
Final Exam Answers – CS 246 Fall 2009

Instructor: Peter Buhr

December 17, 2009

These are not the only answers that are acceptable, but theseanswers come from the notes or class
discussion.

1. (a) 3 marks A constructor is a special member used toperform initialization to ensure an object
is valid before use. It iscalled by the compiler immediatelyafter object allocation.

(b) 2 marks Routine operators allowimplicit conversions on both operandsof an infix call.

(c) 4 marks Initialization involves anewly allocated object with undefined values. Assignment
involves anexisting object that may contain previously computed values. The mechanism
used to implement each in C++ is thecopy constructor and theassignment operator.

(d) 2 marks A shallow-copycopies pointer values. A deep-copycopies the values referenced by
pointers (possibly recursively).

(e) 4 marks

1 struct T2; // forward
struct T1 {

1 T2 *t2; // pointer, break cycle
1 T1(); // forward declaration

};
struct T2 {

T1 t1;
};

1 T1::T1() { t2 = new T2; } // can now see T2
T1 t1;

1 struct T2; // forward
struct T1 {

1 T2 *t2; // pointer, break cycle
1 T1(T2 *t2) : t2(t2) {};

};
struct T2 {

T1 t1;
};

.5 T2 t2;

.5 T1 t1(t2);

2. (a) 2 marks Type inheritance relaxes name equivalence byaliasing the derived namewith its
base-type names.

(b) 1 mark routine pointers

(c) 5 marks

i. bp.f(); // Base::f

ii. bp.g(); // Base::g

iii. ((Derived &)bp).g(); // Derived::g

iv. bp.Base::h(); // Base::h

v. bp.h(); // Derived::h

(d) 3 marks Right picture

m2

m1

y

x

copy

y

x

direct routine pointer

y

x

VRT

m1

m2

m1

m2

indirect routine pointer

(e) 3 marks A down cast is adynamic checkto determine theactual type an objectpointed to by
apolymorphic pointer/reference.

1

3. (a) 2 marks Routine template generalizes code across multiple types. Type template generalizes
data structures across multiple types.

(b) 2 marks Nodes are eithercopied into the containeror pointed to from the container.

(c) 2 marks An iteratortraverses a containerso knowledge about the containerimplementation
is hidden.

(d) 2 marks begin() points at the first node/element of the container;end() points after the last
node/element of the container.

(e) 3 marks qualification (std::cout), individual import (using std::cout), importing all
(using namespace std)

4. (a) 2 marks The compiler flag -O2 controls the amount of optimization performed during compila-
tion. This flag is not on all the time because it increases the cost of compilation.

(b) 2 marks Debugging is the process of determining why a program does not have an intended
behaviour.

(c) 2 marks Control-flow error is incorrect transfer of control during execution. Data-flow error is
incorrect computation of values during execution.

(d) 1 mark false

(e) 2 marks The g++ compiler provides the -MMD flag to generate a dependency graph from the
include files in a source file.

5. (a) 1 mark truth is in the code

(b) 1 mark false

(c) 2 marks System modelling involves modelling a complex system in an abstract way to provide
a specific description of how the system works.

(d) 3 marks

• sketchout high-level design or complex parts of a system,

• blueprint the entire system abstractly with high accuracy,

• generateinterfaces directly.

(e) 2 marks Association : a named conceptual/physical connection among objects.

(f) 3 marks Managed language hides aspects of the implementation, e.g., like memory manage-
ment. An advantage is the reduction in low-level program tasks. A disadvantage is the inability
to perform low-level operations for efficiency purposes.

6. (a) 1 mark In agile development process, programmers often work in pairs.

(b) 2 marks A design pattern is acommon/repeated issue; it can be aproblem or a solution.

(c) 2 marks equivalence partitioning : partition all possible input cases into equivalence classes and
select only one representative from each class for testing

boundary value : test cases which are below, on, and above boundary cases

(d) 2 marks regression testing : test if new changes produce different effects from previous version
of the system (diff results of old / new versions).

performance testing : test if program achieves speed and throughput requirements.

(e) 1 mark false

2

7. 45 marks

class UTSImpl {
protected:

Printer &prt;
NameServer &nameServer;
BottlingPlant &plant;
const unsigned int NumVendingMachines;
const unsigned int MaxStockPerFlavour;

1 unsigned int shipment[NUM OF FLAVOURS]; // shipment received from bottling plant
1 unsigned int tracking, current;
1 bool hired;
1 vector<bool> history; // tracking history
1 unsigned int *vending; // used to hold a vending machine′ s inventory
1 VendingMachine **masterList; // list of vending machines from name server

public:
// constructor, pickup, status, action as given in UTS

}; // UTSImpl

1 class UTSeast : public UTS, private UTSImpl { // as given

1 class UTSwest : public UTS, private UTSImpl { // as given

UTSImpl::UTSImpl(Printer &prt, NameServer &nameServer, BottlingPlant &plant,
unsigned int numVendingMachines, unsigned int maxStockPerFlavour) :

prt(prt), nameServer(nameServer), plant(plant), tracking(0), current(0), hired(false),
NumVendingMachines(numVendingMachines), MaxStockPerFlavour(maxStockPerFlavour) {

1 prt.change(Printer::UTS, ′S′);
1 masterList = nameServer.getMachineList();

} // UTSImpl::UTSImpl

UTSImpl::~UTSImpl() {
1 prt.change(Printer::UTS, ′F′);

} // UTSImpl::~UTSImpl

unsigned int UTSImpl::pickup() {
1 hired = true;
1 history.push back(false);
1 return tracking ++;

} // UTSImpl::pickup

bool UTSImpl::status(unsigned int tracking) {
1 prt.change(Printer::UTS, ′s′ , history[tracking]);
1 return history[tracking];

} // UTSImpl::withdraw

3

1 void UTSImpl::action(int direction) {
1 if (! hired) return;
1 hired = false;
1 history[current] = true; // change tracking status
1 current += 1;

1 plant.getShipment(shipment); // pick up shipment from bottling plant
1 unsigned int numLeft = 0; // calculate amount in shipment
1 for (unsigned int i = 0; i < NUM OF FLAVOURS; i += 1) numLeft += shipment[i];
1 prt.change(Printer::UTS, ′P′ , numLeft);

// Make a delivery to each vending machine in turn, so long as still have stock remaining
1 for (unsigned int i = 0; numLeft > 0 && i < NumVendingMachines; i += 1) {
1 unsigned int index = direction != 0 ? direction - i : i;
1 vending = masterList[index]->inventory(); // obtain stock left from vending machine
1 prt.change(Printer::UTS, ′d′ , masterList[i]->getId(), numLeft);

// Calculate how much of the shipment needs to be sent to the vending machine
1 for (unsigned int j = 0; j < NUM OF FLAVOURS; j += 1) {
1 unsigned int difference = MaxStockPerFlavour - vending[j];
1 if (difference > shipment[j]) difference = shipment[j];
1 shipment[j] -= difference;
1 numLeft -= difference;
1 vending[j] += difference;

} // for

1 prt.change(Printer::UTS, ′D′ , masterList[i]->getId(), numLeft);
1 masterList[i]->restocked(); // refilling complete

} // for
} // UTSImpl::balance

UTSeast::UTSeast(Printer &prt, NameServer &nameServer, BottlingPlant &plant,
unsigned int numVendingMachines, unsigned int maxStockPerFlavour) :

1 UTSImpl(prt, nameServer, plant, numVendingMachines, maxStockPerFlavour) {
} // UTSeast::UTSeast

1 unsigned int UTSeast::pickup() { return UTSImpl::pickup(); }
1 bool UTSeast::status(unsigned int tracking) { return UTSImpl::status(tracking); }
1 void UTSeast::action() { UTSImpl::action(0); }

UTSwest::UTSwest(Printer &prt, NameServer &nameServer, BottlingPlant &plant,
unsigned int numVendingMachines, unsigned int maxStockPerFlavour) :

1 UTSImpl(prt, nameServer, plant, numVendingMachines, maxStockPerFlavour) {
} // UTSwest::UTSwest

1 unsigned int UTSwest::pickup() { return UTSImpl::pickup(); }
1 bool UTSwest::status(unsigned int tracking) { return UTSImpl::status(tracking); }
1 void UTSwest::action() { UTSImpl::action(NumVendingMachines - 1); }

4

