
object model104
object-oriented84, 114
observerl73
oct, 59
ofstream, 58
open,58
file, 58
operation, 105
operators
*, 32,43
<<, 58,90
>> 58, 90
&, 32,43
arithmetic,42
assignmen?2
bit shift, 42
bitwise,42
cast42
comma expressiod2
control structures42
logical, 42
overloading58, 86
pointer,32, 42, 43
priority, 42
relational 42
selection39, 43,115
string,41

187

188

struct , 42
selection,100
other,12
output,26, 56, 62

<<, 90

endl, 26

formatted 57

manipulators

boolalpha, 59

dec, 59

endl, 59

fixed, 59

hex, 59

iomanip, 58

left, 59

noboolalpha, 59

noshowbase, 59

oct, 59

right, 59

scientific, 59

seftfill, 59

setprecision, 59

setw, 59

showbase, 59

standard error
cerr, 57
standard output

cout, 26, 57
overloading58, 81, 86, 87, 90
override, 115,117,120, 121
overriding,28

paginate10

parameter
array,80
constanty/9
default value80
pass by referenc@3
pass by value/8
prototype,98

parameter passing
array,80

parameters/8

pass by referenc&3

pass by value/8

CHAPTER 4. SOFTWARE ENGINEERING

pattern,21, 168
pattern matching4
performance testing,77
pointer,31, 32, 39
0,40
array,36, 74
matrix, 75
NULL, 39, 67
polymorphic,122
polymorphism116
Polymorphism127
preprocessog6, 65, 110, 139, 140, 145
#define , 65
#elif, 68
#else, 68
#endif , 68
#if, 68
#ifdef , 68
#ifndef , 68
#include , 67
comment-out26
file inclusion,67
macros 66
variable,66, 140
print, 156
printf , 8
priority, 42
private , 101
procedural 167
procedurey7
program
structure25
program structure25
block, 26
main, 26
project,146
promotion,44
prompt,1
$1
%, 1
>, 6
protected , 101
prototype,77, 97,98, 110
proxy,172
pseudo random-number generafi@,

4.8. TESTING

pseudo random-numbeB%
public , 36, 101

pure abstract-clasd25
pure virtual memberl 24
pwd, 6

queue, 129, 133
guoting,5

rand, 44

random numbe©6
generatoro6
pseudo-randon6
seed97

random-number generatd@d, 96

read,12

real time,8

recursive type37

reference31-33, 43
initialization, 34
parameter78

referencing 32

regression testingd,77

reinterpret _cast, 62

relative pathname

replace, 41

repository, 146, 147

resolve, 154

return, 26, 77

return code8

Return keyl

return type,/7

reusell4

revert, 151

rfind, 41

right, 59

rm, 10, 150

routine, 77
argument/parameter passing,
array parameteg0
function, 77
member85
parametery7

pass by referenc&8
pass by value/8

189

procedurey7
prototype 97
return, 77
return type,/7
routine overloadingg1
routine prototype
forward declaration98
scopef85
routine member36
routine pointerg82
routine prototype98
run, 156

scientific, 59
scopegf5, 100 135
script,15
search]12
security testingl77
selection operatoB9, 43
selection statememnt,/

break, 48

case, 21, 48

default , 48

else, 47

if, 20, 47

pattern21

switch , 48, 64
self-assignmeng3
semantic errorf1
semi-colon20
semicolon26, 37, 47
sentinel 40
separate compilatio3, 109 141

-c, 114
sequentiall67
setfill, 59
setprecision, 59
setw, 59
sh,1, 15
sha-bangl5
shallow copy92
shell,1

bash/1, 19

csh,1, 19

ksh,1

190

login, 16
prompt,1
$,1
%, 1
> 6
sh,1
tcsh,1
shell program15
shift , 18
short , 29
short-circuit,20, 49

short-circuit expression evaluatioff

showbase, 59
SHRT_MAX, 29
SHRT_MIN, 29
signature/7
signed , 29
single quote5
singleton171
size_type, 41
sizeof , 43
sketch,104
skipws, 59
slicing, 123
software development
.cc, 110
.h, 110
0,114
separate compilatior109
software engineering,6, 161
source , 18
source file,78, 98, 101, 109
source treel4?2
source-code managemeh6

source-code management-systédt

spiral,163

ssh, 12

stack,28

stack, 129 133
stack allocation74
staged deliveryl63
stamp coupling166
standard library129
statement26

static, 110

CHAPTER 4. SOFTWARE ENGINEERING

static block,28, 78, 95
static multi-level exitb4
static _cast, 45
status, 150
std, 26
stderr, 57
stdin, 57
stdout, 57
step, 158
strcat, 41
strcpy, 41
strcspn, 41
stream
cerr, 57
cin, 57
clear, 61
cout, 57
fail, 58
formatted 57
fstream, 58
ifstream, 58
ignore, 61
input, 26
cin, 57
end of file,60
eof, 60
fail, 60
manipulators
boolalpha, 59
dec, 59
endl, 59
fixed, 59
hex, 59
iomanip, 58
left, 59
noboolalpha, 59
noshowbase, 59
noskipws, 59
oct, 59
right, 59
scientific, 59
seftfill, 59
setprecision, 59
setw, 59
showbase, 59

4.8. TESTING

skipws, 59
ofstream, 58
output,26

cout, 26

endl, 26

stream file57
stress testinglL77
string,30, 40

C+H

1=, 41

+,41

<, 41

<=,41

=41

==, 41

> 41

>=, 41

(1,41

c_str, 41

find, 41

find_first_not_of, 41

find_first_of, 41
find_last_not_of, 41
find_last_of, 41
npos, 41

replace, 41

rfind, 41

size_type, 41
substr, 41

[1,41
strcat, 41
strcpy, 41
strcspn, 41
strlen, 41
strncat, 41
strncpy, 41
strspn, 41
strstr, 41
constant40
null termination 40
strlen, 41
strncat, 41
strncpy, 41
strspn, 41

strstr, 41
strtol, 64
struct , 84, 101
structurally equivalen38
structure 31, 36, 39, 45, 84
member36, 84
data,36
function, 36
initialization, 37
routine,36
visibility
default,36
public , 36
struct , 42
structured programminé1
subscripting35
subshell9, 15, 16, 18
substitutability, 127
substr, 41
subversion146
successive refinemerit64
suffix
.C, 27
.c, 27
.cc, 27
.cpp, 27
svn, 146
add, 149
cat, 152
checkout, 149
commit, 150
cp, 151
import, 148
Is, 148
mkdir, 148
mv, 151
resolve, 154
revert, 151
rm, 150
status, 150
update, 153
svnadmin
create, 147
switch , 48, 64
break, 48

191

192

case, 48

default , 48
syntax error,/1
system command,43
system modelling1 03
system testingl77
system time§8

tab key,5

tcsh,1

template 128 139
routine,128
type, 128

template method,70

temporal 167

terminal,1, 2

test harnesd,76

test-case desigi,75

Testing
Integration, 176

testing,174
acceptancel 77
black-box,175
functional, 177
gray-box,175
harness176
human,175
machine 175
performancel77
regressionl77
security,177
stress177
system177
unit, 176
usability, 177
volume,177
white-box,175

text merging,146

this , 85

time, 8

time stamp,143

token,65

translation unit,142

true, 47

type, 7

CHAPTER 4. SOFTWARE ENGINEERING

type aliasing38

type constructoi3l
aggregation3s
array,35
class,36
constant;39
enumeration3l, 37, 66
pointer,32
reference32
structure 36
type aliasing38

type conversior45, 62, 81, 89, 122

type equivalencel16-118
type inheritancel14, 116
type nesting39
type qualifier,28, 29, 34
const, 30, 34
long, 29
short , 29
signed , 29
static, 110
unsigned , 29
type-constructor constant
array,39
pointer,39
structure 39
typedef , 39, 136

UINT16_MAX, 29
uintl6_t, 29
UINT32_MAX, 29
uint32_t, 29
UINT64_MAX, 29
uinté4_t, 29
UINT8_MAX, 29
uint8_t, 29
UINT_MAX, 29
ULLONG_MAX, 29
ULONG_MAX, 29
undesignated constard), 60
unformatted 1/056, 62

unified modelling languagd,04

uninitialization,90
union,38
unit testing,176

4.8. TESTING

unmanaged languageé?
unsigned , 29
update, 153
usability testing,L77
user,12
user time8
USHRT_MAX, 29
using
declaration136
directive,136

value
parameter78
variable declarations
type qualifier,28, 29
variables
address32
constant30
dereference32, 43
reference32, 43
vector, 129
[1, 130
at, 130
begin, 131
clear, 130
empty, 130
end, 131
erase, 131
insert, 131
pop_back, 130
push_back, 130
rbegin, 131
rend, 131
resize, 130, 131
size, 130
version control146
virtual , 121, 122

virtual members121, 122 124

visibility, 39
default,36
private , 101
protected , 101
public , 36, 101

visitor, 174

void , 77

volume testing177

walkthrough,175
waterfall, 162

wchar _t, 27

which, 7

while , 22, 49
white-box testing175
whitespace?5, 60, 65
widening,44
wildcard,4

working copy,146
wrapper,170
wrapper membef,20
write, 12

xterm,1, 2

193

	Title
	Contents
	Shell
	File System
	Pattern Matching
	Quoting
	Shell Commands
	System Commands
	File Permission
	Input/Output Redirection
	Programming
	Variables
	Routine
	Arithmetic
	Control Structures
	Test
	Selection
	Looping

	C++
	Program Structure
	Comment
	Statement

	First Program
	Declaration
	Identifier
	Basic Types
	Variable Declaration
	Type Qualifier
	Constants
	Type Constructor
	Enumeration
	Pointer/Reference
	Aggregation (Array/Structure)

	Type Equivalence
	Type Nesting
	Type-Constructor Constant
	String

	Expression
	Conversion
	Math Operations

	Control Structures
	Block
	Conditional
	Selection
	Conditional Expression Evaluation
	Looping

	Structured Programming
	Multi-Exit Loop
	Static Multi-Level Exit

	Input/Output
	Formatted I/O
	Formats
	Input
	Output

	Unformatted I/O

	Command-line Arguments
	Preprocessor
	Substitution
	File Inclusion
	Conditional Inclusion

	Debugging
	Debug Print Statements
	Assertions
	Errors

	Dynamic Storage Management
	Modularization
	Routine
	Argument/Parameter Passing
	Array Parameter
	Overloading

	Routine Pointer
	Object
	Object Member
	Operator Member
	Constructor
	Constant
	Conversion

	Destructor
	Copy Constructor / Assignment
	Initialize const / Object Member
	Static Member

	Random Numbers
	Declaration Before Use
	Encapsulation
	System Modelling
	UML

	Separate Compilation
	Inheritance
	Implementation Inheritance
	Type Inheritance
	Constructor/Destructor
	Copy Constructor / Assignment
	Overloading
	Virtual Routine
	Downcast
	Slicing
	Protected Members
	Abstract Class
	Multiple Inheritance
	UML

	Inheritance / Composition Design
	Template
	Standard Library
	Vector
	Map
	Single/Double Linked
	for_each

	Namespace

	Tools
	C/C++ Composition
	Compilation
	Preprocessor
	Compiler
	Assembler
	Linker

	Compiling Complex Programs
	Dependences
	Make

	Source-Code Management
	SVN
	Repository
	Checking Out
	Adding
	Checking In
	Modifying
	Revision Number
	Updating

	Debugger
	GDB

	Software Engineering
	Software Crisis
	Software Development
	Development Processes
	Software Methodology
	System Design
	Top-Down

	Design Quality
	Coupling
	Cohesion

	Design Principles
	Design Patterns
	Pattern Catalog
	Class Patterns
	Object Patterns

	Testing
	Human Testing
	Machine Testing
	Testing Strategies
	Tester

	Index

