
Qualifying System F<:
Some terms and conditions may apply

EDWARD LEE, University of Waterloo, Canada

YAOYU ZHAO, École Polytechnique Fédérale de Lausanne, Switzerland
ONDŘEJ LHOTÁK, University of Waterloo, Canada

JAMES YOU, University of Waterloo, Canada

KAVIN SATHEESKUMAR, University of Waterloo, Canada

JONATHAN IMMANUEL BRACHTHÄUSER, Eberhard Karls Universität Tübingen, Germany

Type qualifiers offer a lightweight mechanism for enriching existing type systems to enforce additional,

desirable, program invariants. They do so by offering a restricted but effective form of subtyping. While the

theory of type qualifiers is well understood and present in many programming languages today, polymorphism

over type qualifiers remains an area less well examined. We explore how such a polymorphic system could

arise by constructing a calculus, System F<:Q, which combines the higher-rank bounded polymorphism of

System F<: with the theory of type qualifiers. We explore how the ideas used to construct System F<:Q can be

reused in situations where type qualifiers naturally arise—in reference immutability, function colouring, and

capture checking. Finally, we re-examine other qualifier systems in the literature in light of the observations

presented while developing System F<:Q.

CCS Concepts: • Software and its engineering → General programming languages; Semantics; Polymor-
phism.

Additional Key Words and Phrases: System F<:, Type Qualifiers, Type Systems

ACM Reference Format:
Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Immanuel Brachthäuser.

2024. Qualifying System F<:: Some terms and conditions may apply. Proc. ACM Program. Lang. 8, OOPSLA1,
Article 115 (April 2024), 31 pages. https://doi.org/10.1145/3649832

1 INTRODUCTION
Static type systems classify the values a program reduces to. For example, the signature of the

function

def toLowerCase(in: String): String = { ... }

enforces that it takes in a String as an argument and returns a String as a result. If strings

are implemented as mutable heap objects, how would we express the additional property that

toLowerCase does not mutate its input?

Authors’ addresses: Edward Lee, University of Waterloo, Waterloo, ON, Canada, e45lee@uwaterloo.ca; Yaoyu Zhao, École

Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, yaoyu.zhao@uwaterloo.ca; Ondřej Lhoták, University of

Waterloo,Waterloo, ON, Canada, olhotak@uwaterloo.ca; James You, University ofWaterloo,Waterloo, ON, Canada, j35you@

uwaterloo.ca; Kavin Satheeskumar, University of Waterloo, Waterloo, ON, Canada, ksatheeskumar@uwaterloo.ca; Jonathan

Immanuel Brachthäuser, Eberhard Karls Universität Tübingen, Tübingen, BaWü, Germany, jonathan.brachthaeuser@uni-

tuebingen.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART115

https://doi.org/10.1145/3649832

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

HTTPS://ORCID.ORG/0000-0001-7057-0912
HTTPS://ORCID.ORG/0000-0003-2257-1413
HTTPS://ORCID.ORG/0000-0001-9066-1889
HTTPS://ORCID.ORG/0009-0000-5906-0305
HTTPS://ORCID.ORG/0009-0002-1106-2429
HTTPS://ORCID.ORG/0000-0001-9128-0391
https://doi.org/10.1145/3649832
https://orcid.org/0000-0001-7057-0912
https://orcid.org/0000-0003-2257-1413
https://orcid.org/0000-0001-9066-1889
https://orcid.org/0009-0000-5906-0305
https://orcid.org/0009-0002-1106-2429
https://orcid.org/0000-0001-9128-0391
https://orcid.org/0000-0001-9128-0391
https://doi.org/10.1145/3649832

115:2 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

There are at least two ways to address this. We can view the modification of toLowerCase’s
argument in as a property of toLowerCase or we can view mutability as a property of the argument

string in itself. The former viewpoint leads to solutions like (co-)effect systems [Petricek et al.

2014] that describe the relation of a function to the context it is called in. The latter viewpoint,

of viewing it as a property of the argument, leads to systems that enrich the types of values with

additional information. In this paper, we adopt the latter view.

One such system is Type qualifiers [Foster et al. 1999], in which we could qualify the type of

toLowerCase’s argument with the type qualifier const to express that toLowerCase cannot modify

its argument. We may choose to annotate its result with the type qualifier const to indicate that

its result is a const String which cannot be changed by toLowerCase’s caller.

def toLowerCase(in: const String): const String = {...}

The function toLowerCase now accepts a read-only String as an argument and presumably returns

a new String that is a copy of its argument except in lowercase. More importantly, since the input

string is qualified as const, we know that this version of toLowerCase cannot mutate the input

string, for example, by calling a method like in.setCharAt(0, ’A’), which would replace the

character of index 0 of the string with the character A.
Perhaps this is too restrictive. After all, toLowerCase will allocate a new String and does not

impose invariants on it; its caller should be permitted to mutate the value returned. We should

instead annotate toLowerCase as follows, with a mutable qualifier on its return value.

def toLowerCase(in: const String): mutable String = {...}

Subtyping naturally arises in this context—a mutable String can be a subtype of a const String.
Returning a mutable string should not cause existing calls to toLowerCase to break.

Similarly, it would be impractical if toLowerCase only accepted read-only Strings. After all,
any operation one could perform on a read-only String should be semantically valid on a mutable
String as well. Therefore a mutable String not only can but should be a subtype of const String.
For example, we may have other String functions that accept const Strings, which should also

accept mutable Strings as well.

def reversed(in: const String): mutable String = {...}

reversed(toLowerCase("HELLO␣WORLD")) == "dlrow␣olleh"

Foster et al. [1999] were the first to recognize this natural subtyping relation induced by type

qualifiers, which permitted type qualifiers to be integrated easily into existing type systems with

subtyping. Perhaps the most well known qualifier is const. It is used to mark particular values

as read-only or immutable and it is found in many languages and language extensions [Bright

et al. 2020; Stroustrup 2007; Tschantz and Ernst 2005]. Other languages, such as OCaml and Rust,

are exploring more exotic qualifiers to encode properties like locality, linearity, exclusivity, and

synchronicity [Slater 2023a,b; Wuyts et al. 2022]. Qualifiers are so easy to use that many type

system extensions start as type qualifier annotations on existing types; for Java there are multiple

frameworks [Markstrum et al. 2010; Papi et al. 2008] for doing so, which have been used to model

extensions of Java for checking nullability, energy consumption, and determinism amongst others.

While type qualifiers themselves are well-explored, qualifier polymorphism is still understudied.

Sometimes parametric polymorphism is not necessary when subtyping is present. For example, the

type signature that we gave to toLowerCase, const String => mutable String, is indeed the

most permissive type that may be assigned. In languages with subtyping, type variables are only

necessary to relate types and qualifiers in both return (covariant) and parameter (contravariant)

positions; otherwise we can use their respective type bounds [Dolan 2016, Chapter 4.2.1]. For

example, while we could have made toLowerCase polymorphic using a qualifier variable Q over

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:3

the immutability of its input, such a change is unnecessary as we can simply replace Q with its

upper bound const to arrive at the monomorphic but equally general version of toLowerCase
from above.

def toLowerCase[Q <: const](in: Q String): mutable String = {...}

However, variables are indeed necessary when relating types and qualifiers in covariant positions

to types and qualifiers in contravariant positions. For example, consider a substring function.

Which qualifiers should we assign its arguments and return value?

def substring(in: ??? String , from: Int , to: Int): ??? String = {...}

It would be reasonable to expect that a substring of an immutable string should itself be immutable,

but also a substring of a mutable string should be mutable as well. To express this set of new

constraints, we need parametric qualifier polymorphism.

def substring[Q <: const](in: Q String , from: Int , to: Int): Q String

We also need to consider how qualifier polymorphism interacts with type polymorphism. For

example, what should be the type of a function like slice, which returns a subarray of an array? It

needs to be parametric over the the type of the elements stored in the array, where the element

type itself could be qualified. This raises the question: should type variables range over unqualified

types or both unqualified and qualified types? Foster’s original system does not address this issue,

and existing qualifier systems disagree on what type variables range over and whether or not type

variables can be qualified at all. For reasons we will demonstrate later in Section 5, type variables

should range over unqualified types; to achieve polymorphism over both types and qualifiers, we

need both type variables and qualifier variables for orthogonality.

def slice[Qa <:const , Qv <:const , T<:Any](in: Qa Array[Qv T]): Qa Array[Qv T]

Polymorphism over qualified types, though, can be recovered through a lightweight form of

syntactic sugar, as we show in Section 5 as well.

def slice[Q<:const , QT <:const Any](in: Q Array[QT]): Q Array[QT]

Another under-explored area is that of merging type qualifiers, especially in light of parametric

qualifier polymorphism. For example, consider the type qualifiers throws and noexcept, expressing
that a function may throw an exception or that it does not throw any exception at all. Without

polymorphism, it is easy to combine qualifiers. For example, a function like combined, that calls
both pure and exception-throwing functions, should be qualified with the union of the two qualifiers,

throws, expressing that an exception could be thrown from the calling function.

def pure() = 0 // noexcept (() => Int)

def impure () = throw new Exception("Hello") // throws (() => Unit)

def combined () = { pure(); impure () } // throws (() => Unit)

Things are more complicated in the presence of qualifier parametric higher-order functions, such

as:

def compose[A,B,C,Qf,Qg](f: Qf (A => B), g: Qg (B => C))): ??? (A => C)

= (x) => g(f(x))

What should be the qualifier on the return type (A => C) of compose? Intuitively, if either f or g
throws an exception, then the result of compose should be qualified with throws, but if neither
throws any exception, then the composition should be qualified with noexcept. Ideally we would

like some mechanism for specifying the union of the qualifiers annotated on both f and g.

def compose[A,B,C,Qf,Qg](f: Qf (A => B), g: Qg (B => C))): {Qf | Qg} (A => C)

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:4 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

Existing qualifier systems have limited support for these use cases. Foster et al. [1999]’s original

system is limited to simple ML-style qualifier polymorphism with no mechanism for specifying

qualifier-polymorphic function types, and has limited support for combining qualifiers. Dietl et al.

[2011]’s Checker Framework presents a restricted, implicit view of qualifier polymorphism via

Java annotations. Systems that do support explicit qualifier polymorphism like that of Gordon

et al. [2012] partially ignore the interaction between combinations of qualifier variables and their

bounds, or present application-specific subqualification semantics seen in Boruch-Gruszecki et al.

[2023] or Wei et al. [2024]. Must this always be the case? Is there something in common that we can

generalize and apply to give a design recipe for designing qualifier systems with subqualification

and polymorphism?

We believe this does not need to be the case; we show that it is possible to add qualifier polymor-

phism without losing the natural lattice structure of type qualifiers, and that there is a natural way

to reconcile type polymorphism with qualifier polymorphism as well.

To illustrate these ideas, we start by first giving a design recipe for constructing a qualifier-

polymorphic enrichment System F<:Q of System F<: [Cardelli et al. 1991], much in the same way

that Foster et al. [1999] gives a design recipe for adding qualifiers to a base simply-typed lambda

calculus. Our recipe constructs a calculus with the following desirable properties:

• Higher-rank qualifier and type polymorphism: We show how to add higher-rank quali-

fier polymorphism to a systemwith higher-rank [Leivant 1983] type polymorphism in Section

2.3.

• Natural subtyping with qualifier variables: We show that the subtyping that type quali-

fiers induce extends naturally even when working with qualifier variables. We achieve this

by using the free lattice [Whitman 1941] generated over the original qualifier lattice. We

illustrate these ideas, first in a simplified context over a fixed two-point qualifier lattice in

Section 2.3 and generalize to an arbitrary bounded qualifier lattice in Section 2.7.

• Easy meets and joins: As we generalize the notion of a qualifier to that of an element from

the free (qualifier) lattice, we recover the ability to combine qualifiers using meets and joins.

Next, to demonstrate the applicability of our qualifier polymorphism design recipe, we show

how one can model three natural problems – reference immutability, function colouring, and capture
tracking, using the ideas used to develop System F<:Q in Section 3. We then discuss how type

polymorphism can interact with qualifier polymorphism in Section 5 to justify our design choices.

We then re-examine a selection of other qualifier systems in light of our observations developed in

our free lattice-based subqualification recipe in Section 6 to see how their subqualification rules fit

in our free lattice based design recipe. Finally, we close with a discussion of related and potential

future work in Section 7.

Our soundness proofs are mechanized in the Coq proof assistant; details are discussed in Section 4.

2 QUALIFIED TYPE SYSTEMS
In this section, we introduce System F<:Q, a simple calculus with support for qualified types as well

as type- and qualifier polymorphism. We start off with a brief explanation of what type qualifiers

are (Subsection 2.1), introduce System F<:Q (Subsection 2.3), and show that it satisfies the standard

soundness theorems (Subsection 2.6).

2.1 A Simply-Qualified Type System
As Foster et al. [1999] observes, type qualifiers induce a simple, yet highly useful form of subtyping

on qualified types. Consider a qualifier like const, which qualifies an existing type to be read-only.

It comes equipped with a dual qualifier mutablewhich qualifies an existing type to be mutable. The

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:5

Qualifiers Description

mutable <: const
Mutability; amutable value can be usedwhere an read-only value
is expected, regardless of whether or not it should [Boyland 2006].
A covariant qualifier, as mutable is often omitted.

noexcept <: throws
Exception safety; a function which throws no exceptions can be

called anywhere a function which throws could. A contravariant
qualifier, as throws is often omitted. [Maurer 2015]

sync <: async

Synchronicity; a function which is synchronous and does not

suspend can be called in contexts where a function which is

asynchronous and suspends could. Covariant, as sync is assumed

by default.

nonnull <: nullable
Nullability; a value which is guaranteed not to be null can be

used in a context which can deal with nullable values. Covariant,
in systems with this qualifier – most values ought not to be null.

Fig. 1. Examples of type qualifiers

type const T is a supertype of mutable T, for all types T; a mutable value can be used wherever an

immutable value is expected. Other qualifier pairs induce a subtype, like noexcept and throws—it
is sound to use a function which throws no exception in a context which would handle exceptions.

Figure 1 provides an overview of some qualifiers and describes which invariants they model.

Often one of the two qualifiers is assumed by omission – for example mutable and throws
are often omitted; references are assumed to be mutable unless otherwise specified, and similarly

functions are assumed to possibly throw exceptions as well. Qualifiers like const, where the

smaller qualifier is omitted, are positive, or covariant; by example, const String is a supertype of

a unqualified String. Conversely, qualifiers like noexcept are negative, or contravariant; String
=> String noexcept is a subtype of String => String.

2.2 Qualifying a Language
The observation that qualifiers induce subtyping relationships allows language designers to seam-

lessly integrate support for type qualifiers into existing languages with subtyping. As Foster et al.

[1999] point out, these qualifiers embed into a qualifier lattice structure L, and they give a design

recipe for enriching an existing type system with support for type qualifiers.

(1) First, embed qualifiers into a lattice L. For example, const and mutable embed into a

two-point lattice, where const is ⊤ and mutable is ⊥. Other example qualifiers (and their

embeddings) are described in Figure 1.

(2) Second, extend the type system so that it operates on qualified types – a pair {𝑙} 𝑇 where 𝑙 is

a qualifier lattice element and𝑇 a base type from the original system. This is done as follows:

(3) Embed qualifiers into the subtyping system. Typically, for two qualified types {𝑙1} 𝑇1 and
{𝑙2} 𝑇2 such that 𝑙1 ⊑ 𝑙2 and 𝑇1 <: 𝑇2, one will add the subtyping rule {𝑙1} 𝑇1 <: {𝑙2} 𝑇2.

(4) Add rules for introducing qualifiers, typically in the introduction forms for typing values.

(5) Finally, augment the other typing rules, typically elimination forms, so that qualifiers are

properly accounted for. One may also additionally add an assertion rule for statically checking
qualifiers as well.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:6 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

2.3 (Higher-rank)Qualifier Polymorphism
Foster’s original work allows one to add qualifiers to an existing type system. As we discussed

earlier, we want more, though:

(1) Qualifier Polymorphism: Certain functions ought to be polymorphic in the qualifiers

they expect. For example, from our introduction, we should be able to express a substring
function which is polymorphic in the mutability of the string passed to it. While this is easy

enough, as Foster et al. [1999] shows, the interaction of lattice operations with qualifier

variables is not so easy, as we discuss below.

(2) MergingQualifiers:We often need to merge qualifiers when constructing more complicated

values. Merging is easy when working with a lattice; we can just take the lattice’s underlying

join (⊔) or meet (⊓) operation. But how do we reason about meets or joins of qualifier

variables? For example, in a noexcept qualifier system, we should be able to collapse the

qualifier on the result of a function like twice, which composes a function with itself, from

Q⊔ Q to just Q; the result of twice throws if f throws or if f throws, which is namely just if f
throws.

def twice[A, Q](f: (A => A) Q): (A => A) Q = compose(f, f)

To achieve this, we need to extend qualifiers from just elements of a two-point lattice, as in

Foster et al. [1999], to formulas over lattices which can involve qualifier variables in addition to

elements of the original lattice. Moreover, we would like to relate these formulas as well. But how?

2.4 Free Lattices
As Whitman [1941] observed, there is a lattice which encodes these relations over these lattice

formulas, namely, the free lattice constructed over the original qualifier lattice. Free lattices capture

exactly the lattice formula inequalities that are true in every lattice. This is formally specified by the

following two definitions. Here, we use ∨,∧, ≤ in place of ⊔,⊓, ⊑ to distinguish lattice formulas in

general from a lattice formula in a fixed, concrete lattice.

Definition 2.1. Let 𝑋 be a set of variables. Then E(𝑋), the set of lattice formulas generated by 𝑋 ,

is recursively defined by:

(1) If 𝑥 ∈ 𝑋 then 𝑥 ∈ E(𝑋).
(2) If 𝑓1 ∈ E(𝑋) and 𝑓2 ∈ E(𝑋) then 𝑓1 ∧ 𝑓2 ∈ E(𝑋).
(3) If 𝑓1 ∈ E(𝑋) and 𝑓2 ∈ E(𝑋) then 𝑓1 ∨ 𝑓2 ∈ E(𝑋).

Definition 2.2. Let 𝑋 be a set of variables. Then F (𝑋), the free lattice generated by 𝑋 , is the lattice

over E(𝑋) with ordering relation ≤ where 𝑓1 [𝑋] ≤ 𝑓2 [𝑋] for two formulas 𝑓1 [𝑋], 𝑓2 [𝑋] ∈ F (𝑋) if
and only if 𝑓1 [𝑋 → 𝐿] ⊑ 𝑓2 [𝑋 → 𝐿] in every lattice L and instantiation 𝐿 of the variables in 𝑋 to

elements of L, up to equivalence modulo ≤.

For example, the inequality 𝑥 ∧ 𝑦 ≤ 𝑥 would hold in the free lattice F (𝑥,𝑦) as it is true in every

lattice but the inequality 𝑥 ≤ 𝑦 would not hold, as there is a concrete lattice L and instantiation of

𝑥 and 𝑦 to elements of L where 𝑥 ⊑ 𝑦 is not true – take L to be the two element lattice ({0, 1}, ≤Z),
𝑥 to be 1, and 𝑦 to be 0; clearly 1 >Z 0.

Now while Definition 2.2 defines the free lattice extrinsically by its universal property, it unfor-

tunately does not give a construction for the free lattice. However, it is folklore that the following

explicit construction gives rise to the free lattice as well.
1

1
Galatos [2023] and Negri and von Plato [2002] give algebraic and structural proofs of this result. Jipsen [2001] notes this

can also be viewed as a refomulation of Whitman [1941, Theorem 1]. Skolem [1920] however is probably responsible for the

original formulation of Theorem 2.3 though with transitivity as an additional rule (8).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:7

Theorem 2.3 (Folklore). F (𝑋) is the lattice over (E(𝑋)/≤, ≤), where ≤ is a binary relation over
E(𝑋) defined by:
(1) For every 𝑥 ∈ 𝑋 , 𝑥 ≤ 𝑥 .
(2) For every 𝑓1, 𝑓2, 𝑓3 ∈ E(𝑋), if 𝑓3 ≤ 𝑓1 then 𝑓3 ≤ 𝑓1 ∨ 𝑓2.
(3) For every 𝑓1, 𝑓2, 𝑓3 ∈ E(𝑋), if 𝑓3 ≤ 𝑓2 then 𝑓3 ≤ 𝑓1 ∨ 𝑓2.
(4) For every 𝑓1, 𝑓2, 𝑓3 ∈ E(𝑋), if 𝑓3 ≤ 𝑓1 and 𝑓3 ≤ 𝑓2 then 𝑓1 ∨ 𝑓2 ≤ 𝑓3.
(5) For every 𝑓1, 𝑓2, 𝑓3 ∈ E(𝑋), if 𝑓1 ≤ 𝑓3 then 𝑓1 ∧ 𝑓2 ≤ 𝑓3.
(6) For every 𝑓1, 𝑓2, 𝑓3 ∈ E(𝑋), if 𝑓2 ≤ 𝑓3 then 𝑓1 ∧ 𝑓2 ≤ 𝑓3.
(7) For every 𝑓1, 𝑓2, 𝑓3 ∈ E(𝑋), if 𝑓3 ≤ 𝑓1 and 𝑓3 ≤ 𝑓2 then 𝑓3 ≤ 𝑓1 ∧ 𝑓2.

It should not be surprising to see free lattices here; as Dolan [2016, Chapter 3] observed, free

lattices can be used to model subtyping lattices with unions, intersections, and variables as well.

This allows us to generalize Foster et al. [1999]’s recipe for qualifying types. Instead of qualifying

types by elements of the qualifier lattice, we qualify types by elements of the free lattice generated
over that base qualifier lattice, and we support qualifier polymorphism explicitly with bounds,

following System F<:, instead of implicitly at prenex position with constraints, as Foster et al. [1999]

do.

2.5 System F<:Q

We are now ready to present our recipe by constructing System F<:Q, a qualified extension of System

F<: with support for type qualifiers, polymorphism over type qualifiers, as well as meets (𝑄 ∧ 𝑅)

and joins (𝑄 ∨𝑅) over qualifiers. We start by constructing a simplified version of System F<:Q which
models a free lattice over a two-point qualifier lattice to illustrate our recipe.

Assigning Qualifiers. In System F<:Q, we qualify types with the free lattice generated over a base

two-point lattice with ⊤ and ⊥, but provide no interpretation of ⊤ and ⊥ as System F<:Q is only a

base calculus.

Syntax. Figure 2 presents the syntax of System F<:Q, with additions over System F<: highlighted
in grey. Type qualifiers 𝑄 include not only ⊤ and ⊥ as in Foster et al. [1999]’s original system.

Here, in addition, we support qualifier variables 𝑌 , as well as meets and joins over qualifiers. Type

variables support polymorphism over unqualified types. To support qualifier polymorphism, we add

a new qualifier for-all form ∀(𝑌 <: 𝑄).𝑇 . Similarly, on the term-level, we add qualifier abstraction

Λ(𝑌 <: 𝑄)𝑃 .𝑡 and qualifier application 𝑠{{𝑄}}.

Values and Qualifiers. To ensure that qualifiers have some runtime semantics in our base calculus,

we tag values with a qualifier expression 𝑃 denoting the qualifier that value should be typed at

and we add support for asserting as well as upcasting qualifier tags, following Foster et al. [1999,
Section 2.2]. For example, the value _(𝑥 : Int)⊤𝑥 would represent the integer identity function

qualified at ⊤.
While System F<:Q does not provide a default tag for values, negative (or contravariant) qualifiers

like noexcept would inform a default qualifier tag choice of ⊤ – by default, functions are assumed

to throw – and positive (or covariant) qualifiers like const would inform a default qualifier tag

choice of ⊥ – by default, in mutable languages, values should be mutable. Put simply, the default

value tag should correspond to the default, omitted, qualifier.

Semantics. The evaluation rules of System F<:Q (defined in Figure 3) are largely unchanged from

System F<:. To support qualifier polymorphism, we add the rule (beta-Q) for reducing applications

of a qualifier abstraction to a type qualifier expression. Finally, to ensure that qualifiers have some

runtime semantics even in our base calculus, we add the rules (upqal) and (assert) for asserting

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:8 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

𝑠, 𝑡 ::= Terms
| _(𝑥)𝑃 .𝑡 term abstraction

| 𝑥 term variable

| 𝑠 (𝑡) application

| Λ(𝑋 <: 𝑆)𝑃 .𝑡 type abstraction

| Λ(𝑌 <: 𝑄)𝑃 .𝑡 qualifier abstraction

| 𝑠 [𝑆] type application

| 𝑠{{𝑄}} qualifier application

| upqual𝑄 𝑠 qualifier upcast

| assert𝑄 𝑠 qualifier assertion

Γ ::= Environment
| · empty

| Γ, 𝑥 : 𝑇 term binding

| Γ, 𝑋 <: 𝑆 type binding

| Γ, 𝑌 <: 𝑄 qualifier binding

𝑆 ::= Simple Types
| ⊤ top type

| 𝑇1 → 𝑇2 function type

| 𝑋 type variable

| ∀(𝑋 <: 𝑆).𝑇 for-all type

| ∀(𝑌 <: 𝑄).𝑇 qualifier for-all type

𝑇 ::= Qualified Types
| {𝑄} 𝑆 qualified type

𝑃,𝑄, 𝑅 ::= Qualifiers
| ⊤,⊥ Top and bottom

| 𝑌 Qualifier variables

| 𝑄 ∧ 𝑅 | 𝑄 ∨ 𝑅 Meets and joins

𝑣 ::= Values
| _(𝑥)𝑃 .𝑡
| Λ(𝑋 <: 𝑆)𝑃 .𝑡
| Λ(𝑌 <: 𝑄)𝑃 .𝑡

𝐶 ::= ConcreteQualifiers
| ⊤ or ⊥ two-point lattice elements

Lattice facts reminder: ⊥ ⊑ ⊥, ⊥ ⊑ ⊤, and
⊤ ⊑ ⊤. ⊤⊓𝐶 = 𝐶 , ⊤⊔𝐶 = ⊤, ⊥⊓𝐶 = ⊥, and
⊥ ⊔𝐶 = 𝐶 .

Fig. 2. The syntax of System F<:Q. Qualified differences to System F<: highlighted in grey .

and upcasting qualifier tags: they coerce qualifier expressions to concrete qualifiers when possible

and ensure that the concrete qualifiers are compatible before successfully reducing.

Subqualification. Next we show how simple subqualification extends from a extends from a lattice

inequality in a base lattice (like how noexcept <: throws) to a lattice inequality in a free lattice.

Figure 4 captures this free lattice structure of the qualifiers of System F<:Q with a subqualification
judgment Γ ⊢ 𝑄 <: 𝑅 to make precise the partial order between two lattice formulas in a free lattice,

though slightly modified to support upper bounds on variables. This basic structure should appear

familiar—it is a simplified subtyping lattice. It should not be surprising that this construction gives

rise to the free lattice, though we make this property explicit in supplementary material. One can

use this structure to deduce desirable subqualification judgments; for example, in an environment

Γ = [𝑋 <: 𝐴,𝑌 <: 𝐵,𝐴 <: ⊤, 𝐵 <: ⊤], we can show that 𝑋 ∨ 𝑌 <: 𝐴 ∨ 𝐵, using the following rule

applications.

𝑋 <: 𝐴 ∨ 𝐵 by (sq-join-intro-1)

𝑌 <: 𝐴 ∨ 𝐵 by (sq-join-intro-2)

𝑋 ∨ 𝑌 <: 𝐴 ∨ 𝐵 by (sq-join-elim)

Subtyping. System F<:Q inherits most of its rules for subtyping from System F<:, with two changes
made (Figure 5). The additional rule (sub-qall) handles subtyping for qualifier abstractions, and

rule (sub-qtype) handles subtyping for qualified types. A qualified type {𝑄1} 𝑆1 is a subtype of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:9

Evaluation for System F<:Q 𝑠 −→ 𝑡 and eval𝑄

(_(𝑥)𝑃 .𝑡) (𝑠) −→ 𝑡 [𝑥 ↦→ 𝑠] (beta-v)

(Λ(𝑋 <: 𝑆)𝑃 .𝑡) [𝑆 ′] −→ 𝑡 [𝑋 ↦→ 𝑆 ′] (beta-T)

(Λ(𝑌 <: 𝑄)𝑃 .𝑡){{𝑄 ′}} −→ 𝑡 [𝑌 ↦→ 𝑄 ′] (beta-Q)

𝑣 tagged with 𝑃 eval(𝑃) ⊑ eval(𝑄)

upqual𝑄 𝑣 −→ 𝑣 retagged with 𝑄
(upqal)

𝑣 tagged with 𝑃 eval(𝑃) ⊑ eval(𝑄)
assert 𝑃 𝑣 −→ 𝑣

(assert)

𝑠 −→ 𝑡

𝐸 [𝑠] −→ 𝐸 [𝑡]
(context)

𝐸 ::= Evaluation Context
| []
| 𝐸 (𝑡) | 𝑣 (𝐸)
| 𝐸 [𝑆] | 𝐸 [𝑄]
| upqual 𝑃 𝐸

| assert 𝑃 𝐸

eval(𝑃) ::= PartialQualifier Evaluation
| 𝐶 => 𝐶

| 𝑃 ∧ 𝑅 => eval(𝑃) ⊓ eval(𝑅)
| 𝑃 ∨ 𝑅 => eval(𝑃) ⊔ eval(𝑅)
| _ => nothing, otherwise.

Fig. 3. Reduction rules for System F<:Q

Subqualification for System F<:Q Γ ⊢ 𝑄 <: 𝑅

Γ ⊢ 𝑄 <: ⊤ (sq-top)

Γ ⊢ ⊥ <: 𝑄 (sq-bot)

Γ ⊢ 𝑄 <: 𝑅1

Γ ⊢ 𝑄 <: 𝑅1 ∨ 𝑅2
(sq-join-intro-1)

Γ ⊢ 𝑄 <: 𝑅2

Γ ⊢ 𝑄 <: 𝑅1 ∨ 𝑅2
(sq-join-intro-2)

Γ ⊢ 𝑅1 <: 𝑄 Γ ⊢ 𝑅2 <: 𝑄
Γ ⊢ 𝑅1 ∨ 𝑅2 <: 𝑄

(sq-join-elim)

Γ ⊢ 𝑅1 <: 𝑄
Γ ⊢ 𝑅1 ∧ 𝑅2 <: 𝑄

(sq-meet-elim-1)

Γ ⊢ 𝑅2 <: 𝑄
Γ ⊢ 𝑅1 ∧ 𝑅2 <: 𝑄

(sq-meet-elim-2)

Γ ⊢ 𝑄 <: 𝑅1 Γ ⊢ 𝑄 <: 𝑅2

Γ ⊢ 𝑄 <: 𝑅1 ∧ 𝑅2
(sq-meet-intro)

𝑌 <: 𝑄 ∈ Γ Γ ⊢ 𝑄 <: 𝑅

Γ ⊢ 𝑌 <: 𝑅
(sq-var)

𝑌 <: 𝑄 ∈ Γ

Γ ⊢ 𝑌 <: 𝑌
(sq-refl-var)

Fig. 4. Subqualification rules of System F<:Q.

another qualified type {𝑄2} 𝑆2 only if the qualifiers are in a subqualification relationship 𝑄1 <: 𝑄2,

and the simple types are as well: 𝑆1 <: 𝑆2.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:10 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

Subtyping for System F<:Q Γ ⊢ 𝑆1 <: 𝑆1 and Γ ⊢ 𝑇1 <: 𝑇2

Γ ⊢ 𝑆 <: ⊤ (sub-top)

𝑋 ∈ Γ

Γ ⊢ 𝑋 <: 𝑋
(sub-refl-svar)

𝑋 <: 𝑆1 ∈ Γ Γ ⊢ 𝑆1 <: 𝑆2
Γ ⊢ 𝑋 <: 𝑆2

(sub-svar)

Γ ⊢ 𝑄1 <: 𝑄2 Γ ⊢ 𝑆1 <: 𝑆2
Γ ⊢ {𝑄1} 𝑆1 <: {𝑄2} 𝑆2

(sub-qtype)

Γ ⊢ 𝑇2 <: 𝑇1 Γ ⊢ 𝑇3 <: 𝑇4
Γ ⊢ 𝑇1 → 𝑇3 <: 𝑇2 → 𝑇4

(sub-arrow)

Γ ⊢ 𝑆2 <: 𝑆1 Γ, 𝑋 <: 𝑆2 ⊢ 𝑇1 <: 𝑇2
Γ ⊢ ∀(𝑋 <: 𝑆1).𝑇1 <: ∀(𝑋 <: 𝑆2).𝑇2

(sub-all)

Γ ⊢ 𝑄2 <: 𝑄1 Γ, 𝑌 <: 𝑄2 ⊢ 𝑇1 <: 𝑇2
Γ ⊢ ∀(𝑌 <: 𝑄1).𝑇1 <: ∀(𝑌 <: 𝑄2).𝑇2

(sub-qall)

Fig. 5. Subtyping rules of System F<:Q.

Typing for System F<:Q Γ ⊢ 𝑡 : 𝑇

𝑥 : 𝑇 ∈ Γ

Γ ⊢ 𝑥 : 𝑇
(var)

Γ, 𝑥 : 𝑇1 ⊢ 𝑡 : 𝑇2
Γ ⊢ _(𝑥)𝑃 .𝑡 : { 𝑃 } 𝑇1 → 𝑇2

(abs)

Γ, 𝑋 <: 𝑆 ⊢ 𝑡 : 𝑇
Γ ⊢ Λ(𝑋 <: 𝑆)𝑃 .𝑡 : { 𝑃 } ∀(𝑋 <: 𝑆).𝑇

(t-abs)

Γ, 𝑋 <: 𝑆 ⊢ 𝑡 : 𝑇
Γ ⊢ Λ(𝑌 <: 𝑄)𝑃 .𝑡 : { 𝑃 } ∀(𝑌 <: 𝑄).𝑇

(q-abs)

Γ ⊢ 𝑡 : {𝑄} 𝑆 Γ ⊢ 𝑄 <: 𝑃

Γ ⊢ assert 𝑃 𝑡 : {𝑄} 𝑆
(typ-assert)

Γ ⊢ 𝑡 : {𝑄} 𝑇1 → 𝑇2 Γ ⊢ 𝑠 : 𝑇1
Γ ⊢ 𝑡 (𝑠) : 𝑇2

(app)

Γ ⊢ 𝑡 : {𝑄} ∀(𝑋 <: 𝑆).𝑇 Γ ⊢ 𝑆 ′ <: 𝑆
Γ ⊢ 𝑡 [𝑆 ′] : 𝑇 [𝑋 ↦→ 𝑆 ′]

(t-app)

Γ ⊢ 𝑡 : {𝑅} ∀(𝑌 <: 𝑄).𝑇 Γ ⊢ 𝑄 ′ <: 𝑄

Γ ⊢ 𝑡{{𝑄 ′}} : 𝑇 [𝑌 ↦→ 𝑄 ′]
(q-app)

Γ ⊢ 𝑠 : 𝑇1 Γ ⊢ 𝑇1 <: 𝑇2
Γ ⊢ 𝑠 : 𝑇2

(sub)

Γ ⊢ 𝑡 : {𝑄} 𝑆 Γ ⊢ 𝑄 <: 𝑃

Γ ⊢ upqual 𝑃 𝑡 : {𝑃} 𝑆
(typ-upqal)

Fig. 6. Typing rules for System F<:Q

All other rules remain unchanged, except that rules (sub-arrow), (sub-all), and (sub-qall) are

updated to operate on qualified types 𝑇 , instead of simple types 𝑆 , wherever they are changed in

the source syntax (see Figure 2) to use qualified types 𝑇 instead of simple types 𝑆 .

Typing. Finally, Figure 6 defines the typing rules of System F<:Q. The typing judgment assigns

qualified types 𝑇 to expressions, and can be viewed as Γ ⊢ 𝑡 : {𝑄} 𝑆 . As System F<:Q does not
assign an interpretation to qualifiers, the introduction rules for typing values, (abs), (t-abs), and

(q-abs), simply introduce qualifiers by typing values with their tagged qualifier, and the elimination

rules remain unmodified. The only (new) elimination rules which deal with qualifiers are the new

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:11

𝑃,𝑄, 𝑅 ::= Qualifiers in extended System F<:Q
| 𝑙 Base lattice elements 𝑙 ∈ 𝐿

| 𝑌 Qualifier variables

| 𝑄 ∧ 𝑅 | 𝑄 ∨ 𝑅 Meets and joins

𝐶 ::= ConcreteQualifiers
| 𝑙 Base lattice elements 𝑙 ∈ 𝐿

Fig. 7. The syntax of System F<:Q extended over a bounded lattice L. Differences to System F<:Q highlighted
in grey .

rules (typ-assert) and (typ-upqal), which check that their argument is properly qualified. We

additionally add (q-abs) and (q-app) to support qualifier polymorphism. Besides these changes, the

typing rules immediately carry over from System F<:.

2.6 Metatheory
System F<:Q satisfies the standard progress and preservation theorems.

Theorem 2.4 (Preservation). Suppose Γ ⊢ 𝑠 : 𝑇 , and 𝑠 −→ 𝑡 . Then Γ ⊢ 𝑡 : 𝑇 as well.

Theorem 2.5 (Progress). Suppose ∅ ⊢ 𝑠 : 𝑇 . Then either 𝑠 is a value, or 𝑠 −→ 𝑡 for some term 𝑡 .

While System F<:Q does not place any interpretation on qualifiers outside of upqual and assert,
such a system can already be useful. For one, the static type of a value will always be greater than

the tag annotated on it and this correspondence is preserved through reduction by preservation.

This property can already be used to enforce safety constraints. For example, as Foster et al. [1999]

point out, one can use a negative type qualifier sorted to distinguish between sorted and unsorted

lists. By default, most lists would be tagged at ⊤, marking them as unsorted lists. A function like

merge, though, which merges two sorted lists into a third sorted list, would expect two ⊥-tagged
lists, assert that they are actually⊥-tagged, and produce a⊥-tagged list as well. While this scheme

does not ensure that all ⊥-tagged lists are sorted, so long as programmers are careful to ensure

that they never construct explicitly ⊥-tagged unsorted lists, they can ensure that functions which

expect sorted lists are actually passed sorted lists.

2.7 GeneralizingQualifiers to General Lattices
Qualifiers often come in more complicated lattices: for example, protection rings [Karger and Herbert
1984] induce a countable lattice, and combinations of binary qualifiers induce a product lattice.

Now, we show how we can tweak the recipe used to construct System F<:Q for two-point lattices to
support general (countable, bounded) qualifier lattices L as well.

Syntax. The syntax changes needed to support this construction are listed in Figure 7. Lattice

elements are now generalized from ⊤ and ⊥ to elements 𝑙 from our base lattice L, but as L is

bounded, note that we still have distinguished elements ⊤ and ⊥ in L.

Subqualification. The subqualification changes needed to support this construction are listed

in Figure 8. These are exactly the rules needed to support the free lattice construction over any

arbitrary countable bounded lattice. Rule (sq-lift) simply lifts the lattice order ⊑ that L is equipped

with up to the free lattice order defined by the subqualification lattice. Rules (sq-eval-elim) and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:12 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

Subqualification for System F<:Q over a lattice L Γ ⊢ 𝑄 <: 𝑅

𝑙1, 𝑙2 ∈ L 𝑙1 ⊑ 𝑙2

Γ ⊢ 𝑙1 <: 𝑙2
(sq-lift)

Γ ⊢ 𝑄 <: 𝑄 ′ Γ ⊢ 𝑙 = eval𝑄 ′ Γ ⊢ 𝑙 <: 𝑅
Γ ⊢ 𝑄 <: 𝑅

(sq-eval-elim)

Γ ⊢ 𝑄 <: 𝑙 Γ ⊢ 𝑙 = eval𝑄 ′ Γ ⊢ 𝑄 ′ <: 𝑅

Γ ⊢ 𝑄 <: 𝑅
(sq-eval-intro)

Fig. 8. Extended sub-qualification rules for System F<:Q.

(sq-eval-intro) are a little more complicated, though, but are necessary in order to relate textual
meets and joins of elements of the base lattice L, like 𝑙1 ∨ 𝑙2, to their actual meets and joins in

the qualifier lattice, 𝑙1 ⊔ 𝑙2. We would expect that these two terms would be equivalent in the

subqualification lattice; namely, that Γ ⊢ 𝑙1 ∨ 𝑙2 <: 𝑙1 ⊔ 𝑙2 and that Γ ⊢ 𝑙1 ⊔ 𝑙2 <: 𝑙1 ∨ 𝑙2. However,

without the two evaluation rules (sq-eval-elim) and (sq-eval-intro), we would only be able to

conclude that Γ ⊢ 𝑙1 ∨ 𝑙2 <: 𝑙1 ⊔ 𝑙2, but not the other desired inequality Γ ⊢ 𝑙1 ⊔ 𝑙2 <: 𝑙1 ∨ 𝑙2.

To discharge this equivalence, (sq-eval-elim) and (sq-eval-intro) use eval to simplify qualifier

expressions. Again, it should not be surprising that this gives rise to the free lattice of extensions

of L, though we make this precise in the supplementary material.

Soundness. Like simple System F<:Q, System F<:Q extended over a bounded lattice L also satisfies

the standard soundness theorems:

Theorem 2.6 (Preservation for Extended System F<:Q). Suppose Γ ⊢ 𝑠 : 𝑇 , and 𝑠 −→ 𝑡 . Then
Γ ⊢ 𝑡 : 𝑇 as well.

Theorem 2.7 (Progress for Extended System F<:Q). Suppose ∅ ⊢ 𝑠 : 𝑇 . Then either 𝑠 is a value,
or 𝑠 −→ 𝑡 for some term 𝑡 .

3 APPLICATIONS
Having introduced our design recipe by constructing System F<:Q as a qualified extension of System

F<:, we now study how our subqualification and polymorphism recipe can be reused in three

practical qualifier systems. For brevity, we will base our qualifier systems on System F<:Q, as it
already provides rules and semantics for typing, subqualification and qualifier polymorphism,

which we modify below.

While each system has application-specific semantics tied to the interpretations of the qualifiers

we are now assigning, all three systems share the same common higher-rank polymorphism and

expressiveness at the qualifier level using free lattices as base System F<:Q; in essence, expressiveness
and polymorphism come for free from base System F<:Q.

3.1 Reference Immutability
We start by examining one well-studied qualifier system, that of reference immutability [Huang

et al. 2012; Potanin et al. 2013; Tschantz and Ernst 2005]. In this setting, each (heap) reference can

be either mutable or immutable. An immutable reference cannot be used to mutate the value or any

other values transitively reached from it, so a value read through a readonly-qualified compound

object or reference is itself readonly as well.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:13

case class Box[X](var v: X)

def good(x : Box[Int]) = { x.v = 5 }

def bad1(y : readonly Box[Int]) = { y.v = 7 }

def bad2(y : readonly Box[Cell[Int]]) = { y.v.v = 5 }

def access(z: readonly Box[Box[Int]]): readonly Box[Int] = { z.v }

For example, a reference immutability system would deem the function good to be well-typed

because it mutates the value of a Box through a mutable reference x. However, it would disallow

bad1 because it mutates the box through a read-only reference y. Moreover, it would also disallow

bad2 because it mutates the box referenced indirectly through the read-only reference y. This
can also be seen by looking at the access function, which returns a read-only reference of type

@readonly Box[Int] to the value of the box referenced by z.
Mutable and read-only references can coexist for the same value, so a read-only reference does

not itself guarantee that the value will not change through some other, mutable reference. This is in

contrast to the stronger guarantee of object immutability, which applies to values, and ensures that

a particular value does not change through any of the references to it [Potanin et al. 2013; Zibin

et al. 2007]. So, for example, we could create a cell with both a mutable and a readonly reference to
it, mutate the cell through the mutable reference, and read the updated value through the readonly
reference.

val mutable_ref = Box (10)

val readonly_ref: readonly Box[Int] = mutable_ref

good(mutable_ref)

println(readonly_ref.v) // prints 5

Reference immutability systems have long been studied in various contexts [Dort and Lhoták

2020; Gordon et al. 2012; Huang et al. 2012; Lee and Lhoták 2023; Tschantz and Ernst 2005; Zibin

et al. 2007]. Here, we show that we can reuse our recipe to model reference immutability in a setting

with higher rank polymorphism and subtyping over both qualifiers and ground types, in a calculus

System F<:QM.

Assigning Qualifiers. We need to define how qualifiers mutable and readonly are assigned to ⊤
and ⊥ in System F<:QM. Since a mutable reference can always be used where a readonly reference

is expected, we assign mutable to ⊥ and readonly to ⊤. This is reflected in Figure 9.

Syntax and Evaluation. Now we need to design syntax and reduction rules for references and

immutable references. We add support for references via box forms and we add rules for introducing

and eliminating boxes. A box reduces at runtime to some location 𝑙 in a store 𝜎 that maps locations

to values. Reduction now takes place over pairs of terms and stores ⟨𝑡, 𝜎⟩:

⟨set-box! (box⊥ 10) 5, []⟩ −→ ⟨set-box! (box⊥ 0x0001) 5, [0x0001 : 10]⟩
−→ ⟨10, [0x0001 : 5]⟩

To distinguish between mutable and immutable references (boxes), we reuse the qualifiers tagged

on values. Values with tags 𝑃 that eval to ⊥ are mutable, whereas values with tags 𝑃 that otherwise

evaluate to ⊤ are read-only. Writing to a box requires that it be mutable, or tagged at ⊥. So the

following term gets stuck.

⟨set-box! (box⊤ 10) 5, []⟩ −→ ⟨set-box! (box⊤ 0x0001) 5, [0x0001 : 10]⟩
−→ gets stuck.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:14 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

𝑠, 𝑡 ::= Terms
. . .

| box𝑃 𝑡 reference cell

| unbox 𝑠 deferencing

| set-box! 𝑠 𝑡 reference update

𝑆 ::= Types
. . .

| box 𝑆 reference type

𝑃,𝑄, 𝑅 ::= Qualifiers
. . . as before, except:

| readonly as ⊤
| mutable as ⊥

𝑙 Location

𝑠, 𝑡 ::= Runtime Terms
| box𝑃 𝑙 runtime reference

𝑣 ::= Runtime Values
. . .

| box𝑃 𝑙

𝜎 ::= Store
| · empty

| 𝜎, 𝑙 : 𝑣 cell 𝑙 with value 𝑣

Σ ::= Store Environment
| · empty

| 𝜎, 𝑙 : 𝑇 cell binding

Fig. 9. The syntax of System F<:QM.

Additional Evaluation Rules for System F<:QM ⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎 ′⟩

𝑙 ∉ 𝜎

⟨box𝑃 𝑣, 𝜎⟩ −→ ⟨box𝑃 𝑙, (𝜎, 𝑙 : 𝑣)⟩
(ref-store)

𝑙 : 𝑣 ∈ 𝜎 𝑣 tagged with 𝑄

⟨unbox box𝑃 𝑙, 𝜎⟩ −→ ⟨𝑣 retagged at 𝑃 ∨𝑄, 𝜎⟩
(deref)

𝑙 : 𝑣 ∈ 𝜎 eval(𝑃) ⊑ ⊥
⟨set-box! (box𝑃 𝑙) 𝑣 ′, 𝜎⟩ ↦→ ⟨𝑣, 𝜎 [𝑙 ↦→ 𝑣 ′]⟩

(write-ref)

⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎′⟩
⟨𝐸 [𝑠], 𝜎⟩ −→ ⟨𝐸 [𝑡], 𝜎′⟩

(context)

𝐸 ::= . . . Evaluation Context
| box𝑃 𝐸
| unbox 𝐸
| set-box! 𝐸 𝑡 | set-box! 𝑣 𝐸

Fig. 10. Reduction rules for System F<:QM

One can explicitly mark a value immutable by upqual-ing to ⊤. The elimination form for reading

from a reference, (deref), ensures that a value read from a reference tagged readonly, or at ⊤,
remains readonly. This is reflected in the updated operational semantics (Figure 10).

Typing. We now need to define new typing rules for reference forms and to possibly adjust

existing typing rules to account for our new runtime interpretation of qualifiers. For this system, we

only need to add typing rules, as shown in Figure 11. To ensure immutability safety, the standard

reference update elimination form (ref-update) is augmented to check that a reference can only

be written to if and only if it can be typed as mutable box . Finally, the standard reference read

elimination form (ref-elim) is augmented to enforce that the mutability of the value read from

a reference is joined with the mutability of the reference itself to ensure transitive immutability

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:15

Additional Typing and Runtime Typing for System F<:QM Γ | Σ ⊢ 𝑡 : 𝑇 and Γ | Σ ⊢ 𝜎

Γ | Σ ⊢ 𝑡 : 𝑇
Γ | Σ ⊢ box𝑃 𝑡 : {𝑃} box𝑇

(ref-intro)

𝑙 : 𝑇 ∈ Σ

Γ | Σ ⊢ box𝑃 𝑙 : {𝑃} box𝑇
(runtime-ref-intro)

Γ | Σ ⊢ 𝑡 : {𝑄1} box{𝑄2} 𝑆
Γ | Σ ⊢ unbox 𝑡 : { 𝑄1 ∨𝑄2 } 𝑆

(ref-elim)

Γ ⊢ 𝑠 : { mutable } box𝑇 Γ ⊢ 𝑡 : 𝑇
Γ ⊢ set-box! 𝑠 𝑡 : 𝑇

(ref-update)

𝑑𝑜𝑚(𝜎) = 𝑑𝑜𝑚(Σ) ∀𝑙 ∈ 𝑑𝑜𝑚(Σ), Γ | Σ ⊢ 𝜎 (𝑙) : Σ(𝑙)
Γ | Σ ⊢ 𝜎

(store)

Fig. 11. Typing rules for System F<:QM; notable changes highlighted in grey.

safety. Other than qualifiers, our construction is completely standard; we merely add a store 𝜎 and

a runtime store environment Σ mapping store locations to types.

Metatheory. We can prove the standard soundness theorems without any special difficulty:

Theorem 3.1 (Preservation of System F<:QM). Suppose ⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎 ′⟩. If Γ | Σ ⊢ 𝜎 and
Γ | Σ ⊢ 𝑠 : 𝑇 for some type 𝑇 , then there is some environment extension Σ′ of Σ such that Γ | Σ′ ⊢ 𝜎 ′

and Γ | Σ′ ⊢ 𝑡 : 𝑇 .

Theorem 3.2 (Progress for System F<:QM). Suppose ∅ | Σ ⊢ 𝜎 and ∅ | Σ ⊢ 𝑠 : 𝑇 . Then either 𝑠 is
a value or there is some 𝑡 and 𝜎 ′ such that ⟨𝑠, 𝜎⟩ −→ ⟨𝑡, 𝜎 ′⟩.

With only progress and preservation, we can already state something meaningful about the im-

mutability safety of System F<:QM: we know that well-typed programs will not get stuck trying to

write to a ⊥-tagged reference.

Moreover, the typing rules, in particular (ref-elim), give us our desired transitive immutability

safety as well; values read from a ⊤-tagged value will remain ⊤-tagged and therefore read-only as

well. Finally, as qualifier tags only affect reduction by blocking reduction (that is, getting stuck), we

almost directly recover full immutability safety as well for free, by noting that references typed (by

subtyping) at readonly can be re-tagged at readonly as well without affecting reduction, assuming

the original program was well-typed.

3.2 Function Colouring
Function colouring [Nystrom 2015] is another qualifier system. In this setting, functions are

qualified with a kind that indicates a colour for each function, and there are restrictions on which

other functions a function can call depending on the colours of the callee and caller. For example,

noexcept and throws form a function colouring system—functions qualified noexcept can only

call functions qualified noexcept. Another instantiation of this problem is the use of the qualifiers

sync and async in asynchronous programming. async-qualified functions may call all functions

but sync-qualified functions may only call other sync-qualified functions.

Asynchronous functions are often used in languages like JavaScript to interact with external

resources that may take to respond. The program should not block waiting on a response. For

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:16 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

example, we may have a function fetch which fetches the contents of a web page from a server as

a string.

def fetch(url: String): String = ??? // has type: (String => String) async

Function fetch is asynchronous as fetching a webpage takes time. So when we call fetch in

some function, we suspend and give up control flow to other parts of our program until the response

is ready, at which point control flow transfers back to our function.

val review = fetch("https :// oopsla24.hotcrp.com/paper /73/")

// sends request to get review (F5!)

// transfers control flow to rest of program.

println(review)

// when review is ready , control flow transfers

// back here and we print it.

Polymorphism with function colours is known to be painful [Nystrom 2015]. Consider a higher-

order function map:

def map[X, Y](l: List[X], f: (X => Y)) = ???

What should its colour be? Well, if we only called map with synchronous functions, like increment,
then it follows that map itself can be synchronous, as it performs no operations which can block

our program.

def increment(i: Int) = i + 1

map([1, 2, 3], increment) // returns [2, 3, 4], doesn 't block.

However, what if we called map on fetch, for example, to fetch multiple websites?

val follow = ["https ://plg.uwaterloo.ca/~ e45lee", "https ://plg.uwaterloo.ca/~

olhotak", "https ://b-studios.de"]

val pages = map(follow , fetch) // returns contents of web pages; can block.

Here, map calls an asynchronous function, namely fetch, to fetch a list of web sites. This operation

is blocking, so it follows that map in this context has to be marked async as it performs operations

which can block our program. So what is the colour of map?
The answer is that the colour of a function like map depends on the function f it is applying.

Without a mechanism to express this dependency, such as colour polymorphism, functions like

map need to be implemented twice—once for an async-qualified f, and once for a sync-qualified f.

def map[X, Y, Q](l: List[X], f: Q (X => Y)) : Y = ???

// has type [X, Y, Q] Q ((List[X], Q (X => Y)) => Y)

Moreover, function colouring requires a mechanism for mixing colours! Consider function

composition:

def compose[A, B, C](f: A => B, g: B => C) = (x) => g(f(x))

The colour of the result of compose needs to be the join of the colours of f and g. If either f or g
are asynchronous, then the result of compose is as well, but if both f and g are synchronous, then

so should be the result of composing them.

def compose[A, B, C, Q, R](f: Q (A => B), g: R (B => C)): {Q | R} (A => C) =

(x) => g(f(x))

We now show how our recipe can be used to construct System F<:QA, a calculus that enforces
these restrictions.

Assigning Qualifiers. Since a synchronous function can be called anywhere that an asynchronous

function could be, we assign the ⊤ qualifier to async and the ⊥ qualifier to sync.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:17

𝑃,𝑄, 𝑅 ::= Qualifiers
. . . as before, except:

| async (as ⊤) async qualifier

| sync (as ⊥) sync qualifier

^ ::= Evaluation Context
| []
| 𝑓 :: ^

𝑓 ::= Evaluation Frames
| barrier𝐶 barrier

| arg 𝑡 argument

| app 𝑣 application

| targ𝑇 type application

| qarg𝑄 qualifier application

Fig. 12. The syntax of System F<:QA.

Evaluation for System F<:QA ⟨𝑐, ^⟩ −→ ⟨𝑐′, ^′⟩

⟨𝑠 (𝑡), ^ ⟩ −→ ⟨𝑠, arg 𝑡 :: ^ ⟩ (cong-app)

⟨𝑣, arg 𝑡 :: ^ ⟩ −→ ⟨𝑡, app 𝑣 :: ^ ⟩ (cong-arg)

⟨𝑠 [𝑆], ^ ⟩ −→ ⟨𝑠, targ𝑆 :: ^ ⟩ (cong-tapp)

⟨𝑠 {{𝑄 }}, ^ ⟩ −→ ⟨𝑠, qarg𝑄 :: ^ ⟩ (cong-qapp)

⟨𝑣, barrier𝐶 :: ^ ⟩ −→ ⟨𝑣,^ ⟩ (break-barrier)

𝐶 ≤ 𝐶𝑖 for all barrier 𝐶𝑖 frames on ^ eval𝑃 = 𝐶

⟨𝑣, app_ (𝑥)𝑃 .𝑡 :: ^ ⟩ −→ ⟨𝑡 [𝑥 ↦→ 𝑣], barrier𝐶 :: ^ ⟩
(reduce-app)

𝐶 ≤ 𝐶𝑖 for all barrier 𝐶𝑖 frames on ^ eval𝑃 = 𝐶

⟨Λ(𝑋 <: 𝑆)𝑃 .𝑡, targ𝑆 ′ :: ^ ⟩ −→ ⟨𝑡 [𝑋 ↦→ 𝑆 ′], barrier𝐶 :: ^ ⟩
(reduce-tapp)

𝐶 ≤ 𝐶𝑖 for all barrier 𝐶𝑖 frames on ^ eval𝑃 = 𝐶

⟨Λ(𝑌 <:𝑄)𝑃 .𝑡, qarg𝑄 ′
:: ^ ⟩ −→ ⟨𝑡 [𝑌 ↦→ 𝑄 ′], barrier𝐶 :: ^ ⟩

(reduce-qapp)

Fig. 13. Operational Semantics (CK-style) for System F<:QA

Syntax. Figure 12 presents the modified syntax of System F<:QA. To keep track of the synchronicity
that a function term should run in, we reuse the tags already present in values. An example of an

asynchronous function term is _(𝑥)async. 𝑥 , and an example of a function that is polymorphic in

its qualifier is Λ(𝑌 <: sync)async._(𝑓)𝑌 . 𝑓 (1), describing a function that should run in the same

synchronicity context as its argument 𝑓 .

Evaluation. To model synchronicity safety, Figure 13 describes the operational semantics of

System F<:QA using Felleisen and Friedman [1987]-style CK semantics, extended with special barrier
frames installed on the stack denoting the colour of the function that was called. When a function

is called, we place a barrier with the evaluated colour of the function itself; so a term like

⟨1, app _(𝑥)⊥ .𝑥 :: ^⟩ −→ ⟨1, barrier⊥ :: ^⟩
placing a barrier marking a synchronus function on the stack.

Barriers are used to ensure that functions that are called are compatible with the rest of a stack;

namely, an asynchronous function can be called only if there are no barriers on the stack marked

synchronous. So a call that would place an asynchronous function above a synchronous function

on the stack:

⟨(_(𝑥)⊤.𝑡) 𝑣, barrier⊥⟩ −→ ⟨_(𝑥)⊤ .𝑡), arg 𝑣 :: barrier⊥⟩
−→ ⟨𝑣, app _(𝑥)⊤ .𝑡 :: barrier⊥⟩
−→ gets stuck.

The other evaluation contexts are standard.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:18 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

Typing for System F<:QA Γ | 𝑅 ⊢ 𝑠 : 𝑇

𝑥 : 𝑇 ∈ Γ

Γ | 𝑅 ⊢ 𝑥 : 𝑇
(A-var)

Γ, 𝑥 : 𝑇1 | 𝑃 ⊢ 𝑡 : 𝑇2

Γ | sync ⊢ _(𝑥)𝑃 .𝑡 : {𝑃} 𝑇1 → 𝑇2

(A-abs)

Γ, 𝑋 <: 𝑆 | 𝑃 ⊢ 𝑡 : 𝑇

Γ | sync ⊢ Λ(𝑋 <: 𝑆)𝑃 .𝑡 : {𝑃} ∀(𝑋 <: 𝑆) .𝑇
(A-t-abs)

Γ, 𝑌 <: 𝑄 | 𝑃 ⊢ 𝑡 : 𝑇

Γ | sync ⊢ Λ(𝑌 <: 𝑄)𝑃 .𝑡 : {𝑃} ∀(𝑌 <: 𝑄) .𝑇
(A-q-abs)

Γ | 𝑅 ⊢ 𝑡 : { 𝑅 } 𝑇1 → 𝑇2 Γ ⊢ 𝑠 : 𝑇1

Γ | 𝑅 ⊢ 𝑡 (𝑠) : 𝑇2
(A-app)

Γ | 𝑅 ⊢ 𝑡 : { 𝑅 } ∀(𝑋 <: 𝑆) .𝑇 Γ ⊢ 𝑆 ′ <: 𝑆

Γ | 𝑅 ⊢ 𝑡 [𝑆 ′] : 𝑇 [𝑋 ↦→ 𝑆 ′]
(A-t-app)

Γ | 𝑅 ⊢ 𝑡 : { 𝑅 } ∀(𝑌 <: 𝑄) .𝑇 Γ ⊢ 𝑄 ′ <: 𝑄

Γ | 𝑅 ⊢ 𝑡{{𝑄 ′}} : 𝑇 [𝑌 ↦→ 𝑄 ′]
(A-q-app)

Γ | 𝑅 ⊢ 𝑠 : 𝑇1 Γ ⊢ 𝑇1 <: 𝑇2
Γ | 𝑅 ⊢ 𝑠 : 𝑇2

(A-sub)

Γ | 𝑅 ⊢ 𝑠 : 𝑇1 Γ ⊢ 𝑅 <: 𝑄

Γ | 𝑄 ⊢ 𝑠 : 𝑇2
(A-sub-eff)

Fig. 14. Typing rules for System F<:QA

Typing. To guarantee soundness, Figure 14 endows the typing rules of System F<:QA with modified

rules for keeping track of the synchronicity context that a function needs. We extend the typing

rules with a colour context 𝑅 to keep track of the synchronicity of the functions being called.

This colour context 𝑅 is simply a qualifier expression, and is introduced by the introduction rules

for typing abstractions by lifting the qualifier tagged on those abstractions – see rules (A-abs),

(A-t-abs), and (A-q-abs). As creating an abstraction is effect free, the introduction forms (A-abs),

(A-t-abs), and (A-q-abs) can run in any colour context, in particular, at sync or ⊥.
To ensure safety when applying functions in the elimination form (A-app), we check that the

colour context is compatible with the type of the function being called; subsumption in (A-sub-eff)

allows functions to run if the qualifiers do not exactly match but when the qualifier on the function

is subqualified by the colour context. The typing rules outside of manipulating the context 𝑅 remain

otherwise unchanged.

Metatheory. With all this, we can state and prove progress and preservation for System F<:QA.

Theorem 3.3 (Progress of System F<:QA). Suppose ⟨𝑐, ^⟩ is a well-typed machine configuration.
Then either 𝑐 is a value and 𝑘 is the empty continuation, or there is a machine state ⟨𝑐′, ^′⟩ that it
steps to.

Theorem 3.4 (Preservation of System F<:QA). Suppose ⟨𝑐, ^⟩ is a well-typed machine configura-
tion. Then if it steps to another configuration ⟨𝑐′, ^′⟩, that configuration is also well-typed.

Note that progress and preservation guarantee meaningful safety properties about System F<:QA:
namely that an asynchronous function is never called above a synchronous function during evalua-

tion, as such a call would get stuck, by (reduce-app).

Observations. System F<:QA can be used to model function colouring with other qualifiers as

well; for example, we could model colours noexcept and throws by assigning noexcept to ⊥ and

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:19

throws to ⊤; (reduce-app) would ensure that a function which could throw cannot be called if

any function on the call stack is qualified at noexcept. More interestingly, System F<:QA could be

viewed as a simple effect system; the synchronicity context 𝑅 can be seen as the effect of a term! We

discuss this curious connection between qualifiers and effects in Section 7.3.

3.3 Tracking Capture
Finally, our design recipe can be remixed to construct a qualifier system to qualify values based on

what they capture. Some base values are meaningful and should be tracked, and other values are

forgettable.

Motivation. One application of such a system is the effects-as-capabilities discipline [Dennis and
Van Horn 1966], which enables reasoning about which code can perform side effects by simply

tracking capabilities, special values that grant the holder the ability to perform side effects, such as

the ability to perform I/O or the ability to throw an exception.

What to track? Suppose, for example, that we have a base capability named pandora, which
allows its holder to produce arbitrary values. Such a precious value really ought to be tracked and

not forgotten, as in the hands of the wrong user, it can perform dangerous side effects!

val pandora : {tracked} [A] (Unit => A) = ???

However, it is not only pandora itself that is dangerous. Actors that capture pandora can themselves

cause dangerous side effects. For example, some values should never be generated [Aaronson 2002]:

def takeOverTheWorld (): Unit = {

val powerful_proof = pandora[P_equals_NP_proof]()

powerful_proof.use()

} // pandora is captured by takeOverTheWorld.

In general, values that capture meaningful values—capabilities—become meaningful themselves,

since they can perform side effects, so they should also be tracked. Now, while it is clear that
pandora and takeOverTheWorld are both dangerous, they are dangerous for different reasons:

pandora because it intrinsically is and takeOverTheWorld because it captures pandora.

Distinguishing Capabilities. In practical applications, we may wish to distinguish between differ-

ent effects, modelled by different capabilities. For example, we may wish to reason about a more

pedestrian side effect – printing – separately from the great evil that pandora can perform. It is

reasonable to expect that we can print in more contexts than we can use the pandora.

val print : {tracked} String => Unit = ???

def helloWorld () = print("Hello␣World!") // tracked as it captures print

def runCodeThatCanPrint(f: ??? () => Unit) = f()

runCodeThatCanPrint(helloWorld) // OK

runCodeThatCanPrint(takeOverTheWorld) // Should be forbidden

In this example, function runCodeThatCanPrint only accepts thunks that print as a side effect.

What type annotation should we give to its argument f? In particular, what qualifier should we

use to fill in the blank? It should not be tracked, as otherwise we could pass takeOverTheWorld
to runCodeThatCanPrint – an operation which should be disallowed. Instead we would like to

fill that blank with print; to denote that runCodeThatCanPrint can accept any thunk which is

no more dangerous than print itself. Figure 15 summarizes the different variables in the above

examples and the qualifiers we would like to assign to their types.

As Boruch-Gruszecki et al. [2023]; Odersky et al. [2021] show, such a capture tracking system

could be used to guarantee desirable and important safety invariants. They model capture tracking

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:20 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

Term Qualifier Reason
pandora tracked As pandora is a base capability.

print tracked As print is a base capability.

takeOverTheWorld pandora
As takeOverTheWorld is no more danger-

ous than pandora.

helloWorld print
As helloWorld is no more dangerous than

print.

Fig. 15. Qualifier assignments in Capture Tracking

𝑠, 𝑡 ::= Terms
. . .

| 𝑠{{𝑄}}(𝑡) term application

𝑆 ::= Types
. . .

| (𝑥 : 𝑇1) → 𝑇2 function type

𝑃,𝑄, 𝑅 ::= Qualifiers
. . . as before, except:

| 𝑥 term variables

| tracked (as ⊤) tracked values

Evaluation: 𝑠 −→ 𝑡

(_(𝑥)𝑃 .𝑡){{ 𝑄 }}(𝑠) −→
𝑡 [𝑥 ↦→type 𝑄] [𝑥 ↦→term 𝑠]

(C-beta-v)

Subqualification: Γ ⊢ 𝑄 <: 𝑅

𝑥 : {𝑄} 𝑆 ∈ Γ Γ ⊢ 𝑄 <: 𝑅

Γ ⊢ 𝑥 <: 𝑅
(sq-tvar)

𝑥 : {𝑄} 𝑆 ∈ Γ

Γ ⊢ 𝑥 <: 𝑥
(sq-refl-tvar)

Subtyping: Γ ⊢ 𝑆1 <: 𝑆2
Γ ⊢ 𝑇2 <: 𝑇1 Γ, 𝑥 : 𝑇2 ⊢ 𝑇3 <: 𝑇4
Γ ⊢ (𝑥 : 𝑇2) → 𝑇3 <: (𝑥 : 𝑇1) → 𝑇4

(C-sub-arrow)

Fig. 16. Evaluation, Syntax, Subtyping for System F<:QC

using sets of variables, but a set is just a lattice join of the singletons in that set! For example,

Boruch-Gruszecki et al. [2023] would give the following evil_monologue2 function the capture

set annotation {takeOverTheWorld, print}, while we would give it the qualifier annotation

{takeOverTheWorld | print}.

def evil_monologue (): Unit = {

print("I␣expect␣you␣to␣die␣in␣polynomial␣time ,␣Mr.␣Bond.")

takeOverTheWorld ()

}

Using this insight, we can model capture tracking as an extension System F<:QC of System F<:Q.

Assigning Qualifiers. We attach a qualifier tracked to types, denoting which values we should

keep track of. The qualifier tracked induces a two-point lattice, where tracked is at ⊤, and values
that should not be tracked, or should be forgotten, are qualified at ⊥. Base capabilities will be given
the tracked qualifier.

2
Scene from James Bond: The Travelling Salesman.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:21

Typing for System F<:QC Γ ⊢ 𝑡 : 𝑇

𝑥 : {𝑄} 𝑆 ∈ Γ

Γ ⊢ 𝑥 : {𝑥} 𝑆
(C-var)

Γ ⊢ 𝑠 : (𝑥 : {𝑄} 𝑆) → 𝑇 Γ ⊢ 𝑄 ′ <: 𝑄
Γ ⊢ 𝑡 : {𝑄 ′} 𝑆

Γ ⊢ 𝑠{{𝑄 ′}}(𝑡) : 𝑇 [𝑥 ↦→type 𝑄
′]

(C-app)

Γ, 𝑥 : 𝑇1 ⊢ 𝑡 : 𝑇2 Γ ⊢ ∨𝑦∈fv(𝑡)−𝑥 𝑦 <: 𝑃

Γ ⊢ _(𝑥)𝑃 .𝑡 : {𝑃} (𝑥 : 𝑇1) → 𝑇2
(C-abs)

Γ, 𝑋 <: 𝑆 ⊢ 𝑡 : 𝑇 Γ ⊢ ∨𝑦∈fv(𝑡) 𝑦 <: 𝑃

Γ ⊢ Λ(𝑋 <: 𝑆)𝑃 .𝑡 : {𝑃} ∀(𝑋 <: 𝑆).𝑇
(C-t-abs)

Γ, 𝑋 <: 𝑆 ⊢ 𝑡 : 𝑇 Γ ⊢ ∨𝑦∈fv(𝑡) 𝑦 <: 𝑃

Γ ⊢ Λ(𝑌 <: 𝑄)𝑃 .𝑡 : {𝑃} ∀(𝑌 <: 𝑄).𝑇
(C-q-abs)

Fig. 17. Typing rules for System F<:QC

Syntax – Tracking Variables. Figure 16 defines the syntax of System F<:QC. To reflect the underlying
term-variable-based nature of capture tracking, term bindings in System F<:QC introduce both a

term variable in term position as well as a qualifier variable in qualifier position with the same

name as the term variable.

Term bindings now serve double duty introducing both term variables and qualifier variables,

so a term like the identity function _(𝑥)⊥ .𝑥 would be given the type {⊥} (𝑥 : {𝑄} 𝑆) → {𝑥} 𝑆 to

indicate that it is not tracked but the result might be tracked depending on whether or not its

argument 𝑥 is tracked as well. This still induces a free lattice structure generated over the two-point
lattice that tracked induces, except in this case, the free lattice includes both qualifier variables

introduced by qualifier binders in addition to qualifier variables introduced by term binders as well.

As term binders introduce both a term and qualifier variable, term application in System F<:QC now
requires a qualifier argument to be substituted for that variable in qualifier position. As such, term

application in System F<:QC now has three arguments 𝑠{{𝑄}}(𝑡) – a function 𝑠 , a qualifier 𝑄 , and

an argument 𝑡 ; see Figure 16. In this sense, term abstractions in System F<:QC can be viewed as a

combination of a qualifier abstraction Λ[𝑥 <: 𝑄] followed by a term abstraction _(𝑥 : {𝑥} 𝑇).

Subqualification. One essential change is that we need to adjust subqualification to account

for qualifier variables bound by term binders in addition to qualifier variables bound by qualifier

binders. These changes are the addition of two new rules, (sq-refl-tvar) and (sq-tvar). Rule (sq-

refl-tvar) accounts for reflexivity in System F<:QC’s adjusted subqualification judgment. (sq-tvar)

accounts for subqualification for qualifier variables bound by term binders, and formalizes this

notion of less dangerous we discussed earlier—that takeOverTheWorld can be used in a context

that allows the use of pandora, and that helloWorld can be used in a context that allows the use

of print. Interestingly, though, if we squint at (sq-tvar) carefully, glossing over the text in faint

gray, we observe that it is just a close duplicate of the existing subqualification rule for qualifier

variables, (sq-var)!

takeOverTheWorld : pandora Unit => Unit ∈ Γ Γ ⊢ pandora <: pandora

Γ ⊢ takeOverTheWorld <: pandora

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:22 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

Subtyping. As function binders introduce a qualifier variable, so do function types as well; for

example, 𝑥 in (𝑥 : {𝑄} 𝑆) → {𝑥} 𝑆 . Subtyping needs to account for this bound qualifier variable;

see (C-sub-arrow).

Typing. Values are now qualified with the free variables that they close over (i.e., that they

capture). To ensure this is faithfully reflected in the value itself, we check that the tag on the value

super-qualifies the free variables that value captures. This is reflected in the modified typing rules

for typing abstractions: (C-abs), (C-t-abs), and (C-q-abs). The only other apparent changes are in

the rules for term application typing and variable typing. While those rules look different, they

reflect how term abstractions are a combination of qualifier and term abstractions, and in that

setting are no different than the standard rules for typing term variables, term application, and

qualifier application! These changes to the typing rules are reflected in Figure 17.

Soundness. Again, we can prove the standard soundness theorems for System F<:QC, using similar

techniques as Lee et al. [2023].

Theorem 3.5 (Preservation for System F<:QC). Suppose Γ ⊢ 𝑠 : 𝑇 , and 𝑠 −→ 𝑡 . Then Γ ⊢ 𝑡 : 𝑇
as well.

Theorem 3.6 (Progress for System F<:QC). Suppose ∅ ⊢ 𝑠 : 𝑇 . Either 𝑠 is a value, or 𝑠 −→ 𝑡 for
some term 𝑡 .

In addition, we recover a prediction lemma [Boruch-Gruszecki et al. 2023; Odersky et al. 2021]

relating how the free variables of values relate to the qualifier annotated on their types; in essence,

that the qualifier given on the type contains the free variables present in the value v.

Lemma 3.7 (Capture Prediction for System F<:QC). Let Γ be an environment and 𝑣 be a value
such that Γ ⊢ 𝑣 : {𝑄} 𝑆 . Then Γ ⊢

{∨
𝑦∈fv(𝑣) 𝑦

}
<: 𝑄 .

4 MECHANIZATION
The mechanization of System F<:Q (from Section 2.3), its derived calculi, System F<:QM, System F<:QA,
and System F<:QC, (from Section 3), and extended System F<:Q (from Section 2.7), is derived from

the mechanization of System F<: by Aydemir et al. [2008], with some inspiration taken from the

mechanization of Lee et al. [2023] and Lee and Lhoták [2023]. All lemmas and theorems stated in

this paper regarding these calculi have been formally mechanized, though our proofs relating the

subqualification structure to free lattices are only proven in text, as we have found Coq’s tooling

for universal algebra lacking. Additionally, we give a mechanized proof of the crux of Theorem 2.3;

namely, that ≤ is reflexive and transitive, similar to Negri and von Plato [2002]’s paper proof,

though we note that Galatos [2023] independently give a direct, algebraic proof of this result as

well.

5 TYPE POLYMORPHISM AND QUALIFIER POLYMORPHISM
We chose to model polymorphism separately for qualifiers and simple types. We introduced a

third binder, qualifier abstraction, for enabling polymorphism over type qualifiers, orthogonal to

simple type polymorphism. An alternate approach one could take to design a language which needs

to model polymorphism over type qualifiers is to have type variables range over qualified types,
that is, types like mutable Box[Int] as well as const Box[Int]. This approach can been seen in

systems like Lee and Lhoták [2023]; Tschantz and Ernst [2005]; Zibin et al. [2010]. However, it also

comes with its difficulties: how do we formally interpret repeated applications of type qualifiers,

for example, with a generic inplace_map which maps a function over a reference cell?

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:23

case class Box[X](var elem: X)

// Is this well formed?

def inplace_map[X](r: mutable Box[X], f: const X => X): Unit = {

r.elem = f(r.elem);

}

What should it mean if inplace_map is applied on a Box[const Box[Int]]? Then inplace_map
would expect a function fwith type (const (const Box[Int])) => const Box[Int]. While our

intuition would tell us that const (const Box[Int]) is really just a const Box[Int], discharging
this equivalence in a proof is not so clear. Many systems, like those of Zibin et al. [2007] and

Tschantz and Ernst [2005], sidestep this issue by explicitly preventing type variables from being

further qualified, but this approach prevents functions like inplace_map from being expressed at

all. Another approach, taken by Lee and Lhoták [2023], is to show that these equivalences can be

discharged through subtyping rules which normalize equivalent types. However, their approach
led to complexities in their proof of soundness and it is unclear if their system admits algorithmic

subtyping rules.

Our proposed approach, while verbose, avoids all these complexities by explicitly keeping simple

type polymorphism separate from type qualifier polymorphism. We would write inplace_map as:

case class Box[Q, X](var elem: Q X)

def inplace_map[Q, X](r: mutable Box[{Q} X], f: const X => Q X): Unit = {

r.elem = f(r.elem);

}

Moreover, we can desugar qualified type polymorphism into a combination of simple type polymor-

phism and type qualifier polymorphism. We can treat a qualified type binder in surface syntax as a

pair of simple type and type qualifier binders, and have qualified type variables play double duty as

simple type variables and type qualifier variables, as seen in qualifier systems like Wei et al. [2024].

So our original version of inplace_map could desugar as follows:

def inplace_map[X](r: mutable Box[X], f: const X => X): Unit = {

r.elem = f(r.elem);

} // original

def inplace_map[Xq, Xs](r: mutable Box[{Xq} Xs], f: const Xs => Xs): Unit = {

r.elem = f(r.elem);

} // desugared ==> X splits into Xq and Xs

One problem remains for the language designer, however: how do type qualifiers interact with

qualified type variables? In our above example, we chose to have the new qualifier annotation const
X strip away any existing type qualifier on X; this is the approach that the Checker Framework

takes [Papi et al. 2008]. Alternatively, we could instead merge the qualifiers together:

def inplace_map[Xq, Xs](r: mutable Box[{Xq} Xs], f: {const | Xq} Xs => Xs):

Unit =

{

r.elem = f(r.elem);

} // desugared ==> X splits into Xq and Xs

6 REVISITING QUALIFIER SYSTEMS
Free lattices have been known by mathematicians since Whitman’s time as the proper algebraic

structure for modelling lattice inequalities with free variables. Here, we revisit some existing

qualifier systems to examine how their qualifier structure compares to the structure we present

with the free lattice of qualifiers.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:24 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

A Theory of Type Qualifiers. The original work of Foster et al. [1999] introduced the notion

of type qualifiers and gave a system for ML-style let polymorphism using a variant of HM(X)

constraint-based type inference [Odersky et al. 1999]. Qualifier-polymorphic types in Foster’s

polymorphic qualifier system are a type scheme ∀𝑌/𝐶.𝑇 for some vector of qualifier variables 𝑌

used in qualified type 𝑇 modulo qualifier ordering constraints in 𝐶 , such as 𝑌1 <: 𝑌2. However, in
their system, constraints cannot involve formulas with qualifier variables (e.g., 𝑋 <: 𝑌1 ∧ 𝑌2 is an

invalid constraint), nor are constraints expressible in their source syntax for qualifier-polymorphic

function terms.

While type qualifiers were only formalized with Foster et al.’s work, type qualifiers themselves

were already quite popular by then. For example, const and volatile were already in use in C at

that time [Kernighan and Ritchie 1988]. Additionally, the Clean programming language modelled

uniqueness as a type qualifier with support for polymorphism by constrained uniqueness schemes
by 1993 [Barendsen and Smetsers 1996]. The work on Clean predates Foster et al. [1999] and uses

different language (type attributes), but it is striking how Clean’s uniqueness schemes are essentially
Foster et al.’s type schemes but specialized to uniqueness as a type qualifier.

Qualifiers for Tracking Capture and Reachability. Our subqualification system was inspired by

the subcapturing system pioneered by Boruch-Gruszecki et al. [2023] for use in their capability

tracking system for Scala. They model sets of free variables coupled with operations for merging sets

together. Sets of variables are exactly joins of variables – the set {𝑎, 𝑏, 𝑐} can be viewed as the lattice

formula 𝑎∨𝑏∨𝑐 , and their set-merge substitution operator {𝑎, 𝑏, 𝑐}[𝑎 ↦→ {𝑑, 𝑒}] = {𝑑, 𝑒, 𝑏, 𝑐}, is just
substitution for free lattice formulas – (𝑎∨𝑏∨𝑐) [𝑎 ↦→ (𝑑∨𝑒)] = (𝑑∨𝑒)∨𝑏∨𝑐 . With this translation

in mind, we can see that they model a free (join)-semilattice, and that their subcapturing rules

involving variables in sets are just translating what the lattice join would be into a set framework.

Independently, Wei et al. [2024] building off of Bao et al. [2021] recently developed a qualifier

system for tracking reachability using variable sets as well. Like Boruch-Gruszecki et al. [2023],

their subqualification system models a free join-semilattice, with one additional wrinkle. They

model a notion of set overlap respecting their subcapturing system as well as a notion of freshness
in their framework to ensure that the set of values reachable from a function are disjoint, or fresh,

from the set of values reachable from that function’s argument. While overlap exists only at the

metatheoretic level and does not exist in the qualifier annotations, it can be seen that their notion

of overlap is exactly what the lattice meet of their set-qualifiers would be when interpreted as

lattice terms. Additionally, while freshness unfortunately does not fit in the framework of a free

lattice, we conjecture that freshness can be modelled in a setting where lattices are extended with

complementation as well, such as in free complemented distributive lattices. They are currently

working on extending their system to work over free join-semilattice terms though.
3

Boolean Formulas as Qualifiers. Madsen and van de Pol [2021] recently investigated modelling

nullability as a type qualifier. Types in their system comprise a scheme of type variables 𝛼 and

Boolean variables 𝛽 over a pair of simple type 𝑆 and Boolean formula (𝑆, 𝜙), where values of a
qualified type (𝑆, 𝜙) are nullable if and only if 𝜙 evaluates to true.4 Boolean formulas form a

Boolean algebra, and Boolean algebras are just complemented distributive lattices, so Boolean

formulas over a set of variables 𝛽 are just free complemented distributive lattices generated over

variables in 𝛽 . In this sense, we can view Madsen and van de Pol [2021] as an ML-polymorphism

3
https://github.com/TiarkRompf/reachability/tree/main/base/lambda_star_syntactic.

4
Technically they model a triple (𝑆,𝜙,𝛾) where 𝛾 is another Boolean formula which evaluates to true if values of type
(𝑆,𝜙,𝛾) are non-nullable.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

https://github.com/TiarkRompf/reachability/tree/main/base/lambda_star_syntactic

Qualifying System F<: 115:25

style extension of Foster et al. [1999] that solves the problem of encoding qualifier constraints: one

can just encode them using Boolean formulas.

Reference Immutability for C# [Gordon et al. 2012]. Of existing qualifier systems, the polymorphism

structure of Gordon et al. [2012] is closest to System F<:Q. Polymorphism is possible over both
mutability qualifiers and simple types in Gordon’s system, but must be done separately, as in System

F<:Q. The inplace_map function that we discussed earlier would be expressed with both a simple

type variable as well as with a qualifier variable:

def inplace_map[Q, X](r: mutable Box[{Q} X], f: readonly X => {Q} X): Unit

Gordon’s system also allows for mutability qualifiers to be merged using an operator ~>. For
example, a polymorphic read function read could be written as the following in Gordon’s system:

def read[QR , QX, X](r: {QR} Box[{QX} X]): {QR ~> QX} X = r.f

Now, ~> acts as a restricted lattice join. Given two concrete mutability qualifiers C and D, C ~> D
will reduce to the lattice join of𝐶 and 𝐷 . However, the only allowable judgment in Gordon’s system

for ~> when qualifier variables are present, say C ~> Y, is that it can be widened to readonly.

Reference Immutability for DOT [Dort and Lhoták 2020]. roDOT extends the calculus of Depen-

dent Object Types [Amin et al. 2016] with support for reference immutability. In their system,

immutability constraints are expressed through a type member field 𝑥 .𝑀 of each object, where

𝑥 is mutable if and only if 𝑀 ≤ ⊥, and 𝑥 is read-only if and only if 𝑀 ≥ ⊤. As 𝑀 is just a Scala

type member,𝑀 can consist of anything a Scala type could consist of, but typically it consists of

type meets and type joins of ⊤, ⊥, type variables 𝑌 , and the mutability members 𝑦.𝑀 of other Scala

objects 𝑦.

While this may seem odd, we can view 𝑀 as a type qualifier member field of its containing

object 𝑥 ; the meets and joins in roDOT’s subtyping lattice for𝑀 correspond to meets and joins in

System F<:Q’s subqualification lattice. In this sense, we can view type polymorphism in roDOT as a

combination of polymorphism over simple types and type qualifiers in System F<:Q. A type 𝑇 in

roDOT breaks down into a pair of a simple type 𝑇 \𝑀 – 𝑇 without its mutability member𝑀 , and

𝑀 itself. This provides an alternate encoding of the free lattice of qualifiers using the free lattices

of types under subtyping.

Qualifiers as Types. A similar strategy for encoding the free lattice structure of qualifiers in the

subtyping lattice can also be seen in Osvald et al. [2016]; Xhebraj et al. [2022]; Zhao [2023]. Instead

of encoding the type as a object member, they instead encode it using a combination of generic type

parameters and Scala annotations on types. Concretely, for an object 𝑦 with type𝑇 , instead of using

𝑦.𝑀 to encode the locality/mutability of an object 𝑦, they instead annotate 𝑦’s type 𝑇 with a Scala

annotation 𝑇 @local/@mut[𝑀] parameterized by type𝑀 to denote that 𝑦 has locality/mutability

𝑀 .

7 RELATED AND FUTUREWORK
7.1 Languages with TypeQualifier Systems

Rust. The Rust community is currently investigating approaches [Wuyts et al. 2022] for adding

qualifiers to Rust. Their current proposal is to generalize the notion of qualified types from being

a pair of one qualifier and base type to be a tuple of qualifiers coupled to a base type. Qualifier

abstractions are keyed with the kind of qualifier (const, async, etc, ...) they abstract over.

For example, the following is a function read_to_string that is polymorphic in the synchronicity

of its reader argument; async<A> binds the synchronicity qualifier argument A in addition to

annotating the type of read_to_string with that synchronicity A.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:26 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

async <A> fn read_to_string(reader: &mut impl Read * A)

-> std::io::Result <String > { ... }

This is easy to see sound using similar ideas to our proof of simplified System F<:Q. One would
extend simple System F<:Q with a binder for each qualifier category instead of using the product

lattice in extended System F<:Q. However this proposal has proven controversial due to its syntactic

overhead.

OCaml. The OCaml community [Slater 2023a,b] is investigating adding modes to types for track-

ing properties like uniqueness, locality, and linearity, amongst others; these modes are essentially

type qualifiers. They aim to leverage these modes to prevent safety issues from arising from data

races in multithreaded OCaml code.

Pony. Pony’s reference capabilities [Clebsch et al. 2015] are essentially type qualifiers on base

types that qualify how values may be shared or used. Pony has qualifiers for various forms of

uniqueness, linearity, and ownership properties. While Pony has bounded polymorphism over

qualified types, Pony does not allow type variables to be requalified, nor does it have polymorphism

over qualifiers.

7.2 Implementing TypeQualifiers
The Checker Framework [Dietl et al. 2011; Papi et al. 2008] is an extensible framework for adding

user-defined type qualifiers to Java’s type system. The Checker Framework generally allows for

qualifying type variables with qualifiers, but in their system, there is no relationship between a

type variable X and a qualified type variable Q X. Re-qualifying a type variable strips any existing

conflicting qualifier from that type variable and what it is instantiated with. The Checker Framework

has also been used to model effect systems as well: [Gordon et al. 2013].

7.3 Effect Systems
Effect systems are closely related to type qualifiers. Traditionally, effect annotations are used to

describe properties of computation, whereas type qualifiers are used to describe properties of data. In
the presence of first-class functions, this distinction is often blurred; for example, modern C++ refers

to noexcept as a type qualifier on function types [Maurer 2015], whereas traditionally it would be

viewed as an effect annotation. In contrast to type qualifiers, both effect polymorphism [Lucassen

and Gifford 1988] and the lattice structure of effects [Rytz et al. 2012] are well-studied. However, the
interaction of effect polymorphism with subtyping and sub-effecting remains understudied.

Many effect systems use row polymorphism to handle polymorphic effect variables with a re-

stricted form of sub-effecting by subsets [Leijen 2014]. As for Rytz et al. [2012], they present a

lightweight framework with no effect variables. Formal systems studying sub-effecting respecting

effect bounds on effect variables remain rare, despite Java’s exception system being just that [Gosling

et al. 2014, Section 8.4.8.3]. Curiously, the two extant formal effect systems with these features share

much in common with well-known qualifier systems. For example, the sub-effecting system Leijen

and Tate [2010] can be viewed as a variant of the lattice-based subqualification system of Foster et al.

[1999] with HM(X)-style polymorphism. More interestingly, the novel Indirect-CallY rule of Gariano

et al. [2019], the reachability rule of Wei et al. [2024], and the subcapturing rule of Boruch-Gruszecki

et al. [2023] all model subqualification in a free join-semilattice (of effects). In light of all these

similarities, and of recent work modelling effect systems with Boolean formulas [Lutze et al. 2023],

we conjecture that a system modelling free distributive complemented lattices could be used to

present a unifying treatment of both effects and qualifiers in the presence of subtyping, subeffecting,

and subqualification.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

Qualifying System F<: 115:27

7.4 Boolean Algebras and Subtyping
The work of Madsen and van de Pol [2021] on Boolean formula qualifier systems does not model

subtyping over qualified types (𝑆, 𝜙); it would be sensible to say (𝑆, 𝜙) <: (𝑆, 𝜙 ′) if 𝜙 =⇒ 𝜙 ′
. They

conjecture that such a subtyping system would be sound. While we cannot answer this conjecture

definitively, as we only model free lattices, it would be interesting future work to extend our

framework and theirs to see if a system modelling free complemented distributive lattice systems

with subqualification is sound.

7.5 Algorithmic Subtyping
System F<:Q’s subtyping rules are syntax-directed and admit algorithmic rules, but it is not so easy

to see if extended System F<:Q admits algorithmic subtyping rules. The difficulty is that extended

System F<:Q needs two new non-syntax directed rules (sq-eval-elim) and (sq-eval-intro) to

handle transitivity through base lattice elements. It remains an open question whether extended

System F<:Q admits algorithmic subtyping rules. We conjecture that algorithmic subtyping rules

could exist for a particular instantiation of extended System F<:Q to a fixed base qualifier lattice L.

Moreover, we think that whether or not algorithmic subtyping rules would exist could depend on

certain algebraic properties of L. For example, if L is a product lattice for which each lattice in

the product admits algorithmic subtyping, then we think that algorithmic subtyping rules can be

written for L as well.

7.6 Flow Sensitivity
Foster et al. [2002] extended the original work of Foster et al. [1999] with support for flow sensitivity
on type qualifiers. Even though flow sensitivity can be sometimes avoided, for example, with pattern
matching as Madsen and van de Pol [2021] show with nullable as a qualifier, flow sensitivity is

a natural addition to many qualifier systems. One often checks if a variable x is NULL with an if
statement, with x qualified nullable in the branch that fails the test and nonnull in the branch

that passes. We conjecture that the ideas that Foster et al. [2002] use to extend their system to

support flow sensitivity can also be used to add flow sensitivity to System F<:Q. It would also be

interesting to investigate the underlying algebraic structure of the resulting system, especially in

light of recent work on flow sensitive effect systems by Gordon [2021].

8 CONCLUSION
In this paper, we presented a recipe for modelling higher-rank polymorphism, subtyping, and

subqualification in systemswith type qualifiers by using the free lattice generated from an underlying

qualifier lattice. We show how a base calculus like System F<: can be extended using this structure

by constructing such an extension System F<:Q, and we show how the recipe can be applied to

model three problems where type qualifiers are naturally suited—reference immutability, function

colouring, and capture tracking. We then re-examine existing qualifier systems to look at how free
lattices of qualifiers show up, even if only indirectly or in restricted form. We hope that this work

advances our understanding of the structure of polymorphism over type qualifiers.

ACKNOWLEDGMENTS
We thank Brad Lushman, John Boyland, Guannan Wei, Brian Zimmerman, James Noble, and the

anonymous OOPSLA reviewers for their feedback reading over this work. We also thank Ross

Willard for his useful insights into free lattices. This work was partially supported by the Natural

Sciences and Engineering Research Council of Canada and by an Ontario Graduate Scholarship.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

115:28 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

DATA-AVAILABILITY STATEMENT
The artifact that supports this paper is available on Software Heritage [Lee et al. 2024a] and on the

ACM Digital Library [Lee et al. 2024b].

REFERENCES
Scott Aaronson. 2002. Polynomial Hierarchy Collapses: Thousands Feared Tractable. https://scottaaronson.com/writings/

phcollapse.pdf ↑19
Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The essence of dependent object types.

A List of Successes That Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday
(2016), 249–272. ↑25

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. Engineering

Formal Metatheory. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (San Francisco, California, USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA, 3–15.

https://doi.org/10.1145/1328438.1328443 ↑22
Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf. 2021. Reachability types: tracking

aliasing and separation in higher-order functional programs. Proc. ACM Program. Lang. 5, OOPSLA, Article 139 (oct
2021), 32 pages. https://doi.org/10.1145/3485516 ↑24

Erik Barendsen and Sjaak Smetsers. 1996. Uniqueness Typing for Functional Languages with Graph Rewriting Semantics.

Math. Struct. Comput. Sci. 6, 6 (1996), 579–612. https://doi.org/10.1017/S0960129500070109 ↑24
Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondřej Lhoták, and Jonathan Brachthäuser. 2023. Capturing

Types. ACM Trans. Program. Lang. Syst. 45, 4, Article 21 (nov 2023), 52 pages. https://doi.org/10.1145/3618003 ↑4, ↑19,
↑20, ↑22, ↑24, ↑26

John Boyland. 2006. Why we should not add readonly to Java (yet). J. Object Technol. 5, 5 (2006), 5–29. https://doi.org/10.

5381/JOT.2006.5.5.A1 ↑5
Walter Bright, Andrei Alexandrescu, and Michael Parker. 2020. Origins of the D Programming Language. Proc. ACM

Program. Lang. 4, HOPL, Article 73 (jun 2020), 38 pages. https://doi.org/10.1145/3386323 ↑2
Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1991. An Extension of System F with Subtyping.

In Theoretical Aspects of Computer Software, International Conference TACS ’91, Sendai, Japan, September 24-27, 1991,
Proceedings (Lecture Notes in Computer Science, Vol. 526), Takayasu Ito and Albert R. Meyer (Eds.). Springer, 750–770.

https://doi.org/10.1007/3-540-54415-1_73 ↑4
Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. 2015. Deny Capabilities for Safe, Fast

Actors. In Proceedings of the 5th International Workshop on Programming Based on Actors, Agents, and Decentralized
Control (Pittsburgh, PA, USA) (AGERE! 2015). Association for Computing Machinery, New York, NY, USA, 1–12. https:

//doi.org/10.1145/2824815.2824816 ↑26
Jack B. Dennis and Earl C. Van Horn. 1966. Programming Semantics for Multiprogrammed Computations. Commun. ACM

9, 3 (mar 1966), 143–155. https://doi.org/10.1145/365230.365252 ↑19
Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivanç Muşlu, and Todd W. Schiller. 2011. Building and using pluggable

type-checkers. In Proceedings of the 33rd International Conference on Software Engineering (Waikiki, Honolulu, HI, USA)

(ICSE ’11). Association for Computing Machinery, New York, NY, USA, 681–690. https://doi.org/10.1145/1985793.1985889

↑4, ↑26
Stephen Dolan. 2016. Algebraic subtyping. Ph. D. Dissertation. ↑2, ↑7
Vlastimil Dort and Ondřej Lhoták. 2020. Reference Mutability for DOT. In 34th European Conference on Object-Oriented

Programming (ECOOP 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and
Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 18:1–18:28. https://doi.org/

10.4230/LIPIcs.ECOOP.2020.18 ↑13, ↑25
Mattias Felleisen and D. P. Friedman. 1987. A Calculus for Assignments in Higher-Order Languages. In Proceedings of the

14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Munich, West Germany) (POPL ’87).
Association for Computing Machinery, New York, NY, USA, 314. https://doi.org/10.1145/41625.41654 ↑17

Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A Theory of Type Qualifiers. In Proceedings of the ACM
SIGPLAN 1999 Conference on Programming Language Design and Implementation (Atlanta, Georgia, USA) (PLDI ’99).
Association for Computing Machinery, New York, NY, USA, 192–203. https://doi.org/10.1145/301618.301665 ↑2, ↑4, ↑5,
↑6, ↑7, ↑11, ↑24, ↑25, ↑26, ↑27

Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-Sensitive Type Qualifiers. In Proceedings of the ACM SIGPLAN
2002 Conference on Programming Language Design and Implementation (Berlin, Germany) (PLDI ’02). Association for

Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/512529.512531 ↑27
Nikolaos Galatos. 2023. Decidability of Lattice Equations. https://doi.org/10.1007/s11225-023-10063-4 ↑6, ↑22

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

https://scottaaronson.com/writings/phcollapse.pdf
https://scottaaronson.com/writings/phcollapse.pdf
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/3485516
https://doi.org/10.1017/S0960129500070109
https://doi.org/10.1145/3618003
https://doi.org/10.5381/JOT.2006.5.5.A1
https://doi.org/10.5381/JOT.2006.5.5.A1
https://doi.org/10.1145/3386323
https://doi.org/10.1007/3-540-54415-1_73
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/2824815.2824816
https://doi.org/10.1145/365230.365252
https://doi.org/10.1145/1985793.1985889
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.1145/41625.41654
https://doi.org/10.1145/301618.301665
https://doi.org/10.1145/512529.512531
https://doi.org/10.1007/s11225-023-10063-4

Qualifying System F<: 115:29

Isaac Oscar Gariano, James Noble, and Marco Servetto. 2019. CallY: an effect system for method calls. In Proceedings of
the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2019, Athens, Greece, October 23-24, 2019, Hidehiko Masuhara and Tomas Petricek (Eds.). ACM, 32–45.

https://doi.org/10.1145/3359591.3359731 ↑26
Colin S. Gordon. 2021. Polymorphic Iterable Sequential Effect Systems. ACM Trans. Program. Lang. Syst. 43, 1, Article 4 (apr

2021), 79 pages. https://doi.org/10.1145/3450272 ↑27
Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. 2013. Java UI : Effects for Controlling UI Object Access.

In ECOOP 2013 - Object-Oriented Programming - 27th European Conference, Montpellier, France, July 1-5, 2013. Proceedings
(Lecture Notes in Computer Science, Vol. 7920), Giuseppe Castagna (Ed.). Springer, 179–204. https://doi.org/10.1007/978-3-

642-39038-8_8 ↑26
Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Bromfield, and Joe Duffy. 2012. Uniqueness and Reference

Immutability for Safe Parallelism. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications (Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing Machinery, New

York, NY, USA, 21–40. https://doi.org/10.1145/2384616.2384619 ↑4, ↑13, ↑25
James Gosling, Bill Joy, Guy L. Steele, Gilad Bracha, and Alex Buckley. 2014. The Java Language Specification, Java SE 8

Edition (1st ed.). Addison-Wesley Professional. ↑26
Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. 2012. ReIm and ReImInfer: Checking and Inference

of Reference Immutability and Method Purity. In Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications (Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing

Machinery, New York, NY, USA, 879–896. https://doi.org/10.1145/2384616.2384680 ↑12, ↑13
Peter Jipsen. 2001. A Gentzen system and decidability for residuated lattices. Preprint (2001). https://www1.chapman.edu/

~jipsen/reslat/gentzenrl.pdf ↑6
Paul A. Karger and Andrew J. Herbert. 1984. An Augmented Capability Architecture to Support Lattice Security and

Traceability of Access. In 1984 IEEE Symposium on Security and Privacy. 2–2. https://doi.org/10.1109/SP.1984.10001 ↑11
Brian W. Kernighan and Dennis Ritchie. 1988. The C Programming Language, Second Edition. Prentice-Hall. https:

//en.wikipedia.org/wiki/The_C_Programming_Language ↑24
Edward Lee and Ondřej Lhoták. 2023. Simple Reference Immutability for System F<:. Proc. ACM Program. Lang. 7, OOPSLA2,

Article 252, 25 pages. https://doi.org/10.1145/3622828 ↑13, ↑22, ↑23
Edward Lee, Kavin Satheeskumar, and Ondřej Lhoták. 2023. Dependency-Free Capture Tracking. In Proceedings of the 25th

ACM International Workshop on Formal Techniques for Java-like Programs. Seattle, WA. https://doi.org/10.1145/3605156.

3606454 ↑22
Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Immanuel Brachthäuser.

2024a. Artifact for the OOPSLA 2024 paper ’Qualifying System F-sub’. https://archive.softwareheritage.org/swh:1:

snp:25948423337bcc31981da471b67258ff572a5585 ↑28
Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Immanuel Brachthäuser. 2024b.

Artifact for the OOPSLA 2024 paper ’Qualifying System F-sub’. https://doi.org/10.1145/3580431 ↑28
Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect Types. Electronic Proceedings in Theoretical Computer

Science 153 (jun 2014), 100–126. https://doi.org/10.4204/eptcs.153.8 ↑26
Daan Leijen and Ross Tate. 2010. Convenient Explicit Effects using Type Inference with Subeffects. Technical Report MSR-

TR-2010-80. https://www.microsoft.com/en-us/research/publication/convenient-explicit-effects-using-type-inference-

with-subeffects/ ↑26
Daniel Leivant. 1983. Polymorphic type inference. In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on Principles

of Programming Languages (Austin, Texas) (POPL ’83). Association for Computing Machinery, New York, NY, USA, 88–98.

https://doi.org/10.1145/567067.567077 ↑4
J. M. Lucassen and D. K. Gifford. 1988. Polymorphic Effect Systems. In Proceedings of the 15th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’88). Association for Computing

Machinery, New York, NY, USA, 47–57. https://doi.org/10.1145/73560.73564 ↑26
Matthew Lutze, Magnus Madsen, Philipp Schuster, and Jonathan Immanuel Brachthäuser. 2023. With or Without You:

Programming with Effect Exclusion. Proc. ACM Program. Lang. 7, ICFP, Article 204 (aug 2023), 28 pages. https:

//doi.org/10.1145/3607846 ↑26
Magnus Madsen and Jaco van de Pol. 2021. Relational Nullable Types with Boolean Unification. Proc. ACM Program. Lang.

5, OOPSLA, Article 110 (oct 2021), 28 pages. https://doi.org/10.1145/3485487 ↑24, ↑27
Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Millstein, Chris Andreae, and James Noble. 2010. JavaCOP:

Declarative pluggable types for java. ACM Trans. Program. Lang. Syst. 32, 2, Article 4 (feb 2010), 37 pages. https:

//doi.org/10.1145/1667048.1667049 ↑2
Jens Maurer. 2015. P0012R1: Make exception specifications be part of the type system, version 5. https://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2015/p0012r1.html ↑5, ↑26

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

https://doi.org/10.1145/3359591.3359731
https://doi.org/10.1145/3450272
https://doi.org/10.1007/978-3-642-39038-8_8
https://doi.org/10.1007/978-3-642-39038-8_8
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.1145/2384616.2384680
https://www1.chapman.edu/~jipsen/reslat/gentzenrl.pdf
https://www1.chapman.edu/~jipsen/reslat/gentzenrl.pdf
https://doi.org/10.1109/SP.1984.10001
https://en.wikipedia.org/wiki/The_C_Programming_Language
https://en.wikipedia.org/wiki/The_C_Programming_Language
https://doi.org/10.1145/3622828
https://doi.org/10.1145/3605156.3606454
https://doi.org/10.1145/3605156.3606454
https://archive.softwareheritage.org/swh:1:snp:25948423337bcc31981da471b67258ff572a5585
https://archive.softwareheritage.org/swh:1:snp:25948423337bcc31981da471b67258ff572a5585
https://doi.org/10.1145/3580431
https://doi.org/10.4204/eptcs.153.8
https://www.microsoft.com/en-us/research/publication/convenient-explicit-effects-using-type-inference-with-subeffects/
https://www.microsoft.com/en-us/research/publication/convenient-explicit-effects-using-type-inference-with-subeffects/
https://doi.org/10.1145/567067.567077
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/3607846
https://doi.org/10.1145/3607846
https://doi.org/10.1145/3485487
https://doi.org/10.1145/1667048.1667049
https://doi.org/10.1145/1667048.1667049
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0012r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/p0012r1.html

115:30 Edward Lee, Yaoyu Zhao, Ondřej Lhoták, James You, Kavin Satheeskumar, and Jonathan Brachthäuser

Sara Negri and Jan von Plato. 2002. Permutability of rules in lattice theory. algebra universalis 48, 4 (01 Dec 2002), 473–477.
https://doi.org/10.1007/s000120200012 ↑6, ↑22

Bob Nystrom. 2015. What Color is Your Function? https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-

function/ ↑15, ↑16
Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee, and Ondřej Lhoták. 2021.

Safer Exceptions for Scala. In Proceedings of the 12th ACM SIGPLAN International Symposium on Scala (Chicago, IL, USA)
(SCALA 2021). Association for Computing Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/3486610.3486893

↑19, ↑22
Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. Type Inference with Constrained Types. Theory Pract. Object

Syst. 5, 1 (1999), 35–55. ↑24
Leo Osvald, Grégory Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf. 2016. Gentrification gone too far?

affordable 2nd-class values for fun and (co-)effect. In Proceedings of the 2016 ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (Amsterdam, Netherlands) (OOPSLA 2016).
Association for Computing Machinery, New York, NY, USA, 234–251. https://doi.org/10.1145/2983990.2984009 ↑25

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jeff H. Perkins, and Michael D. Ernst. 2008. Practical Pluggable Types

for Java. In Proceedings of the 2008 International Symposium on Software Testing and Analysis (Seattle, WA, USA) (ISSTA
’08). Association for Computing Machinery, New York, NY, USA, 201–212. https://doi.org/10.1145/1390630.1390656 ↑2,
↑23, ↑26

Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: A Calculus of Context-Dependent Computation. In

Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP
’14). Association for Computing Machinery, New York, NY, USA, 123–135. https://doi.org/10.1145/2628136.2628160 ↑2

Alex Potanin, Johan Östlund, Yoav Zibin, and Michael D. Ernst. 2013. Immutability. In Aliasing in Object-Oriented
Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.). Lecture Notes in

Computer Science, Vol. 7850. Springer, 233–269. https://doi.org/10.1007/978-3-642-36946-9_9 ↑12, ↑13
Lukas Rytz, Martin Odersky, and Philipp Haller. 2012. Lightweight Polymorphic Effects. In ECOOP 2012 – Object-Oriented

Programming, James Noble (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 258–282. ↑26
Thoralf Skolem. 1920. Logisch-Kombinatorische Untersuchungen Über Die Erfüllbarkeit Oder Bewiesbarkeit Mathematischer

Sätze Nebst Einem Theorem Über Dichte Mengen. In Selected Works in Logic, Thoralf Skolem (Ed.). Universitetsforlaget.

↑6
Max Slater. 2023a. Oxidizing OCaml: Locality. https://blog.janestreet.com/oxidizing-ocaml-locality/ ↑2, ↑26
Max Slater. 2023b. Oxidizing OCaml: Rust-Style Ownership. https://blog.janestreet.com/oxidizing-ocaml-ownership/ ↑2,

↑26
Bjarne Stroustrup. 2007. The C++ programming language - special edition (3. ed.). Addison-Wesley. ↑2
Matthew S. Tschantz and Michael D. Ernst. 2005. Javari: adding reference immutability to Java. In Proceedings of the 20th

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2005, October 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and Richard P. Gabriel (Eds.). ACM, 211–230. https:

//doi.org/10.1145/1094811.1094828 ↑2, ↑12, ↑13, ↑22, ↑23
Guannan Wei, Oliver Bračevac, Songlin Jia, Yuyan Bao, and Tiark Rompf. 2024. Polymorphic Reachability Types: Tracking

Freshness, Aliasing, and Separation in Higher-Order Generic Programs. Proc. ACM Program. Lang. 8, POPL, Article 14
(jan 2024), 32 pages. https://doi.org/10.1145/3632856 ↑4, ↑23, ↑24, ↑26

Philip M. Whitman. 1941. Free Lattices. Annals of Mathematics 42, 1 (1941), 325–330. http://www.jstor.org/stable/1969001

↑4, ↑6, ↑23
Yoshua Wuyts, Oli Scherer, and Niko Matsakis. 2022. Announcing the keyword generics initiative: Inside rust blog.

https://blog.rust-lang.org/inside-rust/2022/07/27/keyword-generics.html ↑2, ↑25
Anxhelo Xhebraj, Oliver Bračevac, Guannan Wei, and Tiark Rompf. 2022. What If We Don’t Pop the Stack? The Return

of 2nd-Class Values. In 36th European Conference on Object-Oriented Programming (ECOOP 2022) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 222), Karim Ali and Jan Vitek (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für

Informatik, Dagstuhl, Germany, 15:1–15:29. https://doi.org/10.4230/LIPIcs.ECOOP.2022.15 ↑25
Yaoyu Zhao. 2023. Adding Reference Immutability to Scala. Master’s thesis. http://hdl.handle.net/10012/19601 ↑25
Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and Michael D. Ernst. 2007. Object and Reference

Immutability Using Java Generics. In Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering (Dubrovnik, Croatia) (ESEC-FSE
’07). Association for Computing Machinery, New York, NY, USA, 75–84. https://doi.org/10.1145/1287624.1287637 ↑13,
↑23

Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst. 2010. Ownership and immutability in generic Java.

In OOPSLA 2010, Object-Oriented Programming Systems, Languages, and Applications. Reno, NV, USA, 598–617. ↑22

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

https://doi.org/10.1007/s000120200012
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/2983990.2984009
https://doi.org/10.1145/1390630.1390656
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1007/978-3-642-36946-9_9
https://blog.janestreet.com/oxidizing-ocaml-locality/
https://blog.janestreet.com/oxidizing-ocaml-ownership/
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/3632856
http://www.jstor.org/stable/1969001
https://blog.rust-lang.org/inside-rust/2022/07/27/keyword-generics.html
https://doi.org/10.4230/LIPIcs.ECOOP.2022.15
http://hdl.handle.net/10012/19601
https://doi.org/10.1145/1287624.1287637

Qualifying System F<: 115:31

Received 20-10-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 115. Publication date: April 2024.

	Abstract
	1 Introduction
	2 Qualified Type Systems
	2.1 A Simply-Qualified Type System
	2.2 Qualifying a Language
	2.3 (Higher-rank) Qualifier Polymorphism
	2.4 Free Lattices
	2.5 System F<:Q
	2.6 Metatheory
	2.7 Generalizing Qualifiers to General Lattices

	3 Applications
	3.1 Reference Immutability
	3.2 Function Colouring
	3.3 Tracking Capture

	4 Mechanization
	5 Type polymorphism and Qualifier polymorphism
	6 Revisiting Qualifier Systems
	7 Related and Future Work
	7.1 Languages with Type Qualifier Systems
	7.2 Implementing Type Qualifiers
	7.3 Effect Systems
	7.4 Boolean Algebras and Subtyping
	7.5 Algorithmic Subtyping
	7.6 Flow Sensitivity

	8 Conclusion
	Acknowledgments
	References

