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ABSTRACT
The objective of technology-assisted review (“TAR”) is to
find as much relevant information as possible with reason-
able effort. Quality is a measure of the extent to which
a TAR method achieves this objective, while reliability is a
measure of how consistently it achieves an acceptable result.
We are concerned with how to define, measure, and achieve
high quality and high reliability in TAR. When quality is
defined using the traditional goal-post method of specifying
a minimum acceptable recall threshold, the quality and reli-
ability of a TAR method are both, by definition, equal to the
probability of achieving the threshold. Assuming this defini-
tion of quality and reliability, we show how to augment any
TAR method to achieve guaranteed reliability, for a quan-
tifiable level of additional review effort. We demonstrate
this result by augmenting the TAR method supplied as the
baseline model implementation for the TREC 2015 Total
Recall Track, measuring reliability and effort for 555 top-
ics from eight test collections. While our empirical results
corroborate our claim of guaranteed reliability, we observe
that the augmentation strategy may entail disproportionate
effort, especially when the number of relevant documents is
low. To address this limitation, we propose stopping criteria
for the model implementation that may be applied with no
additional review effort, while achieving empirical reliability
that compares favorably to the provably reliable method.
We further argue that optimizing reliability according to
the traditional goal-post method is inconsistent with certain
subjective aspects of quality, and that optimizing a Taguchi
quality loss function may be more apt.

Keywords: Technology-assisted review; predictive coding;
electronic discovery; e-discovery; test collections; relevance
feedback; continuous active learning; reliability; quality; sys-
tematic review.
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1. INTRODUCTION
A vexing question that has plagued the use of technology-

assisted review (“TAR”) is “when to stop”; that is, know-
ing when as much relevant information as possible has been
found, with reasonable effort. We present a provably reli-
able method to achieve high recall using any search strategy
that repeatedly retrieves documents and receives relevance
feedback, continuing indefinitely until a decision is made to
discontinue the review process. Amenable search strategies
include traditional ranked retrieval,1 interactive searching
and judging [8], move-to-front pooling [8], and continuos ac-
tive learning (“CAL”) [5].

For the particular implementation of CAL supplied as the
baseline model implementation (“BMI”) [7] for the TREC
2015 Total Recall Track [13], we present two stopping pro-
cedures that achieve superior empirical reliability for com-
parable effort, and comparable empirical reliability for less
effort, relative to our provably reliable method.

Our primary motivation is to provide quality assurance
for TAR applications, including electronic discovery (“eDis-
covery”) in legal matters [5], systematic review in evidence-
based medicine [10], and the creation of test collections for
information retrieval (“IR”) evaluation [14]. Since these ap-
plications generally require that a human review each rele-
vant document, we assume for this study that the effort to
provide relevance feedback for relevant documents is a sunk
cost. On the other hand, the effort to assess and provide rel-
evance feedback for non-relevant documents is wasted. We
measure review effort in terms of the total number of doc-
uments reviewed, whether relevant or not. An ideal search
would find all of the relevant documents with effort equal
to precisely that number. An acceptable search would find
most of the relevant documents with minimal wasted effort.

A reliable search method would achieve an acceptable
search most of the time. More formally, if S is a random
variable representing a search, and acceptable(s) is an indi-
cator function denoting whether a particular search s has an
acceptable result, we define:

reliability =def Pr[acceptable(S) = 1] .

To this end, we define recall(s) and effort(s) to be the recall
and effort associated with s. For simplicity, our primary

1To be amenable, a retrieval method must be able to rank
the entire collection. Incomplete rankings or set-based re-
sults may be extended by adding the remaining documents
in any order.



Collection Source Description # Docs # Topics # Rel (R)
At Home TREC 2015 Total Recall Jeb Bush public email 290,000 10 227-17,135
At Home TREC 2015 Total Recall Hacker forums 465,147 10 179-9,517
At Home TREC 2015 Total Recall Local news 902,434 10 23-2,094
Kaine TREC 2015 Total Recall Tim Kaine non-public email 401,953 4 14,341-166,118
MIMIC II TREC 2015 Total Recall MIMIC II Clinical Database 31,538 19 180-19,182
RCV1-v2 Reuters News subject categories 804,414 103 5-381,327
Filtering TREC 2012 Filtering NIST topics 804,414 50 12-610
Intersection TREC 2012 Filtering Conjunction of RCV1-v2 subject pairs 804,414 50 21-349
Robust-04 TREC 2004 Robust Amalgam of TREC ad-hoc topics 528,256 249 4-161
Robust-05 TREC 2005 Robust 50 legacy topics, new dataset 1,033,461 50 17-376

Table 1: Ten Evaluation Datasets. In our experiments, the three At Home datasets are treated as a single
test collection, for a total of eight test collections.

results use a goal-post definition [18] of acceptability:

acceptable(s) =

{
1 (recall(s) ≥ 0.70)

0 (recall(s) < 0.70)
.

Our primary results further assume that 95% reliability is
sufficiently high.

The methods and results detailed in this work are:

• The target method : a provably reliable method that
chooses ten random relevant documents as a target,
and employs an independent search method to retrieve
documents without knowledge of the target set, until
each document in the target set has been retrieved.
We prove that this method achieves 95% reliability for
a minimum threshold recall of 70%.

• The knee method : a geometric stopping procedure,
based on the shape of the gain (i.e., recall versus effort)
curve, that augments BMI to achieve similar empiri-
cal reliability to the target method, with substantially
less effort. The knee method, in contrast to the tar-
get method, is practical regardless of the number of
relevant documents in the collection.

• The budget method: a variant of the knee method
that achieves superior empirical reliability to the tar-
get method, with similar effort.

• Empirical validation: we assess the effectiveness and
reliability of our methods on eight archival test col-
lections consisting of 555 topics and 4.5 million docu-
ments (see Table 1).

• Quality evaluation: As an alternative to binary rel-
evance and fixed recall and reliability thresholds, we
argue and provide evidence that quality loss functions
[18] provide more nuanced measures that better reflect
the tensions among consistency, effectiveness, and effi-
ciency.

2. BACKGROUND
The modern literature on the effectiveness and reliabil-

ity of high-recall retrieval is largely confined to the problem
of constructing test collections for IR evaluation, and eDis-
covery in legal matters. A 1985 study by Blair and Maron
[2] showed that teams of lawyers and paralegals, using it-
erative Boolean searches, believed they had achieved 75%
recall, when in fact they had achieved 20%. Blair [3] later

described the difficulty of measuring high recall in general,
and the use of targeted searching, systematically constructed
Boolean queries, and stratified sampling to estimate recall
for the Blair and Maron study.

The Text Retrieval Conference (“TREC”) [21] first ad-
dressed the problem of IR evaluation for “large” datasets,
which at the time of TREC’s inception in 1992, contained
on the order of 500,000 documents. TREC follows the Cran-
field paradigm [20], which evaluates the results of subject
systems against a gold standard that identifies every relevant
document. For large datasets, the effort to render a human
assessment for each document is prohibitive, thus occasion-
ing the use of automated or semi-automated methods to
limit the human review effort required to label the dataset.
TREC saw the introduction of the “pooling method,” which
selects the top-ranked documents from a number of inde-
pendent retrieval efforts for assessment, and deems all other
documents to be non-relevant. A number of studies (see
[19]) indicate that this method fails to identify a substan-
tial number of documents, but even so, the resulting gold
standard yields a stable evaluation of the relative effective-
ness of candidate systems, as measured by Kendall’s τ rank
correlation. We are unaware of any studies that address
the effectiveness of pool-based gold standards for evaluating
high-recall retrieval, or for simulating interactive relevance
feedback. Studies suggest that greedy or machine-learning
methods to select the pool yield a more nearly complete gold
standard [8, 14].

Interactive searching and judging (“ISJ”), in which a
searcher repeatedly formulates queries and examines the top
results from a relevance-ranking search engine, has been
shown to yield gold standards with comparable quality to
the pooling method, with considerably less effort [8]. Con-
tinuous active learning (“CAL”) [5] is essentially the same
as ISJ, but uses machine learning instead of, or in addition
to, manually formulated queries to rank the documents for
review. An approach similar to CAL was used in the TREC
2012 Filtering Track (see [17]) to construct the gold standard
that was used for evaluation, and also to simulate relevance
feedback. A subsequent study based on pooling showed that
the CAL-like approach had achieved high recall, and high ef-
fectiveness, as measured by Kendall’s τ [17]. CAL achieved
superior results at the TREC 2009 Legal Track [4], and re-
mains state of the art for eDiscovery.

The TREC 2015 Total Recall Track [13] represents the
first study of high-recall human-in-the-loop retrieval in
which all aspects of human intervention are simulated, and
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hence controlled. Fully automated or semi-automated re-
trieval systems were tested through their interaction with an
evaluation server. At the outset, the evaluation server pro-
vided a document collection and a topic description, after
which the system under test submitted potentially relevant
documents from the collection to the evaluation server. In
response, the evaluation server provided an assessment (de-
rived from a pre-computed gold standard) for the submitted
documents, and the process continued until the documents
were exhausted or the system chose to stop.

Participants in the Total Recall Track were supplied with
a CAL baseline model implementation2 (“BMI”) that, when
connected to the evaluation server, performed all aspects
of the task—other than deciding when to stop—without hu-
man intervention. Participating systems were allowed to run
indefinitely, and were evaluated (primarily) on the quality
of the ranking determined by the order in which the system
presented documents to the server. Instead of actually ter-
minating when they thought an acceptable result had been
achieved, participants were invited to “call their shot” by in-
dicating, in real time, when they would have stopped, had
they been required to balance benefit with cost. The current
study considers the addition of a call-your-shot mechanism
to BMI, and, more generally, to any ranking system.

The TREC 2015 Total Recall Track contributed five fully
labeled archival datasets. The Jeb Bush, Hacker Forums,
and Local News datasets were used for the At Home task, in
which participants ran their systems on their own platforms,
connecting via the internet to the evaluation server, which
was run by the track coordinators. The Kaine and MIMIC
II datasets were used for the Sandbox task, in which par-
ticipants encapsulated their systems as a virtual machine,
which was run by the track coordinators, along with the
evaluation server, isolated from the internet.

The reliability of methods for constructing gold standards
for IR evaluation has typically been evaluated by how well
the resulting gold standard ranks the relative effectiveness of
precision-oriented retrieval systems, where the objective is
to find as much relevant information as possible at low rank.
For this purpose, a calibrated estimate is not required; it is
sufficient to determine whether one system achieves higher
recall than another, and the actual numerical value is as-
cribed little meaning. A number of studies (see [23]) eschew
recall altogether, assuming that the user’s information need
will be satisfied by a tiny fraction of a vast sea of relevant
documents. Zobel et al. [23] suggest that recall is a poor
effectiveness measure, even for the “high-recall applications”
where the user seeks “total recall,” and that only an exten-
sive ad-hoc effort using multiple queries and tools will satisfy
the user that their information need has been met.

The reliability and effectiveness of TAR (also known as
“predictive coding”) is the subject of much interest in the le-
gal community [9, 16]. A number of approaches to TAR, to
deciding when to stop, and to quality assurance have been
advanced, but no stopping procedure has previously been
shown to be mathematically or empirically reliable. Perhaps
the most commonly used approach to TAR involves the use
of a supervised machine-learning algorithm trained using a
set of documents from the collection (typically referred to as
a “seed set”) to partition the collection into a “review set,”
which is subject to human review, and a “null set,” which

2See http://plg.uwaterloo.ca/~gvcormac/trecvm/.

is not. This approach is referred to as either simple passive
learning (“SPL”) or simple active learning (“SAL”), depend-
ing on whether or not the learning algorithm is involved
in selecting the training documents [5]. Recently, CAL has
been advanced as a superior alternative [5, 7].

Regardless of the TAR method used, the question remains
of when to stop. For SPL and SAL, two questions must be
answered: when to stop training; and how many documents
should be included in the review set. For CAL, the sole ques-
tion is when to stop. One approach that has been advanced
is to draw a random hold-out set (referred to as a “control
set”) that is used to measure the effectiveness of the classi-
fier, in order to determine when to stop training, and then
to measure recall, so as to determine how many documents
should comprise the review set. The control set must be
large enough to contain a sufficient number of relevant doc-
uments to yield a precise estimate. Bagdouri et al. [1] note
that the use of a control set constitutes sequential sampling,
with the net effect that it yields a biased estimate of recall,
and cannot be used for quality assurance. As an alternative,
they propose “certified text classification,” in which part of
the review budget is set aside to conduct a frequentist accep-
tance test that will accept or reject the classifier. Bagdouri
et al. are concerned with the problem of testing whether
the classifier has achieved a threshold level of F1; they do
not consider recall, or how to proceed in the event that the
classifier is rejected by the test.

The limitations of binary relevance may be of particular
importance in evaluating the effectiveness and reliability of
TAR systems. Binary relevance does not account for the dif-
ferential importance of relevant documents, and there will
necessarily be documents near the threshold about which
competent assessors will disagree (see [19]). In evaluating
the recall of a system against a gold standard, there will
necessarily be uncertainty for some documents as to whether
the system is correct, the gold standard is correct, or reason-
able minds could disagree. If a system fails to meet a target
recall threshold, is it because the system has missed impor-
tant documents, because it has missed marginal documents
about which reasonable minds could differ, or because it has
missed documents that are incorrectly coded relevant in the
gold standard? And, is the effort to remedy the shortfall
proportionate to the importance of the missed documents?

Binary relevance and fixed recall targets are examples of
traditional goal-post methods in quality engineering ([18]),
where success or failure is a binary quantity, and reliabil-
ity is the probability of success. In quality engineering, a
quadratic loss function blends reliability and effectiveness
into a single quality measure, with targets, but no arbitrary
thresholds [18].

3. GUARANTEED RELIABILITY
Our target method involves drawing a target set T of k

random relevant documents from the collection; for simplic-
ity we fix k = 10, but a different number could be chosen.
In order to draw T , we retrieve and review documents se-
lected at random until k relevant documents are found, or
the collection is exhausted. The underlying search strategy
retrieves documents for review without knowledge of T , until
every document in T has been found. This method achieves
95% reliability, as shown below.

Consider a document collection C and a function rel(d)
indicating binary relevance. The number of relevant docu-
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ments in the collection is R = |{d ∈ C|rel(d)}|. A search
strategy is a ranking on C where 1 ≤ rank(d) ≤ |C| denotes
the position of d in the ranking. It is important to note that
the following argument holds for any such ranking, provided
it is independent of T .

The retrieved set of the target method is the shortest pre-
fix P of the ranking that contains T :

P = {d|rank(d) ≤ max
d′∈T

rank(d′)} .

Now consider the ranking relrank(d) of only relevant docu-
ments:

relrank(d) =
∣∣{d′ ∈ C|rel(d) ∧ rank(d′) ≤ rank(d)

}∣∣ .
The last retrieved document dlast is necessarily in T :

dlast = arg max
d∈T

rank(d) = arg max
d∈T

relrank(d) .

The recall of our method is:

recall =
relrank(dlast)

R
.

Taking T to be a random variable, the method is reliable if:

R ≤ 10 ∨ Pr[
relrank(dlast)

R
≥ 0.7] ≥ 0.95 .

Assuming large R, consider the problem of determining a
cutoff c such that:

Pr[
R− relrank(dlast)

R
> c] = 0.05 (1)

Pr[R− relrank(dlast) > cR] = 0.05 (2)

For the condition in Equation 2 to hold, it must be the case
that the [numerically] top-ranked cR documents are absent
from T , which occurs with probability

(
1− 10

R

)cR

= 0.05 .

It follows that:

c =
log 0.05

R log
(
1− 10

R

) .
For all R > 10,

c < lim
R→∞

log 0.05

R log
(
1− 10

R

) = 0.299573 < 0.3 . (3)

Combining (1) and (3), we have:

Pr[
R− relrank(dlast)

R
> 0.3] < 0.05

R ≤ 10 ∨ Pr[
relrank(dlast)

R
≥ 0.7] ≥ 0.95 �.

Reliability is obtained at the cost of supplemental review
effort inversely proportional to R, the number of relevant
documents. The number of randomly selected documents

that need to be reviewed to find k relevant ones is k |C|
R

, on

average for R � |C|. For k = 10 and prevalence R
|C| ≈ 1%,

the target method entails a review overhead of about 1,000
additional documents. Lower prevalence entails substan-
tially more overhead, while higher prevalence entails less.
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Fig. 2: Kneedle algorithm for online knee detection. (a) depicts the smoothed and normalized data, with dashed bars indicating the
perpendicular distance from y = x with the maximum distance indicated. (b) shows the same data, but this time the dashed bars are
rotated 45 degrees. The magnitude of these bars correspond to the difference values used in Kneedle. (c) shows the plot of these difference
values and the corresponding threshold values (with S = 1). The knee is found at x = 0.22 and is detected after receiving the point x = 0.55.

is simply a function of the lengths of the sides of the triangle
with the points as vertices. However, as we show in Section IV,
while Menger closely approximates curvature for offline data
drawn from ideal continuous functions, it does not work well
for the noisy online data sets typical of computing systems.

EWMA. The EWMA approach uses techniques similar
to those employed by Bollinger Bands [15] and Geometric
Moving Average algorithms for change detection [16]. The
algorithm that we use is based on the methodology described
by Albrecht et al. in their work on partial barriers [3], which
derives from previous work on MONET [17]. EWMA is an
online algorithm that uses two exponentially weighted moving
averages. The first EWMA, called arr, is used to smooth
the input data, which is viewed as host arrival times. The
second EWMA, arrvar, keeps track of the average deviation
from arr, and is an estimate of the variance in arrival times.
Finally, these two values are used to compute a maximum wait
threshold of arr+4 · arrvar, which represents the maximum
amount of time to wait for the next point to arrive. If the
point arrives after this threshold, or the threshold is reached
without seeing the next arrival, EWMA declares a knee. One
important attribute of this algorithm is that EWMA does not
directly report where the knee point is—it only determines if
a knee has been passed. As a result, EWMA is only applicable
in an online setting.

III. KNEEDLE ALGORITHM

Kneedle is based on the notion that the points of maximum
curvature in a data set—the knees—are approximately the set
of points in a curve that are local maxima if the curve is rotated
θ degrees clockwise about (xmin, ymin) through the line formed
by the points (xmin, ymin) and (xmax, ymax). We choose this line
because we want to preserve the overall behavior of the data
set—using a line of best fit, for example, risks cutting off the
end points due to a higher concentration of points in the middle
of the curve. After rotating about this line, the local maxima—
and thus knees—are the points at which the curve differs most
from the straight line segment connecting the first and last data
point, thereby approximating the point of maximum curvature
for a discrete set of points. Since maximum curvature is an
inherent measure of the point where a continuous function
differs most from a straight line, Kneedle uses a literal measure

of the point that differs most from the straight line connecting
the set’s end-points.

Figure 2 depicts how Kneedle works for data points drawn
from the curve y = −1/x+ 5 where x-values are between 0
and 1. Note that we assume that the curves under consideration
have negative concavity. For curves with consistently positive
concavity (e.g., forming “elbows” rather than knees) it is trivial
to invert the graph by replacing each yi with ymax −yi and xi

with xmax − xi.
We summarize Kneedle below. Put simply, knees occur

when a curve becomes more “flat,” indicating a decrease in
curvature. The algorithm works as follows:

1. First we use a smoothing spline to preserve the shape of
the original data set as much as possible, although other
smoothing techniques, such as an exponentially weighted
moving average, could also be used. Let Ds represent the
finite set of x- and y-values that define a smooth curve, i.e.,
one that has been fit to a smoothing spline.

Ds = {(xsi , ysi) ∈ R2 | xsi , ysi ≥ 0}.
2. We want our algorithm to function in the same way

regardless of the magnitude of the values in the underlying
data. Thus, we next normalize the points of the smooth
curve to the unit square, as shown in Figure 2(a). This does
not change the shape or trends of the data set:

Dsn = {(xsni , ysni)}, where
xsni = (xsi −min{xs})/(max{xs} −min{xs}),
ysni = (ysi −min{ys})/(max{ys} −min{ys})}.

3. Next, we let Dd represent the set of differences between
the x- and y-values, i.e., the set of points (x, y − x) as
illustrated in Figure 2(b). The goal is to find out when
the difference curve changes from horizontal to sharply
decreasing, since this indicates the presence of a knee in the
original data set. Note that the actual values of the difference
points are irrelevant. We are only interested in observing the
trends of the difference curve, as seen in Figure 2(c).

Dd = {(xdi , ydi)}, where
xdi = xsni ,

ydi = ysni − xsni .

Figure 1: Knee Detection [15].

4. EMPIRICAL RELIABILITY
Our knee method relies on the assumption that CAL, in

accordance with the probability-ranking principle, succeeds
in ranking more-likely relevant documents before less-likely
relevant documents. As a consequence, the gain curve plot-
ting recall versus rank is assumed to be generally convex,
with high slope (i.e., “marginal precision”) at the outset,
and near-zero slope once nearly all relevant documents have
been retrieved.

An ideal gain curve would have slope 1.0 until an inflection
point corresponding to the rank at which all documents had
been retrieved, and slope 0.0 thereafter. An actual gain
curve typically diverges from the ideal due to limitations
in probability ranking, random factors, and a noisy gold
standard. Suppose that the retrieval method were able to
achieve 70% recall and 70% precision at some rank r, as is
typical for modern classifiers [11], or as might be achieved
by exhaustive manual review [19]. The slope, up to that
rank (slope<r), would be 0.7, and the slope after that rank
(slope>r) would approach, but not equal 0. For small values
of R � |C|, we would expect slope ≈ 0.0, and for all R we

would expect the “slope ratio” ρ = slope<r

slope>r
� 1 .

Based on our experience with non-public datasets, we ob-
served that for R & 100, ρ � 6.0 (with suitable smooth-
ing) was a good indicator of high recall, achieving recall and
reliability that compared favorably to that achieved by the
target method. We formed the hypothesis that these thresh-
olds were universal; that the same threshold would work for
a wide variety datasets, including the ten that we subse-
quently used for our empirical evaluation (see Table 1).

4.1 Noise Abatement
If we were to stop at the minimum rank s, such that there

exists an inflection point 1 < i < s such that ρ ≥ 6, we would
almost certainly stop prematurely due to chance. Moreover,
this näıve approach would entail quadratic computational
effort as a function of the size of the collection. To avoid
both eventualities, we evaluate ρ only at values of s arising
from the batches of documents selected by BMI. The number
of batches is proportional to log |C|, as the values of s are
separated by an exponentially increasing interval. Relatively
few of the candidate values for s will be viable, even by
chance. Any residual sequential-testing bias is offset by a
conservative choice of threshold for ρ.

For each value of s, we evaluate ρ at only one i, chosen us-
ing a geometric “knee-detection” algorithm [15], illustrated



Collection
Target Method Knee Method Budget Method

Reliability Recall Effort Reliability Recall Effort Reliability Recall Effort
At Home 1.00 0.91 44,079 0.93 0.93 5,244 0.97 0.97 43,896
Kaine 1.00 0.92 119,644 1.00 0.98 172,774 1.00 0.98 172,774
MIMIC II 1.00 0.89 14,440 1.00 0.97 19,387 1.00 0.97 19,418
RCV1-v2 0.96 0.88 83,412 0.99 0.94 60,645 0.99 0.94 70,601
Filtering 0.98 0.93 133,788 1.00 0.99 3,857 1.00 1.00 143,798
Intersection 1.00 0.92 174,415 0.98 0.96 153,638 1.00 0.99 190,671
Robust-04 0.89 0.94 169,907 1.00 1.00 7,575 1.00 1.00 162,673
Robust-05 1.00 0.92 155,405 1.00 0.96 8,444 1.00 1.00 134,719

Table 2: Reliability, Mean Recall, and Mean Effort for the Target, Knee, and Budget Methods.

in Figure 1. We draw a line from the origin to the recall
achieved at rank s, and compute the maximum perpendicu-
lar distance from this line to the gain curve. Our candidate
value of i is the projection to the x-axis of the intersection
between the perpendicular and the gain curve. Our rationale
in choosing this point was that it would correctly choose the
inflection point for an ideal curve, and would avoid anoma-
lies associated with points very close to the origin or to rank
s, while capturing our intuitive notion of a genuine tipping
point.

We calculated the slope ratio as:

ρ =
|{d|rank(d)≤i∧rel(d)}|

i
1+|{d|i<rank(d)≤s}|

s−i

.

Smoothing was accomplished by adding 1 to the number of
relevant documents beyond the knee. This choice avoided
the singularity of no relevant documents beyond the knee,
and generally penalized situations in which the chosen in-
flection point was close to s. No smoothing was applied to
the numerator, as we were not concerned with occasional
underestimates.

4.2 Adjustment for Low Prevalence
The case of R . 100 is more problematic. Any correction

for small R faces a dual problem:

1. the stopping procedure has no knowledge of the value
of R, other than what can be estimated through rele-
vance feedback from retrieved documents; and,

2. even if it were known that R was small, the sparsity of
relevant documents compromises the reliability of our
slope-ratio calculation.

The knee method relies entirely on the slope-ratio test, ad-
justed to compensate for low R. Initial tuning on the train-
ing collections from the TREC 2015 Total Recall Track in-
dicated that a fixed lower bound β on the rank at which
to stop, might be effective. For our submission to the
TREC 2015 Total Recall At Home task, we conducted a
parameter sweep of six combinations of β ∈ {100, 1000} and
ρ ∈ {3, 6, 10}. Our results showed that combinations involv-
ing β = 100 or ρ = 3 were unreliable, and we eliminated
them from further consideration. Unsurprisingly, the com-
bination of β = 1000, ρ = 10 proved most reliable, achiev-
ing the recall target for 29 of 30 topics (reliability = 0.97
[0.830− 0.999 95% c.i.]).

We observed that recall and reliability appeared to be
lower for smaller R, while effort (especially for ρ = 10) ap-
peared to be disproportionately higher for large R. This ob-
servation led us to seek more reliable methods for small R,

and to choose ρ = 6 for large R. To aid in this endeavor, we
used a non-public dataset consisting of about 300,000 docu-
ments reviewed by attorneys and labeled according to 63 cri-
teria, with R ranging from 5 to 164, 000 (median 431). Based
on tuning experiments using this dataset, we calibrated the
slope-ratio cutoff as a function of relret, the number of rel-
evant documents retrieved at any given rank:

ρ = 156−min(relret, 150) .

In other words, we set the threshold for the slope ratio to
be 150 when no relevant documents have been retrieved,
6 whenever at least 150 relevant documents have been re-
trieved, and use linear interpolation between these values.

We further observed that with this adjustment, the choice
of β = 100 versus β = 1000 became less critical. The
lower value occasionally achieved lower effort than the higher
value, and occasionally failed when the higher value did not.
We chose to retain the value of β = 1000 from our earlier
experiments.

4.3 Effort Adjustment
A variant of our knee method—the budget method—

adjusts for small R by stopping only when a review budget
comparable to that of the target method has been expended,
and the slope-ratio test ρ ≥ 6 is also satisfied. This ad-
justment substantially delays termination for small R, thus
ensuring reliability.

The approach is predicated on the hypothesis that the
supplemental review effort entailed by the target method
would be better spent reviewing more documents retrieved
by CAL. The target method entails the supplemental review

of about 10|C|
R

documents in order to find 10 relevant ones.
According to the probability-ranking principle, we would ex-
pect CAL to find more relevant documents than random

selection, for any level of effort, up to and beyond 10|C|
R

.
While the supplemental documents retrieved by the target

method provide a statistical estimate of R, the documents
retrieved by CAL provide a lower bound for R, and therefore
an upper bound for the expected effort entailed by the target
method. At the outset, this upper bound is loose, but as the
review progresses, it tightens. The budget method retrieves
documents using CAL until review effort exceeds this upper
bound and ρ ≥ 6.0, or until 0.75|C| documents are retrieved.

For small R, the budget determines the stopping point.
For large R, enough relevant documents will likely be discov-
ered to bound the review budget to an insubstantial fraction
of R, and the slope-ratio test will determine when to stop.
In any event, the review stops at 0.75|C|. This final cutoff
is predicated on the probability-ranking principle: random
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Figure 2: TREC 2015 Total Recall At Home Collec-
tion.

selection of 75% of the collection would, with high probabil-
ity, achieve 70% recall; the top-ranked 75% should achieve
even higher recall.

5. EXPERIMENTS
Testing the reliability of our stopping methods occasioned

the use of “fully assessed” test collections, with a large num-
ber of topics and documents, where by “fully assessed,” we
mean that the pooling method, ISJ, or a rule base was used,
and the resulting documents were labeled by a human as-
sessor. From the limited number of collections that met
these criteria, we selected the TREC 2015 Total Recall Track
collections, the Reuters RCV1-v2 news dataset, the TREC
2002 Filtering Track collections, and the TREC 2004 and
2005 Robust Track collections, as detailed in Table 1. We
used our Total Recall At Home participation to conduct an
initial parameter sweep with six combinations, as well as
final testing; the other datasets were used solely for testing.

The first phase of our experiments took place within the
context of the TREC 2015 Total Recall Track, which had
three distinct phases: training, At Home, and Sandbox. We
conducted our initial development and tuning during the
training phase, and submitted the knee method for eval-
uation in the At Home phase, but not the Sandbox phase.
We captured the sequence of documents retrieved by BMI in
both the At Home and Sandbox phases, and later used them
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Figure 3: TREC 2015 Total Recall Sandbox Collec-
tions.

to simulate the effect of the stopping methods whose results
are presented here. After conducting further tuning on our
non-public collection of 300,000 documents with 63 topics,
we froze all parameters, and ran BMI on the other evalua-
tion datasets, capturing the order in which the documents
were retrieved. We then simulated our stopping methods by
applying them to the ranking.

Summary results showing reliability, average recall, and
average effort for all collections are shown in Table 2. The
overall reliability of the target method, the knee method,
and the budget method are substantially higher than the
target of 0.95. Considering reliability, alone, there is little
to choose among the methods; but the recall achieved by the
knee and budget methods is substantially higher, while the
effort expended by the knee method is, for some datasets,
dramatically lower.

As illustrated in Figures 2 through 6, R (the number of
relevant documents) appears to be the principal determi-
nant of effort. For small R, effort for the target and budget
methods approaches the size of the collection, while effort
for the knee method, with one notable exception, generally
diminishes with R, approaching the floor of β = 1000 that
we chose for this study. On the other hand, for large R, the
effort for all methods appears proportional to R.

The top panel of Figure 2 compares recall and effort for the
knee and target methods, for each topic in the At Home col-
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Figure 4: Reuters RCV1-v2 Subject Codes.

lection, ordered by R. We see that 28 of the 30 recall points
for the knee method (shown by the green curve) fall above
0.7, indicating reliability of 0.93, while all of the points for
the target method (shown by the red curve) fall above 0.7,
indicating reliability of 1.00 for this collection. We also see
that the most of the recall points for the knee method fall
above those for the target method, indicating higher median
recall, and the (signed) area between the curves is positive,
indicating higher mean recall. Per-topic effort is shown as
a bar graph on a logarithmic scale spanning three orders of
magnitude. For small R, the knee method entails about 100
times less effort than the target method, while for large R,
the effort is comparable.

The bottom panel of Figure 2 follows the same format,
comparing the budget method (shown in blue) to the target
method (shown in red). While the budget method achieves
higher recall than the target method for nearly all topics,
that superiority is not reflected in higher reliability. Effort
for the two methods is very similar. The same observa-
tions apply to the results for the other collections: For low
R, recall for the budget method exceeds that of the target
method, while effort is indistinguishable; for large R, recall
and effort are indistinguishable from the knee method. Both
methods are reliable.

For brevity, we show graphical results comparing only the
knee and target methods for the other collections. Tabular
results for all methods are presented in Table 2.

Figure 3 shows results for the Sandbox task of the TREC
2015 Total Recall Track, which was notable in that partici-
pants had no prior access to the datasets or the topics, and
their retrieval systems had to run fully autonomously. The
top panel shows our results for the Kaine collection, which
consisted of about 400,000 documents from Tim Kaine’s
eight-year tenure as Governor of Virginia. These documents
had been previously reviewed and labeled by the archivist
at the Library of Virginia according to four statutory cat-
egories: “record” (versus “non-record”), “open record,” “re-
stricted record,” and “pertaining to the Virginia Tech shoot-
ing.” Two of the topics had moderately high R ≈ 104, and
two had very high R ≈ 105. For all topics, the knee method
achieved higher recall at the expense of somewhat higher ef-
fort. The bottom panel shows our results for the MIMIC II
collection, which consisted of about 30,000 medical records
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Figure 5: TREC 2002 Filtering Track Collections.

collected from a hospital intensive care unit. The documents
consisted of nurses’ notes, radiology reports, and discharge
summaries. The“topics”consisted of ICD-9 diagnostic codes
extracted from non-textual database records. With one ex-
ception (R = 179), all topics had moderately high R. The
knee method generally achieved higher recall than the target
method, at the expense of somewhat higher effort for most
topics.

Figure 4 shows the results for the RCV1-v2 dataset, using
the subject categories and descriptions published with the
dataset as topics [11]. Over a very wide range 101 . R .
105, we observe a familiar pattern: The knee method has
somewhat higher recall and lower variance, with dramati-
cally lower effort, for small R.

Figure 5 shows results for two sets of topics created for
the TREC 2002 Filtering Track. The top panel shows re-
sults for topics that were created and assessed by NIST for
the track. All topics had low R ≤610; the majority had very
low R ≤ 100. For all topics, including those with the low-
est R � 100, the knee method achieved near-perfect recall.
Recall for the target method showed much higher variance,
suggesting that its reliability is actually lower. The knee
method entails order(s) of magnitude less effort. The lower
panel shows results for intersection topics, each of which
was the conjunction of two RCV1-v2 subject categories. If
rel1(d) and rel2(d) indicate relevance for two RCV1-v2 top-
ics, rel1(d) ∧ rel2(d) indicates relevance for the intersection
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Figure 6: TREC 2004-2005 Robust Track Collec-
tions.

topic. The intersection topics were reported as a failed ex-
periment [17], since no system achieved reasonable results
on them. The results show that, while the effort to achieve
high recall for these anomalous topics is inordinately large,
our stopping methods are reliable.

Figure 6 shows results for the TREC 2004 and 2005 Ro-
bust tracks. In 2004, the Robust Track aggregated 150 topics
developed for the TREC 6, TREC 7, and TREC 8 Ad-Hoc
tasks, 50 topics developed for the 2003 Robust Track, and
49 new topics, for a total of 249 topics. For 2005, 50 of these
topics—those deemed to be “difficult”—were reprised with
a new dataset. The top panel reports our results for 2004;
the bottom for 2005. The results further confirm that the
target and knee methods both achieve high reliability, while
the knee method entails dramatically less effort.

6. DIMINISHING LOSS
As evidenced by the results above, reliability does not

capture certain important aspects of effectiveness or effi-
ciency. Moreover, empirical measurements of reliability lack
statistical power, while parametric estimates depend on as-
sumptions regarding the distribution of recall values. Since
the choices of acceptable recall and acceptable reliability are
both somewhat arbitrary, bias due to incorrect distributional
assumptions may be of little consequence. We suggest that
reporting the mean µ and standard deviation σ of recall

conveys more useful information, if not a provably accurate
estimate of reliability. Such an estimate would have to be
compared to one or more tacit thresholds to determine the
reliability of the method; for example, assuming normality,
any pair of µ and σ such that µ − 1.64σ ≥ 0.70 would be
95% reliable. More generally, the value of Q = µ − 1.64σ
is a quantitative measure of quality, which may be used to
determine the threshold level of acceptable recall for which
95% reliability may be obtained. Alternatively, by substi-
tuting the appropriate z-score in place of 1.64, a threshold
of reliability different from 95% may be tested.

We suggest that reliability and recall should be supplanted
by quality estimates based on loss functions, of which recall
and reliability are special cases. We define Q = 1 − loss,
where loss is the mean value of a loss function over all topics.
If

loss = 1− recall , Q = recall ; if,

loss =

{
0 (recall ≥ 0.7)

1 (recall < 0.7)
, Q = reliability .

A quadratic loss function such as:

lossr = (1− recall)2 (4)

captures the desirability of consistently high recall, subsum-
ing the roles of µ and σ in the previous discussion. Our
aspirational goal is to achieve 100% recall. Any shortfall is
penalized, and larger shortfalls are penalized more heavily.

Quadratic loss further generalizes to other aspects of qual-
ity, such as graded relevance, facet relevance [6], and effi-
ciency. For example, let a1, a2, . . ., an be categories of
relevance, and rela(d) be the indicator function for category
a. Define:

recalla =
|{d ∈ C|relret(d) ∧ rela(d)}|

|{d ∈ C|rela(d)}|

lossa = (1− recalla)2

loss =

n∑
i=i

αilossai , where 1 =

n∑
i=1

αi . (5)

The choice of weights αi is not critical; the value αi = 1
n

for
all αi will often suffice, as it rewards consistent recall over
all categories, with the effect that documents belonging to
rarer categories are afforded more influence.

Review effort may also be modeled as a category of loss,
thus quantifying the notion of “reasonable effort.” For the
problem as we have framed it, an ideal method would entail
effort = R. From the presentation of results in the TREC
2015 Total Recall Track Overview [13], we observe that a
reasonable effort might entail effort = aR + b, where a ≈ 1
represents effort proportional to sunk review cost, and b ≈
0 represents fixed overhead. We suggest that a ≤ 2 and
b ≤ 1000 represent reasonable effort to achieve recall ≥ 0.70
with 95% reliability. The use of a quadratic loss replaces the
a and b thresholds by a soft target:

losse =

(
b

|C|

)2(
effort

R+ b

)2

. (6)

losse may be used to measure efficiency in its own right, or
treated as a category loss in (5).
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Collection
Target Method Knee Method Budget Method√

lossr
√
losse

√
lossre

√
lossr

√
losse

√
lossre

√
lossr

√
losse

√
lossre

At Home 0.0132 0.0090 0.0111 0.0197 0.0000 0.0099 0.0056 0.0108 0.0082
Kaine 0.0815 0.0016 0.0577 0.0252 0.0025 0.0179 0.0252 0.0025 0.0179
MIMIC II 0.1229 0.0734 0.1012 0.0516 0.0862 0.0710 0.0516 0.0866 0.0712
RCV1-v2 0.1475 0.0883 0.1216 0.0947 0.0154 0.0678 0.0824 0.0795 0.0809
Filtering 0.1011 0.2110 0.1654 0.0181 0.0079 0.0140 0.0015 0.2278 0.1611
Intersection 0.1057 0.2499 0.1919 0.0818 0.2740 0.2022 0.0159 0.2947 0.2087
Robust-04 0.0870 0.4136 0.2989 0.0430 0.0481 0.0456 0.0025 0.3865 0.2733
Robust-05 0.1141 0.2368 0.1858 0.0570 0.0265 0.0445 0.0087 0.1843 0.1305

Table 3: Root Mean Loss for Relevance, Effort, and Combined.

Target Method Knee Method Budget Method√
lossr

√
lossh

√
lossr

√
lossh

√
lossr

√
lossh

0.0837 0.0504 0.0134 0.0021 0.0007 0.0011

Table 4: Root Mean Loss for Relevance and High Relevance.

In Table 3, we report, for each collection, the root mean

loss (
√
loss) over all topics for relevance loss as defined in

(4); effort loss as defined in (6); as well as their unweighted
average, lossre = 0.5 · lossr + 0.5 · losse. The results show
conclusively the superiority of the budget method in terms of
lossr. They show the general superiority of the knee method
in terms of losse, while calling to our attention three collec-
tions where the target method is more efficient. On inspec-
tion, we see that two of the three collections have exclusively
or nearly exclusively topics with high prevalence. We fur-
ther see that that the the target method’s narrow margin of
superiority in terms of lossr is offset by a wide margin of in-
feriority in losse, as reflected in lossre. For the intersection
collection, no system achieved acceptable losse.

The bottom line is that the quality loss results support
our qualitative observation that the knee method affords
the best balance between consistently high recall and consis-
tently low effort; the budget method provides consistently
higher recall at the expense of disproportionate effort for
topics with few relevant documents; the target method,
while provably reliable, yields empirical results that are gen-
erally inferior to the knee and budget methods.

To illustrate the use of quality loss for graded relevance,
we used a subset of 84 topics from Robust-04, for which rel-
evance assessments were available for the categories “highly

relevant” and “relevant.” Table 4 shows
√
lossr and

√
lossh

for these categories, respectively. The knee and target meth-
ods have lower lossh, than lossr, indicating they retrieve
highly relevant documents more consistently than merely
relevant documents. The budget method shows the opposite
effect, but even so, is markedly superior to the target and
knee methods. While we cannot draw any firm conclusions
from this small experiment, the results do not support the
proposition that TAR methods achieve high recall by “bulk-
ing up” on marginal documents at the expense of important
ones (cf. [12]).

7. DISCUSSION
To our knowledge, the target method is the first provably

reliable method for TAR. The commonly used frequentist
acceptance test (see [1, 9]) offers a p-value or confidence
level which is a measure of the reliability of the test, not

the reliability of the TAR method, not the probability that
a given result is acceptable, and not the probability that a
TAR method will pass the acceptance test. In eDiscovery, it
is common to calculate a frequentist recall estimate, with a
5% margin of error and 95% confidence, and deem the result
acceptable if the estimate exceeds 75%. Calculating such an
estimate requires a sample of about 385 random relevant
documents, entailing 38.5 times as much surplus effort as
the target method.

Our proof of reliability does not require that the target
sample T be chosen at the outset, as long as it is independent
of the retrieval method. The target method could be used
as an acceptance test, such that the consequence of failing
the test would be to continue to retrieve documents without
knowledge of T , until all the documents in T are retrieved.

Over test collections like the ones used in this study, there
can be little doubt (p ≈ 0.00) that the knee and budget
methods are reliable, that the budget method is more re-
liable than both the knee and target methods, and that
the knee method is the most efficient. As with any empiri-
cal work, the test collections constitute convenience samples
and ongoing research is necessary to characterize the scope
of TAR tasks to which our results may be generalized.

The target method is reliable regardless of the underlying
review method; however, if the underlying method uses a
human in the loop to formulate queries or to influence the
selection of documents in any way, that human must be iso-
lated from any knowledge of T . The simplest approach to
accomplish this goal might be to complete all such human
intervention before drawing T , and to rely on fully auto-
mated document selection thereafter. An alternative would
be to establish an “information barrier” between those who
draw T and those who conduct the search.

This work establishes the reliability of the knee and bud-
get methods as applied to BMI. It remains to be determined
how well these approaches would work—possibly with differ-
ent tuning parameters—for other CAL methods, including
hybrid systems in which a human is afforded influence in the
selection of documents for review. It is not obvious how to
adapt the knee or budget method to SPL or SAL, for which
an essential question is when to stop training.

The target method, by design, targets less than 100% re-
call. It could be modified to continue past the point at which
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the last document in T is retrieved, thereby expending ad-
ditional effort to increase the probability of achieving 100%
recall. One might, for example, extrapolate from the dis-
tribution of rank(d ∈ T ). The knee method, on the other
hand, does target 100% recall, and only incidentally opti-
mizes reliability. It appears that loss functions better char-
acterize the tension among consistency, effectiveness, and
efficiency, as compared to goal-post methods. Regardless of
which measure is chosen for evaluation, systems should be
tuned to optimize their suitability for their intended pur-
pose, not the measure itself (cf. [22]).

8. CONCLUSIONS
Reservations about the effectiveness and reliability of TAR

have impeded its adoption for eDiscovery and other high-
recall retrieval tasks. A primary area of concern has cen-
tered on the issue of “when to stop,” or knowing with rea-
sonable certainty—and being able to show an adversary or
the court—that a particular TAR effort has identified an ac-
ceptable amount of relevant information. Many approaches
to validation in common use today are simply invalid, or
require disproportionate effort compared to the information
they yield, and are often misunderstood and misapplied [9,
16].

We offer a method to determine when to stop that is guar-
anteed to be reliable, for the price of reviewing a number of
random documents that is an order of magnitude less than
acceptance tests that estimate recall, but neither determine
when to stop nor guarantee reliability. We provide two other
methods that entail no effort beyond that required by the
underlying TAR method and, while not providing a guaran-
tee of reliability, consistently demonstrate better reliability,
and better recall, when evaluated on eight test collections,
comprising 555 topics and 4.5M documents. Of particular
interest is the knee method which, in contrast to the other
methods, is demonstrated to be reliable and efficient when
the collection contains few relevant documents.

While our primary results are demonstrated using mea-
sures derived from traditional goal-post methods—binary
relevance, a recall threshold, and a reliability floor—we de-
scribe how loss functions may be formulated to capture the
tension among consistency, degrees of relevance, facets of
relevance, and efficiency. We apply these formulae to show
insights into our results that might not have been readily
apparent from the goal-post measures.
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