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Type qualifiers offer a lightweight mechanism for enriching existing type systems to enforce additional,
desirable, program invariants. They do so by offering a restricted but effective form of subtyping. While the
theory of type qualifiers is well understood and present in many programming languages today, polymorphism
over type qualifiers remains an area less well examined. We explore how such a polymorphic system could
arise by constructing a calculus, System F<.q, which combines the higher-rank bounded polymorphism of
System F<. with the theory of type qualifiers. We explore how the ideas used to construct System F<.q can be
reused in situations where type qualifiers naturally arise—in reference immutability, function colouring, and
capture checking. Finally, we re-examine other qualifier systems in the literature in light of the observations
presented while developing System F<.q.
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1 INTRODUCTION
Static type systems classify the values a program reduces to. For example, the signature of the
function

def toLowerCase(in: String): String = { ... }

enforces that it takes in a String as an argument and returns a String as a result. If strings
are implemented as mutable heap objects, how would we express the additional property that
toLowerCase does not mutate its input?
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There are at least two ways to address this. We can view the modification of toLowerCase’s
argument in as a property of toLowerCase or we can view mutability as a property of the argument
string in itself. The former viewpoint leads to solutions like (co-)effect systems [Petricek et al.
2014] that describe the relation of a function to the context it is called in. The latter viewpoint,
of viewing it as a property of the argument, leads to systems that enrich the types of values with
additional information. In this paper, we adopt the latter view.

One such system is Type qualifiers [Foster et al. 1999], in which we could qualify the type of
toLowerCase’s argument with the type qualifier const to express that toLowerCase cannot modify
its argument. We may choose to annotate its result with the type qualifier const to indicate that
its result is a const String which cannot be changed by toLowerCase’s caller.

def toLowerCase(in: const String): const String = {...}

The function toLowerCase now accepts a read-only String as an argument and presumably returns
anew String that is a copy of its argument except in lowercase. More importantly, since the input
string is qualified as const, we know that this version of toLowerCase cannot mutate the input
string, for example, by calling a method like in.setCharAt(@, ’A’), which would replace the
character of index 0 of the string with the character A.

Perhaps this is too restrictive. After all, toLowerCase will allocate a new String and does not
impose invariants on it; its caller should be permitted to mutate the value returned. We should
instead annotate toLowerCase as follows, with a mutable qualifier on its return value.

def toLowerCase(in: const String): mutable String = {...}

Subtyping naturally arises in this context—a mutable String can be a subtype of a const String.
Returning a mutable string should not cause existing calls to toLowerCase to break.

Similarly, it would be impractical if toLowerCase only accepted read-only Strings. After all,
any operation one could perform on a read-only String should be semantically valid on a mutable
String as well. Therefore amutable String not only canbut should be a subtype of const String.
For example, we may have other String functions that accept const Strings, which should also
accept mutable Strings as well.

def reversed(in: const String): mutable String = {...}
reversed(toLowerCase ("HELLO_WORLD")) == "dlrow_olleh"

Foster et al. [1999] were the first to recognize this natural subtyping relation induced by type
qualifiers, which permitted type qualifiers to be integrated easily into existing type systems with
subtyping. Perhaps the most well known qualifier is const. It is used to mark particular values
as read-only or immutable and it is found in many languages and language extensions [Bright
et al. 2020; Stroustrup 2007; Tschantz and Ernst 2005]. Other languages, such as OCaml and
Rust, are exploring more exotic qualifiers to encode properties like locality, linearity, exclusivity,
and synchronicity [Slater 2023; Wuyts et al. 2022]. Qualifiers are so easy to use that many type
system extensions start as type qualifier annotations on existing types; for Java there are multiple
frameworks [Markstrum et al. 2010; Papi et al. 2008] for doing so, which have been used to model
extensions of Java for checking nullability, energy consumption, and determinism amongst others.

While type qualifiers themselves are well-explored, qualifier polymorphism is still understudied.
Sometimes parametric polymorphism is not necessary when subtyping is present. For example, the
type signature that we gave to toLowerCase, const String => mutable String, is indeed the
most permissive type that may be assigned. In languages with subtyping, type variables are only
necessary to relate types and qualifiers in both return (covariant) and parameter (contravariant)
positions; otherwise we can use their respective type bounds [Dolan 2016, Chapter 4.2.1]. For
example, while we could have made toLowerCase polymorphic using a qualifier variable Q over
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the immutability of its input, such a change is unnecessary as we can simply replace Q with its
upper bound const to arrive at the monomorphic but equally general version of toLowerCase
from above.

def tolLowerCase[Q <: const](in: Q String): mutable String = {...}

However, variables are indeed necessary when relating types and qualifiers in covariant positions
to types and qualifiers in contravariant positions. For example, consider a substring function.
Which qualifiers should we assign its arguments and return value?

def substring(in: ??? String, from: Int, to: Int): ??? String = {...}

It would be reasonable to expect that a substring of an immutable string should itself be immutable,
but also a substring of a mutable string should be mutable as well. To express this set of new
constraints, we need parametric qualifier polymorphism.

def substring[Q <: const](in: Q String, from: Int, to: Int): Q String

We also need to consider how qualifier polymorphism interacts with type polymorphism. For
example, what should be the type of a function like slice, which returns a subarray of an array? It
needs to be parametric over the the type of the elements stored in the array, where the element
type itself could be qualified. This raises the question: should type variables range over unqualified
types or both unqualified and qualified types? Foster’s original system does not address this issue,
and existing qualifier systems disagree on what type variables range over and whether or not type
variables can be qualified at all. For reasons we will demonstrate later in Section 5, type variables
should range over unqualified types; to achieve polymorphism over both types and qualifiers, we
need both type variables and qualifier variables for orthogonality.

def slice[Qa<:const, Qv<:const, T<:Anyl(in: Qa Array[Qv T1): Qa Array[Qv T]

Polymorphism over qualified types, though, can be recovered through a lightweight form of
syntactic sugar, as we show in Section 5 as well.

def slice[Q<:const, QT<:const AnyJl(in: Q Array[QT1): Q Array[QT]

Another under-explored area is that of merging type qualifiers, especially in light of parametric
qualifier polymorphism. For example, consider the type qualifiers throws and noexcept, expressing
that a function may throw an exception or that it does not throw any exception at all. Without
polymorphism, it is easy to combine qualifiers. For example, a function like combined, that calls
both pure and exception-throwing functions, should be qualified with the union of the two qualifiers,
throws, expressing that an exception could be thrown from the calling function.

def pure() = 0 // noexcept (() => Int)
def impure() = throw new Exception("Hello") // throws (() => Unit)
def combined() = { pure(); impure() } // throws (() => Unit)

Things are more complicated in the presence of qualifier parametric higher-order functions, such
as:

def compose[A,B,C,Qf,Qgl(f: Qf (A => B), g: Qg (B => C))): 72?22 (A => C)
= (x) => g(f(x))
What should be the qualifier on the return type (A => C) of compose? Intuitively, if either f or g
throws an exception, then the result of compose should be qualified with throws, but if neither
throws any exception, then the composition should be qualified with noexcept. Ideally we would
like some mechanism for specifying the union of the qualifiers annotated on both f and g.

def compose[A,B,C,Qf ,Qgl(f: Qf (A => B), g: Qg (B => C))): {Qf | Qg} (A => C)
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Existing qualifier systems have limited support for these use cases. Foster et al. [1999]’s original
system is limited to simple ML-style qualifier polymorphism with no mechanism for specifying
qualifier-polymorphic function types, and has limited support for combining qualifiers. Dietl et al.
[2011]’s Checker Framework presents a restricted, implicit view of qualifier polymorphism via
Java annotations. Systems that do support explicit qualifier polymorphism like that of Gordon
et al. [2012] partially ignore the interaction between combinations of qualifier variables and their
bounds, or present application-specific subqualification semantics seen in Boruch-Gruszecki et al.
[2023] or Wei et al. [2024]. Must this always be the case? Is there something in common that we can
generalize and apply to give a design recipe for designing qualifier systems with subqualification
and polymorphism?

We believe this does not need to be the case; we show that it is possible to add qualifier polymor-
phism without losing the natural lattice structure of type qualifiers, and that there is a natural way
to reconcile type polymorphism with qualifier polymorphism as well.

To illustrate these ideas, we start by first giving a design recipe for constructing a qualifier-
polymorphic enrichment System F«.q of System F<. [Cardelli et al. 1991], much in the same way
that Foster et al. [1999] gives a design recipe for adding qualifiers to a base simply-typed lambda
calculus. Our recipe constructs a calculus with the following desirable properties:

¢ Higher-rank qualifier and type polymorphism: We show how to add higher-rank quali-
fier polymorphism to a system with higher-rank [Leivant 1983] type polymorphism in Section
2.3.

e Natural subtyping with qualifier variables: We show that the subtyping that type quali-
fiers induce extends naturally even when working with qualifier variables. We achieve this
by using the free lattice [Whitman 1941] generated over the original qualifier lattice. We
illustrate these ideas, first in a simplified context over a fixed two-point qualifier lattice in
Section 2.3 and generalize to an arbitrary bounded qualifier lattice in Section 2.7.

e Easy meets and joins: As we generalize the notion of a qualifier to that of an element from
the free (qualifier) lattice, we recover the ability to combine qualifiers using meets and joins.

Next, to demonstrate the applicability of our qualifier polymorphism design recipe, we show
how one can model three natural problems - reference immutability, function colouring, and capture
tracking, using the ideas used to develop System F«.q in Section 3. We then discuss how type
polymorphism can interact with qualifier polymorphism in Section 5 to justify our design choices.
We then re-examine a selection of other qualifier systems in light of our observations developed in
our free lattice-based subqualification recipe in Section 6 to see how their subqualification rules fit
in our free lattice based design recipe. Finally, we close with a discussion of related and potential
future work in Section 7.

Our soundness proofs are mechanized in the Coq proof assistant; details are discussed in Section 4.

2 QUALIFIED TYPE SYSTEMS

In this section, we introduce System F<.q, a simple calculus with support for qualified types as well
as type- and qualifier polymorphism. We start off with a brief explanation of what type qualifiers
are (Subsection 2.1), introduce System F<.q (Subsection 2.3), and show that it satisfies the standard
soundness theorems (Subsection 2.6).

2.1 A Simply-Qualified Type System

As Foster et al. [1999] observes, type qualifiers induce a simple, yet highly useful form of subtyping
on qualified types. Consider a qualifier like const, which qualifies an existing type to be read-only.
It comes equipped with a dual qualifier mutable which qualifies an existing type to be mutable. The
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Qualifiers Description

Mutability; a mutable value can be used where an read-only value
mutable <: const is expected, regardless of whether or not it should [Boyland 2006].
A covariant qualifier, as mutable is often omitted.

Exception safety; a function which throws no exceptions can be
noexcept <: throws called anywhere a function which throws could. A contravariant
qualifier, as throws is often omitted. [Maurer 2015]

Synchronicity; a function which is synchronous and does not
suspend can be called in contexts where a function which is
asynchronous and suspends could. Covariant, as sync is assumed
by default.

sync <: async

Nullability; a value which is guaranteed not to be null can be
nonnull <: nullable used in a context which can deal with nullable values. Covariant,
in systems with this qualifier - most values ought not to be null.

Fig. 1. Examples of type qualifiers

type const Tis a supertype of mutable T, for all types T; a mutable value can be used wherever an
immutable value is expected. Other qualifier pairs induce a subtype, like noexcept and throws—it
is sound to use a function which throws no exception in a context which would handle exceptions.
Figure 1 provides an overview of some qualifiers and describes which invariants they model.

Often one of the two qualifiers is assumed by omission — for example mutable and throws
are often omitted; references are assumed to be mutable unless otherwise specified, and similarly
functions are assumed to possibly throw exceptions as well. Qualifiers like const, where the
smaller qualifier is omitted, are positive, or covariant; by example, const String is a supertype of
a unqualified String. Conversely, qualifiers like noexcept are negative, or contravariant; String
=> String noexcept is a subtype of String => String.

2.2 Qualifying a Language

The observation that qualifiers induce subtyping relationships allows language designers to seam-
lessly integrate support for type qualifiers into existing languages with subtyping. As Foster et al.
[1999] point out, these qualifiers embed into a qualifier lattice structure £, and they give a design
recipe for enriching an existing type system with support for type qualifiers.

(1) First, embed qualifiers into a lattice £. For example, const and mutable embed into a
two-point lattice, where const is T and mutable is L. Other example qualifiers (and their
embeddings) are described in Figure 1.

(2) Second, extend the type system so that it operates on qualified types — a pair {I} T where [ is
a qualifier lattice element and T a base type from the original system. This is done as follows:

(3) Embed qualifiers into the subtyping system. Typically, for two qualified types {/;} T; and
{l;} T, such that [; C I, and Ty <: T, one will add the subtyping rule {I;} T; <: {,} T5.

(4) Add rules for introducing qualifiers, typically in the introduction forms for typing values.

(5) Finally, augment the other typing rules, typically elimination forms, so that qualifiers are
properly accounted for. One may also additionally add an assertion rule for statically checking
qualifiers as well.
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2.3 (Higher-Rank) Qualifier Polymorphism

Foster’s original work allows one to add qualifiers to an existing type system. As we discussed
earlier, we want more, though:

(1) Qualifier Polymorphism: Certain functions ought to be polymorphic in the qualifiers
they expect. For example, from our introduction, we should be able to express a substring
function which is polymorphic in the mutability of the string passed to it. While this is easy
enough, as Foster et al. [1999] shows, the interaction of lattice operations with qualifier
variables is not so easy, as we discuss below.

(2) Merging Qualifiers: We often need to merge qualifiers when constructing more complicated
values. Merging is easy when working with a lattice; we can just take the lattice’s underlying
join (L) or meet (M) operation. But how do we reason about meets or joins of qualifier
variables? For example, in a noexcept qualifier system, we should be able to collapse the
qualifier on the result of a function like twice, which composes a function with itself, from
QLI Q to just Q; the result of twice throws if f throws or if f throws, which is namely just if f
throws.

def twicelA, QI(f: (A => A) Q): (A => A) Q = compose(f, f)

To achieve this, we need to extend qualifiers from just elements of a two-point lattice, as in
Foster et al. [1999], to formulas over lattices which can involve qualifier variables in addition to
elements of the original lattice. Moreover, we would like to relate these formulas as well. But how?

2.4 Free Lattices

As Whitman [1941] observed, there is a lattice which encodes these relations over these lattice
formulas, namely, the free lattice constructed over the original qualifier lattice. Free lattices capture
exactly the lattice formula inequalities that are true in every lattice. This is formally specified by the
following two definitions. Here, we use V, A, < in place of LI, 1, E to distinguish lattice formulas in

general from a lattice formula in a fixed, concrete lattice.

Definition 2.1. Let X be a set of variables. Then E(X), the set of lattice formulas generated by X,
is recursively defined by:

(1) If x € X then x € E(X).
(2) If fi € E(X) and f; € E(X) then fi A f € E(X).
(3) If fi € E(X) and f; € E(X) then fi V f, € E(X).

Definition 2.2. Let X be a set of variables. Then ¥ (X), the free lattice generated by X, is the lattice
over &(X) with ordering relation < where f;[X] < f;[X] for two formulas f; [X], f2[X] € F(X) if
and only if f;[X — L] C f;[X — L] in every lattice £ and instantiation L of the variables in X to
elements of £, up to equivalence modulo <.

For example, the inequality x A y < x would hold in the free lattice ¥ (x, y) as it is true in every
lattice but the inequality x < y would not hold, as there is a concrete lattice £ and instantiation of
x and y to elements of £ where x C y is not true — take £ to be the two element lattice ({0, 1}, <z),
x to be 1, and y to be 0; clearly 1 >z 0.

Now while Definition 2.2 defines the free lattice extrinsically by its universal property, it unfor-
tunately does not give a construction for the free lattice. However, it is folklore that the following
explicit construction gives rise to the free lattice as well.!

1Galatos [2023] and Negri and von Plato [2002] give algebraic and structural proofs of this result. Jipsen [2001] notes this
can also be viewed as a refomulation of Whitman [1941, Theorem 1]. Skolem [1920] however is probably responsible for the
original formulation of Theorem 2.3 though with transitivity as an additional rule (8).
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THEOREM 2.3 (FOLKLORE). F (X) is the lattice over (6(X)/<, <), where < is a binary relation over
&E(X) defined by:
(1) Foreveryx € X, x < x.
(2) Forevery fi, fo, 5 € 8(X), if f5 < fi then f5 < fi V fa.
(3) Forevery fi, f2, s € E(X), if f < fa then f3 < fi V fa.
(4) Forevery fi, fo, 5 € E6(X), if 5 < fiand fs < fo then i V fo < f.
(5) Forevery fi, fo, f5 € 6(X), if fi < fs then fi A f5 < f5.
(6) Forevery fi, fo, f3 € 8(X), if fo < f; then fi A fo < f5.
(7) For every fi, fo, s € E(X), if fs < fiand fs < f, then fs < fi A fi.

It should not be surprising to see free lattices here; as Dolan [2016, Chapter 3] observed, free
lattices can be used to model subtyping lattices with unions, intersections, and variables as well.
This allows us to generalize Foster et al. [1999]’s recipe for qualifying types. Instead of qualifying
types by elements of the qualifier lattice, we qualify types by elements of the free lattice generated
over that base qualifier lattice, and we support qualifier polymorphism explicitly with bounds,
following System F.., instead of implicitly at prenex position with constraints, as Foster et al. [1999]
do.

~— = — — — ~—

2.5 System F<q

We are now ready to present our recipe by constructing System F.q, a qualified extension of System
F<. with support for type qualifiers, polymorphism over type qualifiers, as well as meets (Q A R)
and joins (Q V R) over qualifiers. We start by constructing a simplified version of System F«.q which
models a free lattice over a two-point qualifier lattice to illustrate our recipe.

Assigning Qualifiers. In System F<.q, we qualify types with the free lattice generated over a base
two-point lattice with T and L, but provide no interpretation of T and L as System F<.q is only a
base calculus.

Syntax. Figure 2 presents the syntax of System F<.q, with additions over System F. highlighted
in grey. Type qualifiers Q include not only T and L as in Foster et al. [1999]’s original system.
Here, in addition, we support qualifier variables Y, as well as meets and joins over qualifiers. Type
variables support polymorphism over unqualified types. To support qualifier polymorphism, we add
a new qualifier for-all form V(Y <: Q).T. Similarly, on the term-level, we add qualifier abstraction
A(Y <: Q)p.t and qualifier application s{Q}.

Values and Qualifiers. To ensure that qualifiers have some runtime semantics in our base calculus,
we tag values with a qualifier expression P denoting the qualifier that value should be typed at
and we add support for asserting as well as upcasting qualifier tags, following Foster et al. [1999,
Section 2.2]. For example, the value A(x : Int)tx would represent the integer identity function
qualified at T.

While System F<.q does not provide a default tag for values, negative (or contravariant) qualifiers
like noexcept would inform a default qualifier tag choice of T — by default, functions are assumed
to throw — and positive (or covariant) qualifiers like const would inform a default qualifier tag
choice of L — by default, in mutable languages, values should be mutable. Put simply, the default
value tag should correspond to the default, omitted, qualifier.

Semantics. The evaluation rules of System F<.q (defined in Figure 3) are largely unchanged from
System F<.. To support qualifier polymorphism, we add the rule (BETa-Q) for reducing applications
of a qualifier abstraction to a type qualifier expression. Finally, to ensure that qualifiers have some
runtime semantics even in our base calculus, we add the rules (urQuaL) and (ASSERT) for asserting
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st u= Terms
| A(x)p.t term abstraction
| x term variable S = Simple Types
| s(t) application | T top type
| A(X <: S)p.t  type abstraction | T —-T, function type
| A(Y <: Q)p.t  qualifier abstraction | X type variable
| S[S] type application | V(X <:8).T for-a.ll type
| {0} qualifier application | V(Y <: Q).T qualifier for-all type
| upqual Qs qualifier upcast [ Qualified Types
| assertQs qualifier assertion | {Q}s qualified type
P,O,R = Qualifiers
r o= Environment | T, L Top and bottom
| . empty | Y Qualifier variables
| I x:T term binding | QAR|QVR Meetsand joins
| T,X<:S type binding
| I, Y<:Q qualifier binding
0 = Values C Concrete Qualifiers
| AMx)p.t Tor Ll two-point lattice elements
| AX <: S)p.t Lattice facts reminder: L C 1, L C T, and
| A(Y <: Q)p.t TCT.TNC=C,TUC=T,LMNC=1,and

LucC==cC.

Fig. 2. The syntax of System F<.q. Qualified differences to System F<. highlighted in grey .

and upcasting qualifier tags: they coerce qualifier expressions to concrete qualifiers when possible
and ensure that the concrete qualifiers are compatible before successfully reducing.

Subqualification. Next we show how simple subqualification extends from a extends from a lattice
inequality in a base lattice (like how noexcept <: throws) to a lattice inequality in a free lattice.
Figure 4 captures this free lattice structure of the qualifiers of System F<.q with a subqualification
judgment I' - Q <: R to make precise the partial order between two lattice formulas in a free lattice,
though slightly modified to support upper bounds on variables. This basic structure should appear
familiar—it is a simplified subtyping lattice. It should not be surprising that this construction gives
rise to the free lattice, though we make this property explicit in supplementary material. One can
use this structure to deduce desirable subqualification judgments; for example, in an environment
I=[X<:AY<:BA<: T,B<: T], we can show that X V Y <: AV B, using the following rule
applications.

X <: AV Bby (sQ-JOIN-INTRO-1)
Y <: AV B by (SQ-JOIN-INTRO-2)
X VY <: AV Bby (SQ-JOIN-ELIM)

Subtyping. System F«.q inherits most of its rules for subtyping from System F<., with two changes
made (Figure 5). The additional rule (suB-QaLr) handles subtyping for qualifier abstractions, and
rule (suB-QTYPE) handles subtyping for qualified types. A qualified type {Q;} S; is a subtype of
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5= tJand[eval 0]

(Ax)p.t)(s) — t[x > s] (BETA-V)
s — t
(AX<: S)p.t)[S] — t[X+— 5] (BETA-T) —— (CONTEXT)
E[s] — E[t]
A(Y<: QpH{Q'} — t[Y = Q]  (BETA-Q) E := Evaluation Context
. |
v tagged with P eval(P) C eval(Q) (uPovAL) | E(t) | o(E)
upqual Qv —> o retagged with Q | E[S]]|E[Q]
| upqualPE
v tagged with P eval(P) C eval(Q) | assertPE
(ASSERT)
assertPo — v
eval(P) == Partial Qualifier Evaluation
| C = C
|PAR => eval(P)meval(R)
|PVR => eval(P)Ueval(R)
| _ => nothing, otherwise.

Fig. 3. Reduction rules for System F<.q

Subqualification for System F<.q

r+Q0<: 7T (s@-ToP)
rr1<:Q (s@-BOT)
'k Q <: R1
——————— (SQ-JOIN-INTRO-1)
F'-Q<:R VR,
'k Q <: Ry

———— (SQ-JOIN-INTRO-2
1"#Q<:R1VR2(QJ )
FI—R1<:Q Fl—R2<2Q

T'FR{ VR, <: Q
(SQ-JOIN-ELIM)

Tk R1 <: Q
(SQ-MEET-ELIM-1)

TFR AR <: O
FFR2<:Q

—————— (SQ-MEET-ELIM-2)
T'FRIAR<: Q

TrQ<:R TrO<:R

TFO<:R ARy
(SQ-MEET-INTRO)

Y<:QeT T'rQ<:R

SQ-VAR
TrY<:R (s )
Y<:Qe€eT ( )
_— SQO-REFL-VAR
TrY<:Y Q

Fig. 4. Subqualification rules of System F<.q.

another qualified type {Q2} S, only if the qualifiers are in a subqualification relationship Q; <: Q,,

and the simple types are as well: S; <: S,.
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Subtyping for System F<.q

FreS<: T (suB-ToP)

XeTl

——— (SUB-REFL-SVAR)
r-|X<: X

X<:51€F r|—51<:52
T'rX<:8,

(SUB-SVAR)

FI—Q1<:Q2 T'r5<: 5,
LFA{O1} 51 <: {Q2} S2

(SUB-QTYPE)

I“I—51<:SlandI“I—T1<:T2‘

T'rT,<: Ty '+ < T,
I'rth-G<:T, -1,

(SuB-ARROW)

Fl—52<251 r,X<252|—T1<1T2

Tk V(X <: S]).T] <: V(X <: Sz).TZ
(suB-ALL)

FI—Q2<:Q1 F,Y<:Q2|-T1<ZT2

TFY(Y<: Q)T <:V(Y<: Q)T
(suB-QALL)

Fig. 5. Subtyping rules of System F<.q.

Typing for System F«.q

x:TeTl

e — VAR
Trx:T (vaR)
Ix:T1+t:T5
(aBs)
TFA(x)pt:{P}T1 > T,
ILX<:Srt:T
It AX<:S)pt:{P}V(X<:5).T
(T-ABS)
LX<:S+t:T
TrHA(Y<:Q)pt:{P}V(Y<:0Q).T
(Q-ABs)

r+t:{Q}S FrrQ<:P
I'+assertPt:{Q}S

(TYP-ASSERT)

Tl—t:{Q}Tl—>T2 Trs: Ty
rl't(S)ZTz

(aprp)

IF+t:{Q}V(X<:9).T r-|5<:$S
THES]:T[X > 5]

(T-APP)

Frt:{R}V(Y<:Q).T TrrQ'<:Q
THi{Q'}: T[Y — Q']

(Q-app)

FFSIT] FFT1<IT2
Trs: T,

(suB)

rv+t:{0}S r-Q<:PpP

TYP-UPQUAL
T'rupqualPt:{P}S ( )

Fig. 6. Typing rules for System F<.q

All other rules remain unchanged, except that rules (SUB-ARROW), (SUB-ALL), and (SUB-QALL) are
updated to operate on qualified types T, instead of simple types S, wherever they are changed in
the source syntax (see Figure 2) to use qualified types T instead of simple types S.

Typing. Finally, Figure 6 defines the typing rules of System F<.q. The typing judgment assigns
qualified types T to expressions, and can be viewed as ' + t : {Q} S. As System F<.q does not
assign an interpretation to qualifiers, the introduction rules for typing values, (aBs), (T-ABs), and
(0-aBSs), simply introduce qualifiers by typing values with their tagged qualifier, and the elimination
rules remain unmodified. The only (new) elimination rules which deal with qualifiers are the new
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P,Q,R := Qualifiers in extended System F<.q
| l Base lattice elements [ € L
| Y Qualifier variables
| QAR|QVR Meetsand joins
C u= Concrete Qualifiers
| l Base lattice elements [ € L

Fig. 7. The syntax of System F<.q extended over a bounded lattice L. Differences to System F<.q highlighted
in grey .

rules (TYP-ASSERT) and (TYP-UPQUAL), which check that their argument is properly qualified. We
additionally add (Q-ABs) and (Q-APP) to support qualifier polymorphism. Besides these changes, the
typing rules immediately carry over from System F..

2.6 Metatheory

System F<.q satisfies the standard progress and preservation theorems.
THEOREM 2.4 (PRESERVATION). SupposeI' +s:T,ands — t. ThenT +t: T as well.
THEOREM 2.5 (PROGRESS). Suppose @ + s : T. Then eithers is a value, ors — t for some term t.

While System F<.q does not place any interpretation on qualifiers outside of upqual and assert,
such a system can already be useful. For one, the static type of a value will always be greater than
the tag annotated on it and this correspondence is preserved through reduction by preservation.
This property can already be used to enforce safety constraints. For example, as Foster et al. [1999]
point out, one can use a negative type qualifier sorted to distinguish between sorted and unsorted
lists. By default, most lists would be tagged at T, marking them as unsorted lists. A function like
merge, though, which merges two sorted lists into a third sorted list, would expect two L-tagged
lists, assert that they are actually L -tagged, and produce a L-tagged list as well. While this scheme
does not ensure that all 1-tagged lists are sorted, so long as programmers are careful to ensure
that they never construct explicitly L-tagged unsorted lists, they can ensure that functions which
expect sorted lists are actually passed sorted lists.

2.7 Generalizing Qualifiers to General Lattices

Qualifiers often come in more complicated lattices: for example, protection rings [Karger and Herbert
1984] induce a countable lattice, and combinations of binary qualifiers induce a product lattice.
Now, we show how we can tweak the recipe used to construct System F<.q for two-point lattices to
support general (countable, bounded) qualifier lattices L as well.

Syntax. The syntax changes needed to support this construction are listed in Figure 7. Lattice
elements are now generalized from T and L to elements [ from our base lattice L, but as L is
bounded, note that we still have distinguished elements T and L in L.

Subqualification. The subqualification changes needed to support this construction are listed
in Figure 8. These are exactly the rules needed to support the free lattice construction over any
arbitrary countable bounded lattice. Rule (sQ-L1rT) simply lifts the lattice order C that £ is equipped
with up to the free lattice order defined by the subqualification lattice. Rules (sQ-EVAL-ELIM) and
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Subqualification for System F<.q over a lattice £

Trr-Q0<:Q I'+tl=evalQ’ F'+I<:R

I'rQ<:R
L,l,e L LCl (SQ-EVAL-ELIM)
(sQ-LIFT)
Trh<:h IrQ<:1 Trl=evalQ’ TrQ <R
F'rQ<:R

(SQ-EVAL-INTRO)

Fig. 8. Extended sub-qualification rules for System F<.q.

(SQ-EVAL-INTRO) are a little more complicated, though, but are necessary in order to relate textual
meets and joins of elements of the base lattice L, like [; V I, to their actual meets and joins in
the qualifier lattice, [; U ;. We would expect that these two terms would be equivalent in the
subqualification lattice; namely, that " + [; V [, <: [; Ul; and that T + [y U [, <: [; V I,. However,
without the two evaluation rules (sQ-EVAL-ELIM) and (sQ-EVAL-INTRO), we would only be able to
conclude thatT' + I; V [, <: I LI [, but not the other desired inequality I' + [; L [, <: [; V I,.

To discharge this equivalence, (sQ-EVAL-ELIM) and (sQ-EVAL-INTRO) use eval to simplify qualifier
expressions. Again, it should not be surprising that this gives rise to the free lattice of extensions
of £, though we make this precise in the supplementary material.

Soundness. Like simple System F«.q, System F<.q extended over a bounded lattice £ also satisfies
the standard soundness theorems:

THEOREM 2.6 (PRESERVATION FOR EXTENDED SYSTEM F<.q). SupposeI' +s:T,ands — t. Then
I'+t:T aswell

THEOREM 2.7 (PROGRESS FOR EXTENDED SYSTEM F<.q). Suppose @ + s : T. Then either s is a value,
ors — t for some termt.

3 APPLICATIONS

Having introduced our design recipe by constructing System F<.q as a qualified extension of System
F<., we now study how our subqualification and polymorphism recipe can be reused in three
practical qualifier systems. For brevity, we will base our qualifier systems on System F<.q, as it
already provides rules and semantics for typing, subqualification and qualifier polymorphism,
which we modify below.

While each system has application-specific semantics tied to the interpretations of the qualifiers
we are now assigning, all three systems share the same common higher-rank polymorphism and
expressiveness at the qualifier level using free lattices as base System F«.q; in essence, expressiveness
and polymorphism come for free from base System F<. .

3.1 Reference Immutability

We start by examining one well-studied qualifier system, that of reference immutability [Huang
et al. 2012; Potanin et al. 2013; Tschantz and Ernst 2005]. In this setting, each (heap) reference can
be either mutable or immutable. An immutable reference cannot be used to mutate the value or any
other values transitively reached from it, so a value read through a readonly-qualified compound
object or reference is itself readonly as well.
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case class Box[XJ(var v: X)

def good(x : Box[Int]) = { x.v =5 }

def badl(y : readonly Box[Int]) = { y.v =7 }

def bad2(y : readonly Box[Box[Intl]l) = { y.v.v = 5 }

def access(z: readonly Box[Box[Int]]): readonly Box[Int] = { z.v }

For example, a reference immutability system would deem the function good to be well-typed
because it mutates the value of a Box through a mutable reference x. However, it would disallow
bad1 because it mutates the box through a read-only reference y. Moreover, it would also disallow
bad2 because it mutates the box referenced indirectly through the read-only reference y. This
can also be seen by looking at the access function, which returns a read-only reference of type
@readonly Box[Int] to the value of the box referenced by z.

Mutable and read-only references can coexist for the same value, so a read-only reference does
not itself guarantee that the value will not change through some other, mutable reference. This is in
contrast to the stronger guarantee of object immutability, which applies to values, and ensures that
a particular value does not change through any of the references to it [Potanin et al. 2013; Zibin
et al. 2007]. So, for example, we could create a cell with both a mutable and a readonly reference to
it, mutate the cell through the mutable reference, and read the updated value through the readonly
reference.

val mutable_ref = Box(10)

val readonly_ref: readonly Box[Int] = mutable_ref
good(mutable_ref)

println(readonly_ref.v) // prints 5

Reference immutability systems have long been studied in various contexts [Dort and Lhotak
2020; Gordon et al. 2012; Huang et al. 2012; Lee and Lhotak 2023; Tschantz and Ernst 2005; Zibin
et al. 2007]. Here, we show that we can reuse our recipe to model reference immutability in a setting
with higher rank polymorphism and subtyping over both qualifiers and ground types, in a calculus
System F«.gu.

Assigning Qualifiers. We need to define how qualifiers mutable and readonly are assigned to T
and L in System F<.qu. Since a mutable reference can always be used where a readonly reference
is expected, we assign mutable to L and readonly to T. This is reflected in Figure 9.

Syntax and Evaluation. Now we need to design syntax and reduction rules for references and
immutable references. We add support for references via box forms and we add rules for introducing
and eliminating boxes. A box reduces at runtime to some location [ in a store ¢ that maps locations
to values. Reduction now takes place over pairs of terms and stores (t, o):

(set-box! (box, 10) 5,[]) — (set-box! (box, 0x0001) 5, [0x0001 : 10])
—> (10, [0x0001 : 5])

To distinguish between mutable and immutable references (boxes), we reuse the qualifiers tagged
on values. Values with tags P that eval to L are mutable, whereas values with tags P that otherwise
evaluate to T are read-only. Writing to a box requires that it be mutable, or tagged at L. So the
following term gets stuck.

(set-box! (boxt 10) 5,[]) — (set-box! (box+ @x0001) 5, [0x0001 : 10])
—  gets stuck.
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S u= Types
st u= Terms T
| box S reference type
| boxp t reference cell P,Q,R = Qualifiers
| unbox s deferencing e as before, except:
| set-box! st reference update | readonly asT
| mutable as L
I Location o u= Store
st u= Runtime Terms | : empty
| boxp! runtime reference | o, l:v celll with valueo
v u= Runtime Values Y o= Store Environment
. I empty
| boxp | o, 1: T cell binding
Fig. 9. The syntax of System F<.qu.
Additional Evaluation Rules for System F«.qgu ‘ (s,0) — (t,0’)
l¢o l:veo eval(P)C L
(REF-STORE) ; -
(boxpov,o) —> (boxpl,(o,l:0)) (set-box! (boxpl)v’,0) — (v,0[l — V'])

(WRITE-REF)
l:veo v tagged with Q

(s,0) — (t.0’)

(unbox boxpl,g) — (vretaggedatP V Q,o) — (CONTEXT)
(DEREF) (E[s], o) — (E[t],0")
E = ... Evaluation Context
| boxp E
|  unbox E
|

set-box! E t | set-box! v E

Fig. 10. Reduction rules for System F<:qm

One can explicitly mark a value immutable by upqual-ing to T. The elimination form for reading
from a reference, (DEREF), ensures that a value read from a reference tagged readonly, or at T,
remains readonly. This is reflected in the updated operational semantics (Figure 10).

Typing. We now need to define new typing rules for reference forms and to possibly adjust
existing typing rules to account for our new runtime interpretation of qualifiers. For this system, we
only need to add typing rules, as shown in Figure 11. To ensure immutability safety, the standard
reference update elimination form (REF-UPDATE) is augmented to check that a reference can only
be written to if and only if it can be typed as mutable box. Finally, the standard reference read
elimination form (REF-ELIM) is augmented to enforce that the mutability of the value read from
a reference is joined with the mutability of the reference itself to ensure transitive immutability
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Additional Typing and Runtime Typing for System F<.gu X Xrt:TandT | 2 Fo
F|Srt:T [|Z+t:{0:1} box{Q:} S
(REF-INTRO) (REF-ELIM)
I'|XFboxpt:{P}boxT T'|Xrunboxt:{Q;VQ}S
[:TeX [Fs:{mutable } boxT Trt:T
(RUNTIME-REF-INTRO)
[ |3+ boxpl:{P}boxT [Fset-box!s ¢t:T

(REF-UPDATE)

dom(o) = dom(2) Viedom(Z), T |2+ o(l):2(])
I Xtro

(STORE)
Fig. 11. Typing rules for System F<.qu; notable changes highlighted in grey.

safety. Other than qualifiers, our construction is completely standard; we merely add a store ¢ and
a runtime store environment ¥ mapping store locations to types.

Metatheory. We can prove the standard soundness theorems without any special difficulty:

THEOREM 3.1 (PRESERVATION OF SYSTEM Fc.qu). Suppose (s,0) —> (t,0’). IfT | Z + o and
I'| 2+ s:T for some type T, then there is some environment extension ¥’ of ¥ such thatT' | ' + ¢’
andT | X v t:T.

THEOREM 3.2 (PROGRESS FOR SYSTEM Fc.qu). Suppose @ | X+ o and @ | 2+ s : T. Then eithers is
a value or there is some t and o’ such that {(s,c) —> (t,0’).

With only progress and preservation, we can already state something meaningful about the im-
mutability safety of System F<.ou: we know that well-typed programs will not get stuck trying to
write to a L-tagged reference.

Moreover, the typing rules, in particular (REF-ELIM), give us our desired transitive immutability
safety as well; values read from a T-tagged value will remain T-tagged and therefore read-only as
well. Finally, as qualifier tags only affect reduction by blocking reduction (that is, getting stuck), we
almost directly recover full immutability safety as well for free, by noting that references typed (by
subtyping) at readonly can be re-tagged at readonly as well without affecting reduction, assuming
the original program was well-typed.

3.2 Function Colouring

Function colouring [Nystrom 2015] is another qualifier system. In this setting, functions are
qualified with a kind that indicates a colour for each function, and there are restrictions on which
other functions a function can call depending on the colours of the callee and caller. For example,
noexcept and throws form a function colouring system—functions qualified noexcept can only
call functions qualified noexcept. Another instantiation of this problem is the use of the qualifiers
sync and async in asynchronous programming. async-qualified functions may call all functions
but sync-qualified functions may only call other sync-qualified functions.

Asynchronous functions are often used in languages like JavaScript to interact with external
resources that may take to respond. The program should not block waiting on a response. For
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example, we may have a function fetch which fetches the contents of a web page from a server as
a string.
def fetch(url: String): String = ??? // has type: (String => String) async

Function fetch is asynchronous as fetching a webpage takes time. So when we call fetch in
some function, we suspend and give up control flow to other parts of our program until the response
is ready, at which point control flow transfers back to our function.

val review = fetch("https://oopsla24.hotcrp.com/paper/73/")
// sends request to get review (F5!)

// transfers control flow to rest of program.
println(review)

// when review is ready, control flow transfers

// back here and we print it.

Polymorphism with function colours is known to be painful [Nystrom 2015]. Consider a higher-
order function map:

def map[X, YI(l: List[X], f: (X =>Y)) = 2?7
What should its colour be? Well, if we only called map with synchronous functions, like increment,
then it follows that map itself can be synchronous, as it performs no operations which can block
our program.

def increment(i: Int) = i + 1
map([1, 2, 3], increment) // returns [2, 3, 41, doesn't block.

However, what if we called map on fetch, for example, to fetch multiple websites?

val follow = ["https://plg.uwaterloo.ca/~e45lee", "https://plg.uwaterloo.ca/~
olhotak", "https://b-studios.de"]
val pages = map(follow, fetch) // returns contents of web pages; can block.

Here, map calls an asynchronous function, namely fetch, to fetch a list of web sites. This operation
is blocking, so it follows that map in this context has to be marked async as it performs operations
which can block our program. So what is the colour of map?

The answer is that the colour of a function like map depends on the function f it is applying.
Without a mechanism to express this dependency, such as colour polymorphism, functions like
map need to be implemented twice—once for an async-qualified f, and once for a sync-qualified f.

def map[X, Y, QI(l: List[XJ, f: Q (X =>Y)) : Y = 2?7
// has type [X, Y, Q] Q ((List[X], Q (X =>Y)) =>1Y)
Moreover, function colouring requires a mechanism for mixing colours! Consider function
composition:
def compose[A, B, CI(f: A => B, g: B => C) = (x) => g(f(x))
The colour of the result of compose needs to be the join of the colours of f and g. If either f or g
are asynchronous, then the result of compose is as well, but if both f and g are synchronous, then
so should be the result of composing them.
def compose[A, B, C, Q, RI(f: Q (A =>B), g: R (B =>2C)): {Q | R}y (A =>¢C) =
(x) => g(f(x))
We now show how our recipe can be used to construct System F«.qa, a calculus that enforces
these restrictions.

Assigning Qualifiers. Since a synchronous function can be called anywhere that an asynchronous
function could be, we assign the T qualifier to async and the L qualifier to sync.
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P,Q,R := Qualifiers
.. as before, except: f
| async (as T) async qualifier

= Evaluation Frames
barrier C  barrier

|
| sync (as L)  sync qualifier | argt argument
. | appo application
K ou= Evaluation Context | targ T type application
: j[f] K | qargQ qualifier application

Fig. 12. The syntax of System F<.qa.

Evaluation for System F¢ga ‘ (e,k) — (', k")

C < C; for all barrier C; frames on k evalP=C

(s(t),k) — (s,argt k) (coNG-APP) (v,app A(x)p.t :: k) —> (t[x > v],barrierC : k)

REDUCE-APP
(v,argt k) —> (t,appo :: k) (CONG-ARG) ( )

C < C; for all barrier C; frames on k evalP=C

(A(X <: S)p.t,targS’ = k) —> (¢[X > S'],barrierC = k)
(REDUCE-TAPP)

(s[S],xk) — (s, targs :: k) (CONG-TAPP)

(s{O},x) — (s,qargQ :: k) (CONG-QAPP)
C < C; for all barrier C; frames on k evalP=C

(A(Y <: Q)p.t,qargQ’ = k) —> (t[Y > Q’],barrierC : k)
(REDUCE-QAPP)

(v,barrier C : k) — (v,k) (BREAK-BARRIER)

Fig. 13. Operational Semantics (CK-style) for System F<.qa

Syntax. Figure 12 presents the modified syntax of System F<.qa. To keep track of the synchronicity
that a function term should run in, we reuse the tags already present in values. An example of an
asynchronous function term is A(x)async. x, and an example of a function that is polymorphic in
its qualifier is A(Y <: sync)async.A(f)y. f(1), describing a function that should run in the same
synchronicity context as its argument f.

Evaluation. To model synchronicity safety, Figure 13 describes the operational semantics of
System F<.qx using Felleisen and Friedman [1987]-style CK semantics, extended with special barrier
frames installed on the stack denoting the colour of the function that was called. When a function
is called, we place a barrier with the evaluated colour of the function itself; so a term like

(LappA(x) .x k) —> (l,barrier L : k)
placing a barrier marking a synchronus function on the stack.

Barriers are used to ensure that functions that are called are compatible with the rest of a stack;
namely, an asynchronous function can be called only if there are no barriers on the stack marked
synchronous. So a call that would place an asynchronous function above a synchronous function
on the stack:

((A(x)7.t) v,barrier LYy — (A(x)t.t),argo : barrier 1)
—  {(v,appA(x)r.t = barrier L)
—  gets stuck.

The other evaluation contexts are standard.
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Typing for System Fq.qa I [R¥Es:T

T R+t:{R}T1 - D Trs:Th

Ter (A-arp)
x:1 € .

(A-var) I |RFi(s): Ty
T|Rtx:T

T |[Rrt:{R}IV(X<:S).T TrS<:$

Ix: Ty |P Ft:Ty

(A-aBS) T |[R +i[S]:T[X 5]
I' | sync FA(x)p.t:{P} 1 —» T (A-T-APP)
ILX<:S |P+i:T I [REt:{R}IV(Y<:Q.T TrQ'<:Q
T | sync F A(X<: S)p.t: {P}V(X<: S).T T |R +t{Q'}:T[Y = Q']
(A-T-ABs) (A-Q-arp)
: <:
ILY<:Q |P rt:T [IRFs:hh Trhi<h (A-sUB)
T|Rrs:T
T | sync FA(Y<: Q)p.t:{P}V(Y<: Q).T
(A-Q-aBs) T|Rrs:T TFR<: Q
(A-SUB-EFF)
T|QFs: T

Fig. 14. Typing rules for System F<.ga

Typing. To guarantee soundness, Figure 14 endows the typing rules of System F«<. s with modified
rules for keeping track of the synchronicity context that a function needs. We extend the typing
rules with a colour context R to keep track of the synchronicity of the functions being called.
This colour context R is simply a qualifier expression, and is introduced by the introduction rules
for typing abstractions by lifting the qualifier tagged on those abstractions — see rules (A-ABs),
(A-1-ABS), and (A-Q-ABS). As creating an abstraction is effect free, the introduction forms (A-aBs),
(A-1-ABS), and (A-Q-ABs) can run in any colour context, in particular, at sync or L.

To ensure safety when applying functions in the elimination form (A-App), we check that the
colour context is compatible with the type of the function being called; subsumption in (A-SUB-EFF)
allows functions to run if the qualifiers do not exactly match but when the qualifier on the function
is subqualified by the colour context. The typing rules outside of manipulating the context R remain
otherwise unchanged.

Metatheory. With all this, we can state and prove progress and preservation for System F«.ga.

THEOREM 3.3 (PROGRESS OF SYSTEM F<.qn). Suppose (c, k) is a well-typed machine configuration.
Then either c is a value and k is the empty continuation, or there is a machine state (¢, k") that it
steps to.

THEOREM 3.4 (PRESERVATION OF SYSTEM F<.qn). Suppose {c, k) is a well-typed machine configura-
tion. Then if it steps to another configuration {(c¢’,x’), that configuration is also well-typed.

Note that progress and preservation guarantee meaningful safety properties about System F<.oa:
namely that an asynchronous function is never called above a synchronous function during evalua-
tion, as such a call would get stuck, by (REDUCE-APP).

Observations. System F<.qga can be used to model function colouring with other qualifiers as
well; for example, we could model colours noexcept and throws by assigning noexcept to L and
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throws to T; (REDUCE-APP) would ensure that a function which could throw cannot be called if
any function on the call stack is qualified at noexcept. More interestingly, System F<.ga could be
viewed as a simple effect system; the synchronicity context R can be seen as the effect of a term! We
discuss this curious connection between qualifiers and effects in Section 7.3.

3.3 Tracking Capture

Finally, our design recipe can be remixed to construct a qualifier system to qualify values based on
what they capture. Some base values are meaningful and should be tracked, and other values are
forgettable.

Motivation. One application of such a system is the effects-as-capabilities discipline [Dennis and
Van Horn 1966], which enables reasoning about which code can perform side effects by simply
tracking capabilities, special values that grant the holder the ability to perform side effects, such as
the ability to perform I/O or the ability to throw an exception.

What to track? Suppose, for example, that we have a base capability named pandora, which
allows its holder to produce arbitrary values. Such a precious value really ought to be tracked and
not forgotten, as in the hands of the wrong user, it can perform dangerous side effects!

val pandora : {tracked} [A] (Unit => A) = ?72?

However, it is not only pandora itself that is dangerous. Actors that capture pandora can themselves
cause dangerous side effects. For example, some values should never be generated [Aaronson 2002]:

def takeOverTheWorld(): Unit = {
val powerful_proof = pandoral[P_equals_NP_proof]()
powerful_proof.use()

} // pandora is captured by takeOverTheWorld.

In general, values that capture meaningful values—capabilities—become meaningful themselves,
since they can perform side effects, so they should also be tracked. Now, while it is clear that
pandora and takeOverTheWorld are both dangerous, they are dangerous for different reasons:
pandora because it intrinsically is and takeOverTheWorld because it captures pandora.

Distinguishing Capabilities. In practical applications, we may wish to distinguish between differ-
ent effects, modelled by different capabilities. For example, we may wish to reason about a more
pedestrian side effect — printing — separately from the great evil that pandora can perform. It is
reasonable to expect that we can print in more contexts than we can use the pandora.

val print : {tracked} String => Unit = ?2?

def helloWorld() = print("Hello_World!") // tracked as it captures print
def runCodeThatCanPrint(f: ??? () => Unit) = f()

runCodeThatCanPrint (helloWorld) // OK

runCodeThatCanPrint (takeOverTheWorld) // Should be forbidden

In this example, function runCodeThatCanPrint only accepts thunks that print as a side effect.
What type annotation should we give to its argument f? In particular, what qualifier should we
use to fill in the blank? It should not be tracked, as otherwise we could pass takeOverTheWorld
to runCodeThatCanPrint — an operation which should be disallowed. Instead we would like to
fill that blank with print; to denote that runCodeThatCanPrint can accept any thunk which is
no more dangerous than print itself. Figure 15 summarizes the different variables in the above
examples and the qualifiers we would like to assign to their types.

As Boruch-Gruszecki et al. [2023]; Odersky et al. [2021] show, such a capture tracking system
could be used to guarantee desirable and important safety invariants. They model capture tracking
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Term Qualifier Reason
pandora tracked As pandora is a base capability.
print tracked As print is a base capability.

As takeOverTheWorld is no more danger-

TheWorl
takeOverTheWorld pandora ous than pandora.

As helloWorld is no more dangerous than

helloWorld print .
print.

Fig. 15. Qualifier assignments in Capture Tracking

Evaluation:
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TH(x: D) > B<:(x:T) > T
(C-suB-ARROW)

Fig. 16. Evaluation, Syntax, Subtyping for System F<.qc

using sets of variables, but a set is just a lattice join of the singletons in that set! For example,
Boruch-Gruszecki et al. [2023] would give the following evil_monologue? function the capture
set annotation {takeOverTheWorld, print}, while we would give it the qualifier annotation
{takeOverTheWorld | print}.

def evil_monologue(): Unit = {
print("I_expect_you_to_die_in_polynomial_time,_Mr._Bond.")
takeOverTheWorld ()

3

Using this insight, we can model capture tracking as an extension System F«<.qc of System F<.q.

Assigning Qualifiers. We attach a qualifier tracked to types, denoting which values we should
keep track of. The qualifier tracked induces a two-point lattice, where tracked is at T, and values
that should not be tracked, or should be forgotten, are qualified at L. Base capabilities will be given
the tracked qualifier.

2Scene from James Bond: The Travelling Salesman.
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Typing for System F<.qc
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IF'rA(Y<: Q)p.t : {P}V(Y<: Q).T
(C-0-ABS)

Fig. 17. Typing rules for System F<.qc

Syntax — Tracking Variables. Figure 16 defines the syntax of System F.qc. To reflect the underlying
term-variable-based nature of capture tracking, term bindings in System F«.qc introduce both a
term variable in term position as well as a qualifier variable in qualifier position with the same
name as the term variable.

Term bindings now serve double duty introducing both term variables and qualifier variables,
so a term like the identity function A(x), .x would be given the type {L} (x : {Q} S) — {x} Sto
indicate that it is not tracked but the result might be tracked depending on whether or not its
argument x is tracked as well. This still induces a free lattice structure generated over the two-point
lattice that tracked induces, except in this case, the free lattice includes both qualifier variables
introduced by qualifier binders in addition to qualifier variables introduced by term binders as well.
As term binders introduce both a term and qualifier variable, term application in System F<.qc now
requires a qualifier argument to be substituted for that variable in qualifier position. As such, term
application in System F<.qc now has three arguments s{Q}(¢) — a function s, a qualifier Q, and
an argument t; see Figure 16. In this sense, term abstractions in System F<.qc can be viewed as a
combination of a qualifier abstraction A[x <: Q] followed by a term abstraction A(x : {x} T).

Subqualification. One essential change is that we need to adjust subqualification to account
for qualifier variables bound by term binders in addition to qualifier variables bound by qualifier
binders. These changes are the addition of two new rules, (SQ-REFL-TVAR) and (SQ-TVAR). Rule (sQ-
REFL-TVAR) accounts for reflexivity in System F<.qc’s adjusted subqualification judgment. (SQ-TVAR)
accounts for subqualification for qualifier variables bound by term binders, and formalizes this
notion of less dangerous we discussed earlier—that takeOverTheWorld can be used in a context
that allows the use of pandora, and that helloWorld can be used in a context that allows the use
of print. Interestingly, though, if we squint at (sQ-TVAR) carefully, glossing over the text in faint
gray, we observe that it is just a close duplicate of the existing subqualification rule for qualifier
variables, (sQ-VAR)!

takeOverTheWorld : pandora el T + pandora <: pandora

I' + takeOverTheWorld <: pandora
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Subtyping. As function binders introduce a qualifier variable, so do function types as well; for
example, x in (x : {Q} S) — {x} S. Subtyping needs to account for this bound qualifier variable;
see (C-SUB-ARROW).

Typing. Values are now qualified with the free variables that they close over (i.e., that they
capture). To ensure this is faithfully reflected in the value itself, we check that the tag on the value
super-qualifies the free variables that value captures. This is reflected in the modified typing rules
for typing abstractions: (C-aBs), (C-T-aBs), and (C-Q-ABs). The only other apparent changes are in
the rules for term application typing and variable typing. While those rules look different, they
reflect how term abstractions are a combination of qualifier and term abstractions, and in that
setting are no different than the standard rules for typing term variables, term application, and
qualifier application! These changes to the typing rules are reflected in Figure 17.

Soundness. Again, we can prove the standard soundness theorems for System F«.qc, using similar
techniques as Lee et al. [2023].

THEOREM 3.5 (PRESERVATION FOR SYSTEM F<.qc). Suppose' +s:T,ands — t. ThenT' v+t :T
as well.

THEOREM 3.6 (PROGRESS FOR SYSTEM F<.qc). Suppose @ s : T. Either s is a value, ors — t for
some term t.

In addition, we recover a prediction lemma [Boruch-Gruszecki et al. 2023; Odersky et al. 2021]
relating how the free variables of values relate to the qualifier annotated on their types; in essence,
that the qualifier given on the type contains the free variables present in the value v.

LEmMA 3.7 (CAPTURE PREDICTION FOR SYSTEM F<.qc). LetI' be an environment and v be a value
such thatT +v:{Q}S. ThenT + {\/yefv(z,) y} <: Q.

4 MECHANIZATION

The mechanization of System F<.q (from Section 2.3), its derived calculi, System F<.qu, System F<.qa,
and System F<.qc, (from Section 3), and extended System F«.q (from Section 2.7), is derived from
the mechanization of System F<. by Aydemir et al. [2008], with some inspiration taken from the
mechanization of Lee et al. [2023] and Lee and Lhotak [2023]. All lemmas and theorems stated in
this paper regarding these calculi have been formally mechanized, though our proofs relating the
subqualification structure to free lattices are only proven in text, as we have found Coq’s tooling
for universal algebra lacking. Additionally, we give a mechanized proof of the crux of Theorem 2.3;
namely, that < is reflexive and transitive, similar to Negri and von Plato [2002]’s paper proof,
though we note that Galatos [2023] independently give a direct, algebraic proof of this result as
well.

5 TYPE POLYMORPHISM AND QUALIFIER POLYMORPHISM

We chose to model polymorphism separately for qualifiers and simple types. We introduced a
third binder, qualifier abstraction, for enabling polymorphism over type qualifiers, orthogonal to
simple type polymorphism. An alternate approach one could take to design a language which needs
to model polymorphism over type qualifiers is to have type variables range over qualified types,
that is, types like mutable Box[Int] as well as const Box[Int]. This approach can been seen in
systems like Lee and Lhotak [2023]; Tschantz and Ernst [2005]; Zibin et al. [2010]. However, it also
comes with its difficulties: how do we formally interpret repeated applications of type qualifiers,
for example, with a generic inplace_map which maps a function over a reference cell?
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case class Box[XJ(var elem: X)

// Is this well formed?

def inplace_map[XJ(r: mutable Box[X], f: const X => X): Unit = {
r.elem = f(r.elem);

}

What should it mean if inplace_map is applied on a Box[const Box[Int]]? Then inplace_map
would expect a function f with type (const (const Box[Int])) => const Box[Int]. While our
intuition would tell us that const (const Box[Int]) isreally justa const Box[Int], discharging
this equivalence in a proof is not so clear. Many systems, like those of Zibin et al. [2007] and
Tschantz and Ernst [2005], sidestep this issue by explicitly preventing type variables from being
further qualified, but this approach prevents functions like inplace_map from being expressed at
all. Another approach, taken by Lee and Lhotak [2023], is to show that these equivalences can be
discharged through subtyping rules which normalize equivalent types. However, their approach
led to complexities in their proof of soundness and it is unclear if their system admits algorithmic
subtyping rules.

Our proposed approach, while verbose, avoids all these complexities by explicitly keeping simple
type polymorphism separate from type qualifier polymorphism. We would write inplace_map as:

case class Box[Q, XJ(var elem: Q X)
def inplace_map[Q, XJ(r: mutable Box[{Q} XJ], f: const X => Q X): Unit = {
r.elem = f(r.elem);

}

Moreover, we can desugar qualified type polymorphism into a combination of simple type polymor-
phism and type qualifier polymorphism. We can treat a qualified type binder in surface syntax as a
pair of simple type and type qualifier binders, and have qualified type variables play double duty as
simple type variables and type qualifier variables, as seen in qualifier systems like Wei et al. [2024].
So our original version of inplace_map could desugar as follows:

def inplace_map[XJ(r: mutable Box[X], f: const X => X): Unit = {
r.elem = f(r.elem);

} // original

def inplace_map[Xq, XsJ(r: mutable Box[{Xg} Xs], f: const Xs => Xs): Unit = {
r.elem = f(r.elem);

} // desugared ==> X splits into Xgq and Xs

One problem remains for the language designer, however: how do type qualifiers interact with
qualified type variables? In our above example, we chose to have the new qualifier annotation const
X strip away any existing type qualifier on X; this is the approach that the Checker Framework
takes [Papi et al. 2008]. Alternatively, we could instead merge the qualifiers together:

def inplace_map[Xq, XsJ(r: mutable Box[{Xg} Xs1, f: {const | Xgq} Xs => Xs):
Unit =

r.elem = f(r.elem);
} // desugared ==> X splits into Xq and Xs

6 REVISITING QUALIFIER SYSTEMS

Free lattices have been known by mathematicians since Whitman’s time as the proper algebraic
structure for modelling lattice inequalities with free variables. Here, we revisit some existing
qualifier systems to examine how their qualifier structure compares to the structure we present
with the free lattice of qualifiers.
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A Theory of Type Qualifiers. The original work of Foster et al. [1999] introduced the notion
of type qualifiers and gave a system for ML-style let polymorphism using a variant of HM(X)
constraint-based type inference [Odersky et al. 1999]. Qualifier-polymorphic types in Foster’s
polymorphic qualifier system are a type scheme VY /C.T for some vector of qualifier variables Y
used in qualified type T modulo qualifier ordering constraints in C, such as Y; <: Y,. However, in
their system, constraints cannot involve formulas with qualifier variables (e.g., X <: Y] A Y, is an
invalid constraint), nor are constraints expressible in their source syntax for qualifier-polymorphic
function terms.

While type qualifiers were only formalized with Foster et al.’s work, type qualifiers themselves
were already quite popular by then. For example, const and volatile were already in use in C at
that time [Kernighan and Ritchie 1988]. Additionally, the Clean programming language modelled
uniqueness as a type qualifier with support for polymorphism by constrained uniqueness schemes
by 1993 [Barendsen and Smetsers 1996]. The work on Clean predates Foster et al. [1999] and uses
different language (type attributes), but it is striking how Clean’s uniqueness schemes are essentially
Foster et al.’s type schemes but specialized to uniqueness as a type qualifier.

Qualifiers for Tracking Capture and Reachability. Our subqualification system was inspired by
the subcapturing system pioneered by Boruch-Gruszecki et al. [2023] for use in their capability
tracking system for Scala. They model sets of free variables coupled with operations for merging sets
together. Sets of variables are exactly joins of variables — the set {a, b, ¢} can be viewed as the lattice
formula aV bV c, and their set-merge substitution operator {a, b, c}[a — {d,e}] = {d, e, b, ¢}, is just
substitution for free lattice formulas - (aVbVc)[a— (dVe)] = (dVe) VbV c. With this translation
in mind, we can see that they model a free (join)-semilattice, and that their subcapturing rules
involving variables in sets are just translating what the lattice join would be into a set framework.

Independently, Wei et al. [2024] building off of Bao et al. [2021] recently developed a qualifier
system for tracking reachability using variable sets as well. Like Boruch-Gruszecki et al. [2023],
their subqualification system models a free join-semilattice, with one additional wrinkle. They
model a notion of set overlap respecting their subcapturing system as well as a notion of freshness
in their framework to ensure that the set of values reachable from a function are disjoint, or fresh,
from the set of values reachable from that function’s argument. While overlap exists only at the
metatheoretic level and does not exist in the qualifier annotations, it can be seen that their notion
of overlap is exactly what the lattice meet of their set-qualifiers would be when interpreted as
lattice terms. Additionally, while freshness unfortunately does not fit in the framework of a free
lattice, we conjecture that freshness can be modelled in a setting where lattices are extended with
complementation as well, such as in free complemented distributive lattices. They are currently
working on extending their system to work over free join-semilattice terms though.?

Boolean Formulas as Qualifiers. Madsen and van de Pol [2021] recently investigated modelling
nullability as a type qualifier. Types in their system comprise a scheme of type variables @ and
Boolean variables ,E over a pair of simple type S and Boolean formula (S, ¢), where values of a
qualified type (S, ¢) are nullable if and only if ¢ evaluates to true.* Boolean formulas form a
Boolean algebra, and Boolean algebras are just complemented distributive lattices, so Boolean

formulas over a set of variables ,B are just free complemented distributive lattices generated over
variables in f. In this sense, we can view Madsen and van de Pol [2021] as an ML-polymorphism

Shttps://github.com/TiarkRompf/reachability/tree/main/base/lambda_star_syntactic.
4Technically they model a triple (S, ¢, y) where y is another Boolean formula which evaluates to true if values of type
(S, ¢, y) are non-nullable.
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style extension of Foster et al. [1999] that solves the problem of encoding qualifier constraints: one
can just encode them using Boolean formulas.

Reference Immutability for C# [Gordon et al. 2012]. Of existing qualifier systems, the polymorphism
structure of Gordon et al. [2012] is closest to System F<.q. Polymorphism is possible over both
mutability qualifiers and simple types in Gordon’s system, but must be done separately, as in System
F<.q- The inplace_map function that we discussed earlier would be expressed with both a simple
type variable as well as with a qualifier variable:

def inplace_map[Q, XJI(r: mutable Box[{Q} X1, f: readonly X => {Q} X): Unit

Gordon’s system also allows for mutability qualifiers to be merged using an operator ~>. For
example, a polymorphic read function read could be written as the following in Gordon’s system:

def read[QR, QX, XJ(r: {QR} Box[{QX} XI): {QR ~> QX} X = r.f

Now, ~> acts as a restricted lattice join. Given two concrete mutability qualifiers C and D, C ~> D
will reduce to the lattice join of C and D. However, the only allowable judgment in Gordon’s system
for ~> when qualifier variables are present, say C ~> Y, is that it can be widened to readonly.

Reference Immutability for DOT [Dort and Lhotak 2020]. roDOT extends the calculus of Depen-
dent Object Types [Amin et al. 2016] with support for reference immutability. In their system,
immutability constraints are expressed through a type member field x.M of each object, where
x is mutable if and only if M < 1, and x is read-only if and only if M > T. As M is just a Scala
type member, M can consist of anything a Scala type could consist of, but typically it consists of
type meets and type joins of T, L, type variables Y, and the mutability members y.M of other Scala
objects y.

While this may seem odd, we can view M as a type qualifier member field of its containing
object x; the meets and joins in roDOT’s subtyping lattice for M correspond to meets and joins in
System F«.q’s subqualification lattice. In this sense, we can view type polymorphism in roDOT as a
combination of polymorphism over simple types and type qualifiers in System F<.q. A type T in
roDOT breaks down into a pair of a simple type T \ M - T without its mutability member M, and
M itself. This provides an alternate encoding of the free lattice of qualifiers using the free lattices
of types under subtyping.

Qualifiers as Types. A similar strategy for encoding the free lattice structure of qualifiers in the
subtyping lattice can also be seen in Osvald et al. [2016]; Xhebraj et al. [2022]; Zhao [2023]. Instead
of encoding the type as a object member, they instead encode it using a combination of generic type
parameters and Scala annotations on types. Concretely, for an object y with type T, instead of using
y.M to encode the locality/mutability of an object y, they instead annotate y’s type T with a Scala
annotation T @local/@mut[M] parameterized by type M to denote that y has locality/mutability
M.

7 RELATED AND FUTURE WORK
7.1 Languages with Type Qualifier Systems

Rust. The Rust community is currently investigating approaches [Wuyts et al. 2022] for adding
qualifiers to Rust. Their current proposal is to generalize the notion of qualified types from being
a pair of one qualifier and base type to be a tuple of qualifiers coupled to a base type. Qualifier
abstractions are keyed with the kind of qualifier (const, async, etc, ...) they abstract over.

For example, the following is a function read_to_string that is polymorphic in the synchronicity
of its reader argument; async<A> binds the synchronicity qualifier argument A in addition to
annotating the type of read_to_string with that synchronicity A.
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async<A> fn read_to_string(reader: &mut impl Read * A)
-> std::io::Result<String> { ... }

This is easy to see sound using similar ideas to our proof of simplified System F<.q. One would
extend simple System F<.q with a binder for each qualifier category instead of using the product
lattice in extended System F<.q. However this proposal has proven controversial due to its syntactic
overhead.

OCaml. The OCaml community [Slater 2023] is investigating adding modes to types for tracking
properties like uniqueness, locality, and linearity, amongst others; these modes are essentially type
qualifiers. They aim to leverage these modes to prevent safety issues from arising from data races
in multithreaded OCaml code.

Pony. Pony’s reference capabilities [Clebsch et al. 2015] are essentially type qualifiers on base
types that qualify how values may be shared or used. Pony has qualifiers for various forms of
uniqueness, linearity, and ownership properties. While Pony has bounded polymorphism over
qualified types, Pony does not allow type variables to be requalified, nor does it have polymorphism
over qualifiers.

7.2 Implementing Type Qualifiers

The Checker Framework [Dietl et al. 2011; Papi et al. 2008] is an extensible framework for adding
user-defined type qualifiers to Java’s type system. The Checker Framework generally allows for
qualifying type variables with qualifiers, but in their system, there is no relationship between a
type variable X and a qualified type variable Q X. Re-qualifying a type variable strips any existing
conflicting qualifier from that type variable and what it is instantiated with. The Checker Framework
has also been used to model effect systems as well: [Gordon et al. 2013].

7.3 Effect Systems

Effect systems are closely related to type qualifiers. Traditionally, effect annotations are used to
describe properties of computation, whereas type qualifiers are used to describe properties of data. In
the presence of first-class functions, this distinction is often blurred; for example, modern C++ refers
to noexcept as a type qualifier on function types [Maurer 2015], whereas traditionally it would be
viewed as an effect annotation. In contrast to type qualifiers, both effect polymorphism [Lucassen
and Gifford 1988] and the lattice structure of effects [Rytz et al. 2012] are well-studied. However, the
interaction of effect polymorphism with subtyping and sub-effecting remains understudied.

Many effect systems use row polymorphism to handle polymorphic effect variables with a re-
stricted form of sub-effecting by subsets [Leijen 2014]. As for Rytz et al. [2012], they present a
lightweight framework with no effect variables. Formal systems studying sub-effecting respecting
effect bounds on effect variables remain rare, despite Java’s exception system being just that [Gosling
et al. 2014, Section 8.4.8.3]. Curiously, the two extant formal effect systems with these features share
much in common with well-known qualifier systems. For example, the sub-effecting system Leijen
and Tate [2010] can be viewed as a variant of the lattice-based subqualification system of Foster et al.
[1999] with HM(X)-style polymorphism. More interestingly, the novel Indirect-Calle rule of Gariano
et al. [2019], the reachability rule of Wei et al. [2024], and the subcapturing rule of Boruch-Gruszecki
et al. [2023] all model subqualification in a free join-semilattice (of effects). In light of all these
similarities, and of recent work modelling effect systems with Boolean formulas [Lutze et al. 2023],
we conjecture that a system modelling free distributive complemented lattices could be used to
present a unifying treatment of both effects and qualifiers in the presence of subtyping, subeffecting,
and subqualification.
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7.4 Boolean Algebras and Subtyping

The work of Madsen and van de Pol [2021] on Boolean formula qualifier systems does not model
subtyping over qualified types (S, ¢); it would be sensible to say (S, ¢) <: (S,¢’) if ¢ = ¢’. They
conjecture that such a subtyping system would be sound. While we cannot answer this conjecture
definitively, as we only model free lattices, it would be interesting future work to extend our
framework and theirs to see if a system modelling free complemented distributive lattice systems
with subqualification is sound.

7.5 Algorithmic Subtyping

System F<.q’s subtyping rules are syntax-directed and admit algorithmic rules, but it is not so easy
to see if extended System F<.q admits algorithmic subtyping rules. The difficulty is that extended
System F<.q needs two new non-syntax directed rules (sQ-EVAL-ELIM) and (SQ-EVAL-INTRO) to
handle transitivity through base lattice elements. It remains an open question whether extended
System F<.q admits algorithmic subtyping rules. We conjecture that algorithmic subtyping rules
could exist for a particular instantiation of extended System F«.q to a fixed base qualifier lattice L.
Moreover, we think that whether or not algorithmic subtyping rules would exist could depend on
certain algebraic properties of L. For example, if £ is a product lattice for which each lattice in
the product admits algorithmic subtyping, then we think that algorithmic subtyping rules can be
written for £ as well.

7.6 Flow Sensitivity

Foster et al. [2002] extended the original work of Foster et al. [1999] with support for flow sensitivity
on type qualifiers. Even though flow sensitivity can be sometimes avoided, for example, with pattern
matching as Madsen and van de Pol [2021] show with nullable as a qualifier, flow sensitivity is
a natural addition to many qualifier systems. One often checks if a variable x is NULL with an if
statement, with x qualified nullable in the branch that fails the test and nonnull in the branch
that passes. We conjecture that the ideas that Foster et al. [2002] use to extend their system to
support flow sensitivity can also be used to add flow sensitivity to System F«.q. It would also be
interesting to investigate the underlying algebraic structure of the resulting system, especially in
light of recent work on flow sensitive effect systems by Gordon [2021].

8 CONCLUSION

In this paper, we presented a recipe for modelling higher-rank polymorphism, subtyping, and
subqualification in systems with type qualifiers by using the free lattice generated from an underlying
qualifier lattice. We show how a base calculus like System F<. can be extended using this structure
by constructing such an extension System F«.q, and we show how the recipe can be applied to
model three problems where type qualifiers are naturally suited—reference immutability, function
colouring, and capture tracking. We then re-examine existing qualifier systems to look at how free
lattices of qualifiers show up, even if only indirectly or in restricted form. We hope that this work
advances our understanding of the structure of polymorphism over type qualifiers.
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