AB 43p.54

2B43.4.1 MABEL: A Beginner's Programming Language.

P.R. King, G. Cormack, G. Dueck, R. Jung, G. Kusner, J. Melnyk’

(Department of Computer Sciénce, University of Manitoba,
Winnipeg, Manitoba R3T 2N2, Canada)

ABSTRACT
This paper presents a preliminary version of an introductory programming
language. The design of MABEL is far from frozen, and many of the
decisions taken are, at best, tentative. Our hope in presenting the
language at this stage is to obtain input from a wider source. Hence
we earnestly solicit constructive cricitism, and ask readers to

accept the current document in this spirit.

1. INTRODUCTION

MABEL (MAnitoba BEginner's Language) is a programming language
for people who have never programmed before. It is a simple, general-
purpose language. Hopefully, this does not imply that with MABEL one
can only do simple things. Rather, MABEL is intended to provide a
simple introduction to the art of programming by assisting the new-
comer in the design of sequential algorithms. MABEL is designed to
be simple to teach and to use.

The designers received suggestions from aAvafiety of sources,
both within the University of Manitoba, from students and instruc-
tors alike, and from a number of high school instructors within the
Winnipeg School System who were asked to identify areas of difficulty
encountered both by themselves and by their students. Each member of
the group had a "pet" language (PASCAL, COBOL, ALGOL W, ALGOL 68,
PL/1 and SNOBOL), features of which were advanced by its proponent
and avidly attacked by others. We also listened (though frequently
pretending otherwise) to the comments of colieagues outside the group

as features on which we sought opinion were surreptitiously leaked.
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Existing beginning languages, such as Bo and the Toronto SP/k system,
were given careful attention.

From this diversity of advice, sometimes helpful but often im-
possible or derisory, the criteria of §2 were established., This list
became our bible, sacrosanct and inviolahle, by virtue.of which all

design decisions were taken and to which all disputes were referred.

The majority of the time spent in actual design was spent in
taking three basic decisions, namely the primitive types, the data
structuring facilities and the parameter mechanism. These decisions
and their rationale will be discussed in §3. Once they had been taken,
most of the remainder of the design followed relatively rapidly and
easily. There was some hectic infighting over the form of the
repetitive construct, but the bloodshed was minimal compared to that
occasioned by discussions over the primitive types, for example. The
remainder of MABEL, after the three basic decisions, will be dis-
cussed in §4.

Personal prejudice began to rear its ugly head when deciding upon
the concrete syntax, and the current proposals may suffer in that re-
gard as a result of the occasional compromise decision. Some sample
programs appear as an appendix, and a MABEL syntax chart, & la Watt, Sintzoff

and Peck, is appended.

2. DESIGN CRITERIA FOR MABEL

The objective of MABEL is to provide as smooth an introduction as
possible to the esoteric art of programming. Whether or not the be-
ginner will graduate from his lowly state, and what happens when he
does, 1s not deemed of any great relevance in determining how to effect
such an introduction. If MABEL is a good introduction to more com-
plex languages we would regard this as a bonus rather than a result

of design.



AB 43p.56

Although nine criteria are explicitly discussed, several points

not given in the list were considered, but ultimately excluded from

the design.

These included whether MABEL should provide an introduc-

tion to machine architecture, whether MABEL should be extensible and

whether MABEL should define such (non-elementary but potentially

simple) features as program modules and linkage to other languages.

Such features are now being considered in the context of a systems

implementation language being designed as a MABEL superset.

We first consider five "positive" criteria: those which were

of major importance in the design of MABEL,

&Y

(1i)

Simplicity. The beginner must not be confused by a
large number of unorthogonal features. There must
be no discrepancies between the meaning of constructs
when they appear in different situations or in the
ways in which they may be used. Thus, the distinc-
tion between <statement> and <simple statement> in
ALGOL W is mnot simple; the ALGOL 68 iterative state-~
ment is far from simple both because one requires
so much information before it can be used even for
simple applications, and because two applications,
such as

FOR i TO n DO read(alil) OD
and

WHILE REAL x; read(x); x>0 DO SKIP OD

have vastly different forms and purposes; the
use of pointers and associated dereferencing
and aliasing is very far from simple.
Readability. The reader should find MABEL
programs relatively self-documenting and self-
verifying. These requirements impinge on design

at both the abstract and concrete levels.



(iii)

(iv)

v)

MABEL must be surprise free, conform wherever
possible to accépted mathematical meaning

(5/3 is the same as 5.0/3.0) and adhere to

the precepts of structured programming,
Teachability. No feature was added to MABEL
until one had demonstrated a simple means of
teaching it to beginners. The language
should be teachable in a "continuous" fashion,
by incorporating features which can be exempli-
fied and assimilated in small "upwards-com—
patible' stages, rather than features which
require a lot of detailed information before
they can be put to simple use.

Introduction to design of algorithms. The
beginning programmer is habitually faced with
two problems; firstly, to design a sequential
algorithm for the problem at hand, which is
rarely in sequential form, and secondly,vto
cast this algorithm into the form required by
the particular programming language being used,
MABEL has been designed to assist the user in
thg first of these: all else is of subsidiary
importance, and one will observe that MABEL
lacks certain '"standard" language features
since they do not contribute directly to this

end.

Versatility. Many students have a low opinion
of their introductory language as a direct re-
sult of disappointment in the applicative

examples with which the "power" of the language
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was illustrated. One wonders to what extent
such samples are chosen simply because the
language in quesfion is just so restricted.
MABEL is a general-purpose language and, as
the examplesin the appendix show, has the power to be
used for "real" problems. We hope that MABEL
will cater, to some extent at least, to the
ex-beginner who nonetheless wishes to con-

tinue using MABEL because he likes it,

Two further criteria were deemed of somewhat less importance;
(vi) Small compiler. It is quite probable that a

common environment for a language like MABEL

will be mini-computers. Thus the MABEL com—

piler must be of modest size, and this should

be reflected in the language design.

(vii) Simple compilation. It is highly desirable
that MABEL be l-pass. Equally, it must be
easy to associate clear, meaningful diag-
nostics with both compile-time and run-
time errors. Our experience 1is that these
latter questions are as much matters of
language design as of compiler design.

Two final criteria were considered to be of rather minimal

importance to the design of MABEL:

(viii) Introduction to programming languages. "And
vieit the sins of the fathers upon the
children wnto the third and fourth genera-
tion." This theology appears rampant in
programming language design (and is, we
claim, responsible for a multitude of

disastrous design decisions). It is
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not the philosophy of MABEL: we do not

accept that transition from a simple to

a more complex language is facilitiated by
incorporating bad features from the complex
languagé in the simple one,

(ix) Run time efficiency. Although the run time
efficiency of both time and space require-~
ments are of minor importance in the de-
sign of a beginner's language, they
should not be entirely ignored if the
language is to gain any degree of accep-

tance as a viable product.

3. THREE FUNDAMENTAL DESIGN DECISIONS
i) Simple types in MABEL

MABEL has a single simple type. The programmer may define and
manipulate constants and variables of this simple type, and compose
structured types from it. In this respect, MABEL resembles SNOBOL 4,
and uses the same syntax for literals, representing them as
character sequences enclosed within ", " or ',°', pairsf: MABEL is not
a string processing language. Naturally, the programmer will be aware
that certain program variables are restricted to certain subdomains
of this one type and that certain operators make sense only in
certain subdomains, but MABEL considers such subdomains to be
entirely the programmer's responsibility rather than a static,

feature. (A clever compiler, however, might handle some of them

statically.)

In retrospect one wonders why this decision took us so long to

take; it now appears entirely natural and obvious. The reasons for

* Currently, the quotes are optional for integer
constants. This is under review.
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having multiple pre~defined types, in ALGOL for example, appear to
be

. increased static security

. 1increased readability, and self-documentability

. increased run-time efficiency

. ability to use generic operators
The first of these is to a large extent an implementatiom concern
and low on our score-card.. The second is highly debatable. One
can as easily read and comprehend

P+B*Q-3 or

A AND C OR Q<3
without consulting the declarations or kmowing the types of A, B, C,
P or Q as with; any complete understandiﬁg requires detailed diction-
ary type descriptions in either case. Few beginner programs ever
run in production mode; thus the third reason hardly applies. Finally,
generic operators are especially confusing to the beginner; why
should

"PQRS" < "Xyz" or 3% "xyz"
be meaningful? If one means "comes alphabetically before" or
"replicate three times', then one should say so.

Further, multiple types add to the complexity of a language per

se, by virtue of the diverse denotations required and, most of all,

by virtue of the type conversions, both explicit and implicit. The
beginner needs no assistance in accepting that

|3t + 14.71
is perfectly sensible and yields '7.7', whereas

13| + '.XYZ‘
is not sensible and will produce rubbish,

It is to be admitted that typing permits certain errors to be
caught earlier than can be done in a typeless language, but it is

not clear that the clags of such errors is gufficlently broad to
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justify the complexity of multiple types. On the other hand the
adoption of a single type added considerably to the ease of de-
scription of transput (c.f. §4 iv) and assisted greatly in defining
the data structuring facility of MABEL, the second fundamental dg—

sign decision.

(ii) Data Structures in MABEL

In order to satisfy the criterion of versatility, MABEL should
provide the powers afforded by conventional data structures, includ-
ing pointers, heap-storage management and flexible arrays. Con-
ventional arrays as in FORTRAN and ALGOL would be quite unorthogonal
with the single primitive type of MABEL. Restricting indexation to
integers is 1inappropriate since integer is not a predefined type,
and since strings have no inherent order, the concept of an array
as an ordered set is equally unsuitable. It was decided to replace
the copventional array by a facility such as the table concept of

SNOBOL. SNOBOL tables are one-dimensional and each item is selected

by a unique key; use of the same key accesses the same element while
use of a2 new key creates a new element.

Next, the possibility of multi-dimensional tables was considered.
To examine their usefulness in a beginner's language, illustrative
examples currently used for high-school and first-year students were
scrutinised. Most examples appeared highly contrived to make use of
two dimensional arrays. A typical example is the construction of a
table of student numbers and their grades according to course number.
There are usually far more courses offered than are taken by a par-
ticular student so that the table will typically be sparse; the be-
ginner is then forced to write code (to ignore the empty entries)
which is not part of the processing algorithm. What is needed is a

)

table keyed by student-name, with each entry a tablé of marks keyed

by course~name.
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From these considerations emerged the MABEL data structure as a
table with multiple sub-keys, where a key may be any expression which
yields a simple value. A multi-dimensional array would be represented
by using the same number of keys at all times. A COBOL or PL/1
structure is achieved by restricting keys to constants. By making
use of the full power of an arbitrary number.of variable keys, any
tree whatsoever may be represented as a MABEL STRUCTURE, without
introducing any notion whatscever of pointers., Some examples illustra-
ting these remarks appear in the appendix; the reader might wish to

consylt these before continuing.

The following formal rules serve to describe the syntax and
semantics of the MABEL STRUCTURE facility:
A A structure may have a simple value or a multiple value. Let §
be an arbitrary structure (which might, of course, be a variable or
constant or an expression or delivered by a function) and k, k., kz, cee
arbitrary keys.
B (1) If S has a multiple value, S may be qualified thus:
S.k
to yield the corresponding (sub~) structure.
(i1) If S has a simple value then S may not be qualified.
C (i) If S has a simple value then S may be explicitly coerced to
yield that value thus:
S.
(11) If S has a multiple value, § may not be so coerced.
Thus, a reference to a sub-structure of S is of one of the
forms

s Stk LRI S Y Y Y s.klthzo L ) okn

while a reference to an element (simple value) in a structure is of
ene ef the forms

s. sikl LIS A Y s-kltkzﬂ a“ee -k L3 -



MABEL structures also permit heap-like memory management.
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Assuming

*
that the MABEL prelude contains a function UNIQUE , successive calls

of which produce distinct, arbitrary simple values, then the follow-

ing four groups of code contain equivalent phrases:

A. ALGOL 68:

MODE T = STRUCT (REF T link, INT 1i);

' REF T p;
PL/1:
DECLARE 1 T BASED,
2 LINK POINTER,

2 I FIXED BINARY;

DECLARE P POINTER;

MABEL:

STRUCTURE
CONSTANT
CONSTANT
VARIABLE

T;
LINK:"LINK";
I:"I";

P;

ALGOL 68:

p: = HEAP T :

PL/1:

ALLOCATE T SET (P);
P -+ T.LINK = NULL;
P->T.1 = 17;

UNIQUE;
(| LINK: NULL, I:17

ALGOL 68:
PL/1
MABEL

link OF p
P » T.LINK
T.P.LINK,

ALGOL 68;
PL/1:
'~ MABEL:

DELETE P~T .
T.P, ;= UNDEFINED;

{#FIELD OF T. name
#FIELD OF T. name
#iNAME WITHIN T

= (NIL, 17)

D)

no explicit garbage collection

A typical declaration would be
*
VARIABLE UNIQUEX;:
FUNCTION UNIQUE RETURNS VALUE:
UNIQUEX := UNIQUEX & 'Z2';
RETURN UNIQUEX

The MABEL prelude contains the declaration
of a constant UNDEFINED whose value is
"$SUNDEFINED". All MABEL simple variables
are initialized to that value (including
UNIQUEX used in the preceding footnote).
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These examples, together with those in the appendix, illustrate
how the MABEL structure facility provides all the powér deemed
necessary while maintaining its essential sfimplicity. It will be
remarked how central the single simple type is to its formulationm.
We are grateful to Robert Dewar for‘pointing out the similarity be-
tween the STRUCTURE of MABEL and maps in the language SETL, although
the MABEL feature was developed quite independently and with

different goals.

(1ii) The parameter mechanism in MABEL

It is essential that MABEL have a simple parameter mechanism.
Further, the beginner should not be burdened with words like VALUE,
RESULT, name, reference and their diverse and confusing effects.
MABEL therefore has a single parameter transmission mechanism: all
parameters are called by "constant", that is, by value without the
"free" local variable. Thus no formal parameter can be assigned to,
a natural and readily assimilated rule; to a mathematician, the notion

of a function changing one of its arguments is quite foreign.

A mechanism is needed for returning one or several values, 1In
MABEL this is achieved by a RETURN statement.

Notice that structures are passed in the same manner, {The
specification of a function includes the specification of each para-
meter as a structure, function or simple value, the latter being
the default, as well as the specification of the value(s) returned).
Since copying of structured values is only necessary when the actual
parameter is used non-locally in the procedure body and assigned to,
and such instances can be easily detected statically, the mechanism
is not inefficient. One can optimise further by only copying the
entries in the structure which are changed (as 1s done with multiple

values in the ALGOL 68S compiler.
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A function or procedure is quite permissible as a parameter; we
have endeavoured to make it clear from the syntax that it is the

function which is passed and not the value yielded by a call.

4. OTHER MABEL CONSTRUCTS
i) Control structures.

MABEL is range-structured, a new range and scope being defined by
either a block or a function (procedure) body.

MABEL has a single conditional construct which, following the
philosophy alluded to in §2 (iii) may be introduced incrementally
without confusing the beginner. A simple conditional would be

IF A
IS B THEN statement

which may be suppleménted by an else part:

IF A

IS B THE& statement 1

ELSE statemen£ 2
Both statement 1 and statement 2 may coﬁprise a sequence of statements
(in which case, each statement in the sequence will be indented;
c.f. §4(v)).

The conditional may be further extended:

IF A

IS B THEN statement 1

IS C THEN statement 2

IS D|E THEN statement 3

ISNT F|G|H THEN statement 4

ELSE statement n+l
A is compared with B,C,D,E,F, etc. consecutively until a match is

encountered; in the case of IS, the corresponding statement is

executed, while in the case of ISNT attention is turned to the next

comparison if there is one.
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There appears to be no préblem in teaching this construct. We
are encouraged to believe that it is highly readable by virtue of
supportive evidence from a series of experiments in which a sequence
of examples was presented to a number of non-programmers, none of
whom had any difficulty in describing the flow of control.

MABEL has two repetitive constructs. The form of the first is

FOR id INDEXING structure DO
statement-list
where the statement-list will probably involve structure.id., This
permits indexing over an entire structure, and is somewhat similar
to its counterpart in Bo’ although MABEL has no range concept.

This construct is useful but limited. For example, FOR cannot
imply an order in which the elements of the structure are accessed,
MABEL therefore provides a second, completely general wepetition
facility, which permits both counting loops and recursive loops. The
simplest form is

REPEAT
The elaboration consists in replacing REPEAT by a copy of the block
in which it occurs. (Notice that REPEAT is not equivalent to a GOTO.)
At the head of the block a number of variables may be initialised

and they may be updated by REPEAT

BEGIN WITH I; = 1

IF I ISNT 10 THEN REPEAT WITH I+1

END

Again, this powerful feature is easy to teach. One's first demonstra-

tion program is usually
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BEGIN

VAﬁIABLE X,Y,Z;

GET X,Y;

Z:= X+Y;

PUT 2, X, Y;

END
The bright student in the front row usually objects at this point that
the program only handles one set of data, and will ask how one may
"repeat the process". Upon seeing the program

BEGIN

VARIABLE X,Y,Z;

GET X,Y;

Z:= X+Y;

PUT Z2,X,Y;

REPEAT

END
the same bright student may press his luck, object that the loop is
infinite and wonder how one may "put a limit on the number of times
it repeats". (If one does not have a bright student, plant an
accomplice.) At this stage, one introduces a simple WITH and con-
ditional. Later on one may examine the effect of instructions between
REPEAT and END.

Perhaps one should re—émphasize that MABEL is principally de-
signed to provide an introduction to the formulation of algorithms,
a wide class of which are recursive. It thus seems entirely
appropriate to include a recursive control structure.

These are currently the only loops in MABEL. A possible draw-
back is that loops analogous to

FOR 1 TOUPBa -1 DO ... OD
must be written using REPEAT. From a number of examples the de-

signers feel that this is not a serious drawback; we would not be
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averse to including a further iterative construct but a satisfactory

one has still to be found.

(ii) Subroutines, calls and formulae.
The return statement of a function (the last statement in the
function body) may return several values:

RETURN I, J, (I+J), ARRAY.I.J.

Coupled with this, MABEL permits parallel assignations as in

I, J = 3, 4;

A, B = B, A;

X,Y,Z:= A,B MULT C,D;

The third of these may not be entirely clear, Many languages
distinguish between operators and functions. The language provides
both, but the programmer (usually) may only define functions. This
implies that formulae involving user-defined operations must be
written in Polish notation, which is confusing to both the programmer
and reader.

MABEL makes no distinction between an operator and a function. A
function in MABEL has an arbitrary number of left and right parameters
and returns an arbitrary number of results. A function may have no
parameters or zero left parameters, but we feel this latter will occur
less frequently than might be presupposed. Not only does this afford
a natural way to write functions and calls, but is an excellent aide-
memoire. One can more easily remember the specifications of the
substring function, for example, if one writes

A SUBSTR 1,J
rather than

SUBSTR (A,I,J)

Thus, MABEL function calls are simply an extension of the familiar
notation

X+Y
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The possible syntactic ambiguity in, for example

.ees =X PLUS Y,Z
is easily resolved by parenthesising calls in a list, as in

A SUBSTR (I + J), (MAX K,J)

The introduction of user~defined infix operators raises the question
of how operator priorities shall be handled. The possibilities appear
to be

no priorities, which would require that formulae

would have to be completely parenthesized

. integer priorities, as in ALGOL 68

. a small number (say 4) of priority levels, the priority

of a new operator being defined by something like
PRIORITY ADD LIKE +

. left-to-right (or similar) evaluation, optionally

combined with any of the first three.

Of these possibilities, the second appears the least satisfactory;
programmers in general and beginners especially remember relative
rather than absolute priorities. The third has attractions, but re-
quires a new construct, requires that a user assign a priority even if
he does not wish to for a particular operation, and implies the intro-
duction of somewhat arbitrary decisionsg one could argue for days
about the relative priorities of things like SUBSTR and &
(concatenate), for example., To avoid such arbitrariness MABEL"
currently uses the first alternative and ignores the fourth, but

this is somewhat tentative.

As remarked previously, a function (or procedure) specification
involves specification of the parameters and values returned; this
is naturally true for function parameters, which are specified using

a "model" as in
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FUNCTION  FUNCTION F SIMPSON A,B RETURNS VALUE:
MODEL  F X  RETURNS VALUE;
VARIABLE S, H, N;

.

RETURN (H * (((FA )+ (FB))+S)) /3

If F were to have a function or procedure parameter, it too would have

a model.

(11i1) Declarations and constants

All variables must be declared. All declarations must appear
at the head of a block on a function (procedure) body. There is no
initialisation of variables within declarations.

These restrictions, if indeed one considers them restrictions,
are made for pedagogical reasons, although they also assist in one-

pass compilation. Consider the examples:

BEGIN BEGIN

VARIABLE C; VARIABLE C;

C:= 7 C: = 8;
BEGIN BEGIN
VARIABLE D:=C; C: = 7;
VARIABLE C:= 3; VARIABLE C;

. .
. .

. .

These are both grossly unreadable and will cause intolerable surprises
to the newcomer (if not the expert too!).
Compile time constants are permitted as in

CONSTANT PI:'3:14159', PRIMES: (| '1':2, '2': 3, '3': 5, "4': 7))
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but the following is not permitted
CONSTANT NEWPI: '4'*(ARCTAN 1);
It might be hard to explain to a beginner why NEWPI should be a
“"constant'" and would be hard to prohibit examples like
CONSTANT A:B, B:A;

in a consistent manner.

iv) Transput
MABEL provides two sets of transput primitives. The first is
intended for use by rank beginners, and is an extremely simple
stream transput facility. The beginner will, at a very early stage,
appreciate the meaning of
X Y, Z ="1", 2%, '3
and shortly thereafter will learn that
GET X, Y, Z
where the data contains the list of literals
', '2', '3t (or '1" 2" '3%)
means precisely the same thing. The corresponding output comstruct
is typified by
PUT (X + '1"),(Y + '1'),(Z + '1');
which produces
2 3t 'y
on the printed page. The remaining primitive he may use is
NEWLINE
This elementary format-~free transput is easy to learn but is
ingsufficient for all but the most basic purposes. MABEL also pro-
vides two simple record transput pr;mitives:
READ var, var, var, ..., var;
WRITE exprn, exprn, ..., €xprn;
which may optionally specify a file-name:
READ A,B,C FROM STANDIN;

WRITE (A+B), (C+D) TO STANDBACK;
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Each variable is read from and expression written to a new record in
the appropriate file, which 1s STANDIN or STANDOUT (which are also
accessed by GET and PUT) if no file name is specified, MABEL takes
the view that the beginning programmer should be made aware that
transput operations are essentially string transfers; hence, it is
the programmer‘'s responsibility to manipulate the corresponding
strings as he ﬁishes (although MABEL will provide various functions
to assist him),.

It will be observed that all these transput operations involve
congtructs rather than function calls. We consider the additional
seven reserved words introduced (for a total of 32) far preferable
to introducing "pseudo" functions with a variable number of para-

meters, as is the case in ALGOL W,

(v) Operations and other oddments.

The MABEL '"system" comprises three components: the kernel, the
prelude and libraries.

The kernel incorporates all the MABEL comnstructs, including a
set of "primitives" which will rarely be used by programmers but
which are complete in that all operations may be defined in terms of
them as described in the next paragraph. The primitives currently
used are

SPLIT char FROM string

APPEND string TO string

The kernel includes some global constraints, such as file names but
does not include any function or procedure definitions,
In the prelude are defined a host of MABEL functions. These in-

clude arithmetic operations such as

+, =, X, /, *%, <, > etc.,, DIV, MOD, TFLOOR etc.

string operations such as
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& { concatenate}, SUBSTR { "ABCD" SUBSTR 0,2 yields "AB"},
CB, CA{ comes alphabetically before and after}, REPLACE,
CONTAINS, REVERSE
and the (non-McCarthy) logical operations
AND, OR, NOT, XOR
The prelude may be written entirely in terms of the kernel, and this
will be incorporated in the definition of MABEL. Hopefully this
definition of the prelude will be correct and an aid to portability;
it should be directly usable by an implementer with possible loss of
efficiency being the only penalty.
A number of standard libraries will be included in the MABEL
definition. Others may be added at installatioms.
There are two ways to include comments in MABEL programs.
. All text from # to the end of the current input
record is treated as comment.
. Comments may be included within the brackets
(%, *).
In the latter case the brackets may be nested and will be matched by
the compiler, thus permitting sections of program including comments
to be "commented out" for testing purposes.
MABEL currently uses a 56 character set consisting of
letters A-Z
. digits 0~ 9
. operators + -* [ q =< >
. punctuation () ' " ; : ., | # space
ASCII has currently been adopted as the collating sequence. Identi-
fiers are (arbitrarily long) sequences of letters and digits starting
with a letter, while function symbols are identifiers or sequences
of operators. (Special symbols are never sequences of operators.)

We emphasize that generic operators are not permitted; operator
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(function) identification follows precisely the same rules as for
identifiers.

MABEL encourages good program layout. When a group of statements

is to form a single compound statement and there are no explicit
delimiters, these statements must be indented,at the same level.
This applies in three situations: following THEN, following ELSE
and following DO. (All other compound statements have delimiters
such as BEGIN...END, PROCEDURE. , ., .FINISH and FUNCTION...,RETURN.)
We feel that good program layout should be mandatory rather than
optional; indentation is a powerful, all too frequently ignored

control structure,

5. MABEL Implementations
A compiler for the current version of MABEL has been written at
the University of Manitoba. It could be made available to anybody

willing to experiment with the language. Its brief specifications

are as follows:

Computer: IBM 370 under 0S or VS
Source

Language: PL/l

Compiler

Size: 200 K

Space

Requirements: Compiler: 256 K

Run time: 4K + Object Code + Memory area (run-
time parameter)

Parser: LR(1) with local error correction
Object
Code: . 370 Object Code

Object code is combined with 4K of run-time
routines. Run time includes a garbage
collector and error traceback.
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APPENDIX: ILLUSTRATIVE EXAMPLES

Three examples are given, all of which have run successfully
under the current MABEL compiler., The first is a simple prime
seive program; the second evaluates simple arithmetic expressions
while the third, a family tree program, is intended to illustrate
the power and potential of the MABEL STRUCTURE facility. Two sets
of output appear for the third program; the second set illustrates
the run time dump produced in the event of a run time error (here

activated by execution of the statement STOP).
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