
Scalability of Continuous Active Learning for Reliable
High-Recall Text Classification

Gordon V. Cormack
University of Waterloo

gvcormac@uwaterloo.ca

Maura R. Grossman
Univerity of Waterloo

maura.grossman@uwaterloo.ca

ABSTRACT
For finite document collections, continuous active learning
(“CAL”) has been observed to achieve high recall with high
probability, at a labeling cost asymptotically proportional
to the number of relevant documents. As the size of the
collection increases, the number of relevant documents typ-
ically increases as well, thereby limiting the applicability of
CAL to low-prevalence high-stakes classes, such as evidence
in legal proceedings, or security threats, where human effort
proportional to the number of relevant documents is justi-
fied. We present a scalable version of CAL (“S-CAL”) that
requires O(logN) labeling effort and O(N logN) computa-
tional effort—where N is the number of unlabeled training
examples—to construct a classifier whose effectiveness for
a given labeling cost compares favorably with previously
reported methods. At the same time, S-CAL offers cali-
brated estimates of class prevalence, recall, and precision,
facilitating both threshold setting and determination of the
adequacy of the classifier.

Keywords: Technology-assisted review; TAR; predictive
coding; electronic discovery; eDiscovery; test collections; rel-
evance feedback; continuous active learning; CAL; text cat-
egorization; volume estimation.

1. INTRODUCTION
Continuous active learning (“CAL”) is a method designed

to address the technology-assisted review (“TAR”) problem,
which has as its objective, to find and review, in a finite
collection, as nearly all of the relevant documents as prac-
ticable, with the least possible effort [9]. The TREC 2015
Total Recall Track addressed the TAR problem, providing
as a “baseline model implementation” (“BMI”), a particu-
lar implementation of CAL [13, 29]. No system evaluated
by the Track substantially or reliably outperformed BMI,
which consistently achieved over 90% recall, across six col-
lections, with a labeling and review budget for each topic
equal to 2R+ 1000, where R is number of documents in the
collection that are relevant to the topic.
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In this study, we consider, for the first time, the scalabil-
ity of CAL to collections with D →∞ documents, of which
R = ρD are relevant, where ρ is the prevalence of relevant
documents. We are particularly concerned with topics hav-
ing low prevalence (ρ� 1), for which it is impractical to la-
bel a large enough random sample to be useful for supervised
learning, tuning, or validation. It may also be impractical
to label Θ(R) documents, as required for CAL.

Our solution, scalable continuous active learning (“S-
CAL”), uses a large, initially unlabeled training set, drawn
at random from a potentially infinite collection, and a syn-
thetic relevant document constructed from a query. Batches
of documents of exponentially increasing size are identified
using relevance feedback, and labels are requested for a finite
random sub-sample of each batch. The labeled examples
comprise a stratified statistical sample of the entire collec-
tion, which is used for training and estimation.

In the following sections, we detail S-CAL, and show its
running time to be O(N logN), and its labeling cost to be
O(logN), where N is the size of the unlabeled training set.
Using six large datasets, we evaluate the effectiveness of the
classifier and the accuracy of the estimates produced by S-
CAL, and we find that they comparable favorably to the
best available baselines.

2. MOTIVATING APPLICATION
The challenge of reliably and efficiently achieving high re-

call for large datasets is of critical importance, but has not
been well addressed in the literature. Within the context
of electronic discovery (“eDiscovery”) in legal matters, this
need has been particularly acute, as voiced by parties and
their counsel, technology providers, and the courts. Yet so-
lutions have remained elusive. In the absence of a viable so-
lution, parties have agreed—or been required—to undertake
burdensome protocols that offer little assurance of success.

In a case of first impression concerning the use of TAR
for document production in a legal matter [1], U.S. Mag-
istrate Judge Andrew J. Peck repeated his previously pub-
lished view [27] that:

[I]f the use of [TAR] is challenged in a case be-
fore me, I will want to know what was done and
why that produced defensible results. I may be
less interested in the science behind the “black
box” of the vendor’s software than in whether it
produced responsive documents with reasonably
high recall and high precision.

That may mean allowing the requesting party
to see the documents that were used to train



the computer-assisted coding system. (Counsel
would not be required to explain why they coded
documents as responsive or non-responsive, just
what the coding was.) Proof of a valid “process,”
including quality control testing, also will be im-
portant.

The protocol that was proposed by the parties and ordered
by the court in that case is prototypical:

1. An initial random sample of 2,399 documents1 (the
“seed set”) was used to train a classifier.

2. 4,000 additional documents identified through ad-hoc
searches (“judgmental sampling”) were added to the
seed set.

3. At least seven rounds of training were to be performed,
in which “senior attorneys (not paralegals, staff attor-
neys, or junior associates)”were required to review and
label “at least 500 documents from different concept
clusters to see if the computer is returning new rele-
vant documents.”

4. The rounds were to continue until “the computer” was
deemed, according to unspecified criteria, to be “well
trained and stable.”

5. A final validation sample (also of 2,399 documents)
would be taken from the “discards (i.e., documents
[classified] as non-relevant),” to estimate the number
of relevant documents that were missed.

Assuming at least seven rounds of training, the protocol
would entail the review of at least 12,298 documents, yet of-
fer no assurance of quality. For many of the topics evaluated
in the present study, a sample of size 2,399 would contain no
relevant documents, and hence offer negligible information
regarding the effectiveness of the classifier. Accordingly, one
would be left to rely on the “science behind the ‘black box.”’

Our study furthers such science by offering the following
protocol that, we demonstrate, reliably achieves high recall,
regardless of prevalence:

1. Using S-CAL to induce a scoring function S from a
random sample of N documents with sub-sample size
n, incurring a labeling effort of l documents. Appro-
priate choices might be N = 350, 000 and n = 30,
resulting in l = 2, 332.

2. Using the estimate of prevalence ρ̂ provided by S-CAL
to set the threshold t so that the classifier,

C(d) =

{
relevant [S(d) ≥ t]
nonrelevant [S(d) < t]

,

achieves a high recall target; e.g., r̂ecall = 0.9.

3. Using ρ̂ and r̂ecall, estimate precision p̂rec.

1Although a sample of size 2,399 yields an estimate of preva-
lence with a “95% confidence interval (plus or minus two
percent),” it does not, as widely misconstrued, yield such an
estimate of recall, or offer any insight into the effectiveness
of the classifier trained using such a sample.

4. If p̂rec is inadequate, one or more of: repeating steps
1 through 3 with a larger sub-sample size n; reducing
the recall target; revising the definition of relevance;
or discontinuing the review, on the grounds that the
value of the information sought is not proportionate to
the effort that would be required to find it.

3. RELATED WORK
The research literature on TAR is limited, due to its rela-

tively recent introduction as a method for eDiscovery (see [3,
4, 9, 10, 12, 13, 18, 25, 28, 30]). Some aspects of TAR have
been previously addressed within the context of information
retrieval (“IR”) evaluation, where the widely followed Cran-
field paradigm (see [38]) requires substantially complete la-
beling of an evaluation dataset (see [15, 31, 35, 37, 45]).
The same problem has been observed within the context of
systematic review in evidence-based medicine [22], but the
literature has limited discussion of technological solutions
to this problem [6, 40]. Spam filtering, threat detection,
privacy protection, audit, and investigative research reflect
other potential applications of TAR.

Most recently, the TREC 2015 Total Recall Track [29]
highlighted the TAR problem as a problem of interest in
its own right, inviting participants to find as many relevant
documents as possible—from datasets representing diverse
applications—with the minimum possible labeling effort.

Solutions to the TAR problem draw from research in IR
and machine learning, but at the same time, they have the
potential to contribute to IR and machine-learning research
by addressing a broader range of problems than just the
TAR problem per se. Our results not only advance the state
of the art in TAR, but also offer a novel approach to a more
general problem that has not been well studied: reliably
inducing a high-recall text classifier in a vast dataset, with
low class prevalence.

3.1 The TAR Problem
TAR lies at the cusp of IR and machine learning for text

categorization. TAR is similar to ad-hoc retrieval in that
the objective is to find documents to satisfy an informa-
tion need, given a query; however, the information need is
met only when substantially all of the relevant documents
have been retrieved. Accordingly, the TAR problem is one
of active transductive learning for classification over a finite
population, with an initially unlabeled training set consist-
ing of the entire population. While TAR methods typically
construct a sequence of classifiers, their ultimate objective is
to produce a finite list containing substantially all relevant
documents, not to induce a general classifier.

The most effective TAR method of which we are aware is
“AutoTAR” [13], a version of CAL that is fully autonomous,
in that it requires no topic- or dataset-specific tuning or ad-
justment of meta parameters. BMI2 implements AutoTAR,
as shown in Algorithm 1, except for its use of Sofia ML in-
stead of SVMlight as the base classifier. For the purpose of
this study, we found two aspects of BMI to be more suit-
able than AutoTAR: (i) BMI is distributed under an open-
source license; and (ii) BMI has O(N logN) running time.
To ensure that using BMI would not result in substantially
reduced effectiveness, we applied it to the same datasets for
which AutoTAR results have previously been reported [13].

2plg.uwaterloo.ca/~gvcormac/trecvm/.
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Algorithm 1 AutoTAR.

1: Find a relevant seed document using ad-hoc search, or
construct a synthetic relevant document from the topic
description.

2: The initial training set consists of the seed document
identified in step 1, labeled “relevant.”

3: Set the initial batch size B to 1.
4: Temporarily augment the training set by adding 100 ran-

dom documents from the collection, temporarily labeled
“not relevant.”

5: Construct a classifier from the training set.
6: Remove the random documents added in step 4.
7: Select the highest-scoring B that have not yet been re-

viewed.
8: Review the documents, labeling each as “relevant” or

“not relevant.”
9: Add the documents to the training set.

10: Increase B by
⌈
B
10

⌉
.

11: Repeat steps 4 through 10 until a sufficient number of
relevant documents have been reviewed.
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Figure 1: Sofia ML requires 90.6% as much effort
to achieve 75% recall as SVMlight. 95% confidence
limits (82.5% – 99.5%) shown in grey.

We found that BMI’s Sofia ML yielded a small but signifi-
cant improvement over AutoTAR’s SVMlight (Figure 1).

The TREC 2015 Total Recall Track [29] evaluated partici-
pating systems primarily in terms of the recall they achieved
as a function of review effort, which, for that task, was equiv-
alent to labeling effort. The principal evaluation measure
was recall for review effort aR+ b, where a represents effort
proportional to the number of relevant documents, and b
represents fixed overhead. The TREC 2015 proceedings re-
port all combinations of a ∈ {1, 2, 4} and b ∈ {0, 100, 1000}.
In Table 1, we reproduce the results for BMI and the best
non-BMI run, where a = 2 and b = 1000, which might rep-
resent reasonable effort to find substantially all instances of
a high-value class.

Recall at effort aR + b, even if known to be high for rea-
sonable values of a and b, offers little guidance as to when to
terminate a particular review effort. If R were known, and
the TAR method were known to achieve suitably high recall
for certain a and b, it would be a simple matter to continue
the review until aR + b documents had been retrieved and

Collection BMI Best Non-BMI Run
athome1 0.956 0.952 TUW (automatic)
athome2 0.940 0.959 WaterlooClarke (automatic)
athome3 0.943 0.963 eDiscoveryTeam (manual)
MIMIC 0.969 0.973 WaterlooClarke (automatic)
Kaine 0.913 0.913 WaterlooClarke (automatic)

Table 1: TREC 2015 Total Recall Results: Recall for
effort 2R + 1000, where effort is the number of doc-
uments reviewed, and R is the number of relevant
documents in the collection.

Collection R WC Method Best Non-WC
athome1 4,398 0.948 (7,905) 0.927 (6,229)†
athome2 2,001 0.966 (10,473) 0.923 (3,665+683)*
athome3 643 0.953 (3,305) 0.970 (9,124)†
MIMIC 7,794 0.800 (10,624) 0.489 (4,905)†
Kaine 83,060 0.808 (83,053) 0.921 (114,895)†

Table 2: TREC 2015 Total Recall Results: Number
of relevant documents (R), average recall, and aver-
age review effort (in parentheses) for different col-
lections and review termination strategies. “WC” is
the authors’ WaterlooCormack system; (†) indicates
the UVA-ILPS automatic method; (*) indicates the
eDiscoveryTeam manual method.

reviewed. But R is generally unknown, unless additional ef-
fort is incurred to label a statistical sample from which R,
recall, and other effectiveness measures, may be estimated
(see [4]).

To test various strategies for determining when to ter-
minate the review, TREC 2015 participants were invited
to “call their shot”; that is, to indicate when they would
have stopped their review to optimize various criteria, with-
out actually stopping. Three target criteria were identified:
70% recall, 80% recall, and “reasonable and proportionate,”
which participants were free to interpret as they chose, but
was intended to reflect a judgement call about when further
improvement in recall would no longer be justified by the
amount of effort necessary to achieve it. To our knowledge,
no participating team made a bona fide effort to quantify
recall; in our TREC 2015 submission, we simply treated the
three target criteria as three interpretations of “reasonable
and proportionate,” with increasing emphasis on high recall
at the expense of greater review effort. Table 2 shows the re-
sults for a non-statistical method we employed for stopping
[11]: The review terminates when 1.2R̂ + 2399 documents

have been retrieved, where R̂ is the number relevant among
those retrieved. Table 2 compares this stopping criterion
to the best competing result for each TREC 2015 dataset.
Since TREC 2015, we have reported additional statistical
and non-statistical stopping methods [8].

3.2 Text Categorization
The application of supervised machine learning to text

categorization has been well studied [33], typically with
small datasets that are split into training and holdout test
sets (e.g., Reuters 21578,3 20 Newsgroups4), often exclud-
ing classes with low prevalence. Empirical work with large

3www.daviddlewis.com/resources/testcollections/.
4qwone.com/~jason/20Newsgroups/.
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datasets has primarily focused on multi-label categorization,
where the objective is to label a dataset with respect to a
large number of generic categories, not to achieve high recall
for specific information needs (see [17, 26, 44]).

Perhaps the most suitable dataset for which a state-of-
the-art baseline result is available is the Reuters RCV1-v2
Dataset [24], containing 803,414 news articles. Although the
103 subject categories are generic, they are sufficiently well
defined and accurately labeled to serve as information needs.
Lewis et al. [24] created the “LYRL2004” split, consisting of
a training set of 23,149 documents, and an evaluation set
of 781,265 documents, where the documents in the training
set chronologically precede the documents in the evaluation
set. Only 101 of the 103 subject categories are represented
in the LYRL2004 training set. In the overall dataset, the
prevalence of these 101 categories ranges from 6 · 10−5 ≤
ρ ≤ 5 · 10−1.

Lewis et al. reported that SVMlight achieved a macro-
averaged F1 score of 0.619, using the LYRL2004 split. We
reproduced this result, achieving F1 = 0.620, using the same
version and configuration of SVMlight, the feature set com-
puted by BMI, and a threshold setting that retrieved ρ̂N
documents from the evaluation set, where ρ̂ was the preva-
lence of relevant documents in the training set, and N was
the size of the evaluation set. We have conducted a thor-
ough literature search and found no superior result for this
dataset.

Neither did our literature search find empirical results ad-
dressing the problem of reliably inducing a high-recall text
classifier in a vast dataset, with low class prevalence. Bottou
and Bousquet [5] consider the computational efficiency—but
not the labeling efficiency—of inducing text classifiers with
large training sets, using only the single highest-prevalence
topic from RCV1 (CCAT, ρ ≈ 0.5).

3.3 Active Learning
The property that distinguishes active learning from su-

pervised learning is that with active learning, the algorithm
is able to choose the documents from which it learns (see
[34]). In a pool-based setting, which is the subject of our in-
terest, the algorithm has access to a large pool of unlabeled
examples, and requests labels for some of them. The size of
the pool is limited by the computational effort necessary to
process it, while the number of documents for which labels
are requested is limited by the human effort required to label
them. In their seminal work, Lewis and Gale [23] compared
three strategies for requesting labels: random sampling, rele-
vance sampling, and uncertainty sampling, concluding that,
for a fixed labeling budget, uncertainty sampling generally
yields a superior classifier. At the same time, however,
uncertainty sampling offers no guarantee of effectiveness,
and may converge to a sub-optimal classifier. Subsequent
research in pool-based active learning has largely focused
on methods inspired by uncertainty sampling, which seek
to minimize classification error by requesting labels for the
most informative examples (see [20, 34]). Over and above
the problem of determining the most informative examples,
the computational cost of selecting examples and re-training
the classifier is of concern, motivating research into more ef-
ficient algorithms and batch learning methods [5, 7, 16, 21,
36, 43].

The Active Learning Challenge [20] employed 12 datasets,
which continue to be available for on-line testing. Two of

Algorithm 2 Scalable Continuous Active Learning.

1: Find a relevant seed document using ad-hoc search, or
construct a synthetic relevant document from the topic
description.

2: The initial training set consists of the seed docrecaument
identified in step 1, labeled “relevant.”

3: Draw a large uniform random sample U of size N from
the document population.

4: Select a sub-sample size n.
5: Set the initial batch size B to 1.
6: Set R̂ to 0.
7: Temporarily augment the training set by adding 100 ran-

dom documents from the U , temporarily labeled “not
relevant.”

8: Construct a classifier from the training set.
9: Remove the random documents added in step 7.

10: Select the highest-scoring B documents from U .
11: If R̂ = 1 or B ≤ n, let b = B; otherwise let b = n.
12: Draw a random sub-sample of size b from the B docu-

ments.
13: Review the sub-sample, labeling each as “relevant” or

“not relevant.”
14: Add the labeled sub-sample to the training set.
15: Remove the B documents from U .
16: Add r·B

b
to R̂, where r is the number of relevant docu-

ments in the sub-sample.
17: Increase B by

⌈
B
10

⌉
.

18: Repeat steps 7 through 16 until U is exhausted.
19: Train the final classifier on all labeled documents.
20: Estimate ρ̂ = 1.05R̂

N
.

these datasets, “NOVA” and “D,” represent text datasets
with 19,466 and 20,000 documents, respectively, reduced to
binary feature vectors. Labels are available via an on-line
server for half of the documents; labels are withheld for the
other half, so as to facilitate evaluation of submitted classifi-
cation results, reported as area under the receiver operating
characteristic curve (“AUC”), and area under the learning
curve (“ALC”). ALC summarizes improvement in AUC as a
function of labeling effort. AUC is a measure of the overall
quality of the ranking effected by the classifier; like the 2015
Total Recall Track’s aR + b measure, it does not shed light
on where the most appropriate cut should be made to dis-
criminate between relevant and non-relevant documents. As
a consequence, the results do not show whether or not any
competing method reliably achieves high recall with limited
labeling effort.

Our literature search also failed to identify empirical re-
sults applying active learning to the problem of reliably in-
ducing a high-recall text classifier in a vast dataset. Vla-
chos, for example [36], considers the problem of when to
stop active learning so as to optimize F1, using only the
highest-prevalence CCAT topic of RCV1. Vlachos does not
consider the problem of achieving high recall, or of calcu-
lating calibrated estimates of recall, precision, or F1. Yang
et al. [44] present the results of applying active learning
for multi-label classification to only a small sample (3,000
documents) of the RCV1-v2 dataset. All of the results re-
vealed by our search used a small collection and/or a small
number of high-prevalence topics, and did not consider the
problems of achieving high recall or a calibrated estimate of
effectiveness.
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Dataset Source Description # Docs. # Train # Test Topics ρ

RCV1-v2 Reuters News articles 804,414 758,116 23,149 101 6 · 10−6 ∼ 5 · 10−1

AQUAINT TREC 2005 Robust News articles 1,033,461 750,000 283,461 50 2 · 10−5 ∼ 4 · 10−4

athome1

TREC 2015 Total Recall

Jeb Bush email 290,000 not split 10 8 · 10−4 ∼ 6 · 10−2

athome2 Hacker forums 465,147 not split 10 4 · 10−4 ∼ 2 · 10−2

athome3 Local news 902,434 not split 10 3 · 10−5 ∼ 2 · 10−3

MIMIC Clinical records 31,538 not split 19 6 · 10−3 ∼ 6 · 10−1

Table 3: The six evaluation collections used in this study.

3.4 Electronic Discovery
In eDiscovery, statistical estimation is a subject of great

interest, both for determining when the classifier is “well
trained and stable,” and for determining whether or not the
final classifier has achieved sufficiently high recall. Ravid
[28] describes the use of a random holdout set (which has
come to be known in the legal community as a“control set”),
that is used to estimate F1 for successive classifiers, deeming
“stabilization” to have occurred when the estimate improves
insubstantially from one round to the next. The control
set is drawn and labeled incrementally, until it contains at
least k relevant documents. These k documents form an
unbiased random sample of the population of relevant doc-
uments, from which recall may be estimated; however, in
order to draw a control set with k relevant documents, it is
necessary to draw and label about k

ρ
documents from the

population at large. Assuming k = 20 (the “basic” level of
quality control proposed by Ravid), drawing a control set
would require an average labeling effort of 9,949 documents
for each of the 101 RCV1-v2 subject categories, and 298,588
documents for the 50 TREC 2005 Robust topics used in
our experiments (see Table 3 and Section 5). The superior,
“statistical” level of quality control, for which k = 70, would
require 3.5 times as much effort (subject to an upper bound
of the size of the dataset, if it contains fewer than k rele-
vant documents). An even higher level of k = 385 has been
proposed as a general requirement, and adopted in at least
one legal proceeding [2], because it permits the estimation of
recall with a margin of error of ±0.05, with 95% confidence.

Webber et al. [42] show that the use of a control set
amounts to an invalid sequential-testing protocol that results
in premature termination, and suggest empirical methods
to compensate. Bagdouri et al. [4] consider how to divide
a fixed labeling budget between training, and sampling for
the purpose of a one-shot “certification” test.

Some have argued that the limitations of sampling pre-
clude the application of TAR when prevalence is low, and
that one must ensure high prevalence by carefully target-
ing the collection, or by culling the collection using ad-hoc
strategies [32] (but see [19]). Webber [41] discusses approx-
imate recall estimators that, while more label-efficient than
the methods described above, require extensive labeling ef-
fort for small ρ.

In a recent article [8], we describe methods to reliably de-
termine when BMI has achieved high recall. One method
offers a statistical guarantee of reliably high recall based
on a sample of k = 10 relevant documents, therefore (like
the methods described above) entailing Ω(ρ−1) labeling ef-
fort. Another approach offers an empirically reliable method
based on finding a “knee” in the gain curve representing re-
call as a function of cumulative effort. Both methods are
specific to the TAR problem, in that they involve human

review of every document that the classifier deems relevant,
incurring Ω(R) labeling effort, where R is the number of
relevant documents.

The work presented here is distinguished from our pre-
vious work in that, while providing a statistical estimate,
it uses a different approach that requires o(ρ−1), and o(R),
labeling effort. That is, it requires the review of asymptot-
ically fewer documents than estimation using random sam-
pling, and asymptotically fewer documents than CAL, which
requires the review of every retrieved relevant document.

4. SCALABLE CAL
The essential difference between S-CAL (Algorithm 2) and

CAL (Algorithm 1) is that for S-CAL, only a finite sample
of documents from each successive batch is selected for la-
beling, and the process continues until the collection—or a
large random sample of the collection—is exhausted. To-
gether, the finite samples form a stratified sample of the
document population, from which a statistical estimate of ρ
may be derived. While an estimate of proportion using the
Horvitz-Thompson estimator would be unbiased, in that it
would yield the true proportion on average, it would almost
always yield an underestimate due to the sparsity of some
of the sub-samples. For practical purposes, we find that
a small positive bias, as in line 20 of Algorithm 2, nearly
always yields a more accurate estimate.

The estimate of prevalence ρ̂ is used to determine the
threshold setting for a given target measure. We illustrate
the process for two targets: a 90% recall floor, and maximal
F1. To achieve at least 90% recall in a sample of N docu-
ments, it is necessary to retrieve 0.9ρN relevant documents.
To accomplish this, it is necessary to estimate the minimal
m such that 0.9ρN of the m top-ranked documents are rel-
evant. Given m, we estimate the threshold setting t such
that m of the N documents achieve a classifier score of t or
greater. Assuming the various estimates to be accurate, any
relevant document in the population will, with 90% proba-
bility, achieve a classifier score of t or greater. To maximize
F1, we observe that the maximum generally occurs near the
estimated recall-precision break-even point, where m = ρ̂N .
Given m, the threshold setting t is determined as described
above.

Let U0, U1, . . . Uk be the values of U for successive steps
of Algorithm 2. Let R̂0, R̂1, . . . R̂k be the corresponding
values of R̂, and S0, S1, . . . Sk be the scoring functions of the
corresponding classifiers. Let Sk+1 be the scoring function of
the final classifier, and let ρ̂ be the final prevalence estimate.
To target 90% recall, consider the smallest j such that R̂j ≥
0.9ρ̂N . To target maximal F1, consider the smallest j such
that N − |Uj | ≥ ρ̂N . In either case, m = N − |Uj |. Let

- 5 -



N n
(
ρ̂−ρ
ρ

)
Effort Recall Prec. F1

23,149 10 2308. (S.D. 8243.) 809 0.88 0.31 0.41
23,149 30 2111. (S.D. 6290.) 1,766 0.90 0.34 0.44
23,149 100 2208. (S.D. 6999.) 4,374 0.91 0.37 0.47
23,149 300 2110. (S.D. 6413.) 9,577 0.91 0.38 0.47

129,151 10 -0.033 (S.D. 0.201) 766 0.87 0.35 0.45
129,151 30 -0.010 (S.D. 0.117) 2,092 0.91 0.37 0.47
129,151 100 -0.017 (S.D. 0.058) 5,986 0.92 0.40 0.50
129,151 300 -0.014 (S.D. 0.053) 14,841 0.92 0.43 0.53
758,116 10 -0.005 (S.D. 0.146) 945 0.88 0.32 0.42
758,116 30 -0.010 (S.D. 0.102) 2,632 0.91 0.36 0.46
758,116 100 -0.014 (S.D. 0.044) 7,786 0.91 0.41 0.51
758,116 300 -0.010 (S.D. 0.018) 20,241 0.92 0.45 0.55

Table 4: Results on RCV1-v2 collection. Average effort, recall, precision, F1, and prevalence error ( ρ̂−ρ
ρ

); 101

RCV1-v2 subjects; 90% recall target.

N n
(
ρ̂−ρ
ρ

)
Effort Recall Prec. F1 ∆F1 vs. Baseline

23,149 10 2308. (S.D. 8243.) 809 0.62 0.59 0.59 −.08 (p < 0.00001)
23,149 30 2111. (S.D. 6290.) 1,766 0.62 0.65 0.61 −0.6 (p < 0.00001)
23,149 100 2208. (S.D. 6999.) 4,374 0.55 0.71 0.59 −0.8 (p < 0.00001)
23,149 300 2110. (S.D. 6413.) 9,577 0.52 0.72 0.58 −0.9 (p < 0.00001)

129,151 10 -0.033 (S.D. 0.201) 766 0.65 0.63 0.63 −.04 (p < 0.01)
129,151 30 -0.010 (S.D. 0.117) 2,092 0.69 0.67 0.68 +.01
129,151 100 -0.017 (S.D. 0.058) 5,986 0.68 0.71 0.69 +.02
129,151 300 -0.014 (S.D. 0.053) 14,841 0.67 0.73 0.69 +.02 (p < 0.01)
758,116 10 -0.005 (S.D. 0.146) 945 0.66 0.63 0.64 −.03 (p < 0.01)
758,116 30 -0.010 (S.D. 0.102) 2,632 0.69 0.67 0.68 +.01
758,116 100 -0.014 (S.D. 0.044) 7,786 0.72 0.71 0.71 +.04 (p < 0.00001)
758,116 300 -0.010 (S.D. 0.018) 20,241 0.72 0.71 0.71 +.04 (p < 0.00001)

Table 5: Results on RCV1-v2 collection. Average effort, recall, precision, F1, and prevalence error ( ρ̂−ρ
ρ

);

101 RCV1-v2 subjects; maximal F1 target. ∆F1 indicates the difference from the SVMlight result with 23,149
random training examples; p-values computed using paired t-test, shown where (p < 0.05).

t = max
d∈U0\Uj

Sj(d). The final binary classifier is:

C(d) =

{
relevant [Sk+1(d) ≥ t]
nonrelevant [Sk+1(d) < t]

.

Two aspects of this calculation are conservative in that
they likely yield slightly higher recall, and hence slightly
lower F1, than intended. First, the only threshold values
that are considered coincide with the labeling of a complete
batch, although the optimal cutoff might be in the middle
of a batch. Second, a sequence of intermediate classifiers,
rather than the final classifier, is used to determine the rank-
ing for which the threshold is derived. We would expect the
intermediate classifiers—whose use is occasioned by the need
to avoid using documents for both training and estimation—
would yield a slightly inferior ranking, and therefore a higher
threshold t than optimal for the final classifier.

5. EXPERIMENT
We applied S-CAL to 101 RCV1-v2 subject categories,

configured to target 90% recall, and also configured to tar-
get maximal F1. To test the transferability of our results,
we also applied S-CAL to the 50 topics of the TREC 2005
Robust Track [39]. To test the applicability of our results

to the TAR problem, we also applied S-CAL, configured
to target 90% recall, to four of the five collections used in
the TREC 2015 Total Recall Track [29]; the fifth collection
(Kaine) was not used because it is non-public, and therefore
was not available to us.

Statistics for the datasets are shown in Table 3. For
RCV1-v2, we used only the 781,265 LYRL2004 “test doc-
uments” as our universe, which we split randomly into a
training set of 758,116 documents, and a hold-out test set
of 23,149 documents. We excluded the LYRL2004 “training
documents” in order to control for the effect of their non-
random selection when comparing our results to the base-
line of Lewis et al. [24]. We used the AQUAINT dataset
from the TREC 2005 Robust Track—a large labeled collec-
tion with low-prevalence topics—with a random split. We
did not split the Total Recall datasets into training and test
sets, so as to model the TAR problem, comparing our results
to those achieved at TREC 2015.

We did no tuning based on these datasets. The only pa-
rameters of our method (beyond those embodied in BMI,
which we used without modification) are: the positive bias
factor of 1.05 that we used in our calculation of ρ̂; the size
N of the unlabeled training sample U ; and, the sub-sample
size limit n. The choice of bias factor was informed by our
prior research [14] into the effectiveness of statistical esti-
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N n
(
ρ̂−ρ
ρ

)
Effort Target Recall Prec. F1

750,000 30 0.028 (S.D. 0.169) 2,642
90% Recall 0.92 0.17 0.26

Max. F1 0.57 0.70 0.61

Table 6: Results on TREC 2005 Robust Track collection. Average effort, recall, precision, F1, and prevalence
error ( ρ̂−ρ

ρ
); 50 topics; 90% recall and maximal F1 targets.

S-CAL WaterlooCormack (TREC 2015)

Dataset N n
(
ρ̂−ρ
ρ

)
Efforttrain Effortoverall Recall Effortoverall Recall

athome1 290,099 30 0.025 (S.D. 0.042) 2,332 9,504 0.90 7,905 0.95
athome2 460,881 30 0.033 (S.D. 0.050) 2,482 7,128 0.93 10,473 0.97
athome3 902,434 30 0.045 (S.D. 0.023) 2,662 3,160 0.94 3,305 0.95
MIMIC 31,174 30 0.042 (S.D. 0.040) 1,642 15,786 0.90 10,624 0.80

Table 7: Results on four TREC 2015 Total Recall collections. Transductive average recall, training effort,
overall effort, and prevalence error ( ρ̂−ρ

ρ
); 49 topics over 4 datasets; 90% recall target. These results may be

compared to the WaterlooCormack 2015 TREC results reproduced from Table 2.
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Figure 2: Plots showing per-topic recall and preci-
sion for the RCV1-v2 collection, N = 758116, n = 30.

mates for IR evaluation. For RCV1-v2, we tested three val-
ues of N in geometric progression, from 23,149 (the size
of the LYRL2004 training set) through 758,116 (the maxi-
mum possible). For RCV1-v2, we used four values of n in
approximate geometric progression, from n = 10, which en-
tails labeling effort on the order of 1,000 documents, through
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Figure 3: Plots showing per-topic recall and preci-
sion for the RCV1-v2 collection, N = 758116, n = 300.

n = 300, which entails labeling effort on the order of 20,000
documents—similar to the size of the LYRL2004 training
set. For the other datasets, we conducted only one experi-
ment, using the maximum possible N , and n = 30.

The results for 101 RCV1-v2 topics are summarized in
Tables 4 and 5, and Figures 2 and 3. Table 4 shows, for the
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Figure 4: Plots showing per-topic recall and pre-
cision for the TREC 2005 Robust Track collection,
N = 750000, n = 30.

parameter combinations described above, the average effort,
ρ̂ estimation error, recall, precision, and F1 achieved when
the threshold t is chosen to target 90% recall. Table 5 shows
the same measures when t is chosen to optimize F1. All com-
binations of N and n achieve what appear to be reasonable
results for recall and F1, although combinations involving
the smallest value of N or n are inferior. ρ̂ estimation er-
ror appears reasonable for N = 129, 151 and N = 758, 116,
but unreasonably large for N = 23, 149, due to a handful of
extreme outliers.

Figures 2 and 3 show the recall and precision achieved for
each individual topic for the largest N , ordered by preva-
lence. Figure 2 reflects n = 30, while Figure 3 reflects
n = 300. The results in the top panels target 90% recall; the
results in the bottom panels target maximal F1. Both con-
figurations appear to yield generally consistent results for
both targets; the larger value of n achieves higher consis-
tency, and higher precision, at the expense of substantially
higher labeling effort.

Overall, the RCV1-v2 results suggest that it is beneficial
to make N as large as possible, and to choose n to bal-
ance classifier effectiveness with labeling effort. When the
90% recall target is chosen, that target is generally met, on
average, so improved effectiveness is reflected in lower vari-
ance and improved precision; when the maximal F1 target is

chosen, improved effectiveness is reflected in lower variance,
improved precision, and improved recall.

While most of the F1 scores reported in Table 2 are nu-
merically greater than the F1 = 0.619 reported by Lewis
et al. [24], the scores are incomparable because the latter
used the LYRL2004 training set, which is not a sample of
the same population as the test set. Moreover, our test set
was a much smaller sample of the LYRL2004 test set, which
could result in chance differences. To adjust for these dif-
ferences, we first ran SVMlight on the LYRL2004 split, and
observed F1 = 0.620, thus confirming that our implemen-
tation was comparable to Lewis et al.’s. We then trained
the same implementation using our N = 23, 149 training
sample, and evaluated it using our test set, both of which
contained 23,149 documents drawn from the LYRL2004 test
set. The resulting F1 score was 0.669, which we used as
our baseline. Table 5 shows the difference between our F1

results and 0.669, and the p-value resulting from a paired
t-test.

The 2005 Robust Track and 2015 Total Recall experiments
were configured with knowledge of the RCV1-v2 results. For
both experiments, we predicted that the maximum possible
N , and n = 30 would yield a reasonable compromise between
effectiveness and labeling effort.

Summary results for the 50 TREC 2005 Robust Track
topics and AQUAINT dataset are shown in Table 6. ρ̂ error
is positive and somewhat larger in magnitude, with larger
variance than for the RCV1-v2 dataset, perhaps due to the
preponderance of low-prevalence topics. The 90% recall tar-
get was exceeded, on average, and a maximum F1 score of
0.61 appears adequate, notwithstanding the lack of an avail-
able baseline against which to compare. Per-topic results
are shown in Figure 4.

Our final experiment departs from inductive classification
to test the use of S-CAL for TAR. In the first phase, S-CAL
is used to induce a classifier, using the entire collection as a
training set. The classifier is then applied to the same collec-
tion, and any documents classified relevant but not labeled
during the training process are retrieved. Gain is measured
by recall; cost is the total number of documents retrieved,
whether by the training process or by the final classifier.
Table 7 shows the results on four of the TREC 2015 Total
Recall datasets. The recall target of 90% is achieved, on
average, for all datasets, but surpassed by the WaterlooCor-
mack 2015 TREC submission for three of the datasets. For
the fourth dataset, S-CAL achieves 90% recall compared to
WaterlooCormack’s 80%, at the cost of 50% more effort.

All experiments except MIMIC were run on a shared
server with AMD Opteron 6274 processors having a total of
64 cores. The BMI feature extraction step was done once,
and all topics were run in parallel. Only the TREC 2005 Ro-
bust Track experiments were conducted at a time when the
server was lightly loaded. Featurization of the AQUAINT
dataset took 1 hour, 9 minutes; the 50 topics were run con-
currently, with a total elapsed time of 5 hours, 1 minute.
Running times for RCV1-v2 were comparable: feature ex-
traction took about one hour, and the 101 topics were run
concurrently in about seven hours. We were unable to re-
cover the feature-extraction times for the Total Recall runs.
The 49 topics were started concurrently: The athome1 top-
ics were completed in 1 hour, 8 minutes; the athome2 topics
were completed in 1 hour 46 minutes; the athome3 topics
were completed in 5 hours, 23 minutes. The MIMIC topics,
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which were run on an AMD FX-8320 eight-core processor,
were completed in 35 minutes.

6. DISCUSSION
The rationale for S-CAL is outlined in the following steps:

1. A näıve approach to constructing an amenable training
set for supervised learning would be to:

(a) draw a random sample of N documents,

(b) use CAL to find and label nearly all relevant doc-
uments in the sample,

(c) presumptively label the remaining documents as
“non-relevant.”

2. Labeling effort for the näıve approach is proportional
to ρN , but ρ is unknown.

3. If ρ ≈ 0,

(a) we can afford to label ρN documents for very
large N ,

(b) we require very large N to have sufficient positive
training examples to yield an effective classifier,

(c) the initial batches with size B ≤ n will likely con-
tain sufficient positive training examples,

(d) samples of later batches with size B > n will con-
tain representative negative training examples.

4. If ρ� 0,

(a) we cannot afford to label ρN documents,

(b) a sample of the ρN relevant documents is suffi-
cient to yield an effective classifier,

(c) the initial batches with size B ≤ n will contain
only the most likely relevant positive training ex-
amples,

(d) samples of later batches with size B > n will con-
tain representative less-likely relevant positive ex-
amples, as well as representative negative exam-
ples.

5. In either case, the labeled documents form a stratified
sample, from which ρ can be estimated.

6. The sequence of classifiers constructed by S-CAL can
be used as a surrogate to estimate the effectiveness
of the final classifier by employing the classifier con-
structed in round k to predict the labels of the docu-
ments sampled in round k + 1.

7. Given an estimate of ρ, and an estimate of classifier ef-
fectiveness, the threshold t may be chosen to optimize
a target measure.

While our empirical results indicate that S-CAL solves a vex-
ing problem that has eluded many—including the authors—
for years, it is not magic. If we demand 90% recall for a topic
that cannot be classified, extremely low precision will result.
If we demand optimal F1, extremely low (but near-optimal)
F1 will ensue. Our results, combined with the existing body

of results for CAL [9, 10, 13, 29], suggest that, for well-
defined topics, CAL—and hence S-CAL—can achieve supe-
rior results. Further characterizing what is meant by “well-
defined topics” remains an avenue for further investigation.

An important benefit of S-CAL is predictability. For a
fixed labeling budget, S-CAL offers not only an effective clas-
sifier, but also calibrated estimates of prevalence, recall, and
precision. The estimate of precision can in turn be used to
estimate the overall labeling effort if, in addressing the TAR
problem, it will be necessary to label all positively classified
documents. This—or other cost/benefit measures—may be
calculated in support of scheduling, resource allocation, and
the decision of whether to proceed, to revise the problem,
or to seek a better classifier.

A number of our design choices are worthy of further in-
vestigation. The limit n on sub-sample size b need not be a
constant, and indeed is not a constant in our implementa-
tion: When R̂ = 0, we allow b to grow beyond n to handle
the pathological case in which the classifier fails to find any
relevant documents in the first several batches. b could be
a more complex function of R̂, or n could shrink or grow in
each iteration, rather than remaining constant. Any expo-
nential growth rate will be efficient, so long as it is smaller
than the 10% growth rate of B. More complex distributions
might be used to determine the sampling rate.

We chose to use relevance sampling because it worked well
for CAL. Algorithm 2 could be adapted to select documents
in a different order, perhaps to prefer the most informative
examples, as in uncertainty sampling. However, it is not
immediately obvious how to set the threshold based on the
resulting sequence of classifiers.

Instead of establishing a fixed labeling budget and pro-
ceeding through the documents in order of likely relevance,
an incremental version of S-CAL might be designed to label
as many documents as necessary to achieve an effectiveness
target. Also of interest would be an on-line version of S-
CAL, in which a stream of examples is presented to—rather
than selected by—the algorithm, which must choose whether
to label them or not.

There is a paucity of published baseline results for large-
scale high-recall text classification, and for active learning in
particular. We suggest that the test collections we have used
here—Reuters RCV1-v2, TREC 2005 Robust, and TREC
2015 Total Recall—should be adopted as standard bench-
marks for future investigations, with our BMI implementa-
tion of S-CAL as a baseline.
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