AB 43p.54

2B43.4.1 MABEL: A Beginner's Programming Language.

P.R. King, G. Cormack, G. Dueck, R. Jung, G. Kusner, J. Melnyk’

(Department of Computer Sciénce, University of Manitoba,
Winnipeg, Manitoba R3T 2N2, Canada)

ABSTRACT
This paper presents a preliminary version of an introductory programming
language. The design of MABEL is far from frozen, and many of the
decisions taken are, at best, tentative. Our hope in presenting the
language at this stage is to obtain input from a wider source. Hence
we earnestly solicit constructive cricitism, and ask readers to

accept the current document in this spirit.

1. INTRODUCTION

MABEL (MAnitoba BEginner's Language) is a programming language
for people who have never programmed before. It is a simple, general-
purpose language. Hopefully, this does not imply that with MABEL one
can only do simple things. Rather, MABEL is intended to provide a
simple introduction to the art of programming by assisting the new-
comer in the design of sequential algorithms. MABEL is designed to
be simple to teach and to use.

The designers received suggestions from aAvafiety of sources,
both within the University of Manitoba, from students and instruc-
tors alike, and from a number of high school instructors within the
Winnipeg School System who were asked to identify areas of difficulty
encountered both by themselves and by their students. Each member of
the group had a "pet" language (PASCAL, COBOL, ALGOL W, ALGOL 68,
PL/1 and SNOBOL), features of which were advanced by its proponent
and avidly attacked by others. We also listened (though frequently
pretending otherwise) to the comments of colieagues outside the group

as features on which we sought opinion were surreptitiously leaked.

AB 43p.55

Existing beginning languages, such as Bo and the Toronto SP/k system,
were given careful attention.

From this diversity of advice, sometimes helpful but often im-
possible or derisory, the criteria of §2 were established., This list
became our bible, sacrosanct and inviolahle, by virtue.of which all

design decisions were taken and to which all disputes were referred.

The majority of the time spent in actual design was spent in
taking three basic decisions, namely the primitive types, the data
structuring facilities and the parameter mechanism. These decisions
and their rationale will be discussed in §3. Once they had been taken,
most of the remainder of the design followed relatively rapidly and
easily. There was some hectic infighting over the form of the
repetitive construct, but the bloodshed was minimal compared to that
occasioned by discussions over the primitive types, for example. The
remainder of MABEL, after the three basic decisions, will be dis-
cussed in §4.

Personal prejudice began to rear its ugly head when deciding upon
the concrete syntax, and the current proposals may suffer in that re-
gard as a result of the occasional compromise decision. Some sample
programs appear as an appendix, and a MABEL syntax chart, & la Watt, Sintzoff

and Peck, is appended.

2. DESIGN CRITERIA FOR MABEL

The objective of MABEL is to provide as smooth an introduction as
possible to the esoteric art of programming. Whether or not the be-
ginner will graduate from his lowly state, and what happens when he
does, 1s not deemed of any great relevance in determining how to effect
such an introduction. If MABEL is a good introduction to more com-
plex languages we would regard this as a bonus rather than a result

of design.

AB 43p.56

Although nine criteria are explicitly discussed, several points

not given in the list were considered, but ultimately excluded from

the design.

These included whether MABEL should provide an introduc-

tion to machine architecture, whether MABEL should be extensible and

whether MABEL should define such (non-elementary but potentially

simple) features as program modules and linkage to other languages.

Such features are now being considered in the context of a systems

implementation language being designed as a MABEL superset.

We first consider five "positive" criteria: those which were

of major importance in the design of MABEL,

&Y

(1i)

Simplicity. The beginner must not be confused by a
large number of unorthogonal features. There must
be no discrepancies between the meaning of constructs
when they appear in different situations or in the
ways in which they may be used. Thus, the distinc-
tion between <statement> and <simple statement> in
ALGOL W is mnot simple; the ALGOL 68 iterative state-~
ment is far from simple both because one requires
so much information before it can be used even for
simple applications, and because two applications,
such as

FOR i TO n DO read(alil) OD
and

WHILE REAL x; read(x); x>0 DO SKIP OD

have vastly different forms and purposes; the
use of pointers and associated dereferencing
and aliasing is very far from simple.
Readability. The reader should find MABEL
programs relatively self-documenting and self-
verifying. These requirements impinge on design

at both the abstract and concrete levels.

(iii)

(iv)

v)

MABEL must be surprise free, conform wherever
possible to accépted mathematical meaning

(5/3 is the same as 5.0/3.0) and adhere to

the precepts of structured programming,
Teachability. No feature was added to MABEL
until one had demonstrated a simple means of
teaching it to beginners. The language
should be teachable in a "continuous" fashion,
by incorporating features which can be exempli-
fied and assimilated in small "upwards-com—
patible' stages, rather than features which
require a lot of detailed information before
they can be put to simple use.

Introduction to design of algorithms. The
beginning programmer is habitually faced with
two problems; firstly, to design a sequential
algorithm for the problem at hand, which is
rarely in sequential form, and secondly,vto
cast this algorithm into the form required by
the particular programming language being used,
MABEL has been designed to assist the user in
thg first of these: all else is of subsidiary
importance, and one will observe that MABEL
lacks certain '"standard" language features
since they do not contribute directly to this

end.

Versatility. Many students have a low opinion
of their introductory language as a direct re-
sult of disappointment in the applicative

examples with which the "power" of the language

AB 43p.57

AB 43p.58
was illustrated. One wonders to what extent
such samples are chosen simply because the
language in quesfion is just so restricted.
MABEL is a general-purpose language and, as
the examplesin the appendix show, has the power to be
used for "real" problems. We hope that MABEL
will cater, to some extent at least, to the
ex-beginner who nonetheless wishes to con-

tinue using MABEL because he likes it,

Two further criteria were deemed of somewhat less importance;
(vi) Small compiler. It is quite probable that a

common environment for a language like MABEL

will be mini-computers. Thus the MABEL com—

piler must be of modest size, and this should

be reflected in the language design.

(vii) Simple compilation. It is highly desirable
that MABEL be l-pass. Equally, it must be
easy to associate clear, meaningful diag-
nostics with both compile-time and run-
time errors. Our experience 1is that these
latter questions are as much matters of
language design as of compiler design.

Two final criteria were considered to be of rather minimal

importance to the design of MABEL:

(viii) Introduction to programming languages. "And
vieit the sins of the fathers upon the
children wnto the third and fourth genera-
tion." This theology appears rampant in
programming language design (and is, we
claim, responsible for a multitude of

disastrous design decisions). It is

AB 43p.59

not the philosophy of MABEL: we do not

accept that transition from a simple to

a more complex language is facilitiated by
incorporating bad features from the complex
languagé in the simple one,

(ix) Run time efficiency. Although the run time
efficiency of both time and space require-~
ments are of minor importance in the de-
sign of a beginner's language, they
should not be entirely ignored if the
language is to gain any degree of accep-

tance as a viable product.

3. THREE FUNDAMENTAL DESIGN DECISIONS
i) Simple types in MABEL

MABEL has a single simple type. The programmer may define and
manipulate constants and variables of this simple type, and compose
structured types from it. In this respect, MABEL resembles SNOBOL 4,
and uses the same syntax for literals, representing them as
character sequences enclosed within ", " or ',°', pairsf: MABEL is not
a string processing language. Naturally, the programmer will be aware
that certain program variables are restricted to certain subdomains
of this one type and that certain operators make sense only in
certain subdomains, but MABEL considers such subdomains to be
entirely the programmer's responsibility rather than a static,

feature. (A clever compiler, however, might handle some of them

statically.)

In retrospect one wonders why this decision took us so long to

take; it now appears entirely natural and obvious. The reasons for

* Currently, the quotes are optional for integer
constants. This is under review.

AB 43p.60
having multiple pre~defined types, in ALGOL for example, appear to
be

. increased static security

. 1increased readability, and self-documentability

. increased run-time efficiency

. ability to use generic operators
The first of these is to a large extent an implementatiom concern
and low on our score-card.. The second is highly debatable. One
can as easily read and comprehend

P+B*Q-3 or

A AND C OR Q<3
without consulting the declarations or kmowing the types of A, B, C,
P or Q as with; any complete understandiﬁg requires detailed diction-
ary type descriptions in either case. Few beginner programs ever
run in production mode; thus the third reason hardly applies. Finally,
generic operators are especially confusing to the beginner; why
should

"PQRS" < "Xyz" or 3% "xyz"
be meaningful? If one means "comes alphabetically before" or
"replicate three times', then one should say so.

Further, multiple types add to the complexity of a language per

se, by virtue of the diverse denotations required and, most of all,

by virtue of the type conversions, both explicit and implicit. The
beginner needs no assistance in accepting that

|3t + 14.71
is perfectly sensible and yields '7.7', whereas

13| + '.XYZ‘
is not sensible and will produce rubbish,

It is to be admitted that typing permits certain errors to be
caught earlier than can be done in a typeless language, but it is

not clear that the clags of such errors is gufficlently broad to

AB 43p.61
justify the complexity of multiple types. On the other hand the
adoption of a single type added considerably to the ease of de-
scription of transput (c.f. §4 iv) and assisted greatly in defining
the data structuring facility of MABEL, the second fundamental dg—

sign decision.

(ii) Data Structures in MABEL

In order to satisfy the criterion of versatility, MABEL should
provide the powers afforded by conventional data structures, includ-
ing pointers, heap-storage management and flexible arrays. Con-
ventional arrays as in FORTRAN and ALGOL would be quite unorthogonal
with the single primitive type of MABEL. Restricting indexation to
integers is 1inappropriate since integer is not a predefined type,
and since strings have no inherent order, the concept of an array
as an ordered set is equally unsuitable. It was decided to replace
the copventional array by a facility such as the table concept of

SNOBOL. SNOBOL tables are one-dimensional and each item is selected

by a unique key; use of the same key accesses the same element while
use of a2 new key creates a new element.

Next, the possibility of multi-dimensional tables was considered.
To examine their usefulness in a beginner's language, illustrative
examples currently used for high-school and first-year students were
scrutinised. Most examples appeared highly contrived to make use of
two dimensional arrays. A typical example is the construction of a
table of student numbers and their grades according to course number.
There are usually far more courses offered than are taken by a par-
ticular student so that the table will typically be sparse; the be-
ginner is then forced to write code (to ignore the empty entries)
which is not part of the processing algorithm. What is needed is a

)

table keyed by student-name, with each entry a tablé of marks keyed

by course~name.

AB 43p.62

From these considerations emerged the MABEL data structure as a
table with multiple sub-keys, where a key may be any expression which
yields a simple value. A multi-dimensional array would be represented
by using the same number of keys at all times. A COBOL or PL/1
structure is achieved by restricting keys to constants. By making
use of the full power of an arbitrary number.of variable keys, any
tree whatsoever may be represented as a MABEL STRUCTURE, without
introducing any notion whatscever of pointers., Some examples illustra-
ting these remarks appear in the appendix; the reader might wish to

consylt these before continuing.

The following formal rules serve to describe the syntax and
semantics of the MABEL STRUCTURE facility:
A A structure may have a simple value or a multiple value. Let §
be an arbitrary structure (which might, of course, be a variable or
constant or an expression or delivered by a function) and k, k., kz, cee
arbitrary keys.
B (1) If S has a multiple value, S may be qualified thus:
S.k
to yield the corresponding (sub~) structure.
(i1) If S has a simple value then S may not be qualified.
C (i) If S has a simple value then S may be explicitly coerced to
yield that value thus:
S.
(11) If S has a multiple value, § may not be so coerced.
Thus, a reference to a sub-structure of S is of one of the
forms

s Stk LRI S Y Y Y s.klthzo L) okn

while a reference to an element (simple value) in a structure is of
ene ef the forms

s. sikl LIS A Y s-kltkzﬂ a“ee -k L3 -

MABEL structures also permit heap-like memory management.

AB 43p.63

Assuming

*
that the MABEL prelude contains a function UNIQUE , successive calls

of which produce distinct, arbitrary simple values, then the follow-

ing four groups of code contain equivalent phrases:

A. ALGOL 68:

MODE T = STRUCT (REF T link, INT 1i);

' REF T p;
PL/1:
DECLARE 1 T BASED,
2 LINK POINTER,

2 I FIXED BINARY;

DECLARE P POINTER;

MABEL:

STRUCTURE
CONSTANT
CONSTANT
VARIABLE

T;
LINK:"LINK";
I:"I";

P;

ALGOL 68:

p: = HEAP T :

PL/1:

ALLOCATE T SET (P);
P -+ T.LINK = NULL;
P->T.1 = 17;

UNIQUE;
(| LINK: NULL, I:17

ALGOL 68:
PL/1
MABEL

link OF p
P » T.LINK
T.P.LINK,

ALGOL 68;
PL/1:
'~ MABEL:

DELETE P~T .
T.P, ;= UNDEFINED;

{#FIELD OF T. name
#FIELD OF T. name
#iNAME WITHIN T

= (NIL, 17)

D)

no explicit garbage collection

A typical declaration would be
*
VARIABLE UNIQUEX;:
FUNCTION UNIQUE RETURNS VALUE:
UNIQUEX := UNIQUEX & 'Z2';
RETURN UNIQUEX

The MABEL prelude contains the declaration
of a constant UNDEFINED whose value is
"$SUNDEFINED". All MABEL simple variables
are initialized to that value (including
UNIQUEX used in the preceding footnote).

AB 43p.64

These examples, together with those in the appendix, illustrate
how the MABEL structure facility provides all the powér deemed
necessary while maintaining its essential sfimplicity. It will be
remarked how central the single simple type is to its formulationm.
We are grateful to Robert Dewar for‘pointing out the similarity be-
tween the STRUCTURE of MABEL and maps in the language SETL, although
the MABEL feature was developed quite independently and with

different goals.

(1ii) The parameter mechanism in MABEL

It is essential that MABEL have a simple parameter mechanism.
Further, the beginner should not be burdened with words like VALUE,
RESULT, name, reference and their diverse and confusing effects.
MABEL therefore has a single parameter transmission mechanism: all
parameters are called by "constant", that is, by value without the
"free" local variable. Thus no formal parameter can be assigned to,
a natural and readily assimilated rule; to a mathematician, the notion

of a function changing one of its arguments is quite foreign.

A mechanism is needed for returning one or several values, 1In
MABEL this is achieved by a RETURN statement.

Notice that structures are passed in the same manner, {The
specification of a function includes the specification of each para-
meter as a structure, function or simple value, the latter being
the default, as well as the specification of the value(s) returned).
Since copying of structured values is only necessary when the actual
parameter is used non-locally in the procedure body and assigned to,
and such instances can be easily detected statically, the mechanism
is not inefficient. One can optimise further by only copying the
entries in the structure which are changed (as 1s done with multiple

values in the ALGOL 68S compiler.

AB 43p.65
A function or procedure is quite permissible as a parameter; we
have endeavoured to make it clear from the syntax that it is the

function which is passed and not the value yielded by a call.

4. OTHER MABEL CONSTRUCTS
i) Control structures.

MABEL is range-structured, a new range and scope being defined by
either a block or a function (procedure) body.

MABEL has a single conditional construct which, following the
philosophy alluded to in §2 (iii) may be introduced incrementally
without confusing the beginner. A simple conditional would be

IF A
IS B THEN statement

which may be suppleménted by an else part:

IF A

IS B THE& statement 1

ELSE statemen£ 2
Both statement 1 and statement 2 may coﬁprise a sequence of statements
(in which case, each statement in the sequence will be indented;
c.f. §4(v)).

The conditional may be further extended:

IF A

IS B THEN statement 1

IS C THEN statement 2

IS D|E THEN statement 3

ISNT F|G|H THEN statement 4

ELSE statement n+l
A is compared with B,C,D,E,F, etc. consecutively until a match is

encountered; in the case of IS, the corresponding statement is

executed, while in the case of ISNT attention is turned to the next

comparison if there is one.

AB 43p.66

There appears to be no préblem in teaching this construct. We
are encouraged to believe that it is highly readable by virtue of
supportive evidence from a series of experiments in which a sequence
of examples was presented to a number of non-programmers, none of
whom had any difficulty in describing the flow of control.

MABEL has two repetitive constructs. The form of the first is

FOR id INDEXING structure DO
statement-list
where the statement-list will probably involve structure.id., This
permits indexing over an entire structure, and is somewhat similar
to its counterpart in Bo’ although MABEL has no range concept.

This construct is useful but limited. For example, FOR cannot
imply an order in which the elements of the structure are accessed,
MABEL therefore provides a second, completely general wepetition
facility, which permits both counting loops and recursive loops. The
simplest form is

REPEAT
The elaboration consists in replacing REPEAT by a copy of the block
in which it occurs. (Notice that REPEAT is not equivalent to a GOTO.)
At the head of the block a number of variables may be initialised

and they may be updated by REPEAT

BEGIN WITH I; = 1

IF I ISNT 10 THEN REPEAT WITH I+1

END

Again, this powerful feature is easy to teach. One's first demonstra-

tion program is usually

AB 43p.67

BEGIN

VAﬁIABLE X,Y,Z;

GET X,Y;

Z:= X+Y;

PUT 2, X, Y;

END
The bright student in the front row usually objects at this point that
the program only handles one set of data, and will ask how one may
"repeat the process". Upon seeing the program

BEGIN

VARIABLE X,Y,Z;

GET X,Y;

Z:= X+Y;

PUT Z2,X,Y;

REPEAT

END
the same bright student may press his luck, object that the loop is
infinite and wonder how one may "put a limit on the number of times
it repeats". (If one does not have a bright student, plant an
accomplice.) At this stage, one introduces a simple WITH and con-
ditional. Later on one may examine the effect of instructions between
REPEAT and END.

Perhaps one should re—émphasize that MABEL is principally de-
signed to provide an introduction to the formulation of algorithms,
a wide class of which are recursive. It thus seems entirely
appropriate to include a recursive control structure.

These are currently the only loops in MABEL. A possible draw-
back is that loops analogous to

FOR 1 TOUPBa -1 DO ... OD
must be written using REPEAT. From a number of examples the de-

signers feel that this is not a serious drawback; we would not be

AB 43p.68
averse to including a further iterative construct but a satisfactory

one has still to be found.

(ii) Subroutines, calls and formulae.
The return statement of a function (the last statement in the
function body) may return several values:

RETURN I, J, (I+J), ARRAY.I.J.

Coupled with this, MABEL permits parallel assignations as in

I, J = 3, 4;

A, B = B, A;

X,Y,Z:= A,B MULT C,D;

The third of these may not be entirely clear, Many languages
distinguish between operators and functions. The language provides
both, but the programmer (usually) may only define functions. This
implies that formulae involving user-defined operations must be
written in Polish notation, which is confusing to both the programmer
and reader.

MABEL makes no distinction between an operator and a function. A
function in MABEL has an arbitrary number of left and right parameters
and returns an arbitrary number of results. A function may have no
parameters or zero left parameters, but we feel this latter will occur
less frequently than might be presupposed. Not only does this afford
a natural way to write functions and calls, but is an excellent aide-
memoire. One can more easily remember the specifications of the
substring function, for example, if one writes

A SUBSTR 1,J
rather than

SUBSTR (A,I,J)

Thus, MABEL function calls are simply an extension of the familiar
notation

X+Y

AB 43p.69

The possible syntactic ambiguity in, for example

.ees =X PLUS Y,Z
is easily resolved by parenthesising calls in a list, as in

A SUBSTR (I + J), (MAX K,J)

The introduction of user~defined infix operators raises the question
of how operator priorities shall be handled. The possibilities appear
to be

no priorities, which would require that formulae

would have to be completely parenthesized

. integer priorities, as in ALGOL 68

. a small number (say 4) of priority levels, the priority

of a new operator being defined by something like
PRIORITY ADD LIKE +

. left-to-right (or similar) evaluation, optionally

combined with any of the first three.

Of these possibilities, the second appears the least satisfactory;
programmers in general and beginners especially remember relative
rather than absolute priorities. The third has attractions, but re-
quires a new construct, requires that a user assign a priority even if
he does not wish to for a particular operation, and implies the intro-
duction of somewhat arbitrary decisionsg one could argue for days
about the relative priorities of things like SUBSTR and &
(concatenate), for example., To avoid such arbitrariness MABEL"
currently uses the first alternative and ignores the fourth, but

this is somewhat tentative.

As remarked previously, a function (or procedure) specification
involves specification of the parameters and values returned; this
is naturally true for function parameters, which are specified using

a "model" as in

AB 43p.70
FUNCTION FUNCTION F SIMPSON A,B RETURNS VALUE:
MODEL F X RETURNS VALUE;
VARIABLE S, H, N;

.

RETURN (H * (((FA)+ (FB))+S)) /3

If F were to have a function or procedure parameter, it too would have

a model.

(11i1) Declarations and constants

All variables must be declared. All declarations must appear
at the head of a block on a function (procedure) body. There is no
initialisation of variables within declarations.

These restrictions, if indeed one considers them restrictions,
are made for pedagogical reasons, although they also assist in one-

pass compilation. Consider the examples:

BEGIN BEGIN

VARIABLE C; VARIABLE C;

C:= 7 C: = 8;
BEGIN BEGIN
VARIABLE D:=C; C: = 7;
VARIABLE C:= 3; VARIABLE C;

. .
. .

. .

These are both grossly unreadable and will cause intolerable surprises
to the newcomer (if not the expert too!).
Compile time constants are permitted as in

CONSTANT PI:'3:14159', PRIMES: (| '1':2, '2': 3, '3': 5, "4': 7))

AB 43p.71
but the following is not permitted
CONSTANT NEWPI: '4'*(ARCTAN 1);
It might be hard to explain to a beginner why NEWPI should be a
“"constant'" and would be hard to prohibit examples like
CONSTANT A:B, B:A;

in a consistent manner.

iv) Transput
MABEL provides two sets of transput primitives. The first is
intended for use by rank beginners, and is an extremely simple
stream transput facility. The beginner will, at a very early stage,
appreciate the meaning of
X Y, Z ="1", 2%, '3
and shortly thereafter will learn that
GET X, Y, Z
where the data contains the list of literals
', '2', '3t (or '1" 2" '3%)
means precisely the same thing. The corresponding output comstruct
is typified by
PUT (X + '1"),(Y + '1'),(Z + '1');
which produces
2 3t 'y
on the printed page. The remaining primitive he may use is
NEWLINE
This elementary format-~free transput is easy to learn but is
ingsufficient for all but the most basic purposes. MABEL also pro-
vides two simple record transput pr;mitives:
READ var, var, var, ..., var;
WRITE exprn, exprn, ..., €xprn;
which may optionally specify a file-name:
READ A,B,C FROM STANDIN;

WRITE (A+B), (C+D) TO STANDBACK;

AB 43p.72
Each variable is read from and expression written to a new record in
the appropriate file, which 1s STANDIN or STANDOUT (which are also
accessed by GET and PUT) if no file name is specified, MABEL takes
the view that the beginning programmer should be made aware that
transput operations are essentially string transfers; hence, it is
the programmer‘'s responsibility to manipulate the corresponding
strings as he ﬁishes (although MABEL will provide various functions
to assist him),.

It will be observed that all these transput operations involve
congtructs rather than function calls. We consider the additional
seven reserved words introduced (for a total of 32) far preferable
to introducing "pseudo" functions with a variable number of para-

meters, as is the case in ALGOL W,

(v) Operations and other oddments.

The MABEL '"system" comprises three components: the kernel, the
prelude and libraries.

The kernel incorporates all the MABEL comnstructs, including a
set of "primitives" which will rarely be used by programmers but
which are complete in that all operations may be defined in terms of
them as described in the next paragraph. The primitives currently
used are

SPLIT char FROM string

APPEND string TO string

The kernel includes some global constraints, such as file names but
does not include any function or procedure definitions,
In the prelude are defined a host of MABEL functions. These in-

clude arithmetic operations such as

+, =, X, /, *%, <, > etc.,, DIV, MOD, TFLOOR etc.

string operations such as

AB 43p.73
& { concatenate}, SUBSTR { "ABCD" SUBSTR 0,2 yields "AB"},
CB, CA{ comes alphabetically before and after}, REPLACE,
CONTAINS, REVERSE
and the (non-McCarthy) logical operations
AND, OR, NOT, XOR
The prelude may be written entirely in terms of the kernel, and this
will be incorporated in the definition of MABEL. Hopefully this
definition of the prelude will be correct and an aid to portability;
it should be directly usable by an implementer with possible loss of
efficiency being the only penalty.
A number of standard libraries will be included in the MABEL
definition. Others may be added at installatioms.
There are two ways to include comments in MABEL programs.
. All text from # to the end of the current input
record is treated as comment.
. Comments may be included within the brackets
(%, *).
In the latter case the brackets may be nested and will be matched by
the compiler, thus permitting sections of program including comments
to be "commented out" for testing purposes.
MABEL currently uses a 56 character set consisting of
letters A-Z
. digits 0~ 9
. operators + -* [q =< >
. punctuation () ' " ; : ., | # space
ASCII has currently been adopted as the collating sequence. Identi-
fiers are (arbitrarily long) sequences of letters and digits starting
with a letter, while function symbols are identifiers or sequences
of operators. (Special symbols are never sequences of operators.)

We emphasize that generic operators are not permitted; operator

AB 43p.74
(function) identification follows precisely the same rules as for
identifiers.

MABEL encourages good program layout. When a group of statements

is to form a single compound statement and there are no explicit
delimiters, these statements must be indented,at the same level.
This applies in three situations: following THEN, following ELSE
and following DO. (All other compound statements have delimiters
such as BEGIN...END, PROCEDURE. , ., .FINISH and FUNCTION...,RETURN.)
We feel that good program layout should be mandatory rather than
optional; indentation is a powerful, all too frequently ignored

control structure,

5. MABEL Implementations
A compiler for the current version of MABEL has been written at
the University of Manitoba. It could be made available to anybody

willing to experiment with the language. Its brief specifications

are as follows:

Computer: IBM 370 under 0S or VS
Source

Language: PL/l

Compiler

Size: 200 K

Space

Requirements: Compiler: 256 K

Run time: 4K + Object Code + Memory area (run-
time parameter)

Parser: LR(1) with local error correction
Object
Code: . 370 Object Code

Object code is combined with 4K of run-time
routines. Run time includes a garbage
collector and error traceback.

AB 43p.75

ACKNOWLEDGEMENT

The first-named author wishes to thank his grade 2 daughter for point-

ing out that 10-3+2 is equal to 5.

APPENDIX: ILLUSTRATIVE EXAMPLES

Three examples are given, all of which have run successfully
under the current MABEL compiler., The first is a simple prime
seive program; the second evaluates simple arithmetic expressions
while the third, a family tree program, is intended to illustrate
the power and potential of the MABEL STRUCTURE facility. Two sets
of output appear for the third program; the second set illustrates
the run time dump produced in the event of a run time error (here

activated by execution of the statement STOP).

AB 43p.76

SHOYHT I LINYNIS ON
SHOHH3 XVINAS ON

anNz r L4 0geo

an3 | X4 34220
¢3INO ¢ F HLIIM 1V3d3y N3HL 3NYL S} r < X¥N i1 (+ T4 3020
an3z 61 vato
Sf 4+ 3 HIIM Lv3d3¥ et Jvie
$3SIVY =: SH*IAIIS Lt evio
; N3HL 3nd1 SE 3 =< XYW I 91 3910
¢+ ¢ =2 %X HIIM N]O38 st 9210
SF 3114m i AL
N3IHLI Q3INIJ3ANN ST °F*3A13S 41 €1 900
t2 = F HLIIM N}93E et
|9 0aQoo
SO0 : XVRW INVAISNOD ot v8006
tA3NI 430NN IV IHVA 6 9800
$3A13S JFUNLONBILS 8
’ 3 0800
¢1 : 3INO ‘0 : 0OH3IZ INVISNOD 9 €800
te3NYLs ¢ 3N¥L *:3STIVAe T 3ISTIVA INVISKROD S
N1O38 M
t* XYW ONV 1 N3I3IRLIE SUIHNNN 4
1 vEOQOO

) : IWlidd 3HL AV INOTIYI 0L GOHLI3IW IFAIIS 3HL SISN NYHOH0Hd SIHL *)

hUWﬂmONPUWﬂmO.mouz-Od(!&.ccﬂzuwmdiJoOHZWUWOOUoWQOwavta.OOMWNZuJ #193333 N1 SNOIIdOs
09=S3INIT*0=NIDIA0D*S=SIOVd*E=NIOHVYNY* * O=NIOBVNT #UIII2I3dS SNOI 1dO#

1 3IO9vd (LL61 NVP) 1 wm<w4wm 2 NO1ISH3A ¥3T1dK0OD 138N

AB 43p.77

tHD 3 8% =: o IS 4650
3s73 0S 650
tHD 3 1 =: N 6Y 0.S0
N3HL TINN S1 d0 41 8v 8650
3873 VA4
iIv3d3y 9v 2450
N3IHL YdNVIE S1) Sy
1v3d3d ve céso
$ale =2 WA £y 3080
N3IHL NN S| 44 v3evo0
$TIVA 3 (H'dD*Y /x—+) = VA 1% vvvo
N3HL +(s S’ oY
1v3d3y (3 29%0
VA IVA3 =2 WA 8t 0Sv0
N3HL +)s S1 L€
iv3d3y 9f 8lv0
¢HD =: do SE ciy0
N3HL s+sle/efa—s]ess SI ve
HD 4l £e vLE€0
$IVA WOHS HD LITdS r 2
N1938 1€ 0SE0
TONTHLS JINN* TINNATINN =2 WA H*dO*) ot 8EE0
PHD*IVACHSHO*] 318V IHVA 62 v2¢0
T3ANTIVA SNENL3Y ONIYLS IWAI NO11DINNS 8¢c v0€£0
$1TINS3IY NYNL3Y 22 9Q20
£ =2 1NS3y 92 ogz2o
NIHL TINN S Ge aveo
td AIQ T = 1InS3d ve vezo
N3IHL /s SI €2 2620
t8 x 3 =2 1NS3d 22 0€20
N3IHL +%s S1 12 8410
8 -~ 1 =2 LNS3y . 0¢ 9dt10
N3HL +-s SI 61 3610
td 4+ 7 =2 1NS3Y 81 2210
N3IHL ++: SI L1
d0 41 91 0Ss10
t1INS3Y 318V IdVA Sl ov10
$3ANTIVA SNUNL3Y d4d0*T /%-+ NOILONNS v 8110
*D N¥N13Y £1 v300
'8 W3HAIGQ Vv =: dH*D 2t <800
t¥4D 31aVIYVA 11 vvoo
S3ANTIVA SNENLE3Y 8 ATA Vv NOLILDONNA o1 0800
4 s 2 JNVIE INVISNGD 6 2900
Sae 2 ON AINVLSNOD 8
N19389 i
(» 9
*03ZISIAHINIUVVYCD ATINS 38 1SNW SNOISSIHdX3 S
*G3UONOD] 3V SHNVTIE */¢3¢—¢4 Juy v
d3MO0TVTY SHOLVYIJO IHL *((Sxv)+€) W04 3IHL 40 3HV SONIHIS £
*W3HL S3LYNTIVA3 OGNV SONIHLS NOISSIHDX3 SAVIY WYHOONd SIHIL) W
x) veEoo

huwﬁmonhumﬁmOoQO"Z~01<!maOOMZuOE(ZJ.O"ZNOMODU.moo"mw0<n.oonwmzuJ *103443 NI SNO11dOx
09=S3N1I*0=NIDIA0D*S=53IOVd*B=NIOUVNH* * O=NI19HVYWT »Q3141D3dS SNO1 1dO=*»

¥ | 395vd (L4261 NVI) T 3sv3an3ay € NOISY3A YITIANOD I13EVYW

AB 43p.78

4

39vd

iv3day

TEEINANY WA3) 3 +=s) 3 1INANT 3J118M
sGN3s INS1 LNdNI 31

N3H1

SNITINIVHN #

(2261 NVI}

1

SNOILVYH3NI93IY 3IOVHO1S O
Wil NO11ND3IX3 SONDD3IS v0°0

GN3
GaN3

$iNANI Qv3ay

$iNdNT FITEVIHVA

N1934d

$TIVA Nuni3Y
an3z

i1v 3d3Y

3sv33y

€ NAISYU3A

v=2/70(2 + ¥)xlC +

¢=(E

1
*e)
€=

SHOHHI D1INVWIS ON
SYOHHU3I XVAINAS ON

UINIINOD

a3avn

v0Ll0

vIo90
0490
8%90
2¥90

2290
33%0
9250
0Js0

3)
+1
+1

AB 43p.79

‘ 3WVYN d1I 1S 2GS0
”nz zwm2~meQv.m!(Z..OJ—IUow2<Zowwmb>J~E<l om

=3 INITILHD*ANTUVS*IANYN HLIM N1536 6v 90S0
!3WVYN 3 3NITTLud 3113M 8v 30

SIANITLHA*IWYN ONITHASH40 FUNA3DO0Hd LY vavo
SHSINI A Qv 86%0

tu w3 3NINLUD)**HIHIOW® SWYNCIIULIATINVY SUHOLSIINV TV Sy 95v0
as13 vy vy 0

CuNMONMNN H3HIOWa 3 (u w 3 3INITLED) 3L1THM €Yy c3go0

N3IHL TINN S <y 92£0

CHIHLONW®ANYNIIHIATIWVS d1 184 03¢0

tlu w 3 3NITLEd)* *8IHIVI*IWYN IFYLATNINVYS SHOLSIAINVY TIVD (o) 4 ALEO
3s713 6¢ J29€0

SUNMONMINN ¥3HLIVIe 3 (« s 3 IANITTLHD) 3LTHM 8t vog o

N3IHL TINN S1 lE
CUIHIVI®IWYN® ITFULATINYS dI 9f 3320
$IWYN 3 INILHD T1 1AM SE 2020
SANIILHD*IWYN SHOLSIDNVY IHNCIADIOMUI *#E 2veo

tHS INTH €€ 220
$UIHIOWMIN*YIHLIVIMIN® (IWYNITAQIW 3 3WVYN) HIHIg 1IvD g€ v9$20
*3INITIMSN ¢3IWVYNITIAOIN INd 1€ VEZO
¢$3IWVN3TAAIN 139 o€ v£20
¢ (w3WVN 3AAIW V A3133dS $3NDINN 1ON SIw 3 3IWVN) 3 u 3WVN, 3LIHM 62 2810
as73 g2 vv1io
$IWVYN =: SGTIHD*HIHIOWMIN®IIULIATINV S 2 3610
tINYN =% *UVIHD*UIHIVIMIN®IIHLAINV S 92 2610
(] TINN aTTRD G2 3210
(| 20QIHI*UIHLVAMINSITULATINYS THIHLVIMIN vZ2 9910
GIIHD HIHIOWMIN®IZYLATIWVS tHIHIOWMIN [) :ONITEIS £2 Volo
*HIHIVIMIN sHIHIVI 2e ovlo
SHIHIOWMIN SUSHIOW |) 12
=2 3INVN®33IYLANINWVS 02 8210
N3H1 O3INIS3GNN S1 61
*UIHIVI®IWVYN IIHLATINV S dI 81" 2010
$3WVYNIIAQAIW 376V I¥VA 21 8010
HIHIOWMINCUIHLIVIMINCSINYN HI¥16 IWNAID0Hd 91
$ONITEIS S3ISITVNO ¥IHLIYNA IWVN SINIUVD # S1 vaoo
$uB8ISw :ONITAIS INVISNOD vl 3800
$w01IHDu $ATIHD LNVISNOD €1 9v0 0
twd3HIVdae SUIHLVY LINVISNOD et 3600
u83HIONG SHIHIOW LNV1ISNOD 11 9200
$33ULAVIWYS 3UNLONYUIS O1 0200
es SVINN INVISNDD 6 vS00
$Q3N143ANN 3IBVIUVA 8
N1939 2
9
I T I I I e
v
WYd90ud 33u1 ATVINVI m
BERSRBREERERRRRERERRRRRE BB AR SR AR R AR SRR AR KSR FR R R R R R AR R SERRxR) | VEOO

123r80=123rg0°*80=N19UVWH*00=NIOUVWI*0=N39300D*S00=5S39Vd*09=SINIT #1D3443 NI SNOI 1d0»
09=S3NIT40=N39300D°S=SAOVd *B=N1DHVNU* *O=NIDYVYNT *03141D3dS SNOIl1dO=*

1 39vd (LL61 NVIr) 1 3Sv313u ¢ NOISY3A H3MTIdWOD T138VHKW

AB 43p.80

SHOUI D ILNVWIS ON
SY0H¥U3 XVINAS ON

GN3 66 3avo

ON3 86
4V3d3y 46 vvvo
2ulY3INT 3Y *ANVWWOD CGIWVANIe LINd 96 34V0
35713 S6 84v0
d01S N3IHL «d01Se SI v6
dv3id3y €6 BEVO
tld SONITEIS IvD c6 J2vo
S3ANITM3IN ¢1d ind 16 22vo
tld 139 06 Jlvo
N3H1 wSH3I1ISISe | «SH3IHIOUBG SI 68
iv3id3y 88 2860
STINNS 1d ONIUDSH40 I1IVD 48 ov60
SINITIMIN f1d AINnd 98 9660
tlg 139 S8 0660
N3IH1 wONI1U3dS4d40u S1 ve
dv3d3y £e 0S60
SIINN* Td SHOLSIDONVY T1IWD c8 3J£60
$INITIM3IN ¢1d INnd 18 YE£60
¢1d 139 08 3260
N3IHL uSUVOL1S3IINVL SI 6L
iv3d3y 8l 3380
tfd*Z2d*ld Hidlg IvI A 9080
$3ANITIM3N (€d*2d*id INd 9L 0280
€d*2d*1d 139 Se 3v80
N3H1 «wH1Y18s S1 YL 2L80
tut*****3A8 A0094 1Nd N3IHL G3NIJIONN | wONIW S1 £
GONVWRHECD d1 <L cI180
SONVHWOD® 2 SONVWKWO D 1iNd 12 2440
SONVANDOD 139 0L

: . N1938 69 0G20
O] CJTINNSZGUIIHD*IINNSHIHIVAS IINNSHIHION]) S 1INN M_. =¢ 3AJYIANINVS 89 v8L0
1Sdtvd*Ed®*Z2d® Id*ANVWNOD DI8VIYVA L9 2920

SHSINIA 99 YvL0
ON3 S9 9120
$INIUVD *CINIUVC*ONITNGIS*IWYN*ITUIATINVS H1IM 1v3d3d vo 2490
T3WVN 3118Mm €9 9490
N3IHL 1NN LINSI c9o
INVYN d1 19 ©¥390
SAIN3HVYd **GIIHD*INIUVA®IIHLIATINYS =2 IN3IUVA*IWYN HLIR NIO38 09 0vY90
CANIUVD 3 o ANIHVD HLIM SONITBISe IL1IHAM 65 3590
0Q ONINBIS*3WYNIIYLATINYA ONIX3IAN] IN3dVYd 404 8s 8£90
$3NVN SONIEI1S 3HNOII0NdD LS 8190
tHSINIS 9% 2450
aN3 &S €S0
$3INTIMLEd *INIUVY ** INJUVA*ONITAIS*INYN®IIULATIIWVA HLIIA LVId3Y +s 2vso
SIANIMUD*3INVYN ONIHdSd40 V1V €S 06S0
N3HL TINN 1INS1 es

e 3ovd (L261 NVI) T 3Isvii3y 2 NOISd3A UIVIINOD I3EVH

AB 43p.81

SNOI11VH3IN3O3IW 3IOVHOILS O
FWIl NOILND3IX3 SANOD3S S0°0

seeesee3Ag QOOO aN3 SAONVWWOD
3A3

WYQV :IN33vd HIIM SONINEIS

nWvav

3A3

NIVD :AIN3¥Vd HilIM SONITEIS
3A3 SU3H10vA SAONVARNOD

3A3
wWvav
a3gv
3IA3
Wvav
JA3
NIVD

’ aoo

aoo 9N13dS440 ONVWWOD
NMONMNN ¥3HLIOW
NMONMINN H3HLIV S

aoo
NAONINN B3HLONW
NMONMNN AIHLVS
aoo
NIVD
NMONMINN ¥3HLIOW
NMRONJINN ¥IHLVA
aos
NMONIINN H3HLONW.
NMONMNN A3IHLIVA
aao
NIVD
NMONMNN ¥3HLIOW
NMONANN ¥3HLIVI
Qoo
NMONJINN ¥3IH1O0NW
NMONMNN d3HLVI
aoo
a3av
nWvav
3A3
3A3 SHOLSIONV SONVRHWRNOD
NIVvD nWvyayv 3A3 H1YH18 SANVRHWOD
NIVD a3aev WYQv H1id1l8 :ANVWWOD TYALINI 3¥ *ANVWWOD GIIVANI AGMOH SONVYWWOD
aoo ano N1VD H1iy18€ SANVHWWOD
aao aods a3av H14¥18 SANVRWOD

aoos Hi¥yl8 tONVHWWOO

AB 43p.82

N1VD

SNO11VHINIO3Y 39VHO04LS O
3WIi NOILIND3IX3 SUNDD3IS O

w(3INIJ3IGNNS S ° Sd
wQINT H430NNS S, 2 bd
uNIVIOe ¢ €d
wNVYQVe Z2d
u3A3dn ¢ 1d

uwdO1Se 2 GONYWWOD

«w81Se ¢ ONITIEIS INTWA
wGIHDy ¢ QIIHD 3NTIVA
-ELFL F ™ HIHAVYV LS INTWVA
wH3IHLIOW UIAHLOW IN"WA

IOl unsu@IIHI L Juu ulNVAVYL® uWYAV U2 uNIVIW |) tuB 1S
CuNYOVa tatd3HIVIu *wNIVIL: utd3HLIO0We |) S w3ATa
$Clu3A3utulTIHD L ([0udu138Vu*uuuNIVIu])t uB 1S,
$u138Vu ndIHIVAw *uNIVI 4w HIHLON [) S uWVOVY.
C At u3A30 0T IHIN (| 138V6 2009k |) tuB1ISu
Q=QOQ=n21WIb<MGQ=QOQSnSKWIFOZ!—wn:Z~CUE
S Ul uNVAV tudTIHD L * (| un w009]) 1 uBISy
u00% I utdIHIVIn w009k ud3HIONG |) 20138V
U 1uNIVIGW G THDu* (luu tun]) uB1Se
CunindIHIVIu® uulnd3HIONL]) wd0%.
.a—IODG!n!OJuIUSoESu=&WIH<uSotlntEthO!t—untl_v : IAZUIATNINVS I
ne : TINN INTIVA
wuG3NI 43GNNSSe : CG3INI JIANN
*x%x NOJTLIVNIWHIAL 1V 3A11DV s3gy
T38VW 38N03008d NI ¥2V0 13S440 AIv ONILND3IX3 SVA WYY

d0l1S 031S3NDIY HASN *x% M
d0i1S
NIVD Wvav 3A3 Hi¥18
a3ayv nvav Hidld {AONVWNOO sd3IINT 3 *GNVWWOD Q1TIVANI AQMOH
aoo aoos NIVD Hi¥18
aos aao 3|y Hi¥18

aons H1318

1°0

3718V I¥VA
3GV IH¥VA
379V JHVA
378V I¥VA
38V IuVA
38V THVYA
AINVASNOD
ANVISNOD
INVLISNDOD
AINYLSNDD

¥Ni1dNdis
ANVYISNOD
379Y JTHVA
IUVA ®xe
20¥d

QuE3 *%e
SANVYWWOD
sONVYHWOD
TONVYWNOD
SONVYNWOD
SAONVWNOD
TONVANWOD

AB 43p.83

wn‘ur-l qﬂJ' ﬂ-eldu um_.~ .o_n_d.._:!. ﬁﬂh“q

Frvdy !ldj s \
YRinwpr o ps

?Elo jo s:!.TS .—Jlru

._Js.n- ¢..9__o¢._:u b pr ot goatnn

w.u. ”» ..Em woyy PrIpWL -<

Je g Y _Hm—

e fgguay VoV : f91IV]

' ygugy VBY ‘v i [81V]
SO
[ovesgde Wuy i YWY

AN

J1amwreny F owin WmEn g]

E.— :.&no ul.

E! Bﬂl@ } 11¢ wequnpor }— Fporwen]

Basgs o1 Buwas quasay| (1§41 w37 11 6med 13 D) HEATEL e (] o
busas wowa vwp Ligs (1 *m: D (» ™ o B
SIamLiwing _gg ¥03 I3 & T
o o v e c.T_w) 22am0g
asuandy SNININGY W3} Pl B (m™)
87 W Bissnsg U mﬁn.._u jo urrhs AT ELS
ayr 30073 . . M _t..vuw .—o._lr« M-
QW A Syrosys fo' murebes LIGH)
< > i o reqets i1
L2 IR SR o, P Tow
SUOLVYI0 I3NIITIW j (222903 A " :.“»:H_I.
_ = vz mﬁ
T L ;
m..— 034» w ETYLIEY ¥4nog
Pl wnyey ﬁ_.voa 1PPORIY uoIIM ° _ _ v
E Y voy Sull_uai v :vt:u_ B8 —t.Lvdu ﬁ»ﬂn.
*om———-- ~-—=%
gt . I h) I g 1 tm_ux!..x.éu vy
WAS a
IEs wogqeq 2es ———Canrqrwisd —
E’ moyry 235 —— ..n_t:..c..a —_
+hl¢l.ﬂ.&.\.vw .:_:: .-.Jqor. m._._cu.a_._du.'
e Lo, 0% —
m _»...vs...cu& n tueyvionp]
) {1 [Py ~!...5..”.3 —
°.~|ll.
Sing A . + rowmnad
Ysivy Juvenvyp ._mvw(v:_.!:vooﬂ .’E mu.ﬁl:- oy —
m._ noy : wuuutjwcoué 1 m | ua..—unnln
fam ;ﬁ? T T
VI P Y3 —fvg o
—_— Rl AR ey I M T
- ¢
60508 : 9N ¥4 e e pr e] ..qul_
*AYBHD XYLNAS N3N W pva
Pu3 Rpoa-opy

“----4
e i e, W 7

