
CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Basis Enumeration of Hyperplane Arrangements Up to Symmetries∗

Aaron Moss† David Bremner‡

Abstract

Given a symmetry group acting on the hyperplanes of
an arrangement, our goal is to report a single basis from
each orbit of bases induced by this group. In this paper
we extend previous techniques for finding the (feasible)
bases of polyhedra up to symmetry, and for comput-
ing the symmetry groups of polyhedra, to the setting
of hyperplane arrangements. We present some prelimi-
nary experiments with a C++ implementation of these
techniques called Basil. These results show substantial
speedups compared to a previous polyhedra only sys-
tem using the computer algebra system GAP. We also
measure the speedup due to a Gram matrix invariant,
and show that the overhead of symmetry testing, while
substantial, is dominated by the savings in reduced piv-
oting.

1 Introduction

Because of the large number of vertices and bases of a
hyperplane arrangement, it is natural to consider gen-
erating these objects up to symmetry. One application
for finding (orbits of) bases of hyperplane arrangements
is the computation of the vector partition function of
a matrix, a fundamental operation in parametric in-
teger programming and representation theory. Bases
of hyperplane arrangements are equivalent to bases of
systems of linear equations (minimal subsystems defin-
ing zero dimensional solutions). Basis enumeration of
systems of linear equations is necessary for dual-type
generating function approaches to computing the vec-
tor partition function, which research by Brion, Szenes,
and Vergne [6, 14] suggests may be quicker than current
approaches.

This paper describes the design and implementation
of a program for basis enumeration of hyperplane ar-
rangements up to symmetries. This program, called
Basil (“Basis list”) adapts the pivoting method of
Bremner, Sikirić, and Schürmann [5] for basis enumer-
ation of polyhedra up to symmetries, using a new pivot
selection method to traverse hyperplane arrangements

∗Research partially supported by NSERC. Computational re-
sources provided by ACEnet.
†Faculty of Computer Science, University of New Brunswick,

moss.aaron@unb.ca
‡Faculty of Computer Science, University of New Brunswick,

bremner@unb.ca

instead of polyhedra. The work of Bremner et al. is in
turn related to the reverse-search method for basis enu-
meration of Avis and Fukuda [4] and earlier pivoting
methods e.g. [7].

Sikirić’s Polyhedral [13] and Rehn’s Sympol [12] con-
tain other solutions to the related problem of vertex enu-
meration up to symmetries of polyhedra; the approaches
taken by both Sikirić and Rehn involve recursively de-
composing the polyhedron into smaller polyhedra, and
are quite different from our pivoting approach. For a
survey of approaches for vertex enumeration up to sym-
metries of polyhedra (and the dual problem of facet enu-
meration up to symmetries), see [5], which covers both
the recursive decomposition and pivoting approaches.

2 Background

2.1 Arrangements & Polyhedra

The structures discussed here exist in d-dimensional real
space, Rd. A point x in Rd is the ordered list of coordi-
nates x = [x1 x2 · · · xd], where each of the xi is a real
number (though in this paper all explicitly defined vec-
tors have rational coordinates for reasons of efficiency
and ease of computation). A hyperplane H is the set of
points x ∈ Rd which satisfy a linear equation a>x = b
(a ∈ Rd, b ∈ R), while a hyperplane arrangement A is
the union of the points contained in a set of hyperplanes,
indexed as A1, A2, · · · , An. A polyhedron P is a closely
related structure, the intersection of a set of halfspaces
P1, P2, · · · , Pn; a halfspace is the set of points x ∈ Rd
that satisfy a linear inequality a>x ≥ b (a and b defined
as above). The hyperplane for which this inequality is
satisfied with equality is known as the bounding hyper-
plane of a halfspace, while the set of bounding hyper-
planes of the halfspaces defining a polyhedron is called
its bounding hyperplane arrangement. The size of an ar-
rangement is the number of hyperplanes n, while all ar-
rangments considered will be full rank and thus have di-
mension d, the dimension of the underlying space. Size
and dimension of polyhedra are defined analogously.

A cobasis B of a hyperplane arrangement is a set
of indices of d hyperplanes which intersect at a single
point, a vertex of the arrangement (We use here the
name cobasis from linear programming for what is typ-
ically called a basis in geometry for consistency with
the terminology of our linear programming-based im-
plementation). Hyperplanes which contain a vertex are



24th Canadian Conference on Computational Geometry, 2012

said to be incident to that vertex. It should be noted
that d hyperplanes meet in a single point if and only if
the equations defining those hyperplanes are linearly in-
dependent. The problem of basis enumeration is thus to
list all the unique cobases of a hyperplane arrangement.
Vertices of polyhedra may be defined as those vertices
of the polyhedron’s bounding hyperplane arrangement
which are contained within the polyhedron, and cobases
of a polyhedron as the cobases of the bounding arrange-
ment which correspond to those vertices. A vertex of
an arrangement or polyhedron may be defined by more
than one cobasis (i.e. if more than d hyperplanes of
the (bounding) arrangement meet at that point); such
a vertex is called degenerate. A polyhedron or arrange-
ment with no degenerate vertices is simple, for such a
polyhedron the vertex enumeration problem (reporting
each unique vertex) is equivalent to the basis enumer-
ation problem. For non-simple (degenerate) polyhedra
and arrangements, the vertex enumeration problem can
be solved by basis enumeration, though some method
must be employed to filter out duplicate vertices.

The cobases of a polyhedron or hyperplane arrange-
ment can be considered as the nodes of an implicit
graph, where two cobases B1 and B2 are adjacent if they
differ only by one element, that is, letting B = B1∩B2,
B1 = B ∪ {p} and B2 = B ∪ {q}; here the d− 1 hyper-
planes defining B intersect in a 1-dimensional line, an
edge of the arrangement.

A certain class of optimization problem involves find-
ing a vertex v of a polyhedron which maximizes a
linear objective function defined by a vector c =
[c1 c2 · · · cd] ∈ Rd as c(x) = c>x. The field of lin-
ear programming has developed to solve this and re-
lated problems, some of these related problems being
defined on hyperplane arrangements. One of the oldest
and most studied approaches to linear programming,
the simplex method pioneered by Dantzig [8], is to find
an initial cobasis and then repeatedly move (or pivot)
to some adjacent cobasis corresponding to a vertex v′

with an objective value c(v′) at least as good as the
objective value of the current vertex. This process is re-
peated, proceeding until either a cobasis of an optimal
vertex is reached or it can be seen that no such optimal
vertex exists.

The fundamental data structure of the simplex
method is the simplex tableau, T(P,B), which re-
expresses the linear inequalities defining a polyhedron
P in terms of a cobasis B. The first step to convert a
polyhedron to tableau form is to add n new slack vari-
ables {xd+1, xd+2, · · · , xd+n} to the existing decision
variables {x1, x2, · · · , xd} which define points in Rd.
The slack variables represent the “distance” between
the bounding hyperplane of each halfspace in the poly-
hedron and the vertex represented by the tableau; the
slack variables are therefore always kept non-negative

by the simplex algorithm when dealing with polyhe-
dra, though when simplex tableaux are used to repre-
sent hyperplane arrangements the slack variables may
be either positive or negative, as points in an arrange-
ment may be on either side of any hyperplane in the
arrangement. To add the slack variables, each of the
inequalities a>i x ≥ bi defining the halfspace Pi in P is
rewritten as an equation xd+i = −bi + a>i x, defining a
matrix An×d = (ai,j) (ai,j being the j-th element of ai)
and a vector b = [b1 b2 · · · bn]>. These components are
combined with the vector c defining the objective func-
tion in a matrix as follows, defining the initial simplex
tableau:

M =

[
0 c>

−b An×d

]
The basic variables of the tableau are the set of vari-

ables xi which are defined by the equations represented
by the rows of the tableau; the set of variables xj which
are the column variables those equations are written in
terms of are the cobasic variables of the tableau1. With
the addition of auxiliary structures to the tableau ma-
trix M to remember the current sets of basic and coba-
sic variables, the data structures needed for the simplex
method are complete. The values of the cobasic vari-
ables of a simplex tableau are assumed to be zero, so
that the value of any basic variable (or the objective
function in the first row) can be read off from the con-
stant term in the first column. After the initial setup of
the tableau is complete, the decision variables are moved
into the basis, with slack variables replacing them in the
cobasis. When this process is completed, the current
vertex represented by the tableau can be read off from
the values of the decision variables in the first column.

In the context of linear programming, a pivot from a
cobasis B1 to another adjacent cobasis B2 (B1 = B2 ∪
{xe}\{xl}) exchanges the entering slack variable, xe for
the leaving slack variable, xl,

2 traversing an edge of the
arrangement or polyhedron.

Pivot rules used in the simplex method are based on
the idea of the minimum ratio test. Geometrically, this
test can be thought of as leaving one basis and slid-
ing along an edge of a polyhedron or hyperplane ar-
rangement until the first new (bounding) hyperplane is
reached, forming a new basis. In a simplex tableau, dis-
tance from each hyperplane is represented by its asso-
ciated slack variable, and moving from one hyperplane
to another (equivalently, moving to an adjacent cobasis)
is accomplished by allowing the one cobasic variable to
become non-zero while forcing some basic variable to
zero. For a given pair xe and xl of cobasic and basic
variables, the ratio between the constant term bl of the

1Note that the cobasic variables of a simplex tableau, not the
basic, correspond to a basis of the represented polyhedron or ar-
rangement in the usual geometric definition.

2The variables are “entering” and “leaving” the linear pro-
gramming basis, the complement of the cobasis.



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

leaving variable xl and the coefficient al,e of the entering
variable xe in the leaving variable’s equation determines
how much the entering variable can be increased or de-
creased. By setting xe to r = bl/al,e, xl is forced to
zero. In polyhedra leaving and entering variables must
be chosen such that r ≥ 0, as slack variables cannot
be negative, but this restriction does not hold for ar-
rangements. Selecting xl such that the magnitude of r
is minimized (the “minimum ratio”) finds the nearest
adjacent cobasis to pivot to; if r = 0 (due to bl = 0),
the pivot is degenerate, moving to another cobasis of the
same vertex.

2.2 Symmetries

Many interesting hyperplane arrangements have a sig-
nificant number of automorphisms: geometric symme-
tries (e.g. reflections and rotations) which leave the
points in the arrangement setwise invariant. These sym-
metries can also be considered as permutations of the
list of hyperplanes included in the arrangement3. Tak-
ing the group G of some set of these symmetries acting
on a hyperplane arrangement, the problem of basis enu-
meration up to symmetries is listing exactly one cobasis
from each orbit under the action of G. The symmetries
we are particularly interested in are isometries, distance
preserving symmetries.

One property of isometric cobases is that, given some
distance metric, the set of angles according to that met-
ric between each pair of hyperplanes which meet in a
single cobasis is setwise invariant under the action of
any symmetry in the automorphism group. To use this
property, the angles between all pairs of hyperplanes
can be precomputed, and then each distinct angle can
be represented by a unique integer. The Gram matrix
A = (ai,j) is constructed such that ai,j is the value
corresponding to the angle between the hyperplanes in-
dexed i and j. Gram matrices for polyhedra can be
similarly constructed with respect to the angles between
the bounding hyperplanes of the polyhedron. A subma-
trix of a Gram matrix uniquely representing the angles
between pairs of hyperplanes in a given cobasis can be
constructed by selecting only the elements in the rows
and columns of the Gram matrix corresponding to the
indices of the cobasis hyperplanes. If each row of this
submatrix is sorted, and then the rows of the subma-
trix are lexicographically sorted, the resulting subma-
trix uniquely represents the angles between each pair of
hyperplanes in the cobasis, and pairs of such matrices
can be compared for equality swiftly. Equality of Gram
submatrices does not guarantee that the corresponding
cobases are symmetric, but inequality of Gram subma-
trices does show that the cobases are not symmetric.

An automorphism α of the Gram matrix G = (gi,j)

3Automorphisms on polyhedra can be considered analogously.

of a polyhedron may be defined by a permutation σ of
the row and column indices of the matrix as α(G) =
(gσ(i),σ(j)) such that G = α(G). Such an automorphism
of the Gram matrix corresponds to an automorphism
of the polyhedron produced by permuting the indices
of the halfspaces defining the polyhedron by σ. A full
proof of this can be found in [5], but intuitively the rows
and columns of the Gram matrix correspond to the half-
spaces defining the polyhedron. As the Gram matrix
encodes the distances between each pair of bounding
hyperplanes as angles, any transformation which leaves
the Gram matrix invariant will also not change the poly-
hedron, because the relative positions of each of the
halfspaces have remained constant. If the Gram ma-
trix is interpreted as the adjacency matrix of a graph,
with the elements of the matrix representing colors of
the edges, these automorphisms can also be expressed
as edge-color preserving graph automorphisms.

One problem we encountered in generating Gram
matrices for hyperplane arrangements that does not
occur in the polyhedral case is that any hyperplane
A = {x|a>x = b} can be replaced by its negation
Ā = {x| − a>x = −b} without changing the arrange-
ment. However, the angle produced by Ā and another
hyperplane B is the supplement of the angle produced
by A and B, in general a distinct angle. When using
the Gram matrix to eliminate non-symmetric cobases,
this problem can be solved by simply using a unique
up to supplements representation for each angle. This
approach does not work when using the Gram matrix
to determine the automorphisms of the arrangement,
as spurious automorphisms are generated; essentially,
these false automorphisms consider a hyperplane to be
both itself and its negation simultaneously, causing the
arrangement to be warped by some angles between pairs
of hyperplanes being replaced by their supplements. If
the arrangement is doubled such that each hyperplane
is paired with its negation, then matrix automorphisms
may replace a hyperplane by its negation by transpos-
ing the two in the symmetry but this warping is pre-
vented from occurring, and correct automorphisms may
be derived after reversing the doubling process on the
generated permutations. This does, however, quadru-
ple the size of the Gram matrix used for automorphism
generation.

3 Algorithms

The essential idea of our algorithm for basis enu-
meration up to symmetries is to explore the hyper-
plane arrangement outward, moving from an initial
cobasis to its adjacent cobases, pruning this search
tree when a cobasis symmetric to one already found
is reached; a full description is in Algorithm 1.
The subroutine InitialCobasis() returns any coba-



24th Canadian Conference on Computational Geometry, 2012

sis of the arrangment; Adjacent(B) returns a list
of all cobases Bi which are adjacent to a cobasis B.
InNewOrbit(B) tests whether a cobasis B is in an
orbit already discovered, while Report(B) is used to
output a newly discovered cobasis B. The subroutines
PushCobasis(S,B) and PopCobasis(S), which push
and pop a cobasis to or from a stack S, (updating inter-
nal structures to be consistent with that cobasis) com-
plete the description of the algorithm.

Algorithm 1 Basis orbit enumeration algorithm

function SymmetricBasisSearch(void)
. find a cobasis of the arrangement

B← InitialCobasis()
. explore outward from this cobasis

S ← a stack of cobases, initially empty
Report(B)
PushCobasis(S,B)
repeat

B← PopCobasis(S)
. search for new orbit representatives adjacent to B

for all Bi ∈ Adjacent(B) do
if InNewOrbit(Bi) then

Report(Bi)
PushCobasis(S,Bi)

end if
end for

until Empty(S)
end function

The reader familiar with pivoting algorithms will
remark upon the absence of perturbation from Algo-
rithm 1. Practical pivoting algorithms for vertex enu-
meration use some form of perturbation (or equivalent
pivot rule, e.g. [3]) to reduce the number of bases re-
ported per vertex. Here our goal is to find all orbits of
bases, so standard symbolic perturbation schemes that
ignore the symmetry group are unlikely to work well.
In [5] the authors describe an explicit orbitwise pertur-
bation scheme that preserves the orbits of bases of the
original input (possibly shattered into several orbits).
Since this can be implemented as a preprocessor, we do
not discuss it here; some of our experimental data (the
E7-j examples in Table 1) is of this preprocessed type.

All the required subroutines for Algorithm 1 can
be defined to act on a simplex tableau. Most of
these subroutines have been known since Dantzig’s
original formulation of the simplex algorithm, and
can be derived from most linear programming text-
books, though some simple modifications may be
needed to convert processes intended for use on poly-
hedra to work with arrangements (such as our im-
plementation of Adjacent(B), detailed below). For
PushCobasis(S,B) and PopCobasis(S), our imple-
mentation keeps an internal stack of pivots performed,

reversing those pivots as necessary to return to an ear-
lier cobasis.

Our implementation of Adjacent(B) is based on the
minimum ratio test. Our rule tries all the variables xj
in the cobasis B as entering variables, attempting to
find valid leaving variables for each. Given an entering
variable xe, our method reports all the basic variables
that are already zero as possible leaving variables (these
represent degenerate pivots), as well as all the basic vari-
ables xi which have a minimal magnitude ratio bi/ai,e
in both the positive and negative directions. Taking
both positive and negative ratio ensures that new adja-
cent cobases are found on either side of the hyperplane
corresponding to xe.

4 Implementation & Results

In order to achieve good performance, Algorithm 1
needs an efficient pivot implementation. Previous ex-
periments by Avis [3] suggest a significant advantage for
the integer pivoting method of Edmonds [9]. The im-
plementation described in this paper, Basil4, was built
using David Avis’ lrslib [2], which uses Edmonds’ in-
teger pivoting.

The design of Basil is quite closely based on the
Symbal software of Bremner et al. [5], which per-
forms basis enumeration up to symmetries on polyhe-
dra. However, where Symbal is implemented in the
GAP [15] computer algebra system with calls to C li-
braries wrapping lrslib for simplex operations and
McKay’s Nauty [10] for graph automorphism calcula-
tions, Basil has been re-implemented in C++, us-
ing Rehn’s permlib [11] library to replace the both
the group theoretic capabilities of GAP used by Symbal

(which it should be pointed are relatively simple or-
bit membership tests) and the automorphism code in
Nauty with matrix automorphism routines. Basil also
uses lrslib for its tableau implementation.

As Basil is designed as an extension of Symbal, it is
also capable of performing basis enumeration of polyhe-
dra up to symmetries. Though this functionality is not
the focus of this paper, the experimental results shown
in Table 1 compare the relative performance of Basil

and Symbal for basis enumeration up to symmetries of
a set of polyhedra. The Ey instances discussed are the
Dirchlet-Voronoi-cells (DV-cells) of the root lattices Ey,
as described in section 7.2 of [5]. As can be seen from
these results, Basil is generally about two orders of
magnitude faster, attributable to the lower overhead of
C++ execution than the GAP interpreter and the more
sophisticated and efficient data structures available in
C++ than GAP. These numbers represent only the CPU
time of both programs; this is a fairly accurate represen-
tation of Basil’s runtime, but underestimates Symbal’s

4Software and test input available by request.



CCCG 2012, Charlottetown, P.E.I., August 8–10, 2012

Table 1: Comparison of Basil & Symbal
(bases & vertices count orbits)

Problem n:d bases:verts Bas(s) Sym(s)
E7 126:8 32:2 1.82 282.16
E7-3 126:8 82:58 0.59 12.41
E7-7 126:8 1195:106 19.88 1507.72
E7-65 126:8 356:14 7.88 1308.07
E7-102 126:8 41:7 1.27 223.97
E8 240:8 2:2 0.41 2.13

basis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbits

cp
u

 t
im

e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)

10²10²10²10²10²10²10²10²10² 10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴

111111111

10²10²10²10²10²10²10²10²10²

10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴10⁴ 0.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.330.001 x^1.33

basis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbitsbasis orbits

cp
u

 t
im

e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)
cp

u
 t

im
e
 (

s)

1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵1×10⁵ 2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵2×10⁵ 3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵3×10⁵

500050005000500050005000500050005000

100001000010000100001000010000100001000010000

150001500015000150001500015000150001500015000

200002000020000200002000020000200002000020000
d = 5d = 5d = 5d = 5d = 5d = 5d = 5d = 5d = 5
d = 6d = 6d = 6d = 6d = 6d = 6d = 6d = 6d = 6
d = 7d = 7d = 7d = 7d = 7d = 7d = 7d = 7d = 7

Figure 1: Time for Cd-6-3 instances by # basis orbits,
on both log-log and linear plots.

by about half due to overhead from the interprocess
communication needed to connect GAP to the external
C libraries used. Timing results reported are from the
Placentia ACEnet cluster [1], which has 2.3–3.0 GHz
AMD Opteron processors.

Table 2 shows some early performance results for
Basil on the arrangements. Problems DxA and EyA
are the bounding hyperplane arrangements for the DV-
cells of the root lattices Dx and Ey, while the Cx-y-z
instances are generated by choosing z vertices of the x-
cube and acting on them with a subgroup of the hyper-
octohedral group with at least y orbits. Figure 1, which
plots results for 268 Cx-6-3 instances, suggests that
Basil’s runtime is super-linear but sub-quadratic in the
number of bases output; this is consistent with depth-
first search of a moderately dense connected graph.
Considering runtime in terms of output size rather than
input size avoids the issue that the total number of
cobases may in general be exponential in the input size.
Table 3 shows the benefits of considering symmetries
for basis enumeration; the values in this table are the
results of using Basil to enumerate all the cobases of
the given test cases.

The pivoting approach implemented in Basil (and
Symbal) differs from that proposed by Avis and
Fukuda [4] for the non-symmetric vertex enumeration
problem in that their reverse search does not maintain
state describing cobases already found or the path from
the initial cobasis to the cobasis currently under con-
sideration. That approach has the benefit of requiring

Table 2: Basil Timing Results
(bases & vertices count orbits)

Problem n:d bases:verts Bas(s)
D4A 24:4 12:7 0.02
D5A 40:5 104:25 0.50
C5-6-3a 25:5 291:36 0.70
C5-6-3b 16:5 51:16 0.05
C6-6-3a 15:6 9:1 0.03
C6-6-3b 36:6 1394:91 13.90
C6-6-3c 50:6 5342:157 63.65
C7-6-3a 48:7 18720:140 456.59
E7A 126:8 12399:227 1570.66

Table 3: Non-Symmetric Timing Results
(all bases & vertices counted)

Problem n:d bases:verts Bas(s)
D4A 24:4 5028:863 23.62
C5-6-3a 25:5 24444:852 120.80
C5-6-3b 16:5 3005:234 4.37
C6-6-3a 15:6 2530:1 16.31

a relatively small constant amount of memory, but also
requires more simplex computations, increasing running
time. For the symmetric case, we expect there to be
relatively few orbits of cobases, allowing Basil to keep
representatives of each in memory, and thus have not
yet investigated a memory-less reverse search for this
problem. Additionally, the limiting factor on the size
of instances we can currently solve is the computational
expense of the group theoretic calculations required to
check symmetry (encapsulated in InNewOrbit in Al-
gorithm 1), which dominate the running time of Basil
to a significant degree. Our profiling results show that
tests for orbit membership take about 60% of the run-
time of Basil, while the only other individual opera-
tion which significantly contributes to runtime is sim-
plex pivoting, contributing about 20% of the execution
time.

Because the group theoretic computations involved
in checking if two cobases are in the same orbit under
the group action are so expensive, Basil utilizes some
cheaper invariants of symmetric cobases to shrink the
set of cobases that must be tested for symmetries. The
simplest of these invariants is to check that the num-
ber of hyperplanes incident to the vertices defined by
the two cobases is the same, as an automorphism of the
hyperplane arrangement preserves the number of hyper-
planes which meet at any given vertex. Basil also keeps
a cache of recently seen cobases to avoid needing to re-
test previous cobases (for instance, the cobasis that was
pivoted from to reach the current cobasis).

Basil also uses the Gram submatrix to differenti-
ate cobases; representatives of known cobasis orbits are



24th Canadian Conference on Computational Geometry, 2012

D4A

D5A

C5-6-3a

C5-6-3b

C6-6-3a

C6-6-3b

0 1 2 3 4 5 6 7 8 9

speedup

0.02 s

0.50 s

0.70 s

0.05 s

0.03 s

13.90 s

Figure 2: Speedup from using Gram matrix
(bar labels are runtime without Gram matrix)

stored in a hash table indexed by the corresponding
Gram submatrix. Comparing each newly discovered
cobasis only to the cobases having Gram submatrices
which are equivalent under the sorting procedure de-
scribed earlier greatly reduces the number of expensive
group theoretic tests which must be performed. If the
Gram submatrix invariant is turned off in Basil, execu-
tion time on a given instance increases dramatically, as
seen in Figure 2, while when activated the Gram matrix
computations consume about 5% of the execution time
of Basil.

5 Conclusion & Future Work

Basis enumeration seems to be an easier problem than
the closely related problem of vertex enumeration. A
pivoting algorithm can effectively explore the graph of
adjacent bases. The main practical difficulty is the typ-
ically enormous output size from even moderate sized
input. In certain applications, it suffices to generate
one basis from each orbit under some natural symmetry
group. In this paper we have described the enhance-
ment of the symmetric pivoting software Symbal to pro-
duce a second generation symmetric pivoting software
Basil. Basil is a native C++ application, and the
speedup compared to Symbal can be seen as a valida-
tion of the use of C++ instead of the computer algebra
system GAP, enabled by use of the permlib C++ library
for group theoretic computations. The main motiva-
tion for developing Basil was to be able to generate or-
bit representatives of bases in hyperplane arrangements,
based on a perceived need for this capability in certain
novel approaches to integer programming. The exten-
sion from polyhedra to arrangements required defining
a new ratio-test, and a modified procedure compute the
symmetry group.

As the expense of the group theoretic calculations
is the current limiting factor on the problem size that
is feasible to solve, future directions for this research
include a parallel implementation of Basil to bring
greater computational power to bear on the problem, as
well as research into invariants which may be cheaper

to test than cobasis isomorphism.
Another way to reduce group theoretic calculations is

to construct or approximate a fundamental domain, a
convex cell F such that each orbit of cobases has exactly
one representative in F . Such a cell can be constructed
by techniques closely related to Voronoi diagrams, and
could be used to prune the search for adjacent bases.

References

[1] ACEnet. http://www.ace-net.ca/wiki/ACEnet,
September 2011.

[2] D. Avis. lrs home page. http://cgm.cs.mcgill.ca/

~avis/C/lrs.html. accessed 26 January 2012.

[3] D. Avis. Computational experience with the reverse
search vertex enumeration algorithm. Optimization
Methods and Software, 10(2):107–124, 1998.

[4] D. Avis and K. Fukuda. A pivoting algorithm for convex
hulls and vertex enumeration of arrangments and poly-
hedra. Discrete & Computational Geometry, 8(1):295–
313, 1992.

[5] D. Bremner, M. D. Sikirić, and A. Schürmann. Poly-
hedral representation conversion up to symmetries. In
D. Avis, D. Bremner, and A. Deza, editors, Polyhedral
Computation, pages 45–71. CRM Proceedings & Lec-
ture Notes, American Mathematical Society, 2009.

[6] M. Brion and M. Vergne. Residue formulae, vector
partition functions and lattice points in rational poly-
topes. Journal of the American Mathematical Society,
10(4):797–833, October 1997.

[7] A. Charnes. The simplex method: optimal set and de-
generacy. In An introduction to Linear Programming,
Lecture VI, pages 62–70. Wiley, New York, 1953.

[8] G. B. Dantzig. Maximizing a linear function of vari-
ables subject to linear inequalities. Activity Analysis of
Production and Allocation, pages 339–347, 1951.

[9] J. Edmonds and J.-F. Maurras. Note sur les Q-matrices
d’Edmonds. RAIRO. Recherche opérationnelle,
31(2):203–209, 1997.

[10] B. McKay. The nauty page. http://cs.anu.edu.au/

~bdm/nauty/. accessed 26 January 2012.

[11] T. Rehn. User’s Guide for PermLib. http://www.math.
uni-rostock.de/~rehn/software/permlib.html, Oc-
tober 2011. accessed 26 January 2012.

[12] T. Rehn. User’s Guide for SymPol. http://www.math.
uni-rostock.de/~rehn/software/sympol.html, Oc-
tober 2011. accessed 16 February 2012.

[13] M. D. Sikirić. Polyhedral home page. http://

drobilica.irb.hr/~mathieu/Polyhedral/. accessed
10 May 2012.

[14] A. Szenes and M. Vergne. Residue formulae for vec-
tor partitions and Euler–Maclaurin sums. Advances in
Applied Mathematics, 30:295–342, January 2003.

[15] The GAP Group. GAP System for Computational Dis-
crete Algebra. http://www.gap-system.org, Septem-
ber 2008. accessed 26 January 2012.


