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Abstract. We describe the application of dynamic Markov modeling
– a sequential bit-wise prediction technique – to labeling email cor-
pora for the 2006 ECML/PKDD Discovery Challenge. Our technique
involves: (1) converting the corpora’s bag-of-words representation to a
sequence of bits; (2) using logistic regression on the training data to
induce an initial maximum likelihood classifier; (2) combining all test
sets into one; (3) ordering the combined set by decreasing magnitude of
the log-likelihood ratio; (4) iteratively applying dynamic Markov model-
ing (DMC) to compute successive log-likelihood estimates; (5) averaging
successive estimates to form an overall estimate; (6) partitioning the
combined estimates into separate results for each test set. Post-hoc ex-
periments showed that: (a) the iterative process improved on the initial
classifier in almost all cases; (b) treating each test set separately yielded
nearly indistinguishable results.

1 Dynamic Markov Modeling

Recently we have shown that sequential adaptive data compression methods
work well for classifying email messages into spam and non-spam [1, 2]. Our ap-
proach uses the DMC data compression model [3] to estimate the conditional
likelihood of each successive bit in a message, under two separate prior assump-
tions: that the message is spam and that the message is non-spam. The log of the
ratio of these two likelihoods is computed and the message is classified as spam
if the average of these values is positive; otherwise the message is classified as
non-spam. The average log-likelihood-ratio itself is used as the decision function

value required by the 2006 ECML/PKDD Discovery Challenge[4].
The DMC model is a finite state machine with a binary label and a fre-

quency count on each edge. As the message is processed – one bit at a time
from left-to-right – the prior probability distribution for each bit is estimated
using the ratio of the frequencies of the edges leaving the current state. Then
the model is updated to take into account the bit’s observed value. The update
has three phases: first, the frequency of the edge labeled with the observed value
is incremented; second, the target of this edge may be cloned ; third, the edge is
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Fig. 1. DMC Cloning

followed to yield a new current state. Consider figure 1. The current state is A
and the next bit has the value 1. The prior probability for this value is estimated
to be 2

3
. Because B has been visited previously by this edge and also by some

other edge,1 it is cloned, resulting a new state B’ to which the current edge is
redirected. The outgoing edge frequencies of B and B’ are divided in proportion
to the number of times each has been visited (3:1 in this example). Finally the
edge is followed resulting in a new current state of B’.

The precise criteria for cloning are as follows. Let f1 be the frequency count
(prior to incrementing) of the edge used to reach B. Let f2 be the sum of the
frequency counts of the edges leaving B. Cloning takes place if f1 > t1 and
f2 − f1 > t2 for two arbitrary threshold parameters t1 and t2. f1 is the number
of times that B has been visited within the current context; f2 is the number
of times it has been visited from other contexts. We used t1 = t2 = 2, default
values which were known to work well in other applications.

To classify messages, we construct two DMC models – one for spam and one
for non-spam. For each message in turn, we twice apply the adaptive process
detailed above – once using the spam model and once using the non-spam model
– to compute the likelihood of the message for each class. After each message is
classified, updates to the model corresponding to the incorrect class (as deter-
mined by the label) are discarded, whereas updates to the model corresponding
to the correct class are preserved.

The DMC model continuously grows, using more context for predicting com-
mon bit sequences. It is thus sensitive to bit, character, and word frequencies,
as well as intra- and inter-word patterns as well as punctuation and formatting.
Also, since the model is dynamic, it is sensitive to inter-message patterns and the
order in which training examples are presented to it. These sensitivities appear
to be advantageous in classifying real sequences of email messages.

It is not obvious that the DMC model should be applicable to the vector-space
representation of messages in the ECML/PKDD Challenge. This representation
discards lexical and formatting information, the order of words, and the order of
messages in the test and training sets. Only the frequency of word occurrences is
explicitly preserved. We used this information to create a sequential rendering of

1 We know the total number of visits to B by summing the frequencies of its two
outgoing edges.
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each message in the following manner: we represented each feature in the vector
space as a 16-bit2 integer. A feature occurring k times in a message was rendered
as k adjacent occurrences of the corresponding 16-bit integer. The renderings for
all features were concatenated to render the message. This representation aptly
captures word frequencies, but not intra- or inter-word patterns3.

Experiments with the tuning data showed that the DMC model classified
the training data very well, and classified the test data fairly well, but with
high sensitivity to factors such as the order of the training data. Based on these
experiments, we chose a hybrid approach, using logistic regression to build an
initial classifier from the labeled training data, followed by several iterations of
DMC to harness the unlabeled test data.

2 Iterative Classification

We applied Goodman’s adaptive logistic regression implementation [5] to the
training and test messages to yield initial log-likelihood-ratio estimates for each
of the test messages. Based on these estimates we computed tentative labels for
the test messages: those with a positive log-likelihood ratio were labeled as spam;
the rest as non-spam.

A sequence of labeled messages was created by concatenating

– the training messages and labels, in the order given
– the test messages, labeled as described above, in decreasing order by the

magnitude of the log-likelihood-ratio estimate (i.e. by diminishing confidence
in the label).

Our DMC classifier was applied on-line to this sequence, classifying each mes-
sage before training on its label, to yield a new sequence of log-likelihood-ratio
estimates. A new sequence of labeled messages was created from these estimates
as described above, and the process repeated five times.

Finally, the six log-likelihood-ratio estimates for each message (initial plus
five iterations of DMC) were averaged to yield the final classifier output.

In summary, we use the output from one stage of classification to synthetically
label training examples for the next. Since the training examples are ordered
by confidence, we have reason to believe that early examples are likely to be
correctly labeled, so that the adaptive DMC model will grow to include patterns
from correctly classified messages that may not be present in the initial training

2 There are fewer than 216 distinct features in the ECML/PKDD Challenge data,
but they are numbered discontiguously resulting in values greater than 216. We
renumbered the features – preserving the original order but eliminating unused values
– to achieve a 16-bit representation.

3 We note that the feature numbers were assigned by ECML in order of first occur-
rence. We expect if two common features frequently occur adjacent, there is a good
chance that their first occurrences are adjacent. Therefore, some small reflection of
the inter-word patterns may be preserved in our rendering.
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data. Similarly, by combining together the separate tests, we have reason to
believe that the model may grow to incorporate other features representative
of spam or non-spam. Finally, prior experience gives us reason to believe that
combining classifiers – even combining weak and strong classifiers – by summing
log-odds-ratios would provide accurate and reliable results [6].

3 Results

Test Set Initial LR Combined mailboxes Separate mailboxes

task a u00 15.1 19.6 19.7
task a u01 12.4 11.7 11.2
task a u02 7.1 2.6 1.3
all task a 12.0 11.4 10.9

task b u00 23.5 1.7 3.3
task b u01 21.3 2.5 2.9
task b u02 7.1 3.2 2.1
task b u03 3.8 1.2 1.0
task b u04 11.3 3.2 2.9
task b u05 12.0 10.1 11.9
task b u06 20.2 11.7 4.3
task b u07 9.5 3.6 4.3
task b u08 12.4 2.4 1.5
task b u09 16.6 4.0 4.7
task b u10 11.5 6.2 7.1
task b u11 9.5 5.3 5.1
task b u12 17.4 11.1 12.8
task b u13 12.7 7.4 8.0
task b u14 18.9 6.7 7.3
all task b 13.7 5.2 5.1

Table 1. Per-mailbox error rates [1-AUC (%)]

Test Set Initial LR DMC1 DMC2 DMC3 DMC4 DMC5 Final average
all task a 12.0 17.9 13.6 11.0 9.7 9.2 10.9
all task b 13.7 10.0 6.1 5.8 5.5 5.6 5.1

Table 2. Iterative results – separate mailboxes [1-AUC (%)]

Table 1 shows the area above the ROC curve (as a percentage) achieved by
the initial and final classifier for each mailbox (test set) and for all mailboxes
combined in Task A and Task B. The first column is the score achieved by the
LR classifier using only the labeled training data. The second column is the end
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Test Set Initial SVM DMC1 DMC2 DMC3 DMC4 DMC5 Final average
all task a 14.2 11.4 8.5 7.1 6.5 6.2 7.0
all task b 49.3 42.4 37.5 38.0 38.2 38.3 24.8

Table 3. SVM initial classifier – separate mailboxes [1-AUC (%)]

result of the iterative process applied to the combined mailboxes. This column
corresponds to our official results. The third column shows the result of iterating
on each mailbox separately.

We see that in all but one mailbox the iterative process reduced the error rate,
in most cases substantially. Unfortunately, the one case was the first mailbox of
Task A, with the net result being that the iterative process made an insubstan-
tial improvement overall for this task. For Task B, the iterative process worked
remarkably well. For all mailboxes the result was improved; for most, substan-
tially so. The overall effect was that the result on Task B was significantly better
than any other.

Table 2 illustrates the convergence of the iterative process. In general, clas-
sifier error diminishes with the number of iterations but appears to be near
asymptote after the fifth iteration. The final combined score is in general a small
further improvement.

We investigated several alternatives in an effort to determine why our method
worked well for Task B and not for Task A. We first repeated the iterative process
separately for each of the eighteen mailboxes in both tasks. The results – seen
in column 3 of table 1 – are nearly indistinguishable from and certainly not
significantly different from those derived from combined mailboxes. We know
from data compression experiments that DMC is particularly good at modeling
heterogeneous data, because it simply “grows” distinct states to handle each
category. Therefore we should perhaps not have been as surprised as we were to
observe that combining mailboxes has no substantive effect.

We investigated the use of a different initial classifier, namely SV M light with
binary features and default parameters. As shown in figure 3 the results were
mixed. For Task A, the initial SVM classification was inferior to that yielded by
logistic regression, but our iterative process was much better able to improve on
it, yielding a dramatic overall improvement. For Task B, the initial SVM classi-
fication was very poor, presumably due to over-fitting. The iterative technique
was able to improve on it considerably, but the overall result is still not good.

We further investigated the effect of the size of the training and test sets on
the result. Using a small sample of the Task A training data had an insubstantial
effect – the results were very slightly worse. Similarly, results on a sample of the
Task A mailbox were insubstantially different from those on the whole.

4 Conclusion

Our technique for iterative labeling using Dynamic Markov Modeling makes
effective use of unlabeled training data to improve on an initial discriminative
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classifier derived from labeled data. The technique provided an improvement
for seventeen of eighteen mailboxes consisting of unlabeled messages, whether
applied to the mailboxes separately or as a common set. For the majority of
mailboxes, the improvement was substantial, in some cases reducing the area
above the ROC curve by a factor of ten.

We are unable to find a reason for discrepancy between Task A and Task B
results. In our pilot experiments the method performed as well on Task A as on
Task B. We tried adjusting the training and test set sizes, and the number of
combined test sets. We can only conclude that the data used in at least one of
the Task A mailboxes is materially different from the rest; perhaps examining
the unobfuscated data would yield insight as to the nature of the difference.
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