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Abstract.   The crux of data compression is to process a string of bits in order, predicting each subsequent 
bit as accurately as possible.  The accuracy of this prediction is reflected directly in compression 
effectiveness.  Dynamic Markov Compression (DMC) uses a simple finite state model which grows and 
adapts in response to each bit, and achieves state-of-the art compression on a variety of data streams.  While 
its performance on text is competitive with the best known techniques, its major strength is that is lacks 
prior assumptions about language and data encoding and therefore works well for binary data like 
executable programs and aircraft telemetry. 

The DMC model alone may be used to predict any activity represented as a stream of bits.  For example, 
DMC plays "Rock, Paper Scissors" quite effectively against humans.  Recently, DMC has been shown to be 
applicable to the problem of email and web spam detection -- one of the best known techniques for this 
purpose. The reasons for its effectiveness in this domain are not completely understood, because DMC 
performs poorly for some other standard text classification tasks.  I conjecture that the reason is DMC's 
ability to process non-linguistic information like the headers of email, and to predict the nature of 
polymorphic spam rather than relying fixed features to identify spam. 

In this presentation I describe DMC and its application to classification and prediction, particularly in an 
environment where particular patterns of data and behavior cannot be anticipated, and may be chosen by an 
adversary so as to defeat classification and prediction. 
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I’d like to play a guessing game with you. I’ll start with a very simple version. I’ll give you a sequence 

of numbers, zeros and ones, and I’ll stop at some point, and you tell me what the next one is.   So, if we 
look at the first sequence [Figure 1], one zero, one one zero, one one zero one one zero one one, and I ask 
you what the next one is, probably you’ll tell me it’s zero. I’m going to make things a little harder though. 
I’m going to say, “what odds will you give me that it’s zero?” And so those are the two basic problems, 
“guess what the answer is” and “give me odds.” And of course, this string may never have happened before 
but I still want you to guess. Here’s another string:  the second one [in Figure 1] is a little bit more 
complicated, zero one zero, one one zero, one one one zero, one one one one zero and so on. What’s the 
next?  Again, we can say it’s probably one and I’ll say that’s not good enough. I want to know “how 

                                                           
1 Corresponding Author: Gordon Cormack, David R. Cheriton School of Computer Science, 2502 Davis Centre, University of 

Waterloo, Waterloo, Ontario N2L 3G1, Canada; Email: cormack@cormack.uwaterloo.ca 



probably” it is one. And so, in a nutshell, I want to know, “given a string what is the probability distribution 
for what the next symbol might be?” 

 

 
Figure 1. A simple prediction game 

 

 

Here [Figure 2] is another version of the game.  I have a number of email messages from an inbox, 
let’s say I have 100,000 of them and I pick one of the ones that happens to have “ai.stanford.” in it. What’s 
the next symbol after “ai.stanford.?” Any guesses? An E. Well, one of the messages has an E, but in fact 
your answer was underspecified, because in the data set there are actually two forms of E, lowercase “e” 
and uppercase “E.” Any guesses which is the more common?  Well, if you guessed lowercase “e,” you’d be 
wrong. In this particular corpus there was one lowercase “e” and there were 509 uppercase E’s [Figure 3]. 
And not only that, I’m going to make an observation that was not part of the game:  All 509 of the 
uppercase E’s were in spam messages. And the one lowercase E was the one legitimate message. So what 
further predictions might we make from this? First of all, if we want to know, “what’s spam or not,” capital 
E is a very good predictor of spam, at least in this data set. And we might be tempted to say 509 to 1 odds. 
That would just be an approximation, but it’s a common way of doing approximation, you count 
proportions of things you’ve seen before and assume that that’s going to predict a proportion that you’ll see 
in advance and therefore the probability.  

Now, Paul [Kantor] don’t bother with your question about, “you know, the world isn’t a stochastic 
place?”  It isn’t, but in this case it’s modeled fairly well by this. The point is if you see a lowercase E, 
you’ve seen a lowercase E once and it was not a spam message, so does that mean that we can predict from 
seeing another lowercase E that it’s not a spam message?  Our odds are one to zero, that’s infinite. So, we 
are 100% sure. Well, that would be a really bad assumption. And probably wrong, from our intuition as to 
what this data means. Here is an even worse assumption: If we see “ai.stanford” in an email message the 
chances that it’s spam are 509 to 1. That’s almost certainly a specious assumption inferred from this 
particular data. But it’s not completely obvious just from looking at this example without any intuition. 



 
 

 
Figure 2. Guess the next symbol 

 
 



 
Figure 3. Observed frequencies of “e” and “E”  

 
 
Here is another version of the game. Well, this is basically the same game. I have two email messages, 

or at least fragments of email messages here and I want to find the spam or I want to find the non-spam.  
Just  to make this a little bit more fun -- as they do in game shows, sometimes you have to make a weird 
noise or say a strange word when you have the answer -- if you see spam  you have to color it red and if 
you see non-spam you have to color it gray.   So here [Figure 4] is actually what my program that plays this 
game does. It doesn’t completely color the messages black or gray;  it colors the bits of the message that it 
thinks are spammy black and bits that are non-spammy, gray. And it does a great job on the spam message. 
One of the reasons it can do a great job on the spam messages is that somebody architected this message to 
try to beat spam filters. They split it up so that there are none of these features or “bag of words” things that 
all of the machine learning people who have talked here already love so much. There just aren’t any in this 
message. And that will beat somebody who depends on putting things in words, but it certainly doesn’t beat 
this particular technique. It [the technique] is not so unequivocal on the non-spam message. But again, if 
you look at it “from a distance” it’s more gray than it is black and this supports the view that one should 
combine all sources of evidence in making a decision.  

You have to step back and look at the whole picture; the whole picture is pretty clear. The first one was 
identified as spam because it has this chopped up feature.  In the non-spam my name was non-spammy and 
there were various other words and bits of words that indicated non-spamminess.  

 
 



 
Figure 4.  Spam coloring game 

 

 

I’m going to talk very briefly about a method -- the method I use to do this coloring. But I’m also 
going to talk about that in context of … as an academic I love to play games, …. but really this is in support 
of a genuine application. We should always be asking, “if I learn to play this game really well does tt really 
help to solve the spam filtering problem?”  So I need to look at a bigger context and I need to ask if what I 
am measuring about this actually predicts whether this is solving the email reading problem.  

I’m also going to talk about other applications, or other versions of this game. But first, before I talk 
about the methods, I want to give you one more game. This is an adversarial game, it’s called Rocks-
Scissors, Paper-Scissors or Roshambo, and it’s played with a rock and paper and scissors. Well, it’s 
actually not played with a rock and paper and scissors, it’s played with hand gestures that sort of look like 
these things and two people simultaneously chose one of these things. The game has a cyclical dominance 
graph [Figure 5].Iif you get dominated you lose and if you dominate you win. So, the key to the game is 
actually to guess what the other person is going to play at the same time as you are and then to beat them. 
And of course, we are not going to use hands here; we’re going to write down an R for rock, and a P for 
paper and so on. And then we’ll pair these things up, but together they’re just a string of characters [Figure 
5, bottom right]  a spam message [Figure 4]  So what we want to do once again is to read a bunch of stuff 
that’s been played and then we want to say, “well, what’s the next move my opponent is going to make,?” 
and then I want to beat him. How do I beat do that?  I consider the move that he is most likely going to 
make and I play the move that will beat that. But in fact  it’s not quite as simple as that, because I also am 
concerned very much about my opponent being able to predict my behavior.  

So I have a big trade-off between telling my opponent what I know and beating my opponent on this 
particular round. In short, there is, the cost (well, benefit) of winning this round versus the cost of what I 
communicate to my opponent, not only what I communicate to my opponent but what I communicate 
perhaps to a third party observer. If this is a “Rock, Paper, Scissors” tournament I’m playing, the person 
I’m up against next is watching how I play, trying to decide how good I am. And others may be watching 



me as well. So, I should really introduce enough noise so that I only just play well enough to beat my 
opponent; or I only play well enough to do what I need to qualify for the next round. In any event, there are 
these two trade-offs but that doesn’t really change the fact that underlying the game, the main thing we 
need is to predict the opponent’s next move with an odds ratio or with odds.  

 
 

 
Figure 5. Rock-paper-scissors game  

 
 
All right, now let’s go back to the main game of which these are all instances [Figure 1]. We have a 

sequence of symbols -- without loss of generality, they’re all bits -- and we want to predict the next one. 
The particular method that I am going to talk about today is called Dynamic Markov Modeling, and it was 
something I first did in the 1980’s (actually for data compression). It’s an extremely simple algorithm. Bit I 
am going to oversimplify it even further;  (If you want the code, not the code for the game,  but the code for 
the model it’s on the Web right now; search for “dmc.c”;  if that’s not enough put in my name). The entire 
compressor is 250 lines of code and half of that, approximately, is the model. So it really is as trivial as it 
seems. The way you work this model is: you put your finger on A [Figure 6]  and then if you see a 1 you 
move your finger to B, and if you see a zero you move your finger back to A and so on. And you do this in 
sequence.  Then at any given time,when you follow one of the arrows you increment the count on that 
arrow. So finally, the count on the two arrows that your finger might follow -- “one” and the “zero” – give 
the odds estimate; the ratio of the counts is the odds estimate.    

It is that simple. Now there’s nothing special about this, this is a very trivial Markov model;  they’ve 
been talked about already. Where it gets a little bit more interesting is that after a while you say, “wait, I’ve 
had my finger on B a lot”. “Not only that, I’ve gone from A to B a lot.” And so whenever, when you go 
from A to B, when you hit some threshold you say, “oh, I think I’m going to make a new version of B.” So 
you clone B and you divert some of the traffic from A, in particular, all the traffic from A to B [Figure 7]. 
You divert to your new cloned version of B. And all the other traffic you leave it where it was. So you start 



a “bypass” for this particular path. And what happens is, this grows and grows and grows and eventually 
yields a big model that is a variable order Markov model. You don’t have to worry about back-off 
probabilities and everything.  

There are a few arbitrary constants such as what you initialized these weights to. But when you 
actually do this cloning operation, you simply split the traffic in proportion to how often you visited it from 
this place or state, versus from other places. So anyway, that’s DMC; that is as much as I’m going to say 
about the actual model other than it  plays exactly our game [Figure 8].  

 
 

 
Figure 6. A Markov model 

 
 



 
Figure 7.  Dynamic Markov model 

 
 



 
Figure 8. Spam to Ham likelihood ratio 

 
 



 
Figure 9.  Combining likelihood ratios 

 
 
Now, if you want to predict something bigger than az single  bit it’s easy, you just predict all the bits in 

sequence. And then it doesn’t really make much difference but you can either average the predictions or 
you can multiply the predictions together or you can sum them. Anyway, you can combine them in a 
number of ways, and actually for the purpose of this presentation it doesn’t matter how you combine them. 
Basically, you are taking the average prediction over the entire string, that’s how you are predicting an 
email. That’s essentially what Figure 9 says.  So what we do with email now is this, if we are trying to 
predict spam or non-spam, we take all the spam we’ve ever seen and stick them all together into a sequence 
and then predict how likely it is that the new message that we are trying to judge, would occur in a list of 
spam messages. And we also predict how likely it is to occur in a list of non-spam messages and that’s our 
odds. The method  is absolutely simple as that; we take the ratio of those, well, actually  it’s convenient to 
take the log of the odds, just so when we sum these logarithms of  ratios we get something meaningful.  

But the question is: how well does this work? Well, I can tell you “it works great”. But let me do two 
things. First of all, I want to talk about measures of how well it actually plays the game. To do this, I want 
to show you a little picture of the context. In the context if this conference I what to stress that  I think we 
should always be doing this --  you know, drawing a stick diagram like this [Figure 10] asking “where does 
this mathematical game actually fit in the overall picture?”   

For the case of email the typical email reader looks something like this, there is an incoming stream of 
mail, the filter puts it into a mail file or into a quarantine file, and you routinely read your mail file. So it 
annoys you if there’s spam in the mail file. If you feel that there’s some (psychological) benefit to venting 
your emotional state, you might even yell at the filter and say, “how could you misclassify this?” and if the 
filter is smart it will say “well, I’m sorry I’ll try not to do that again”. In fact, this is what the DMC model 
can do; it can grow and clone and learn the kinds of mail that are spam and non-spam.  

Now, I should mention that no user will ever tell you the correct classification for every mail. But they 
might, if the errors are rare enough, tell you about the errors that they notice or at least some substantial 



fraction of the errors that they notice. So what you have to do is to assume (by default) that you did it right 
unless you hear otherwise; this is an example of bootstrapping or positive feedback. If you’re right often 
enough it works. The quarantine file is more difficult because, in general, the user doesn’t look at it. And 
the better your filter is the less likely the user is to look at it. Of course, if you are perfect that’s fine; but if 
you are not perfect there might be some misclassified mail. In general, looking in the spam file is a 
completely different information retrieval task from reading actual email. The quarantine is something that 
the user has to search.  Maybe she’s bored and just wants to look through it and see if there are any needles 
in the haystack, i.e., errors. Or maybe,  she just booked an airline flight and didn’t receive the message and 
says, “I bet there’s a message from Expedia in there.”  You have to put these factors all together in order to 
figure out what the cost, the downside of a misclassification is.  

It didn’t really cost her that much to lose that travel agent booking because she was expecting it; even 
though it was valuable information, she was expecting it and she knew exactly how to get it. On the other 
hand, say, Paul sent me a message the day before my flight saying “the workshop is cancelled; don’t 
come!” and it went into my spam file, that could have disastrous consequences. Happily, , that happens to 
be the kind of message that this method would be very unlikely to get wrong because he and I had 
corresponded already and the filter would have had ample opportunity to develop a positive attitude about 
this kind of message.  

To sum up, when we measure misclassification rates they can be extremely misleading because 1 in 
100 errors or 1 in 1000 errors could be disastrous. If  errors are one in 1,000, but they are  all critical 
messages that I wasn’t going to get by some alternate channel got lost, that would be unacceptable. On the 
other hand, if the advertising for my frequent flyer plan gets lost, who cares?  

 
 

 
Figure 10.  Context for the spam coloring game 

 
 



So, what I want to do is, I want to measure error rates. And what I’m not going to do is to talk about 
precision or recall or F-measure.  I can’t, in my mind, get any picture for what precision recall or F-
measure would mean in terms of this overall picture; it wouldn’t mean anything to me. On the other hand, 
I’ve already mentioned measurements that do mean something even though they may not be strictly 
proportions. That is, the number of spam, or proportion of spam misclassified,  and the proportion of non-
spam misclassified. So we can should one against the other because I have a “paranoia threshold” and I can 
vary it from,  “no paranoia” to “lots of paranoia” and just plot one measure against the other. Now this is 
plotted on the log odds scale [Figure 11]; otherwise it is exactly the ROC curve that Paul talked about 
earlier and the black line is what our DMC does and all the other lines are what the best other known spam 
filters do.   The number, area under the curve of the ROC,  is very high – perhaps 0.999 – so, for whatever 
reason in this particular application, classifiers are two or three orders of magnitude more accurate than 
they are for others like Reuters  or 25  newsgroups.    

Not only that, DMC is pretty mediocre for some of those standard text classification tasks but it really 
works in this application. I want to go back if I can to Figure 11.   If we look at this graph, a reasonable 
place to look at this graph would be on the first X tick, at 0.1%; that is, one in one thousand good emails 
misclassified. And if you look at the curve up here at x=0.1% you find that the filter gives slightly less than 
one percent spam misclassification, so it gets rid of more than 99% of spam while only misclassifying 
about one in a thousand good messages. Again, useful to think about 1 in a thousand just as a proportion 
because these are rare occurrences, so let’s look at them for some spam filters.  

 
 

 
Figure 11. Quantitative results for spam filters [1] 

 
 
Unfortunately, my spam filter isn’t in this table [Figure 12] but this still illustrates the idea. Of 9000 

good email messages the best filters here misclassified 6 or 7. And if you categorize these by genre you’ll 
see that personal communication with known correspondents, news clipping services, mailing lists and non-



delivery messages in general are not the things that are misclassified. What gets misclassified, is  
advertising, and the occasional cold call. Now, you look down at some of the poorer filters and you’ll 
notice that right at the bottom of the list you actually have two filters that are very heavily touted on the 
Internet, to such an extent that I might even give them as an example of a disinformation campaign.  They 
just misclassify everything -- personal email, bad email it’s all the same.  

 
 

 
Figure 12.  Qualitative “genre classification” [2] 

 
 
All  in all, we have to measure, we have to use measurements that are meaningful and our 

measurements have to be scientifically controllable. I can tell you that this works in a number of 
applications [Figure 13] because I can test it. If I can’t test it what can I do? Try it out and see if it seems to 
work; hire an advertising company to promote it and then it doesn’t matter whether it works because I have 
enough money anyway. What I can say for sure that DMC works for because I can test it as data 
compression. It works well for spam detection -- all the variants, viruses, phishing, different kinds of spam 
on the Web, and log spam. It’s completely insensitive to the language of discourse, to the character 
encoding technique, it works great for multi-media, for multi-part MIME, and so on. It works pretty well 
for plagiarism and authorship detection, works pretty well for intrusion detection. I’ve already mentioned 
game playing but in this case I mean outright game playing.  

Is it good for terrorism? I think it is, but terrorism is such an amorphous term I have no idea what you 
are talking about. So, if you have well-defined tasks -- better still, well-defined tasks and data – please talk 
to me. If you can send me your data -- which you will probably tell me is classified -- that’s great, but if not, 
I can send you some software and you can scroll your data off and send me back one of those ROC curves 
and I’ll be extremely happy.  

 
 



 
Figure 13.  DMC applications 

 
 
As far as “promoting DMC”, I think I’ve actually said everything here. There are no explicit features, 

it handles heterogeneous data, it’s adaptive, it learns on the job, there’s none of this “find a training set and 
do this and then freeze the training set,” so in terms of this concept drift and so on, it automatically captures 
new things that happen. I’ve already talked about visual output. It’s extremely difficult for an adversary to 
defeat. And here’s yet another example, and this is my final slide [Figure 14] which shows the application 
of DMC to web spam -- web pages that have no purpose other than to redirect you to other pages and to 
mislead search engines. This is DMC applied to the host name only, not even the URL, and you can see it 
actually does a pretty good job here as well.  

 
 



 
 

Figure 14.    Web spam hostnames  

 
 
Thank you. 
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