
AB 43p.54

~43.4.1 MABEL: A Be$inner's Progran~ning Languase.

P.R. King, G. Cormack, G. Dueck, R. Jung, G. Kusner, J. Melnyk

(Department of Computer Science, University of Manitoba,

Winnipeg, Manitoba R3T 2N2, Canada)

ABSTRACT

This paper presents a prel~m~nary version of an introductory programming

language. The design of MABEL is far from frozen, and many of the

decisions taken are, at best, tentative. Our hope in presenting the

language at this stage is to obtain input from a wider source. Hence

we earnestly solicit constructive cricitism, and ask readers to

accept the current document in this spirit.

i. INTRODUCTION

MABEL (MAnitoba BEginner's Language) is a programming language

for people wS~ have never programmed before. It is a simple, general-

purpose language. Hopefully, this does not imply that with MABEL one

can only do simple things. Rather, MABEL is intended to provide a

simple introduction to the art of programming by assisting the new-

comer in the design of sequential algorithms. MABEL is designed to

be simple to teach and to use.

The designers received suggestions from a variety of sources,

both within the University of Manitoba, from students and instruc-

tors alike, and from a number of high school instructors within the

Winnipeg School System who were asked to identify areas of difficulty

encountered both by themselves and by their students. Each member of

the group had a "pet" language (PASCAL, COBOL, ALGOL W, ALGOL 68,

PL/i and SNOBOL), features of which were advanced by its proponent

and avidly attacked by others. We also listened (though frequently
r

pretending otherwise) to the comments of colleagues outside the group

as features on which we sought opinion were surreptitiously leaked.

AB 43p.55

Existing beginning languages, such as B ° and the Toronto SP/k system,

were given careful attention.

From this diversity of advice, sometimes helpful but often im-

possible or derisory, the criteria of §2 were established. This list

became our bible, sacrosanct and inviolable, by virtue of which all

design decisions were taken and to which all disputes were referred.

The majority of the time spent in actual design was spent in

taking three basic decisions, namely the primitive types, the data

structuring facilities and the parameter mechanism. These decisions

and their rationale will be discussed in §3. Once they had been taken,

most of the remainder of the design followed relatively rapidly and

easily. There was some hectic infighting over the form of the

repetitive construct, but the bloodshed was minimal compared to that

occasioned by discussions over the primitive types, for example. The

remainder of MABEL, after the three basic decisions, will be dis-

cussed in §4.

Personal prejudice began to rear its ugly head when deciding upon

the concrete syntax, and the current proposals may suffer in that re-

gard as a result of the occasional compromise decision. Some sample

programs appear as an appendix, and a MABEL syntax chart, ~ la Watt, Sintzoff

and Peck, is appended.

2. DESIGN CRITERIA FOR MABEL

The objective of MABEL is to provide as smooth an introduction as

possible to the esoteric art of programming. Whether or not the be-

ginner will graduate from his lowly state, and what happens when he

does, is not deemed of any great relevance in determining how to effect

such an introduction. If MABEL is a good introduction to more com-

plex languages we would regard this as a bonus rather than a result

of design.

AB 43p. 56

Although nine criteria are explicitly discussed, several points

not given in the list were considered, but ultimately excluded from

the design. These included whether MABEL should provide an introduc-

tion to machine architecture, whether MABEL should be extenslble and

whether MABEL should define such ton-elementary but potentially

simple) features as program modules and linkage to other languages.

Such features are now being considered in the context of a systems

implementation language being designed as a MABEL superset.

We first consider five "positive" criteria: those which were

of major importance in the design of MABEL.

(1) Simplicity. The beginner must not be confused by a

large number of unorthogonal features. There must

be no discrepancies between the meaning of constructs

when they appear in different situations or in the

ways in which they may be used. Thus, the distinc-

tion between <statement> and <simple statement> in

ALGOL W is not simple; the ALGOL 68 iteratlve state-

ment is far from simple both because one requires

so much ~nformatlon before it can be used even for

simple applications, and because two applications,

such as

FOR i TO n DO read(all]) OD

and

WHILE REAL x; readE) ; x>O DO SKIP OD

have vastly different forms and purposes~ the

use of pointers and associated dereferenclng

and aliaslng is very far from simple.

(li) Readability. The reader should find MABEL

programs relatively self-documentlng and self-

werlfying. These requirements impinge on design

at both the abstract and concrete levels.

(iii)

(iv)

MABEL must be surprise free, conform wherever

possible to accepted mathemetical meaning

(5/3 is the same as 5.0/3.0) and adhere to

the precepts of structured programming.

Teachability. No feature was added to MABEL

until one had demonstrated a simple means of

teaching it to beginners. The language

should be teachable in a "continuous" fashion,

by incorporating features which can be exempli-

fied and assimilated in small "upwards-com-

patible" stages, rather than features which

require a lot of detailed information before

they can be put to simple use.

Introduction to design of algorithms. The

beginning programmer is habitually faced with

two problems; firstly, to design a sequential

algorithm for the problem at hand, which is

rarely in sequential form, and secondly, to

cast this algorithm into the form required by

the particular programming language be/rig used,

MABEL has been designed to assist the user in

the first of these: all else is of subsidiary

importance, and one will observe that MABEL

lacks certain "standard" language features

since they do not contribute directly to this

end.

AB 43p.57

(v) Versatility. Many students have a low opinion

of their introductory language as a direct re-

sult of disappointment in the applicative

examples with which the "power" of the language

AB 43p.58

was illustrated. One wonders t o what extent

such samples are chosen simply because the

language in question is Just so restricted.

MABEL is a general-purpose language and, as

the examples in the appendix show, has the power to be

used for "real" problems. We hope that MABEL

will cater, to some extent at least, to the

e.x-beginner who nonetheless wishes to con-

tinue using MABEL because he likes it.

Two further criteria were deemed of somewhat less importance:

(vi~ Small compiler. It is quite probable that a

coum~on environment for a language like MABEL

will be m~ni-computers. Thus the MABEL com-

piler must be of modest sizes and this should

be reflected in the language design.

(vii) Simple compilation. It is highly desirable

that MABEL be 1-pass. Equally, it must be

easy to associate clear, meaningful diag-

nostics with both compile-time and run-

time errors. Our experience is that these

latter questions are as much matters of

language design as of compiler design.

Two final criteria were considered to be of rather minimal

importance to the design of MABEL:

(viii) Introduction to progr~Ing languages. "And

visit the si.8 of the fathers upon

children unto the third and fourth genera-

tion." T h i s theology appears rampant in

programming language design (and is, we

claim, responsible for a multitude of

disastrous design decisions). It is

(ix)

not the philosophy of MABEL: we do not

accept that transition from a simple to

a more complex language is facilitlated by

incorporating bad features from the complex

language in the simple one.

Run time efficiency. Although the run time

efficiency of both time and space require-

ments are of minor importance in the de-

sign of a beginner's language, they

should not be entirely ignored if the

language is to gain any degree of accep-

tance as a viable product.

AB 43p.59

3. THREE FUNDAMENTAL DESIGN DECISIONS

i) Simple types in MABEL

MABEL has a single simple type. The programmer may define and

manipulate constants and variables of this simple type, and compose

structured types from it. In this respect, MABEL resembles SNOBOL 4,

and uses the same syntax for literals, representing them as

character sequences enclosed within ", " or ',', pairs. MABEL is not

a string processing language. Naturally, the programmer will be aware

that certain program variables are restricted to certai~ subdomains

of this one type and that certain operators make sense only in

certain subdomains, but MABEL considers such subdomains to be

entirely the programmer's responsibility rather than a static,

feature. CA clever compiler, however, might handle some of them

statically.)

In retrospect one wonders why this decision took us so long to

take; it now appears entirely natural and obvious. The reasons for

* Currently, the quotes are optional for integer
constants. This is under review.

AB 43e.60

having multiple pre-def~ned types~ in ALGOL for e~mple, appear to

be

• increased static security

increased readability, and self-documen~bility

• increased run-tlme efficiency

• ability to use generic operators

The first of these is to a large extent an implementation concern

and low on our score-card. The second is highly de'table. One

can as easily read and comprehend

P+B*Q- 3 or

A AND C OR Q<3

without consulting the declarations or knowing the types of A, B, C,

P or Q as with; any complete understanding requires detailed diction-

ary type descriptions in either case. Few beginner progrmmm ever

run in production mode; thus the third reason hardly applies. Finally,

generic operators are especially confusing to the beginner; why

should

"PQRS" < "XYZ" or 3* "XYZ"

be meaningful? If one means "comes alphabetically before" or

"replicate three times", then one should say so.

Further, multiple types add to the complexity of a language per

se, by virtue of the diverse denotations required and, most of all,

by virtue of the type conversions, both explicit and implicit. The

beginner needs no assistance in accepting that

'3' + '4.7'

is perfectly sensible and yields '7.7', whereas

'3' + 'XYZ'

is not sensible and will produce rubbish.

It is to be admitted that typing permits certain errors to be

caught earlier than can be done in a typeless language, but it is

not clear that the class of such errors is sufficiently broad to

AB 43p.61

Justify the complexity of multiple types. On the other hand the

adoption of a single type added considerably to the ease of de-

scription of transput (c.f. §4 iv) and assisted greatly in defining

the data structuring facility of MABEL, the second fundamental de-

sign decision.

(ii) Data Structures in MABEL

In order to satisfy the criterion of versatility, MABEL should

provide the powers afforded by conventional data structures, includ-

ing pointers, heap-storage management and flexible arrays. Con-

ventional arrays as in FORTRAN and ALGOL would be quite unorthogonal

with the single primitive type of MABEL. Restricting indexation to

integers is inappropriate since integer is not a predefined type,

and since strings have no inherent order, the concept of an array

as an ordered set is equally unsuitable. It was decided to replace

the conventional array by a facility such as the table concept of

SNOBOL. SNOBOL tables are one-dimensional and each item is selected

by a unique key; use of the same key accesses the same element while

use of a new key creates a new element.

Next, the possibility of multi-dimensional tables was considered.

To examine their usefulness in a beginner's language, illustrative

examples currently used for high-school and first-year students were

scrutinised. Most examples appeared highly contrived to make use of

two dimensional arrays. A typical example is the construction of a

table of student numbers and their grades according to course number.

There are usually far more courses offered than are taken by a par-

ticular student so that the table will typically be sparse; the be-

ginner is then forced to write code (to ignore the empty entries)

which is not part of the processing algorithm. What is needed is a

table keyed by student-name, with each entry a table of marks keyed

by course-name.

AB 43p. 62

From these considerations emerged the MABEL data structure as a

table with multiple sub-keys, where a key may be any expression which

yields a simple value. A multl-dimensional array would be represented

by using the same number of keys at all times. A COBOL or PL/i

structure is achieved by restricting keys to constants. By making

use of the full power of an arbitrary number,of variable keys, any

tree whatsoever may be represented as a MABEI~ STRUCTURE, without

introducing any notion whatsoever of pointers. Some examples illustra-

ting these remarks appear in the appendix; the reader might wish to

consult these before continuing.

The following formal rules serve to describe the syntax and

semantics of the MABEL STRUCTURE facility:

A A structure may have a simple value or a multiple value. Let S

be an arbitrary structure (wh/ch might, of course, be a variable or

constant or an expression or delivered by a function) and k, kl, k2, ...

arbitrary keys.

B (1) If S has a multiple value, S may be qualified thus:

S.k

to yield the corresponding (sub-) structure,

(ll) If S has a simple value then S may not be qualified.

C (i) If S has a simple value then S may he explicitly coerced to

yield that value thus:

S.

(il) If S has a multiple value, S may not be so coerced.

Thus, a reference to a sub-structure of $ is of one of the

forms

S S,k S,kl,k 2 k n

while a referenc~ to an element (simple value) in a structure is of

o n e of the forms

$. $.k S.kl,k 2 kn, .

AB 43p.63

MABEL structures also permit heap-llke memory management. Assuming

that the MABEL prelude contains a function UNIQUE , successive calls

of which produce distinct, arbitrary simple values, then the follow-

ing four groups of code contain equivalent phrases:

A, ALGOL 68:

MODE T = STRUCT (REF T llnk, INT i);
' REF T p ;

PL/i:
DECLARE 1 T BASED,

2 LINK POINTER,
2 1 FIXED BINARY;

DECLARE P POINTER;

MABEL :

STRUCTURE T;
CONSTANT LINK:"LINK";
CONSTANT I:"I";
VARIABLE P;

#FIELD OF T. name
#FIELD OF T. name
#NAME WITHIN T

B. ALGOL 68:

p : = HEAP T : = (NIL, 17)

PL/I:

ALLOCATE T SET (P);
P ÷ T.LINK = NULL;
P ÷ T.I = 17;

MABEL:

P: = UNIQUE;
T.P : = (I LINK: NULL, I:17 I)

C. ALGOL 68: llnk OF p
PL/i : P + T.LINK
MABEL : T.P.LINK.

D. ALGOL 68:
PL/l:

2qABEL:

no explicit garbage collection
DELETE P÷T ,
T.P. := UNDEFINED;

A typical declaration would be

VARIABLE UNIQUEX:
FUNCTION UNIQUE RETURNS VALUE:

UNIQUEX := UNIQUEX & 'Z';
RETURN UNIQUEX

* The MABEL prelude contains the declaration
of a constant UNDEFINED whose value is

"$$UNDEFINED". All MABEL simple variables
are initialized to that value (including
UNIQUEX used in the preceding footnote).

AB 43p.64

These ex-~ples, together with those in the appendix, illustrate

how the MABEL structure facility provides all the power deemed

necessary while maintaining its essential simplicity. It will be

remarked how central the single simple type is to its formulation.

We are grateful to Robert Dewar for pointing out the similarity be-

tween the STRUCTURE of MABEL and maps in the language SETL, although

the MABEL feature was developed quite independently and with

different goals.

(iii) The parameter mechanism in MABEL

It is essential that MABEL have a simple parameter mechanism.

Further, the beginner should not be burdened with words like VALUE,

RESULT, name, reference and their diverse and confusing effects.

MABEL therefore has a single parameter transmission mechanism: all

parameters are called by "constant", that is, by value without the

"free" local variable. Thus no formal parameter can be assigned to,

a natural and readily assimilated rule; to a mathematician, the notion

of a function changing one of its arguments is quite foreign.

A mechanism is needed for returning one or several ~alues. In

MABEL this is achieved by a RETURN statement.

Notice that structures are passed in the same manner, (The

specification of a function includes the specification of each para-

meter as a structure, function or s~mple value, the latter belng

the default, as well as the specification of the value(s) returned).

Since copying of structured values is only necessary when the actual

parameter is used non-locally in the procedure body and as6igned to,

and such instances can be easily detected statically, the mechanism

is not inefficient. One can optlmlse further by only copying the

entries in the structure which are changed ~as is done with multlple

values in the ALGOL 68S compiler.

AB 43p.65

A function or procedure is quite permissible as a parameter; we

have endeavoured to make it clear from the syntax that it is the

function which is passed and not the value yielded by a call.

4. OTHER MABEL CONSTRUCTS

i) Control structures.

MABEL is range-structured, a new range and scope being defined by

either a block or a function ~rocedure) body.

MABEL has a single conditional construct which, following the

philosophy alluded to in §2 ~/ll) may be introduced incrementally

without confusing the beginner. A simple conditional would be

IF A
IS B THEN statement

which may be supplemented by an else part:

IF A

IS B THEN statement 1

ELSE statement 2

Both statement 1 and statement 2 may comprise a sequence of statements

(in which case, each statement in the sequence will be indented;

c.f. §4 (v)).

The conditional may be further extended:

IF A

IS B THEN statement 1

IS C THEN statement 2

IS DIE THEN statement 3

ISNT FIGIH THEN statement 4

ELSE statement n+l

A is compared with B,C,D,E,F, etc. consecutively until a match is

encountered; in the case of IS, the corresponding statement is

executed, while in the case of ISNT attention is turned to the next

comparison if there is one.

AB 43p•66

There appears to be no problem in teaching this construct. We

are encouraged to believe that it is highly readable by virtue of

supportive evidence from a series of experiments in which a sequence

of examples was presented to a number of non-programmers~ none of

whom had any difficulty in describing the flow of control•

MABEL has two repetitive constructs. The form of the first is

FOR id INDEXING structure DO

statement-list

where the statement-list will probably involve structure.id. This

permits indexing over an entire structure, and is somewhat similar

to its counterpart in B , although MABEL has no range concept.
o

This construct is useful but limited• For example, FOR cannot

imply an order in which the elements of the structure are accessed.

MABEL therefore provides a second, completely general repetition

facility, which permits both counting loops and recurslve loops• The

simplest form is

REPEAT

The elaboration consists in replacing REPEAT by a copy of the block

in which it occurs. (Notice that REPEAT is not equivalent to a GOTO.)

At the head of the block a number of varlables may be initlalised

and they may be updated by REPEAT

BEGIN WITH I; ~ 1

0

IF I ISNT i0 THEN REPEAT WITH I+i

END

Again, this powerful feature is easy to teach. Onets first demonstra-

tion program is usually

AB 43p.67

BEGIN

VARIABLE X,Y,Z;

GET X,Y;

Z:= X+Y;

PUT Z, X, Y;

END

The bright student in the front row usually objects at this point that

the program only handles one set of data, and will ask how one may

"repeat the process". Upon seeing the program

BEGIN

VARIABLE X,Y,Z;

GET X,Y;

Z:= X+Y;

PUT Z,X,Y;

REPEAT

END

the same bright student may press his luck, object that the loop is

infinite and wonder how one may "put a limit on the number of times

it repeats". (If one does not have a bright student, plant an

accomplice.) At this stage, one introduces a slmple WITH and con-

ditional. Later on one may examine the effect of instructions between

REPEAT and END.

Perhaps one should re-emphasize that MABEL is principally de-

signed to provide an introduction to the formulation of algorithms,

a wide class of which are recursive. It thus seems entirely

appropriate to include a recursive control structure.

These are currently the only loops in MABEL. A possible draw-

back is that loops analogous to

FOR i TO UPB a - i DO ... OD

must be written using REPEAT. From a number of examples the de-

signers feel that this is not a serious drawback; we would not be

AB 43p.68

averse to including a further iterative construct but a satisfactory

one has still to be found.

(ii) Subroutines, calls and formulae.

The return statement of a function (the last statement in the

function body) may return several values:

RETURN I, J, (l+J), ARRAY.I.J.

Coupled with this, MABEL permits parallel assignations as in

I, J := 3, 4~

A, B := B, A;

X,Y,Z:= A,B MULT C,D;

The third of these may not be entirely clear, Many languages

distinguish between operators and functions. The language provides

both, but the progr~T,,~r (usually) may only define functions. This

implies that formulae involving user-defined operations must be

written in Polish notation, which is confusing to both the programmer

and reader.

MABEL makes no distinction between an operator and a function. A

function in MABEL has an arbitrary number of left and right parameters

and returns an arbitrary n-mher of results. A function may have no

parameters or zero left parameters, but we feel this latter will occur

less frequently than might be presupposed. Not only does this afford

a natural way to write functions and calls, but is an excellent aide-

memoire. One can more easily remember the specifications of the

substring function, for example, if one writes

A SUBSTR l,J

rather than

SUBSTR (A,I,J)

Thus, MABEL function calls are simply an extension of the familiar

notation

X+Y

AB 43p.69

The possible syntactic ambiguity in, for example

.... := X PLUS Y,Z

is easily resolved by parenthesising calls in a list, as in

A SUBSTR (I + J), (MAX K,J)

The introduction of user~defined infix operators raises the question

of how operator priorities shall be handled. The possibilities appear

to be

no priorities, which would require that formulae

would have to be completely parenthesized

• integer priorities, as in ALGOL 68

• a small number (say 4) of priority levels, the priority

of a new operator being defined by something llke

PRIORITY ADD LIKE ÷

• left-to-rlght (or similar) evaluation , optionally

combined with any of the first three•

Of these possibilities, the second appears the least satisfactory;

programmers in general and beginners especially remember relative

rather than absolute priorities• The third has attractions, but re-

quires a new construct, requires that a user assign a priority even if

he does not wish to for a particular operation, and implies the intro-

duction of somewhat arbitrary decisions; one could argue for days

about the relative priorities of things like SUBSTR and &

(concatenate), for example. To avoid such arbitrariness MABEL'

currently uses the first alternative and ignores the fourth, but

this is somewhat tentative.

As remarked previously, a function (or procedure) specification

involves specification of the parameters and values returned; this

is naturally true for function parameters, which are specified using

a "model" as in

FUNCTION FUNCTION F SIMPSON A,B

MODEL F X RETURNS VALUE;

VARIABLE S, H, N;

RETURN (H * (((F A) + (F B)) +S))

AB 43p.70

RETURNS VALUE:

/3

If F were to have a function or procedure parameter, it too would have

a model.

(iii) Declarations and constants

All variables must be dec].ared. All declarations must appear

at the head of a block on a function (procedure) body. There is no

initialisation of variables within declarations.

These restrictions, if indeed one considers them restrictions,

are made for pedagogical reasons, although they also assist in one-

pass compilation. Consider the examples:

BEGIN BEGIN

VARIABLE C; VARIABLE C;

C:= 7 ; C: = 8;

* t

* •

BEGIN BEGIN

VARIABLE D:=C; C: = 7;

VARIABLE C:= 5; VARIABLE C|

• I

These are both grossly unreadable and will cause intolerable surprises

to the newcomer (if not the expert tool).

Compile time constants are permitted as in

CONSTA/~T PI:'3.14159', PR!MES~ (l 'I';2, '2'~ 3, '3': 5, '4': 7[)

AB 43p.71

but the following is not permitted

CONSTANT NEWPI: '4'*~ARCTAN i);

It might be hard to explain to a beginner why NEWPI should be a

"constant" and would be hard to prohibit examples llke

CONSTANT A:B, B:A;

in a consistent manner.

iv) Transput

MABEL provides two sets of transput primitives. The first is

intended for use by rank beginners, and is an extremely simple

stream transput facility. The beginner will~ at a very early stage,

appreciate the meaning of

X, Y, Z : = 'i', '2', '3';

and shortly thereafter will learn that

GET X, Y, Z

where the data contains the list of literals

'i', '2', '3' (or 'i' '2' '3')

means precisely the same thing. The corresponding output construct

is typified by

PUT (X + 'i'),(Y + 'I'),(Z + 'i');

which produces

'2' '3' '4'

on the printed page. The remaining primitive he may use is

NEWLINE

This elementary format-free transput is easy to learn but is

insufficient for all but the most basic purposes. MABEL also pro-

vides two simple record transput primitives:

READ var, var, var, ..., var;

WRITE exprn, exprn, ..., exprn;

which may optionally specify a file-name:

READ A,B,C FROM STANDIN;

WRITE (A+B), (C+D) TO STANDBACK;

AB 43p. 72

Each variable is read from and expression written to a new record in

the appropriate file, which is STANDIN or STANDOUT (which are also

accessed by GET and PUT) if no file name is specified. MABEL takes

the view that the beginning programmer should be made aware that

transput operations are essentially string transfers; hence, it is

the programmer's responsibility to manipulate the corresponding

strings as he wishes (although MABEL will provide various functions

to assist him).

It will be observed that all these transput operations involve

constructs rather than function calls. We consider the additional

seven reserved words introduced (for a total of 32) far preferable

to introducing "pseudo" functions with a variable number of para-

meters, as is the case in ALGOL W.

(v) Operations and other oddments.

The MABEL "system" comprises three components: the kernel, the

prelude and libraries.

The kernel incorporates all the MABEL constructs, including a

set of "primitives" which will rarely be used by programmers but

which are complete in that all operations may be defined in terms of

them as described in the next paragraph. The primitives currently

used are

SPLIT char FROM string

APPEND string TO string

The kernel includes some global constraints, such as file names but

does not include any function or procedure definitions.

In the prelude are defined a host of MABEL functions. These in-

clude arithmetic operations such as

+, -, X, /, **, <, > etc., DIV, MOD, FLOOR etc.

string operations such as

AB 43p. 73

& { concatenate}, SUBSTR { "ABCD" SUBSTR 0,2 yields "AB"},

CB, CA { comes alphabetically before and after}, REPLACE,

CONTAINS, REVERSE

and the (non-McCarthy) logical operations

AND, OR, NOT, XOR

The prelude may be written entirely in terms of the kernel, and this

will be incorporated in the definition of MABEL. Hopefully this

definition of the prelude will be correct and an aid to portability;

it should be directly usable by an implementer with possible loss of

efficiency being the only penalty•

A number of standard libraries will be included in the MABEL

definition. Others may be added at installations•

There are two ways to include comments in MABEL programs•

• All text from # to the end of the current input

record is treated as comment.

• Comments may be included within the brackets

(*, *).

In the latter case the brackets may be nested and will be matched by

the compiler, thus permitting sections of program including comments

to be "comm~_nted out" for testing purpose~.

MABEL currently uses a 56 character set consisting of

letters A-Z

• digits 0- 9

• operators +- * / ~ = < >

• punctuation () ' " ; : . , # space

ASCII has currently been adopted as the collating sequence. Identi-

fiers are (arbitrarily long) sequences of letters and digits starting

with a letter, while function symbols are identifiers or sequences

of operators. (Special symbols are never sequences of operators.)

We emphasize that generic operators are not permitted; operator

(function) identification

identifiers.

AB 43p.74

follows precisely the s.m~ rules as for

MABEL encourages good program layout. When a group of statements

is to form a single compound statement and there are no explicit

delimiters, these statements must be indented,at the same level.

This applles in three situations: following THEN, following ELSE

and following DO. (All other compound statements have delimlters

such as BEGIN...END, PROCEDURE FINISH and FUNCTION RETURN.)

We feel that good program layout should be mandatory rather than

optional; indentation is a powerful, all too frequently ignored

control structure.

5. MABEL Implementations

A compiler for the current version of ~L~BEL has been written at

the University of Manitoba. It could be made available to anybody

willing to experiment with the language. Its brief specifications

are as follows:

Computer:

Source
Language:

Compiler
Size:

Space
Requirements:

Parser:

Object
Code:

IKM 370 under OS or VS

200 K

Compiler: 256 K
Run time: 4K + Object Code + Memory area (run-

time parameter)

LR(1) with local error correction

370 Object Code

Object code is combined with 4K of run-time
routines. Run time includes a garbage
collector and error traceback.

AB 43p.75

ACKNOWLEDGEMENT

The first-named author wishes to thank h~s grade 2 daughter for point-

ing out that 10-3+2 is equal to 5.

APPENDIX: ILLUSTRATIVE EXAMPLES

Three examples are given, all of which have run successfully

under the current MABEL compiler. The first is a simple prime

seive program; the second evaluates simple arithmetic expressions

while the third, a family tree program, is intended to illustrate

the power and potential of the MABEL STRUCTURE facility. Two sets

of output appear for the third program; the second set illustrates

the run time dump produced in the event of a run time error (here

activated by execution of the statement STOP).

llJ

UJ

+<

m

~ ~ .z •
,. °oi- UJ

- I J , - o-UJ ~UJ

• II ~ k,

I,U 2: ~ H o,.
- D I- ^

uJ.-,-. < Z

. °, -. ~t

• + + , o , o + +

,, ILl ~ II
> U . . . " •

Z ~ ~ ~ Z (nO --IIJ "1 '~

<1.,. I£.1 I-,- , X
I~ ~ ~II,.I l-i.,. O~IJ.Jl.,, --U.I <

+ o ~ Z Z ~ , . l Z] l cn X
-- ~ < < l,.,.m<

~ I-1.- u < l - Z t k II.

. ~ + +m

u ~ ~ .+m m+ m +~. eo, o - m m ~.m,a~. + + o - m

Z ~ w

+ ~ ~ ®o +<o +o++m+<++o
0 O 0 ~ G l C l + , , * , ~ , , ~ + ~ N N I N

0 ~ o o o + o ~ o o o o o o o o + o ~

AB 43p. 76

AB 43p.77

~<

>~

~ ~ ° ~ ~ "°

d -

~ Z ~

" 8 ~ ~ - ~ o~ ~ ~ ~ ~ ~ . . = . • -~ z~ z-~.

~ 0 @ " ¢ > J ~ !1 II II II Z II J ~ O , , I k = l l ~ = I1~ I l k k .,

z ~ , ~ +~ = ~ ~ ~ ; ~ o ~ > = > ~ > = ~ •
~ ~ ~ . m ~ z < . . ~ z < ~ + ~ l ~ * ~ ~ z < . z ~ ~ ~ ~ ~ j

13.

0
U

.J
L~

UJ U
ILl

N I,I,.
U UJ
UJ
O. Z

N

m m
Z Z
0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O 0 O 0 0 0 0 0 0 0 0 0 0

AB 43p. 78

LLJ

0,

<
"1

LU
U~

UJ
.J
LLI
O~

~J

Z
0

~n

LU
>

UJ
.J

O.
=[

.J
UJ

3[

I -

O. <
uJ >

~ Z
Z ~
u J ~

I=-

LU

e o

~ q

O.
Z

>
UJ

uJ
z

.J

N

< z~
• uJ

o.
-Z

Z
LUuJ

Z . - ~

Z ~

uJ

uJ

< Z

Z

0 0 0 0 0 0 0 0 0

in

~nO

~ u J

u J u
t ~

x I - -
< Z
tm<
Z ~

vow

~ Z
I - 0

0 ~

I - W
~ Z
U W

~xw
W ~

%

0 ~
÷ U O

~ 0

0

N

AB 43p. 79

0

u
UJ

~0
0
II
l -
U

0

0

tU <
Z

~ ~ °
~ 0

% 0 0
II II

• -, Z Z
l i l N

Z I,~
< I U

w 0
U . J

0
II II
In Z

< < I£.I
I.U ~ 0
. i ~ o
W U

I!

Z • ~

i i i Ol o

u ~ w

, J ~ U,.

Z Z

~ N

0 0

@ @
@ @

@ @

@ @

@ @
@ @

@ @

@ 0¢ @

0
0

m

l@

O0

Z Z

m ~

e e e@

Z

.J

~tU

W O

,-',W
J Z

DOE
OLU

~ = " ' W < L.W I , - I - - ~ . o • •
LU~O: I + ~ 0 < 1.II LU ,-, I~ +

• ° = = = tU~U..I l.IJ D ~

• - ~.... ; • < Z < l,l.I < g ~ W
0 . - ~ • O~ . . Z < Z LI.IZ I Z ~ ~ Z , , Z Z
I1.1= I . - U . I l U O - - Z J e l . - , W J W - , 0 • •
Z - ~ I I J J OU.I ~ I I J J I I , I W
N ...II.- I.- ,-~ O0 ~ ~ ~ ~ O W ~ I-- ¢0 --WbJ

O , J < 111,- ~ t.,)- ~ > -
ZD~- ~- ~-~ ~J J~ J-- J J
DZ ZZZZ< ,J ~ ~ ,-..., ~,=,

LIJ I - O~ I-- I.. I,-, I,-, (Z < < Z <

< ~ Z Z Z Z ~ 0 ~
Z<l.,. UO0 ~ 0 I£I < IJ. ~
~ 0 1 D U ~ U U U > w ~
~ Z ~ Z 0

03 >U t~

~ D

A

= 7 <
Z o o e o

A

L.I.I 8: 8~
.,.,.I

e"s

111
~ ~ Z

0 UJ LU .J
• Z Z 1-

I11 U I -" .,I = .J O.
O. Z Z I-- Z l.-

O~ 0 O. 0 & - -
UJ

I.- Z • Z o
• - . P 0 ~ ~ ~ ~ ~ Z
~JW ,- ~ W W

~ :3 ~ WJ I,- I,,u I.- o
Z Z Z I < I 0

I-- ,, I-- 1,6 ~ • - I
II II 0 .'~ ~ • 0 • I!
• , , , Z ILl I L 1.1.1 ~ ~ , ,

e e ~ ~ < ~ N o
~ - , Z Z ~ Z ~ Z Z Z ~

: Z ~ ~ ~ I-- - W . W ~- ~ Z

~ tO I .JI =J W ~-O~
Z ~ • ~ ~ ~ ~ -0 Z I-.

~ ' 0 " " @ @ • ~ t t- • ~ I1. < Z < - -

, , ~ . J . . l ~ ~ W W ~ ~ ~ ~ O. Z Z

• - J . - ~ . J W .J W ~ Z

.J ~ U~ 0'I Z W ~

~ ~ 0 ~ ~ ~ 0 ~ ~ ~ 0 ~ ~ ~ 0 ~ ~ 0 ~

0 0 0 0 0 0 0 ~ ~ ~ ~ N ~ N N ~ M ~ ~
0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AB 43p. 80

G.

UJ
Z
N

.J

e o

tU Z

Z 0. < .J
U~ 0. .J

< • - Z
(1 0 • . ,

.J O- Q
• . ,=, Z - I

~J 0 t.- (I ~ . =

• Z J . - < ~ Z •

~ Z ~ ~ Z Z Z
~o ~ Z ~ "~" ~ ~ m

Z ~ ~ ~ ~ ~ , , • ~ ~ Z . - ~ Z . - ~ ~ - 0 ~ ~

~ X Z < Z ~ ~ ~ " ' " ~ ~ ~ ~ ~ Z ~

~ Z Z ~ 3 ~ 0 '=" ~ Z~ • ~ ~ ~ ~ ~ t ~ ~
~--~ ------~Z--~ Z~ .-o 3 ~ ~ Z~ Z Z~ ~ Z J • <

Z ~ ~ • ~ O U Z Z ~ ~ Z ~ ~ ~ J ~ ~

Z ~ Z ~ ~

X 0
0 O~

.J
tU
O0

@

0

> ~ m m

o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

u~
D:

CD~
~UJ

UJU
N

xJ-"
< Z

Z :E
>-W

AB 43p.81

Z

U

d

g
Z

0 ~J

~ Z

O O Z ~

Z ~

0

0

~Z~

0

e $ e e . $ e o e o o $

ZZZZZZ

@@@@@@
Z@@@@@
0 0 0 0 0 0
U U U U U U

W

ZZ ZZ

O0 O0
ZZ ZZ

ZZ ZZ

~0 4[O

0 0

.J
UJ

ZZ

O0
ZZ

ZZ

~0~

I-I-
~0

0
0
L~

Z
~m

U

ZZ

O0
ZZ

ZZ

~tU

~0

0
0

Z

U

ZZ

O0
ZZ

ZZ

~JUJ
ZZ

~0

0

Z Z

O 0
ZZ

ZZ
D~

~tU

I,- I--
~0

0

0
0

L~
Z UJ

O.

Z
-

Z U

.J
ILl

o~Z

W

WU ~ O ~ Z
O U W

~ XW
Z Z W~

W~W W

I~ ~ Z~

~ ~ Z ~

• 3
~ o

• .~ ~ ..0

ZZ Z ZO

@~ ZJ @

AB 43p. 82

Z

U

.J
UJ

<
Q
<

3:

sm

Z
<

0
U

O O Z <

Z Z

Q ~ E ~
0
U

J Z <

Z Z Z Z Z Z ~ E < m < ~

UJ

• "~ I.U .,I U

I I,U = ~.

I I < = ~1.;.1~'.~1:
, . Z ~ l l ~ - I ~ - - - < , ,

) ~ 0 . , 0 . - < 1 0 E

3: - , ~ = m : , ~ . J : <

I : ~ U , J U L U - - Z : ~ O ~ .
~ ' " . J :E : : = l I . . . (= =

• . t U U L I . - - I I . E ~ = = I .LQ

I - = = O 0 0 0 < ~ Z

2 I~ = ,'= ,'1~ *,= I~ U

I E .-~ IJJ , , IZ l . , tIJ - . E .-.
, , L U . , ~ I ~ l Z : W , ,
= = = i - m ~ . - m t - - m ~ =

J

m
<
Z

E

U
Q

Z

~ Z

<

~ O ~ Z D

w m

• • e l

: ~ e l

Z ~

= = W

w W : : N Z
Z Z ~ m ~ 0

Z Z ~ I l Z Z Z ~

W W W W < O ~

• J J ~ Z

O 0

Z Z Z J ~ J ~ j •

Z Z Z Z ~ ~
0 0 0 0 < < < < < <
U U ~ U >) > > > >

