
Concrete Types for TypeScript

Abstract. TypeScript extends JavaScript with a set of optional type an-
notations that are, by design, unsound and, that the TypeScript compiler
discards as it emits JavaScript code. This design preserves programming
idioms developers are familiar with, and their legacy code, while offering
a measure of static error checking. We present an alternative design for
TypeScript, one where it is possible to support the same degree of dy-
namism, but where types can be strengthened to provide guarantees. We
report on an implementation, called StrongScript, that improves runtime
performance of typed programs when run on an optimizing JavaScript
engine.

1 Introduction

Perhaps surprisingly, a number of modern computer programming languages
have been designed with intentionally unsound type systems. Unsoundness may
arise for pragmatic reasons, for instance, Java has a covariant array subtype rule
designed to allow for a single sort implementation. More recently, industrial ex-
tensions to dynamic languages, such as Hack, Dart and TypeScript, have featured
optional type systems [5] geared to accommodate dynamic programming idioms
and preserve the behavior of legacy code. Type annotations are second class
citizens intended to provide machine-checked documentation, and only slightly
reduce the testing burden. Unsoundness, here, means that a variable annotated
with some type T may, at runtime, hold a value of a type that is not a subtype
of T due to unchecked casts, covariant subtyping, and untyped code. Implemen-
tations deal with this by ignoring annotations, emitting code where all types
are erased. For example, TypeScript translates classes to JavaScript code without
casts. Unsurprisingly, the generated code neither enjoys performance benefits
nor strong safety guarantees.

A gradual type system [22, 20, 24] presents a safer alternative, as values that
cross between typed and untyped parts of a program are tracked and a mecha-
nism for assigning blame eases the debugging effort by pinpointing the origin of
any offending value. But the added safety comes with runtime overhead, a price
tag that, for object-oriented programs, can be steep. Also, gradual types affect
the semantics of programs; which means that adding type annotations can cause
runtime errors in otherwise correct programs.

We argue that programmers should be given the means to express how much
type checking they want to take place in any part of their program. Depending on
their choice, they should either be able to rely on the fact that type annotations
will not introduce errors in well-tested and widely deployed dynamic code, or, if
they select more stringent checks, they should have guarantees of the absence of
type errors and improved performance.

This paper illustrates this idea with the design of a new type system for
the TypeScript language. TypeScript is an extension to JavaScript from Microsoft
that introduces classes, structural subtyping, and type annotations on prop-
erties, arguments and return types. Syntactially, our extension, which we call
StrongScript, is minimal: a single type constructor for concrete types (written !)
is added. Semantically the changes are more subtle. Our type system allows de-
velopers to choose between writing untyped code (i.e., all variables are of type
any as in JavaScript), optionally typed code that does not affect the semantics
of dynamic programs (i.e., no new dynamic errors), and concretely typed code
that provides the traditional correctness guarantees but affects the semantics of
dynamic code (i.e., types are retained by the compiler and used to optimize the
program, new dynamic errors may show up). More specifically, the goals that
guided design of StrongScript are:

– All JavaScript programs must be valid StrongScript programs and common
programming idioms should be typeable.

– Optional types guarantee that variables are used consistently with their dec-
larations; concrete types are sound up to down casts.

– Type information should improve performance in the context of a highly-
optimizing virtual machine.

– TypeScript does not provide checked casts. As they are central to many object
oriented idioms, we support them.

One of the more subtle departures between our proposal and TypeScript is that
we had to switch to nominal subtyping for classes. The reasons for this change
are pragmatic: generating efficient property access code for structural subtyping
is not a solved problem, whereas it is well understood for nominal subtyping.
Moreover, with nominal subtyping, we can reuse the existing JavaScript subtype
test. Interfaces retain their structural subtyping rules and are erased at compile-
time like in TypeScript. This yields a type system where any class name C can
be used as an optional type, written C, or as a concrete type, written !C. While
the former have a TypeScript-like semantics, variables typed with concrete types
are guaranteed to refer to an object of class C, a class that extends C, or null.
We exploit concrete type annotations and nominal subtyping to provide fast
property access and efficient checked casts. Unannotated variables default to
type any, ensuring that JavaScript programs are valid StrongScript programs.

The contribution of this paper are twofold:

– Design. We design a minimal extension of TypeScript that adds a single syn-
tactic element and reinterpets the semantics according to a new type system.
To validate our ideas we also implent StrongScript as an extension to the
TypeScript compiler. All the TypeScript programs we have tried run without
changes on our implementation. To get a measure of performance benefits we
have extended the Truffle JavaScript implementation from Oracle labs [26] to
provide fast access to properties through concretely typed variables. Truffle
is a highly optimizing virtual machine that strives to match the performance
of Google’s V8. We obtained preliminary results on a small number of bench-

2

marks showing speed ups between 2% and 32%. We also provide evidence
that the type system is not overly restrictive, as it validates all the large
TypeScript benchmarks from [16].

– Formalization. While work on gradual typing focused on blame, we propose
trace preservation as a key property for the evolution of programs from
untyped to typed. Informally adding a type annotation to a program is trace-
preserving if the program’s behavior is unaffected. More precisely, we prove
a trace preservation theorem for optional types: if expression e is untyped,
and e′ only differs by the addition of optional types, then e and e′ evaluate
to the same value. We do this within a core calculus, in the style of λJS
of [14], that captures the semantics of the two kinds of class types. A safety
theorem states that terms can only get stuck when evaluating a cast or
when accessing a property from a any or optionally typed variable. We also
show that our design support program evolution by proving a strengthening
theorem: when a fully optionally typed program is annotated with concrete
types, the program will be trace preserving.

As with the formalization of Bierman et al. [1], we restrict ourselves to Type-
Script 0.9.1, the last version before the addition of generics. Our implementation
effort was done before these were stabilized in the language specification.

2 Background on Optional and Gradual Types

The divide between static and dynamic types has fascinated academics and prac-
titioners for years. Academics come determined to “cure the dynamic” as the
absence of types is viewed as a flaw. Practitioners, on the other hand, seek to sup-
plement their testing practices with machine-checked documentation and some
ahead-of-time error checking. Dynamic languages are appreciated by practition-
ers for their support of exploratoty programming, as any grammatically correct
dynamic program, even a partial program or one with obvious errors, can be run,
their productivity and their smaller learning curve. Decades of research were de-
voted to attempts to add static types to dynamic languages. In the 1980’s, type

TypeScript Typed Racket Reticulated Python StrongScript

x : C any W W any

x : !C – – – C

Trace preserving # # G#
Fast property access # # #

Fig. 1. Optional and gradual type systems. This table’s first line indicates possible
values of variable declared of class C. This type is either any or W to denote the possibility
of encountering a wrapper. The second line shows the possible value of variable declared
!C in StrongScript, they are guaranteed to be unwrapped subtypes of that class. Trace
preservation holds in TypeScript, in StrongScript developers can choose to forgo this
property in exchange for stronger guarantees. The last line refers to the ability of a
compiler to generate fast path code for property accesses.

3

inference and soft typing were proposed for Smalltalk and Scheme [21, 3, 7]. In-
ference based approaches turned out to be brittle as they required non-local
analysis and were eventually abandoned.

Twenty years ago, while working at Animorphic on the virtual machine that
would eventually become HotSpot, Bracha designed the first optional type sys-
tem [6]. Subsequent work fleshed out the design [4] and detailed the philosophy
behind optional types [5]. An optional type system is one that: (1) has no effect
on the language’s runtime semantics, and (2) does not mandate type annotations
in the syntax. Strongtalk like Facebook’s Hack, Google’s Dart, and Microsoft’s
TypeScript was an industrial effort. In each case, a dynamic language is equipped
with a static type system that is flexible enough to support backwards compat-
ibility with untyped code. While optional types have benefits, they provide no
guarantee of absence of type errors nor information that could be relied upon
by an optimizing compiler.

Another important line of research is due to Felleisen and his collaborators.
After investigating soft typing approaches for Scheme, Findler and Felleisen
turned their attention to software contracts [9]. In [10], they proposed wrap-
pers to enforce contracts for higher-order functions; these wrappers, higher-order
functions themselves, were in charge of validating pre- and post-conditions and
assigning blame in case of contract violations. Together with Flatt, they turned
higher-order contracts into semantics casts [11]. A semantics cast consists of an
argument (a value), a target type, and blame information. It evaluates to an ob-
ject of the target type that delegates all behavior to its argument, and produces
meaningful error messages in case the value fails to behave in a type appropriate
manner. In 2006, Tobin-Hochstadt and Felleisen proposed a type system for,
Typed Racket, a variant of Scheme that used higher-order contracts to enforce
types at module boundaries [22]. Typed Racket has a robust implementation and
is being used on large bodies of code [23]. The drawback of this approach is that
contracts impose a runtime overhead which can be substantial in some programs.

In parallel with the development of Typed Racket, Siek and Taha defined
gradual typing to refer to languages where type annotations can be added incre-
mentally to untyped code [20, 18]. Like in Typed Racket, wrappers are used to
enforce types but instead of focusing on module boundaries, any part of a pro-
gram can be written in a mixture of typed and untyped code. The type system
uses two relations, a subtyping relation and a consistency relation for assign-
ment. Their work led to a flurry of research on issues such as bounding the
space requirements for wrappers and how to precisely account for blame. In an
imperative language their approach suffers from an obvious drawback: wrappers
do not preserve object identity. One can thus observe the same object through
a wrapper and through a direct reference at different types. Solutions are not
appealing, either every property read must be checked or fairly severe restric-
tions must be imposed on writes. In a Python implementation, called Reticulated
Python, both solutions cause slowdowns that are larger than 2x [19]. Another
drawback of gradual type systems is that they are not trace preserving. Consider:

class C:

4

b = 41

def id(x:Object{b:String}) -> Object{b:String }: return x

id(C()).b + 1

Without annotations the program evaluates to 42. When type annotations are
taken into account it stops at the read of b. A type violation is reported as the
required type for b is String while b holds an Int. Similar problems occur when
developers put contracts that unnecessarily strong without understanding the
range of types that can flow through a function.

IBM’s Thorn programming language was an attempt to combine optional
types (called like types) with concrete types [2]. The type system was formal-
ized along with a proof that wrappers can be compiled away [25]. Preliminary
performance results suggested that concrete types could yield performance im-
provements when compared to a naive implementation of the language, but it
was not demonstrated that the results hold for an optimizing compiler.

SafeTypeScript [16] is a recent effort from Microsoft to modify TypeScript by
making it safe: in a nutshell, all types are concrete, and type checks are inserted
when dynamic values are cast to concrete types. This technique yields a safe
language which allows dynamic types, but lacks optional types. Because type
checks are always inserted, SafeTypeScript is not trace-preserving and it lacks
support for evolving programs from typed to untyped. On the other hand, Safe-
TypeScript focused on ensuring safety within the browser which is not a goal of
our work.

Figure 1 summarizes the main approaches to typing dynamic languages.

3 TypeScript: Unsound by design

Bierman et al. captured the key aspects of the design of TypeScript in [1]. Type-
Script is a superset of JavaScript, with syntax for declaring classes, interfaces,
and modules, and for optionally annotating variables, expressions and functions
with types. Types are fully erased: errors not identified at compile-time will not
be caught at runtime. The type system is structural rather than nominal, which
causes some complications for subtyping. Type inference is performed to reduce
the number of annotations. Some deliberate design decisions are the source of
type holes, these include: unchecked casts, <String>obj is allowed if the type
of obj is supertype of String, yet no check will be done at runtime; indexing
with computed strings, obj[a+b] cannot be type checked as the value of string
index is not known ahead of time; covariance of properties/arguments, this is
similar to the Java array subtyping rule except that TypeScript does not have
runtime checks for stores.

We will look more closely at the parts of the design that are relevant to our
work, starting with subtyping. Consider the following well-typed program:

interface P { x: number; }

interface T { y: number; }

interface Pt extends P { y: number; dist(p: Pt); }

5

Interfaces include properties and methods. Extend declarations amongst inter-
faces are not required for other purposes than documenting intent, thus Pt is a
subtype of both P and T. Classes can be defined as usual, and the extends clause
there has a semantic meaning as it specifies inheritance of properties.

class Point {

constructor (public x:number , public y:number){}

dist(p: Point) { ... }

}

class CPoint extends Point {

constructor (public color:String , x:number , y:number){

super(x,y);

}

dist(p: CPoint) { ...p.color ... }

}

Both classes are subtypes of the interfaces declared above. Note that the dist

method is overridden covariantly at argument p and that CPoint.dist in fact
does require p to be an instance of CPoint.

var o:Pt = new Point (0,0);

var c:CPoint = new CPoint("Red" ,1,1);

function pdist(x:Point , y:Point) { x.dist(y); }

pdist(c,o);

The first assignment implicitly casts Point to Pt which is allowed by structural
subtyping. The function pdist will invoke dist at static types Point, yet it
is invoked with a CPoint as first argument. The compiler allows the call, at
runtime the access the p.color property will return the undefined value. Any
type can be converted implicitly to any, and any method can be invoked on an
any reference. More surprisingly, an any reference can be passed to all argument
positions and be converted implicitly to any other type.

var q:any = new CPoint("Red" ,1,1);

var c = q.dist(o);

var b = o.dist(q);

Our last example demonstrates a case of unchecked cast. Here o is declared of
type Pt and we cast it to its subtype CPoint. The access will fail at runtime as
variable o refers to an instance of Point which does not have color. The compiler
does not emit a warning in any of the cases above.

function getc(x:CPoint) { return x.color };

getc(<CPoint >o);

Bierman et al. showed that the type system can be formalized as the combination
of a sound calculus extended with unsound rules. For our purposes, the sound
calculus is a system with records, equi-recursive types and structural subtyping.
The resulting assignment compatibility relation can be defined coinductively us-
ing well-studied techniques [13]. We underline the critical choice of defining any

as the supertype of all the types; since upcasts are well-typed, values of arbi-
trary types can be assigned to a variable of type any without the need of explicit

6

casts. Type holes are introduced in three steps. First, a rule allows downcasts
to subtypes. The second step is more interesting, as it changes the subtyping
relation by stating that all types are supertypes of any. This implies arbitrary
values can flow into typed variables without explicit casts. No syntactic con-
struct identifies the boundaries between the dynamic and typed world. Thirdly,
covariant overloading of class/interface members and methods is allowed.

Type inference is orthogonal to our proposal. As for generics, Bierman et al.
describe decidability of subtyping as “challenging” [1]; will not consider them
here. Lastly, we do not discuss TypeScript’s liberal use of indexing. Our imple-
mentation supports it by explicitly inserting type casts (see Section 4).

4 StrongScript: Sound when needed

StrongScript builds on and extends TypeScript. Syntactically, the only addition
is a new type constructor, written !. This yields three three kinds of type anno-
tations:

Dynamic types, denoted by any, represent values manipulated with no static
restrictions. Any object can be referenced by a any variable, all operations
are allowed and any may fail at runtime.

Optional types, denoted by class names C, enable local type checking. All
manipulations of optionally typed variables are verified statically against
C’s interface. Optionally typed variables can reference arbitrary values, and
so runtime checks are required to verify that those values conform to C’s
interface.

Concrete types, denoted by !C, represent objects that are instance of the
homonymous class or its subclasses. Static type checking is performed on
these, and no dynamic checks are needed in the absence of downcasts.

Optional types have the same intent as TypeScript type annotations: they cap-
ture some type errors and enable IDE completion without reducing flexibility
of dynamic programs. Concrete types behave exactly how programmers steeped
in statically typed languages would expect. They restrict the values that can be
bound to a variable and unlike other gradual type systems they do not support
the notion of wrapped values or blame. No runtime error can arise from using
a concretely typed variable and the compiler can rely on type informations to
emit efficient code with optimizations such as unboxing and inlining.

To make good on the promise of concrete types, StrongScript has a sound
type system. This forces some changes to TypeScript’s overly permissive type
rules and to the underlying implementation. The runtime thus distinguishes
between dynamic objects, created with the JavaScript syntax { x:v .. }, and
objects which are instances of a class, created with the new C(v..) Java-like
syntax. Casts are explicit and in many cases they require checks at runtime.
Covariant subtyping, such as the array subtype rule, is checked at runtime as
well. Moreover, class subtyping is nominal to ensure that the memory layout of
parent classes is a prefix of child classes and thus that code to access properties

7

is fast. Compared to TypeScript, subtyping is slightly simpler as we do not allow
for any to be both the top and bottom of the type lattice. By design, any Java-
Script program is a well-type StrongScript program, furthermore most TypeScript
programs are also valid StrongScript programs – only in the rare cases discussed
in Sec. 4.2 are TypeScript programs rejected by our type system (see also the
evaluation in Sec. 6.2).

In what follows we introduce the main aspects of programming in our system.
Code snippets should be read in sequence.

4.1 Programming with Concrete Types

We aim to let developers incrementally add types to their code, hardening parts
that they feel need to be, while having the freedom to leave other parts dy-
namic. This is possible thanks to the interplay between the dynamic code, the
flexible semantics of optionally typed variables, and the runtime guarantees of
the concretely typed code. Consider the following program:

var p:any = { x=3; z=4 }

var f:any = func (p) {

if (p.x < 10) return 10 else return p.distance () }

f(p) // evaluates to 10

Without any loss of flexibility, programmers may choose to document their ex-
pectations about the argument of functions and data structures, and then an-
notate p and the argument of f with the optional type Point:

class Point {

constructor(public x, public y){}

dist(p) { return ... }

}

var p:Point = { x=3; z=4 } // Correct

var f:any = func (p:Point) {

if (p.x < 10) return 0 else

return p.distance(p) } //Wrong

Arbitrary objects can still flow into optionally typed variables, preserving flexi-
bility (and ensuring trace-preservation), while the annotation of the argument of
f enables local type checking, catching type errors such as the call to distance.
The programmer can also create instances of class Point, which are concretely
typed as !Point, and pass them to f:

var s:! Point = new Point {5,6};

f(s); // evaluates to 10

As function f has been type checked assuming that its argument is a Point, we
known it’s body will manipulate the argument as a Point. However, whenever
an object which is an instance of a class is passed to an optionally or dynamically
typed context, it protects its own abstractions at runtime. Consider a new class
definition, where the x and y fields have been strenghtened as !number and as
such can only refer to instances of class number:

8

class TypedPoint {

constructor(public x:!number , public y:! number){}

dist(p) { return ... :! number }}

var t:! TypedPoint = new TypedPoint {1,2}

(<any >t).x = "o" // DYNAMIC ERR: type mismatch

Some flexibility is lost by this class but the compiler can exploit the type in-
formations to compute property offsets, remove runtime type checks and un-
box values. Observe that dynamic, optional and concrete types can be mixed
seamlessly; above for instance we have left the argument of the dist function
dynamically typed, so that it is correct to invoke it with an arbitrary object as
in t.dist({x=1;y=2}).

Our strategy for program evolution is to first add optional types, catching
and fixing unexpected local type errors; the programmer can then identify the
parts of the code that obey to a stricter type discipline, and replace optional
types with concrete types. Optional types act as a bridge to move values into
the concrete world:

var fact = func(x:! number) {return ...:! number}

var u:TypedPoint = { dist = function(p) {...} }

var n:! number = fact(u.dist(p))

In the example, p has type any, and u points to a dynamic object with a method
dist typed any → any. However, u has been typed as TypedPoint; the runtime
will ensure that the method dist respects the TypedPoint.dist signature any

→ !number and will dynamically check that the returned value is an instance of
class number. As a consequence, fact(u.dist(p)) is well-typed (the concretely
typed function fact is guaranteed to receive a value of type !number) and the
programmer, by specifying just one optional type, can invoke the concretely-
typed function fact with a value that has been computed from the dynamic
world. The ability to have fine grained control over typing guarantees is one of
the main benefits of StrongScript.

4.2 From TypeScript to StrongScript Types

A significant departure of our work is that we adopt nominal subtyping for
classes and retain structural subtyping for interfaces. If a class C extends D,
their concrete types are subtypes, denoted !C <: !D. Furthermore each concrete
type is a subtype of the corresponding optional type, !C <: C, with an order on
optional types that mirrors the one on concrete types: !C <: !D implies C <: D.
any is an isolate with no super or subtype. Subtyping for interfaces follows [1]
with the exception that an interface cannot extend a class.

Casts play a central role in the type system. Statically casts are always al-
lowed to and from any, while casts to optional and concrete types are only per-
mitted if one type is subtype of the other. At runtime, all programmer-inserted
casts are checked, and additional casts are added by the implementation. When-
ever a function with concretely typed arguments is injected in a dynamic context,

9

the runtime adds a wrapper that uses casts to check the actual arguments. For
instance, casting fact to any results in the following wrapper:

func(x) { <any >(fact(<!number >x)) }

To keep the syntax of the two languages in sync, several TypeScript dynamic
features are rewritten as implicit casts. In particular, at function arguments
and the right hand side of the assignment operator, casts to or from any and
optional types are inserted automatically. For instance, the expression on the
left is transformed into the one on the right:

var p:Point = {x=3; z=4} var p:Point = <Point>{x=3; z=4}
If casts from any or optional types to concrete types are inserted, they are
checked exactly like explicit casts. In addition, to support TypeScript’s unsafe
covariant subtyping, covariant overloading is implemented by injecting casts.
Finally, casts are inserted in function calls to assure that if the function is called
from an untyped context, its type annotations are honored. For instance, the
class CPoint below extends Point and requires a concrete type for the argument
of dist:

class CPoint extends Point {

constructor(public color:string , x:number , y:number){...}

dist(p:! CPoint) { ...p.color ... }}

The overloading of dist is unsound, as CPoint is a subtype of Point. It is
rewritten to perform a cast, and thus a check, on its argument p:

class CPoint extends Point { ...

dist(pa){var p:! CPoint = <!CPoint >pa; ...p.color ...}}

Departing from TypeScript, the type of this is not any, but the concrete type
of the surrounding class. This allows calls to methods of this to be statically
type checked. But it creates an incompatibility with TypeScript code which uses
“method stripping”. It is possible to remove a method from the context of its
object, and by using the builtin function call, to call the method with a different
value for this. Consider, for instance, the following example:

class Animal {

constructor(public nm:string) {}}

class Loud extends Animal {

constructor(nm:string , public snd:string) { super(nm) }

speak() { alert(this.nm+" says "+this.snd) }}

var a = new Animal("Snake");

var l = new Loud("Chris", "yo");

var m = l.speak;

m.call(a);

The speak method will be called with this referring to an Animal. This is plainly
incorrect, but allowed, and will result in the string "Chris says undefined".
In StrongScript, this is concrete and the stripped method will include checks
that cause the call to fail.

10

4.3 Backwards compatibility

JavaScript allows a range of highly dynamic features. StrongScript does not pre-
vent any of these features from being used, but, since their type behavior is so
unpredictable, it does not attempt to provide informative types for them. For in-
stance, as objects are maps of string field names to values, it is possible to access
members using computed strings. Thus x[y] accesses a member of x named by
the string value of y, coercing it to a string if necessary; the type of the expres-
sion is always any. Assignment to x[y] may fail, if the member has a concrete
type and the assigned value is not a subtype. Similarly, eval takes any string
and executes it as code. StrongScript treats that code as JavaScript, not Strong-
Script. This is not an issue in practice as eval’s uses are mostly mundane [17].
The type of eval(x) is any.

Objects in JavaScript can be extended by adding new fields, and fields may be
removed. An object’s StrongScript type must be correct insofar as all fields and
methods supported by its declared type must be present, but fields and methods
not present in its type are unconstrained. As such, StrongScript protects its own
fields from deletion or update to values of incorrect types, but does not prevent
addition or deletion of new fields and methods. It is even possible to dynamically
add new methods to classes, by updating an object prototype. None of this affects
the soundness of the type system, and access to one of these in a value not typed
any will result in a static type error.

4.4 Discussion

While our prototype implements an optional blame tracking mode similar to
Typed Racket, we do not recommend it for production as it incurs performance
overheads. Wrappers require, for instance, specialized field access code. We envi-
sion blame tracking as an optional command line switch like assertion checking.

The change to nominal subtyping is controversial but practical experience
suggests that structural subtyping is rather brittle. In large systems, developed
by different teams, the structural subtype relations are implicit and thus any
small change in one part of the system could break the structural subtyping
expected by another part of the system. We believe that having structural sub-
typing for optionally typed interface is an appropriate compromise. It should
also be noted that Strongtalk started structural and switched to nominal [4].

StrongScript departs from Thorn inasmuch Thorn performed an optimized
check on method invocation on optionally typed objects: rather than fully type
checking the actual arguments against the method interface, it relied on the
fact that this check had already been performed statically and simply compared
the interface of the method invoked against the interface declared in the like
type annotation. Thorn’s type system is sound, but the simpler check introduces
an asymmetry between optional and dynamic types at runtime which Thiemann
exploited to prove that Thorn is not trace-preserving (personal communication).

11

5 Formal properties

We formalize StrongScript as an extension of the core language λJS of [14]; in
particular we equip λJS with a nominal class-based type system à la Feather-
weight Java [15] and optional types. This treatment departs from Bierman et
al. [1] in that they focused on typing interfaces and ignored classes, whereas we
ignore interfaces and focus on classes. Thus our calculus does not include rules
needed for structural subtyping of interface types; these rules would, assumedly,
follow [1] but would add too much baggage to the formalization that is not di-
rectly relevant to our proposal. We also do not model method overloading (as
discussed, StrongScript keeps covariant overloading sound by inserting appropri-
ate casts) and references; our design enforces the runtime abstractions even in
presence of aliasing.

Syntax. Class names are ranged over by C ,D , the associated optional types
are denoted by C and concrete types by !C , and the dynamic type is any.
The function type t1 .. tn → t denotes explicitly typed functions while the type
undefined is the type of the value undefined. The syntax of the language makes
it easy to disambiguates class names from optional type annotations.

t ::= !C | C | any | t1 .. tn → t | undefined

A program consists of a collection of class definitions plus an expression to be
evaluated. A class definition classC extendsD{s1:t1 .. sk :tk ; md1 ..mdn} intro-
duces a class named C with superclass D . The class has fields f1..fk of types t1..tk
and methods md1..mdn , where each method is defined by its name m, its sig-
nature, and the expression e it evaluates, denoted m(x1:t1 .. xk :tk){ return e:t}.
Type annotations appearing in fields and method definitions in a class definition
cannot contain undefined or function types. Rather than baking base types into
the calculus, we assume that there is a class String ; string constants are ranged
over by s. Expressions are inherited from λJS with some modifications:

e ::= x | { s:e .. | t } | e1〈t〉[e2] | e1[e2] = e3 | delete e1[e2] | 〈t〉e
| new C (e1..) | let (x :t = e1) e2 | func(x1:t1..){return e : t} | e(e1..)

Functions and let bindings are explicitly typed, expressions can be casted to
arbitrary types, and the new C (e1..) expression creates a new instance of class
C . More interestingly, objects, denoted { s:e .. | t }, in addition to the fields’
values, carry a type tag t : this is any for usual dynamic JavaScript objects, while
for objects created by instantiating a class it is the name of the class. This tag
enables preserving the class-based object abstraction at runtime. Additionally,
field access (and, in turn, method invocation) is annotated with the static type
t of the callee e1: this is used to choose the correct dispatcher or getter when
executing method calls and field accesses. These annotations can be added via
a simple elaboration pass on the core language performed by the type checker.

12

[SObject]

!C <: !Object

[SClass]

class C extends D { ...}
!C <: !D

[SUndef]

undefined <: t

[SOptInj]

!C <: C

[SOptCov]

!C <: !D

C <: D

[SFunc]

t <: t ′ t ′1 <: t1 ..
t1.. → t <: t ′1.. → t ′

[TSub]

Γ ` e : t1 t1 <: t2
Γ ` e : t2

[TVar]

Γ ` x : Γ (x)

[TUndefined]

Γ ` undefined : undefined

[TCast]

Γ ` e : t1
t1 = any ∨ t2 = any ∨ t1 <: t2 ∨ t2 <: t1

Γ ` 〈t2〉e : t2

[TFunc]

x1 : t1.., Γ ` e : t

Γ ` func(x1:t1..){return e : t} : t1.. → t

[TObj]

Γ ` {.. | t} : t

[TDelete]

Γ ` e1 : any
Γ ` e2 : t

Γ ` delete e1[e2] : any

[TGet]

t = !C ∨ C
Γ ` e : t

Γ ` e〈t〉[s] : C [s]

[TGetAny]

Γ ` e1 : any
Γ ` e2 : t

Γ ` e1〈any〉[e2] : any

[TUpdate]

Γ ` e1 : t
t = !C ∨ C
not function type(C [s])
Γ ` e2 : C [s]

Γ ` e1[s] = e2 : t

[TUpdateAny]

Γ ` e1 : any
Γ ` e2 : t2
Γ ` e3 : t3

Γ ` e1[e2] = e3 : any

[TNew]

fields (C) = s1:t1 .. sn :tn
Γ ` e1 : t1 .. Γ ` en : tn

Γ ` newC (e1 .. en) : !C

[TLet]

Γ ` e1 : t
x :t , Γ ` e2 : t ′

Γ ` let (x :t = e1) e2 : t ′

[TApp]

Γ ` e : t1 .. tn → t
Γ ` e1 : t1 .. Γ ` en : tn

Γ ` e(e1 .. en) : t

[TAppAny]

Γ ` e : any
Γ ` e1 : t1 .. Γ ` en : tn

Γ ` e(e1 .. en) : any

[TClass]

∀ i. ti 6= undefined ∧ ti 6= t′1..t
′
n′ → t′

∀ i. ` mdi
(s1..) ∩ fields(D) = ∅ ∧ (md1..) ∩methods(D) = ∅

` class C extends D { s1:t1..; md1.. }

[TMethod]

x1 : t1.. ` e : t

` m(x1 : t1..){return e : t}

Fig. 2. The type system.

Runtime abstractions. Two worlds coexist at runtime: fully dynamic objects,
characterized by the any type tag, and instances of classes, characterized by the
corresponding class name type tag. Dynamic objects can grow and shrink, with
fields being added and removed at runtime, and additionally values of arbitrary
types can be stored in any field, exactly as in JavaScript. The reduction rules
confirm that on objects tagged any it is indeed possible to create and delete
fields, and accessing or updating a field always succeeds.

13

[EGetProto]

s 6∈ { s...}
{ " proto ":v , s:v .. | t }〈t′〉[s] −→ v〈t′〉[s]

[EGet]

s ∈ fields(C)

{s:v .. | t}〈 !C〉[s] −→ v

[EGetAny]

{s:v .. | t}〈any〉[s] −→ 〈any〉v

[EGetOpt]

s ∈ fields(C)

{s:v .. | t}〈C〉[s] −→ 〈C [s]〉v

[EUpdate]

tag(v ′) <: C [s] ∨ s 6∈ fields(C)

{s:v .. | !C}[s] = v ′ −→ {s:v ′ .. | !C}

[EUpdateAny]

{s:v .. | any}[s] = v ′ −→ {s:v ′ .. | any}

[ECreate]

s1 6∈ { s...}
{ s:v .. | t }[s1] = v −→ { s1:v , s:v .. | t }

[EDelete]

t = any ∨ (t = !C ∧ s 6∈ fields(C))

delete {s:v .. | t}[s] −→ {.. | t}

[EGetNotFound]

s′ 6∈ { s...}
" proto " 6∈ { s...}
{ s:v .. | t }〈t′〉[s′] −→ undefined

[EDeleteNotFound]

s 6∈ { s1...} ∨ (t = !C ∧ s ∈ fields(C))

delete { s1:v1 .. | t }[s] −→ { s1:v1 .. | t }

[ELet]

let (x :t = v) e −→ e{x/v }

[ECastObj]

(t ′ = !C ∧ t ′ <: t) ∨ (t = any ∨ C)

〈t〉{.. | t ′} −→ {.. | t ′}

[ECastFun]

t ′ = t ′1.. → t ′′ ∨ (t ′ = any ∧ t ′1 = any .. ∧ t ′′ = any)

〈t ′〉(func(x1:t1..){return e : t}) −→
func(x1:t ′1..){return 〈t ′′〉((func(x1:t1..){return e : t ′})(〈t1〉x ′..)) : t ′′}

[EApp]

(func(x1:t1..){return e : t})(v1..) −→ e{x1/v1.. }

[ECtx]

e −→ e ′

E [e] −→ E [e ′]

[ENew]

new C (v1..) −→ { gfields C (v1..); gmethods C | !C}

where, for classC extendsD{s1:t1 .. sk :tk ; md1 ..mdn}, we define:

gfields C (v1..vn v
′..) , s1:v1..sk :vk ; fields D (v′..)

gmth (m(x1 : t1..){return e : t}) , "m" : func(x1:t1..){return e : t}
gmethods C , " proto " = { gmth md ..; gmethods D | Cproto }

Fig. 3. The dynamic semantics.

14

In our design, objects which are instances of classes benefit from static typ-
ing guarantees; for instance, runtime type checking of arguments on method
invocation is not needed as the type of the arguments has already been checked
statically. For this, we protect the class abstraction: all fields and methods spec-
ified in the class interface must always be defined and point to values of the
expected type. To understand how this is done, it is instructive to follow the
life of a class-based object. The ENew rule implements the class pattern [8]
commonly used to express inheritance in JavaScript. This creates an object with
properly initialized fields — the type of the initialization values was checked
statically by the TNew rule — and the methods stored in an object reachable
via the " proto " field — the conformance of the method bodies with their
interfaces is checked when typechecking classes, rules TClass and TMethod.
For each method m defined in the interface, a corresponding function is stored
in the prototype. The following type rules for method invocation can thus be
derived from the rules for reading a field and applying a function:

t = !C ∨ C
Γ ` e : t
C [s] = t1 .. tn → t ′

Γ ` e1 : t1 .. Γ ` en : tn
Γ ` e〈t〉[s](e1 .. en) : t ′

Γ ` e : any
Γ ` e ′ : t ′

Γ ` e1 : t1 .. Γ ` en : tn
Γ ` e〈any〉[e

′](e1 .. en) : any

The static view of the object controls the amount of type checking that must
be performed at runtime. For this, field lookup e〈t〉[e

′] is tagged at runtime with
the static type t of e, as enforced by rules TGet and TGetAny. The absence
of implicit subsumption to any guarantees that the tag is correct.

Suppose that the class Num implements integers and defines the method
+ : !Num → !Num. Let class C be:

classC{m(x : !Num){ return x + 1: !Num}}

Invoking m in a statically typed context directly passes the arguments to the
method body:1

(newC ())〈C〉["m"](1)
ENew−−−→ {" proto ":{"m":v | !Cproto} | !C}〈 !C〉["m"](1)

EGetProto−−−−−−−→ {"m":v | !Cproto}〈 !C〉["m"](1)
EGet−−−→ v(1)

where v = func (x : !Num){ return x + 1: !Num}. In a dynamic context, method
invocation initially typechecks the arguments against the parameter type anno-
tations of the method:

1 For simplicity we ignore the this argument. A preliminary λJS-like desugarer would
rewrite the class definition as classC{m(this: !C , x :Num){ return x +1:Num}} and
the method invocation as let (o: !C = newC ()) o〈 !C〉["m"](o, 1).

15

(〈any〉newC ())〈any〉["m"](1)
ENew−−−→

(〈any〉{" proto ":{"m":v | !Cproto} | !C})〈any〉["m"](1)
ECast−−−−→ {" proto ":{"m":v | !Cproto} | !C}〈any〉["m"](1)
EGetProto−−−−−−−→ {"m":v | !Cproto}〈any〉["m"](1)

EGetAny−−−−−→ (〈any〉v)(1)
ECastFun−−−−−−→ 〈any〉(func (x :any){ return v(〈 !Num〉x): !Num}(1))
EApp−−−→ 〈any〉(v(〈 !Num〉1))

ECast−−−−→ 〈any〉(v(1))

The expression above dynamically checks that the method argument argument
is a !Num (last ECast reduction) via the cast introduced by the combination of
EGetAny and ECastFun rule. Observe that the choice of the rule EGetAny
was guided by the tag any of the field access. The return value is injected back
into the dynamic world via a cast to any, thus matching the corresponding static
type rule. Contrast this with an invocation at the optional type D for some class
D that defines a method m with type !Num → t :

(〈D〉newC ())〈any〉["m"](1)
ENew−−−→ ECast−−−−→ EGetProto−−−−−−−→ {"m":v | !Cproto}〈D〉["m"](1)

EGetOpt−−−−−→ (〈 !Num → t〉v)(1)
ECastFun−−−−−−→ 〈t〉(func (x : !Num){ return v(〈 !Num〉x): !Num}(1))

...−−−−→

In this case rule EGetOpt, selected via the D tag, inserts a cast to !Num → t
that not only typechecks the actual arguments (as the caller can still an arbitrary
object), but also casts the return value to the type t expected by the context.

Other invariants that preserve the class-based objects are enforced via the
rule EDeleteNotFound, that turns deleting a field appearing in the interface
of a class-based object into a no-op (which in static contexts is also forbidden by
the TDelete rule), and rule EUpdate, that ensures that a field appearing in
a class interface can only be updated if the type of the new value is compatible
with the interface. For this, the auxiliary function tag(v) returns the type tag of
an object, and is undefined on functions.

A quick inspection of the type rules shows that optionally-typed expressions
— that is, expressions whose static type is C — are treated by the static seman-
tics as objects of type !C , thus performing local type checking. At runtime, the
reduction semantics highlights instead that optionally-typed objects are treated
as dynamic objects except for the treatment of the return values. This ensures
the third key property of optional types, namely that whenever field access or
method invocation succeeds, the returned value is of the expected value and
not any. We have seen how this is realized on method invocation; similarly for
field accesses, let C be defined as classC{"f ": !Num} and compare the typing
judgments {.. | t}〈any〉["f "] : any and {.. | t}〈C 〉["f "] : !Num. Field access on an
object in a dynamic context invariably returns a value of type any. Instead if
the object is accessed as C , then the rule TGet states that the type of the field
access is !Num (which is then enforced at runtime by the cast inserted around
the return value by rule EGetOpt).

16

Formalization. Once the runtime invariants are understood, the static and dy-
namic semantics is unsurprising. As usual, in the typing judgment for expres-
sions, denoted Γ ` e : t , the environment Γ records the types of the free variables
accessed by e. Object is a distinguished class name and is also the root of the
class hierarchy; for each class name C we have a distinguished class name Cproto

used to tag the prototype of class-based objects at runtime. Function types are
covariant on the return type, contravariant on the argument types: since the
formalization does not support method overriding, it is sound for the this argu-
ment to be contravariant rather that invariant, which simplifies the presentation;
the implementation supports overriding and imposes invariance of the this ar-
gument. Optional types are covariant and it is always safe to consider a variable
of type !C as a variable of type C . The type rule for an object simply extracts
its type tag, which as discussed is any for dynamic javascript objects, and a
class name for objects generated as instances of classes (possibly with the proto
suffix). The notation C [s] returns the type of field s in class definition C ; it is
undefined if s does not belong to the interface of C . Auxiliary functions fields(C)
and methods(C) return the set of all the fields and methods defined in class C
(and superclasses). The condition not function type(C [s]) ensures that method
updates in class-based objects are badly typed. Evaluation contexts are defined
as follows:

E ::= • | let (x :t = E)e2 | E〈t〉[e] | v〈t〉[E] | E [e2] = e3 | v [E] = e3

| v1[v2] = E | E (e1 .. en) | v(v1 .. vn , E, e1 .. ek) | newC (v1 .. vn E e1 ek)

| {s1:v1 .. sn :vn s:E s1:e1 .. sk :ek | t} | deleteE [e] | delete v [E] | 〈t〉E

As mentioned above, method invocation has higher priority than field access,
and reduction under contexts (rule ECtx) should try to reduce e〈t〉[e

′](e1) to
v〈t〉[v

′](v1) whenever possible.

Metatheory. In StrongScript, values are functions, and objects whose fields con-
tain values. We say that an expression is stuck if it is not a value and no reduction
rule applies; stuck expressions capture the state of computation just before a run-
time error. The Safety theorem states that a well-typed expression can get stuck
only on a downcast (as in Java) or on an optional-typed or dynamic expression.

Theorem 1 (Safety). Given a well-typed program Γ ` e : t, if e −→∗ e′

and e ′ is stuck, then either e′ = E [〈 !C 〉v ′′] and Γ ` v ′′ : t ′′ with t ′′ 6<: !C ,
or e′ = E [{.. | t}〈t′〉[v]] and t′ = any or t′ = C , or e′ = E [〈t ′ → t ′′〉v ′′] and
Γ ` v ′′ : any and v′′ is not a function, or e′ = undefined.

This theorem relies on two lemmas, the Preservation lemma states that typings
(but not types) are preserved across reductions, and the Progress lemma iden-
tifies the cases above as the states in which well-typed terms can be stuck. The
Safety theorem has several interesting consequences. First, a program in which
all type annotations are concrete types has no runtime errors (apart from those
occurring on downcasts): the concretely typed subset of StrongScript behaves as
Featherweight Java (and, in turn, Java) and execution can be optimized along

17

the same lines. Second, optional-typed programs (that is, programs with no oc-
currences of the any type and no downcasts to like types), benefit from the same
execution guarantee: static type checking is strong enough to prevent runtime
errors on entirely optional-typed programs.

The Trace Preservation theorem captures instead the idea that given a dy-
namic program, it is possible to add optional type annotations without breaking
its runtime behavior; more precisely, if the type checker does not complain about
the optional type annotation, then the runtime guarantees that the program will
have the same behavior of the unannotated version. This theorem holds trivially
in TypeScript because of type erasure.

Theorem 2 (Trace Preservation). Let e be an expression where all type an-
notations are any and Γ ` e : any. Let v be a value such that e −→∗ v. Let e′ be e
in which some type annotations have been replaced by optional type annotations
(e.g. C , for C a class with no concrete types in its interface). If Γ ` e ′ : t for
some t, then e′ −→∗ v.

The Strengthening theorem states that if optional type annotations are used
extensively, then the type checking performed is analogous to the type checking
that would be performed by a strong type system à la Java. A consequence is
that it is possible to transform a fully optionally typed program into a concretely
typed program with the same behavior just by strengthening the type annota-
tions. This property crucially relies on the fact that all source of unsoundness in
our system are identified with explicit cast to optional types (or to any).

Theorem 3 (Strengthening). Let e be a well-typed cast-free expression where
all type annotations are of the form C or !C . Suppose that e reduces to the value
v. Let e′ be the expression obtained by rewriting all occurrences of optional types
C into the corresponding concrete types !C . The expression e′ is well-typed and
reduces to the same value v.

6 Evaluating StrongScript

Our implementation of StrongScript consists of two components: an extended
version of the TypeScript 0.9.1 compiler and a JavaScript engine derived from Or-
acle’s TruffleJS [26]. The compiler outputs portable JavaScript, so the resulting
code can run on any stock virtual machine, but no performance improvement
should be expected in that case. The compiler is extended with the following
type related features: (a) support for concrete types and dynamic contracts at
explicit downcasts, (b) checked downcasts where TypeScript does so implicitly
and unsoundly (including covariant subtyping), and (c) function code suitable
for both typed and untyped invocation (including dynamic contracts at untyped
invocation). The compiler emits intrinsics that describe the layout of concretely-
typed objects: we extended the TruffleJS runtime to understand and exploit
these intrinsics to perform check-free property access in concrete types. The
compiler, as an option, can generate blame tracking wrappers for interfaces.

18

6.1 Implementation

Supporting concrete types simply requires adding the type constructor (!) and
typing rules: !C<: C and !C<: !D implies C<: D. Since we use nominal typing
for classes, optional and concrete types are compatible in both optional and
concrete contexts; it is thus possible to implement type checks, using JavaScript’s
builtin instanceof mechanism. Nominal types are retained at runtime. The
compiler ensures that concrete types are always used soundly. For this we include
a small (200-line) library functions necessary to implement sound type checking.
These functions rely on ECMAScript 5 features to protect themselves from being
replaced or accidentally circumvented. To ensure soundness the compiler inserts
dynamic contracts wherever unsafe downcasts occur, whether explicit or implicit.
This is accomplished by the $$check function, which asserts that a value is of a
specified type. For instance:

var untyped:any = new A();

var typed:!A = <!A>untyped;

is compiled into:

var untyped = new A();

var typed = A.$$check(untyped);

The check function is simple and generic, and does not require a per-class checker.
For compatibility with TypeScript, several forms of unsafe, implicit casts are
allowed in the source program. Specifically, implicit unsafe casts are inserted
when a value is of type any and is in the context of a function argument or the
right-hand-side of an assignment expression. For instance, the following code:

var unsafe :!B = <any >new A();

implies this additional cast:

var unsafe :!B = <!B><any >new A();

which in turn generates the following JavaScript code:

var unsafe = B.$$check(new A());

The cast to !B fails at runtime if B is not a supertype of A. Were this code to be
rewritten with unsafe:B rather than !B, the inserted cast to B would imply no
check, and the code would succeed at runtime. If the cast to any were omitted,
this example would be rejected by the type checker.

Covariant overloading is implemented as unsafe downcasting, as described in
Sec. 4.2. We describe some aspects of our type system as automatically-generated
downcasts where TypeScript describes them as type compatibility. This is a mat-
ter of descriptive clarity and does not affect compatibility. All semantically valid
TypeScript 0.9.1 programs, and programs valid in TypeScript 1.0 and greater
which use types nominally and do not use features introduced after our version
was forked from TypeScript, are semantically valid StrongScript with no syntactic
changes.

19

Efficient and sound implementation of function code. Functions with type anno-
tations may be called from typed or untyped contexts. If they have only optional
types or any, this requires no checks. However, methods of classes don not fit
that description, as the this argument is always concretely typed. One option
would be to check all concretely typed arguments at runtime, but this would
entail unnecessary dynamic checks when types of arguments are known. Our im-
plementation generates both an unchecked and a checked function. The checked
function simply verifies its arguments and then calls the unchecked function.
Calls are redirected appropriately by a compilation step. For instance, the fol-
lowing code:

class Animal {

constructor(name:String) {}

eat(x:! Animal) {

console.log(this.name+" eats "+x.name); }}

var a:! Animal = new Animal("Alice");

var b:any = a;

a.eat(new Animal("Bob"));

b.eat(new Animal("Bob"));

is translated by an intermediary stage to:

class Animal {

constructor(name:String) {}

$$unchecked$$eat(x:! Animal) {

console.log(this.name+" eats "+x.name); }

eat(x) {

(<!Animal >this).$$unchecked$$eat (<!Animal >x); }}

var a:! Animal = new Animal("Alice");

var b:any = a;

a.$$unchecked$$eat(new Animal("Bob"));

b.eat(new Animal("Bob"));

Code is generated to assure that the $$unchecked versions of functions are
unenumerable and irreplaceable. This prevents accidental damage, but is not
safe against intentionally malicious code.

Intrinsics. With concrete types, it is possible to lay out objects at compile
time, and to access fields and methods by their statically-known location in the
object layout, obviating the need for hash table lookups. JavaScript, however,
provides no way to explicitly specify the layout of objects. Therefore, to take
advantage of known concrete objects, JavaScript code generated by StrongScript
includes calls to several intrinsic operations which access fields by explicit offset
within objects. On non-supporting engines, these intrinsics are implemented as
no-ops. On TruffleSS, the only supporting engine, they are implemented as
direct accesses. The intrinsics are $$direct and $$directWrite, and support
direct reading and writing to offsets within an object, respectively. If an object is

20

built with repeated $$directWrite calls, then fields are accessed with $$direct
calls. For instance, the following StrongScript code:

class A { constructor(x:string); }

var a:!A = new A("foo");

alert(a.x);

compiles into the following JavaScript code:

function A(x) { this.$$directWrite (0).x = x; }

var a = new A("foo");

alert(a.$$direct (0).x);

Blame tracking. Our compiler support blame tracking to associate errors with
the location of the responsible (structural) type cast. Unsafe downcasts to struc-
tural types are implemented by wrapping the objects with field getters and
setters which validate their types [12]. The wrapper object additionally stores
the location where it was created. When one of its type checks fail, both loca-
tions are reported. This strategy causes substantial runtime overhead, and blame
tracking is disabled by default.

6.2 Evaluating Performance

We measure the performance of our implementation to demonstrate that adding
type information to dynamic code can yield performance benefits. For this exper-
iment, we modified a small number of programs to give them concrete types and
compared the result of running those on the Truffle optimizing virtual machine
against an untyped baseline. Truffle is a highly optimizing, type-specializing
compiler. Many of its optimizations are redundant with our intrinsics and we
expect the relative speedups to reflect this fact.

As there are no established TypeScript benchmarks, we adapted a number
of programs from the Programming Language Benchmarks Game2 and Oc-
tane3. We focused on programs which use classes as our optimizations rely on
their presence. We chose bg-binarytrees, bg-nbody, oct-deltablue, oct-nav-
ier-stokes, and oct-splay. Moreover, we also used benchmarks provided with
SafeTypeScript, namely sts-crypto, sts-navier-stokes, sts-raytrace, sts-
richards and sts-splay. sts-navier-stokes and sts-splay overlap with
oct-navier-stokes and oct-splay, but are slightly different ports. The Safe-
TypeScript benchmarks were unchanged (i.e. no added concrete types).

For each benchmark, a type erased and a typed form were compiled, called
the “TypeScript” and “StrongScript” forms. Each benchmark times long-running
iterative processes; several thousand iterations are performed before timing be-
gins to allow the JIT a warmup period. We compare the runtime between the two
forms on the same engine. i.e., the only change is the inclusion of intrinsics and
type protection. Each benchmark was run in each form 10 times, interleaved to

2 http://benchmarksgame.alioth.debian.org/
3 https://developers.google.com/octane/

21

reduce the possibility of outside interaction. For the Benchmarks Game bench-
marks, the reported result is runtime in milliseconds, so lower values represent
better performance. For the Octane benchmarks, the reported result is speedup
over a reference runtime, so higher values represent better performance. We re-
port the arithmetic means of the results in each form, as well as the speedup or
slowdown. Benchmarks were run an 8-core 64-bit Intel Xeon E5410 with 8GB
of RAM, running Gentoo Linux. Our modification of Truffle is based on a snap-
shot dated October 15th, 2013. The SafeTypeScript benchmarks were compared
against a snapshot of SafeTypeScript dated October 24, 2014.

Results. Figure 4 shows that all benchmarks were sped up when the virtual ma-
chine can rely on concrete types. Three of the benchmarks had speed up large
enough to be statistically significant. The performance benefits come from type-
specialization intrinsics and direct access to fields in class instances. bg-nbody
uses large objects with typed members, and our type-specialized intrinsics al-
low us to build these objects efficiently. Truffle has similar optimizations, but
they are heuristic and less effective. oct-deltablue and oct-splay both use
subclasses and polymorphism. Our member access intrinsics are not affected by
subclass polymorphism, and therefore are reliably faster. Figure 4 also indicates
the number of expressions, properties, and method arguments that had type
annotations attached, this range from 7 to 186.

TypeScript StrongScript
Benchmark Annotations runtime runtime Speedup

bg-binarytrees 7 5750 5627 2.1%
bg-nbody 22 898 715 20.4%

Ref. speedup Ref. speedup

oct-deltablue 186 1701 2518 32.5%
oct-navier-stokes 94 9170 9492 3.4%

oct-splay 55 890 1092 18.4%

Fig. 4. Performance comparison on the Truffle VM. For bg- lower is better, for oct-

smaller is better. Times are in milliseconds.

Figure 5 compares StrongScript with SafeTypeScript. For these benchmark,
we use the SafeTypeScript code as such as it is valid StrongScript (in particular
we do not add concrete types). On Truffle, we are slightly faster overall because
SafeTypeScript performs more runtime checks. We also compared the speed of
the two implementation on Node.js (using the V8 engine). On Node, two of the
benchmarks exhibited slightly slower performance, we presume, because the vir-
tual machine spent more time constructing self-protecting classes. The speedups
due to fewer runtime checks were more pronounced on Node.

Threats to validity. The number of programs available and their nature makes
it difficult to generalize form our results. At least they point to the potential

22

SafeTypeScript StrongScript
Benchmark Annotations runtime (Truffle) runtime (Truffle) Speedup

sts-crypto 263 1967 1900 3.5%
sts-navier-stokes 104 1175 1157 1.5%

sts-raytrace 110 839 807 3.9%
sts-richards 67 449 419 7.1%

sts-splay 13 1888 1801 4.8%

SafeTypeScript StrongScript
Benchmark Annotations runtime (Node) runtime (Node) Speedup

sts-crypto 263 9.7 8.7 12.3%
sts-navier-stokes 104 5.1 5.1 -0.1%

sts-raytrace 110 3.5 3.5 -1.4%
sts-richards 67 0.3 0.2 28.6%

sts-splay 13 162.5 136.9 18.7%

Fig. 5. Performance comparison on Tuffle and Node.js. StrongScript against SafeType-
Script. Lower is better. Times are in millis, rounded to the nearest tenth. Execution
times across virtual machines are incomparable as they used different harnesses to
measure runtimes.

for performance improvements with concrete types. Also, it is worthy of note
that conventional wisdom amongst virtual machine designers is that type anno-
tations are not needed to get performance for JavaScript. Our result suggest that
this may not be the case. Of course, this should be validated on other engines.
Because our intrinsics are unchecked JavaScript, it is possible to use them to
circumvent security properties of the engine. Although this problem would be
resolved by implementing StrongScript directly rather than through a transla-
tion layer, the performance characteristics of such a system may vary somewhat
from what is achieved with a JavaScript system. Similar changes would be ex-
pected if StrongScript’s specialized functions (e.g. $$check and $$unchecked)
were made secure from malicious code. Our measured benchmark code has no
unsafe downcasts, and thus no runtime type checking. The overall benefit of our
intrinsics depends on the underlying engine, and specifically the precision of its
speculation. Our intrinsics would be expected to show narrower advantages over
an engine with better object layout speculation; however our intrinsics ensure
predictable benefits, while layout speculation relies on complex heuristics that
might be invalidated with program evolution.

7 Conclusion

StrongScript is a natural evolution of the TypeScript design. Optional type anno-
tations have already proven to be useful in practice despite their lack of runtime
guarantees or performance benefits. With a modicum effort from the program-
mer, StrongScript can provide stronger runtime guarantees and predictable per-
formance while allowing idiomatic JavaScript code and flexible program evolu-

23

tion. The type systems of TypeScript and StrongScript are fundamentally differ-
ent, the former being intrinsically unsound for the stated goal of typing as many
JavaScript programs as possible, and the latter being sound to ensure stronger
invariants when needed. In practice, we have found that StrongScript type system
does not limit expressiveness as our compiler silently inserts all the needed casts
to optional types or any needed to mimic the unsound behaviors of TypeScript.
The only incompatibilities between the two are due to structural vs. nominal
subtyping on optional class types. However all programs well-typed in versions
of TypeScript up-to 0.9.1 – which relied on nominal subtyping – are well-typed
StrongScript programs, and the large benchmarks of [16] suggest that this is
not a problem in practice. Compared to SafeTypeScript, our design delivers the
flexibility offered by the optional types and the predictable performance given
by intrinsics. In particular, in our design, optional types are not only useful for
program evolution but can also durably play the role of interfaces between the
dynamic and concretely typed parts of a program, avoiding the need for extra
casts to concrete types.

The fact that we are able to achieve performance gains on a highly optimizing
virtual machine gives one more reason for developers to adopt concrete types.

Artifact Availability. StrongScript is an open source project. The implemen-
tation is hidden during the double blind review period as it cannot easily be
anonymized, it will be released to Artifact Evaluation Committee.

References

1. Bierman, G., Abadi, M., Torgersen, M.: Understanding TypeScript. In: ECOOP
(2014)

2. Bloom, B., Field, J., Nystrom, N., Östlund, J., Richards, G., Strnisa, R., Vitek,
J., Wrigstad, T.: Thorn—robust, concurrent, extensible scripting on the JVM. In:
OOPSLA (2009)

3. Borning, A.H., Ingalls, D.H.H.: A type declaration and inference system for
Smalltalk. In: POPL (1982)

4. Bracha, G.: The Strongtalk type system for Smalltalk. In: OOPSLA Workshop on
Extending the Smalltalk Language (1996)

5. Bracha, G.: Pluggable type systems. OOPSLA Workshop on Revival of Dynamic
Languages (2004)

6. Bracha, G., Griswold, D.: Strongtalk: Typechecking Smalltalk in a production en-
vironment. In: OOPSLA (1993)

7. Cartwright, R., Fagan, M.: Soft Typing. In: PLDI (1991)
8. Crockford, D.: Classical inheritance in JavaScript. http://www.crockford.com/

javascript/inheritance.html

9. Findler, R.B., Felleisen, M.: Contract soundness for object-oriented languages. In:
OOPSLA (2001)

10. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. In: ICFP (2002)
11. Findler, R.B., Flatt, M., Felleisen, M.: Semantic casts: Contracts and structural

subtyping in a nominal world. In: ECOOP (2004)
12. Flatt, M., PLT: Reference: Racket. Tech. Rep. PLT-TR-2010-1, PLT Design Inc.

(2010), http://racket-lang.org/tr1/

24

13. Gapeyev, V., Levin, M., Pierce, B.: Recursive subtyping revealed. Journal of Func-
tional Programming 12(6), 511–548 (2002)

14. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: ECOOP
(2010)

15. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3) (2001)

16. Rastogi, A., Swamy, N., Fournet, C., Bierman, G., Vekris, P.: Safe and efficient
gradual typing for TypeScript. In: POPL (to appear) (2015)

17. Richards, G., Hammer, C., Burg, B., Vitek, J.: The eval that men do: A large-scale
study of the use of eval in JavaScript applications. In: ECOOP (2011)

18. Siek, J., Taha, W.: Gradual typing for objects. In: ECOOP (2007)
19. Siek, J., Vitousek, M., Kent, A., Baker, J.: Design and evaluation of gradual typing

for Python. Tech. rep., Indiana University (2014), http://wphomes.soic.indiana.
edu/jsiek/files/2014/03/retic-python.pdf

20. Siek, J.G.: Gradual Typing for Functional Languages. In: Scheme and Functional
Programming Workshop (2006)

21. Suzuki, N.: Inferring types in smalltalk. In: POPL (1981)
22. Tobin-Hochstadt, S., Felleisen, M.: Interlanguage migration: from scripts to pro-

grams. In: DLS (2006)
23. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of typed

Scheme. In: POPL (2008)
24. Wadler, P., Findler, R.B.: Well-typed programs can’t be blamed. In: ESOP (2009)
25. Wrigstad, T., Zappa Nardelli, F., Lebresne, S., Östlund, J., Vitek, J.: Integrating

typed and untyped code in a scripting language. In: POPL (2010)
26. Würthinger, T., Wimmer, C., Wöss, A., Stadler, L., Duboscq, G., Humer, C.,

Richards, G., Simon, D., Wolczko, M.: One VM to rule them all. In: Onwards!
(2013)

25

