Simple Reference Immutability for System F_{\triangleleft}:

EDWARD LEE, University of Waterloo, Canada
ONDŘEJ LHOTÁK, University of Waterloo, Canada

Reference immutability is a type based technique for taming mutation that has long been studied in the context of object-oriented languages, like Java. Recently, though, languages like Scala have blurred the lines between functional programming languages and object oriented programming languages. We explore how reference immutability interacts with features commonly found in these hybrid languages, in particular with higher-order functions – polymorphism – and subtyping. We construct a calculus System $F_{\triangleleft,M}$ which encodes a reference immutability system as a simple extension of System F_{\triangleleft} and prove that it satisfies the standard soundness and immutability safety properties.

CCS Concepts: • Software and its engineering → General programming languages; Compilers.

Additional Key Words and Phrases: System F_{\triangleleft}, Reference Immutability, Type Systems

ACM Reference Format:

1 INTRODUCTION

Code written in a pure, functional language is referentially transparent – it has no side effects and hence can be run multiple times to produce the same result. Reasoning about referentially transparent code is easier for both humans and computers. However, purely functional code can be hard to write and inefficient, so many functional languages contain impure language features.

One important side effect that is difficult to reason about is mutation of state. Mutation arises naturally, but can cause bugs which can be hard to untangle; for example, two modules which at first glance are completely unrelated may interact through some shared mutable variable. Taming – or controlling – where and how mutation can occur can reduce these issues.

One method of taming mutation is reference immutability [Huang et al. 2012; Tschantz and Ernst 2005]. In this setting, the type of each reference to a value can be either mutable or immutable. An immutable reference cannot be used to mutate the value or any other values transitively reached from it.

Mutable and immutable references can coexist for the same value, so an immutable reference does not guarantee that the value will not change through some other, mutable reference. This is in contrast to the stronger guarantee of object immutability, which applies to values, and ensures that a particular value does not change through any of the references to it.

Reference immutability has long been studied in existing object-oriented programming languages such as Java [Huang et al. 2012; Tschantz and Ernst 2005; Zibin et al. 2007] and C# [Gordon et al. 2012]. Recently work has been done to study reference immutability in the context of functional...
languages with impure fragments, in particular by Dort and Lhoták [2020], as many programs in impure functional languages tend not to mutate their data structures anyways [Haller and Axelsson 2017]. However, their work builds on a complex calculus, DOT, Amin et al. [2016], and their work is itself complex as well.

A simple system that formally enforces specified patterns of immutability in a functional base calculus would help programmers and compilers better reason about immutability in such programs. However, such a system can be hard to come by. Parametric polymorphism, a key feature in any language, is especially so in functional languages, and as we see later in Section 4.1 the interaction between immutability qualifiers and polymorphism raises issues that are not so easy to solve. What should the type @readonly X mean if the variable X is instantiated with @mutable String?

Our contribution to this area is a simple and sound treatment of reference immutability in System F<: [Cardelli et al. 1991]. Specifically, we formulate a simple extension System F<:M of System F<: with the following properties:

- **Immutability safety**: When dealing with reference immutability, one important property to show is immutability safety: showing that when a reference is given a read-only type, then the underlying value is not modified through that reference. In System F<:M we introduce a dynamic form of immutability, a term-level seal construct, which makes precise the runtime guarantees that we expect from a reference that is statically designated as immutable by the type system. We do this by formalizing System λM, an untyped calculus with references and seals. Dynamic seals are transitive in that they seal any new references that are read from a field of an object through a sealed reference.

- **System F<: -style polymorphism**: System F<:M preserves the same bounded-quantification structure of System F<:. At the same time, it allows type variables to be further modified by immutability modifiers.

- **Immutable types are types**: To allow for System F<: -style polymorphism, we need to treat immutable types as types themselves. To do so, instead of type qualifiers, we introduce a type operator readOnly that can be freely applied to existing types (including type variables). The readOnly operator turns a type into an immutable version of the same type. While this complicates the definition of subtyping and proofs of canonical forms lemmas, we resolve these issues by reducing types to a normal form.

Our hope is to enable reference immutability systems in functional languages by giving simple, sound foundations in System F<:, a calculus that underpins many practical functional programming languages.

The rest of this paper is organized as follows. In Section 2 we give an overview of reference immutability. In Section 3 we introduce an un-typed core calculus, System λM, to describe sealing and how it relates to reference immutability safety at run time. In Section 4 we present System F<:M, which enriches System λM with types, and show that it satisfies the standard soundness theorems. In Section 5 we use the soundness results from System F<:M and the dynamic safety results from System λM to show that our desired immutability safety properties hold in System F<:M. We survey related and possible future work in Section 7 and we conclude in Section 8.

Our development is mechanized in the Coq artifact that accompanies this paper.

2 REFERENCE IMMUTABILITY

Reference immutability at its core is concerned with two key ideas:

- **Immutable references**: References to values can be made immutable, so that the underlying value cannot be modified through that reference.
• **Transitive immutability:** An immutable reference to a *compound value* that contains other references cannot be used to obtain a mutable reference to another value. For example, if \(x \) is a read-only reference to a pair, the result of evaluating \(x\.\text{first} \) should be *viewpoint adapted* [Dietl et al. 2007] to be a read-only reference, even if the pair contains references that are otherwise mutable.

For example, consider the following snippet of Scala-like code that deals with polymorphic mutable pairs.

```scala
case class Pair[X](var first: X, var second: X)

def good(x: Pair[Int]) = { x.first = 5 }
def bad1(y: @readonly Pair[Int]) = { y.first = 7 }
def bad2(y: @readonly Pair[Pair[Int]]) = { y.first.first = 5 }
def access(z: @readonly Pair[Pair[Int]]): @readonly Pair[Int] = { z.first }
```

A reference immutability system would deem the function `good` to be well-typed because it mutates the pair through a mutable reference \(x \). However, it would disallow `bad1` because it mutates the pair through a read-only reference \(y \). Moreover, it would also disallow `bad2` because it mutates the pair referenced indirectly through the read-only reference \(y \). This can also be seen by looking at the `access` function, which returns a read-only reference of type `@readonly Pair[Int]` to the first component of the pair referenced by \(z \).

Now, immutable values are crucial even in impure functional programming languages because pure code is often easier to reason about. This benefits both the programmer writing the code, making debugging easier, and the compiler when applying optimizations.

Although most values, even in impure languages, are immutable by default [Haller and Axelsson 2017], mutable values are sometimes necessary for various reasons. For example, consider a compiler for a pure, functional, language. Such a compiler might be split into multiple passes, one that first builds and generates a symbol table of procedures during semantic analysis, and one that then uses that symbol table during code generation. For efficiency, we may wish to build both the table and the procedures in that table with an impure loop.

```scala
object analysis {
  class Procedure(name: String) {
    def addLocalProcedure(name: String, proc: Procedure) = {
      locals += (name -> proc)
    }
  }
  def analyze(ast: AST) = {
    ast.forEach((node) => ( table.add(node.name, new Procedure(\ldots) ) ))
  }
}
```

The symbol table and the properties of the procedure should not be mutable everywhere, though; during code generation, our compiler should be able to use the information in the table to generate code, but it shouldn’t be able to change the table nor the information in it! How do we enforce this, though?

One solution is to create an immutable copy of the symbol table for the code generator, but this can be fragile. A naive solution that merely clones the table itself will not suffice, for example:
object analysis {
 private val table[analysis] = ...
 def symbolTable : Map[String, Procedure] = table.toMap // create immutable copy of table.
}

object codegen {
 def go() = {
 analysis.symbolTable["main"].locals += ("bad" -> ...) // whoops...
 }
}

While this does create an immutable copy of the symbol table for the code generator, it does not create immutable copies of the procedures held in the table itself! We would need to recursively rebuild a new, immutable symbol table with new, immutable procedures to guarantee immutability, which can be expensive, both in terms of code size and in terms of running time.

Moreover, creating an immutable copy might not even work in all cases. Consider an interpreter for a pure, functional language with support for letrec $x := e$ in f. The environment in which e is interpreted contains a cyclic reference to x, which necessitates mutation in the interpreter. Without special tricks like lazyness, this sort of structure cannot be constructed, let alone copied, without mutation.

abstract class Value { }
typeEnv = Map[String, Value]
case class Closure(var env : Env, params : List[String], body : Exp) extends Value

def interpret_letrec(env : Env, x: String, e: Exp, f: Exp) : Value = {
 val v = interpret(env + (x -> Nothing), e)
 case v of {
 Closure(env, params, body) => v.env = v.env + (x -> v) // Update binding
 }
 interpret (env + (x -> v), f)
}

Here, the closure that v refers to needs to be mutable while it is being constructed, but since the underlying language is pure, it should be immutable afterwards. In particular, we should not be able to mutate the closure through the self-referential reference $v.env = env + (x -> v)$, nor should we be able to mutate the closure while interpreting f.

We would like a system that prevents writes to v from the self-referential binding in its environment and from the reference that we pass to interpret (env + (x -> v), f). This is what reference immutability provides.

abstract class Value { }
typeEnv = Map[String, @readonly Value]
case class Closure(env : var Env, params : List[String], body : Exp)

def interpret_letrec(env : Env, x: String, e: Exp, f: Exp) : Value = {
 val v = interpret(env + (x -> Nothing), e)
 case v of {
 Closure(env, params, body) => v.env = env + (x -> @readonly v) // Update binding
 }
 interpret (env + (x -> @readonly v), f)

3 Dynamic Immutability Safety

Now, to formalize reference immutability, we need to formalize exactly when references are used to update the values they refer to. For example, how do we check that the access function defined earlier does what it claims to do?

```plaintext
def access(z: @readonly Pair[Pair[Int]]) : @readonly Pair[Int] = { z.first }
```

How do we check that access returns a reference to z.first that, at runtime, is never used to write to z.first or any other values transitively reachable from it through other references? How do we even express this guarantee precisely?

If we consider a reference as a collection of getter and setter methods for the fields of the object it refers to, we could ensure that a reference is immutable by dropping all the setter methods. To ensure that immutability is transitive, we would also need to ensure that the result of applying a getter method is also immutable, i.e. by also dropping its setter methods and recursively applying the same modification to its getter methods. We will make this precise by introducing the System λ_M calculus with a notion of sealed references.

System λ_M is adapted from the CS-machine of Felleisen and Friedman [1987] and extended with rules for dealing with sealed references.

Sealed references: To address the question about dynamic, runtime safety – can we ensure that read-only references are never used to mutate values – references can be explicitly sealed so that any operation that will mutate the cell referenced will fail to evaluate; see Figure 1.

The `seal` form protects its result from writes. A term under a `seal` form reduces until it becomes a value. At that point, values that are not records, like functions and type abstractions, are just transparently passed through the `seal` construct. However, values that are – records – remain protected by the `seal` form, and do not reduce further. For example:

```plaintext
seal({y: 0x0001})
```

is an irreducible value – a sealed record where the first field is stored at location 1 in the store. Intuitively, this can be viewed as removing the setter methods from an object reference. A sealed reference `seal v` behaves exactly like its unsealed variant `v` except that writes to `seal v` are forbidden and reads from `seal v` return sealed results.

Rules that mutate the cells corresponding to a record explicitly require an unsealed open record; see (WRITE-FIELD). This ensures that any ill-behaved program that mutates a store cell through a sealed record will get stuck, while an unsealed record can have its fields updated:

```plaintext
\langle\{x: 10\}.x = 5, []\rangle \rightarrow \langle\{x: 0x0001\}.x = 5, [0x0001 : 10]\rangle
\rightarrow \langle 10, [0x0001 : 5]\rangle
```

A sealed record cannot have its fields written to. Unlike record field reads, for which there is a sealed (SEALED-FIELD) counterpart to the standard record read rule (FIELD), there is no corresponding rule for writing to a sealed record for (WRITE-FIELD). Recall that (WRITE-FIELD) requires an open, unsealed record as input:

```plaintext
l : v ∈ σ
\langle\ldots x : l \ldots, x = v', σ\rangle \rightarrow \langle v, σ[l \mapsto v']\rangle
```

The calculus does not contain any rule like the following, which would reduce writes on a sealed record:
\[
\begin{align*}
s, t & ::= \\
& | \lambda x.t \\
& | x \\
& | s(t) \\
& | \{f_1 : s_1, f_2 : s_2, \ldots\} \\
& | s.f \\
& | s.f = t \\
& | \seal s
\end{align*}
\]

Terms

- term abstraction \(s, t ::= \lambda x.t\)
- term variable \(x\)
- application \(s(t)\)
- records \(\{f_1 : s_1, f_2 : s_2, \ldots\}\)
- field read \(s.f\)
- field write \(s.f = t\)
- sealing \(\seal s\)

\[
\begin{align*}
(\lambda x.t)(\nu, \sigma) & \rightarrow \langle t[x \mapsto \nu], \sigma \rangle \text{ (beta-v)} \\
\{x_1 : v_1, \ldots\}, \sigma & \rightarrow \langle \{x_1 : l_1\}, (\sigma, l_1 : v_1, l_2 : v_2, \ldots) \rangle \text{ (record-store)} \\
\langle \ldots x : l \ldots \rangle, \sigma & \rightarrow \langle \nu, \sigma \rangle \text{ (field)} \\
\{\ldots x : l \ldots \}, x = \nu', \sigma & \rightarrow \langle \nu, \sigma[l \mapsto \nu'] \rangle \text{ (write-field)} \\
E & ::= \[] \mid E(t) \mid \nu(E) \\
& | \{x_0 : v_0, \ldots, x_i : E, x_{i+1} : t_{i+1}, \ldots\} \\
& | E.x \\
& | E.x = t \mid \nu.x \rightarrow E \\
& | \seal E
\end{align*}
\]

Evaluation Context

\[
l : \nu \in \sigma \\
\langle \seal \{\ldots x : l \ldots\}, x = \nu', \sigma \rangle \rightarrow \langle \nu, \sigma[l \mapsto \nu'] \rangle
\]

So a term like:
\[
\langle \seal \{x : 10\}, x = 5, [\] \rangle
\rightarrow \langle \seal \{x : 0x0001\}, x = 5, [0x0001 : 10] \rangle
\rightarrow \text{ gets stuck.}
\]

Dynamic viewpoint adaptation: After reading a field from a sealed record, the semantics seals that value, ensuring transitive safety – see (SEAL-FIELD).

\[
l : \nu \in \sigma \\
\langle \seal \{\ldots x : l \ldots\}, x = \nu', \sigma \rangle
\rightarrow \langle \seal \nu, \sigma \rangle
\]

For example:
\[
\langle \seal \{y : \{x : 10\}\}, y, [\] \rangle
\rightarrow \langle \seal \{y : \{x : 0x001\}\}, y, [0x001 : 10] \rangle
\rightarrow \langle \seal \{y : 0x002\}, y, [0x001 : 10, 0x002 : \{x : 0x001\}] \rangle
\rightarrow \langle \seal \{x : 0x001\}, [0x001 : 10, 0x002 : \{x : 0x001\}] \rangle
\]
Sealed references and dynamic viewpoint adaptation allow for a succinct guarantee of dynamic transitive immutability safety – that no value is ever mutated through a read-only reference or any other references transitively derived from it.

Aside from preventing writes through sealed references, we should show that sealing does not otherwise affect reduction. For this we need a definition that relates pairs of terms that are essentially equivalent except that one has more seals than the other.

Definition 3.1. Let s and t be two terms. We say $s \leq t$ if t can be obtained from s by repeatedly replacing sub-terms s' of s with sealed subterms $\text{seal } s'$.

This implies a similar definition for stores:

Definition 3.2. Let σ and σ' be two stores. We say $\sigma \leq \sigma'$ if and only if they have the same locations and for every location $l \in \sigma$, we have $\sigma(l) \leq \sigma'(l)$.

The following three lemmas formalize how reduction behaves for terms that are equivalent modulo seals. The first one is for a term t that is equivalent to a value – it states that if t reduces, the resulting term is still equivalent to the same value. It also shows that the resulting term has fewer seals than t, which we’ll need later for an inductive argument.

Definition 3.3. Let s be a term. Then $|s|$ is the number of seals in s.

Lemma 3.4. Let v be a value, σ_0 be a store, t be a term such that $v \leq t$, and σ_t be a store such that $\sigma_0 \leq \sigma_t$.

If $(t, \sigma_t) \rightarrow \langle t', \sigma_t' \rangle$ then $v \leq t'$, $\sigma_v \leq \sigma_t'$, and $|t'| < |t|$.

The next lemma is an analogue of Lemma 3.4 for terms. Given two equivalent terms s and t, if s steps to s' and t steps to t', then either s and t' are equivalent or s' and t' are equivalent. Moreover, again, to show that reduction in t is equivalent to reduction in s, we have that $|t'| < t$ if $s \leq t'$.

Lemma 3.5. Let s, t be terms such that $s \leq t$ and let σ_s, σ_t be stores such that $\sigma_s \leq \sigma_t$. If $(s, \sigma_s) \rightarrow \langle s', \sigma_s' \rangle$ and $(t, \sigma_t) \rightarrow \langle t', \sigma_t' \rangle$ then:

1. Either $s \leq t'$, $\sigma_s \leq \sigma_t'$, and $|t'| < |t|$, or
2. $s' \leq t'$ and $\sigma_s' \leq \sigma_t'$.

Together, Lemmas 3.4 and 3.5 relate how terms s and t reduce when they are equivalent modulo seals. Assuming that both s and t reduce, every step of s corresponds to finitely many steps of t, and they reduce to equivalent results as well. This shows that sealing is transparent when added onto references that are never written to, allowing for a succinct guarantee of immutability safety.

Finally, the last lemma states that erasing seals will never cause a term to get stuck. Seals can be safely erased without affecting reduction.

Lemma 3.6. Let s, t be terms such that $s \leq t$ and let σ_s, σ_t be stores such that $\sigma_s \leq \sigma_t$. If $(t, \sigma_t) \rightarrow \langle t', \sigma_t' \rangle$ then:

1. Either $s \leq t'$, $\sigma_s \leq \sigma_t'$, and $|t'| < |t|$, or
2. There exists s' and σ_s' such that $(s, \sigma_s) \rightarrow \langle s', \sigma_s' \rangle$, $s' \leq t'$ and $\sigma_s' \leq \sigma_t'$.

From this we can derive the following multi-step analogue, after observing the following lemma:

Lemma 3.7. If s is a term and v is a value such that $s \leq v$, then s is also a value.

Hence:

Lemma 3.8. Suppose s and t are terms such that $s \leq t$. If $(t, \sigma_t) \rightarrow^* \langle v_t, \sigma_t' \rangle$ for some value v_t, then for any $\sigma_s \leq \sigma_t$ we have $(s, \sigma_s) \rightarrow^* \langle v_s, \sigma_s' \rangle$ such that $v_s \leq v_t'$ and $\sigma_s' \leq \sigma_t'$.
Finally, it can be shown that the seals are to blame when two equivalent terms s and t reduce differently – in particular, when one reduces but the other gets stuck.

Lemma 3.9. Let s, t be terms such that $s \leq t$, and let σ_s, σ_t be stores such that $\sigma_s \leq \sigma_t$. If $(s, \sigma_s) \rightarrow (s', \sigma'_s)$ and t gets stuck, then the reduction performed on s was a write to a record using rule \textbf{(WRITE-\textsc{Field})}.

Proof. (Sketch) As s cannot further reduce, the evaluation context of s and t must match; there are no extraneous seals that need to be discharged. As such, from inspection of the reduction rules, we see that in all cases except for \textbf{(WRITE-\textsc{Field})}, for every possible reduction that s could have taken, there is a possible reduction that t could have taken as well, as desired. \qed

4 **Typing and Static Safety**

System λ_M provides a \textit{dynamic guarantee} that a given program will never modify its sealed references, but it does not provide any static guarantees about the dynamic behavior of a given program. To do that, we need a type system for System λ_M that will reject programs like $\text{access(seal Pair(3,5)).first} = 10$, which we know will crash.

To ensure that well-typed programs do not get stuck, a type system for System λ_M needs a static analogue of sealing – a way to turn an existing type into a \textit{read-only type}. Read-only types denote references that are \textit{immutable} and that (transitively) \textit{adapt} any other references read through them to be \textit{immutable} as well.

Issues arise, however, when we introduce polymorphism. Polymorphism is important in all languages but especially so in functional languages. The interaction of polymorphism and reference immutability raises interesting questions. Should type variables abstract over annotated types including their immutability annotations (such as readonly String), or only over the base types without immutability annotations (such as String)? Should uses of type variables admit an immutability annotation like other types do? For example, should readonly X be allowed, where X is a type variable rather than a concrete type? If yes, then how should one interpret an annotated variable itself instantiated with an annotated type? For example, what should the type readonly X mean if the variable X is instantiated with mutable String?

4.1 Polymorphism

Recall our earlier example – a polymorphic Pair object.

```scala
case class Pair[X](var first: X, var second: X)
```

In a functional language, it is only natural to write higher-order functions that are polymorphic over the elements stored in the pair. Consider an in-place map function over pairs, which applies a function to each element in the pair, storing the result in the original pair. This naturally requires mutable access to a pair.

```scala
def inplace_map[X](pair: Pair[X], f: X => X): Unit = {
  pair.first = f(pair.first);
  pair.second = f(pair.second);
}
```

This is all well and good, but we may wish to restrict the behaviour of f over the elements of the pair. It may be safer to restrict the behaviour of f so that it could not mutate the elements passed to it. Note that we cannot restrict access to the pair, however, as we still need to mutate it.

```scala
// Is this well founded?
def inplace_map[X](pair: Pair[X], f: @readonly X => X): Unit = {
  pair.first = f(pair.first);
}
```

Now, such a definition requires the ability to further modify type variables with immutability qualifiers. This raises important questions – for example, is this operation even well founded? This depends on what X ranges over.

X ranges over an unqualified type: If type variables range over types that have not been qualified by @readonly, then this operation is clearly well founded – it is simply qualifying the unqualified type that X will eventually be substituted by with the @readonly qualifier. This approach has been used by ReIm for Java and for an immutability system for C# – [Gordon et al. 2012; Huang et al. 2012].

However, this raises the problem of polymorphism over immutability qualifiers as well – for example, a Pair should be able to store both immutable and mutable object references. The only natural solution is to then introduce a mutability qualifier binder to allow for polymorphism over immutability qualifiers, as thus:

```scala
case class Pair[M, X](var first: M X, var second: M X)
def inplace_map[M, X](pair: Pair[M, X], f: @readonly X => M X): Unit = {
  pair.first = f(pair.first);
  pair.second = f(pair.second);
}
```

Mutability qualifier binders have been used previously, most notably by [Gordon et al. 2012]. For one, updating the binding structure of a language is not an easy task – ReIm notably omits this sort of parametric mutability polymorphism [Huang et al. 2012]. However, this sort of solution has its downsides; in particular, existing higher-order functions need to be updated with immutability annotations or variables, as type variables no longer stand for a full type. For example, an existing definition of List.map which appears as thus originally:

```scala
def map[X](l: List[X], f: X => X): List[X]
```

needs to be updated to read as the following instead:

```scala
def map[M, X](l: List[M X], f: M X => M X): List[M X]
```

Instead, we would like to have X range over fully qualified types as well, but as we will see that poses some issues as well.

X ranges over fully-qualified types: If type variables can range over types that have already been qualified by @readonly, then we can avoid introducing mutability binders in the definitions for Pair, inplace_map, and map above. A Pair can be polymorphic over its contents X without caring about the underlying mutability of X. However, this raises the question – how do we interpret repeated applications of the @readonly qualifier? For example, what if we applied inplace_map on a Pair[@readonly Pair[Int]]? Then inplace_map would expect a function f with type @readonly (@readonly Pair[Int]) => @readonly Pair[Int]. While our intuition would tell us that @readonly (@readonly Pair[Int]) is really just a @readonly Pair[Int], discharging this equivalence in a proof is not so easy.

One response is to explicitly prevent type variables from being further qualified. Calculi which take this approach include [Tschantz and Ernst 2005; Zibin et al. 2007]. However, this restriction prevents this version of inplace_map from being expressed. How can we address this?

Our approach, which we explain below, is to treat @readonly as a type operator that works over all types. Following the intuition that sealing removes setters from references, @readonly should be a type operator which removes setters from types. While this does cause complications, we
show below how types like `@readonly @readonly Pair[Int]` can be dealt with, using subtyping and type normalization.

4.2 System \(F_{<:M} \)

To address these issues, we introduce System \(F_{<:M} \), which adds a type system in the style of System \(F_{<:} \) to System \(\lambda M \). The syntax of System \(F_{<:M} \) is given in Figure 2; changes from System \(F_{<:} \) are noted in grey.

System \(F_{<:M} \) is a straightforward extension of System \(F_{<:} \) with collections of mutable references – namely, records – and with two new extensions: `read-only` types and `sealed` references. To be close to existing functional languages with subtyping and records, records in System \(F_{<:M} \) are modelled as intersections of single-element record types, to support record subsumption, as in [Amin et al. 2016] and [Reynolds 1997]. See Figures 4 and 5 for full subtyping and typing rules respectively.

Read-only types: The `readonly` type operator transforms an existing type to a read-only version of itself. Unlike the read-only mutability qualifier in Javari and ReIm, which is paired with a type to form a pair of a qualifier and a type, a read-only type in System \(F_{<:M} \) is itself a type. The `readonly` operator can be seen as the static counterpart of sealing or of deleting setter methods from an object-oriented class type.
Normal Forms

\[S, T ::= \begin{array}{l}
\text{Types in normal form} \\
\mid \bigwedge_i(R_i) \quad \text{Intersection of components}
\end{array} \]

\[R ::= \begin{array}{l}
\text{Normal form type components} \\
\mid T \quad \text{Top type} \\
\mid S \to T \quad \text{Normal function type} \\
\mid \forall(X <: S).T \quad \text{Normal for-all type} \\
\mid \{f : S\} \quad \text{Normal record type} \\
\mid X \quad \text{Type variable} \\
\mid \text{readonly } \{f : S\} \quad \text{Read-only normal record type} \\
\mid \text{readonly } X \quad \text{Read-only type variable}
\end{array} \]

Fig. 3. Normal forms for System $F_{<;}$(\downarrow).

Subtyping

\[
\begin{array}{c}
\Gamma \vdash T <: T \quad (\text{REFL}) \\
\hline
\Gamma \vdash R <: S \qquad \Gamma \vdash S <: T \\
\hline
\Gamma \vdash R <: T \quad (\text{TRANS})
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash X <: T \in \Gamma \\
\hline
\Gamma \vdash X <: T \quad (\text{TVAR})
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash U <: \top \quad (\text{TOP})
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash T_1 <: S_1 \qquad \Gamma \vdash S_2 <: T_2 \\
\hline
\Gamma \vdash S_1 \to S_2 <: T_1 \to T_2 \quad (\text{ARROW})
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash T_1 <: S_1 \\
\hline
\Gamma \vdash \forall(X <: S_1).S_2 <: \forall(X <: T_1).T_2 \quad (\text{ALL})
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash S <: T \\
\hline
\Gamma \vdash \text{readonly } S <: \text{readonly } T \quad (\text{READONLY})
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash S <: T \\
\hline
\Gamma \vdash S <: \text{readonly } T \quad (\text{MUTABLE})
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash n(f)(S) <: n(f)(T) \\
\hline
\Gamma \vdash S <: T \quad (\text{DENORMALIZE})
\end{array}
\]

Fig. 4. Subtyping rules of System $F_{<;}$(\downarrow).
Typing and Runtime Typing

\[
\begin{align*}
\Gamma | \Sigma \vdash t : T & \quad \text{(VAR)} \\
\Gamma, x : S \vdash t : T & \quad \text{(ABS)} \\
\Gamma, X < : S \vdash t : T & \quad \text{(T-ABS)} \\
\Gamma | \Sigma \vdash \lambda x : T. s : S \rightarrow T & \quad \text{(APP)} \\
\Gamma | \Sigma \vdash s : S' : T & \quad \text{(T-APP)} \\
\Gamma | \Sigma \vdash \text{seal } s : \text{readonly } S & \quad \text{(SEAL)} \\
\Gamma | \Sigma \vdash s : \text{readonly } \{x : S\} & \quad \text{(READONLY-RECORD-ELIM)} \\
\forall l \in \text{dom}(\Sigma), \Gamma | \Sigma \vdash \sigma(l) : \Sigma(l) & \quad \text{(STORE)} \\
\end{align*}
\]

\[\begin{array}{c}
\Gamma | \Sigma \vdash t : T \text{ and } \Gamma | \Sigma \vdash \sigma \\
\Gamma | \Sigma \vdash t_1 : T_i \\
\Gamma | \Sigma \vdash \{x_i : T_i\} \vdash \bigwedge_i \{x_i : T_i\} & \quad \text{(RECORD-INTRO)} \\
\Gamma | \Sigma \vdash t : \{x : T\} & \quad \text{(RECORD-ELIM)} \\
\Gamma | \Sigma \vdash s : \{x : T\} \quad \Gamma \vdash t : T & \quad \text{(RECORD-UPDATE)} \\
\Gamma | \Sigma \vdash s : T & \quad \text{(SUB)} \\
\end{array}\]

\[\begin{array}{c}
l_i : T_i \in \Sigma \\
\Gamma | \Sigma \vdash \{x_i : l_i\} \vdash \bigwedge_i \{x_i : T_i\} & \quad \text{(RUNTIME-RECORD)} \\
\end{array}\]

Fig. 5. Typing rules for System $F_{<:M}$

Any type T is naturally a subtype of its readonly counterpart $\text{readonly } T$, which motivates the choice of System $F_{<:}$ as a base calculus. This subtyping relationship is reflected in the subtyping rule (\text{mutable}). The (\text{SEAL}) typing gives a read-only type to sealed references.

\textbf{Static viewpoint adaptation:} The (\text{READONLY-RECORD-ELIM}) rule is a static counterpart of the (\text{SEALED-FIELD}) reduction rule. Given a reference s to a record with read-only type, it gives a read-only type to the result of a read $s.x$ of a field x from that reference. If S is the type of field x in the record type given to s, the rule viewpoint-adapts the type, giving $s.x$ the type $\text{readonly } S$.

4.2.1 \textit{Normal Forms for Types.} In System $F_{<:M}$, readonly is a type operator that can be applied to any type, which enables us to express types such as $\text{readonly } X$, where X is some type variable of unknown mutability. However, if X is itself instantiated with some readonly type $\text{readonly } T$, the type $\text{readonly } X$ becomes $\text{readonly } \text{readonly } T$, with two occurrences of the type operator. Intuitively, such a type should have the same meaning as $\text{readonly } T$.

Additionally, certain types should be equivalent under subtyping. For example, for both backwards compatibility and simplicity, arrow $S \rightarrow T$ and for-all types $\forall (X < : S). T$ should be equivalent under
Normalization

\[\text{nf}(T) ::= \begin{array}{l}
\text{T} \Rightarrow \text{T} \\
\text{X} \Rightarrow \text{X} \\
\text{S} \to \text{T} \Rightarrow \text{nf}(S) \to \text{nf}(T) \\
\forall (\text{X} <: \text{S}).\text{T} \Rightarrow \forall (\text{X} <: \text{nf}(\text{S})).\text{nf}(\text{T}) \\
\text{S} \land \text{T} \Rightarrow \text{nf}(\text{S}) \land \text{nf}(\text{T}) \\
\{f : \text{T}\} \Rightarrow \{f : \text{nf}(\text{T})\} \\
\text{readonly} \text{T} \Rightarrow \text{merge}(\text{T})
\end{array} \]

\[\text{merge}(\text{T}) ::= \begin{array}{l}
\text{X} \Rightarrow \text{readonly} \text{X} \\
\{f : \text{T}\} \Rightarrow \text{readonly} \{f : \text{T}\} \\
\text{S} \land \text{T} \Rightarrow \text{merge}(\text{S}) \land \text{merge}(\text{T}) \\
_ \Rightarrow \text{T}
\end{array} \]

Fig. 6. Normalizing Types for System \(F_{\text{c;M}}\).

Subtyping to their read-only forms \text{readonly} (\text{S} \to \text{T}) and \text{readonly} (\forall (\text{X} <: \text{S}).\text{T}), respectively, as well.

Having multiple representations for the same type, even infinitely many, complicates reasoning about the meanings of types and proofs of soundness. Therefore, we define a canonical representation for types as follows:

Definition 4.1. A type \(T\) is in normal form if:

1. \(T\) is the top type \(\top\).
2. \(T\) is a function type \(S_1 \to S_2\), where \(S_1\) and \(S_2\) are in normal form.
3. \(T\) is an abstraction type \(\forall \text{X} <: \text{S}_1.\text{S}_2\), where \(\text{S}_1\) and \(\text{S}_2\) are in normal form.
4. \(T\) is an intersection type \(S_1 \land S_2\), where \(S_1\) and \(S_2\) are in normal form.
5. \(T\) is a record type \(\{x : S\}\), where \(S\) is in normal form.
6. \(T\) is a read-only record type \text{readonly} \(\{x : S\}\), where \(S\) is in normal form.
7. Type variables \(X\) and read-only type variables \text{readonly} \(X\) are in normal form.

A type in normal form is simple – it is an intersection of function, abstraction, and record types, each possibly modified by a single \text{readonly} operator. For example, \(\{x : X\} \land \text{readonly} \{y : Y\}\) is in normal form. The type \text{readonly} \((\{x : X\} \land \{y : Y\})\) is not. A grammar for types in normal form can be found in Figure 3.

This allows us to reason about both the shape of the underlying value being typed, and whether or not it has been modified by a \text{readonly} operator. Naturally we need a theorem which states that every type has a normal form and a function \text{nf} to compute that normal form. Such a function \text{nf} is shown in Figure 6. Normalization both computes a normal form and is idempotent – a type in normal form normalizes to itself.

Lemma 4.2. For any type \(T\), \(\text{nf}(T)\) is in normal form. Moreover, if \(T\) is in normal form, \(\text{nf}(T) = T\).

Moreover, types are equivalent to their normalized forms under the subtyping relationship.
Lemma 4.3. \(\Gamma \vdash nf(T) <: T \) and \(\Gamma \vdash T <: nf(T) \).

Proof. For one direction, note that \(nf(nf(T)) = nf(T) \), and hence \(nf(nf(T)) <: nf(T) \). Applying (denormalize) allows us to show that \(nf(T) <: T \), as desired. The other case follows by a symmetric argument.

Not only does this allow us to simplify types to a normal form, this also allows us to state and prove canonical form lemmas and inversion lemmas, necessary for preservation and progress: Theorems 4.9 and 4.11. Below we give examples for record types. Similar lemmas exist and are mechanized for function types and type-abstraction types as well.

Lemma 4.4 (Inversion of Record Subtyping). If \(S \) is a subtype of \(\{ f : T' \} \), and \(S \) is in normal form, then at least one of its components is a type variable \(X \) or a record type \(\{ f : S' \} \), where \(\Gamma \vdash T' <: S' <: T' \).

Lemma 4.5 (Canonical Forms for Records). If \(v \) is a value and \(\emptyset \vdash\Sigma+v : \{ f : T \} \), then \(v \) is a record and \(f \) is a field of \(v \) that maps to some location \(l \).

Lemma 4.6 (Inversion of Read-Only Record Subtyping). If \(S \) is a subtype of \(\{ f : T' \} \), and \(S \) is in normal form, then at least one of its components is a type variable \(X \), read-only type variable \(\{ f : T' \} \), a record type \(\{ f : S' \} \) where \(\Gamma \vdash T' <: S' <: T' \), or a read-only record type \(\{ f : S' \} \) where \(\Gamma \vdash T' <: S' <: T' \).

Lemma 4.7 (Canonical Forms for Read-Only Records). If \(v \) is a value and \(\emptyset \vdash\Sigma+v : \{ f : T \} \), then \(v \) is a record or a sealed record and \(f \) is a field of \(v \) that maps to some location \(l \).

Note that normalization is necessary to state the inversion lemmas for read-only records, as \(\{ f : T' \} \), \(\{ f : T' \} \), etc., give an infinite series of syntactically inequivalent but semantically equivalent types describing the same object – a read-only record where field \(f \) has type \(T' \).

4.2.2 Operational Safety. Operationally, we give small-step reduction semantics coupled with a store to System \(F_{\leq M} \) in Figure 7.

Again, these rules are a straightforward extension of System \(F_{\leq} \) with mutable boxes and records, with additional rules for reducing sealed records. To prove progress and preservation theorems, we additionally need to ensure that the store \(\sigma \) itself is well typed in the context of some store typing environment \(\Sigma \) – see rule (store).

The crux of preservation for System \(F_{\leq M} \) is to show that sealed records are never given a non-read-only type, so that the typing rule for reading from a mutable record – (record-elim) – cannot be applied to sealed record values.

Lemma 4.8. Suppose \(\Gamma \vdash \Sigma \vdash \text{seal } r : T \) for some record \(r \). If \(T \) is in normal form, then the components of \(T \) are:

- The top type \(\top \), or
- A read-only record type \(\{ f : T' \} \).

From this key result we can show that preservation holds for System \(F_{\leq M} \).

Theorem 4.9 (Preservation of System \(F_{\leq M} \)). Suppose \((s, \sigma) \rightarrow (t, \sigma') \). If \(\Gamma \vdash \Sigma \vdash \sigma \) and \(\Gamma \vdash s : T \) for some type \(T \), then there is some environment extension \(\Sigma' \) of \(\Sigma \) such that \(\Gamma \vdash \Sigma' \vdash \sigma' \) and \(\Gamma \vdash \Sigma' \vdash t : T \).

Conversely, values given a non-read-only record type must be an unsealed collection of references.
Armed with Progress and Preservation, we can state immutability safety for full \(\text{System } \mathcal{F}_{<, \lambda} \). System \(\mathcal{F}_{<, \lambda} \) allows us to show that sealed records are never used to mutate their underlying referenced values. System \(\mathcal{F}_{<, \lambda} \) shows that well-typed programs using seals do not get stuck. To prove immutability safety for System \(\mathcal{F}_{<, \lambda} \), one problem still remains – System \(\mathcal{F}_{<, \lambda} \) allows records that are not sealed to be given a read-only type. We still need to show that records with such a type are not used to mutate their values. In other words, we need to show that records with a read-only type could be sealed, and that the resulting program would execute in the same way.

We will do this by showing that, given an original, well-typed System \(\mathcal{F}_{<, \lambda} \) program \(s \), we can add seals to its read-only subterms to obtain a new, well-typed System \(\mathcal{F}_{<, \lambda} \) program \(t \), and furthermore that \(t \) behaves the same way as \(s \), up to having additional seals in the resulting state.

The first step is to show that sealing does not disturb the typing judgment for terms.

Lemma 5.1. Suppose \(\Gamma \mid \Sigma \vdash t : \text{readonly } T \). Then \(\Gamma \mid \Sigma \vdash \text{seal } t : \text{readonly } T \).
Proof. By (\textsc{Seal}), $\Gamma \mid \Sigma \vdash \text{t} : \text{readonly}\ \text{readonly}\ T$. Then since readonly readonly $T \prec:\ \text{readonly}\ T$, by (\textsc{Sub}), $\Gamma \mid \Sigma \vdash \text{t} : \text{readonly}\ T$, as desired. \hfill \Box

From this, given a term s and a typing derivation for s, $D = \Gamma \mid \Sigma \vdash s : T$, we can seal those subterms of s that are given a read-only type in D.

Lemma 5.2. Let C be a term context with n holes, and let $s = C[s_1, s_2, s_3, \ldots, s_n]$ be a term. Suppose D is a typing derivation showing that $\Gamma \mid \Sigma \vdash s : T$. Suppose also that D gives each subterm s_i of s a type readonly T_i. Then $s' = s[\text{seal}\ s_1, \text{seal}\ s_2, \ldots, \text{seal}\ s_n]$ has the following properties:

1. $s \leq s'$, and
2. There exists a typing derivation D' showing that $\Gamma \mid \Sigma \vdash s' : T$ as well.

Proof. (1) is by definition. As for (2), to construct D', walk through the typing derivation D showing that $\Gamma \mid \Sigma \vdash s : T$. When we reach the point in the typing derivation that shows that s_i is given the type readonly T_i, note that seal s_i can also be given the type readonly T_i by the derivation given by Lemma 5.1. Replace the sub-derivation in D with the derivation given by Lemma 5.1 to give a derivation in D' for seal s_i, as desired. \hfill \Box

This motivates the following definition.

Definition 5.3. Let s be a term and let $D = \Gamma \mid \Sigma \vdash s : T$ be a typing derivation for s. Define $\text{crest}(s, D)$ to be the term constructed from s by replacing all subterms s_i of s given a read-only type in D by seal s_i.

A crested term essentially seals any sub-term of the original term that is given a read-only type in a particular typing derivation. By definition, for any term s and typing derivation D for s, we have $s \leq \text{crest}(s, D)$. Moreover, a crested term can be given the same type as its original term as well.

Lemma 5.4. Let s be a term and let $D = \Gamma \mid \Sigma \vdash s : T$ be a typing derivation for s. Then $s \leq \text{crest}(s, D)$, and there exists a typing derivation showing that $\Gamma \mid \Sigma \vdash \text{crest}(s, D) : T$ as well.

Now by progress – Theorem 4.11 – we have that for any well typed term s with typing derivation $D = \emptyset \mid \Sigma \vdash s : T$, its protected – crested – version $\text{crest}(s, D)$ will also step. By preservation – Theorem 4.9 – we have that $\text{crest}(s, D)$ either eventually steps to a value or runs forever, but never gets stuck. It remains to relate the reduction steps of $\text{crest}(s, D)$ to those of s, and specifically to show that if one reduces to some specific value and store, then the other also reduces to an equivalent pair of value and store.

We will do so by using the dynamic immutability safety properties proven in Section 3. System $\text{F}_{\subset ; \lambda}$ satisfies the same sealing-equivalence properties as System λ_{HM} – seals do not affect reduction, except perhaps by introducing other seals. The following are analogues of Lemmas 3.4, 3.5, and 3.6 for System $\text{F}_{\subset ; \lambda}$.

Lemma 5.5. Let ν be a value, σ_ν be a store, t be a term such that $\nu \leq t$, and σ_τ be a store such that $\sigma_\nu \leq \sigma_\tau$.

If $\langle t, \sigma_\tau \rangle \rightarrow \langle t', \sigma_\tau' \rangle$ then $\nu \leq t'$, $\sigma_\nu \leq \sigma_\tau'$, and $|t'| < |t|$.

Lemma 5.6. Let s, t be terms such that $s \leq t$ and let σ_s, σ_t be stores such that $\sigma_s \leq \sigma_t$. If $\langle s, \sigma_s \rangle \rightarrow \langle t', \sigma_t' \rangle$ and $\langle t, \sigma_t \rangle \rightarrow \langle t', \sigma_t' \rangle$ then:

1. Either $s \leq t'$, $\sigma_s \leq \sigma_t'$, and $|t'| < |t|$, or
2. $s' \leq t'$ and $\sigma_s' \leq \sigma_t'$.

Lemma 5.7. Let s, t be terms such that $s \leq t$ and let σ_s, σ_t be stores such that $\sigma_s \leq \sigma_t$. If $\langle t, \sigma_t \rangle \rightarrow \langle t', \sigma_t' \rangle$ then:
(1) Either \(s \leq t' \), \(\sigma_s \leq \sigma'_t \), and \(|t'| < |t| \), or

(2) There exists \(s' \) and \(\sigma'_s \) such that \(\langle s, \sigma_s \rangle \rightarrow \langle s', \sigma'_s \rangle \), \(s' \leq t' \) and \(\sigma'_s \leq \sigma'_t \).

Stepping back, we can see using Lemma 5.6 that one step of \(s \) to a term \(s' \) corresponds to finitely many steps of \(\text{crest}(s, D) \); every step that \(\text{crest}(s, D) \) takes either removes a seal or corresponds to a reduction step that \(s \) originally took. Hence \(\text{crest}(s, D) \) eventually steps to a term \(t' \) such that \(s' \leq t' \), preserving the desired equivalence of reduction between \(s \) and \(\text{crest}(s, D) \). The following is a generalization of the previous statement to two arbitrarily chosen well-typed terms \(s \) and \(t \) satisfying \(s \leq t \).

Lemma 5.8. Suppose \(\emptyset, \Sigma \vdash \sigma_s \) and \(\emptyset, \Sigma \vdash s : T \). Suppose \(\langle s, \sigma_s \rangle \rightarrow \langle s', \sigma'_s \rangle \). For \(s, \Sigma \vdash \sigma_s \), and \(s \leq t \), such that \(\Gamma, \Sigma \vdash \sigma_s \) and \(\Gamma, \Sigma \vdash t : T \), we have that \(\langle t, \sigma_t \rangle \rightarrow^\ast \langle t', \sigma'_t \rangle \) where \(s' \leq t' \) and \(\sigma'_s \leq \sigma'_t \).

Proof. From Theorem 4.11 we have that there exists a \(t' \) and \(\sigma'_t \) such that \(\langle t, \sigma_t \rangle \rightarrow \langle t', \sigma'_t \rangle \). By Lemma 5.6 we have that either \(s \leq t' \), \(\sigma_s \leq \sigma'_t \), and \(|t'| < |t| \), or that \(s' \leq t' \) and \(\sigma'_s \leq \sigma'_t \). If \(s' \leq t' \) and \(\sigma'_s \leq \sigma'_t \) are done. Otherwise, observe that since \(|t'| < |t| \), a seal was removed. This can only occur a finite number of times, as \(t \) and \(t' \) have at most a finite number of seals, so we can simply loop until we obtain a \(t' \) and \(\sigma'_t \) such that \(s' \leq t' \) and \(\sigma'_s \leq \sigma'_t \). Note that Preservation – Theorem 4.9 allows us to do so as each intermediate step \(t' \) can be given the same type \(\Gamma \mid \Sigma \vdash t' : T \). □

Finally, when \(s \) eventually reduces to a value \(v \), we can use Lemma 5.5 to show that \(\text{crest}(s, D) \) reduces to a similar value \(v' \) as well. Again, the following is a generalization of the previous statement to two arbitrarily chosen well-typed terms \(s \) and \(t \) satisfying \(s \leq t \).

Lemma 5.9. Suppose \(\emptyset, \Sigma \vdash \sigma_s \) and \(\emptyset, \Sigma \vdash s : T \) such that \(s \) eventually reduces to some value \(v_s \) – namely, \(\langle s, \sigma_s \rangle \rightarrow^\ast \langle v_s, \sigma'_s \rangle \) for some \(\sigma'_s \).

Then for any \(t \) such that \(s \leq t \) and \(\emptyset, \Sigma \vdash t : T \), we have that \(t \) eventually reduces to some value \(v_t \), namely \(\langle t, \sigma_t \rangle \rightarrow^\ast \langle v_t, \sigma'_t \rangle \) such that \(v_s \leq v_t \) and \(\sigma'_s \leq \sigma'_t \).

Proof. For each step in the multi-step reduction from \(\langle s, \sigma_s \rangle \rightarrow^\ast \langle v_s, \sigma'_s \rangle \) we can apply Lemma 5.8 to show that \(\langle t, \sigma_t \rangle \) eventually reduces to \(\langle v_t, \sigma'_t \rangle \) where \(v_s \leq v_t \) and \(\sigma'_s \leq \sigma'_t \). Now by Theorem 4.11 and Lemma 5.5 we have that either \(t' \) is a value, in which case we are done, or that \(\langle t', \sigma'_t \rangle \) steps to \(\langle t'', \sigma''_t \rangle \) where \(v_s \leq t'' \). Again, we can only take a finite number of steps of this fashion as the rule which reduces \(t' \rightarrow t'' \) can only be one that removed a seal, so eventually we obtain a value \(v_s \) such that \(\langle t, \sigma_s \rangle \rightarrow^\ast \langle v_t, \sigma'_t \rangle \) with \(v_s \leq v_t \) and \(\sigma'_s \leq \sigma'_t \), as desired. Again, note that Preservation – Theorem 4.9 allows us to do so as each intermediate step \(t' \) can be given the same type \(\Gamma \mid \Sigma \vdash t' : T \). □

Now from Lemma 5.9 we obtain our desired immutability safety results as a consequence – namely, given a well-typed term \(s \) that reduces to a value \(v_s \), any references in \(s \) with a readonly type are never actually mutated, since they can be transparently sealed (which does not change the typing) to no ill effect. Formally, our main result is:

Theorem 5.10. Suppose \(s \) is a term, \(D = \emptyset \mid \Sigma \vdash s : T \) is a typing derivation for \(s \), and let \(\sigma_s \) be some initial store such that \(\emptyset \mid \Sigma \vdash \sigma_s \). Then:

- \(\text{crest}(s, D) \) can be given the same type as \(s - \emptyset \mid \Sigma \vdash \text{crest}(s, D) : T \).

Moreover, if \(\langle s, \sigma_s \rangle \rightarrow^\ast \langle v_s, \sigma'_s \rangle \), for some value \(v_s \), then:

- \(\text{crest}(s, D) \) will reduce to a value \(v_t - \langle \text{crest}(s, D), \sigma_e \rangle \rightarrow^\ast \langle v_t, \sigma'_t \rangle \), such that

- \(v_t \) and \(\sigma'_t \) are equivalent to \(v_s \) and \(\sigma'_s \), modulo additional seals – namely, that \(v_s \leq v_t \) and \(\sigma'_s \leq \sigma'_t \).
Finally, it is useful to show that the converse result is also true; seals can be safely removed without affecting reduction. First note that seals themselves can be transparently removed without affecting the types assigned to the term.

Lemma 5.11. Suppose \(\Gamma \mid \Sigma \vdash \text{seal } s : T \). Then \(\Gamma \mid \Sigma \vdash s : T \).

Moreover, the following analogue of Lemma 3.8 holds in System \(F_{<;M} \).

Lemma 5.12. Suppose \(s \) and \(t \) are terms such that \(s \leq t \). If \(\langle t, \sigma_t \rangle \rightarrow^* \langle v_t, \sigma_t' \rangle \) for some value \(v_t \), then for any \(\sigma_s \leq \sigma_t \) we have \(\langle s, \sigma_s \rangle \rightarrow^* \langle v_s, \sigma_s' \rangle \) such that \(v_s \leq v_t \) and \(\sigma_s' \leq \sigma_t' \).

While Lemma 5.12 is enough to show that when \(s \leq t \), if \(t \) reduces to a value then so does \(s \), we need Lemma 5.13 to reason about the types of \(s \) and \(v_s \).

Lemma 5.13. Suppose \(s \) and \(t \) are terms such that \(s \leq t \). If \(\langle t, \sigma_t \rangle \rightarrow^* \langle v_t, \sigma_t' \rangle \) for some value \(v_t \), then for any \(\sigma_s \leq \sigma_t \) we have \(\langle s, \sigma_s \rangle \rightarrow^* \langle v_s, \sigma_s' \rangle \) for some value \(v_s \) such that \(v'_s \leq v'_t \) and \(\sigma'_s \leq \sigma'_t \). Moreover, \(\Gamma \mid \Sigma \vdash s : T \) and \(\Gamma \mid (\Sigma', \Sigma) \vdash v_s : T \) for some \(\Sigma' \) as well.

Proof. By Lemma 5.11 we can show that \(\Gamma \mid \Sigma \vdash s : T \). By Lemma 5.12 we have that \(v \) reduces to some value \(v'_s \). By preservation – Theorem 4.9 we have that \(v_s \) has type \(T \), as desired. \(\square \)

6 MECHANIZATION

Our mechanization of System \(F_{<;M} \) is based on the mechanization of System \(F_{<} \) by Aydemir et al. [2008]. Our mechanization is a faithful model of System \(F_{<;M} \) as described in this paper except for one case. To facilitate mechanization, reduction in our mechanization is done via explicit congruence rules in each reduction rule instead of an implicit rule for reducing inside an evaluation context, similar to how Aydemir et al. [2008] originally mechanize System \(F_{<} \) as well.

Proofs for all lemmas except for Theorem 5.10 and Lemmas 3.9, 5.2, and 5.4 have been mechanized using Coq 8.15 in the attached artifact. Theorem 5.10 and Lemmas 5.2, 5.4, and 5.13 have not been mechanized as they require computation on typing derivations which is hard to encode in Coq as computation on Prop cannot be reflected into Set. Lemma 3.9 has been omitted from our mechanization as it is hard to formally state, let alone prove, in a setting where reduction is done by congruence, though it almost follows intuitively from how the reduction rules are set up.

7 RELATED AND FUTURE WORK

7.1 Limitations – Parametric Mutability Polymorphism

Unlike other systems, System \(F_{<;M} \) does not support directly encoding mutability polymorphism, neither through a restricted @polymread modifier as seen in Huang et al. [2012], nor through explicit mutability variables as seen in Gordon et al. [2012].

This is a true limitation of System \(F_{<;M} \), however, we note that it is possible to desugar parametric mutability polymorphism from a surface language into a core calculus like System \(F_{<;M} \). As Huang et al. [2012] point out in their work, parametric mutability polymorphism can be desugared via overloading, noting that overloading itself can be dealt with in a surface language before desugaring into a base calculus, as seen before with Featherweight Java [Igarashi et al. 2001].

For example, consider the following top-level parametric function, access, which is parametric on mutability variable \(M \):

```haskell
def access[M](z: [M] Pair[Pair[Int]]): M Pair[Int] = { z.first }
```

This function can be rewritten instead as two functions with the same name access, one taking in a regular, mutable pair, and one taking in a readonly pair:

def access(z: Pair[Pair[Int]]): Pair[Int] = { z.first }
def access(@readonly z: Pair[Pair[Int]]): @readonly Pair[Int] = { z.first }

Nested and first-class functions are a little trickier but one can view a polymorphic, first-class function value as a read-only record packaging up both overloads.

{ access: (z: Pair[Pair[Int]]) => { z.first },
 access: (@readonly z: Pair[Pair[Int]]) => { z.first }
}

It would be interesting future work to see how one could add parametric mutability polymorphism to System $\mathcal{F}_{<:M}$.

7.2 Future Work – Algorithmic Subtyping

The subtyping rules of System $\mathcal{F}_{<:M}$ are fairly involved and it is difficult to see if an algorithmic subtyping system could be devised. We would conjecture that one could do so, using techniques from Muehlboeck and Tate [2018]'s integrated subtyping work, but nonetheless algorithmic subtyping for System $\mathcal{F}_{<:M}$ remains an interesting and open problem.

7.3 Viewpoint Adaptation

Viewpoint adaptation has been used in reference immutability systems to denote the type-level adaptation which is enforced to guarantee transitive immutability safety. When a field $r.f$ is read from some record r, the mutability of the resulting reference needs to be adapted from both the mutability of r and from the type of f in the record itself. While this notion of adaptation was known as early as Javari [Tschantz and Ernst 2005], the term “viewpoint adaptation” was first coined by Dietl et al. [2007]. They realized that this notion of adaptation could be generalized to arbitrary qualifiers – whether or not the type of a field read $r.f$ should be qualified by some qualifier $@q$ should depend on whether or not f’s type is qualified and whether or not r’s type is qualified as well – and used it to implement an ownership system for Java references in order to tame aliasing in Java programs.

7.4 Reference Immutability

Reference immutability has long been studied in the context of existing object-oriented languages such as Java and C#, and more recently has been studied in impure, functional languages like Scala.

roDOT [Dort and Lhoták 2020]: roDOT extends the calculus of Dependent Object Types [Amin et al. 2016] with support for reference immutability. In their system, immutability constraints are expressed through a type member field $x.M$ of each object, where x is mutable if and only if $M \leq \bot$, and x is read-only if and only if $M \geq \top$. Polymorphism in roDOT is out of all reference immutability systems closest to how polymorphism is done in System $\mathcal{F}_{<:M}$. Type variables quantify over full types, and type variables can be further restricted to be read-only as in System $\mathcal{F}_{<:M}$. Constructing a read-only version of a type, like how we use readonly in System $\mathcal{F}_{<:M}$, is done in roDOT by taking an intersection with a bound on the type member M. For example, inplace_map from before could be expressed in roDOT using an intersection type to modify immutability on the type variable X:

```scala
def inplace_map[X](Pair[X]: pair, f: (X & (M :> Any)) => X): Unit
```

Dort et. al. also prove that roDOT respects immutability safety, but with different techniques than how we show immutability safety in System $\mathcal{F}_{<:M}$. Instead of giving operational semantics with special forms that guard references from being mutated, and relying on progress and preservation to imply static safety, they take a different approach and show instead that values on the heap
that change during reduction must be reachable by some statically-typed mutable reference in the initial program. roDOT is a stronger system than System $\text{F}_{<\text{M}}$, as in particular mutabilities can be combined. For example, one could write a generic `getF` function which reads a field `f` out of any record that has `f` as a field polymorphic over both the mutabilities of the record `x` and the field `f`:

```python
def getF[T](x: {M: *, f : T}) : T & {M :> x.M} = x.f
```

Here, the return type of `getF` will give the proper, tightest, viewpoint-adapted type for reading `x.f` depending on both the mutabilities of `x` and `f`. This is not directly expressible in System $\text{F}_{<\text{M}}$ and can only be expressed using overloading:

```python
def getF[T](x: @readonly {f : T}): @readonly T = x.f
def getF[T](x: {f : T}) : T = x.f
```

However, in contrast, roDOT is significantly more complicated than System $\text{F}_{<\text{M}}$.

Immutability for C# [Gordon et al. 2012]: Of all the object calculi with reference immutability, the calculus of Gordon et al. [2012] is closest to that of roDOT in terms of flexibility. Polymorphism is possible over both mutabilities and types in Gordon’s system, but must be done separately; type variables instead quantify over base types that have not been qualified with some immutability annotation, whether that be read-only or mutable. The `inplace_map` function that we discussed earlier would be expressed with both a base-type variable as well as a mutability variable:

```python
def inplace_map[M, X]( Pair[M X]: pair , f: @readonly X => M X): Unit
```

Like roDOT, Gordon’s system also allows for mutability annotations to be combined in types, in effect allowing viewpoint adaptation to be expressed at the type level using the mutability operator \Rightarrow. For example, `getF` could be written as the following in Gordon’s system:

```python
def getF[M, MS <: M, MT <: M, T, S <: {f : MT T}]( x: MS S) : (MS \Rightarrow MT) T = x.f
```

Unlike roDOT however, which allows for inferences to be drawn about the mutability of the type $(T & \{M :> x.M\}).M$ depending on the bounds on `T` and `S`, the only allowable judgment we can draw about `MS \Rightarrow MT` is that it can be widened to `@readonly`. We cannot conclude, for example, that `MS \Rightarrow MT <: M` in the following, even though both `MS <: M` and `MT <: M`:

```python
def getF[M, MS <: M, MT <: M, T, S <: {f : MT T}](x: MS S) : (MS \Rightarrow MT) T = x.f
```

Gordon et. al. also demonstrate the soundness and immutability safety of their system but through an embedding into a program logic [Dinsdale-Young et al. 2013].

Javari [Tschantz and Ernst 2005]: Reference immutability was first modelled in the context of Java; Javari is the earliest such extension. In Javari’s formalization, Lightweight Javari, type variables `X` stand in for either other type variables, class types, and `readonly`-qualified class types. Unlike roDOT and System $\text{F}_{<\text{M}}$, in Lightweight Javari, type variables cannot be further qualified by the `readonly` type qualifier. Lightweight Javari, however, does support parametric mutability polymorphism for class types, but does not support parametric mutability polymorphism directly on methods. Instead, limited parametric mutability method polymorphism in Javari, denoted with the keyword `romaybe`, is desugared using overloading into the two underlying methods handling the read-only case and the mutable case replacing `romaybe` in the source. Our earlier example, `getF`, can be written using `romaybe` as follows:

```python
class HasF<T> {
    T f;
    romaybe T getF() romaybe { return f; }
}
```

However, this example is inexpressible in the core calculus Lightweight Java, as \texttt{@readOnly}\ T is ill-formed. As for safety, immutability safety is done in Lightweight Java through a case analysis on how typed Lightweight Java program terms can reduce. [Tschantz and Ernst 2005] claim that the soundness of Lightweight Java reduces to showing the soundness of Lightweight Java, but no formal proof is given.

\textbf{ReIm: [Huang et al. 2012]:} ReIm simplifies Java to enable fast, scalable mutability inference and analysis. Like Java, ReIm supports two type qualifiers – \texttt{readOnly} and \texttt{polyread}, where \texttt{readOnly} marks a read-only type and \texttt{polyread} is an analogue of \texttt{romaybe} from Javari. Like Lightweight Java, and unlike roDOT and System F_<:\M, ReIm restricts how qualifiers interact with generics. ReIm’s polymorphism model is similar to that of Gordon et al. [2012] – type variables range over unqualified types. However, ReIm has no mechanism for mutability polymorphism, and therefore getF cannot be written in ReIm at all. Unlike other related work, neither soundness nor immutability safety is proven to hold for ReIm.

\textbf{Immutability Generic Java: [Zibin et al. 2007]:} Immutability Generic Java is a scheme for expressing immutability using Java’s existing generics system. The type \texttt{List<Mutable>} denotes a \texttt{mutable} reference to a List, whereas the type \texttt{List<ReadOnly>} denotes a \texttt{read-only} reference to a list. Viewpoint adaptation is not supported, and transitive immutability must be explicitly opted into. For example, in the following snippet, the field \texttt{value} of \texttt{C} is always mutable. Transitive immutability must be explicitly opted into by instantiating \texttt{List} with the immutability parameter \texttt{ImmutOfC}.

\begin{verbatim}
class C<ImmutOfC> {
 List<Mutable> /* ImmutOfC for transitivity */, Int> value;
}
\end{verbatim}

Moreover, transitive immutability cannot be expressed at all over fields given a generic type. Type variables by the nature of how immutability is expressed in IGJ range over fully qualified types, and there is no mechanism for re-qualifying a type variable with a new immutability qualifier. For example, the mutability of \texttt{value} in any \texttt{Box} below depends solely on whether or not \texttt{T} is mutable. Hence the \texttt{value} field of a \texttt{Box} is mutable even if it was read through a read-only \texttt{Box} reference – that is, a reference of type \texttt{Box<ReadOnly>}.

\begin{verbatim}
class Box<ImmutOfBox, T> {
 T value;
}
\end{verbatim}

\begin{verbatim}
Box<Readonly, List<Mutable,Int>> b = new Box(...)
b.value.add(10); // OK -- even though it mutates the underlying List.
\end{verbatim}

7.5 Languages with Immutability Systems

Finally, some languages have been explicitly designed with immutability in mind.

\textbf{C++:} const-qualified methods and values provide limited viewpoint adaptation. Reading a field from a const-qualified object returns a const-qualified field, and C++ supports function and method dispatching based on the constness of its arguments [Stroustrup 2007]. Mutability polymorphism is not explicitly supported but can be done with a combination of templates and overloading.

\begin{verbatim}
struct BoxedInt {
 int v(0);
};
\end{verbatim}
template<typename T> struct HasF<T> {
 T f;
 T& getF() { return f; }
 const T& getF() const { return f; }
}

const HasF<BoxedInt> x;
const BoxedInt& OK = x.f; // OK, as x.f is of type const BoxedInt.
BoxedInt& Bad = x.f; // Bad, discards const-qualifier.

In this example, a C++ compiler would disallow Bad because the type of x.f has been adapted to a l-value of const BoxedInt. However, viewpoint adaptation does not lift to reference or pointer types in C++. For example, if instead we had a pointer-to-T in HasF:

```cpp
template<typename T> struct HasF<T> {
    T* f;
}
```

```cpp
BoxedInt b[5];
const HasF<BoxedInt> x(&b);
BoxedInt* NotGreat = x.f; // OK, as x stores a constant pointer to a mutable BoxedInt
NotGreat->v = 10; // Modifies b!
```

C++’s limited viewpoint adaptation gives x.f the type BoxedInt * const, which is a constant pointer to a mutable BoxedInt, not the type BoxedInt const * const, which would be a constant pointer to a constant BoxedInt. This allows the underlying field to be mutated.

D: In contrast to C++, where const becomes useless for pointer and reference fields, D supports full reference immutability and viewpoint adaptation with a transitive const extended to work for pointer and reference types [Bright et al. 2020]. Again, mutability polymorphism is not directly supported but can be encoded with D’s compile-time meta-programming system.

Rust: In Rust, references are either mutable or read-only, and only one mutable reference can exist for any given value. Read-only references are transitive, like they are in System F<:<M, roDOT, and other reference immutability systems, and unlike C++. Here, in this example, we cannot write to s3.f as s3 is a read-only reference to s2, even though s2.f has type &mut String.

```rust
struct HasF<T> {
    f: T
}

fn main() {
    let mut s1 = String::from("hello");
    let s2 = HasF { f: &mut s1 };    // ERROR: s2.f is not mutable
    s2.f.push_str("OK");
    let s3 = &s2;
    s3.f.push_str("BAD");
}
```

Unlike other languages, though, the mutability of a reference is an intrinsic property of the reference type itself. Instead of having a type operator readonly that, given a reference type T, creates a read-only version of that reference type, Rust instead defines & and &mut, type operators
that, given a type \(T \), produce the type of a read-only reference to a \(T \) and the type of a mutable reference to a \(T \), respectively. Here, in the following example, \(s1 \) is a String, \(s2 \) is a mutable reference to a \(s1 \) – \&mut String, and \(s3 \) is a read-only reference to \(s2 \) – \& (&mut String), where all three of \(s1 \), \(s2 \), and \(s3 \) are stored at distinct locations in memory.

```rust
let s1 = String::from("hello");
let mut s2 = &s1;
let s3 = &s2;
```

As such, in Rust, one cannot create a read-only version of an existing reference type. This makes higher-order functions over references that are polymorphic over mutability, like inplace_map from above, inexpressible in Rust. However, if we instead had a Pair that owned its elements, we could write the following version of inplace_map:

```rust
struct Pair<T> {
    fst: T,
    snd: T
}

fn inplace_map<T>(p: &mut Pair<T>, f: fn (&T) -> T) {
    p.fst = f(&p.fst);
    p.snd = f(&p.snd);
}
```

Note, though, that in this setting, the elements \(p.fst \) and \(p.snd \) are embedded in the pair \(p \) and owned by it.

7.6 Type Qualifiers and Polymorphism

Foster et al. [1999] formalize a system for enriching types with qualifiers with support for polymorphism over both ground, unqualified types and qualifiers themselves. In this setting, `readonly` can be viewed as a type qualifier, similar to how C++’s `const` can be viewed as a qualifier in [Foster et al. 1999]. The resulting calculus is similar to the calculus of [Gordon et al. 2012] restricted only to reference immutability qualifiers.

7.7 Contracts

Our approach to sealing references is similar to and was inspired by practical programming experience with Racket contracts – [Strickland et al. 2012]. Sealing, in particular, can be viewed as attaching a chaperone contract which raises an exception whenever the underlying chaperoned value is written to, and attaches a similar chaperone to every value read out of the value. For example, a dynamic reference immutability scheme for Racket vectors could be implemented with the following chaperone contract:

```racket
(define (chaperone-read vec idx v)
  (seal v))

(define (chaperone-write vec idx v)
  (error 'seal "Tried to write through an immutable reference.")

(define (seal v)
  (cond
   [(vector? v) (chaperone-vector vec chaperone-read chaperone-write)]
   [else v]))
```

Strickland et. al. prove that chaperones can be safely erased without changing the behaviour of the underlying program when it reduces to a value. Our results on dynamic safety, Lemmas 3.4, 3.5,
and 3.6 can be viewed as an analogue of [Strickland et al. 2012, Theorem 1] specialized to reference immutability. In this setting, our static immutability safety results show that a well-typed program will never raise an error by writing to a chaperoned vector.

8 CONCLUSION

We contributed a simple and sound treatment of reference immutability in System $F_{<:}$. We show how a simple idea, sealing references, can provide dynamic immutability safety guarantees in an untyped context – System λ_M – and how soundness and System $F_{<:}$-style polymorphism can be recovered in a typed calculus System $F_{<:M}$ which builds on both System λ_M and System $F_{<:}$. Our hope is to enable reference immutability systems in functional languages via this work, by giving simple soundness foundations in a calculus (System $F_{<:}$) which underpins many impure functional languages today.

DATA-AVAILABILITY STATEMENT

The artifact that supports this paper is available on Software Heritage [Lee and Lhoták 2023a] and on the ACM Digital Library [Lee and Lhoták 2023b].

ACKNOWLEDGMENTS

We thank Yaoyu Zhao for his interesting discussions on reference immutability, and we thank Alexis Hunt and Hermann (Jianlin) Li for their useful feedback on early drafts of this work. We also thank our anonymous reviewers for their helpful comments which have improved the final draft of this work.

This work was partially supported by the Natural Sciences and Engineering Research Council of Canada and by an Ontario Graduate Scholarship.

REFERENCES

https://doi.org/10.1145/1328438.1328443

https://doi.org/10.1145/3386323

https://doi.org/10.1007/3-540-54415-1_73

https://doi.org/10.1145/2429069.2429104

https://doi.org/10.4230/LIPIcs.ECOOP.2020.18

https://doi.org/10.1145/41625.41654

Received 2023-04-14; accepted 2023-08-27