	Place sticker here.

Last Name: ____________________________

First Name: ____________________________

ID: __ __ __ __ __ __ __ __ __

	University of Waterloo

CS246 Final Examination

Term: Winter Year: 2009

[image: image1.wmf]QuickTime™ and a

TIFF (Uncompressed) decompressor

are needed to see this picture.

	Date: Thursday, 9 April, 2009

Time: 9:00 – 11:30am

Instructor: Prof Ric Holt

Lecture Sections: 001

Exam Type: Closed book

Additional Materials Allowed: None

Signature: ____________________

Instructions: (Read carefully before the exam begins):

	1. Before you begin, make certain that you have one Exam Booklet.

2. The marks assigned to each question are shown at the beginning of the question; use this information to organize your time effectively.

3. Place all your answers in the spaces provided on these pages.

4. You do not need to write comments in your code unless it is specifically required by the question.

5. Questions will not be interpreted. Proctors will only confirm or deny errors in the questions. If you consider the wording of a question to be ambiguous, state your assumptions clearly and proceed to answer the question to the best of your ability. You may not trivialize the problem in your assumptions.

6. Cheating is an academic offense. Your signature on this exam indicates that you understand and agree to the University’s policies regarding cheating on exams.

	Question
	Marks Given
	Out Of
	Marker’s

Initials

	1
	
	11
	

	2
	
	8
	

	3
	
	8
	

	4
	
	5
	

	5
	
	10
	

	6
	
	9
	

	7
	
	5
	

	8
	
	8
	

	9
	
	8
	

	10
	
	8
	

	11
	
	6
	

	12
	
	7
	

	13
	
	7
	

	Total
	
	100
	

 Question 1 [11 marks]:

Q1a [1 mark] __T__ T/F The creator of the C language was Dennis Ritchie.

Q1b [1 mark] __F__ T/F Random access to files is generally avoided as it produces unpredictable results.

Q1c [1 mark] __T__ T/F Any recursive program can be re-written to be non-recursive.

Q1d [3 marks] Give three checks to make sure that a recursive program is correct.

No infinite recursion
Stopping (base) cases return correct values
Recursive cases return correct values (case n correct implies case n+1 is correct)
Q1e [1 mark] __T__ T/F In C++ terminology, a child class is called a derived class.

Q1f [1 mark] __T__ T/F In C++ suppose that a function F in a child class C “redefines” a function (with the same name F) in C’s parent class D. Suppose an object B of type C has its F function called as in B.F (). This will actually be a call to the child’s function.

Q1g [1 mark] __F__ T/F When an object of a child class goes out of scope, the destructor of the parent class is automatically called.

Q1h [1 mark] __T__ T/F Suppose member M of class D is private. From within a child C of D, member M cannot be accessed.

Q1i [1 mark] __F__ T/F There are 3 kinds of inheritance in C++: public, protected and private. The usual kind used is private.

Question 2 [8 marks]:

Q2a [2 marks] What is the meaning of the term “protected” as applied to a member of a class?

[1] “Protected” means that the member can be accessed (seen) (is visible) in its own class,

[2] and can be seen in descendent (derived) classes, but otherwise cannot be seen outside of its class.

Q2b [2 marks] Suppose you are overloading the assignment operator for a class. Explain why the special case of an object assigned to itself is or is not important to consider as a special case during this overloading.

In overloading assignment, x = y, you need to free up data structures in x and then you need to construct data in x which is equivalent to the data in y.
BUT, if x and y are identical, you must NOT delete x’s data structure, but instead should leave it unchanged.

Q2c [1 mark] __F__ T/F “Inherits from” and “has a” are the same concept.

Q2d [1 mark] __T__ T/F Multiple inheritance is supported in C++.

Q2e [2 mark] Explain the concept of a “pure virtual function” in C++. Give an example declaration of a pure virtual function.

Conceptually, a pure virtual function has a declaration (prototype) but not a body (implementation). A descendent (derived) class needs to provide the definition.
virtual void draw() = 0; // One possible example
Question 3 [8 marks]:

Q3a [2 marks]. Explain the concept and implications of an “abstract class” in C++

In C++ an abstract class is one that cannot be instantiated (objects of the class cannot be
created).

In C++ any class that contains a pure virtual function is an abstract class.

Q3b [2 marks]. Suppose parent class D has child class C as in the following code.

class D

{ ... virtual f (){ ... } ...};
class C : public D
{ ... virtual f (){ ... } ...};
// In main:
D * d;

d = new C();

d -> f();
Assuming f is virtual, explain how, at run-time, the proper function is located.
There is a “virtual function (method) table” (which can be accessed from the
object) (which contains the addresses of the various f’s).

The correct function to call is looked up in this table.

Q3c [4 marks]. Explain down-casting and up-casting. Give an example of each. Which is dangerous and why it is dangerous? Explain.

Suppose class P has child C..
P* p; C* c; … allocate an object of class C, located by p ...

p = new C;

… down-casting is when an object of base type P is treated as derived type C.

… up-casting is when object of derived type C is treated as of base type P

Down-casting is dangerous because the lower object (of class C) might not exist.
Upcasting is not dangerous.

Question 4 [5 marks]:

Q4a [1 mark] __F__ T/F Slicing is an efficient way to determine the type of an object at run-time.

Q4b [1 mark] __T__ T/F Templates are the mechanism used by C++ to implement generics.

Q4c [1 mark] __T__ T/F Separate compilation of template definition from declaration is not yet implemented in most compilers.

Q4d [2 marks] Consider the following code.

template <class T>

void swapValues (T& var1, T& var2)

{ T temp = var1;

 var1 = var2;

 var2 = temp;

}

… etc …

int a[20];

int b[20];

swapValues (a, b);

What is the result of this code (at compiler time and/or at run-time)?

This is rejected by the compiler (at compile time)..

The compiler determines that

swapValues (a, b);

is illegal, because because a and b, being arrays, cannot be assigned (and hence cannot
be swapped)
Question 5 [10 marks]:

Q5a [5 marks] Write a template function that returns the max (maximum) of 2 values. Separate the interface from the implementation of your template function. Give an example of invoking the max function with particular arguments.

template <class T> // 2 points
T max (T x, T y);

template <class T> // 2 points
T max (T x, T y)

{

if (x >= y)

return x;

else

return y;

// or shorten to return x >= y ? x : y;

}
…

// 1 point

 double x = max (1.0, 2.0); // Example use of max w/ particular args

Q5b [5 marks] Write the interface (not the implementation) for a template class for a stack of type T. Give an example of creating a particular stack S of strings and show the pushing string values “Hello” and “Jane” onto stack S.

// Be quite flexible about form of stack, as long as it has “push” and “pop” methods.
template <class T> // [2 points: form of template]

class stack

{

 vector<T> v; // Any way to represent the stack

public: // [2 points : declaring push and pop]

 void push (T t);

 T pop ();

};
… omitting implementation of stack …

// Pushing Hello and Jane onto stack

stack <string> S;

S.push ("Hello"); // [1 point]

S.push ("Jane");
Question 6 [9 marks]:

Q6a [4 marks] Write the implementation for a template class for a stack of type T.

// Ideally, follows directly from previous question [2 points for each of pop & push]
template <class T>

void stack<T>::push (T t)

{

v.push_back (t); // Allow any other reasonable impl of push

}

template <class T>

T stack<T>::pop ()

{

T tmp = v.at (v.size() - 1);

v.pop_back(); // Allow any other reasonable impl of push

return tmp;

}
Q6b [2 marks] What is a distributed object and why does it require special consideration when being assigned?

A distributed object has its data (partly) represented outside of the “frame” for the object, that is, the data is commonly stored in the heap.
Assignment (by default, a shallow copy) will not, by default, make a copy of the data, but will unfortunately share the data, so a change in y, after y = x, may also change x (and vice versa).
Q6c [3 marks] When are the 3 situations in which the compiler automatically invokes a copy constructor?

1) for value parameter
2) for return value

3) for initializing, as in T t(u), where u is of type T.

Question 7 [5 marks]:

Q7a [3 marks] Consider the following declaration.

struct node

{ string name;

 int age;

 node* next;

}

This node is used to construct a singly linked list. The head of the list is declared by:

node* head;

Assume that the head pointer has already been initialized. Write a function named add that takes a name and an age as arguments, and creates a node for them (and puts their values into the node). Then the function adds that node to the beginning of the list.

void add (string name, int age)
{

 node* p = new node; // 1 point

 p -> name = name; // 1 point

 p -> age = age; // 1 point

 p -> next = head; // 1 point

 head = p; // 1 point

}

Q7b [2 marks] A doubly linked list is handy in that a node can be removed (or added) without extra links to locate the next or previous nodes. However, such a list requires special handling when the node to be removed is at either end of the list. Explain how this special handling can be eliminated by a modification of way the list is constructed.
Use a dummy node that is never removed from the list. Then adding and removing nodes does not need to “special case” the situation at either end of the list.
Question 8 [8 marks]:

Q8a [2 marks] Describe an example class (or classes) in which it is important that the destructor should be virtual.

Class P has child C. A pointer p (declared to point to P) locates an object of child class C. If this object is deleted (using pointer p), we want to use C’s destructor, and so the destructor in P needs to be virtual so that will happen (so C’s destructor will be called)..
Q8b [2 marks] Consider a hash table that is used to store names (strings). Describe the best case and worst case situations with regard to how long it takes to look up a name in the hash table.

Best: Look up takes constant time, when each bucket contains at most one entry.
Worst: All elements go into same bucket. Lookup is O(n) where n is that number of elements in the bucket.(assuming constant time comparison of names).
Q8c [4 marks] Suppose that ds is a data structure (a container) that supports iterators. Sketch the typical pattern of using an iterator with a for loop to process each element in the container.

for (p = container.begin(); p != container.end; p++)
{

… handle item *p …

}
Question 9 [8 marks]:

Q9a [1 mark] __F__ T/F A stack is LIFO and a queue is FILO.

Q9b [2 marks] Suppose that T is a binary tree. Describe the properties that T must have to be a BST (Binary Search Tree).

1) Values in left subtree are less than (or equal to) value at root
2) Values in right “ “ more “ “ “ “ “ “ “

3) Same for all subtrees

Q9c [5 marks] Write a function that prints the nodes of a binary tree in Post Order.

The function uses the following node and root. Assume the tree has already been created.

{ string name;

 node* left;

 node* right;

};

node* root;

void printTree (node* root)

// Give answer here:

 if (root == NULL) // 2 point
 return;

 else

 {

 printTree (root -> left); // 1 point

 printTree (root -> right); // 1 point

 cout << root -> name; // 1 point

 }

}

Question 10 [8 marks]:

Q10a [4 marks] Write a function named avg that computes the average of N numbers (doubles) that are in an array parameter named A. If N zero or negative, your function will throw an exception which is caught in the same function with an appropriate error message and abort.

double avg (double A[], int N)

// Give body of function here

{ // Be flexible with reasonable solutions.
 try

 {

 if (N <= 0)

 throw (43); // Any value that signifies zero divide [1 point]

 double sum = 0;

 for (int i = 0; i < N; i++) [1 point]

 sum += A[i];

 return sum;
 }

 catch (int errorNumber) [1 point]
 {

cout << “ERROR: Divide by zero or neg\N”; // or to”cerr” [1 point]

exit (1); // Abort

 }

}
Q10b [1 mark] __F__ T/F A try-catch block cannot be nested in a try-catch block

Q10c [1 mark] __T__ T/F If an exception is thrown but never caught, then the default behavior is to end your program.

Q10d [2 marks] Some iterators are said to support “random access.” Explain what that means.

“Random access” means that program can access any element of the container, for example, element number 21 could be accessed without accessing the preceding elements (or the following elements).
Question 11 [6 marks]:

Q11a [2 marks] Very briefly describe an algorithm (an example of an algorithm) that is generic. Explain why it is generic.

A search (or sort) algorithm is generic, in that it does not depend upon the actual underlying data, except to know how to compare elements for “greater” (>) --- or for >=. In other words, the concept of searching can be applied across various types of data.
Q11b [1 mark] __F__ T/F It can be assumed that modifying a container object (such as adding an element) has no affect on iterators of the class.

Q11c [3 marks] Describe the adapter pattern. When is it used?

From course slides:
· You have an existing client (application) that uses an old interface to an existing support package.

· You are given a new interface.

· You need to to produce an adapter so that:

· The client can use the new interface instead of the old one (without changing the client)

Question 12 [7 marks]:

Q12a [4 marks] Describe the MVC (Model View Controller) pattern. When is it used?

From course slides:
· There is a model (subject) which can be thought of as the application [3 points]
· There are one or more views of the object (by observers) [2 points]
· There is a controller that mediates between the model and the view(s). [2 points]
Q12b [3 marks] Give the UML class diagram for the following C++ class.

Class TextBook
{

public:

 void putOnReserve();

 bool isInLibarry();

private:

 TextBook * next;

 string author;

 string publisher;

}

[1 point for each of the 2 parts]
Q13 [7 marks] Consider a trivial programming language whose syntax is as follows. (Note: The program does output when assigning to the variable “cout”, but you do not need to be concerned about this.)

Program ::= Assignments

Assignments ::= { ident “=” Expression “;” }

Expression ::= Term { (“+” | “-”) Term }

Term ::= Ident | Number | “(“ expression “)”

Using pseudo code, write the algorithm to check the syntax of this language. You can assume that scanning has already been done. You should not interpret but should just syntax-check the program.

[Essence is to have 1 function for each nonterminal: Program, Assignments, Expression & Term. Expression & Term recurse. Be flexible on form of (reasonable) pseudo code. 1 point for program function & 2 points for other 3 functions]
Program:

Assignments

Assignments:

While next token is “ident”

{

 Skip token

 Check for “=”

 Expression

 Check for “;”

}

Expression:

Term

While next token is “+” or “-“

{ Skip token

 Term

}

Term:

If next token is “ident” or “number” then

 Skip token

Else

{

Check for “(“

Expression

Check for “)”

}

Textbook

- next

- author

- publisher

+ putOnReserve

+ isInLibarry

PAGE
 Final

Page 1 of 14

