Exploiting Redundancy in Question Answering

Charles L. A. Clarke

Gordon V. Cormack

Thomas R. Lynam

Department of Computer Science, University of Waterloo, Canada
mt@plg.uwaterloo.ca

ABSTRACT

Our goal is to automatically answer brief factual questions
of the form “When was the Battle of Hastings?” or “Who
wrote The Wind in the Willows?”. Since the answer to
nearly any such question can now be found somewhere on
the Web, the problem reduces to finding potential answers
in large volumes of data and validating their accuracy. We
apply a method for arbitrary passage retrieval to the first
half of the problem and demonstrate that answer redundancy
can be used to address the second half. The success of our
approach depends on the idea that the volume of available
Web data is large enough to supply the answer to most fac-
tual questions multiple times and in multiple contexts. A
query is generated from a question and this query is used
to select short passages that may contain the answer from
a large collection of Web data. These passages are analyzed
to identify candidate answers. The frequency of these can-
didates within the passages is used to “vote” for the most
likely answer. The approach is experimentally tested on
questions taken from the TREC-9 question-answering test
collection. As an additional demonstration, the approach is
extended to answer multiple choice trivia questions of the
form typically asked in trivia quizzes and television game
shows.

1. QUESTION ANSWERING

Question Answering (QA) has recently received attention
from both the Information Retrieval (IR) and Information
Extraction (IE) communities, both as an extension to their
traditional interests and as an area of intersection between
the two. A typical QA task requires concise answers to short
factual questions, where a large target corpus is used as the
source for these answers. Answers may take the form of val-
ues, names, phrases, sentences, or brief text fragments. In
contrast with traditional IR tasks, it is not acceptable for
a QA system to retrieve a full document, or even a para-
graph or large text fragment, in response to a question. In
contrast with traditional TE tasks, no pre-specified domain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR 01, September 9-12, 2001, New Orleans, Louisiana, USA
Copyright 2001 ACM 1-58113-331-6/01/0009 ...$5.00.

restrictions are placed on the questions, which may be of
any type and deal with any topic [3,9,19].

Over the past two years, work in question answering has
been encouraged by the inclusion of a question answering
task in the experimental work of the TREC conference se-
ries, which is sponsored annually by the U.S. National Insti-
tute of Standards and Technology (NIST) [22]. For TREC-9,
the most recent conference, the task consisted of 682 ques-
tions posed over a 3GB target corpus comprised of newspa-
per articles, where an answer for each question was guaran-
teed to appear in the corpus [21]. Answers take the form of
text fragments extracted from the target corpus. For each
experimental run, five attempts were given to answer each
question. The attempts were ranked, and the primary eval-
uation measure is based on the rank of the first fragment
containing a correct answer. Two types of experimental
runs were permitted, which differed only in the maximum
allowed length of the text fragment, which was either 50 or
250 bytes.

Figure 1 provides a simplified overview of our QA system,
which was used to generate our TREC-9 experimental runs.
First, a parser analyzes a question to extract two types of in-
formation: 1) a query for submission to a passage retrieval
component, and 2) a set of selection rules that guide the
process of extracting answers from the passages. The pas-
sage retrieval component executes the query over the target
corpus, retrieving a ranked list of the top k passages for fur-
ther analysis by the answer selection component. The selec-
tion rules include an answer category (“person”, “monetary
value”, “date”, etc.) that identifies the general type of infor-
mation that is sought by the question. The answer selection
component identifies possible answers (“candidates”) from
the passages and then ranks these candidates using a variety
of heuristics. These heuristics take into account the number
of times each candidate appears in the retrieved passages,
the location of the candidate in the retrieved passages, the
rank of the passages in which the candidate appears, the
likelihood that the candidate matches the assigned answer
category, and other special-case information provided by the
selection rules.

This general approach of question analysis followed by IR
followed by IE is nearly ubiquitous in QA systems [1,4,8,
10,13,14,16,20,23]. Using relatively simple question parsing
and answer selection components our QA system provides
good performance. For the TREC-9 QA task [21] the system
placed in the top three for both 50- and 250-byte runs.

Our experience with the TREC QA task indicated that

three specific features make the greatest contribution to the

Question _ Query Passage
Parsing Retrieval Corpus
Passages
Selection Rules Answer ANSWers
Selection

Figure 1: QA system architecture

performance of our system. One is the flexibility of the
parser [5], which was able to make reasonable choices in the
face of unexpected question types and formats. The sec-
ond is the basic passage retrieval technique, which produces
high-quality passages for further analysis. The third is the
use of candidate redundancy in the answer selection compo-
nent. By redundancy, we mean the combination of evidence
from multiple passages to identify the most likely answer.
The appearance of a candidate answer in several of the top
ranking passages is a strong indication of the importance
of a candidate. The exploitation of redundancy in question
answering is the main subject of the present paper.

The remainder of the paper is organized as follows: The
next section provides details of our passage retrieval tech-
nique, which forms the basis for the remainder of the work.
Section 3 outlines the role of redundancy in our TREC-9 ex-
periments and discusses its contribution to the performance
of our QA system. In Section 4 we examine the impact of
redundancy in a broader context by removing the guarantee
that the answer appears in the corpus and by requiring an
exact answer, rather than a text fragment containing the
answer. A large collection of Web data is used as the target
corpus. The work is further extended in Section 5, which
uses trivia questions drawn from a popular game show to
further test the value of redundancy. The paper concludes
with an overview of additional related research and a dis-
cussion of future work.

2. PASSAGE RETRIEVAL FOR QA

Many open-domain question answering systems incorpo-
rate an IR component that is used for passage retrieval [1,8,
10,13,14,16,23]. Paragraphs, sentences or n-word segments
are treated as separate documents with document-oriented
retrieval techniques are applied to retrieve them. However,
it is not obvious that these document-oriented IR methods
are ideally suited for use in a question answering environ-
ment. Text fragments can often supply the answer to a ques-
tion even when the topic of the question is incident to the
topic of the document or paragraph containing the fragment.
For example, evidence supporting “James Boswell” as the
answer to the question “Who was Samuel Johnson’s friend
and biographer?” is supplied by the text fragment “...self-
appointed cultural commentator Stanley Crouch played Bos-

”

well to Marsalis’s Samuel Johnson...” although jazz music is
the primary concern of the document from which it is drawn.
In a similar fashion, the current paper itself contains answers
for this and a dozen other unrelated trivia questions.

For question answering we use a passage retrieval tech-
nique that does not depend on predefined passages, but can
retrieve any document substring in the target corpus. The
technique was applied to question answering in both our
TREC-8 and TREC-9 experiments and was outlined in the
associated papers [5,7]. This section provides additional
justification for the technique and briefly discuss its efficient
implementation.

Each document D in the corpus is treated as an ordered
sequence of terms:

D=d ds ds...dm.

A passage from D is represented by an eztent (u,v), an
ordered pair of coordinates with 1 < u < v < m that corre-
sponds to the subsequence of D beginning at position u and
ending at position v

du dug1 dugsz...dy.

A query @ is generated from the original question and takes
the form of a term set:

Q={a, @, a,..}.

An extent (u,v) satisfies a term set T C @ if the subse-
quence of D defined by the extent contains at least one oc-
currence of each of the terms from 7. An extent (u,v) is a
cover for T if (u,v) satisfies T' and the subsequence corre-
sponding to (u, v) contains no subsequence that also satisfies
T. That is, there does not exist an extent (u’, v") with either
u<u <v <voru<u <v' <vthat satisfies 7.

Given an extent (u,v) that is a cover for a term set 7' =
{t1, t2,...} we wish to compute a score for the extent with
respect to T' that reflects the likelihood that an answer to
the question is contained in the extent or appears in its
close proximity. First, we model a document as a sequence
of independently generated terms and assume that there is
a fixed probability p; of a term ¢ € T' matching at any given
document location. Note that this simplifying assumption
allows multiple terms from 7' to match at a particular loca-
tion.

Given an extent (u,v) with length | = v — u 4+ 1, the
probability P(t,1) that the extent contains one or more oc-
currences of t is

Pt,l) = 1—(1-p)
= 1-(1-Ip+O0(p.*))
=~ lpt

The probability that an extent (u,v) contains all the terms

from T is then
[IPey
teT

[t

teT

— llTl i Hpt~

teT

I

P(T,1)

Q

Finally, we estimate p; from the term frequencies within the
target corpus

pt:ft/N7

where f; is the total number of times ¢ appears in the target
corpus and N is the total length of all documents in the
corpus. The score for an extent of length ! containing the
terms T' C @ is the self-information of P(T,1)

> log(N/fi) — [T|log(l). (1)

teT

Equation 1 assigns higher scores to passages whose prob-
ability of occurrence is lower. While a higher score does not
directly imply a greater likelihood that the answer will ap-
pear in close proximity, empirical evidence suggests that this
relationship holds. The runs we submitted for the TREC-8
QA experiments were based solely on this passage retrieval
technique [7]. Instead of parsing the questions, we simply
eliminated stopwords. Instead of answer selection, we sim-
ply submitted the 250-byte fragment centered on each ex-
tent. Despite the simplicity of the technique, answers for
63% of the questions appeared in the five fragments sub-
mitted and the system was among the six best-performing
systems overall [22].

Given a query () we generate all covers for all subsets of @
and rank them using equation 1. All but the highest ranking
passage from each document are discarded and the top k are
used for further analysis.

Implementation of the technique depends on a fast algo-
rithm to compute all covers of all subsets of (). An extent
(u,v) is said to i-satisfy a query @ if the subsequence of
D defined by the extent contains exactly i distinct terms
from Q. An extent (p,q) is an i-cover for @ if and only if
it i-satisfies () and does not contain a shorter extent that
also i-satisfies). The appendix of reference 6 presents an
algorithm to generate J;, the set of all i-covers of @, in time
O(|Q| - |Ji|log(N)). The set of covers for all subsets of @ is

simply the union of the i-covers

N
U
=1

3. TREC-9 EXPERIENCE

The importance of redundancy became apparent during
the post-hoc analysis of our TREC-9 QA results. Our ex-
perimental runs for TREC-9 used the overall approach out-
lined in Figure 1. For passage retrieval we used the tech-
nique presented in Section 2, retrieving the top k& = 10 pas-
sages and symmetrically expanding each about its center-
point C' = (u+ v)/2 to 200 terms for further analysis. A
complete discussion of the question parsing and answer se-
lection components is provided in our TREC-9 paper [5]. In
the remainder of this section, we focus on the use of redun-
dancy in the answer selection component.

Since the goal of the TREC-9 QA experiments was to se-
lect 50- and 250-byte answer fragments from the retrieved
passages, the answer selection technique used to generate
our experimental runs does not attempt to identify candi-
dates that are exact or complete answers. Instead, can-
didates are single terms, where the nature of these terms
depends on the category of the question. For example, if a
question asks for a proper noun, the candidates consist of
those terms that match a simple syntactic pattern for proper
nouns; if a question asks for a length, the candidates con-
sist of those numeric values that precede appropriate units;
and if a question cannot be classified, the candidates simply
consist of all non-query and non-stopword terms appearing
in the retrieved passages. After identification, each candi-
date term t is assigned a weight that takes into account the
number of distinct passages in which the term appears, as
well as the relative frequency of the term in the database,

wy = cilog(N/fi),

where 1 < ¢; < k is the number of distinct passages in which
t appears and represents the redundancy associated with the
candidate.

The weights of the candidates are used to select 50- and
250-byte answer fragments from the retrieved passages. Each
50- or 250-byte fragment from the retrieved passages is con-
sidered as a possible answer. A score of each fragment was
computed by summing the weights of the candidate terms
that appear within it. Given a text fragment F' and a set of
candidates K the score for a fragment is

. w (2)

teFAtEK

This score is then modified using a number of heuristics that
take into account the rank of the passage in which the frag-
ment appeared, the location of the fragment relative to the
centerpoint of the passage, and the selection rules generated
by the parser [5]. These heuristics had only a minor (but
positive) effect on the system’s performance.

Once the highest-scoring fragment is selected, the weights
of the candidates appearing in that fragment are reduced
to zero. All fragments are re-scored and the highest-scoring
fragment is again selected. This process is repeated until
five fragments have been selected.

The weight assigned to a candidate combines a redun-
dancy factor and a term-frequency factor. The individual
contributions of each can be ascertained by setting one or
the other to a constant value and measuring the result-
ing impact on question answering performance. Figure 2
compares three different formulations for the weight w; us-
ing the TREC-9 QA test collection. The candidate weight
wy = cylog(N/fi) was used for our TREC-9 experiments

50-byte answers 250-byte answers
mean number percent mean number percent
wy reciprocal rank correct correct | reciprocal rank correct correct
Ct log(N/ft) 0.390 349 51.2% 0.507 444 65.1%
Ct 0.345 314 46.0% 0.471 425 62.3%
log(N/ft) 0.241 248 36.47 0.448 414 60.7%
raw passages 0.191 209 30.6% 0.464 436 63.9%

Figure 2: TREC-9 results

and was discussed above. The weight w; = log(N/f:) ig-
nores candidate redundancy, essentially as if all candidates
appeared an equal number of times in the passages. The
weight w; = c¢; treats all candidates as having the same term
frequency and takes only redundancy into account. For com-
parison, the final row of the figure presents results for the
50- or 250-byte fragment centered on each of the top five
extents, duplicating our TREC-8 “answer selection” tech-
nique.

Figure 2 reports two effectiveness measures. Mean recipro-
cal rank (MRR) is the standard TREC effectiveness measure
reported by NIST for each TREC QA run [22]. To compute
MRR, each question is assigned a score that is the inverse
of the rank of the first fragment that is judged to contain
a correct answer. If no fragment contains an answer, the
question 1is assigned a score of zero. The scores of the ques-
tions are then averaged to produce the MRR value for the
run. In addition to MRR, the figure reports the number and
percent of questions for which a correct answer was found
in the five fragments. These measures were computed by an
automatic judging script developed by Voorhees [22].

The value of redundancy is most apparent in the 50-byte
runs. Eliminating the redundancy factor reduces the MRR
by 38% and the number of questions answered correctly by
28%. Eliminating the term frequency factor has a lesser ef-
fect, reducing MRR by 12% and the number of correct ques-
tions by 10%. The raw passages have an MRR 50% lower
and contain the answers to 40% fewer questions. In contrast,
the raw 250-byte passages exhibit good performance, which
is harmed by answer selection if either the redundancy or
term frequency factors are used alone.

4. EXPLOITING REDUNDANCY

For the TREC experiments, text fragments were reported
as answers. To further explore the value of redundancy in
question answering we simplified most of the components
in Figure 1 to eliminate the experimental confounds asso-
ciated with parsing, question categorization, and the use of
selection rules. We focused on a single category of ques-
tion, those that require the name of a person as the an-
swer, and attempted use redundancy as a means of isolating
the required name from the top ranking passages. To iden-
tify candidate answers we used a simple syntactic pattern
that matches most names in written English, but which of-
ten matches other text, including many other proper nouns.
Our hypothesis was that redundancy could used as a sub-
stitute for deeper analysis; that correct answers could be
distinguished from other candidates solely by their repeated
occurrence in the proximity of high-ranking passages.

We identified 87 questions from the TREC-9 QA collec-

tion that required the name of a person as the answer. Typ-
ical examples are “Who is the emperor of Japan?”, “Name a
female figure skater,” and “Who wrote the book Huckleberry
Finn?”. For each question we generated a query from the
question by using the traditional IR approach of eliminating
stopwords.

To provide a greater potential for redundancy and to pro-
vide an opportunity to study the impact of database size on
the results, we eschewed the 3GB TREC-9 QA corpus in fa-
vor a larger corpus, the TREC 100GB VLC2 corpus [12,21].
Apart from its size, this corpus differs from the QA cor-
pus in two important respects. First, since the QA corpus
consists of newspaper articles and the VLC2 corpus of arbi-
trary Web pages, we might generally expect documents in
the VLC2 corpus to be of lower quality. Second, it is known
that answers to all TREC-9 QA questions are present in
the TREC-9 QA corpus, but this is not the case for VL.C2
corpus. We were curious to discover the extent to which
a relatively small collection of Web data could be used to
answer a set of independently created questions.

A simple syntactic pattern was used to identify candidate
answers. Any sequence of at least two name tokens sep-
arated by whitespace or a single hyphen was considered a
candidate. A name token is defined as either an uppercase
letter followed by one or more lowercase letters or an up-
percase letter followed by a period (an initial). In addition,
a capitalized stopword is not considered to be name token,
and a candidate answer cannot consist entirely of initials.
Such a simple pattern will reject many valid names (“Wm.
Paterson”, “k. d. lang”, “Samuel To”, “Pius XI”, “Anne of
Cleaves”, “Fabio”) and include many inappropriate candi-
dates. While the identification of proper names, including
the names of people, is a well understood problem [3,9] we
felt that the benefits of transparency would outweigh the
benefits of more accurate candidate identification. Here, our
purpose is not to find the answer using any and all means,
but rather to specifically examine the value of redundancy,
where the ability of redundancy to overcome the low preci-
sion inherent in this crude candidate-identification technique
is itself of interest.

For each query we retrieved the top k passages according
to Equation 1. Each passage was expanded symmetrically
about its centerpoint to w bytes. For the experiment we
varied the parameters & and w, which will be referred to as
depth and width respectively. Candidate answers were iden-
tified in the passages, and candidates that consisted entirely
of query terms were eliminated. Each remaining candidate
was assigned a score that was simply a count of the num-
ber of distinct passages in which the candidate appeared
(ct). Candidates were ranked according to this score, and

depth (k) width (w) | mean reciprocal rank number correct percent correct
25 250 0.407 44 51%
500 0.431 47 5479
1000 0.471 51 59%
2000 0.462 50 57%
50 250 0.435 48 55%
500 0.442 47 547,
1000 0.463 49 56%
2000 0.444 50 57%
100 250 0.432 53 617
500 0.434 50 57%
1000 0.446 51 59%
2000 0.418 52 60%
best 5 from top passage 0.178 20 23%
best from top 5 passages 0.299 36 41%

Figure 3: Impact of redundancy

ties were broken by applying a simple rule that takes into ac-
count the distance of each candidate from the centerpoint of
the passages in which it appears. For each passage in which
a candidate appears, the distance from the centerpoint of
the passage to the centerpoint of the closest occurrence of
the candidate is recorded. The average of these distances is
used to break ties, with candidates having smaller averages
ranked higher.

Preliminary experiments with TREC-8 questions suggested
that a depth of & = 50 and width of w = 1000 would pro-
duce reasonable results. Using these parameters, 49 (56%)
of the 87 questions are answered correctly and for 34 (39%)
a correct answer is ranked first. For example, the top five
candidates for the question “Who is the emperor of Japan?”

are . Emperor Hirohito

2. World War
3. Emperor Akihito
4. Hong Kong

5. Prime Minister

where the first and third candidates are considered correct.
The mixture of invalid proper nouns and the inclusion of
multiple valid answers is typical of the results. The top five
candidates for the question “Name a female figure skater.”

AL Kuisti Yamaguchi

2. Followup Name

3. Follow Ups

4. Tonya Harding

5. Nancy Kerrigan
where the first, fourth and fifth candidates are considered
correct. The second and third candidates are artifacts cre-
ated primarily by the inappropriate inclusion of the term
“name” in the query and appear to be generated by a series
of related postings to a message board. Additional indepen-
dent data might tend to reduce the rank of these candidates
while increasing the rank of the remaining candidates. Fi-
nally, the top five candidates for the question “Who wrote
the book, Huckleberry Finn?” are

1. Mark Twain
. Tom Sawyer
. Huck Finn
. Samuel Clemens
. Connecticut Yankee

T W N

which includes both the author’s pen name and his real
name, as well as the principal characters from the novel.

Only exact answers identifying people were counted as
correct. For example, the candidate “Anne Morrow Lind-
bergh Foundation” was not accepted as the answer to the
question “Who was Charles Lindbergh’s wife?”, the can-
didate “Time Warner” was not accepted as the answer to
“Who owns CNN?”, and the candidate “Prime Minister”
was not accepted as the answer to “Who is the leader of In-
dia?”. Since the TREC-9 judging script was not designed to
identify exact answers, the determination of correct answers
required a combination of automatic and manual processing.
An automatic script based on the TREC-9 judging script
analyzed the output of each experimental run and flagged
potentially correct answers. The results of the script were
manually checked to determine that the answers consisted
solely of a person’s name. Finally, the runs were automat-
ically checked for consistency, verifying that answers were
judged in the same way for all experimental runs.

We ran the experiment for a range of depth and width val-
ues. The results are reported in Figure 3. In addition to the
runs using redundancy the figure reports two other runs for
comparison. Both runs represent other simple strategies for
extracting candidate answers from the retrieved passages.
The first, labeled “best 5 from top passage”, consists of
the five distinct candidates appearing closest to the cen-
terpoint of the top passage retrieved for each question, with
the candidates ranked according their distance from the cen-
terpoint. This run is equivalent to using parameters & = 1
and w = oo. The second, labeled “best from top 5 pas-
sages” consists of a single candidate selected from each of
the the top five passages. For each passage, the candidate
closest to the centerpoint is selected. If a candidate has al-
ready been selected from a higher-ranking passage, the next
closest candidate is selected instead.

Within the range shown, changes to & and w produce only
minor changes in the results, with a slight tendency to im-
prove as k and w are increased. This stability might be con-
sidered surprising given the range of data sizes represented
by the retrieved passages. With k& = 25 and w = 250, less
than 7KB of data is analyzed per question; with & = 100
and w = 2000 over 195KB of data is analyzed per question.

We originally choose to use a 100GB target corpus to in-

70

T T T T
Mean Reciprocal Rank (left-hand scale): O
Percent Correct (right-hand scale):

0.25 1 1 1 1

1 1 1 1 30

10 20 30 40 50

60 70 80 90 100

Database Size (GB)

Figure 4: Influence of database size (k = 25, w = 1000)

crease the changes of finding multiple occurrences of an-
swers in contexts that could be retrieved by the unmodi-
fied question keywords. In order to ascertain the impact
that database size has on the results we ran the questions
over various subsets of the full corpus. The documents in
the database were ordered randomly and increasingly larger
subsets of the database were used as the target corpus. The
results are presented in Figure 4.

The potential remains for addition improvement if the
database size were further increased. For 76% of the ques-
tions, a correct answer was reported in the top five by at
least one of the runs reported in this section, and additional
data may force more of these correct answers into the top
five ranks. As expected, several of the questions required
answers that the candidate selection pattern failed to match
(“Dr. Suess”, “Brutus”, “William the Conqueror”). While
the crude techniques used for query generation and candi-
date identification could easily be improved, we expect that
the effects of these improvements would be largely orthog-
onal to the effects of redundancy and would be reflected in
improvements to all runs.

5. PHONE A FRIEND

Who wants to be a Millionaire? is currently a popular
game show airing in prime time on American television and
duplicated locally in several other countries. As an addi-
tional application, the approach of the previous section has
been extended to answer trivia questions posed to contes-
tants on the show.

These questions are presented in a multiple choice for-
mat. For example, the question “Who was the first Prime
Minister of Canada?” might be given with candidate an-
swers “A) Pierre Elliot Trudeau”, “B) John Graves Simcoe”,

“C) John A. MacDonald” and “D) Louis Riel”. The prize

money awarded for correctly answering a question ranges
from $100 to $1,000,000. Contestants start with a $100 ques-
tion, and while they continue to answer questions correctly
the value roughly doubles until the final $1,000,000 ques-
tion is reached. Contestants are eliminated if they answer a
question incorrectly. They may also quit voluntarily before
attempting to answer a question, keeping as prize money the
value of the highest question correctly answered.

The existence of a closed set of candidate answers simpli-
fies the voting process but complicates the passage retrieval
process. While the question continues to be treated as a
“bag of words” for retrieval purposes, each candidate an-
swer is matched as a phrase and the terms in the answer
do not contribute to the score of a passage. The retrieval
engine was modified to return the highest scoring passages
(according to Equation 1) that also contain a phrase match
to one of the answers. For these questions, it is not unlikely
that the weights of answer terms will be higher for incorrect
answers, since some of the choices are deliberately bizarre,
and are intended as jokes or red herrings. The answers can
be treated as phrases, since it is not necessary to compute
weights for their terms and the phrasing is usually the “com-
mon” form appearing in everyday speech and writing.

The top k = 20 passages were retrieved for each question.
Since each passage is guaranteed to contain a match to at
least one of the candidate answers, the passages were not
expanded in width. A passage that contained a match for a
candidate answer was counted as a vote for that candidate.
Candidates were then ranked in terms of the number of votes
each received.

We applied the approach to the 108 questions asked on the
programs first broadcast on the ABC television network in
the United States on October 31, November 1 and Novem-
ber 9, 2000. The results are shown in Figure 5. The figure

Question value

| total questions

number correct percent correct

$100-$1,000 48 36 75%
$2,000-$8,000 29 20 69%
$16,000-$64,000 22 15 68%
$125,000-$1,000,000 9 5 56%
OVERALL 108 76 70%

Figure 5: Who Wants to be a Millionaire?

splits the questions into four categories according to their
value. Lower-valued questions are intended to be easier than
higher-valued questions for human contestants, and this re-
lationship held for our system as well.

Overall the system answered 76 (70%) of the questions
correctly. For an additional 17 questions (16%) the correct
answer was ranked second or tied for first. Three of the re-
maining questions essentially asked “Which of these things
is not like the other?” where the correct answer was the only
selection that did not exhibit the characteristics described
in the question. In all three of these cases, the correct an-
swer was ranked last. In one case the question referred to
events that occurred after the 1997 Web crawl that created
the corpus and it was answered in the context of that year.
Three other questions had single-digit numeric values as an-
swers. These values were treated as stopwords when the
corpus was indexed and the questions actually caused the
system to crash when executed. This behavior was treated
as an incorrect answer.

6. CONCLUDING DISCUSSION

Redundancy can be exploited as a method for answer val-
idation in question answering systems. An analysis of our
TREC-9 QA experimental results indicates that redundancy
played an important role in the process of selecting answer
fragments from the top passages retrieved for each question.
When exact answers are required, further experiments with
simple voting algorithms demonstrate that redundancy is an
effective method of ranking candidates answers.

The benefits gained from exploiting redundancy are largely
independent of benefits gained from improvements to the
other components of a QA system. Without redundancy,
even the best QA system might be misled by a passage
containing an inaccurate (or ironic) answer. Voorhees and
Tice [22, page 203] provide an illustration of this problem in
their discussion of responses to the TREC-8 question “Who
was the first American in space?”, where the corpus con-
tained the passage “As for Wilson himself, he became a sen-
ator by defeating Jerry Brown, who has been called the first
American in space.”

Redundancy is available to be exploited. The experiments
reported in Sections 4 and 5 used a modest-sized 100GB
corpus of arbitrary Web data, where we did not know in
advance how many questions had answers contained in this
corpus. Apparently a corpus of this size is sufficient to an-
swer roughly 70% of general-knowledge trivia-style questions
using redundancy as the main answer selection technique.
Web data is often viewed as being of low quality, and iden-
tifying high-quality pages is a major problem for web search
systems [2,24]. In the case of question answering, the qual-
ity of individual pages becomes less important since results
from many low-quality pages can be combined to produce a

consensus answer, and quantity can be used as an effective
substitute for quality.

One of the few published answer selection algorithms to
make explicit use of redundancy is the Werlect algorithm [17,
18] which was studied in the context of the GuruQA sys-
tem [16]. The overall design of GuruQA is similar to that
of our own system, and the Werlect algorithm shares some
features with the algorithm presented in Section 3. Interest-
ingly, the developers of the GuruQA system did not identify
redundancy as a major contributor to the performance of
GuruQA. In their reported experience, Werlect did not per-
form as well as a second answer selection algorithm, AnSel,
which did not exploit redundancy. At TREC-9, GuruQA
was among the five best-performing systems for both the
50- and 250-byte runs.

The MURAX QA system, described by Kupiec [15], in-
corporated a related form of answer validation that uses sec-
ondary queries to confirm relationships between candidates
and question terms. Kupiec gives as an example the question
“What film pits Humphrey Bogart against gangsters in the
Florida Keys?”. Text returned by an initial query suggests
The Big Sleep, Key Largo, The Maltese Falcon, Casablanca
and The Treasure of the Sierra Madre as candidates but does
not indicate the setting or plot of these films. A secondary
query using the phrases “Key Largo” and “Florida Keys”
verifies a relationship between them that does not exist for
the other candidates.

A very different form of answer validation is the abductive
inference technique described by Harabagiu et al. [10] and
incorporated in FALCON, the top-performing QA system
at TREC-9 [11]. Given a question, a candidate answer, and
the text fragment from which the candidate was extracted,
abduction uses semantic knowledge to give a logical justi-
fication for its correctness. The candidate is rejected if no
Justification can be given.

In the experiments reported by this paper, we measure re-
dundancy using a simple count of the number of passages in
which a candidate appears. It may be possible to extend this
measure to encompass other information. For each passage
containing the candidate, this information includes the score
of the passage, the rank of the passage and the minimum dis-
tance of the candidate from the passage’s centerpoint. For
TREC-9, our answer selection component took some of this
information into account while making final adjustments to
the scores of text fragments, but these adjustments were
strictly ad hoc in nature. In future, we hope to undertake a
theoretical and empirical examination of the use and value
of this information. We continue to improve all aspects of
our QA system for participation in TREC during 2001 and
beyond, where a 5-year plan calls for the extension of the
QA experiments in a variety of challenging directions [21].

7.
(1]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Eric Breck, John Burger, David House, Marc Light,
and Inderjeet Mani. Question answering from large
document collections. In 1999 AAAI Fall Symposium
on Question Answering Systems, North Falmouth,
MA, 1999.

Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. In Seventh
World Wide Web Conference, Brisbane, Australia,
April 1998.

Claire Cardie. Empirical methods in information
extraction. Al Magazine, 18(4):65-79, Winter 1997.
Claire Cardie, Vincent Ng, David Pierce, and Chris
Buckley. Examining the role of statistical and
linguistic knowledge sources in a general-knowledge
question-answering system. In Sizth Applied Natural
Language Processing Conference, pages 180-187, 2000.
C. L. A. Clarke, G. V. Cormack, D. I. E. Kisman, and
T. R. Lynam. Question answering by passage
selection. In 9th Text RFEtrieval Conference,
Gaithersburg, MD, 2000.

Charles L. A. Clarke, Gordon V. Cormack, and
Elizabeth A. Tudhope. Relevance ranking for one to
three term queries. Information Processing and
Management, 36(2):291-311, 2000.

G. V. Cormack, C. L. A. Clarke, C. R. Palmer, and
D. I. E. Kisman. Fast automatic passage ranking. In
8th Text REtrieval Conference, Gaithersburg, MD,
November 1999.

Anne Diekema, Xiaoyong Liu, Jiangping Chen,
Hudong Wang, Nancy McCracken, Ozgur Yilmazel,
and Elizabeth D. Liddy. Question answering: CNLP
at the TREC-9 question answering track. In 9th Text
RFEtrieval Conference, Gaithersburg, MD, 2000.
Ralph Grishman and Beth Sundheim. Design of the
MUC-6 evaluation. In 6th Message Understanding
Conference, Columbia, MD, 1995.

Sanda M. Harabagiu and Steven J. Maiorano. Finding
answers in large collections of texts: Paragraph
indexing + abductive inference. In 1999 AAAT Fall
Symposium on Question Answering Systems, pages
63-71, North Falmouth, MA, 1999.

Sanda M. Harabagiu, Dan Moldovan, Marius Pasca,
Rada Mihalcea, Mihai Surdeanu, Razvan Bunescu,
Roxana Girju, Vasile Rus, and Paul Morarescu.
FALCON: Boosting knowledge for answer engines. In
9th Text REtrieval Conference, Gaithersburg, MD,
2000.

David Hawking, Nick Craswell, Paul Thistlewaite, and
Donna Harman. Results and challenges in Web search
evaluation. In 8th World Wide Web Conference, pages
243-252, Toronto, Canada, May 1999.

Eduard Hovy, Ulf Hermjakob, Chin-Yew Lin, Mike
Junk, and Laurie Gerber. The Webclopedia. In 9th
Text RFEtrieval Conference, Gaithersburg, MD, 2000.
Abraham lttycheriah, Martin Franz, Wei-Jing Zhu,
and Adwait Ratnaparkhi. IBM’s statistical question
answering system. In 9th Text REtrieval Conference,
Gaithersburg, MD, 2000.

Julian Kupiec. MURAX: A robust linguistic approach
for question answering using an on-line encyclopedia.

In 16th Annual International ACM SIGIR Conference

[21]

[22]

on Research and Development in Information
Retrieval, pages 181-190, Pittsburgh, 1993.

John Prager, Eric Brown, Amni Coden, and Dragomir
Radev. Question-answering by predictive annotation.
In 28rd Annual International ACM SIGIR Conference
on Research and Development in Information
Retrieval, pages 184-191, Athens, August 2000.

John Prager, Dragomir R Radev, Eric Brown, Amni
Coden, and Valerie Samn. The use of predictive
annotation for question answering in TREC-8. In 8th
Text REtrieval Conference, Gaithersburg, MD, 1999.
Dragomir R Radev, John Prager, and Valerie Samn.
Ranking suspected answers to natural language
questions using predictive annotation. In 6th
Conference on Applied Natural Language Processing,
Seattle, May 2000.

Alan F. Smeaton. Information Retrieval: Still butting
heads with natural language processing. In
Information Extraction: A Multidisciplinary Approach
to an Fmerging Information Technology, pages
115-138, Frascati, Italy, July 1997. Reprinted as
Springer-Verlag Lecture Notes in Artificial Intelligence
1299.

Rohini Srihari and Wei Li. Information extraction
supported question answering. In 8th Text REtrieval
Conference, Gaithersburg, MD, 1999.

Ellen M. Voorhees and Donna Harman, editors.
Proceedings of the Ninth Text RFEtrieval Conference,
Gaithersburg, MD, 2000. See trec.nist.goc.

Ellen M. Voorhees and Dawn Tice. Building a
question answering test collection. In 23rd Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
200-207, Athens, August 2000.

W. A. Woods, Stephen Green, Paul Martin, and Ann
Houston. Halfway to question answering. In 9th Text
RFEtrieval Conference, Gaithersburg, MD, 2000.
Xiaolan Zhu and Susan Gauch. Incorporating quality
metrics in centralized/distributed information
retrieval on the WWW. In 23rd Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 288-295,
Athens, August 2000.

