
µC++ Annotated Reference Manual

Version 7.0.0

http: //plg.uwaterloo.ca /∼usystem/uC++.html

µC++ download or Github (installation: sudo sh u++-7.0.0.sh)

Peter A. Buhr ©1 1995, 1996, 1998, 2000, 2003, 2004, 2005, 2007, 2009, 2012, 2016, 2019, 2022

Peter A. Buhr and Richard A. Stroobosscher ©1 1992

January 25, 2025

1Permission is granted to redistribute this manual unmodified in any form; permission is granted to redistribute

modified versions of this manual in any form, provided the modified version explicitly attributes said modifications to

their respective authors, and provided that no modification is made to these terms of redistribution.

http://plg.uwaterloo.ca/~usystem/uC++.html
http://plg.uwaterloo.ca/~usystem/pub/uSystem/u++-7.0.0.sh
https://github.com/pabuhr/uCPP

Contents

Preface 1

1 µC++ Extensions 3

1.1 Design Requirements . 3

1.2 Elementary Execution Properties . 4

1.3 High-level Execution Constructs . 5

2 µC++ Translator 7

2.1 Extending C++ . 7

2.2 Compile Time Structure of a µC++ Program . 8

2.3 µC++ Runtime Structure . 8

2.3.1 Cluster . 8

2.3.2 Virtual Processor . 8

2.4 µC++ Kernel . 9

2.4.1 Compiling a µC++ Program . 10

2.4.2 Preprocessor Variables . 10

2.5 Labelled Break / Continue . 10

2.6 Finally Clause . 11

2.7 Coroutine . 12

2.7.1 Coroutine Creation and Destruction . 13

2.7.2 Inherited Members . 14

2.7.3 Coroutine Control and Communication . 16

2.8 Mutex Type . 16

2.9 Scheduling . 20

2.9.1 Implicit Scheduling . 20

2.9.2 External Scheduling . 20

2.9.2.1 Accept Statement . 20

2.9.2.2 Breaking a Rendezvous . 22

2.9.2.3 Accepting the Destructor . 23

2.9.2.4 Commentary . 23

2.9.3 Internal Scheduling . 24

2.9.3.1 Condition Variables and Wait/Signal Statements 24

2.9.3.2 Commentary . 25

2.10 Monitor . 26

2.10.1 Monitor Creation and Destruction . 26

2.10.2 Monitor Control and Communication . 26

2.11 Coroutine Monitor . 27

2.11.1 Coroutine-Monitor Creation and Destruction . 27

2.11.2 Coroutine-Monitor Control and Communication . 27

2.12 Thread Creation and Destruction . 27

2.13 Task . 29

2.13.1 Task Creation and Destruction . 29

iii

iv CONTENTS

2.13.2 Inherited Members . 30

2.13.3 Task Control and Communication . 32

2.14 Commentary . 32

2.15 Inheritance . 33

2.16 Explicit Mutual Exclusion and Synchronization . 35

2.16.1 Counting Semaphore . 35

2.16.1.1 Commentary . 36

2.16.2 Lock . 36

2.16.3 Mutex Lock . 37

2.16.4 Owner Lock . 37

2.16.5 Condition Lock . 38

2.16.6 Barrier . 38

2.17 Atomic Instructions . 39

2.18 User Specified Context . 42

2.18.1 Predefined Floating-Point Context . 42

2.19 Implementation Restrictions . 44

3 Asynchronous Communication 47

3.1 Futures . 47

3.1.1 Client Operations . 48

3.1.2 Server Operations . 48

3.1.3 Explicit Storage Management . 49

3.1.4 Implicit Storage Management . 50

3.2 Example . 50

3.3 Complex Future Access . 51

3.3.1 Select Statement . 51

3.3.2 Wait Queue . 53

3.4 Servers . 54

3.4.1 Executors . 57

3.5 Actor . 58

3.5.1 Storage Management . 59

3.5.2 Messages . 59

3.5.3 Actor Type . 61

4 Input/Output 71

4.1 Nonblocking I/O . 71

4.2 C++ Stream I/O . 71

4.3 UNIX File I/O . 73

4.3.1 File Access . 74

4.4 BSD Sockets . 75

4.4.1 Client . 76

4.4.2 Server . 78

4.4.3 Server Acceptor . 80

5 Exceptions 83

5.1 EHM . 83

5.2 µC++ EHM . 84

5.3 Exception Type . 84

5.3.1 Creation and Destruction . 85

5.3.2 Inherited Members . 85

5.4 Raising . 86

5.4.1 Nonlocal Propagation . 86

5.4.2 Enabling/Disabling Propagation . 87

5.4.3 Concurrent Propagation . 88

CONTENTS v

5.5 Handler . 89

5.5.1 Termination . 89

5.5.2 Resumption . 89

5.5.3 Termination/Resumption . 90

5.5.3.1 Recursive Resuming . 91

5.5.3.2 Preventing Recursive Resuming . 91

5.5.3.3 Commentary . 93

5.6 Bound Exceptions . 93

5.6.1 C++ Exception-Handling Deficiencies . 93

5.6.2 Object Binding . 94

5.6.3 Bound Handlers . 95

5.6.3.1 Matching . 95

5.6.3.2 Termination . 95

5.6.3.3 Resumption . 95

5.7 Inheritance . 95

5.8 Predefined Exception Routines . 96

5.8.1 terminate/set terminate . 96

5.8.2 unexpected/set unexpected . 97

5.8.3 uncaught exception . 97

5.9 Programming with Exceptions . 98

5.9.1 Terminating Propagation . 98

5.9.2 Resuming Propagation . 98

5.9.3 Terminating/Resuming Propagation . 98

5.10 Predefined Exception-Types . 99

5.10.1 Implicitly Enabled Exception-Types . 99

5.10.2 Unhandled Exception . 99

5.10.3 Breaking a Rendezvous . 101

6 Cancellation 103

6.1 Using Cancellation . 104

6.2 Enabling/Disabling Cancellation . 104

6.3 Commentary . 105

7 Errors 107

7.1 Static (Compile-time) Warnings/Errors . 107

7.2 Dynamic (Runtime) Warnings/Errors . 110

7.2.1 Assertions . 110

7.2.2 Termination . 110

7.2.3 Messages . 111

7.2.3.1 Default Actions . 111

7.2.3.2 Coroutine . 116

7.2.3.3 Mutex Type . 118

7.2.3.4 Task . 121

7.2.3.5 Condition Variable . 122

7.2.3.6 Accept Statement . 123

7.2.3.7 Calendar . 123

7.2.3.8 Locks . 123

7.2.3.9 Cluster . 123

7.2.3.10 Heap . 124

7.2.3.11 I/O . 125

7.2.3.12 Processor . 126

7.2.3.13 UNIX . 126

vi CONTENTS

8 µC++ Kernel 127

8.1 Pre-emptive Scheduling and Critical Sections . 127

8.2 Memory Management . 127

8.3 Cluster . 127

8.4 Processors . 129

8.4.1 Implicit Task Scheduling . 131

8.4.2 Idle Virtual Processors . 131

8.4.3 Blocking Virtual Processors . 132

9 POSIX Threads (pthreads) 133

9.1 Combining Pthreads with µC++ . 133

9.1.1 Linking µC++ and Pthreads Binaries . 133

9.1.2 Recompiling Pthreads Modules . 133

9.2 µC++ Task as a Pthreads Thread . 135

9.3 Semantic Inconsistencies between Pthreads and µC++ . 136

9.3.1 Termination of main . 136

9.3.2 Cleanup Semantics . 136

9.4 Commentary . 136

10 OpenMP 139

10.1 Using OpenMP in µC++ programs . 139

10.2 OpenMP and Parallelism . 139

11 Real-Time 141

11.1 Duration and Time . 141

11.2 Timeout Operations . 143

11.2.1 Time Delay . 144

11.2.2 Accept Statement . 144

11.2.3 Select Statement . 145

11.2.4 I/O . 145

11.3 Clock . 146

11.4 Periodic Task . 147

11.5 Sporadic Task . 148

11.6 Aperiodic Task . 148

11.7 Priority Inheritance Protocol . 149

11.8 Real-Time Scheduling . 150

11.9 User-Supplied Scheduler . 150

11.10Real-Time Cluster . 151

11.10.1 Deadline Monotonic Scheduler . 151

12 Miscellaneous 155

12.1 Default Values . 155

12.1.1 Task . 155

12.1.2 Processor . 155

12.1.3 Heap . 156

12.2 Installation Requirements . 156

12.3 Installation . 156

12.4 Reporting Problems . 156

12.5 Contributors . 156

A µC++ Grammar 159

B Heap Allocator 161

C Pseudo Random Number Generator 163

CONTENTS vii

D Stack Object Allocation 167

D.1 uNoCtor . 167

D.2 uArray . 168

E String to Integer 169

F Data Structure Library (DSL) 171

F.1 Stack . 172

F.1.1 Iterator . 172

F.2 Queue . 172

F.2.1 Iterator . 174

F.3 Sequence . 174

F.3.1 Iterator . 175

G GDB for µC++ 177

G.1 Clusters . 177

G.2 Processors . 177

G.3 Tasks . 177

H Example Programs 179

H.1 Readers And Writer . 179

H.2 Bounded Buffer . 181

H.2.1 Using Monitor Accept . 181

H.2.2 Using Monitor Condition . 182

H.2.3 Using Task . 184

H.2.4 Using P/V . 185

H.3 Disk Scheduler . 186

H.4 UNIX File I/O . 191

H.5 UNIX Socket I/O . 192

H.5.1 Client - UNIX/Datagram . 192

H.5.2 Server - UNIX/Datagram . 195

H.5.3 Client - INET/Stream . 196

H.5.4 Server - INET/Stream . 198

Bibliography 201

Index 205

viii CONTENTS

Preface

The goal of this work is to introduce concurrency into the object-oriented language C++ [Str97]. To achieve this goal a

set of important programming language abstractions were adapted to C++, producing a new dialect called µC++. These

abstractions were derived from a set of design requirements and combinations of elementary execution properties,

different combinations of which categorized existing programming language abstractions and suggested new ones.

The set of important abstractions contains those needed to express concurrency, as well as some that are not directly

related to concurrency. Therefore, while the focus of this work is on concurrency, all the abstractions produced from

the elementary properties are discussed. While the abstractions are presented as extensions to C++, the requirements

and elementary properties are generally applicable to other object-oriented languages.

This manual does not discuss how to use the new constructs to build complex concurrent systems. An in-depth

discussion of these issues, with respect to µC++, is available in “Understanding Control Flow with Concurrent Pro-

gramming using µC++”. This manual is strictly a reference manual for µC++. A reader should have an intermediate

knowledge of control flow and concurrency issues to understand the ideas presented in this manual as well as some

experience programming in C++.

This manual contains annotations set off from the normal discussion in the following way:

✷ Annotation discussion is quoted with quads. ✷

An annotation provides rationale for design decisions or additional implementation information. Also a chapter or

section may end with a commentary section, which contains major discussion about design alternatives and/or imple-

mentation issues.

Each chapter of the manual does not begin with an insightful quotation. Feel free to add your own.

1

2 CONTENTS

Chapter 1

µC++ Extensions

µC++ [BD92] extends the C++ programming language [Str97] in somewhat the same way that C++ extends the C

programming language. The extensions introduce new objects that augment the existing set of control flow facilities

and provide for lightweight concurrency on uniprocessor and parallel execution on multiprocessor computers running

the UNIX operating system. The following discussion is the rationale for the particular extensions that were chosen.

1.1 Design Requirements

The following requirements directed this work:

• Any linguistic feature that affects code generation must become part of the language. In other words, if the com-

piler can generate code that invalidates the correctness of a library package implementing a particular feature,

either the library feature cannot be implemented safely or additional capabilities must be added to the program-

ming language to support the feature. Concurrency is a language feature affected by code generation, and hence,

must be added to the programming language [Buh95]. In the case of C++, the concurrency extensions are best

added through new kinds of objects.

• All communication among the new kinds of objects must be statically type checkable because static type check-

ing is essential for early detection of errors and efficient code generation. (As well, this requirement is consistent

with the fact that C++ is a statically typed programming language.)

• Interaction among the different kinds of objects should be possible, and in particular, interaction among con-

current objects, called tasks, should be possible. This requirement allows a programmer to choose the kind of

object best suited to the particular problem without having to cope with communication restrictions.

In contrast, some approaches have restrictions on interactions among concurrent objects, such as tasks can only

interact indirectly through another non-task object. For example, many programming languages that support

monitors [Bri75, MMS79, Hol92] require that all communication among tasks be done indirectly through a

monitor; similarly, the Linda system [CG89] requires that all communication take place through one or possibly

a small number of tuple spaces. This restriction increases the number of objects in the system; more objects

consume more system resources, which slows the system. As well, communication among tasks is slowed

because of additional synchronization and data transfers with the intermediate object.

• All communication among objects is performed using routine calls; data is transmitted by passing arguments

to parameters and results are returned as the value of the routine call. It is confusing to have multiple forms of

communication in a language, such as message passing, message queues, or communication ports, as well as

normal routine call.

• Any of the new kinds of objects should have the same declaration scopes and lifetimes as existing objects. That

is, any object can be declared at program startup, during routine and block activation, and on demand during

execution, using a new operator.

• All mutual exclusion must be implicit in the programming language constructs and all synchronization should be

limited in scope. Requiring users to build mutual exclusion out of locks often leads to incorrect programs. Also,

3

4 CHAPTER 1. µC++ EXTENSIONS

reducing the scope in which synchronization can be used, by encapsulating it as part of language constructs,

further reduces errors in concurrent programs.

• Both synchronous and asynchronous communication are needed in a concurrent system. However, the best

way to support this is to provide synchronous communication as the fundamental mechanism; asynchronous

mechanisms, such as buffering or futures [Hal85], can then be built using synchronous mechanisms. Building

synchronous communication out of asynchronous mechanisms requires a protocol for the caller to subsequently

detect completion, which is error prone because the caller may not obey the protocol (e.g., never retrieve a

result). Furthermore, asynchronous requests require the creation of implicit queues of outstanding requests, each

of which must contain a copy of the arguments of the request. This implementation requirement creates a storage

management problem because different requests require different amounts of storage in the queue. Therefore,

asynchronous communication is too complicated and expensive a mechanism to be hidden in a system.

• An object that is accessed concurrently must have some control over which requester it services next. There are

two distinct approaches: control can be based on the kind of request, for example, selecting a requester from

the set formed by calls to a particular entry point; or control can be based on the identity of the requester. In

the former case, it must be possible to give priorities to the sets of requesters. This requirement is essential for

high-priority requests, such as a time out or a termination request. (This priority is to be differentiated from

execution priority.) In the latter case, selection control is very precise as the next request must only come from

the specified requester. In general, the former case is usually sufficient and simpler to express.

• There must be flexibility in the order that requests are completed. That is, a task can accept a request and

subsequently postpone it for an unspecified time, while continuing to accept new requests. Without this ability,

certain kinds of concurrency problems are quite difficult to implement, e.g., disk scheduling, and the amount of

concurrency is inhibited as tasks are needlessly blocked [Gen81].

All of these requirements are satisfied in µC++ except the first, which requires compiler support. Even through µC++

lacks compiler support, its design assumes compiler support so the extensions are easily added to any C++ compiler.

1.2 Elementary Execution Properties

Extensions to the object concept were developed based on the following execution properties:

thread – is execution of code that occurs independently of and possibly concurrently with other execution; the exe-

cution resulting from a thread is sequential. A thread’s function is to advance execution by changing execution

state. Multiple threads provide concurrent execution. A programming language must provide constructs that

permit the creation of new threads and specify how threads are used to accomplish computation. Furthermore,

there must be programming language constructs whose execution causes threads to block and subsequently be

made ready for execution. A thread is either blocked or running or ready. A thread is blocked when it is waiting

for some event to occur. A thread is running when it is executing on an actual processor. A thread is ready

when it is eligible for execution but not being executed.

execution state – is the state information needed to permit independent execution. An execution state is either active

or inactive, depending on whether or not it is currently being used by a thread. In practice, an execution state

consists of the data items created by an object, including its local data, local block and routine activations, and

a current execution location, which is initialized to a starting point. The local block and routine activations

are often maintained in a contiguous stack, which constitutes the bulk of an execution state and is dynamic in

size, and is the area where the local variables and execution location are preserved when an execution state is

inactive. A programming language determines what constitutes an execution state, and therefore, execution state

is an elementary property of the semantics of a language. When control transfers from one execution state to

another, it is called a context switch.

mutual exclusion – is the mechanism that permits an action to be performed on a resource without interruption by

other actions on the resource. In a concurrent system, mutual exclusion is required to guarantee consistent gen-

eration of results, and cannot be trivially or efficiently implemented without appropriate programming language

constructs.

1.3. HIGH-LEVEL EXECUTION CONSTRUCTS 5

The first two properties represent the minimum needed to perform execution, and seem to be fundamental in that

they are not expressible in machine-independent or language-independent ways. For example, creating a new thread

requires creation of system runtime control information, and manipulation of execution states requires machine specific

operations (modifying stack and frame pointers). The last property, while expressible in terms of simple language

statements, can only be done by algorithms that are error-prone and inefficient, e.g., Dekker-like algorithms, and

therefore, mutual exclusion must also be provided as an elementary execution property, usually through special atomic

hardware instructions.

1.3 High-level Execution Constructs

A programming language designer could attempt to provide these 3 execution properties as basic abstractions in a

programming language [BLL88], allowing users to construct higher-level constructs from them. However, some com-

binations might be inappropriate or potentially dangerous. Therefore, all combinations are examined, analyzing which

ones make sense and are appropriate as higher-level programming language constructs. What is interesting is that

enumerating all combination of these elementary execution properties produces many existing high-level abstractions

and suggests new ones.

The three execution properties are properties of objects. Therefore, an object may or may not have a thread, may

or may not have an execution state, and may or may not have mutual exclusion. Different combinations of these three

properties produce different kinds of objects. If an object has mutual exclusion, this means that execution of certain

member routines are mutually exclusive of one another. Such a member routine is called a mutual-exclusion member

(mutex member). In the situation where an object does not have the minimum properties required for execution, i.e.,

thread and execution state, those of its caller are used.

Table 1.1 shows the different abstractions possible when an object possesses different execution properties:

object properties object’s member routine properties

thread execution state no mutual exclusion mutual exclusion

no no 1 class object 2 monitor

no yes 3 coroutine 4 coroutine monitor

yes no 5 (rejected) 6 (rejected)

yes yes 7 (rejected) 8 task

Table 1.1: Fundamental Abstractions

Case 1 is an object, such as a free routine (a routine not a member of an object) or an object with member routines

neither of which has the necessary execution properties, called a class object. In this case, the caller’s thread and

execution state are used to perform execution. Since this kind of object provides no mutual exclusion, it is normally

accessed only by a single thread. If such an object is accessed by several threads, explicit locking may be required,

which violates a design requirement. Case 2 is like Case 1 but deals with the concurrent-access problem by implicitly

ensuring mutual exclusion for the duration of each computation by a member routine. This abstraction is a moni-

tor [Hoa74]. Case 3 is an object that has its own execution state but no thread. Such an object uses its caller’s thread

to advance its own execution state and usually, but not always, returns the thread back to the caller. This abstraction

is a coroutine [Mar80]. Case 4 is like Case 3 but deals with the concurrent-access problem by implicitly ensuring

mutual exclusion; the name coroutine monitor has been adopted for this case. Cases 5 and 6 are objects with a thread

but no execution state. Both cases are rejected because the thread cannot be used to provide additional concurrency.

First, the object’s thread cannot execute on its own since it does not have an execution state, so it cannot perform any

independent actions. Second, if the caller’s execution state is used, assuming the caller’s thread can be blocked to

ensure mutual exclusion of the execution state, the effect is to have two threads successively executing portions of a

single computation, which does not seem useful. Case 7 is an object that has its own thread and execution state. Be-

cause it has both a thread and execution state it is capable of executing on its own; however, it lacks mutual exclusion.

Without mutual exclusion, access to the object’s data is unsafe; therefore, servicing of requests would, in general,

require explicit locking, which violates a design requirement. Furthermore, there is no performance advantage over

case 8. For these reasons, this case is rejected. Case 8 is like Case 7 but deals with the concurrent-access problem by

implicitly ensuring mutual exclusion, called a task.

The abstractions suggested by this categorization come from fundamental properties of execution and not ad hoc

6 CHAPTER 1. µC++ EXTENSIONS

decisions of a programming language designer. While it is possible to simplify the programming language design by

only supporting the task abstraction [SBG+90], which provides all the elementary execution properties, this would

unnecessarily complicate and make inefficient solutions to certain problems. As will be shown, each of the non-

rejected abstractions produced by this categorization has a particular set of problems it can solve, and therefore, each

has a place in a programming language. If one of these abstractions is not present, a programmer may be forced to

contrive a solution for some problems that violates abstraction or is inefficient.

Chapter 2

µC++ Translator

The µC++ translator1 reads a program containing language extensions and transforms each extension into one or more

C++ statements, which are then compiled by an appropriate C++ compiler and linked with a concurrency runtime

library. Because µC++ is only a translator and not a compiler, some restrictions apply that would be unnecessary if

the extensions were part of the C++ programming language. Similar, but less extensive translators have been built:

MC [RH87] and Concurrent C++ [GR88].

2.1 Extending C++

Operations in µC++ are expressed explicitly, i.e., the abstractions derived from the elementary properties are used to

structure a program into a set of objects that interact, possibly concurrently, to complete a computation. This situation

is to be distinguished from implicit schemes, such as those that attempt to discover concurrency in an otherwise

sequential program, e.g., by parallelizing loops and access to data structures. While both schemes are complementary,

and hence, can appear together in a single programming language, implicit schemes are limited in their capacity

to discover concurrency, and therefore, the explicit scheme is essential. Currently, µC++ only supports the explicit

approach, but nothing in its design precludes the addition of the implicit approach.

The abstractions in Table 1.1, p. 5 are expressed in µC++ using two new type specifiers, _Coroutine and _Task,

which are extensions of the class construct, and hence, define new types. In this manual, a type defined by the class

construct and the new constructs are called class type, monitor type, coroutine type, coroutine-monitor type and

task type, respectively. The terms class object, monitor, coroutine, coroutine monitor and task refer to the objects

created from such types. The term object is the generic term for any instance created from any type. All objects

can be declared externally, in a block, or using the new operator. Two new type qualifiers, _Mutex and _Nomutex,

are also introduced to specify the presence or absence of mutual exclusion on the member routines of a type (see

Table 2.1). The default qualification values have been chosen based on the expected frequency of use of the new types.

Several new statements are added to the language; each is used to affect control in objects created by the new types.

Appendix A, p. 159 shows the grammar for all the µC++ extensions.

object properties object’s member routine properties

thread execution state no mutual exclusion mutual exclusion

no no [_Nomutex]† class _Mutex class

no yes [_Nomutex] _Coroutine _Mutex _Coroutine

yes yes N/A [_Mutex] _Task

† [] implies default qualification if not specified

Table 2.1: New Type Specifiers

µC++ executes on uniprocessor and multiprocessor shared-memory computers. On a uniprocessor, concurrency is

achieved by interleaving execution to give the appearance of parallel execution. On a multiprocessor computer, con-

1The term “translator” is used rather than preprocessor because µC++ programs are partially parsed and symbol tables are constructed. A

preprocessor, such as cpp, normally only manipulates strings.

7

8 CHAPTER 2. µC++ TRANSLATOR

currency is accomplished by a combination of interleaved execution and true parallel execution. Furthermore, µC++

uses a shared-memory model. This single memory may be the address space of a single UNIX process or a memory

shared among a set of kernel threads. A memory is populated by routine activations, class objects, coroutines, moni-

tors, coroutine monitors and concurrently executing tasks, all of which have the same addressing scheme for accessing

the memory. Because these entities use the same memory they can be lightweight, so there is a low execution cost for

creating, maintaining and communicating among them. This approach has its advantages as well as its disadvantages.

Communicating objects do not have to send large data structures back and forth, but can simply pass pointers to data

structures. However, this technique does not lend itself to a distributed environment with separate address spaces.

✷ Approaches taken by distributed shared-memory systems may provide the necessary implementation

mechanisms to make the distributed memory case similar to the shared-memory case. ✷

2.2 Compile Time Structure of a µC++ Program

A µC++ program is constructed exactly like a normal C++ program with one exception: the program main routine

is called by a µC++ task called uMain so all µC++ task operations are usable in the program main, e.g., uThisTask()

(see Section 2.13.2, p. 30).

2.3 µC++ Runtime Structure

The dynamic structure of an executing µC++ program is significantly more complex than a normal C++ program. In

addition to the five kinds of objects introduced by the elementary properties, µC++ has two more runtime entities that

are used to control concurrent execution.

2.3.1 Cluster

A cluster is a collection of tasks and virtual processors (discussed next) that execute the tasks. The purpose of a cluster

is to control the amount of parallelism that is possible among tasks, where parallelism is defined as execution which

occurs simultaneously. Parallelism can only occur when multiple processors are present. Concurrency is execution

that, over a period of time, appears to be parallel. For example, a program written with multiple tasks has the potential

to take advantage of parallelism but it can execute on a uniprocessor, where it may appear to execute in parallel

because of the rapid speed of context switching.

Normally, a cluster uses a single-queue multi-server queueing model for scheduling its tasks on its processors (see

Chapter 11, p. 141 for other kinds of schedulers). This simple scheduling results in automatic load balancing of tasks

on processors. Figure 2.1 illustrates the runtime structure of a µC++ program. An executing task is illustrated by its

containment in a processor. Because of appropriate defaults for clusters, it is possible to begin writing µC++ programs

after learning about coroutines or tasks. More complex concurrency work may require the use of clusters. If several

clusters exist, both tasks and virtual processors, can be explicitly migrated from one cluster to another. No automatic

load balancing among clusters is performed by µC++.

When a µC++ program begins execution, it creates two clusters: a system cluster and a user cluster. The system

cluster contains a processor that does not execute user tasks. Instead, the system cluster handles system-related op-

erations, such as catching errors that occur on the user clusters, printing appropriate error information, and shutting

down µC++. A user cluster is created to contain the user tasks; a staring task is created in the user cluster, called main

with type uMain, which calls routine main. Having all tasks execute on the one cluster often maximizes utilization of

processors, which minimizes runtime. However, because of limitations of the underlying operating system or because

of special hardware requirements, it is sometimes necessary to have more than one cluster. Partitioning into clusters

must be used with care as it has the potential to inhibit parallelism when used indiscriminately. However, in some situ-

ations partitioning is essential, e.g., on some systems concurrent UNIX I/O operations are only possible by exploiting

the clustering mechanism.

2.3.2 Virtual Processor

A µC++ virtual processor is a “software processor” that executes threads. A virtual processor is implemented by ker-

nel thread (normally created through a UNIX process) that is subsequently scheduled for execution on a hardware

processor by the underlying operating system. On a multiprocessor, kernel threads are usually distributed across the

2.4. µC++ KERNEL 9

clusterprocessormonitortaskcoroutine

System Cluster

Processors

Blocked Tasks

Ready Tasks

Other Cluster(s)User Cluster

Figure 2.1: Runtime Structure of a µC++ Program

hardware processors and so some virtual processors are able to execute in parallel. µC++ uses virtual processors in-

stead of hardware processors so that programs do not actually allocate and hold hardware processors. Programs can

be written to run using a number of virtual processors and execute on a machine with a smaller number of hardware

processors. Thus, the way in which µC++ accesses the parallelism of the underlying hardware is through an interme-

diate resource, the kernel thread. In this way, µC++ is kept portable across uniprocessor and different multiprocessor

hardware designs.

When a virtual processor is executing, µC++ controls scheduling of tasks on it. Thus, when UNIX schedules a

virtual processor for a runtime period, µC++ may further subdivide that period by executing one or more tasks. When

multiple virtual processors are used to execute tasks, the µC++ scheduling may automatically distribute tasks among

virtual processors, and thus, indirectly among hardware processors. In this way, parallel execution occurs.

2.4 µC++ Kernel

After a µC++ program is translated and compiled, a runtime concurrency library is linked in with the resulting pro-

gram, called the µC++ kernel. There are two versions of the µC++ kernel: the unikernel, which is designed to use a

single processor (in effect, there is only one virtual processor); and the multikernel, which is designed to use several

processors. Thus, the unikernel is sensibly used on systems with a single hardware processor or when kernel threads

are unavailable; the multikernel is sensibly used on systems that have multiple hardware processors and when kernel

threads are available. Table 2.2 shows the situations where each kernel can be used. The unikernel can be used in a

system with multiple hardware processors and kernel threads but does not take advantage of either of these capabili-

ties. The multikernel can be used on a system with a single hardware processor and kernel threads but performs less

efficiently than the unikernel because it uses multiprocessor techniques unnecessarily.

no kernel threads kernel threads

single unikernel, yes unikernel, yes

processor multikernel, no multikernel, yes, but inefficient

multiple unikernel, yes unikernel, yes, but no parallelism

processors multikernel, no multikernel, yes

Table 2.2: When to Use the Unikernel and Multikernel

Each of the µC++ kernels has a debugging version, which performs a number of runtime checks. For example,

the µC++ kernel provides no support for automatic growth of stack space for coroutines and tasks because this would

10 CHAPTER 2. µC++ TRANSLATOR

require compiler support. The debugging version checks for stack overflow whenever context switches occur among

coroutines and tasks, which catches many stack overflows; however, stack overflow can still occur if insufficient

stack area is provided, which can cause an immediate error or unexplainable results. Many other runtime checks are

performed in the debugging version. After a program is debugged, the non-debugging version can be used to increase

performance.

2.4.1 Compiling a µC++ Program

The u++ command is used to compile a µC++ program. This command works just like the GNU g++ [Tie90] command

for compiling C++ programs, e.g.:

u++ [C++ options] yourprogram.C [assembler and loader files]

The following additional options are available for the u++ command:

-debug The program is linked with the debugging version of the unikernel or multikernel. The debug version

performs runtime checks to help during the debugging phase of a µC++ program, but substantially slows the

execution of the program. The runtime checks should only be removed after the program is completely de-

bugged. This option is the default.

-nodebug The program is linked with the non-debugging version of the unikernel or multikernel, so the execution

of the program is faster. However, no runtime checks or asserts are performed so errors usually result in

abnormal program termination.

-multi The program is linked with the multikernel.

-nomulti The program is linked with the unikernel. This option is the default.

-quiet The µC++ compilation message is not printed at the beginning of a compilation.

-noquiet The µC++ compilation message is printed at the beginning of a compilation. This option is the default.

-U++ Only the C preprocessor and the µC++ translator steps are performed and the transformed program is written

to standard output, which makes it possible to examine the code generated by the µC++ translator.

-compiler path-name The path-name of the compiler used to compile a µC++ program(s). The default is the

compiler used to compile the µC++ runtime library. It is unsafe to use a different compiler unless the generated

code is binary compatible. (See Section 12.2, p. 156 for supported compilers.)

When multiple conflicting options appear on the command line, e.g., -debug followed by -nodebug, the last option

takes precedence.

2.4.2 Preprocessor Variables

When programs are compiled using u++, the following preprocessor variables are available:

__U_CPLUSPLUS__ is always available during preprocessing and its value is the current major version number

of µC++.2

__U_CPLUSPLUS_MINOR__ is always available during preprocessing and its value is the current minor version

number of µC++.

__U_CPLUSPLUS_PATCH__ is always available during preprocessing and its value is the current patch version

number of µC++.

__U_DEBUG__ is available during preprocessing if the -debug compilation option is specified.

__U_MULTI__ is available during preprocessing if the -multi compilation option is specified.

These preprocessor variables allow conditional compilation of programs that must work differently in these situations.

2.5 Labelled Break / Continue

While C++ provides continue and break statements for altering control flow, both are restricted to one level of nest-

ing for a particular control structure. Unfortunately, this restriction forces programmers to use goto to achieve the

equivalent control-flow for more than one level of nesting. To prevent having to switch to the goto, µC++ extends the

2The C preprocessor allows only integer values in a preprocessor variable so a value like “7.0.0” is not allowed. Hence, the need to have three

variables for the major, minor and patch version number.

2.6. FINALLY CLAUSE 11

continue and break with a target label to support static multi-level exit [Buh85, GJSB00]. For both continue and

break, the target label must be directly associated with a for, while or do statement; for break, the target label can

also be associated with a switch, if, try or compound ({ }) statement.

The following example shows the labelled continue specifying which control structure is the target for the next

loop iteration:

C++ µC++

do {
while (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . .

L3: ; }
L2: ; }

L1: ; } while (. . .);

L1: do {
L2: while (. . .) {

L3: for (. . .) {
. . . continue L1; . . . // continue do
. . . continue L2; . . . // continue while
. . . continue L3; . . . // continue for

} // for
} // while

} while (. . .);

The innermost loop has three restart points, which cause the next loop iteration to begin.

The following example shows the labelled break specifying which control structure is the target for exit:

C++ µC++

{
. . . declarations . . .
switch (. . .) {

case 3:
if (. . .) {

for (. . .) {
. . . goto L1; . . .
. . . goto L2; . . .
. . . goto L3; . . .
. . . goto L4; . . .

} L4: ;
} else {

. . . goto L3; . . .
} L3: ;

} L2: ;
} L1: ;

L1: {
. . . declarations . . .
L2: switch (. . .) {

case 3:
L3: if (. . .) {

L4: for (. . .) {
. . . break L1; . . . // exit compound statement
. . . break L2; . . . // exit switch
. . . break L3; . . . // exit if
. . . break L4; . . . // exit loop

} // for
} else {

. . . break L3; . . . // exit if
} // if

} // switch
} // compound

The innermost loop has four exit points, which cause termination of one or more of the four nested control structures.

Both continue and break with target labels are simply a goto restricted in the following ways:

• They cannot be used to create a loop. This means that only the looping construct can be used to create a loop.

This restriction is important since all situations that can result in repeated execution of statements in a program

are clearly delineated.

• Since they always transfer out of containing control structures, they cannot be used to branch into a control

structure.

The advantage of the labelled continue/break is allowing static multi-level exits without having to use the goto

statement and tying control flow to the target control structure rather than an arbitrary point in a program. Furthermore,

the location of the label at the beginning of the target control structure informs the reader that complex control-flow is

occurring in the body of the control structure. With goto, the label is at the end of the control structure, which fails

to convey this important clue early enough to the reader. Finally, using an explicit target for the transfer instead of

an implicit target allows new constructs to be added or removed without affecting existing constructs. The implicit

targets of the current continue and break, i.e., the closest enclosing loop or switch, change as certain constructs are

added or removed.

2.6 Finally Clause

The C++ try block is augmented with a Java-style finally clause:

12 CHAPTER 2. µC++ TRANSLATOR

try {
. . .

} . . . // optional catch clauses
} _Finally compound-statement

which must appear after all catch clauses. The finally clause is always executed, i.e., if the try block ends normally

or if an exception is raised. If an exception is raised and caught, the handler is run before the finally clause. Like a

destructor, a finally clause can raise an exception but not if there is an exception being propagated. A finally handler

can access any types and variables visible in its local scope, but it cannot perform a break, continue or return from

within the handler.

✷ While early exit from a finally clause is supported in Java, it is questionable programming. A finally

clause always cleans up the execution environment. Not completing the finally clause by an early exit

implies some clean up is not performed, which is counter-intuitive. ✷

2.7 Coroutine

A coroutine is an object with its own execution state, so its execution can be suspended and resumed. Execution of a

coroutine is suspended as control leaves it, only to carry on from that point when control returns at some later time.

This property means a coroutine is not restarted at the beginning on each activation and its local variables are preserved.

Hence, a coroutine solves the class of problems associated with finite-state machines and push-down automata, which

are logically characterized by the ability to retain state between invocations. In contrast, a free routine or member

routine always executes to completion before returning so its local variables only persist for a particular invocation.

A coroutine executes serially, and hence there is no concurrency implied by the coroutine construct.

However, the ability of a coroutine to suspend its execution state and later have it resumed is the precursor

to true tasks but without concurrency problems; hence, a coroutine is also useful to have in a programming

language for teaching purposes because it allows incremental development of these properties [Yea91].

A coroutine type has all the properties of a class. The general form of the coroutine type is the following:

[_Nomutex] _Coroutine coroutine-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

The coroutine type has one distinguished member, named main; this distinguished member is called the coroutine

main. Instead of allowing direct interaction with main, its visibility is normally private or protected; therefore,

a coroutine can only be activated indirectly by one of the coroutine’s member routines. The decision to make the

coroutine main private or protected depends solely on whether derived classes can reuse the coroutine main or must

supply their own. Hence, a user interacts with a coroutine indirectly through its member routines. This approach

allows a coroutine type to have multiple public member routines to service different kinds of requests that are statically

type checked. A coroutine main cannot have parameters or return a result, but the same effect can be accomplished

indirectly by passing values through the coroutine’s global variables, called communication variables, which are

accessible from both the coroutine’s member and main routines.

A coroutine can suspend its execution at any point by activating another coroutine, which is done in two ways.

First, a coroutine can implicitly reactivate the coroutine that previously activated it via member suspend. Second, a

coroutine can explicitly invoke a member of another coroutine, which causes activation of that coroutine via member

resume. These two forms result in two different styles of coroutine control flow. A full coroutine is part of a resume

cycle, while a semi-coroutine [Mar80, p. 4, 37] is not part of a resume cycle. A full coroutine can perform semi-

coroutine operations because it subsumes the notion of the semi-coroutine; i.e., a full coroutine can use suspend to

activate the member routine that activated it or resume to itself, but it must always form a resume cycle with other

coroutines.

2.7. COROUTINE 13

✷ Simulating a coroutine with a subroutine requires retaining data in variables with global scope or

variables with static storage-class between invocations. However, retaining state in these ways violates

the principle of abstraction and does not generalize to multiple instances, since there is only one copy of

the storage in both cases. Also, without a separate execution state, activation points must be managed

explicitly, requiring the execution logic to be written as a series of cases, each ending by recording the

next case to be executed on re-entry. However, explicit management of activation points is complex and

error-prone, for more than a small number of activation points.

Simulating a coroutine with a class solves the problem of abstraction and does generalize to multiple

instances, but does not handle the explicit management of activation points. Simulating a coroutine with a

task, which also has an execution state to handle activation points, is non-trivial because the organizational

structure of a coroutine and task are different. Furthermore, simulating full coroutines, which form a

cyclic call-graph, may be impossible with tasks because of a task’s mutual-exclusion, which could cause

deadlock (not a problem in µC++ because multiple entry is allowed by the same thread). Finally, a task

is inefficient for this purpose because of the higher cost of switching both a thread and execution state as

opposed to just an execution state. In this implementation, the cost of communication with a coroutine is,

in general, less than half the cost of communication with a task, unless the communication is dominated

by transferring large amounts of data. ✷

2.7.1 Coroutine Creation and Destruction

A coroutine is the same as a class object with respect to creation and destruction, e.g.:

_Coroutine C {
void main() . . . // coroutine main

public:
void r(. . .) . . .

};
C * cp; // pointer to a C coroutine
{ // start a new block

C c, ca[3]; // local creation
cp = new C; // dynamic creation
. . .
c.r(. . .); // call a member routine that activates the coroutine
ca[1].r(. . .); // call a member routine that activates the coroutine
cp->r(. . .); // call a member routine that activates the coroutine
. . .

} // c, ca[0], ca[1] and ca[2] are deallocated
. . .
delete cp; // cp’s instance is deallocated

When a coroutine is created, the appropriate coroutine constructor and any base-class constructors are executed in the

normal order. The coroutine’s execution-state is created and the starting point (activation point) is initialized to the

coroutine’s main routine visible by the inheritance scope rules from the coroutine type; however, the main routine does

not start execution until the coroutine is activated by one of its member routines, which includes constructors. The

location of a coroutine’s variables—in the coroutine’s data area or in member routine main—depends on whether the

variables must be accessed by member routines other than main. Once main is activated, it executes until it activates

another coroutine or terminates. The coroutine’s point of last activation may be outside of the main routine because

main may have called another routine; the routine called could be local to the coroutine or in another coroutine.

A coroutine terminates when its main routine returns. When a coroutine terminates, it activates the coroutine or

task that caused main to start execution. This choice ensures the starting sequence is a tree, i.e., there are no cycles.

A thread can move in a cycle among a group of coroutines but termination always proceeds back along the branches

of the starting tree. This choice of activation does impose certain requirements on the starting order of coroutines,

but it is essential to ensure that cycles can be broken at termination. Activating a terminated coroutine is an error.

A coroutine’s destructor is invoked by the deallocating thread when the block containing the coroutine declaration

terminates or by an explicit delete statement for a dynamically allocated coroutine. If the coroutine is not terminated

when it is deallocated, termination is forced before executing the destructor, which unwinds the coroutine’s stack

executing any destructors for objects on the stack. A consequence of this semantics is that the destructor may not

resume a coroutine, so it is asymmetric with the coroutine’s constructor.

Like a class object, a coroutine may be deleted at any time even if the coroutine’s main routine is started but

14 CHAPTER 2. µC++ TRANSLATOR

not terminated, i.e., the coroutine is still suspended in its main routine. Before the coroutine’s destructor is run, the

coroutine’s stack is unwound via the cancellation mechanism (see Section 6, p. 103), to ensure cleanup of resources

allocated on the coroutine’s stack. This unwinding involves an implicit resume of the coroutine being deleted. Warn-

ing, do not use catch(. . .) in a coroutine, if it may be deleted before terminating, because a cleanup exception is raised

to force stack unwinding (implementation issue). The reason is that the catch-any catches the cleanup exception so the

coroutine does not terminate and is left in an undefined state.

Like a routine or class, a coroutine can access all the external variables of a C++ program and the heap area. Also,

any static member variables declared within a coroutine are shared among all instances of that coroutine type. If a

coroutine makes global references or has static variables and is instantiated by different tasks, there is the general

problem of concurrent access to these shared variables. Therefore, it is suggested that these kinds of references be

used with extreme caution.

2.7.2 Inherited Members

Each coroutine type, if not derived from some other coroutine type, is implicitly derived from the coroutine type

uBaseCoroutine.

_Coroutine coroutine-name : public uBaseCoroutine { // implicit inheritance
. . .

};

where the interface for the base-class uBaseCoroutine is:

_Coroutine uBaseCoroutine {
protected:

void resume();
void suspend();

public:
uBaseCoroutine();
uBaseCoroutine(unsigned int stackSize);
uBaseCoroutine(void * storage, unsigned int storageSize);

void * stackPointer() const; // stack info
unsigned int stackSize() const;
void * stackStorage() const;
ptrdiff_t stackFree() const;
ptrdiff_t stackUsed() const;
void verify();

const char * setName(const char * name); // coroutine info
const char * getName() const;
enum State { Start, Inactive, Active, Halt };
State getState() const;
uBaseCoroutine & starter() const;
uBaseCoroutine & resumer() const;

enum CancellationState { CancelEnabled, CancelDisabled };
void cancel(); // cancellation
bool cancelled();
bool cancelInProgress();

_Exception Failure; // exceptions
_Exception UnhandledException;

};

The member routines resume and suspend are discussed in Section 2.7.3, p. 16.

The overloaded constructor routine uBaseCoroutine has the following forms:

uBaseCoroutine() – creates a coroutine on the current cluster with the cluster’s default stack size.

uBaseCoroutine(unsigned int stackSize) – creates a coroutine on the current cluster with the specified mini-

mum stack size (in bytes). The amount of storage for the coroutine’s stack is always greater than this stack

size, as extra information is stored on the stack.

2.7. COROUTINE 15

uBaseCoroutine(void * storage, unsigned int storageSize) – creates a coroutine on the current cluster using

the specified storage and maximum storage size (in bytes) for the coroutine’s stack. The amount of storage for

the coroutine’s stack is always less than actual storage size, as extra information is stored on the stack. This

storage is NOT freed at coroutine deallocation. If the specified storage address is zero (nullptr), the storage

size becomes a stack size, as in the previous constructor.

A coroutine type can be designed to allow declarations to specify the stack storage and size by doing the following:

_Coroutine C {
public:

C() : uBaseCoroutine(8192) {}; // default 8K stack
C(unsigned int s) : uBaseCoroutine(s) {}; // user specified stack size
C(void * st, unsigned int s) : uBaseCoroutine(st,s) // user specified stack storage and size
. . .

};
C x, y(16384), z(area, 32768); // x => 8K stack, y => 16K stack, z => stack < 32K at “area”

The member routine stackPointer returns the address of the stack pointer. If a coroutine calls this routine, its

current stack pointer is returned. If a coroutine calls this routine for another coroutine, the stack pointer saved at the

last context switch of the other coroutine is returned; this may not be the current stack pointer value for that coroutine.

The member routine stackSize returns the maximum amount of stack space that is allocated for this coroutine. A

coroutine cannot exceed this value during its execution. The member routine stackStorage returns the address of the

stack storage for this coroutine. On most computers, the stack grows down (high address) towards the stack-storage

address (low address). If a coroutine is created with specific stack storage, the address of that storage is returned;

otherwise, the address of the µC++ created stack storage is returned.

The member routine stackFree returns the amount of free stack space. If a coroutine calls this routine, its current

free stack space is returned. If a coroutine calls this routine for another coroutine, the free stack space at the last

context switch of the other coroutine is returned; this may not be the current free stack space for that coroutine.

The member routine stackUsed returns the amount of used stack space. If a coroutine calls this routine, its current

used stack space is returned. if a coroutine calls this routine for another coroutine, the used stack space at the last

context switch of the other coroutine is returned; this may not be the current used stack space for that coroutine.

The member routine verify checks whether the current coroutine has overflowed its stack. If it has, the program

terminates. To completely ensure the stack size is never exceeded, a call to verify must be included after each set of

declarations, as in the following:

void main() {
. . . // declarations
verify(); // check for stack overflow
. . . // code

}

Thus, after a coroutine has allocated its local variables, a check is made that its stack has not overflowed. Clearly, this

technique is not ideal and requires additional work for the programmer, but it does handle complex cases where the

stack depth is difficult to determine and can be used to help debug possible stack overflow situations.

The member routine setName associates a name with a coroutine and returns the previous name. The name is not

copied so its storage must persist for the duration of the coroutine. The member routine getName returns the string

name associated with a coroutine. If a coroutine has not been assigned a name, getName returns the type name of the

coroutine. µC++ uses the name when printing any error message, which is helpful in debugging.

The member routine getState returns the current state of a coroutine’s execution, which is one of the enumerated

values Halt, Active or Inactive.

The member routine starter returns the coroutine’s starter, i.e., the coroutine that performed the first resume of

this coroutine (see Section 2.7.1, p. 13). The member routine resumer returns the coroutine’s last resumer, i.e., the

coroutine that performed the last resume of this coroutine (see Section 2.7.3).

The member routine cancel marks the coroutine/task for cancellation. The member routine cancelled returns true

if the coroutine/task is marked for cancellation, and false otherwise. The member routine cancelInProgress returns

true if cancellation is started for the coroutine/task. Section 6, p. 103 discusses cancellation in detail.

The type _Exception is defined in Section 5.3, p. 84.

The free routine:

uBaseCoroutine & uThisCoroutine();

16 CHAPTER 2. µC++ TRANSLATOR

is used to determine the identity of the coroutine executing this routine. Because it returns a reference to the base

coroutine type, uBaseCoroutine, this reference can only be used to access the public routines of type uBaseCoroutine.

For example, a free routine can check whether the allocation of its local variables has overflowed the stack of a

coroutine that called it by performing the following:

int freeRtn(. . .) {
. . . // declarations
uThisCoroutine().verify(); // check for stack overflow
. . . // code

}

As well, printing a coroutine’s address for debugging purposes is done like this:

cout << "coroutine:" << &uThisCoroutine() << endl; // notice the ampersand (&)

2.7.3 Coroutine Control and Communication

Control flow among coroutines is specified by the protected members resume and suspend. A call to resume may

appear in any member of the coroutine, but normally it is used only in the public members. A call to suspend may

appear in any member of the coroutine, but normally it is used only in the coroutine main or non-public members called

directly or indirectly from the coroutine main. Members resume and suspend are composed of two parts. The first

part inactivates the coroutine that calls the member and the second part reactivates another coroutine; the difference

is which coroutine is reactivated. Member resume activates the current coroutine object, i.e., the coroutine specified

by the implicit this variable. Member suspend activates the coroutine that previously executed a call to resume for

the coroutine executing the suspend, ignoring any resumes of a coroutine to itself . In effect, these special members

cause control flow to transfer among execution states, which involves context switches.

It is important to understand that calling a coroutine’s member by another coroutine does not cause a switch to the

other coroutine. A switch only occurs when a resume is executed in the other coroutine’s member. Therefore, printing

&uThisCoroutine() in the other coroutine’s member always prints the calling coroutine’s address; printing this in the

other coroutine’s member always prints the called coroutine’s address (which is the coroutine that resume switches

to). Hence, there is a difference between who is executing and where execution is occurring.

Figure 2.2 shows a semi-coroutine producer and consumer coroutine, and a driver routine. Notice the explicit call

from Prod’s main routine to delivery and then the return back when delivery completes. delivery always activates its

coroutine, which subsequently activates delivery.

Figure 2.3, p. 18 shows a full-coroutine producer and consumer coroutine, and a driver routine. Notice the calls

to member resume in routines payment and delivery. The resume in routine payment activates the execution state

associated with Prod::main and that execution state continues in routine Cons::delivery. Similarly, the resume in routine

delivery activates the execution state associated with Cons::main and that execution state continues in Cons::main

initially and subsequently in routine Prod::payment. This cyclic control flow and the termination control flow is

illustrated in Figure 2.4, p. 19.

2.8 Mutex Type

A mutex type consists of a set of variables and a set of mutex members that operate on the variables. A mutex type

has at least one mutex member. Objects instantiated from mutex types have the property that mutex members are

executed with mutual exclusion; that is, only one task at a time can be executing in the mutex members. Similar to an

execution state, a mutex object is either active or inactive, depending on whether or not a task is executing a mutex

member (versus a task executing the coroutine main). Mutual exclusion is enforced by locking the mutex object when

execution of a mutex member begins and unlocking it when the active task voluntarily gives up control of the mutex

object by waiting in or exiting from the monitor. If another task invokes a mutex member while a mutex object is

locked, the task is blocked until the mutex object becomes unlocked. An active task may call other mutex members

either directly from within the mutex type or indirectly by calling another object, which subsequently calls back

into the mutex object. If an active task enters multiple mutex objects, it owns the mutex locks for these objects and

can enter anyone of them again without having to reacquire their locks. If an active task releases control of one of

these mutex objects by waiting within it, which implicitly unlocks that object, the task does not unlock any other

mutex objects it currently owns. If an active task releases control of one of these mutex objects by exiting from it,

which implicitly unlocks that object, the task must do so in strict nested order, i.e., Last-In first-Out (LIFO) order

of mutex-object acquisition (see Section 7.2.3.3, p. 118). This LIFO restriction results solely because there does not

seem to be any useful examples for non-LIFO locking, and it is often an indication of an error in a program.

2.8. MUTEX TYPE 17

Consumer Producer

_Coroutine Cons {
int p1, p2, status; // communication
bool done;
void main() {

// 1st resume starts here
int money = 1;
for (;;) {

cout << "cons receives: " <<
p1 << ", " << p2;

if (done) break;
status += 1;
cout << " and pays $" <<

money << endl;
suspend(); // restart delivery & stop
money += 1;

}
cout << "cons stops" << endl;

}
public:

Cons() : status(0), done(false) {}
int delivery(int p1, int p2) {

Cons::p1 = p1;
Cons::p2 = p2;
resume(); // restart main
return status;

}
void stop() {

done = true;
resume(); // restart main

}
}; // Cons

_Coroutine Prod {
Cons & cons; // communication
int N;
void main() {

// 1st resume starts here
int i, p1, p2, status;
for (i = 1; i <= N; i += 1) {

p1 = rand() % 100;
p2 = rand() % 100;
cout << "prod delivers: " <<

p1 << ", " << p2 << endl;
status = cons.delivery(p1, p2);
cout << "prod status: " <<

status << endl;
}
cout << "prod stops" << endl;
cons.stop();

}
public:

Prod(Cons & c) : cons(c) {}
void start(int N) {

Prod::N = N;
resume(); // restart main

}
}; // Prod

int main() {
Cons cons; // create consumer
Prod prod(cons); // create producer
prod.start(5); // start producer

}

Figure 2.2: Semi-Coroutine Producer-Consumer

When _Mutex or _Nomutex qualifies a type, e.g.:

_Mutex class M {
private:

char z(. . .); // default nomutex
public:

M(); // default nomutex
~M(); // default mutex
int x(. . .); // default mutex
float y(. . .); // default mutex

};

it defines the default form of mutual exclusion on all public member routines, except the constructor, which is never

mutex, and the destructor, which is always mutex for a mutex type. Hence, public member routines x and y of mutex

type M are mutex members executing mutually exclusively of one another. Member routines that are protected and

private are always implicitly _Nomutex, except for the destructor of a mutex type, which is always _Mutex regardless

of its visibility. Because the destructor of a mutex type is always executed with mutual exclusion, the call to the

destructor may block, either at termination of a block containing a mutex object or when deleting a dynamically

allocated mutex object. If a mutex qualifier is specified on a forward declaration, e.g.:

_Mutex class M; // forward declaration
. . .
_Mutex class M {. . .} // actual declaration

it must match with the actual declaration. In general, it is best not to put a mutex qualifier on a forward declaration so

the default can be changed on the actual declaration without having to change the forward declaration.

A mutex qualifier may be needed for protected and private member routines in mutex types, e.g.:

18 CHAPTER 2. µC++ TRANSLATOR

Consumer Producer

_Coroutine Cons {
Prod & prod; // communication
int p1, p2, status;
bool done;
void main() {

// 1st resume starts here
int money = 1, receipt;
for (;;) {

cout << "cons receives: " <<
p1 << ", " << p2;

if (done) break;
status += 1;
cout << " and pays $" <<

money << endl;
receipt = prod.payment(money);
cout << "cons receipt #" <<

receipt << endl;
money += 1;

}
cout << "cons stops" << endl;

}
public:

Cons(Prod & p) : prod(p) {
done = false;
status = 0;

}
int delivery(int p1, int p2) {

Cons::p1 = p1; // restart cons in
Cons::p2 = p2; // Cons::main 1st time
resume(); // and afterwards cons
return status; // in Prod::payment

}
void stop() {

done = true;
resume();

}
}; // Cons

_Coroutine Prod {
Cons * cons; // communication
int N, money, receipt;
void main() { // starter umain

// 1st resume starts here
int i, p1, p2, status;
for (i = 0; i < N; i += 1) {

p1 = rand() % 100;
p2 = rand() % 100;
cout << "prod delivers: " <<

p1 << ", " << p2 << endl;
status = cons->delivery(p1, p2);
cout << "prod payment of $" <<

money << endl;
cout << "prod status: " <<

status << endl;
receipt += 1;

}
cons->stop();
cout << "prod stops" << endl;

}
public:

Prod() : receipt(0) {}
int payment(int money) {

Prod::money = money;
resume(); // restart prod
return receipt;

}
void start(int N, Cons & c) {

Prod::N = N;
cons = &c;
resume();

}
}; // Prod
int main() {

Prod prod;
Cons cons(prod);
prod.start(5, cons);

}

Figure 2.3: Full-Coroutine Producer-Consumer

_Mutex class M {
private:

_Mutex char z(. . .); // explicitly qualified member routine
. . .

};

because another task may need access to these member routines. For example, when a friend task calls a protected or

private member routine, these calls may need to provide mutual exclusion.

A public member of a mutex type can be explicitly qualified with _Nomutex. In general, a _Nomutex routine

is error-prone because the lack of mutual exclusion permits concurrent updating to object variables. However, there

are two situations where a nomutex public member are useful: first, for read-only member routines where execution

speed is of critical importance; and second, to encapsulate a sequence of calls to several mutex members to establish

a protocol, which ensures that a user cannot violate the protocol since it is part of the type’s definition.

The general structure of a mutex object is shown in Figure 2.5. All the implicit and explicit data structures

associated with a mutex object are discussed in the following sections. Notice each mutex member has a queue

associated with it on which calling tasks wait if the mutex object is locked. A nomutex member has no queue.

2.8. MUTEX TYPE 19

(context switch)

(context switch)

(context switch)

termination
sequence

normal

execution

uMain::main

prod

cons

Start/Terminate Sequence Thread Movement

uMain::main

Prod::start

(context switch)

Prod::main

Cons::delivery

Cons::main

Prod::payment

Cons::delivery

Prod::main

Cons::delivery

Prod::payment

Cons::main

Figure 2.4: Cyclic Control Flow in Full Coroutine

a

c

d

b

b

a

d

c

exit

A

condition

B

stack

acceptor/

signalled

condition

X Y

entry

queue

arrival

shared

variables

mutex

queues

duplicateblocked taskactive task

order of

Figure 2.5: µC++ Mutex Object

20 CHAPTER 2. µC++ TRANSLATOR

2.9 Scheduling

For many purposes, the mutual exclusion that is provided automatically by mutex members is all that is needed, e.g.,

an atomic counter:

_Mutex class atomicounter {
int cnt;

public:
atomicounter() { cnt = 0; }
inc() { cnt += 1; } // atomically increment counter

}

However, it is sometimes necessary to synchronize with tasks calling or executing within the mutex object forming

different scheduling patterns. For this purpose, a task in a mutex object can block until a particular external or internal

event occurs. At some point after a task has blocked, it must be reactivated either implicitly by the implicit scheduler

(discussed next) or explicitly by another (active) task.

2.9.1 Implicit Scheduling

Implicit scheduling occurs when a mutex object becomes unlocked because the active task blocks in or exits from a

mutex member. The next task to use the mutex object is then chosen from one of a number of lists associated with

the mutex object. Figure 2.5 shows a mutex object with a set of tasks using or waiting to use it. When a calling

task finds the mutex object locked, it is added to both the mutex queue of the member routine it called and the

entry queue; otherwise it enters the mutex object and locks it. The entry queue is a list of all the calling tasks in

chronological order of arrival, which is important for selecting a task when there is no active task in a mutex object.

When a task in the mutex object is blocked implicitly (see Section 2.9.2) or is reactivated by another (active) task (see

Section 2.9.3, p. 24), it is added to the top of the acceptor/signalled stack.

When a mutex object becomes unlocked, the next task to execute is selected by an implicit scheduler. For some

of the following scheduling statements, the implicit scheduler is directed to select from a specific set of queues;

hence, there is no choice with regard to which queues are examined. For other scheduling statements, the implicit

scheduler may make a choice among the queues. When a choice is possible, the implicit scheduler for µC++ makes

selections based on the results presented in [BFC95] to give the user the greatest possible control and produce efficient

performance. These selection rules are:

1. Select tasks that have entered the mutex object, blocked, and now need to continue execution over tasks that

have called and are waiting to enter.

2. When one task reactivates a task that was previously blocked in the mutex object, the restarting task always con-

tinues execution and the reactivated task continues to wait until it is selected for execution by rule 1. (signalBlock

is an exception to this rule, see page 25.)

All other tasks must wait until the mutex object is again unlocked. Therefore, when selection is done implicitly, the

next task to resume is not under direct user control, but is selected by the implicit scheduler.

2.9.2 External Scheduling

External scheduling controls state changes to a mutex object by scheduling calls to specified mutex members, which

indirectly schedules tasks calling from outside the mutex object. This technique takes advantage of the entry queue to

block tasks unconditionally when the mutex object is active (i.e., block outside) and the acceptor stack to block tasks

conditionally that have entered the monitor (i.e., block inside). Much of the scheduling that occurs and the programmer

thinks about is the outside scheduling from the entry queue rather than the internal scheduling on the acceptor stack,

which occurs implicitly. External scheduling is accomplished with the accept statement.

2.9.2.1 Accept Statement

An _Accept statement dynamically chooses the mutex member(s) that executes next, which indirectly controls the

next accepted caller, i.e., the next caller to the accepted mutex member(s). The simple form of the _Accept statement

is:

_When (conditional-expression) // optional guard
_Accept(mutex-member-name-list);

2.9. SCHEDULING 21

with the restriction that constructors, new, delete, and _Nomutex members are excluded from being accepted.

The first three member routines are excluded because these routines are essentially part of the implicit memory-

management runtime support. That is, the object does not exist until after the new routine is completed and a con-

structor starts; similarly, the object does not exist when delete is called. In all these cases, member routines cannot be

called, and hence accepted, because the object does not exist or is not initialized. _Nomutex members are excluded

because they contain no code affecting the caller or acceptor with respect to mutual exclusion.

The syntax for accepting a mutex operator member, such as operator =, is:

_Accept(operator =);

Currently, there is no way to accept a particular overloaded member. Instead, when an overloaded member name

appears in an _Accept statement, calls to any member with that name are accepted.

✷ A consequence of this design decision is that once one routine of a set of overloaded routines becomes

mutex, all the overloaded routines in that set become mutex members. The rationale is that members with

the same name should perform essentially the same function, and therefore, they all should be eligible to

accept a call. ✷

A _When guard is considered true if it is omitted or if its conditional-expression evaluates to non-zero. The

conditional-expression of a _When may call a routine, but the routine must not block or context switch. The guard

must be true and an outstanding call to the specified mutex member(s) must exist for a call to be accepted. A list of

mutex members can be specified in an _Accept clause, e.g.:

_Accept(insert | | remove); // insert OR remove call unblocks acceptor

If there are several mutex members that can be accepted, selection priority is established by the left-to-right placement

of the mutex members in the _Accept clause of the statement. Hence, the order of the mutex members in the _Accept

clause indicates their relative priority for selection if there are several outstanding calls. If the guard is true and there is

no outstanding call to the specified member(s), the acceptor is accept-blocked until a call to the appropriate member(s)

is made. If the guard is false, execution continues without accepting any call; in this case, the guard is the same as an

if statement, e.g.:

_When (count == 0) _Accept(mem); ≡ if (count == 0) _Accept(mem);

Note, an accept statement with a true guard accepts only one call, regardless of the number of mutex members listed

in the _Accept clause.

When an _Accept statement is executed, the acceptor is blocked and pushed on the top of the implicit accep-

tor/signalled stack and the mutex object is unlocked. The internal scheduler then schedules a task from the specified

mutex-member queue(s), possibly waiting until an appropriate call occurs. The accepted member is then executed like

a member routine of a conventional class by the caller’s thread. If the caller is expecting a return value, this value

is returned using the return statement in the member routine. When the caller’s thread exits the mutex member (or

waits, as is discussed shortly), the mutex object is unlocked. Because the internal scheduler gives priority to tasks on

the acceptor/signalled stack of the mutex object over calling tasks, the acceptor is popped from the acceptor/signalled

stack and made ready. When the acceptor becomes active, it has exclusive access to the object. Hence, the execution

order between acceptor and caller is stack order, as for a traditional routine call.

The extended form of the _Accept statement conditionally accepts one of a group of mutex members and then

allows a specific action to be performed after the mutex member is called, e.g.:

_When (conditional-expression) // optional guard
_Accept(mutex-member-name-list)

statement // action
or _When (conditional-expression) // optional guard

_Accept(mutex-member-name-list)
statement // action

or
. . .

. . .
_When (conditional-expression) // optional guard

_Else // optional terminating clause
statement

Before an _Accept clause is executed, its guard must be true and an outstanding call to its corresponding member(s)

must exist. If there are several mutex members that can be accepted, selection priority is established by the left-to-right

22 CHAPTER 2. µC++ TRANSLATOR

then top-to-bottom placement of the mutex members in the _Accept clauses of the statement. If some accept guards

are true and there are no outstanding calls to these members, the task is accept-blocked until a call to one of these

members is made. If all the accept guards are false, the statement does nothing, unless there is a terminating _Else

clause with a true guard, which is executed instead. Hence, the terminating _Else clause allows a conditional attempt

to accept a call without the acceptor blocking. Again, a group of _Accept clauses is not the same as a group of if

statements, e.g.:

if (C1) _Accept(mem1); _When (C1) _Accept(mem1);
else if (C2) _Accept(mem2); or _When (C2) _Accept(mem2);

The left example accepts only mem1 if C1 is true or only mem2 if C2 is true. The right example accepts either mem1

or mem2 if C1 and C2 are true. Once the accepted call has completed or the caller waits, the statement after the

accepting _Accept clause is executed and the accept statement is complete.

✷ Generalizing the previous example from 2 to 3 accept clauses with conditionals results in the following

expansion:

if (C1 && C2 && C3) _Accept(mem1 | | mem2 | | mem3);
else if (C1 && C2) _Accept(mem1 | | mem2);
else if (C1 && C3) _Accept(mem1 | | mem3);
else if (C2 && C3) _Accept(mem2 | | mem3);
else if (C1) _Accept(mem1);
else if (C2) _Accept(mem2);
else if (C3) _Accept(mem3);

This form is necessary to ensure that for every true conditional, only the corresponding members are

accepted. The general pattern for N conditionals is:
(

N

N

)

+

(

N

N− 1

)

+ . . .+

(

N

1

)

= (1+ 1)N− 1 from the binomial theorem.

Having to write an exponential number of statements, i.e., 2N − 1, to handle this case is clearly unsat-

isfactory, both from a textual and performance standpoint. The exponential number of statements are

eliminated because the _When and the _Accept clauses are checked simultaneously during execution of

the accept statement instead of having to first check the conditionals and then perform the appropriate

accept clauses in an accept statement. ✷

✷ Note, the syntax of the _Accept statement precludes the caller’s argument values from being accessed

in the conditional-expression of a _When. However, this deficiency is handled by the ability of a task to

postpone requests (see Section 2.9.3.2, p. 25). ✷

✷ WARNING: Beware of the following difference between the or connector and the terminating _Else

clause:

_Accept(mem1); _Accept(mem1);
or _Accept(mem2); _Else _Accept(mem2);

The left example accepts a call to either member mem1 or mem2. The right example accepts a call to

member mem1, if one is currently available; otherwise it accepts a call to member mem2. The syntactic

difference is subtle, and yet, the execution is significantly different (see also Section 11.2.2, p. 144). ✷

2.9.2.2 Breaking a Rendezvous

The accept statement forms a rendezvous between the acceptor and the accepted tasks, where a rendezvous is a point

in time at which both tasks wait for a section of code to execute before continuing.

Task1 Task2

rendezvous

2.9. SCHEDULING 23

The start of the rendezvous begins when the accepted mutex member begins execution and ends when the acceptor task

restarts execution, either because the accepted task finishes executing of the mutex member or the accepted task waits.

In the latter case, correctness implies sufficient code has been executed in the mutex member before the wait occurs for

the acceptor to continue successfully. Finally, for the definition of rendezvous, it does not matter which task executes

the rendezvous, but in µC++, it is the accepted task that executes it. It can be crucial to correctness that the acceptor

know if the accepted task does not complete the rendezvous code, otherwise the acceptor task continues under the

incorrect assumption that the rendezvous action has occurred. To this end, a concurrent exception is implicitly raised

at the acceptor task if the accepted member terminates abnormally (see Section 5.10.3, p. 101).

2.9.2.3 Accepting the Destructor

Accepting the destructor in an _Accept statement is used to terminate a mutex object when it is deallocated (like the

terminate clause of the select statement in Ada [Ada83, Sections 9.4, 9.7.1]). The destructor is accepted in the same

way as a mutex member, e.g.:

for (;;) {
_Accept(~DiskScheduler) { // request to terminate DiskScheduler

break;
} or _Accept(WorkRequest) { // request from disk
} or _Accept(DiskRequest) { // request from clients
} // _Accept

}
// cleanup code

However, the semantics for accepting a destructor are different from accepting a normal mutex member. When the call

to the destructor occurs, the caller blocks immediately because a mutex object’s storage cannot be deallocated if it is

being used by a thread. When the destructor is accepted, the caller is blocked and pushed onto the acceptor/signalled

stack instead of the acceptor. Therefore, control restarts at the accept statement without executing the destructor

member, which allows a mutex object to cleanup before it terminates. (This semantics is the same as signal, see

page 25.) Only when the caller to the destructor is popped off the acceptor/signalled stack by the internal scheduler

can the destructor execute. The destructor can reactivate any blocked tasks on the acceptor/signalled stack; at this

point, the task behaves like a monitor because its thread is halted.

✷ While a mutex object can always be setup so that the destructor does all the cleanup, this can force

variables that logically belong in member routines into the mutex object. Furthermore, the fact that control

would not return to the _Accept statement when the destructor is accepted seemed more confusing than

having special semantics for accepting the destructor. ✷

Accepting the destructor can be used by a mutex object to know when to stop without having to accept a special

call. For example, by allocating tasks in a specific way, a server task for a number of clients can know when the clients

are finished and terminate without having to be explicitly told, e.g.:

{
DiskScheduler ds; // start DiskScheduler task
{

Clients c1(ds), c2(ds), c3(ds); // start clients, which communicate with ds
} // wait for clients to terminate

} // implicit call to DiskScheduler’s destructor

2.9.2.4 Commentary

In contrast to Ada, an _Accept statement in µC++ places the code to be executed in a mutex member; thus, it is

specified separately from the _Accept statement. An Ada-style accept specifies the accept body as part of the accept

statement, requiring the accept statement to provide parameters and a routine body. Since we have found that having

more than one accept statement per member is rather rare, our approach gives essentially the same capabilities as

Ada. As well, accepting member routines also allows virtual routine redefinition, which is impossible with accept

bodies. It is important to note that anything that can be done in Ada-style accept statements can be done within

member routines, possibly with some additional code. If members need to communicate with the block containing the

_Accept statements, it can be done by leaving “memos” in the mutex-type’s variables. In cases where there would be

several different Ada-style accept statements for the same entry, accept members would have to start with switching

24 CHAPTER 2. µC++ TRANSLATOR

logic to determine which case applies. While neither of these solutions is particularly appealing, the need to use them

seems to arise only rarely.

2.9.3 Internal Scheduling

A complementary approach to external scheduling is internal scheduling. Instead of scheduling tasks from outside

the mutex object from the entry queue (the entry queue is still necessary), most of the scheduling occurs inside the

monitor. To do scheduling inside the monitor requires additional queues inside the monitor on which tasks can block

and subsequently be unblocked by other tasks. For that purpose, condition variables are provided, with an associated

wait and signal statement.

2.9.3.1 Condition Variables and Wait/Signal Statements

The type uCondition creates a queue object on which tasks can be blocked and reactivated in first-in first-out order, and

is defined:

class uCondition {
public:

void wait(); // wait on condition
void wait(uintptr_t info); // wait on condition with information
bool signal(); // signal condition
bool signalBlock(); // signal condition
bool empty() const;
uintptr_t front() const;

_Exception WaitingFailure;
};
uCondition DiskNotIdle;

A condition variable is owned by the mutex object that performs the first wait on it; subsequently, only the owner can

wait and signal that condition variable.

✷ It is common to associate with each condition variable an assertion about the state of the mutex object.

For example, in a disk-head scheduler, a condition variable might be associated with the assertion “the

disk head is idle”. Waiting on that condition variable would correspond to waiting until the condition is

satisfied, that is, until the disk head is idle. Correspondingly, the active task would reactivate tasks waiting

on that condition variable only when the disk head became idle. The association between assertions and

condition variables is implicit and not part of the language. ✷

To block a task on a condition queue, the active task in a mutex object calls member wait, e.g.,

DiskNotIdle.wait();

This statement causes the active task to block on condition DiskNotIdle, which unlocks the mutex object and invokes

the internal scheduler. Internal scheduling first attempts to pop a task from the acceptor/signalled stack. If there are

no tasks on the acceptor/signalled stack, the internal scheduler selects a task from the entry queue or waits until a call

occurs if there are no tasks; hence, the next task to enter is the one blocked the longest. If the internal scheduling did

not accept a call at this point, deadlock would occur.

When waiting, it is possible to optionally store an integer (or pointer) value with a waiting task on a condition

queue by passing an argument to wait, e.g.:

DiskNotIdle.wait(integer-expression);

If no value is specified in a call to wait, the value for that blocked task is undefined. The value can be accessed by

other tasks through the uCondition member routine front. This value can be used to provide more precise information

about a waiting task than can be inferred from its presence on a particular condition variable. For example, the

value of the front blocked task on a condition can be examined by a signaller to help make a decision about which

condition variable it should signal next. This capability is useful, for example, in a problem like the readers and writer.

(See Appendix H.1, p. 179 for an example program using this feature, but only after reading Section 2.10, p. 26 on

monitors.) In that case, reader and writer tasks wait on the same condition queue to preserve First-In First-Out (FIFO)

order and each waiting task is marked with a value for reader or writer, respectively. A task that is signalling can first

check if the awaiting task at the head of a condition queue is a reader or writer task by examining the stored value

before signalling.

2.9. SCHEDULING 25

✷ The value stored with a waiting task and examined by a signaller should not be construed as a message

between tasks. The information stored with the waiting task is not meant for a particular task nor is it

received by a particular task. Any task in the monitor can examine it. Also, the value stored with each

task is not a priority for use in the subsequent selection of a task when the monitor is unlocked.

If this capability did not exist, it can be mimicked by creating and managing an explicit queue in the

monitor that contains the values. Nodes would have to be added and removed from the explicit queue

as tasks are blocked and restarted. Since there is already a condition queue and its nodes are added and

removed at the correct times, it seemed reasonable to allow users to store some additional data with the

blocked tasks. ✷

To unblock a task from a condition variable, the active task in a mutex object calls either member signal or

signalBlock. For member signal, e.g.:

DiskNotIdle.signal();

the effect is to remove one task from the specified condition variable and push it onto the acceptor/signalled stack. The

signaller continues execution and the signalled task is scheduled by the internal scheduler when the mutex object is

next unlocked. This semantics is different from the _Accept statement, which always blocks the acceptor; the signaller

does not block for signal. For member signalBlock, e.g.:

DiskNotIdle.signalBlock();

the effect is to remove one task from the specified condition variable and make it the active task, and push the signaller

onto the acceptor/signalled stack. The signalled task continues execution and the signaller is scheduled by the internal

scheduler when the mutex object is next unlocked. This semantics is like the _Accept statement, which always blocks

the acceptor. For either kind of signal, signalling an empty condition just continues executions, i.e., it does nothing,

and returns false; otherwise, true is returned indicating a signalled task.

✷ The _Accept, wait, signal and signalBlock can be executed by any routine of a mutex type. Even though

these statements block the current task, they can be allowed in any member routine because member

routines are executed by the caller, not the task the member is defined in. This capability is to be contrasted

to Ada where waiting in an accept body would cause the task to deadlock. ✷

The member routine empty returns false if there are tasks blocked on the queue and true otherwise. The member

routine front returns an integer value stored with the waiting task at the front of the condition queue. It is an error to

examine the front of an empty condition queue; therefore, a condition must be checked to verify that there is a blocked

task, e.g.:

if (! DiskNotIdle.empty() && DiskNotIdle.front() == 1) . . .

It is not meaningful to read or to assign to a condition variable, or copy a condition variable (e.g., pass it as a value

parameter), or use a condition variable if not its owner.

2.9.3.2 Commentary

The ability to postpone a request is an essential requirement of a programming language’s concurrency facilities.

Postponement may occur multiple times during the servicing of a request while still allowing a mutex object to accept

new requests.

In simple cases, the _When construct can be used to accept only requests that can be completed without postpone-

ment. However, when the selection criteria become complex, e.g., when the parameters of the request are needed to

do the selection or information is needed from multiple queues, it is simpler to unconditionally accept a request and

subsequently postpone it if it does not meet the selection criteria. This approach avoids complex selection expressions

and possibly their repeated evaluation. In addition, all the normal programming language constructs and data struc-

tures can be used in the process of making a decision to postpone a request, instead of some fixed selection mechanism

provided in the programming language, as in SR [AOC+88] and Concurrent C++ [GR88].

Regardless of the power of a selection facility, none can deal with the need to postpone a request after it is accepted.

In a complex concurrent system, a task may have to make requests to other tasks as part of servicing a request. Any

of these further requests can indicate that the current request cannot be completed at this time and must be postponed.

Thus, it is essential that a request be postponable even after it is accepted because of any number of reasons during the

servicing of the request. Condition variables seem essential to support this facility.

26 CHAPTER 2. µC++ TRANSLATOR

An alternative approach to condition variables is to send the request to be postponed to another (usually non-public)

mutex member of the object (like Ada 95’s requeue statement). This action re-blocks the request on that mutex

member’s entry queue, which can be subsequently accepted when the request can be restarted. However, there are

problems with this approach. First, the postponed request may not be able to be sent directly from a mutex member to

another mutex member because deadlock occurs due to synchronous communication. (Asynchronous communication

solves this problem, but as stated earlier, imposes a substantial system complexity and overhead.) The only alternative

is to use a nomutex member, which calls a mutex member to start the request and checks its return code to determine if

the request must be postponed. If the request is to be postponed, another mutex member is invoked to block the current

request until it can be continued. Unfortunately, structuring the code in this fashion becomes complex for non-trivial

cases and there is little control over the order that requests are processed. In fact, the structuring problem is similar

to the one when simulating a coroutine using a class or subroutine, where the programmer must explicitly handle

the different execution states. Second, any mutex member servicing a request may accumulate temporary results. If

the request must be postponed, the temporary results must be returned and bundled with the initial request that are

forwarded to the mutex member that handles the next step of the processing; alternatively, the temporary results can

be re-computed at the next step if that is possible. In contrast, waiting on a condition variable automatically saves the

execution location and any partially computed state.

2.10 Monitor

A monitor is an object with mutual exclusion and so it can be accessed simultaneously by multiple tasks. A mon-

itor provides a mechanism for indirect communication among tasks and is particularly useful for managing shared

resources. A monitor type has all the properties of a class. The general form of the monitor type is the following:

_Mutex class monitor-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
public:

. . . // these members are visible externally
};

The macro name _Monitor is defined to be “_Mutex class”.

2.10.1 Monitor Creation and Destruction

A monitor is the same as a class object with respect to creation and destruction, e.g.:

_Mutex class M {
public:

void r(. . .) . . . // mutex member
};
M * mp; // pointer to a M
{ // start a new block

M m, ma[3]; // local creation
mp = new M; // dynamic creation
. . .

} // wait for m, ma[0], ma[1] and ma[2] to terminate and then deallocate
. . .
delete mp; // wait for mp’s instance to terminate and then deallocate

Because a monitor is a mutex object, the execution of its destructor waits until it can gain access to the monitor, just

like the other mutex members of a monitor, which can delay the termination of the block containing a monitor or the

deletion of a dynamically allocated monitor.

2.10.2 Monitor Control and Communication

In µC++, both internal and external scheduling are provided, where most traditional monitors provide only internal

scheduling. Figure 2.6 compares the traditional internal scheduling style using explicit condition variables to the

external scheduling style using accept statements. The problem is the exchange of values (telephone numbers) between

two kinds of tasks (girls and boys). (While _Accept allows the removal of all condition variables in this case, this is

not always possible.)

2.11. COROUTINE MONITOR 27

Internal Scheduling External Scheduling

_Monitor DatingService {
int GirlPhoneNo, BoyPhoneNo;
uCondition GirlWaiting, BoyWaiting;

public:
int Girl(int PhoneNo) {

if (BoyWaiting.empty()) {
GirlWaiting.wait();
GirlPhoneNo = PhoneNo;

} else {
GirlPhoneNo = PhoneNo;
BoyWaiting.signalBlock();

}
return BoyPhoneNo;

} // Girl
int Boy(int PhoneNo) {

if (GirlWaiting.empty()) {
BoyWaiting.wait();
BoyPhoneNo = PhoneNo;

} else {
BoyPhoneNo = PhoneNo;
GirlWaiting.signalBlock();

}
return GirlPhoneNo;

} // Boy
}; // DatingService

_Monitor DatingService {
int GirlPhoneNo, BoyPhoneNo;

public:
DatingService() {

GirlPhoneNo = BoyPhoneNo = -1;
} // DatingService
int Girl(int PhoneNo) {

GirlPhoneNo = PhoneNo;
if (BoyPhoneNo == -1) {

_Accept(Boy);
}
int temp = BoyPhoneNo;
BoyPhoneNo = -1;
return temp;

} // Girl
int Boy(int PhoneNo) {

BoyPhoneNo = PhoneNo;
if (GirlPhoneNo == -1) {

_Accept(Girl);
}
int temp = GirlPhoneNo;
GirlPhoneNo = -1;
return temp;

} // Boy
}; // DatingService

Figure 2.6: Internal versus External Scheduling

2.11 Coroutine Monitor

The coroutine monitor is a coroutine with mutual exclusion, making it safely accessible by multiple tasks. A coroutine-

monitor type has a combination of the properties of a coroutine and a monitor, and can be used where a combination

of these properties are needed, such as a finite-state machine that is used by multiple tasks. A coroutine-monitor type

has all the properties of a class. The general form of the coroutine-monitor type is the following:

_Mutex _Coroutine coroutine-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

The macro name _Cormonitor is defined to be “_Mutex _Coroutine”.

2.11.1 Coroutine-Monitor Creation and Destruction

A coroutine monitor is the same as a monitor with respect to creation and destruction.

2.11.2 Coroutine-Monitor Control and Communication

A coroutine monitor can make use of suspend, resume, _Accept and uCondition variables, wait, signal and signalBlock

to move a task among execution states and to block and restart tasks that enter it. When creating a cyclic call-graph

using a coroutine monitor, it is the programmer’s responsibility to ensure that at least one of the members in the cycle

is a _Nomutex member or deadlock occurs because of the mutual exclusion.

2.12 Thread Creation and Destruction

Three macros are provided for implicit thread creation and destruction.

28 CHAPTER 2. µC++ TRANSLATOR

1. Macro COBEGIN/COEND starts N thread, one to execute each nested BEGIN/END statement.

#include <uCobegin.h>
int main() {

int i;
void p1(int i) {. . .} void p2(int i) {. . .} void p3(int i) {. . .}
COBEGIN // thread created for each statement in block

BEGIN i = 1; . . . END
BEGIN

COBEGIN // nested COBEGIN
BEGIN p1(3); . . . END // order and speed of internal
BEGIN p1(5); . . . END // thread execution is unknown

COEND // initial thread waits for internal threads to finish
END
BEGIN p2(7); . . . END
BEGIN p3(9); . . . END

COEND // initial thread waits for internal threads to finish
}

Use recursion to create a dynamic number of threads.

void loop(int N) {
if (N != 0) {

COBEGIN
BEGIN p1(. . .); END
BEGIN loop(N - 1); END // recursive call

COEND // wait for return of recursive call
}

}

2. Macros START/WAIT, starts a thread running in the specified routine, generating a thread handle, used to subse-

quently join (termination synchronization).

#include <uCobegin.h>
void p(int i) {. . .} int f(int i) {. . .}
int main() {

auto tp = START(p, 5); // thread starts in p(5)
s1 // continue execution, do not wait for p
auto tf = START(f, 8); // thread starts in f(8)
s2 // continue execution, do not wait for f
WAIT(tp); // wait for p to finish
s3
int i = WAIT(tf); // wait for f to finish
s4

}

3. Macro COFOR(index, start, end, body) starts end - start threads, and each loop number is identified by index

in the loop body.

#include <uCobegin.h>
int main() {

const int rows = 10, cols = 10;
int matrix[rows][cols], subtotals[rows], total = 0;
// read matrix
COFOR(row, 0, rows, // for (int row = 0; row < rows; row += 1)

subtotals[row] = 0; // row is loop number
for (int c = 0; c < cols; c += 1) {

subtotals[row] += matrix[row][c];
}

); // wait for threads
for (int r = 0; r < rows; r += 1) {

total += subtotals[r]; // total subtotals
}
cout << total << endl;

}

2.13. TASK 29

2.13 Task

A task is an object with its own thread of control and execution state, and whose public member routines provide

mutual exclusion. A task type has all the properties of a class. The general form of the task type is the following:

_Task task-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

The task type has one distinguished member, named main, in which the new thread starts execution; this distinguished

member is called the task main. Instead of allowing direct interaction with main, its visibility is normally private

or protected. The decision to make the task main private or protected depends solely on whether derived classes

can reuse the task main or must supply their own. Hence, a user interacts with a task indirectly through its member

routines. This approach allows a task type to have multiple public member routines to service different kinds of

requests that are statically type checked. A task main cannot have parameters or return a result, but the same effect can

be accomplished indirectly by passing values through the task’s global variables, called communication variables,

which are accessible from both the task’s member and main routines.

2.13.1 Task Creation and Destruction

A task is the same as a class object with respect to creation and destruction, e.g.:

_Task T {
void main() . . . // task main

public:
void r(. . .) . . .

};
T * tp; // pointer to a T task
{ // start a new block

T t, ta[3]; // local creation
tp = new T; // dynamic creation
. . .
t.r(. . .); // call a member routine that must be accepted
ta[1].r(. . .); // call a member routine that must be accepted
tp->r(. . .); // call a member routine that must be accepted
. . .

} // wait for t, ta[0], ta[1] and ta[2] to terminate and then deallocate
. . .
delete tp; // wait for tp’s instance to terminate and then deallocate

When a task is created, the appropriate task constructor and any base-class constructors are executed in the normal

order by the creating thread. The task’s execution-state and thread are created and the starting point for the new thread

(activation point) is initialized to the task’s main routine visible by the inheritance scope rules from the task type. After

this point, the creating task executes concurrently with the new task. The location of a task’s variables—in the task’s

data area or in member routine main—depends on whether the variables must be accessed by member routines other

than main. main executes until its thread blocks or terminates.

A task terminates when its main routine terminates. When a task terminates, so does the task’s thread of control.

At this point, the task becomes a monitor and can still be used in that form. A task’s destructor is invoked by the

deallocating thread when the block containing the task declaration terminates or by an explicit delete statement for a

dynamically allocated task. Because a task is a mutex object, a block cannot terminate until all tasks declared in the

block terminate. Similarly, deleting a task on the heap must also wait until the task being deleted has terminated.

While a task that creates another task is conceptually the parent and the created task its child, µC++ makes no

implicit use of this relationship nor does it provide any facilities based on this relationship. Once a task is declared it

has no special relationship with its declarer other than what results from the normal scope rules.

Like a coroutine, a task can access all the external variables of a C++ program and the heap area. Also, any

static member variables declared within a task are shared among all instances of that task type. If a task makes

30 CHAPTER 2. µC++ TRANSLATOR

global references or has static variables, there is the general problem of concurrent access to these shared variables.

Therefore, it is suggested that these kinds of references be used with extreme caution.

✷ A coroutine is not owned by the task that creates it; it can be “passed” to another task. However,

to ensure that only one thread is executing a coroutine at a time, the passing around of a coroutine must

involve a protocol among its users, which is the same sort of protocol required when multiple tasks share

a data structure. ✷

2.13.2 Inherited Members

Each task type, if not derived from some other task type, is implicitly derived from the task type uBaseTask.

_Task task-name : public uBaseTask {
. . .

};

where the interface for the base class uBaseTask is:

_Task uBaseTask : public uBaseCoroutine { // inherits from coroutine base type
public:

uBaseTask();
uBaseTask(unsigned int stackSize);
uBaseTask(void * storage, unsigned int storageSize);
uBaseTask(uCluster & cluster);
uBaseTask(uCluster & cluster, unsigned int stackSize);
uBaseTask(uCluster & cluster, void * storage, unsigned int storageSize);

static void yield(size_t times = 1);

static void sleep(uDuration duration);
static void sleep(uTime time);

static uCluster & migrate(uCluster & cluster);

uCluster & getCluster() const;
uBaseCoroutine & getCoroutine() const;

enum State { Start, Ready, Running, Blocked, Terminate };
State getState() const;

int getActivePriority();
int getBasePriority();

};

The public member routines of uBaseCoroutine are inherited and have the same functionality (see Section 2.7.2, p. 14).

The overloaded constructor routine uBaseTask has the following forms:

uBaseTask() – creates a task on the current cluster with the cluster’s default stack size (see uBaseCoroutine()

p. page 14).

uBaseTask(unsigned int stackSize) – creates a task on the current cluster with the specified minimum stack

size (in bytes) (see uBaseCoroutine(int stackSize) p. page 14).

uBaseTask(void * storage, unsigned int storageSize) – creates a task on the current cluster using the specified

storage and maximum storage size (in bytes) for the task’s stack

(see uBaseCoroutine(void * storage, unsigned int storageSize) p. page 15).

uBaseTask(uCluster & cluster) – creates a task on the specified cluster with that cluster’s default stack size.

uBaseTask(uCluster & cluster, unsigned int stackSize) – creates a task on the specified cluster with the speci-

fied stack size (in bytes).

uBaseTask(uCluster & cluster, void * storage, unsigned int storageSize) – creates a task on the specified clus-

ter using the specified storage and maximum storage size (in bytes) for the task’s stack.

A task type can be designed to allow declarations to specify the cluster on which creation occurs and the stack size by

doing the following:

2.13. TASK 31

_Task T {
public:

T() : uBaseTask(8192) {}; // current cluster, default 8K stack
T(unsigned int s) : uBaseTask(s) {}; // current cluster and user specified stack size
T(void * st, unsigned int s) : uBaseCoroutine(st,s) // current cluster and user stack storage & size
T(uCluster & c) : uBaseTask(c) {}; // user cluster
T(uCluster & c, unsigned int s) : uBaseTask(c, s) {}; // user cluster and stack size
T(uCluster & c, void * st, unsigned int s) : uBaseTask(c, st, s) {}; // user cluster, stack storage & size
. . .

};
uCluster c; // create a new cluster
T x, y(16384), z(area1, 32768); // x => 8K stack, y => 16K stack, z => stack < 32K at “area1”
T q(c), r(c, 16384); // q => cluster c & 8K stack, r => cluster c & 16K stack
T s(c, area2, 32768); // s => cluster c, stack < 32K at “area2”

The member routine yield gives up control of the virtual processor to another ready task the specified number of

times. yield is a static member-routine that always yields the calling thread’s virtual processor; use uBaseTask::yield(. . .)

for a call outside of a task type. For example, the call yield(5) immediately returns control to the µC++ kernel and the

next 4 times the task is scheduled for execution. If there are no other ready tasks, the yielding task is simply stopped

and restarted 5 times (i.e., 5 context switches from itself to itself). yield allows a task to relinquish control when it has

no current work to do or when it wants other ready tasks to execute before it performs more work. An example of the

former situation is when a task is polling for an event, such as a hardware event. After the polling task has determined

the event has not occurred, it can relinquish control to another ready task, e.g., yield(1). An example of the latter

situation is when a task is creating many other tasks. The creating task may not want to create a large number of tasks

before the created tasks have a chance to begin execution. (Task creation occurs so quickly that it is possible to create

100–1000 tasks before pre-emptive scheduling occurs.) If after the creation of several tasks the creator yields control,

some created tasks have an opportunity to begin execution before the next group of tasks is created. This facility is not

a mechanism to control the exact order of execution of tasks; pre-emptive scheduling and/or multiple processors make

this impossible.

The member routine sleep blocks the task for the specified duration or until the specified time. sleep is a static

member-routine that always sleeps the calling thread; use uBaseTask::sleep(. . .) for a call outside of a task type.

The member routine migrate allows a task to move itself from one cluster to another so that it can access resources

dedicated to that cluster’s processor(s), e.g.:

from-cluster-reference = migrate(to-cluster-reference)

migrate is a static member-routine that always moves itself from one cluster to another; use uBaseTask::migrate(. . .)

for a call outside of a task type.

The member routine getCluster returns the current cluster a task is executing on. The member routine getCoroutine

returns the current coroutine being executed by a task or the task itself if it is not executing a coroutine.

The member routine getState returns the current state of a task, which is one of the enumerated values

uBaseTask::Start, uBaseTask::Ready, uBaseTask::Running, uBaseTask::Blocked or uBaseTask::Terminate.

Two member routines are used in real-time programming (see Chapter 11, p. 141). The member routine getActivePriority

returns the current active priority of a task, which is an integer value between 0 and 31. The member routine

getBasePriority returns the current base priority of a task, which is an integer value between 0 and 31.

The free routine:

uBaseTask & uThisTask();

is used to determine the identity of the task executing this routine. Because it returns a reference to the base task type,

uBaseTask, for the current task, this reference can only be used to access the public routines of type uBaseCoroutine

and uBaseTask. For example, a free routine can obtain the executing task’s name or which coroutine a task is executing

by performing the following:

uThisTask().getName();
uThisTask().getCoroutine();

As well, printing a task’s address for debugging purposes is done like this:

cout << "task:" << &uThisTask() << endl; // notice the ampersand (&)

32 CHAPTER 2. µC++ TRANSLATOR

2.13.3 Task Control and Communication

A task can make use of _Accept and uCondition variables, wait, signal and signalBlock to block and unblock tasks that

enter it. Appendix H.3, p. 186 shows the archetypical disk scheduler implemented as a task that must process requests

in an order other than first-in first-out to achieve efficient utilization of the disk.

2.14 Commentary

Initially, every attempt was made to add the new µC++ types and statements by creating a library of class definitions

that were used through inheritance and preprocessor macros. This approach has been used by others to provide

coroutine facilities [Sho87, Lab90] and simple parallel facilities [DG87, BLL88]. However, after discovering many

limitations with all library approaches, it was abandoned in favour of language extensions.

The most significant problem with all library approaches to concurrency is the lack of soundness and/or effi-

ciency [Buh95, Boe05]. A compiler and/or assembler may perform valid sequential optimizations that invalidate a

correct concurrent program. Code movement, dead code removal, and copying values into registers are just some

examples of optimizations that can invalidate a concurrent program, e.g., moving code into or out of a critical section,

removing a timing loop, or copying a shared variable into a register making it invisible to other processors. To preserve

soundness, it is necessary to identify and selectively turn off optimizations for those concurrent sections of code that

might cause problems. However, a programmer may not be aware of when or where a compiler/assembler is using

an optimization that affects concurrency; only the compiler/assembler writer has that knowledge. Furthermore, unless

the type of a variable/parameter conveys concurrent usage, neither the compiler nor the assembler can generate sound

code for separately compiled programs and libraries. Therefore, when using a concurrent library, a programmer can at

best turn off all optimizations in an attempt to ensure soundness, which can have a significant performance impact on

the remaining execution of the program, which is composed of large sections of sequential code that can benefit from

the optimizations.

Even if a programmer can deal with the soundness/efficiency problem, there are other significant problems with

attempting to implement concurrency via the library approach. In general, a library approach involves defining an

abstract class, Task, which implements the task abstraction. New task types are created by inheritance from Task, and

tasks are instances of these types.

On this approach, thread creation must be arranged so that the task body does not start execution until all of

the task’s initialization code has finished. One approach requires the task body (the code that appears in a µC++

task’s main) to be placed at the end of the new class’s constructor, with code to start a new thread in Task::Task().

One thread then continues normally, returning from Task::Task() to complete execution of the constructors, while

the other thread returns directly to the point where the task was declared. This forking of control is accomplished

in the library approach by having one thread “diddle” with the stack to find the return address of the constructor

called at the declaration. However, this scheme prevents further inheritance; it is impossible to derive a type from a

task type if the new type requires a constructor, since the new constructor would be executed only after the parent

constructor containing the task body. It also seems impossible to write stack-diddling code that causes one thread to

return directly to the declaration point if the exact number of levels of inheritance is unknown. Another approach that

does not rely on stack diddling while still allowing inheritance is to determine when all initialization is completed so

that the new thread can be started. However, it is impossible in C++ (and most other object-oriented programming

languages) for a constructor to determine if it is the last constructor executed in an inheritance chain. A mechanism

like Simula’s [Sta87] inner could be used to ensure that all initialization had been done before the task’s thread is

started. However, it is not obvious how inner would work in a programming language with multiple inheritance.

PRESTO (and now Java [GJSB00]) solved this problem by providing a start() member routine in class Task, which

must be called after the creation of a task. Task::Task() would set up the new thread, but start() would set it running.

However, this two-step initialization introduces a new user responsibility: to invoke start before invoking any member

routines or accessing any member variables.

A similar two-thread problem occurs during deletion when a destructor is called. The destructor of a task can

be invoked while the task body is executing, but clean-up code must not execute until the task body has terminated.

Therefore, the code needed to wait for a thread’s termination cannot simply be placed in Task::~Task(), because it

would be executed after all the derived class destructors have executed. Task designers could be required to put the

termination code in the new task type’s destructor, but that prevents further inheritance. Task could provide a finish()

routine, analogous to start(), which must be called before task deletion, but that is error-prone because a user may fail

to call finish appropriately, for example, before the end of a block containing a local task.

2.15. INHERITANCE 33

Communication among tasks also presents difficulties. In library-based schemes, it is often done via message

queues. However, a single queue per task is inadequate; the queue’s message type inevitably becomes a union of

several “real” message types, and static type checking is compromised. (One could use inheritance from a Message

class, instead of a union, but the task would still have to perform type tests on messages before accessing them.)

If multiple queues are used, some analogue of the Ada select statement is needed to allow a task to block on more

than one queue. Furthermore, there is no statically enforceable way to ensure that only one task is entitled to receive

messages from any particular queue. Hence the implementation must handle the case of several tasks that are waiting

to receive messages from overlapping sets of queues. For example,

class TaskType : Task {
public:

MsgQueueType A; // queue associated with each instance of the task
static MsgQueueType B; // queue shared among all instances of the task type

protected:
void main() {

. . .
_Accept i = A.front(); // accept from either message queue
or _Accept i = B.front();
. . .

}
};
TaskType T1, T2;

Tasks T1 and T2 are simultaneously accepting from two different queues. While it is straightforward to check for the

existence of data in the queues, if there is no data, both T1 and T2 block waiting for data to appear on either queue.

To implement this, tasks have to be associated with both queues until data arrives, given data when it arrives, and

then removed from both queues. Implementing this operation is expensive since the addition or removal of a message

to/from a queue must be an atomic operation across all queues involved in a waiting task’s accept statement to ensure

that only one data item from the accepted set of queues is given to the accepting task.

If the more natural routine-call mechanism is to be used for communication among tasks, each public member

routine would have to have special code at the start and possibly at the exits of each public member, which the

programmer would have to provide. Other object-oriented programming languages that support inheritance of routines,

such as LOGLAN’88 [CKL+88] and Beta [MMPN93], or wrapper routines, as in GNU C++ [Tie88], might be able to

provide automatically any special member code. Furthermore, we could not find any convenient way to provide an

Ada-like select statement without extending the language.

In the end, we found the library approach to be completely unsatisfactory. We decided that language extensions

would better suit our goals by providing soundness and efficiency, greater flexibility and consistency with existing

language features, and static checking.

2.15 Inheritance

C++ provides two forms of inheritance: private and protected inheritance, which provide code reuse, and public

inheritance, which provides reuse and subtyping (a promise of behavioural compatibility). (These terms must not be

confused with C++ visibility terms with the same names.)

In C++, class definitions can inherit from one another using both single and multiple inheritance. In µC++, there

are multiple kinds of types, e.g., class, mutex, coroutine, and task, so the situation is more complex. The problem is

that mutex, coroutine and task types provide implicit functionality that cannot be arbitrarily mixed. While there are

some implementation difficulties with certain combinations, the main reason is a fundamental one. Types are written

as a class, mutex, coroutine or task, and the coding styles used in each cannot, in general, be arbitrarily mixed. For

example, an object produced by a class that inherits from a task type appears to be a non-concurrent object but its

behaviour is concurrent. While object behaviour is a user issue, there is a significantly greater chance of problems if

users casually combine types of different kinds. Table 2.3 shows the forms of inheritance allowed in µC++.

First, the case of single private/protected/public inheritance among homogeneous kinds of type, i.e., the kinds of

the base and derived type are the same, is supported in µC++ (major diagonal in Table 2.3), e.g.:

34 CHAPTER 2. µC++ TRANSLATOR

base NO multiple inheritance

derived struct/class coroutine monitor coroutine monitor task

struct/class
√

X X X X

coroutine
√ √

X X X

monitor
√

X
√

X X

coroutine monitor
√ √ √ √

X

task
√

X
√

X
√

Table 2.3: Inheritance among Type Generators

_Coroutine Cbase {};
_Coroutine Cderived : private Cbase {}; // homogeneous private inheritance
_Monitor Mbase {};
_Monitor Mderived : protected Mbase {}; // homogeneous protected inheritance
_Cormonitor CMbase {};
_Cormonitor CMderived : public CMbase {}; // homogeneous public inheritance
_Task Tbase {};
_Task Tderived : protected Tbase {}; // homogeneous protected inheritance

In this situation, all implicit functionality matches between base and derived types, and therefore, there are no prob-

lems.

Second, the case of single private/protected/public inheritance among heterogeneous kinds of type, i.e., the kinds

of the base and derived type are different, is supported in µC++ only if the derived kind is more specific than the base

kind with respect to the elementary execution properties (see Section 1.2, p. 4), e.g.:

class cbase {};

_Coroutine Cderived : public cbase {}; // heterogeneous public inheritance
_Monitor Mderived : public cbase {}; // heterogeneous public inheritance
_Cormonitor CMderived1 : private cbase {}; // heterogeneous private inheritance
_Cormonitor CMderived2 : protected Cbase {}; // heterogeneous protected inheritance
_Cormonitor CMderived3 : public Mbase {}; // heterogeneous public inheritance
_Task Tderived1 : protected cbase {}; // heterogeneous protected inheritance
_Task Tderived2 : public Mbase {}; // heterogeneous public inheritance

For example, a coroutine monitor can inherit from a class, a monitor, or a coroutine because the coroutine monitor has

the elementary execution properties of each of these kinds of type: The only exception to this rule is between a task

and coroutine because the logical use of main is completely different between these kinds of type. It seems unlikely

that a task could inherit the main routine from a coroutine and have the coroutine’s main perform any reasonable action

with respect to the task’s thread and mutex members.

Heterogeneous inheritance is useful for generating concurrent types from existing non-concurrent types, e.g., to

define a mutex queue by deriving from a simple queue, or for use with container classes requiring additional link

fields. For example, to change a simple queue to a mutex queue requires a monitor to inherit from the class Queue and

redefine all of the class’s member routines so mutual exclusion occurs when they are invoked, e.g.:

class Queue { // sequential queue
public:

void insert(. . .) . . .
virtual void remove(. . .) . . .

};
_Mutex class MutexQueue : public Queue { // concurrent queue

virtual void insert(. . .) . . .
virtual void remove(. . .) . . .

};
Queue * qp = new MutexQueue; // subtyping allows assignment
qp->insert(. . .); // call to a non-virtual member routine, statically bound
qp->remove(. . .); // call to a virtual member routine, dynamically bound

However, there is a fundamental problem with non-virtual members in C++, which can cause significant confu-

sion because non-virtual routine calls are statically bound. For example, routines Queue::insert and Queue::remove

do not provide mutual exclusion because they are members of the class, while routines MutexQueue::insert and

2.16. EXPLICIT MUTUAL EXCLUSION AND SYNCHRONIZATION 35

MutexQueue::remove do provide mutual exclusion because they are members of a mutex type. Because the pointer

variable qp is of type Queue, the call qp->insert calls Queue::insert even though insert is redefined in MutexQueue;

so no mutual exclusion occurs. In contrast, the call to remove is dynamically bound, so the redefined routine in the

monitor is invoked and appropriate synchronization occurs. The unexpected lack of mutual exclusion would cause

errors. In object-oriented programming languages that have only virtual member routines, this is not a problem. The

problem does not occur with private or protected inheritance because no subtype relationship is created, and hence,

the assignment to qp would be invalid.

Multiple inheritance is allowed, with the restriction that at most one of the immediate base classes may be a mutex,

coroutine, or task type, e.g.:

_Coroutine Cderived : public Cbase, public cbase {};
_Monitor Mderived : public Mbase, public cbase {};
_Cormonitor CMderived : protected Cbase, public cbase {};
_Task Tderived : public Mbase, protected cbase {};

Some of the reasons for this restriction are technical and some relate to the coding styles of the different kinds of type.

Multiple inheritance is conceivable for the mutex property, but technically it is difficult to ensure a single root object to

manage the mutual exclusion. Multiple inheritance of the execution-state property is technically difficult for the same

reason, i.e., to ensure a single root object. As well, there is the problem of selecting the correct main to execute on the

execution state, e.g., if the most derived class does not specify a main member, there could be multiple main members

to choose from in the hierarchy. Multiple inheritance of the thread property is technically difficult because only one

thread must be started regardless of the complexity of the hierarchy. In general, multiple inheritance is not as useful a

mechanism as it initially seemed [Car90].

2.16 Explicit Mutual Exclusion and Synchronization

The following locks are low-level mechanisms for providing mutual exclusion of critical sections and synchronization

among tasks. In general, explicit locks are unnecessary to build highly concurrent systems; the mutual exclusion

provided by monitors, coroutine monitors and tasks, and the synchronization provided by _Accept, wait, signal and

signalBlock are sufficient. Nevertheless, several low-level lock mechanisms are provided for teaching purposes and for

special situations.

2.16.1 Counting Semaphore

A semaphore in µC++ is implemented as a counting semaphore as described by Dijkstra [Dij65]. A counting semaphore

has two parts: a counter and a list of waiting tasks. Both the counter and the list of waiting tasks is managed by the

semaphore. The type uSemaphore defines a semaphore and requires #include <uSemaphore.h>.

class uSemaphore {
public:

uSemaphore(int count = 1);
void P();
void P(uintptr_t info);
bool P(uDuration duration);
bool P(uintptr_t info, uDuration duration);
bool P(uTime time);
bool P(uintptr_t info, uTime time);
void P(uSemaphore & s);
void P(uSemaphore & s, uintptr_t info);
bool P(uSemaphore & s, uDuration duration);
bool P(uSemaphore & s, uintptr_t info, uDuration duration);
bool P(uSemaphore & s, uTime time);
bool P(uSemaphore & s, uintptr_t info, uTime time);
bool TryP();
uintptr_t front() const;
void V(int times = 1);
int counter() const;
bool empty() const;

};
uSemaphore x, y(0), * z;
z = new uSemaphore(4);

The declarations create three semaphore variables and initializes them to the value 1, 0, and 4, respectively.

36 CHAPTER 2. µC++ TRANSLATOR

The constructor routine uSemaphore has the following form:

uSemaphore(int count) – this form specifies an initialization value for the semaphore counter. Appropriate

values are ≥ 0. The default count is 1.

The member routines P and V are used to perform the classical counting semaphore operations. P decrements the

semaphore counter if the value of the semaphore counter is greater than zero and continues; if the semaphore counter is

equal to zero, the calling task blocks. If P is passed a semaphore, that semaphore is Ved before Ping on the semaphore

object; the two operations occur atomically. If P is passed a duration or time value, the waiting task is unblocked after

that period or when the specified time is exceeded even if the task has not been Ved; this form of P returns true if

the waiting task is Ved and false otherwise (meaning timeout occurred). (See Section 11.1, p. 141 for information on

types uDuration and uTime.) The member routine front returns an integer value stored with the waiting task at the front

of the condition queue. It is an error to examine the front of an empty condition-lock queue; therefore, a condition

lock must be checked to verify that there is a blocked task, e.g.:

if (! DiskNotIdle.empty() && DiskNotIdle.front() == 1) . . .

The member routine TryP attempts to acquire the semaphore but does not block. TryP returns true if the semaphore

is acquired and false otherwise. V wakes up the task blocked for the longest time if there are tasks blocked on the

semaphore and increments the semaphore counter. If V is passed a positive integer value, the semaphore is Ved that

many times. The member routine counter returns the value of the semaphore counter, N, which can be negative, zero,

or positive: negative means abs(N) tasks are blocked waiting to acquire the semaphore, and the semaphore is locked;

zero means no tasks are waiting to acquire the semaphore, and the semaphore is locked; positive means the semaphore

is unlocked and allows N tasks to acquire the semaphore. The member routine empty returns false if there are threads

blocked on the semaphore and true otherwise.

It is not meaningful to read or to assign to a semaphore variable, or copy a semaphore variable (e.g., pass it as a

value parameter).

2.16.1.1 Commentary

The wait and signal operations on conditions are very similar to the P and V operations on counting semaphores. The

wait statement can block a task’s execution while a signal statement can cause resumption of another task. There

are, however, differences between them. The P operation does not necessarily block a task, since the semaphore

counter may be greater than zero. The wait statement, however, always blocks a task. The signal statement can make

ready (unblock) a blocked task on a condition just as a V operation makes ready a blocked task on a semaphore. The

difference is that a V operation always increments the semaphore counter; thereby affecting a subsequent P operation.

A signal statement on an empty condition does not affect a subsequent wait statement, and therefore, is lost. Another

difference is that multiple tasks blocked on a semaphore can resume execution without delay if enough V operations

are performed. In the mutex-type case, multiple signal statements do unblock multiple tasks, but only one of these

tasks is able to execute because of the mutual-exclusion property of the mutex type.

2.16.2 Lock

A lock is either closed (0) or opened (1), and tasks compete to acquire the lock after it is released. Unlike a semaphore,

which blocks tasks that cannot continue execution immediately, a lock may allow tasks to loop (spin) attempting to

acquire the lock (busy wait). Locks do not ensure that tasks competing to acquire it are served in any particular order;

in theory, starvation can occur, in practice, it is usually not a problem.

The type uLock defines a lock:

class uLock {
public:

uLock(unsigned int value = 1);
void acquire();
bool tryacquire();
void release();

};
uLock x, y, * z;
z = new uLock(0);

The declarations create three lock variables and initializes the first two to open and the last to closed.

The constructor routine uLock has the following form:

2.16. EXPLICIT MUTUAL EXCLUSION AND SYNCHRONIZATION 37

uLock(int value) – this form specifies an initialization value for the lock. Appropriate values are 0 and 1. The

default value is 1.

The member routines acquire and release are used to atomically acquire and release the lock, closing and opening

it, respectively. acquire acquires the lock if it is open, otherwise the calling task spins waiting until it can acquire

the lock. The member routine tryacquire makes one attempt to try to acquire the lock, i.e., it does not spin waiting.

tryacquire returns true if the lock is acquired and false otherwise. release releases the lock, which allows any waiting

tasks to compete to acquire the lock. Any number of releases can be performed on a lock as a release simply sets the

lock to opened (1).

It is not meaningful to read or to assign to a lock variable, or copy a lock variable (e.g., pass it as a value parameter).

2.16.3 Mutex Lock

A mutex lock is not owned by the task that acquires it; any other tasks may release it. The mutex lock is single

acquisition so attempting to acquire it a second time results in deadlock. The mutex lock can only be used for mutual

exclusion, because it always starts open. The type uMutexLock defines a mutex lock:

class uMutexLock {
public:

uMutexLock();
void acquire();
bool tryacquire();
void release();

};
uMutexLock x, y, * z;
z = new uMutexLock;

The declarations create three mutex-lock variables and initializes them to open.

The member routine acquire acquires the lock if it is open, otherwise the calling task blocks until it can acquire

the lock. The member routine tryacquire makes one attempt to try to acquire the lock, i.e., it does not block; the value

true is returned if the lock is acquired and false otherwise. The member routine release releases the lock, and if there

are waiting tasks, one is restarted; waiting tasks are released in FIFO order.

It is not meaningful to read or to assign to an mutex lock variable, or copy an mutex lock variable (e.g., pass it as

a value parameter).

2.16.4 Owner Lock

An owner lock is owned by the task that acquires it; all other tasks attempting to acquire the lock block until the owner

releases it. The owner of an owner lock can acquire the lock multiple times, but a matching number of releases must

occur or the lock remains in the owner’s possession and other tasks cannot acquire it. (Owner locks are used in the

implementation of the nonblocking I/O stream library, see Section 4.2, p. 71). As a result, an owner lock can only be

used for mutual exclusion, because synchronization requires the locking task to be different from the unlocking one.

The type uOwnerLock defines an owner lock:

class uOwnerLock {
public:

uOwnerLock();
unsigned int times() const;
uBaseTask * owner() const;
void acquire();
bool tryacquire();
void release();

};
uOwnerLock x, y, * z;
z = new uOwnerLock;

The declarations create three owner-lock variables and initializes them to open.

The member routine times returns the number of times the lock has been acquired by the lock owner. The member

routine owner returns the task owning the lock or nullptr if there is no owner. The member routine acquire acquires the

lock if it is open, otherwise the calling task blocks until it can acquire the lock. The member routine tryacquire makes

one attempt to try to acquire the lock, i.e., it does not block; the value true is returned if the lock is acquired and false

38 CHAPTER 2. µC++ TRANSLATOR

otherwise. The member routine release releases the lock, and if there are waiting tasks, one is restarted; waiting tasks

are released in FIFO order.

It is not meaningful to read or to assign to an owner lock variable, or copy an owner lock variable (e.g., pass it as

a value parameter).

2.16.5 Condition Lock

The condition lock is like a condition variable (see Section 2.9.3.1, p. 24), creating a queue object on which tasks

block and unblock; however, there is no monitor construct to simplify and ensure correct usage of condition locks.

Instead, a condition lock is dependent on the owner lock for its functionality, and collectively these two kinds of locks

can be used to build a monitor, providing both synchronization and mutual exclusion. As for a condition variable, a

condition lock can only be used for synchronization, because the wait operation always blocks. The type uCondLock

defines a condition lock:

class uCondLock {
public:

uCondLock();
void wait(uMutexLock &lock);
void wait(uMutexLock &lock, uintptr_t info);
bool wait(uMutexLock &lock, uDuration duration);
bool wait(uMutexLock &lock, uintptr_t info, uDuration duration);
bool wait(uMutexLock &lock, uTime time);
bool wait(uMutexLock &lock, uintptr_t info, uTime time);
void wait(uOwnerLock & lock);
void wait(uOwnerLock & lock, uintptr_t info);
bool wait(uOwnerLock & lock, uDuration duration);
bool wait(uOwnerLock & lock, uintptr_t info, uDuration duration);
bool wait(uOwnerLock & lock, uTime time);
bool wait(uOwnerLock & lock, uintptr_t info, uTime time);
uintptr_t front() const;
bool signal();
bool broadcast();
bool empty();

};
uCondLock x, y, * z;
z = new uCondLock;

The declarations create three condition locks and initializes them to closed (i.e., always block).

The routines wait and signal are used to block a thread on and unblock a thread from the queue of a condition,

respectively. The wait routine atomically blocks the calling task and releases the argument owner-lock. For mutex

locks, the wait routine does not reacquire its argument lock before returning. For owner locks, the wait routine does

reacquire its argument lock before returning. If wait is passed a duration or time value, the waiting task is unblocked

after that period or when the specified time is exceeded even if the task has not been signalled. This form of wait

returns true if the task is signalled and false otherwise (meaning timeout occurred). (See Section 11.1, p. 141 for

information on types uDuration and uTime.) The member routine front returns an integer value stored with the waiting

task at the front of the condition queue. It is an error to examine the front of an empty condition-lock queue; therefore,

a condition lock must be checked to verify that there is a blocked task, e.g.:

if (! DiskNotIdle.empty() && DiskNotIdle.front() == 1) . . .

The signal routine checks if there is a waiting task, and if so, unblocks a waiting task from the queue of the condition

lock; waiting tasks are released in FIFO order. The signal routine can be safely called without acquiring any owner

lock associated with tasks waiting on the condition. The broadcast routine is the same as the signal routine, except all

waiting tasks are unblocked. For either kind of signal, signalling an empty condition just continues executions, i.e., it

does nothing, and returns false; otherwise, true is returned indicating a signalled task(s). The member routine empty

returns false if there are tasks blocked on the queue and true otherwise.

It is not meaningful to read or to assign to a lock variable, or copy a lock variable (e.g., pass it as a value parameter).

2.16.6 Barrier

A barrier allows N tasks to synchronize, possible multiple times, during their life time. Barriers are used to repeatedly

coordinate a group of tasks performing a concurrent operation followed by a sequential operation. In µC++, a barrier

2.17. ATOMIC INSTRUCTIONS 39

is a mutex coroutine, i.e., _Cormonitor, to provide the necessary mutual exclusion and to allow code to be easily

executed both before and after the N tasks synchronize on the barrier. The type uBarrier defines a barrier and requires

#include <uBarrier.h>.

_Mutex _Coroutine uBarrier {
protected:

void main() { for (;;) { suspend(); } }
virtual void last() { resume(); }

public:
_Exception BlockFailure {}; // raised if waiting tasks flushed

uBarrier(unsigned int total);
_Nomutex unsigned int total() const;
_Nomutex unsigned int waiters() const;
void flush();
void reset(unsigned int total);
virtual void block();

};
uBarrier x(10), * y;
y = new uBarrier(20);

The declarations create two barrier variables and initializes the first to work with 10 tasks and the second to work with

20 tasks.

The coroutine main is usually replaced by subclassing to supply the code to be executed before and after tasks

synchronize. The general form for a barrier main routine is:

void main() {
for (;;) {

// code executed before synchronization (initialization)
suspend();
// code executed after synchronization (termination)

}
}

Normally, the last action of the constructor for the subclass is resuming, which switches to the coroutine main to

prime the barrier’s initialization. When main suspends back to the constructor, the barrier is initialized and ready to

synchronize the first set of tasks. The virtual member routine last is called by the last task to synchronize at the barrier.

It can be replaced by subclassing from uBarrier to provide a specific action to be executed when synchronization is

complete. This capability is often used to reset a computation before releasing the tasks from the barrier to start the

next computation. The default code for last is to resume the coroutine main.

The constructor routine uBarrier has the following form:

uBarrier(unsigned int total) – this form specifies the total number of tasks participating in the synchronization.

Appropriate values are ≥ 0. A 0 initialization value implies the barrier does not cause any task to wait, but

each calling task runs member routine last.

The member routines total and waiters return the total number of tasks participating in the synchronization and

the total number of tasks currently waiting at the barrier, respectively. The member routine flush raises the non-local

exception BlockFailure at each waiting task in the barrier and unblocks it. These tasks unblock in member block and

immediately raise exception BlockFailure. The member routine reset changes the total number of tasks participating

in the synchronization; no tasks may be waiting in the barrier when the total is changed. block is called to synchronize

with total tasks; tasks block until any total tasks have called block. It can be replaced by subclassing from uBarrier to

provide a specific action to be executed before or after a task blocks on uBarrier::block().

It is not meaningful to read or to assign to a barrier variable, or copy a barrier variable (e.g., pass it as a value

parameter).

2.17 Atomic Instructions

The hardware provides an assortment of atomic read/write instructions, some of which are used to build the higher-

level locks or lock-free data-structures. The following hardware instructions are accessible:

• unsigned long long int uRdtsc(); // x86 only

40 CHAPTER 2. µC++ TRANSLATOR

For x86 only, the routine reads the time stamp counter register (32 or 64 bit), which contains the cycles since

reset. This value can be converted into time by dividing by the processor frequency. The counters are not

synchronized among processor, so there is significant drift over time.

• void uPause()

For x86, the routine causes a hardware pause, which is a hint to the processor of a busy loop in progress. The

pause prevents the processor pipeline filling with load/compare instructions, which takes resources (CPU), space

(instruction cache), and power (heat). The test-and-set routine performs an atomic read and fixed assignment.

The routine sets some location within the parameter to an implementation defined nonzero value (often the value

1) and the return value is true if and only if the previous contents had the same nonzero value. The equivalent

action as a C++ routine:

bool uTestSet(T & lock) { // atomic execution
T temp = lock; // read
lock = 1; // write
return temp == 1; // previous value set ?

}

• template< typename T > bool uTestSet(volatile T & lock);
template< typename T > void uTestReset(volatile T & lock);

The test-and-set routine performs an atomic read and fixed write. The routine sets some location within the

parameter to an implementation defined nonzero value (often the value 1) and the return value is true if and only

if the previous contents had the same nonzero value. The equivalent action as a C++ routine:

bool uTestSet(T & lock) { // atomic execution
T temp = lock; // read
lock = 1; // write
return temp == 1; // previous value set ?

}

The test-and-reset instruction instruction performs an atomic clear. The routine resets some location within the

parameter to 0. It should be used conjunction with uTestSet. It can be used to construct a spinlock:

int Lock; // shared
uTestReset(Lock); // initialize

void Task::main() { // each task does
while(TestSet(Lock));
// critical section
uTestReset(Lock);

}

• template< typename T > static inline T uFetchAssign(volatile T & loc, T repl);

The fetch-and-assign routine generalizes the test-and-set to any value rather than a fixed value. The routine sets

the parameter to the specified replacement value and returns the previous value of the assigned variable. The

equivalent action as a C++ routine:

T uFetchAssign(T & lock, T val) { // atomic execution
T temp = lock; // read
lock = val; // write
return temp; // return previous value

}

It can be used to construct a spinlock:

2.17. ATOMIC INSTRUCTIONS 41

int Lock; // shared
uFetchAssign(OPEN); // initialize

void Task::main() { // each task does
while(uFetchAssign(Lock) == CLOSED);
// critical section
uFetchAssign(CLOSED);

}

• template< typename T > inline T uFetchAdd(volatile T & counter, int increment);

The fetch-and-add routine performs an atomic read, add, and write. The routine adds the increment value, which

can be negative, to the counter and returns the previous value of the counter variable. The equivalent action as a

C++ routine:

T uFetchAdd(T & cnt, T val) { // atomic execution
T temp = cnt; // read
cnt += val; // write
return temp; // return previous value

}

It can be used to construct a spinlock:

int Lock; // shared
uFetchAssign(0); // initialize

void Task::main() { // each task does
while(uFetchAdd(Lock) != 1);
// critical section
uFetchAssign(0);

}

• template< typename T > inline bool uCompareAssign(T & loc, T comp, T repl);
template< typename T > inline bool uCompareAssignValue(T & loc, T & comp, T repl);

The compare-and-assign routine performs an atomic read, compare, and conditional write. The first routine

compares the assignment value with the comparison value, and if equal, writes the assignment variable to the

replacement value. The second routine does the same as the first, but if unequal, writes the updated assignment

value to the comparison variable. Both routines return true if the assignment value is equal to the comparison

value, and false otherwise. The equivalent action as a C++ routine:

bool uCompareAssign(T & loc, T comp, T repl) { // atomic execution
if (loc == comp) // read

loc = repl; // write
return true;

}
return false;

}

bool uCompareAssignValue(T & loc, T & comp, T repl) { // atomic execution
if (loc == comp) // read

loc = repl; // write
return true;

}
comp = loc; // write
return false;

}

It can be used to construct a spinlock:

42 CHAPTER 2. µC++ TRANSLATOR

int Lock; // shared
uFetchAssign(OPEN); // initialize

void Task::main() { // each task does
while(uCompareAssign(Lock, OPEN, CLOSED));
// critical section
uFetchAssign(CLOSED);

}

2.18 User Specified Context

The following facilities allow users to specify additional coroutine and task context to be saved and restored during a

context switch. This facility should only be used to save and restore processor specific data, for example, coprocessor

or graphics hardware data that is specific to each processor’s execution. This facility does not allow a shared resource,

like a single graphics device, to be accessed mutually exclusively by multiple tasks in a multiprocessor environment. In

a multiprocessing environment, tasks executing in parallel corrupt the shared resource because their context switches

overlap. To share a resource in a multiprocessor environment requires proper mutual exclusion, for example, by using a

server task. In a uniprocessor environment, this facility can be used to guarantee mutual exclusion to a shared resource

because only one task is executing at a time so the context of the shared resource is saved and restored on each context

switch. We strongly discourage using this facility for mutual exclusion of a non-processor-specific resource because it

does not scale to the multiprocessor environment.

The user-context facility has two parts: the definition of a context save-area, containing the storage for the context

and routines to save and restore the context, and the declaration and initialization of a context save-area. The associa-

tion of the additional context with a coroutine or task depends on which execution state is active when the declaration

of the context save-area occurs.

A context area must be derived from the abstract class uContext:

class uContext {
public:

uContext();
uContext(void * key);
virtual void save() = 0;
virtual void restore() = 0;

}; // uContext

The overloaded constructor routine uContext has the following forms:

uContext() – creates a context with a unique search key (discussed shortly).

uContext(void * key) – creates a context with the user supplied search key.

Multiple context areas can be declared, and hence, associated with a coroutine or task. However, a context is only

associated with an execution state if its search key is unique. This requirement prevents the same context from being

associated multiple times with a particular coroutine or task.

Figure 2.7 shows how the context of a hardware coprocessor can be saved and restored as part of the context of

task worker. A unique search-key for all instances of CoProcessorCxt is created via the address of the static variable,

uUniqueKey, because the address of a static variable is unique within a program. Therefore, the value assigned to

uUniqueKey is irrelevant, but a value must be assigned in one translation unit for linking purposes. This address is

implicitly stored in each instance of CoProcessorCxt. When a context is added to a task, a search is performed for any

context with the same key. If a context with the same key is found, the new context is not added; otherwise it is added

to the list of user contexts for the task.

✷ WARNING: Put no code into routines save and restore that results in a context switch, e.g., printing

using cout or cerr (use write if necessary). These routines are called during a context switch, and a context

switch cannot be recursively invoked. ✷

2.18.1 Predefined Floating-Point Context

In most operating systems, the entire state of the actual processor is saved during a context switch between execution

states because there is no way to determine if a particular object is using only a subset of the actual processor state. All

2.18. USER SPECIFIED CONTEXT 43

class CoProcessorCxt : public uContext {
static int uUniqueKey; // unique address across all instances
int reg[3]; // coprocessor has 3 integer registers

public:
CoProcessorCxt() : uContext(& uUniqueKey) {};
void save();
void restore();

};

int CoProcessorCxt::uUniqueKey; // must be defined in only one translation unit

void CoProcessor::save() {
// assembler code to save coprocessor registers into context area

}
void CoProcessor::restore() {

// assembler code to restore coprocessor registers from context area
}

_Task worker {
. . .
void main() {

CoProcessorCxt cpcxt; // associate additional context with task
. . .

}
. . .

};

Figure 2.7: Saving Co-processor Context

programs use the fixed-point registers, while only some use the floating-point registers. Because there is a significant

execution cost in saving and restoring the floating-point registers, they are not saved automatically. If a coroutine or

task performs floating-point operations, saving the floating-point registers must become part of the context-switching

action for the execution state of that coroutine or task.

To save and restore the float-point registers on a context switch, declare a single instance of the predefined type

uFloatingPointContext in the scope of the floating-point computations, such as the beginning of the coroutine’s or task’s

main member, e.g.:

_Coroutine C {
void main() {

uFloatingPointContext fpcxt; // the name of the variable is insignificant
. . . // floating-point computations can be performed safely in this scope

}
. . .

};

Once main starts, both the fixed-point and floating-point registers are restored or saved during a context switch to or

from instances of coroutine C.

✷ WARNING: The member routines of a coroutine or task are executed using the execution state of the

caller. Therefore, if floating-point operations occur in a member routine, including the constructor, the

caller must also save the floating-point registers. Only a coroutine’s or task’s main routine and the routines

called by main use the coroutine’s or task’s execution state, and therefore, only these routines can safely

perform floating-point operations. ✷

✷ WARNING: Some processors, implicitly save both fixed and floating-point registers, which means it

is unnecessary to create instances of uFloatingPointContext in tasks performing floating-point operations.

However, leaving out uFloatingPointContext is dangerous because the program is not portable to other

processors. Therefore, it is important to always include an instance of uFloatingPointContext in tasks

performing floating-point operations. ✷

Additional context can be associated with a coroutine or task in a free routine, member routine, or as part of a class

object to temporarily save a particular context. For example, the floating-point registers are saved when an instance of

44 CHAPTER 2. µC++ TRANSLATOR

the following class is declared:

class c {
private:

uFloatingPointContext fpcxt;
public:

void func() {
// perform floating-point computations

}
};

When a coroutine or task declares an instance of c, its context switching is augmented to save the floating-point

registers for the duration of the instance. This capability allows the implementor of c to ensure that the integrity of its

floating-point calculations are not violated by another coroutine or task performing floating-point operations. It also

frees the user from having to know that the floating-point registers must be saved when using class c. Remember, if

the floating-point registers are already being saved, the additional association is ignored because of the unique search

key.

2.19 Implementation Restrictions

The following restrictions are an artifact of this implementation. In some cases the restriction results from the fact that

µC++ is only a translator and not a compiler. In all other cases, the restrictions exist simply because time limitations

on this project have prevented it from being implemented.

• While µC++ has extended C++ with concurrency constructs, it is not a compiler. Therefore, it suffers from the

soundness/efficiency problem related to all concurrency library approaches (see Section 2.14, p. 32). However,

every attempt is made to ensure µC++ does generate sound code.

• Some runtime member routines are publicly visible when they should not be; therefore, µC++ programs should

not contain variable names that start with a “u” followed by a capital letter. This problem is an artifact of µC++

being a translator.

• By default, µC++ allows at most 128 mutex members because a 128-bit mask is used to test for accepted

member routines. When µC++ is compiled, this value can be modified by setting the preprocessor variable

__U_MAXENTRYBITS__.

Unfortunately, bit masks, in general, do not extend to support multiple inheritance. We believe the performance

degradation required to support multiple inheritance is unacceptable.

• When defining a derived type from a base type that is a task or coroutine and the base type has default parameters

in its constructor, the default arguments must be explicitly specified if the base constructor is an initializer in the

definition of the constructor of the derived type, e.g.:

_Coroutine Base {
public:

Base(int i, float f = 3.0, char c = ’c’);
};

_Coroutine Derived : public Base {
public:

Derived(int i) : Base(i, 3.0, ’c’); // values 3.0 and ’c’ must be specified
};

All other uses of the constructor for Base are not required to specify the default values. This problem is an

artifact of µC++ being a translator.

• Anonymous coroutine and task types are not supported, e.g.:

_Task /* no name */ { // must have a name
. . .

} t1, t2, t3;

2.19. IMPLEMENTATION RESTRICTIONS 45

Both a coroutine and a task must have a constructor and destructor, which can only be created using the name

of the type constructor. Having the translator generate a hidden unique name is problematic because the order

of include files may cause the generation of a different name for different compilations, which plays havoc with

linking because of name mangling.

• There is no discrimination mechanism in the _Accept statement to differentiate among overloaded mutex mem-

ber routines. When time permits, a scheme using a formal declarer in the _Accept statement to disambiguate

overloaded member routines will be implemented, e.g.:

_Accept(mem(int));
or _Accept(mem(float));

Here, the overloaded member routines mem are completely disambiguated by the type of their parameters be-

cause C++ overload resolution does not use the return type.

• A try block surrounding a constructor body is not supported, e.g.:

class T2 : public T1 {
const int i;

public:
T2(); // constructor

};
T2::T2() try : T1(3), i(27) {

// body of constructor
} catch {

// handle exceptions from initialization constructors (e.g., T1)
}

This problem is an artifact of µC++ being a translator.

• No break, continue, goto, return from a resumption handler. This problem is because the handler is trans-

formed into a local lambda routine, and hence, it cannot branch back within its lexical scope.

46 CHAPTER 2. µC++ TRANSLATOR

Chapter 3

Asynchronous Communication

Parallelism occurs when multiple threads execute simultaneously to decrease a program’s execution, i.e., the program

takes less real (wall-clock) time to complete a computation. The computation must be divided along some dimension(s)

and these subdivisions are executed asynchronously by the threads. The decrease in execution time is limited by the

number of these subdivisions that can be executed simultaneously (Amdahl’s law [Amd67]).

Every practical concurrent program involves some communication among threads. One thread may communicate

with another in order to provide inputs (arguments), and/or to receive the output (results) produced by the other thread.

If the thread providing the inputs is the same thread that later receives the output, then the communication pattern is

analogous to a sequential routine call, where one routine provides arguments to another and receives the result. A call

by one thread to a _Mutex member of a task is an example of this communication pattern. Such a call is known as

a synchronous call because the two tasks must synchronize in order to pass the arguments from caller to callee, and

because the caller remains blocked until the callee returns the result.

While a synchronous call is simple and useful, it may limit parallelism because the caller task is forced to block

until the result is returned. In some cases there is a subdivision of the computation that the caller task can perform

while the callee task is computing the caller’s result. In such a case, it is more appropriate to use an asynchronous

call. An asynchronous call can be thought of as two synchronous calls, one to provide the inputs and a second one to

receive the output, e.g.:

callee.start(arg); // provide arguments
// caller performs other work asynchronously
result = callee.finish(); // obtain result

Here, the call to start returns as soon as the arguments are transferred from caller to callee. Computation then proceeds

for both the caller and callee, concurrently. In an asynchronous call, the caller and callee are known as the client and

server, respectively. Note, the client may still have to block (or poll) at the call to finish, if the server has not yet

finished the client’s computation. The amount of parallelism that can be obtained in this way depends on the amount

of concurrent computation that can be done by the client and server. If there is little concurrency possible, then the

overhead of two synchronous calls and creating the server outweighs the benefits gained by any potential parallelism,

and a single synchronous call is sufficient.

A client may also have to block when calling the start method to transmit arguments, if the server is performing

some other operation at the time of the call. If the server only handles one outstanding asynchronous call at a time

from one client task it should always be ready to receive and respond to the start method immediately, minimizing

blocking time for the client. Depending on the application it may be necessary to have a more complicated server, one

that can manage multiple outstanding asynchronous calls from multiple clients simultaneously. Constructing a server

that can handle calls efficiently while minimizing blocking time for clients generally requires additional buffering of

arguments and results. Different designs for servers are discussed in Section 3.4, p. 54.

3.1 Futures

The major problem with the above approach for asynchronous call is the two-step protocol: start the call with argu-

ments and finish the call to collect a result. In general, protocols are error prone because the caller may not obey them

47

48 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

(e.g., never retrieve a result, try to retrieve the result twice, etc.).1 A future is an abstraction that attempts to hide some

of the details involved in an asynchronous call, in particular buffering and retrieving the return value. The previous

two synchronous calls are transformed into a single explicit synchronous call and an implicit second synchronous call

when the future is accessed:

future = callee.work(arg); // provide arguments and get future result
// perform other work asynchronously
i = future() + . . .; // obtain actual result, may block if result not ready

In general, a future is generic in the type of the return value and acts as a surrogate for this value. Instead of making

two calls to send arguments and then retrieve the result, a single call is made and a future representing the result is

returned immediately. The client continues execution as if the call had returned an actual result. The future is filled in

at some later time (in the “future”), after the server calculates the result. If the client tries to use the future before a

result is inserted, the client implicitly blocks and is subsequently unblocked by the server after it inserts a result in the

future. Hence, there is no explicit protocol between client and server to retrieve a result; the protocol is implicit within

the future.

µC++ provides two forms of futures, which differ in their storage-management interface. The explicit-storage-

management future (Future_ESM) must be allocated and deallocated explicitly by the client. The implicit-storage-

management future (Future_ISM) automatically allocates required storage and automatically frees the storage when

the future is no longer in use. The advantage of Future_ESM is that it allows the programmer to choose the method of

allocation, whether on the heap, on the stack, or statically, which can result in more predictable and efficient allocation

compared to Future_ISM, which always allocates storage on the heap. The disadvantage of Future_ESM is that the

client must ensure that the future is deallocated, but not before the server thread has inserted the result (or the operation

has been cancelled).

There is a basic set of common operations available on both types of futures. These consist of client operations,

used by a client task to retrieve the return value or cancel the computation, and server operations, used by a server task

to fill in the value.

3.1.1 Client Operations

The future operations available to a client are:

available – returns true if the asynchronous call has completed and false otherwise. Note, the call can complete

because a result is available, because the server has generated an exception, or because the call has been

cancelled (through the cancel method, below).

operator() – (function call) returns a copy of the future result. The client blocks if the future result is currently

unavailable. If an exception is returned by the server, that exception is thrown. A future result (or exception)

can be retrieved multiple times by any task until the future is reset or destroyed.

cancelled – returns true if the future is cancelled and false otherwise.

cancel – attempts to cancel the asynchronous call associated with the future. All clients waiting for the result

are unblocked, and an exception of type uCancelled is thrown at any client attempting to access the result.

Depending on the server, this operation may also have the effect of preventing the requested computation from

starting, or it may interrupt the computation in progress. If the computation cannot be interrupted, the call may

block until the computation is finished.

3.1.2 Server Operations

The future operations available to a server are:

delivery(T result) – copy the server-generated result into the future, unblocking all clients waiting for the result.

This result is the value returned to the client. If the asynchronous call has already completed, an exception of

type uDelivery is thrown at the server attempting to deliver the result.

delivery(uBaseException * cause) – copy a server-generated exception into the future, unblocking all clients

waiting for the result. This exception is thrown at any client instead of the future result. If the asynchronous

call has already completed, an exception of type uDelivery is thrown at the server attempting to deliver the

exception.

1Approaches for asynchronous call involving tickets and/or call backs both require an explicit protocol to retrieve a result.

3.1. FUTURES 49

template<typename T, typename ServerData> _Monitor Future_ESM {
public:

// used by client
_Nomutex bool available(); // future result available ?
T operator()(); // access result, possibly having to wait

_Nomutex bool cancelled(); // future result cancelled ?
void cancel(); // cancel future result

// used by server
ServerData serverData; // information needed by server

void delivery(T result); // make result available in the future
void delivery(uBaseException * ex); // make exception available in the future
void reset(); // mark future as empty (for reuse)

};

Figure 3.1: Future : Explicit Storage Management

For the future to manage the exception lifetime, the exception must be dynamically allocated:

_Exception E {};
Future_ISM<int> result;
result.delivery(new E); // exception deleted by future

The exception is implicitly deleted when the future is deleted or by reset.

reset – mark the future as empty so it can be reused, after which the current future value is no longer available. It

is an error to reset a future with waiting tasks.

A server may require storage to buffer call arguments and other data needed for delivery or cancellation of futures.

This storage is allocated as part of the future; hence, the future may also be generic in the type of server-management

data. A server exports this type information for use with a future (see Section 3.4, p. 54).

Future cancellation affects the server computing the future’s value. Depending on the server, cancellation may

prevent the requested computation from starting, or it may interrupt the computation in progress. In both cases, the

server does not insert a result into the future. If the server computation cannot be interrupted, the server may deliver a

result even though the future has been cancelled.

An ESM future’s cancel member cannot return until it is known that the server no longer references the cancelled

future because the future’s storage may be deallocated. Therefore, the server must inform the future if it will or will

not deliver a value, by supplying a member in the ServerData type with the following interface:

bool cancel();

It returns true if the result of the asynchronous call will not be delivered to the future, and hence the server computation

has been interrupted, and false otherwise.

An ISM future allows server-specific data to be included in the future through a special constructor parameter,

which must implement a similar cancel member. However, no action need be taken by the ISM server, since it is

always safe for the client to delete its copy of the future. In this case, the cancel method is purely advisory, allowing

the server to avoid unnecessary computation.

3.1.3 Explicit Storage Management

The explicit storage-management (ESM) future (see Figure 3.1) makes the client responsible for storage management

by preallocating the future and passing it as an argument to the asynchronous call.

This kind of future is not copyable, i.e., no assignment or pass-by-value is allowed. Both client and server must

operate on the same future, since the future is the buffer through which the result is returned. To copy the future would

be to create two buffers; a client could wait for a value to be delivered to one buffer, whereas the server could deliver

the future to the other buffer. As a result it is necessary to pass the future by pointer or by reference. It is possible for

many threads to wait on the same future, so long as each uses a pointer or reference.

It is the client’s responsibility to ensure a future continues to exist after a call as long as it is possible for the server

to deliver a return value or exception. It is safe to delete the future after operator() returns, when available returns

true, or after cancel returns. Note that because of this guarantee provided by cancel, it may be the case that cancel

blocks until the server task acknowledges the cancellation.

50 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

template<typename T> class Future_ISM {
public:

Future_ISM();
Future_ISM(ServerData * serverData);

// used by client
bool available(); // future result available ?
T operator()(); // access result, possibly having to wait

bool cancelled(); // future result cancelled ?
void cancel(); // cancel future result

bool equals(const Future_ISM<T> & other); // equality of reference

// used by server
void delivery(T result); // make result available in the future
void reset(); // mark future as empty (for reuse)
void delivery(uBaseException * ex); // make exception available in the future

};

Figure 3.2: Future : Implicit Storage Management

The key point for explicit futures is that the client preallocates the future storage so the server does not perform any

dynamic memory-allocation for the futures, which can provided a substantial performance benefit. In the example, the

client is able to use low-cost stack storage for the futures needed to interact with the server.

3.1.4 Implicit Storage Management

The implicit storage-management (ISM) future (see Figure 3.2) simplifies the future interface relative to Future_ESM

by automatically managing the storage required for the asynchronous call.

Unlike the ESM future, an ISM future is copyable, i.e., both assignment and pass-by-value are allowed. The ISM

future functions as a “handle” or smart pointer [Ale01] that refers to the result value. Any copy of an ISM future

refers to the same result value as the original. Although ISM futures may be allocated on the stack, on the heap,

or statically, the underlying storage for the result value (and possibly for server-management data as well) is always

implicitly allocated on the heap. This storage is freed when all futures referring to that value are destroyed.

Server-specific data (see Section 3.1.2, p. 48) can be passed to an ISM future via its constructor.

Occasionally it is useful to know whether two futures refer to the result of the same asynchronous call. For

this reason, Future_ISM has one member not found in Future_ESM. The member routine equals returns true if the

argument future refers to the same asynchronous call as this future and false otherwise.

3.2 Example

This example illustrates how a client uses a number of futures (ESM or ISM) to communicate asynchronously with a

server (see Section 4.2, p. 71 for osacquire):

Server server; // server thread to process async call
Future_ESM<int, Server::IMsg> fe[10]; // created on the stack
Future_ISM<int> fi[10]; // created on the stack, but also uses heap
for (int i = 0; i < 10; i += 1) { // start a number of calls

server.perform(fe[i], i, ’c’); // async call
fi[i] = server.perform(i, ’c’); // async call

}
// work asynchronously while server processes requests
for (int i = 0; i < 10; i += 1) { // retrieve async results

osacquire(cout) << fe[i]() << " " << fe[i]() + 1 << endl;
osacquire(cout) << fi[i]() << " " << fi[i]() + 1 << endl;

}

The client creates an array of N futures for int values. In general, these futures can appear in any context requiring

an int value and are used to make N asynchronous calls to the server. For each call to server.perform, the necessary

arguments are passed to the server so it can perform a computation on behalf of the client, and a future is returned

containing the (empty) server result. The client then proceeds asynchronously with the server to perform other work,

3.3. COMPLEX FUTURE ACCESS 51

possibly in parallel with the server (if running multiprocessor). Finally, the client retrieves the results from the server

by first performing a blocking access to each future. After the future result is retrieved, it can be retrieved again

cheaply (no blocking). Note that the asynchronous call to the server has the future as its return value, resembling a

traditional routine call, unlike the ESM future. Also, an ISM future has the internal server-management data hidden

from the client.

Warning: combining a blocking future with other locks in an expression is potentially dangerous. For example, if

the future blocks while holding the lock on cout, other threads cannot print.

osacquire(cout) << fe[i]() << " " << fe[i]() + 1 << endl;

Deadlock cannot occur in this case because the cout lock is always acquired before accessing the future (ordered

resource policy).

3.3 Complex Future Access

After a client has created a future, passed it to a server, and then continued asynchronously, it normally accesses the

future to retrieve its value. The simplest way to access a future is to call its operator() member. If the client’s com-

putation is reasonably structured, this approach may provide good asynchrony, with only occasional short-blocking

because the future’s value is unavailable. However, asynchrony can be curtailed if the client accesses a future too early

and blocks when it could do other work. A more complicated way of accessing a future is to check, using the available

method, whether the future is accessible before performing a potentially blocking access operation.

When a client creates multiple futures, and correspondingly makes multiple asynchronous calls using these futures,

neither of previous approaches may be satisfactory. The client may only be able to proceed when some combination of

the future results are available, or it may be able to proceed in different ways depending on the order in which results

become available. Although it is possible to use the available method to check for accessibility of a set of futures, it is

impossible to use available to wait on a future set without polling the futures (busy waiting). Hence, a more complex

future-selection mechanism is necessary. This mechanism can be divided into two basic forms: heterogeneous and

homogeneous.

heterogeneous: In this case, there are a number of futures that may have different types. Complicated selection

conditions are constructed by naming individual futures in expressions. This style of selection provides great

flexibility, but does not scale to large numbers of futures.

homogeneous: In this case, there are a number of futures of related types. The set of futures are stored together in

a data structure like a container or array, and hence, must have some notion of common type. Two common

selection operations on the futures within the data structure are wait-for-any and wait-for-all, i.e., wait for the

first future in the set to becomes available, or wait for all futures in the set to become available. This style of

selection is practical for large numbers of futures, but lacks the flexibility of heterogeneous selection.

3.3.1 Select Statement

µC++ provides a select statement to handle heterogeneous future selection by waiting for one or more available futures

based on a logical selection-criteria. The simplest form of the select statement has a single _Select clause, e.g.:

_Select(selector-expression);

The selector-expression must be satisfied before execution continues. When the selector-expression consists of a

reference to a single future, the expression is satisfied if and only if the future is available. For example, in:

_Select(f1);

the selector becomes select blocked until f1.available() is true. This select is not equivalent to calling the future access-

operator (f1()), which also gets the value, which can throw an exception. More interesting is when multiple futures

appear in a compound selector-expression, where the futures are related using logical operators | | and && to specify a

compound selection criteria, e.g.:

_Select(f1 | | f2 && f3);

Normal operator precedence applies so the expression is implicitly parenthesized as: (f1 | | (f2 && f3)). Execution

waits until either future f1 is available or both futures f2 and f3 are available. Unlike C, the selector-expression is

evaulated from left to right, even for operators of equal priority, so when multiple subexpressions are true, the left-

most subexpression satisfies the select statement. As well, for any selector-expression containing an | | operator, some

52 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

futures in the expression may be unavailable after the selector-expression is satisfied. For example, in the above

selection expression, if future f1 becomes available, neither, one or both of f2 and f3 may be available.

A _Select clause may be guarded with a logical expression, e.g.:

_When (conditional-expression) _Select(f1); ≡ if (conditional-expression) _Select(f1);

The selector task is select blocked while the guard is true and there is no available future. A _When guard is considered

true if it is omitted or if its conditional-expression evaluates to non-zero. If the guard is false, execution continues

without waiting for any future to become available; for this example, the guard is the same as an if statement. Note, a

simple select-statement always waits until at least one future is available unless its guard is false.

The complex form of the select statement conditionally executes a specific action after each selector-expression

evaluates to true (see select-statement grammar in Chapter A, p. 159 for complete syntax), e.g.:

_Select(selector-expression)
statement // action

After the selector-expression is satisfied, the action statement is executed; in this case, the action could simply follow

the select statement. However, the complex form of the select statement allows relating multiple _Select clauses

using keywords or and and, each with a separate action statement. The or and and keywords relate the _Select

clauses in exactly the same way operators | | and && relate futures in a select-expression, including the same operator

precedence; parentheses may be used to specify evaluation order. For example, the previous select statement with a

compound selector-expression can be rewritten into its equivalent complex form with actions executed for each future

that becomes available (superfluous parentheses show precedence of evaluation):

(// superfluous parentheses
_Select(f1)

statement-1 // action
or (// superfluous parentheses

_Select(f2) // optional guard
statement-2 // action

and _Select(f3) // optional guard
statement-3 // action

) // and
) // or

The original selector-expression is now three connected _Select clauses, where each _Select clause has its own action.

During execution of the statement, each _Select-clause action is executed when its sub-selector-expression is satisfied,

i.e., when each future becomes available; however, control does not continue until the selector-expression associated

with the entire statement is satisfied. For example, if f2 becomes available, statement-2 is executed but the selector-

expression associated with the entire statement is not satisfied so control blocks again. When either f1 or f3 become

available, statement-1 or 3 is executed, and the selector-expression associated with the entire statement is satisfied

so control continues. Within an action statement, accessing the associated future is cheap because it is know to be

available.

For the complex form of the select statment, if a guard is false, execution continues without waiting for that future

to become available.

_When(true) _Select(f1) {. . .} _When(true) _Select(f1) {. . .}
or or

_When(false) _Select(f2) {. . .} ≡
and
_When(true) _Select(f3) {. . .} _When(true) _Select(f3) {. . .}

If only f3 becomes available, execution continues.

An action statement is triggered only once for its selector-expression, even if the selector-expression is compound.

For example, for &&:

_Select(f1)
statement-1

or _Select(f2 && f3)
statement-2 // triggered once after both available

statement-2 is only executed when both futures f2 and f3 are available (nonblocking access for both). However, for | |:

3.3. COMPLEX FUTURE ACCESS 53

_Select(f1 | | f2)
statement-1 // triggered once after one available

and _Select(f3)
statement-2

statement-1 is only executed once even though both futures f1 and f2 may become available while waiting for the

selector-expression associated with the entire statement to become satisfied. Hence, in statement-1, it is unknown

which of futures f1 or f2 satisfied the sub-selector-expression and caused the action to be triggered;

Note, a complex select-statement with _When guards is not the same as a group of connected if statements, e.g.:

if (C1) _Select(f1); _When (C1) _Select(f1);
else if (C2) _Select(f2); or _When (C2) _Select(f2);

The left example waits for only future f1 if C1 is true or only f2 if C1 is false and C2 is true. The right example

waits for either f1 or f2 if C1 and C2 are true. Like the _Accept statement, it takes 2N − 1 if statements to simulate a

compound _Select statement with N _When guards (see p. page 22).

Finally, a select statement can be made nonblocking using a terminating _Else clause, e.g.:

_Select(selector-expression)
statement // action

_When (conditional-expression) _Else // optional guard & terminating clause
statement // action

The _Else clause must be the last clause of a select statement. If its guard is true or omitted and the select statement is

not immediately true, then the action for the _Else clause is executed and control continues. If the guard is false, the

select statement blocks as if the _Else clause is not present. (See Section 11.2.3, p. 145 for timeout with _Select.)

3.3.2 Wait Queue

µC++ provides two data structures to handle homogeneous future selection. As with the two future types, they have

similar behaviour but different approaches to storage management.

ESM ISM

template< typename Selectee >
class uWaitQueue_ESM {

public:
uWaitQueue_ESM();
template< typename Iterator >

uWaitQueue_ESM(Iterator begin, Iterator end);
bool empty() const;
void add(Selectee * n);
template< typename Iterator >

void add(Iterator begin, Iterator end);
void remove(Selectee n);
Selectee * drop();

};

template< typename Selectee >
class uWaitQueue_ISM {

public:
uWaitQueue_ISM();
template< typename Iterator >

uWaitQueue_ISM(Iterator begin, Iterator end);
bool empty() const;
void add(Selectee n);
template< typename Iterator >

void add(Iterator begin, Iterator end);
void remove(Selectee n);
Selectee drop();

};

To use uWaitQueue_ISM, futures are added to the queue at construction or using the add methods, and are removed

using the drop method as each becomes available. uWaitQueue_ESM is similar, except it operates on future pointers.

For uWaitQueue_ESM, the client must ensure added futures remain valid, i.e., their storage persists, as long as they

are in a uWaitQueue_ESM. For uWaitQueue_ISM, the added futures must be copyable, so ISM futures can be used but

not ESM futures; uWaitQueue_ESM is the only queue that can be used with ESM futures.

The operations available on both kinds of queue are:

uWaitQueue_ISM() / uWaitQueue_ESM() – constructs an empty queue.

uWaitQueue_ISM(Iterator begin, Iterator end) / uWaitQueue_ESM(Iterator begin, Iterator end) – constructs a

queue, adding all of the futures in the range referenced by the iterators begin and end (inclusive of begin, but

exclusive of end). For the ESM queue, it is pointers to the futures that are added to the queue.

empty – returns true if there are no futures in the queue, false otherwise.

add(Selectee n) – adds a single future to the queue (ISM).

add(Selectee * n) – adds a single pointer to a future to the queue (ESM).

54 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

add(Iterator begin, Iterator end) – adds all futures in the range given by the iterators begin and end (inclusive of

begin, but exclusive of end). For the ESM queue, it is pointers to the futures that are added to the queue.

remove(Selectee n) – removes any futures in the queue that refer to the same asynchronous call as n (ISM).

remove(Selectee * n) – removes any occurrence of the future pointer n from the queue (ESM).

drop – returns an available future from the queue, removing it from the queue. The client blocks if there is no

available future. If multiple futures are available, one is chosen arbitrarily to return; other available futures can

be obtained by further calls to drop. Calling drop on an empty ISM queue is an error; calling drop on an empty

ESM queue returns nullptr.

The drop method is an example of “wait-any” semantics in homogeneous selection: execution blocks until at least

one future is available. To provide “wait-all” semantics, where execution only continues when all futures are available,

a simple loop suffices:

uWaitQueue_ISM<Future_ISM<int> > queue; // or ESM
// add futures to queue
while (! queue.empty()) { // wait for all futures to become available

queue.drop();
}

Other semantics, such as “wait-n” (block until n futures are available), can be obtained using more complex control

logic. Indeed, it is possible to use wait queues to simulate some forms of the _Select statement:

_Select(f1)
statement-1

or _Select(f2 && f3)
statement-2

uWaitQueue_ISM<Future_ISM<int> > queue;
queue.add(f1); queue.add(f2); queue.add(f3);
for (;;) {

queue.drop();
if (f1.available()) {

statement-1; break;
} else if (f2.available() && f3.available()) {

statement-2; break;
}

}

However, for more complex selection, the complexity of the simulation grows faster than the complexity of the equiv-

alent _Select statement. Furthermore, the _Select statement allows for different types of futures (including both ESM

and ISM futures) to be mixed in a single selection, whereas the futures in a uWaitQueue must all have the same type.

3.4 Servers

A server performs a computation on behalf of a client allowing the client to execute asynchronously until it needs the

result of the computation. Figure 3.3 shows three basic organizational structures for servers, from simple to complex

(top to bottom). The top structure is the simplest, where a single client uses a direct asynchronous call to pass a

future to the server for computation and retrieves the result of this computation from the future before passing another

future (one-to-one relationship between client and server). This structure ensures the single client cannot block on

the asynchronous call because it synchronizes with the server when it accesses the future, so the server should always

be available to receive arguments for the next call. However, this structure may result in the server spending most

of its time blocked if the single client does significant additional computation (such as processing the future result)

before making the next call. Note, attempting to increase the server’s work by sending multiple futures produces no

additional asynchrony because the server cannot accept these calls while it is working nor does it have any place to

store the additional arguments for subsequent processing.

To mitigate server blocking, a server must be restructured to support multiple asynchronous calls while it is work-

ing. This approach allows one or more clients (many-to-one relationship between clients and server) to make one

or more asynchronous calls, supplying the server with more work to keep it from blocking. Two key changes are

required. First, a server must provide a request buffer to store arguments for multiple asynchronous calls. Second,

the server must poll periodically for new asynchronous calls while it is working, otherwise clients block attempting to

insert requests into the buffer until their call is accepted. This latter requirement is necessary because the buffer is a

shared resource that requires mutual exclusion, i.e., clients add to the buffer and the server removes from the buffer.

However, polling can obscure server code and polling frequency is always an issue. The only way to remove polling

is to separate the buffer’s mutual-exclusion from the server’s.

3.4. SERVERS 55

return

call

Caller Callee
return

call

Worker(s)

Worker(s)

requestsCaller(s)

Caller(s)

Server

Server

Server

single future

multiple futures

return

call

return

call

return

call
Admin

Figure 3.3: Basic Server Structures

The middle structure in Figure 3.3 handles multiple asynchronous calls by transforming direct communication

between client and server into indirect communication via composing the server as one or more worker tasks to perform

computations and a monitor buffering future requests from asynchronous calls between client(s) and worker(s) (see

Section 3.5, p. 58) A client insert arguments into the buffer and receives a future result, and then continues. A worker

removes arguments from the input buffer for computation and places the result of the computation into the supplied

future; inserting the result implicitly unblocks any waiting client(s) attempting access to the future. Clients may block

if there is buffer contention or the buffer is full; workers may block if there is buffer contention or the buffer is empty.

Any buffer management is performed by the client and/or worker when manipulating the buffer(s).

The bottom structure in Figure 3.3 transforms the monitor into a task, called a administrator [Gen81], and its

thread is used to perform complex coordination operations between clients and workers. Notice, the administrator

task still needs internal buffers to hold multiple arguments passed asynchronously by clients. Note, this approach now

shares the buffer mutual-exclusion with the task; however, the administrator task can mitigate this issue by not making

blocking calls and only performing simple administration work, so it is mostly ready to accept asynchronous calls

from clients. In this case, the administrator may spend most of its time blocked waiting for client and/or worker calls,

but this behaviour is often a reasonable tradeoff to allow centralizing of administrative duties when managing complex

requests and interactions.

Figure 3.4 illustrates a server composed of a monitor buffer and worker task (middle structure in Figure 3.3). Both

an ESM and ISM version of the server are presented, where the differences are storage management and cancellation

of a future. Each server has server-specific data, ServerData, created in each future for use in cancellation. When

a client cancels a future associated with this server, member ServerData::cancel is called, and both servers mark the

position in the request queue to indicate that future is cancelled. The worker-task type, InputWorker, and an instance of

it, is, are local to the server for abstraction and encapsulation reasons. InputWorker reads an < integer,string > tuple

and communicates the tuple to the server via a synchronous call to the private mutex-member input, which checks if a

future exists with a matching integer key, and if so, places the string into that future as its result value. The ESM server

conditionally inserts the string into the future by checking if the future at position value is nullptr indicating it has

been cancelled. The ISM server does not conditionally insert the string because an empty future is inserted at position

value to hold the string if the original future is cancelled. Asynchronous calls from clients are made by calling mutex

member request, specifying an integer key and a future to return the associated string read by the input worker. The

ESM server resets the future passed to it as it reuses the future, and the ISM server creates a new future. If the new

request is greater than the vector size, the vector size is increased. The future is then buffered in vector requests until

the input worker subsequently fills in a value, and server-specific data is filled into the future in case the client cancels

the future.

56 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

ESM ISM

_Monitor InputServer {
struct ServerData {

InputServer * server;
int requested;

bool cancel() {
server->requests[requested] = nullptr;
return true;

} // ServerData::cancel
ServerData() {}

}; // ServerData

_Task InputWorker {
InputServer & is;

void main() {
int id;
string text;

while (cin >> id) {
getline(cin, text);
is.input(id, text);

}
} // main

public:
InputWorker(InputServer & is) : is(is) {}

}; // InputWorker
public:

typedef Future_ESM< string,
ServerData > FutureType;

private:
InputWorker iw;
vector< FutureType * > requests;

_Mutex void input(int value, string text) {
if (requests.size() > value) {

if (requests[value] != nullptr) {
requests[value]->delivery(text);

}
}

} // input
public:

InputServer() : iw(* this) {}

void request(FutureType * f, int requested) {
f->reset();
if (requests.size() <= requested) {

requests.resize(requested + 1);
}
requests[requested] = f;
f->serverData.server = this;
f->serverData.requested = requested;

} // request
}; // InputServer

_Monitor InputServer {
struct ServerData : public Future_ISM< string >::ServerData {

InputServer * server;
int requested;

bool cancel() {
server->requests[requested] = Future_ISM< string >();
return true;

} // ServerData::cancel
ServerData(InputServer * s, int r) : server(s), requested(r) {}

}; // ServerData

_Task InputWorker {
InputServer & is;

void main() {
int id;
string text;

while (cin >> id) {
getline(cin, text);
is.input(id, text);

} // while
} // main

public:
InputWorker(InputServer & is) : is(is) {}

}; // InputWorker
public:

typedef Future_ISM< string > FutureType;

private:
InputWorker iw;
vector< FutureType > requests;

_Mutex void input(int value, string text) {
if (requests.size() > value) {

requests[value].delivery(text);

}
} // input

public:
InputServer() : iw(* this) {}

FutureType request(int requested) {
FutureType f(new ServerData(this, requested));
if (requests.size() <= requested) {

requests.resize(requested + 1);
}
requests[requested] = f;

return f;
} // request

}; // InputServer

Figure 3.4: Example Server

3.4. SERVERS 57

3.4.1 Executors

An executor is a predefined, generic server with a fixed-size pool of worker threads performing submitted units of

work, where work is formed by a routine or functor. Each worker thread has its own request queue and arriving work

requests are demultiplexed among the queues in roughly round-robin order. No work sharing or stealing is performed

among the request queues.

class uExecutor {
public:

uExecutor();
uExecutor(size_t nprocessors, size_t nthreads, size_t nrqueues,

bool sepClus = uDefaultExecutorSepClus(), int affAffinity = uDefaultExecutorAffinity());
uExecutor(size_t nprocessors, size_t nthreads,

bool sepClus = uDefaultExecutorSepClus(), int affAffinity = uDefaultExecutorAffinity());
uExecutor(size_t nprocessors,

bool sepClus = uDefaultExecutorSepClus(), int affAffinity = uDefaultExecutorAffinity());

template< typename Func > void send(Func action);
template< typename Func, typename R > void sendrecv(Func & action, Future_ISM<R> & future);

};

The constructor routines have the following form:

uExecutor() – creates an executor with processors, threads, request queues, current or separate cluster, and proces-

sor affinity all set to the default values from the default routines.

uExecutor(size_t nprocessors, size_t nthreads, size_t nrqueues, bool sepClus, int affAffinity) – creates an ex-

ecutor containing nprocessors processors (with default affinity), nthreads worker threads, and nrqueues re-

quest queues, which are created on the current or separate cluster with the cluster’s default stack size.

uExecutor(size_t nprocessors, size_t nthreads, bool sepClus, int affAffinity) – creates an executor containing

nprocessors processors (with default affinity), and nthreads worker threads and queues, which are created

on the current or separate cluster with the cluster’s default stack size.

uExecutor(size_t nprocessors, bool sepClus, int affAffinity) – creates an executor containing nprocessors pro-

cessors (with default affinity), worker threads, and queues, which are created on the current or separate cluster

with the cluster’s default stack size.

If affOffset is zero or positive, the nprocessors processors are locked (affinity) on the CPUs starting at the specified

starting value; e.g., for nprocessors of 4 and affOffset of 16, the processors are locked on CPUS 16, 17, 18, 19.

Otherwise, the processors are run on any CPUs selected by the operating system. Note, to get the executor to use

processors on the current cluster, declare it as:

uExecutor executor(0, uThisCluster().getProcessors());

after the current cluster has created the appropriate number of processors, e.g., uProcessors p[3] to get 4 processors,

as each cluster usually has an initial processor.

The member routine send queues a unit of work action with no return value, on a FIFO buffer in the executor to

be eventually executed by one of the worker threads. The member routine sendrecv queues a unit of work action with

a return value, on a FIFO buffer in the executor to be eventually executed by one of the worker threads.

Figure 3.5 shows an example where work is submitted to an executor in the form of a routine, functor and lambda,

and then different types of values (int, double, char) are returned.

Finally, the following routines control the default executor parameters.

extern size_t uDefaultExecutorProcessors(); // kernel threads (processors) servicing worker threads
extern size_t uDefaultExecutorWorkers(); // worker threads servicing work requests
extern size_t uDefaultExecutorRQueues(); // executor request queues divided among workers
extern bool uDefaultExecutorSepClus(); // create processors on separate cluster
extern int uDefaultExecutorAffinity(); // affinity and offset (-1 => no affinity, default)

Routine uDefaultExecutorProcessors returns the number of processor (kernel threads) used by the executor. Routine

uDefaultExecutorWorkers returns the number of worker threads used by the executor. Routine uDefaultExecutorRQueues

returns the number of executor request-queues, which are distributed evenly across the worker threads. Routine

uDefaultExecutorSepClus returns true if the executor runs on its own separate cluster, and false if the executor runs on

the current cluster. Routine uDefaultExecutorAffinity returns the CPU offset from CPU 0 and forces affinity (-1⇒ no

58 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

#include <iostream>
using namespace std;
#include <uFuture.h>

int routine() {
return 3; // perform work and return result

}
struct Functor { // closure: allows arguments to work

double val;
double operator()() { // function-call operator

return val; // perfom work and return result
}
Functor(double val) : val(val) {}

} functor(4.5);

void routine2() {
osacquire(cout) << -1 << endl; // perfom work and no result

}
struct Functor2 { // closure: allows arguments to work

double val;
void operator()() { // function-call operator

osacquire(cout) << val << endl; // perfom work and no result
}
Functor2(double val) : val(val) {}

} functor2(7.3);

int main() {
enum { NoOfRequests = 10 };
uExecutor executor; // work-pool of threads and processors
Future_ISM<int> fi[NoOfRequests];
Future_ISM<double> fd[NoOfRequests];
Future_ISM<char> fc[NoOfRequests];

for (int i = 0; i < NoOfRequests; i += 1) { // send off work for executor
executor.sendrecv(routine, fi[i]); // and get return future
executor.sendrecv(functor, fd[i]);
executor.sendrecv([]() { return ’a’; }, fc[i]);

}
executor.send(routine2); // send off work but no return value
executor.send(functor2);
executor.send([]() { osacquire(cout) << ’d’ << endl; });
for (int i = 0; i < NoOfRequests; i += 1) { // wait for results

osacquire(cout) << fi[i]() << " " << fd[i]() << " " << fc[i]() << " ";
}
osacquire(cout) << endl;

}

Figure 3.5: Executor Example

affinity, default) Currently, the defaults are 2 processors, 2 threads 2 request queues, and the executor runs in the user

cluster without affinity.

3.5 Actor

The actor model [HBS73, Agh86] is a message-passing (share nothing) system with an interesting abstraction for

receiving messages. Two programming systems providing actors are CAF [CHS14] and Akka [Lig16].

Figure 3.6 shows the actor model has an actor composed of a mailbox (message queue/bounded buffer), and a

set of behaviours that receive from the mailbox to perform work. A behaviour is an actor member that takes a single

message parameter, where the default behaviour is the member named receive. An actor’s behaviours create other

actors and communicate with these new actors by sending messages to their mailbox (including an actor sending to

itself). An actor’s constructor or behaviour can set/hand-off message reception to another behaviour.

An actor’s mailbox contains heterogeneous typed-messages. Anything can be passed in an actor message, e.g.,

3.5. ACTOR 59

m1 m2 mn

mailbox

actor (server) executor

behaviours

receive

multi-type messages

threads
(clients)

sync/async sends

Figure 3.6: Actor model

actor references, promises, and routines/functors/lambdas. Messages are divided into those that do and do not require

a response. Responses are handled asynchronously through promises (not futures Section 3.1, p. 47), where the actor

processing the message deliveries the promise result.

Actors do not have a thread and usually do not have a stack; instead they are executed by an underlying thread-

pool (executor, see Section 3.4.1, p. 57), which calls an actor’s current behaviour member with each message from

its mailbox. An executor guarantees an actor’s behaviours are executed sequentially and messages are processed in

FIFO order from the actor’s mailbox, i.e., messages are never executed concurrently for a specific actor by multiple

executors.

3.5.1 Storage Management

Most actor systems leverage garbage collection to manage actors and messages, and the actor system terminates when

all actors terminate. Since C++ does not have implicit garbage collection, µC++ actors and messages involve explicit

storage management. Therefore, programmers must deal with actor/message life-time by returning to the executor one

of the following allocation status for both the actor and delivered message after a behaviour returns to the executor.

enum Allocation { Nodelete, Delete, Destroy, Finished }; // allocation status

Nodelete means the actor/message persists and there is no action by the executor. Use for multi-use actors or

messages during their life time. (actor/message default)

Delete means the actor is removed from the actor system and the actor/message is deleted by the executor. Use

with dynamically allocated actors or messages when their life-time has expired.

Destroy means the actor is removed from the actor system and the actor/message’s destructor is called by the

executor but storage is not deallocated. Use with placement allocated actors or messages, i.e., new(. . .), where

the storage is managed elsewhere, possibly to be reused for a new actor/message.

Finished means the actor is removed from the actor system (no action for a message), but neither the destructor

is called nor is storage deallocated. Use with global or stack allocated actors or messages destructor call and

deallocation are implicitly called at the end of a lexically scope.

Once an actor/message is deleted/destroyed/finished, no subsequent access is allowed until the storage is reallocated.

3.5.2 Messages

Figure 3.7a shows the basic type uActor::Message, which is used for simple messages and all other actor messages

types must inherit from it. The constructor routine Message has the following form:

Message(Allocation allocation = Nodelete) – creates a message with a default allocation of Nodelete.

Note, the default constructor assumes the message persists.

Figure 3.7b shows the message type uActor::SenderMsg, which remembers the message sender. The overloaded

constructor routine SenderMsg has the following forms:

SenderMsg(Allocation allocation = Nodelete, uActor * sender = nullptr) – creates a message with a default al-

location of Nodelete, and specifies the actor that sent the message or an actor delegated as the message sender.

SenderMsg(uActor * sender) – creates a message with a default allocation of Delete, and specifies the actor that

sent the message or an actor delegated as the message sender.

60 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

class Message {
public:

Allocation allocation; // allocation action
Message(Allocation allocation = Nodelete);

};

(a) Base

class SenderMsg : public Message {
friend class uActor;
uActor * sender_; // delegated sender

public:
SenderMsg(Allocation allocation = Nodelete, uActor * sender = nullptr);
SenderMsg(uActor * sender);
uActor * sender(); // sender actor

};

(b) Sender

class TraceMsg : public SenderMsg {
public:

TraceMsg(Allocation allocation = Nodelete, uActor * sender = nullptr) : Message(allocation, sender) {}
TraceMsg(uActor * sender) : Message(sender) {}
void erase(); // delete all message hops except cursor hop
void reset(); // delete all message hops from head to cursor
bool Return(); // move cursor back (towards tail) one hop and

// send trace message to cursor actor
void retSender(); // set cursor to tail and send trace message to cursor actor
bool returned(); // check if cursor not at head
void resume(); // reset cursor to head and send trace message to cursor actor
void print(); // prints trace information from cursor to the end of the trace

};

(c) Trace

template<typename Result> class PromiseMsg : public SenderMsg {
Promise< Result > result_; // delivered promise

public:
PromiseMsg(Allocation allocation = Nodelete, uActor * sender = nullptr);
PromiseMsg(uActor * sender); // allocation = Delete
void delivery(Result res); // make result available in promise
Result result(); // return promise result
Result operator()(); // alternate syntax for result

};

(d) Promise

Figure 3.7: Actor Messages

Note, the default constructor assumes the message persists, while specifying the sender constructor assumes the mes-

sage is deleted. The member routine sender returns the actor that sent the message, which can be used for sending a

reply message.

Figure 3.7c shows the message type uActor::TraceMsg, which remembers the actor path a message follows. Each

step a message takes between actors is called a hop, and hop links point in the reverse direction to the message sends.

The hop queue has a cursor that is used to dynamically restructure the trace.

A1 A3m m

hops
sends

m

tail ← cursor→

A2 A4 A5

head

m

The overloaded constructor routines, TraceMsg, are the same as for Message. The member routine erase deletes all

message hops except the cursor hop. The member routine reset deletes all message hops from head to cursor. The

3.5. ACTOR 61

member routine Return moves the cursor back (towards tail) one hop and sends the message to the cursor actor. Return

false if cursor is tail and no send occurs, otherwise true. The member routine retSender moves the cursor to tail and

sends the message to the cursor actor. The member routine returned returns true if the cursor is not at the head,

otherwise false. The member routine resume moves the cursor to head and sends the message to the cursor actor. The

member routine print prints the address of the trace message, trace head, cursor, and actors at each hop from cursor to

tail, which is useful for debugging.

An actor cannot block because it is executed by a thread in the executor (see Figure 3.6, p. 59). A promise provides

an alternate mechanism from message passing between two asynchronous actors (client/server) to communicate. The

ask (see Section 3.5.3) message send returns a promise, which is subsequently used in an atomic check for completion

and optional registration of a callback executed on completion.

Figure 3.7d shows the message type uActor::PromiseMsg, which contains the matching promise (see Figure 3.8)

to a returned promise. The overloaded constructor routines PromiseMsg are the same as for Message. The member

routine delivery is used by a server actor to fulfill the contained promise. The member routine result is used by a client

actor to access the promise result in the message.

Figure 3.8 shows the type uActor::Promise, which holds the result of a computation by a server actor. A client

actor creates a PromiseMsg containing data for the server to process and an empty Promise, which it sends to a server

actor. The send returns a copy of the empty Promise in the PromiseMsg for use in the future by the client to access the

promise result. A promise is responsible for storage management by using reference counts and can be copied like a

Future_ISM (see Section 3.1.4, p. 50). The server actor works asynchronously, based on the data in the PromiseMsg,

and delivers the result into the PromiseMsg’s promise. When the client needs the promise result, it races with the

server to install a callback, which takes as a parameter a reference to the promise result type. If the server wins, the

client can immediately process the result in the future. If the client wins, the client has installed the callback and the

server posts (special message send) the callback function onto the mailbox queue for the client’s executor. Hence,

the callback is executed by the client actor in FIFO order with the client’s messages, and the lambda function safely

executes in the client actor’s receive-member as it may reference the client’s members. Conceptually, the callback is

a one-shot become for the actor, i.e., the current receive member is ignored and the callback executed instead. The

callback must return an Allocation, so the executor knows how to process the actor following a callback’s execution, if

it is installed.

The client has two mechanisms to interact with the promise:

maybe atomically attempts to install the callback and returns:

• true meaning the client lost the race and the server has fulfilled the promise, the result is visible in the client’s

promise, and the server did not post the callback for execution by the client. The client can now process the

promise result immediately.

• false meaning the client won the race and the server has not fulfilled the promise yet, the callback is installed,

and is posted by the server during fulfilment for subsequent execution by the client. The client now has to do

other work, possibly expecting the callback to return the promise result in a message.

then is the same as maybe, except the callback is called unconditionally once the promise has been fulfilled. If the

client loses the race, it implicitly calls the callback. If the client wins the race, the behaviour is identically to maybe,

and the callback is installed. Hence, the callback passed to then is always called, but may either be immediately called

or a posted message. then returns a boolean indicating if the result has been processed during the call to then.

The member routine result returns the server result in the promise. The member routine reset allows the promise to be

reused by reseting for a new race.

3.5.3 Actor Type

Figure 3.9, p. 63 shows the actor type, which defines actor/message deallocation, message types, and send/receive

communication members. The constructor routine uActor creates an actor with a default allocation of Nodelete. The

overloaded member routines allocation get and set an actor’s current allocation value.

The common mechanism for actor communication is members tell and ask, for sending messages without and with

a return value, and an actor subclass must provide at least one receive member where messages are delivered. The tell

send has the following two forms:

62 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

template<typename Result> class Promise {
std::function< void (Result &) > callback; // functor type

public:
_Exception PromiseFailure {};
_Exception DupCallback : public PromiseFailure {}; // raised if duplicate callback
_Exception DupDelivery : public PromiseFailure {}; // raised if duplicate delivery
_Exception NoResult : public PromiseFailure {}; // raised if no result
_Exception ChainedReset : public PromiseFailure {}; // raised if pending chained callback

Promise() {}
Promise(const Promise<Result> & rhs);
Promise<Result> & operator=(const Promise<Result> & rhs);

// USED BY CLIENT
bool maybe(std::function<Allocation (Result)> callback); // access result
bool then(std::function<Allocation (Result)> callback); // access result
Result result();
Result operator()() // alternate syntax for result
void reset(); // mark promise as empty (for reuse)

// USED BY SERVER
void delivery(Result result); // make result available in the promise

}; // Promise

Figure 3.8: Promise Type

IntMsg msg;
actor->tell(*new IntMsg); // send message to actor containing current sender

*actor | *new IntMsg; // short form
actor->tell(msg, proxysender); // send message to actor containing proxy sender

tell message sends can be cascaded:

actor->tell(*new IntMsg, this)->tell(*new IntMsg, sender)->tell(*new IntMsg);

*actor | *new IntMsg | *new IntMsg | *new IntMsg;

The ask send has the following two forms:

promise = actor->ask(msg); // send message to actor with promise result, do not identify sender
promise = *actor | | *new IntMsg; // short form
promise = actor->ask(msg, proxysender); // send message to actor containing proxy sender

An actor receive-member begins by discriminating the kind of message passed to it based on the message type

using the Case macro:

Allocation receive(Message & msg) { // deliver message from mailbox
Case(MsgInt, msg) { // msg of type MsgInt ?

msg_d->i = msg_d->i + . . . ; // msg_d is MsgInt pointer to message
} else Case(MsgFloat, msg) { // msg of type MsgFloat ?

. . . msg_d + 5.6 . . . ; // msg_d is MsgFloat ponter to message
} else // unknown message type
return . . . ; // Nodelete or Delete

}

Within each Case clause, a new pointer variable to the derived message type is created with name message-name_d

and type specified in the Case clause. This local variable is used to access the specific fields associated with the kind

of received message. Finally, a receive member ends by returning whether the actor is to persist (Nodelete) or be

deleted (Delete).

For PromiseMsg messages, the receive can deliver a value into the promise associated with the message:

Case(PMsg, msg) { // PMsg type ?
// compute val
msg_d->delivery(val); // deliver value into promise

} . . .

All promise operations are available through the variable msg_d.

An actor is created from an actor type, which has all the properties of a class and implicitly inherits from uActor.

3.5. ACTOR 63

class uActor {
virtual Allocation receive(Message & msg) = 0; // user supplied message handler

protected:
virtual void preStart() { /* default empty */ }; // user supplied actor initialization
virtual Handler become(Handler handler); // dynamically change message handler
Allocation allocation(); // getter
void allocation(Allocation alloc); // setter

public:
// Allocation States
enum Allocation { Nodelete, Delete, Destroy, Finished };
// Message Types
class Message { . . . };
class SenderMsg : public Message { . . . }
class TraceMsg : public SenderMsg { . . . };
template<typename T> class Promise { . . . };
template<typename Result> struct PromiseMsg : public SenderMsg { . . . }
// Storage management
uActor(); // default allocation Nodelete
// Communication
uActor & tell(Message & msg); // async call, no return value
uActor & tell(SenderMsg & msg); // async call, no return value
uActor & tell(SenderMsg & msg, uActor * sender); // async call, no return value
uActor & tell(TraceMsg & msg);
uActor & operator | (Message & msg); // tell alternatives
uActor & operator | (SenderMsg & msg)
uActor & operator | (TraceMsg & msg);
uActor & forward(Message & msg);
uActor & forward(SenderMsg & msg) { // send but retain original sender
uActor & forward(TraceMsg & msg);
template< typename Result > Promise< Result >

ask(PromiseMsg< Result > & msg, uActor * sender = nullptr) { // message send, return promise
template< typename Result > Promise< Result >

operator | | (PromiseMsg< Result > &msg); // ask alternative
// Administration
void restart(); // reset to initial receive member and run preStart
static void start(uExecutor * executor = nullptr) // create executor to run actors
static bool stop(uDuration duration = 0) { // wait for all actors to terminate or timeout
// Builtin Messages
static struct StartMsg : public uActor::SenderMsg {} startMsg; // start actor
static struct StopMsg : public uActor::SenderMsg {} stopMsg; // terminate actor
static struct UnhandledMsg : public uActor::SenderMsg {} unhandledMsg; // tell error

};

Figure 3.9: Actor Type

_Actor MyActor { // new actor type
OtherActor * partner;
void preStart() { // executed by executor

*partner | *new IntMsg(7); // contact partner
}
. . .

public:
MyActor(OtherActor * partner) : partner(partner) {} // executed by creator’s thread

};

MyActor is created with a partner actor passed to its constructor and its first action is to send a message to its partner in

member preStart. Member preStart is run via a special message sent at the end of an actor’s constructor. This message

is the first one received by an actor because messages are delivered in FIFO order. An executor processes a preStart

message by invoking the preStart member rather than calling the current receive member set by become. Hence,

preStart is not performed by the thread executing the actor’s constructor, but as part of normal message delivery.

The member routine become changes the receive member and returns the previous receive member.

64 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

_Actor MyActor {
Allocation receive { // initial receiver

. . . Handler prev = become(receiver2); . . . // toggle to different receiver
}
Allocation receive2 { // alternate receiver

. . . become(receiver); . . . // toggle back
}

};

The type Handle represents a pointer to an actor member that matches the receive prototype. Initially, messages are

delivered to member receive but are redirected to receive2 after executing the become in receive. A similar redirection

occurs in member receive2. The use of become allows an actor to behave like a finite-state machine, where each

receive member is a state and become makes the transitions among states.

The member routine restart resets an actor’s receive member to receive and reruns member preStart so the actor

can be re-purposed for a new use rather than being deleted and creating a new actor.

The member routine start is passed an external executor or it creates an executor to run the actor thread-pool. An

executor must have sufficient workers and processors to match with the actor workload (see Section 3.4.1, p. 57); the

life-time of the executor must exceed the life-time of the actor system. If no executor is passed to start, it creates the

following executor in the heap:

uExecutor(0, uThisCluster().getProcessors(), false, -1);

which contains 0 new processors, uThisCluster().getProcessors() worker threads and queues on the current cluster

without affinity. This executor uses processors in the current cluster to execute actors, so the level of parallelism

can be set in the program main by declaring uProcessors. The member routine stop is optionally passed a timeout

duration; it then wait for all actors to end or the timeout duration to expire, deletes the actor executor if start creates

it, and returns true if the actor system stopped, and false if the timeout expired. The command pattern for using these

two members is:

uActor::start(); // start actor system
// create initial actors and send them messages
uActor::stop(); // wait for all actors to terminate

The message uActor::startMsg of type uActor::StartMsg is the suggested way to start an actor. The message

uActor::stopMsg of type uActor::StopMsg is the suggested way to stop an actor. uActor::stop is called to wait for

all actors in the system to terminate; therefore, actors must be created prior to calling uActor::stop or the program ends

immediately. The optional duration (in seconds) for uActor::stop unblocks the waiting task after the time interval has

expired and returns false, i.e., all the actors did not stop in the time interval.

The following mechanism is used to deal with message errors, such as sending a message not understood by the

receiver, i.e., the type of the message is not one a receive member knows how to handle. The mechanism is to return

the message uActor::unhandledMsg of type uActor::UnhandledMsg to the sender indicating it sent an unhandleable

message, e.g.:

Allocation receive(Message & msg) {
Case(MsgType1, msg) { // handle known message types

. . .
// error cases
} else Case(UnhandledMsg, msg) { // receiver complain

abort("sent unknown message to %p", msg.sender);
} else { // unknown message

*msg.sender | uActor::unhandledMsg; // sender complain
}

}

In this case, the type of the unhandledMsg message (UnhandledMsg) is used to receive the unhandledMsg message

from a complaining receiver. As well, the message unhandledMsg is returned to the sender to indicate it sent an

unhandleable message.

Actors may inherit from other actors:

3.5. ACTOR 65

#include <iostream>
using namespace std;
#include <uActor.h>

struct StrMsg : public uActor::Message { // actor message
string val;
StrMsg(string val) : Message(uActor::Delete), val(val) {}

};
_Actor Hello {

Allocation receive(Message & str) {
Case(StrMsg, str) { // determine message kind

osacquire acq(cout);
cout << str_d->val; // access message value
if (str_d->val == "hello") { cout << ", hello back at you!" << endl; }
else { cout << ", do not understand?" << endl; }

} else Case(StopMsg, str) return Delete; // delete actor
return Nodelete; // reuse actor

}
};
int main() {

uActor::start(); // start actor system

*new Hello() | *new StrMsg("hello") | *new StrMsg("bonjour") | uActor::stopMsg;

*new Hello() | *new StrMsg("hello") | *new StrMsg("buenos dias") | uActor::stopMsg;
uActor::stop(); // wait for all actors to terminate

}

Figure 3.10: Hello Actor

_Actor B {
Allocation receive(Message &) {

return Delete;
}

protected:
void preStart() { . . . }

public:
B() {}
B(int i) {}

};

_Actor D : public B {
void preStart() { B::preStart(); } // call base member
Allocation receive(Message &) { return Delete; }

public:
D() {}
D(int i) : B(i) {}

};
B b; // B::preStart called after constructor
D d; // D::prestart called after constructor, which calls B::preStart

For variable b, only B::preStart is called; for variable d, only D::preStart is called. In general, the most derived actor

knows how it wants to initialize the entire actor object. However, it is possible for the derived actor to explicitly invoke

the base actors preStart, as in D::prestart, which calls B::preStart.

A complementary approach to become is an coroutine actor, which combines the properties of a coroutine with

the properties of an actor (see Section 2.7, p. 12).

_CorActor MyActor {
Allocation receive { // receiver

. . . resume(); . . .
}
void main {

for (;;) { . . . suspend(); . . . } // normal receive code
for (;;) { . . . suspend(); . . . } // alternate receive code

}
};

A coroutine actor has its own stack, so its coroutine main can suspend in multiple actor states, including in helper

members. Often with a coroutine actor, only a single receive member as the different actor states appear in the

coroutine main. It is still possible to use become and have multiple receive members with a coroutine actor.

Figure 3.10 shows a basic actor receiving a number of messages containing strings. There are two kinds of

messages: one to send a string and the other to tell the actor to stop and delete itself. The receive discriminates the

kind of message and then examines the string within the message to print an appropriate message. In a discrimination

clause, the variable msg_d is used to access the string in the message. For a StrMsg, the actor continues to exist by

returning Nodelete; for a StopMsg, the actor terminates by returning Delete. The main member creates two actors and

66 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

struct FibMsg : public uActor::Message { long int fn; FibMsg() : Message(uActor::Delete) {} };
struct NextMsg : public uActor::Message {};

_Actor Fib {
long int fn1, fn2; int state = 1;
Allocation receive(Message & msg) {

Case(NextMsg, msg) {
FibMsg * fibmsg = new FibMsg;
long int & fn = fibmsg->fn;
switch(state) {
case 1:

fn = 0; fn1 = fn;
state = 2;
break;

case 2:
fn = 1; fn2 = fn1; fn1 = fn;
state = 3;
break;

case 3:
fn = fn1 + fn2; fn2 = fn1;
fn1 = fn;
break;

} // switch

*msg_d->sender | *fibmsg;
} else Case(StopMsg, msg)

return Finished;
return Nodelete;

}
};

(a) explicit state

_Actor Fib {
long int fn1, fn2;
Allocation f0(Message & msg) {

Case(NextMsg, msg) {
FibMsg * fibmsg = new FibMsg;
long int & fn = fibmsg->fn;
fn = 0; fn1 = fn;

*msg.sender | *fibmsg;
become(&Fib::f1);

} else Case(StopMsg, msg)
return Finished;

return Nodelete;
}
Allocation f1(Message & msg) {

Case(NextMsg, msg) {
FibMsg * fibmsg = new FibMsg;
long int & fn = fibmsg->fn;
fn = 1; fn2 = fn1; fn1 = fn;

*msg.sender | *fibmsg;
become(&Fib::fn);

} else Case(StopMsg, msg)
return Finished;

return Nodelete;
}
Allocation fn(Message & msg) {

Case(NextMsg, msg) {
FibMsg * fibmsg = new FibMsg;
long int & fn = fibmsg->fn;
fn = fn1 + fn2; fn2 = fn1;
fn1 = fn;

*msg.sender | *fibmsg;
} else Case(StopMsg, msg)

return Finished;
return Nodelete;

}
public:

Fib() { become(&Fib::f0); }
};

(b) become

_CorActor Fib {
long int * fn;
FibMsg * fibmsg;
NextMsg * msg;
Allocation receive(Message & msg) {

Case(NextMsg, msg) {
Fib::msg = msg_d;
fibmsg = new FibMsg;
fn = &fibmsg->fn;
resume();

} else Case(StopMsg, msg)
return Finished;

return Nodelete;
}
void main() {

long int fn1, fn2;

*fn = 0; fn1 = *fn;

*msg->sender | *fibmsg;
suspend();

*fn = 1; fn2 = fn1; fn1 = *fn;

*msg->sender | *fibmsg;
suspend();
for (;;) {

*fn = fn1 + fn2; fn2 = fn1;
fn1 = *fn;

*msg->sender | *fibmsg;
suspend();

}
}

};

(c) coroutine actor

Figure 3.11: Fibonacci Actor

passes each actor three messages, two string messages and a stop message. Then the program main waits for all actors

to end.

Figure 3.11 shows computing Fibonacci numbers, where the left actor manages the three states of the Fibonacci

algorithm using the flag variable state, the middle actor uses become to change the receive target for each of the three

states, and the right actor uses the coroutine to remember the last point of execution among the three states. The

actors accept a NextMsg to compute the next Fibonacci number and a StopMsg to terminate. The NextMsg contains

the sending actor, so the Fibonacci actor returns the new Fibonacci number back to the sender.

Figure 3.12 shows a simple trace message with only a single coroutine actor, so the traces always point to the one

actor. Figure 3.13, p. 68 shows the output from the simple trace, with titles separating different tracing features. In

“Build Trace”, the actor sends 4 messages to itself, and the output shows the trace growing as each traced message

arrives. In “Move Cursor Back”, the actor does a trace Return for each message, which moves the cursor back one hop

(towards tail) and sends the trace message to cursor actor. A trace message is not part of the trace. The output shows

the trace shrinking for each trace return until the cursor gets to tail. In “Move Cursor Head”, the actor does a trace

resume to move the cursor back to the head. The output shows the trace reset to the original length. In “Delete Trace”,

the actor does a trace retSender to move the cursor to the tail and then trace reset to delete all hops from the head to the

3.5. ACTOR 67

struct TMsg : public uActor::TraceMsg { int cnt = 0; } tmsg; // traceable message

_CorActor Trace {
Allocation receive(Message & msg) {

Case(TMsg, msg) { resume(); }
else Case(StopMsg, msg) return Finished;
return Nodelete;

}
void main() {

cout << "Build Trace" << endl;
for (int i = 0; i < 4; i += 1) {

tmsg.print(); *this | tmsg; // send message to self
suspend();

}
cout << "Move Cursor Back" << endl;
for (int i = 0; i < 4; i += 1) {

tmsg.print(); tmsg.Return(); // move cursor back 1 hop
suspend();

}
cout << "Move Cursor Head" << endl;
tmsg.resume(); tmsg.print(); // move cursor to head
suspend();
cout << "Delete Trace" << endl;
tmsg.retSender(); tmsg.reset(); tmsg.print(); // move cursor and delete all hops
suspend();
cout << "Build Trace" << endl;
for (int i = 0; i < 4; i += 1) {

tmsg.print(); *this | tmsg; // send message to self
suspend();

}
cout << "Erase trace" << endl;
tmsg.erase(); tmsg.print(); // remove hops, except cursor

*this | uActor::stopMsg;
suspend();

}
};
int main(int argc, char * argv[]) {

uActor::start(); // start actor system
Trace trace;
trace | tmsg;
uActor::stop(); // wait for all actors to terminate

}

Figure 3.12: Trace Actor

cursor, i.e., the entire trace. The output shows the trace is the single tail hop. In “Build Trace”, the actor rebuilds the

trace so the cursor is at the head. The output shows the trace growing as each traced message arrives. In “Erase Trace”,

the actor does a trace erase to remove all hops except the cursor hop. The output shows the trace is the single head

hop.

Figure 3.14, p. 69 illustrates ask messages with promises. The message kinds are IntMsg and StrMsg. Note, the

message type can be independent of the returned promise-type. The server receives both kinds of messages and delivers

an appropriate result into the message promise. The client starts by sending tell promise messages to the server and the

returned promises are stored for each message send. The client can then execute asynchronously before checking if the

server has fulfilled any of the promises using maybe. If server completed all the promises, the client stops the server

and finishes. Otherwise, the client changes its behaviour and receives the messages sent by the registered callbacks,

ICB and SCB, called by the server after a promise is fulfilled. Once all the promise messages are fulfilled, the client

stops the server and finishes.

68 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Build Trace
message 0x65ba80 source:0x8ddc70 cursor (node:0x8ddc70, actor:0x859060)

trace 0x859060
message 0x65ba80 source:0x8ddcc0 cursor (node:0x8ddcc0, actor:0x859060)

trace 0x859060 0x859060
message 0x65ba80 source:0x8ddd10 cursor (node:0x8ddd10, actor:0x859060)

trace 0x859060 0x859060 0x859060
message 0x65ba80 source:0x8ddd30 cursor (node:0x8ddd30, actor:0x859060)

trace 0x859060 0x859060 0x859060 0x859060
Move Cursor Back
message 0x65ba80 source:0x8ddd50 cursor (node:0x8ddd50, actor:0x859060)

trace 0x859060 0x859060 0x859060 0x859060 0x859060
message 0x65ba80 source:0x8ddd50 cursor (node:0x8ddd30, actor:0x859060)

trace 0x859060 0x859060 0x859060 0x859060
message 0x65ba80 source:0x8ddd50 cursor (node:0x8ddd10, actor:0x859060)

trace 0x859060 0x859060 0x859060
message 0x65ba80 source:0x8ddd50 cursor (node:0x8ddcc0, actor:0x859060)

trace 0x859060 0x859060
Move Cursor Head
message 0x65ba80 source:0x8ddd50 cursor (node:0x8ddd50, actor:0x859060)

trace 0x859060 0x859060 0x859060 0x859060 0x859060
Delete Trace
message 0x65ba80 source:0x8ddc70 cursor (node:0x8ddc70, actor:0x859060)

trace 0x859060
Build Trace
message 0x65ba80 source:0x8ddc70 cursor (node:0x8ddc70, actor:0x859060)

trace 0x859060
message 0x65ba80 source:0x8ddcc0 cursor (node:0x8ddcc0, actor:0x859060)

trace 0x859060 0x859060
message 0x65ba80 source:0x8ddd10 cursor (node:0x8ddd10, actor:0x859060)

trace 0x859060 0x859060 0x859060
message 0x65ba80 source:0x8ddd30 cursor (node:0x8ddd30, actor:0x859060)

trace 0x859060 0x859060 0x859060 0x859060
Erase trace
message 0x65ba80 source:0x8ddd50 cursor (node:0x8ddd50, actor:0x859060)

trace 0x859060

Figure 3.13: Trace Actor Output

3.5. ACTOR 69

#include <iostream>
#include <string>
using namespace std;
#include <uActor.h>

struct IntMsg : public uActor::PromiseMsg< int > {
int val;
IntMsg() {}
IntMsg(int val) : PromiseMsg(uActor::Delete), val(val) {}

};
struct StrMsg : public uActor::PromiseMsg< string > {

string val;
StrMsg() {}
StrMsg(string val) : PromiseMsg(uActor::Delete), val(val) {}

};
_Actor Server {

Allocation receive(uActor::Message & msg) {
Case(IntMsg, msg) { msg_d->delivery(7); }
else Case(StrMsg, msg) { msg_d->delivery("XYZ"); }
else Case(StopMsg, msg) { return Finished; }
return Nodelete; // reuse actor

}
};
_Actor Client {

enum { Messages = 100 };
IntMsg intmsg[Messages];
StrMsg strmsg[Messages];
uActor::Promise< int > pi[Messages];
uActor::Promise< string > ps[Messages];
int results = 0;
Server & server;

#define ICB [this, li = i](int) { *this | intmsg[li]; return Nodelete; }
#define SCB [this, li = i](string) { *this | strmsg[li]; return Nodelete; }

Allocation receive(uActor::Message & msg) { // receive callback messages
for (size_t i = 0; i < Messages; i += 1) { // send out work

pi[i] = server | | intmsg[i];
ps[i] = server | | strmsg[i];

}
for (size_t i = 0; i < Messages; i += 1) { // any promise fulfilled ?

if (pi[i].maybe(ICB)) { pi[i](); results += 1; }
if (ps[i].maybe(SCB)) { ps[i](); results += 1; }

}
if (results == 2 * Messages) { server | uActor::stopMsg; return Finished; }
become(&Client::receive2);
return Nodelete; // reuse actor

}
Allocation receive2(uActor::Message & msg) { // receive callback messages

Case(IntMsg, msg) { (*msg_d)(); results += 1; }
else Case(StrMsg, msg) { (*msg_d)(); results += 1; }
if (results == 2 * Messages - 1) { server | uActor::stopMsg; return Finished; }
return Nodelete; // reuse actor

}
public:

Client(Server & server) : server(server) {}
};
int main() {

uActor::start(); // start actor system
Server server;
Client client(server);
client | uActor::startMsg; // start actors
uActor::stop(); // wait for all actors to terminate

}

Figure 3.14: Promise Actor

70 CHAPTER 3. ASYNCHRONOUS COMMUNICATION

Chapter 4

Input/Output

A major problem with concurrency and the file system is that, like the compiler, the file system is unaware if a program

is concurrent (see Section 2.14, p. 32). To ensure multiple tasks are not performing I/O operations simultaneously on

the same file descriptor, each µC++ file is implemented as a monitor that provides mutual exclusion on I/O operations.

However, there are more complex issues relating to I/O operations in a concurrent system.

4.1 Nonblocking I/O

For a sequential program performing an I/O operation that cannot proceed immediately, the normal action for the file

system is to block the program until the operation can continue. For example, when a program needs input from the

keyboard, the file system blocks the program until data is entered. This action is correct for a sequential program

because there is no other work for it to do until the new data is supplied by the user. However, this action may be

incorrect for a concurrent program because there may be other work to do even without the user data. Therefore, the

normal action by the file system, called heavy blocking (see Section 8.4.3, p. 132), is usually inappropriate for a con-

current program because it inhibits concurrency. Therefore, I/O operations must be transformed from heavy blocking

to light blocking so that execution of other tasks can continue. This transformation is achieved by nonblocking I/O.

To simplify the complexity of nonblocking I/O, µC++ supplies a nonblocking I/O library.

While I/O operations can be made nonblocking, this requires special action as the nonblocking I/O operations may

not restart automatically when the operation completes. Instead, it may be necessary to poll for I/O completions, which

is done through the select operation in UNIX, while other tasks execute. Only when all tasks on a cluster are directly

or indirectly (light-) blocked, waiting for I/O operations to complete, can the virtual processor be heavy blocked.

This scenario is implemented automatically by µC++ choosing a task performing I/O to poll for completion of

any I/O operation, called the poller task; all other tasks performing I/O are light blocked. When an I/O operation

completes (e.g., a read or write), the task waiting for that operation is unblocked by the poller task. If the poller’s

I/O completes, it unblocks one of the I/O blocked tasks and that task becomes the I/O poller. Only when the poller

detects that no I/O operations have completed and there are no tasks on the cluster to execute (i.e., the cluster’s ready

queue is empty) does the poller perform a heavy block. This scheme allows other tasks to progress with only a slight

degradation in performance due to the polling task.

4.2 C++ Stream I/O

When a stream is shared by multiple tasks, characters generated by the insertion operator (<<) and/or the extraction

operator >> can be intermixed or cause failure. For example, if two tasks execute the following:

task1 : cout << "abc " << "def " << endl;
task2 : cout << "uvw " << "xyz " << endl;

possible outputs are:

abc def
uvw xyz

abc uvw xyz
def

uvw abc xyz def abuvwc dexf
yz

uvw abc def
xyz

Concurrent operations can even corrupt the internal state of the stream resulting in failure. As a result, some form of

mutual exclusion is required for concurrent stream access.

71

72 CHAPTER 4. INPUT/OUTPUT

A coarse-grained solution is to perform all stream operations via a single task or within a monitor providing

the necessary mutual exclusion for the stream. A fine-grained solution is to have a lock for each stream, which is

acquired and released around stream operations by each task. µC++ provides a fine-grained solution where an owner

lock is acquired and released indirectly by instantiating an RAII type specific for the kind of stream:osacquire for

output streams and isacquire for input streams located in namespace std. For the duration of these object types on an

appropriate stream, the stream’s owner lock is held; hence, I/O for that stream occurs with mutual exclusion within

and across I/O operations performed on the stream. The lock acquire is performed in the object’s constructor and the

release is performed in the destructor.

The common usage is creating an anonymous object to lock a stream during a single cascaded I/O expression, e.g.:

task1 : osacquire(cout) << "abc " << "def " << endl; // anonymous locking object
task2 : osacquire(cout) << "uvw " << "xyz " << endl;

Now, the order of the thread execution is still non-deterministic, but the output is constrained to two possible lines in

either order.

abc def
uvw xyz

uvw xyz
abc def

In summary, the stream lock is acquired by the allocation of the anonymous locking object (locking in constructor)

and implicitly deallocated (releasing in destructor) at the end of the cascaded I/O expression ensuring all operations in

the expression occur atomically.

To lock a stream across multiple I/O operations, declare an instance of the appropriate osacquire or isacquire type

to implicitly acquire and release the stream lock for the object’s duration, e.g.:

{ // acquire cout for block duration
osacquire acq(cout); // named stream locker
cout << "abc";
osacquire(cout) << "uvw " << "xyz " << endl; // unnecessary, but ok to acquire and release again}$
cout << "def";

} // implicitly release the lock when “acq” is deallocated

Note, the unnecessary anonymous osacquire works because the recursive stream-lock can be acquired/released multi-

ple times by the owner thread. Hence, calls to functions that also acquire a stream lock for their output do not result in

deadlock.

For an fstream, which can perform both input and output, both isacquire and osacquire can be used. The only

restriction is that the kind of stream locker has to match with kind of I/O operation, e.g.:

fstream file("abc");
osacquire(file) << . . . // output operations
. . .
isacquire(file) >> . . . // input operations

For protecting multiple I/O statements on an fstream, either isacquire or osacquire can be used to acquire the stream

lock, e.g.:

fstream file("abc");
{ // acquire the lock for stream file for block duration

osacquire acq(file); // or isacquire acq(file)
file >> . . . // input operations
. . .
file << . . . // output operations

} // implicitly release the lock when “acq” is deallocated

WARNING: The general problem of nested locking can occur if routines are called in an I/O sequence that blocks,

e.g.:

osacquire(cout) << "data:" << monitor.rtn(. . .) << endl;

If the thread executing the I/O expression blocks in the monitor with the cout lock, other threads writing to sout also

block until the thread holding the lock is unblocked and releases it. This scenario can lead to deadlock, if the task that

is going to unblock the task waiting in the monitor first writes to cout (deadly embrace). To prevent nested locking, a

simple precaution is to factor out the blocking call from the expression, e.g.:

int data = monitor.rtn(. . .);
osacquire(cout) << "data:" << data << endl;

4.3. UNIX FILE I/O 73

WARNING: A stream may be tied to another output stream, so when the first stream performs any I/O, the second

stream is implicitly flushed first. For example, cin is tied to cout, so in:

cout << "Enter number:"; // prompt for data
cin >> number; // read data

the prompt is guaranteed to be flushed before the data is read. If cin and cout were not tied, the read may occur without

the prompt message because the message is in cout’s output buffer. While tieing streams is an important capability,

it can cause a race condition between tasks using the tied streams. For example, if one task is reading from cin and

another is writing to cout, an implicit flush can occur to cout from the first task at the same time as an explicit write

from the second task. Having to lock in this situation is non-intuitive because the stream operations seem disjoint, e.g.:

Task1 Task2

{
osacquire(cout) << . . . // acquire cout osacquire lock(cout); // acquire cout due to tie

cin >> number;
}

Task1 must lock cout even though it may be the only task writing to it; Task2 must also lock cout even though it is

reading from cin. In general, it is rare for separate tasks to be prompting and reading in this manner; normally, these

steps are performed by a single task. However, it is reasonable for different tasks to be using cin and cout but not need

implicit flushing. In this case, the best solution is to remove the tie between cin and cout, e.g.:

cin.tie(nullptr); // set tie partner to null

eliminating the implicit flushing and the race condition (see examples in Sections H.5.1, p. 192 and H.5.3, p. 196).

4.3 UNIX File I/O

A UNIX file is a passive object that has information written into and read from it by tasks; therefore, a file is like a

monitor, which provides indirect communication among tasks. The difference between a file and a monitor is that the

file is on secondary storage, and hence, is not directly accessible by the computer’s processors; a file must be made

explicitly accessible before it can be used in a program. Furthermore, a file may have multiple accessors—although it is

up to UNIX to interpret the meaning of these potentially concurrent accessors—so there is a many-to-one relationship

between a file and its accessors. This relationship is represented in a µC++ program by a declaration for a file and

subsequent declarations for each accessor.

Traditionally, access to a file is explicit and is achieved procedurally by a call to “open” and a subsequent call to

“close” to terminate the access. In µC++, the declaration of a special access object performs the equivalent of the

traditional open and its deallocation performs the equivalent of the traditional close. In many cases, the access object

is a local variable so that the duration of access is tied to the duration of its containing block. However, by dynamically

allocating an access object and passing its pointer to other blocks, the equivalent access duration provided by traditional

“open” and “close” can be achieved.

In µC++, a connection to a UNIX file is made by declaration of a uFile object, e.g.:

uFile infile("abc"), outfile("xyz");

which creates two connection variables, infile and outfile, connected to UNIX files abc and xyz, respectively. The

operations available on a file object are listed in Figure 4.1 and require #include <uFile.h>, which also includes

<fcntl.h>

There are no parameters for the first constructor of uFile and it is used with setName. The parameter for the

second constructors of uFile are as follows. The name parameter is the UNIX name of the file, which is connected to

the program. The destructor of uFile checks if there are any registered accessors using the file, and raises the exception

TerminateFailure if there are.

It is not meaningful to read or to assign to a uFile object, or copy a uFile object (e.g., pass it as a value parameter).

The member routine setName associates a string name with a file (usually for subsequent open). The member

routine getName returns the string name associated with a file.

The parameter for member routine status is explained in the UNIX manual entry for stat. (The first parameter to

the UNIX stat routine is unnecessary, as it is provided implicitly by the uFile object.) Because a file object is still

inaccessible after a connection is made, there are no member routines to access its contents.

74 CHAPTER 4. INPUT/OUTPUT

class uFile {
public:

uFile();
uFile(const char * name);
~uFile();

class FileAccess {
public:

FileAccess();
FileAccess(uFile & f, int flags, int mode = 0644);
FileAccess(const char * name, int flags, int mode = 0644);
~FileAccess();

int read(char * buf, int len, uDuration * timeout = nullptr);
int readv(const struct iovec * iov, int iovcnt, uDuration * timeout = nullptr);
_Mutex int write(const char * buf, int len, uDuration * timeout = nullptr);
int writev(const struct iovec * iov, int iovcnt, uDuration * timeout = nullptr);
void open(uFile & f, int flags, int mode = 0644);
off_t lseek(off_t offset, int whence);
int fsync();
void status(struct stat & buf);
int fd();

_Exception Failure;
_Exception OpenFailure;
_Exception CloseFailure;
_Exception SeekFailure;
_Exception SyncFailure;
_Exception ReadFailure;
_Exception ReadTimeout;
_Exception WriteFailure;
_Exception WriteTimeout;

}; // FileAccess

const char * setName(char * name);
const char * getName() const;
void status(struct stat & buf);

_Exception Failure;
_Exception TerminateFailure;
_Exception StatusFailure;

}; // uFile

Figure 4.1: uFile Interface

4.3.1 File Access

Once a connection is made to a UNIX file, its contents can be accessed by declaration of a FileAccess object, e.g.:

uFile::FileAccess input(infile, O_RDONLY), output(outfile, O_CREAT | O_WRONLY);

which creates one access object to read from the connection to file abc and one object to write to the connection made

to file xyz.

There are no parameters for the first constructor of uFileAccess and it is used with open. The parameters for the

second constructor FileAccess are as follows. The f parameter is a uFile object to be opened for access. The flags and

mode parameters are explained in the UNIX manual entry for open. The destructor of FileAccess terminates access to

the file and deregisters with the associated uFile object.

The parameters for the third constructor FileAccess are as follows. The name parameter is the UNIX name of the

file, which is connected to the program. In this case, an implicit uFile object is created to represent the file; hence,

there is a one-to-one relationship for this access with the specified file. The flags and mode parameters are explained

in the UNIX manual entry for open.

It is not meaningful to read or to assign to a FileAccess object, or copy a FileAccess object (e.g., pass it as a value

parameter).

4.4. BSD SOCKETS 75

The parameters and return value for member routines read, readv, write, writev, open, lseek and fsync are explained

in their corresponding UNIX manual entries. The first parameter to these UNIX routines is unnecessary (except open),

as it is provided implicitly by the FileAccess object. The only exception is the optional parameter timeout, which points

to a maximum waiting time for completion of the I/O operation before aborting the operation by raising an exception

(see Section 11.2.4, p. 145). (The type uDuration is defined in Section 11.1, p. 141.) Appendix H.4, p. 191 shows

reading and writing to UNIX files.

The member routine fd returns the file descriptor for the open UNIX file.

4.4 BSD Sockets

A socket is an end point for communicating among tasks in different processes, possibly on different computers. A

socket endpoint is accessed in one of two ways:

1. as a client, which is one-to-many for connectionless communication with multiple server socket-endpoints, or

one to one for peer-connection communication with a server’s acceptor socket-endpoint.

2. as a server, which is one-to-many for connectionless communication with multiple client socket-endpoints, or

one to one for peer-connection communication with a server’s acceptor socket-endpoint.

The relationship between connectionless and peer-connection communication is shown in Figures 4.2 and 4.3. For

connectionless communication (see Figure 4.2), any of the client socket-endpoints can communicate with any of the

server socket-endpoints, and vice versa, as long as the other’s address is known. This flexibility is possible because

each communicated message contains the address of the sender or receiver; the network then routes the message to this

address. For convenience, when a message arrives at a receiver, the sender’s address replaces the receiver’s address,

so the receiver can reply back. For peer-connection communication (see Figure 4.3), a client socket-endpoint can

only communicate with the server socket-endpoint it has connected to, and vice versa. The dashed lines show the

connection of the client and server. The dotted lines show the creation of an acceptor to service the connection for peer

communication. The solid lines show the bidirectional communication among the client and server’s acceptor. Since

a specific connection is established between a client and server socket-endpoints, messages do not contain sender

and receive addresses, as these addresses are implicitly known through the connection. Notice there are fewer socket

endpoints in the peer-connection communication versus the connectionless communication, but more acceptors. For

connectionless communication, a single socket-endpoint sequentially handles both the connection and the transfer

of data for each message. For peer-connection communication, a single socket-endpoint handles connections and an

acceptor transfers data in parallel. In general, peer-connection communication is more expensive (unless large amounts

of data are transferred) but more reliable than connectionless communication.

A server socket has a name, either a character string for UNIX pipes or port-number/machine-address for an INET

address, that clients must know to communicate. For connectionless communication, the server usually has a reader

task that receives messages containing the client’s address. The message can be processed by the reader task or given to

a worker task to process, which subsequently returns a reply using the client’s address present in the received message.

For peer-connection communication, the server usually has one task in a loop accepting connections from clients, and

each acceptance creates an acceptor task. The acceptor task receives messages from only one client socket-endpoint,

processes the message and subsequently returns a reply, in parallel with accepting clients. Since the acceptor and

client are connected, communicated messages do not contain client addresses. These relationships are represented in

a µC++ program by declarations of client, server and acceptor objects, respectively.

The µC++ socket interface provides a convenience feature for connectionless communication to help manage the

addresses where messages are sent. It is often the case that a client only sends messages from its client socket-endpoint

to a single server socket-endpoint or sends a large number of messages to a particular server socket-endpoint. In these

cases, the address of the server remains constant for a long period of time. To mitigate having to specify the server

address on each call for a message send, the client socket-endpoint remembers the last server address it receives a

message from, and there is a short form of send that uses this remembered address. The initial remembered (default)

address can be set when the client socket-endpoint is created or set/reset at any time during its life-time. A similar

convenience feature exists for the server socket-endpoint, where the last client address it receives a message from is

remembered and can be implicitly used to send a message directly back to that client.

To use the socket interface requires #include <uSocket.h>, which also includes <fcntl.h>, <sys/types.h>, <sys/socket.h>,

<sys/un.h>, and <netdb.h>.

76 CHAPTER 4. INPUT/OUTPUT

socket endpointS

Sclient3

client2 S

client1 S

S server3

S server2

S server1

client3 client4 S

client2
process

process

server1

server2

process

process

client1
process

Figure 4.2: Client/Server Connectionless

S

A

A

A acceptor2

S

A

clients4 S

client2 S

client1 S

clients3 S

client3
process

client2
process

client1
process

acceptor4

acceptor3
server2
process

acceptor1

S socket endpoint A acceptor descriptor

process
server1

Figure 4.3: Client/Server Peer Connected

The following helper routines are available for converting different forms of Internet address to an ip address used

by a client or a server. These routines are static within the type uSocket:

in_addr uSocket::gethostbyname(const char * name);
in_addr uSocket::gethostbyip(const char * ip);
in_addr uSocket::itoip(in_addr_t ip);

gethostbyname takes a machine name, e.g., plg.uwaterloo.ca, and returns the 4-byte ip address for this machine.

gethostbyip takes a character string ip address, e.g., "123.123.123.123", and returns the 4-byte ip address equiva-

lent. itoip takes an integer containing an ip address and returns an in_addr object containing this integer ip value. If

routines gethostbyname or gethostbyip fail to lookup a machine name or convert the string ip address, the exception

uSocket::IPConvertFailure is raised.

4.4.1 Client

In µC++, a client, its socket endpoint, and possibly a connection to a server are created by declaration of a uSocketClient

object, e.g.:

uSocketClient client("abc");

which creates a client variable, client, connected to the UNIX server socket, abc. The operations provided by

uSocketClient are listed in Figure 4.4:

4.4. BSD SOCKETS 77

_Monitor uSocketClient {
public:

// AF_UNIX
uSocketClient(const char * name, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(const char * name, uDuration * timeout, int type = SOCK_STREAM, int protocol = 0);
// AF_INET, local host
uSocketClient(unsigned short port, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(unsigned short port, uDuration * timeout, int type = SOCK_STREAM, int protocol = 0);
// AF_INET, other host
uSocketClient(unsigned short port, in_addr ip, int type = SOCK_STREAM, int protocol = 0);
uSocketClient(unsigned short port, in_addr ip, uDuration * timeout, int type = SOCK_STREAM,

int protocol = 0);
~uSocketClient();

void setServer(struct sockaddr * addr, socklen_t len);
void getServer(struct sockaddr * addr, socklen_t * len);

const struct sockaddr * getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
int getsockname(struct sockaddr * name, socklen_t * len);
int getpeername(struct sockaddr * name, socklen_t * len);

int read(char * buf, int len, uDuration * timeout = nullptr);
int readv(const struct iovec * iov, int iovcnt, uDuration * timeout = nullptr);
_Mutex int write(const char * buf, int len, uDuration * timeout = nullptr);
int writev(const struct iovec * iov, int iovcnt, uDuration * timeout = nullptr);
int send(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int sendto(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int sendto(char * buf, int len, struct sockaddr * to, socklen_t tolen, int flags = 0, uDuration * timeout = nullptr);
int sendmsg(const struct msghdr * msg, int flags = 0, uDuration * timeout = nullptr);
int recv(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int recvfrom(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int recvfrom(char * buf, int len, struct sockaddr * from, socklen_t * fromlen, int flags = 0,

uDuration * timeout = nullptr);
int recvmsg(struct msghdr * msg, int flags = 0, uDuration * timeout = nullptr);
ssize_t sendfile(FileAccess & file, off_t * off, size_t len, uDuration * timeout = nullptr);
int fd();

_Exception Failure;
_Exception OpenFailure;
_Exception OpenTimeout;
_Exception CloseFailure;
_Exception ReadFailure;
_Exception ReadTimeout;
_Exception WriteFailure;
_Exception WriteTimeout;
_Exception SendfileFailure;
_Exception SendfileTimeout;

};

Figure 4.4: uSocketClient Interface

The first two constructors of uSocketClient are for use with the UNIX address family. The parameters for the

constructors are as follows. The name parameter is the name of an existing UNIX stream that the client is connecting

to. The name parameter can be nullptr for type SOCK_DGRAM, if there is no initial server address. The optional

default type and protocol parameters are explained in the UNIX manual entry for socket. Only types SOCK_STREAM

and SOCK_DGRAM communication can be specified, and any protocol appropriate for the specified communication

type (usually 0). The optional timeout parameter is a pointer to a maximum waiting time for completion of a connec-

tion for type SOCK_STREAM before aborting the operation by raising an exception (see Section 11.2.4, p. 145); this

parameter is only applicable for peer-connection, SOCK_STREAM, communication.

The next two constructors of uSocketClient are for use with the INET address family on a local host. The pa-

rameters for the constructors are as follows. The port parameter is the port number of an INET port on the local

78 CHAPTER 4. INPUT/OUTPUT

host machine. The optional default type and protocol parameters are explained in the UNIX manual entry for socket.

Only types SOCK_STREAM and SOCK_DGRAM communication can be specified, and any protocol appropriate for

the specified communication type (usually 0). The optional parameter timeout is a pointer to a maximum waiting time

for completion of a connection for type SOCK_STREAM before aborting the operation by raising an exception; this

parameter is only applicable for peer-connection, SOCK_STREAM, communication.

The last two constructors of uSocketClient are for specifying a specific ip address with the INET address family on

a nonlocal host. All parameters are the same as for the local host case, except the specific nonlocal address is specified

by the ip parameter.

The destructor of uSocketClient terminates the socket (close) and removes any temporary files created implicitly

for SOCK_STREAM and SOCK_DGRAM communication.

It is not meaningful to read or to assign to a uSocketClient object, or copy a uSocketClient object (e.g., pass it as a

value parameter).

The member routine setServer changes the address of the default server for the short forms of sendto and recvfrom.

The member routine getServer returns the address of the default server.

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,

with the following exceptions:

• getpeername is only applicable for connected sockets.

• The first parameter to these UNIX routines is unnecessary, as it is provided implicitly by the uSocketClient

object.

• The lack of address for the overloaded member routines sendto and recvfrom.

The client implicitly remembers the address of the initial connection and each recvfrom call. Therefore, no

address needs to be specified in the sendto, as the data is sent directly back to the last address received. If

a client needs to communicate with multiple servers, explicit addresses can be specified in both sendto and

recvfrom.

This capability eliminates the need to connect datagram sockets to use the short communication forms send

and recv, using the connected address. In general, connected datagram sockets have the same efficiency as

unconnected ones, but preclude specific addressing via sendto and recvfrom. The above scheme provides the

effect of a connected socket while still allowing specific addressing if required.

• The optional parameter timeout, which points to a maximum waiting time for completion of the I/O operation

before aborting the operation by raising an exception (see Section 11.2.4, p. 145).

The member routine fd returns the file descriptor for the client socket.

Appendix H.5.1, p. 192 shows a client communicating with a server using a UNIX socket and datagram messages.

Appendix H.5.3, p. 196 shows a client connecting to a server using an INET socket and stream communication with

an acceptor.

4.4.2 Server

In µC++, a server, its socket endpoint, and possibly a connection to a client are created by declaration of a

uSocketServer object, e.g.:

uSocketServer server("abc");

which creates a server variable, server, and a UNIX server socket endpoint, abc. The operations provided by

uSocketServer are listed in Figure 4.5:

The first constructor of uSocketServer is for use with the UNIX address family. The parameters for the constructors

are as follows. The name parameter is the name of a new UNIX server socket that the server is creating. The optional

default type and protocol parameters are explained in the UNIX manual entry for socket. Only types SOCK_STREAM

and SOCK_DGRAM communication can be specified, and any protocol appropriate for the specified communication

type (usually 0). The optional default backlog parameters is explained in the UNIX manual entry for listen; it specifies a

limit on the number of incoming connections from clients and is only applicable for peer-connection, SOCK_STREAM,

communication.

The next two constructors of uSocketServer are for use with the INET address family on a local host. The pa-

rameters for the constructors are as follows. The port parameter is the port number of an INET port on the local host

4.4. BSD SOCKETS 79

_Monitor uSocketServer {
public:

// AF_UNIX
uSocketServer(const char * name, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
// AF_INET, local host
uSocketServer(unsigned short port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
uSocketServer(unsigned short * port, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
uSocketServer(unsigned short port, in_addr ip, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
uSocketServer(unsigned short * port, in_addr ip, int type = SOCK_STREAM, int protocol = 0, int backlog = 10);
~uSocketServer();

void setClient(struct sockaddr * addr, socklen_t len);
void getClient(struct sockaddr * addr, socklen_t * len);

const struct sockaddr * getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
int getsockname(struct sockaddr * name, socklen_t * len);
int getpeername(struct sockaddr * name, socklen_t * len);

int read(char * buf, int len, uDuration * timeout = nullptr);
int readv(const struct iovec * iov, int iovcnt, uDuration * timeout = nullptr);
_Mutex int write(const char * buf, int len, uDuration * timeout = nullptr);
int writev(const struct iovec * iov, int iovcnt, uDuration * timeout = nullptr);
int send(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int sendto(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int sendto(char * buf, int len, struct sockaddr * to, socklen_t tolen, int flags = 0, uDuration * timeout = nullptr);
int sendmsg(const struct msghdr * msg, int flags = 0, uDuration * timeout = nullptr);
int recv(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int recvfrom(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int recvfrom(char * buf, int len, struct sockaddr * from, socklen_t * fromlen, int flags = 0,

uDuration * timeout = nullptr);
int recvmsg(struct msghdr * msg, int flags = 0, uDuration * timeout = nullptr);
ssize_t sendfile(FileAccess & file, off_t * off, size_t len, uDuration * timeout = nullptr);
int fd();

_Exception Failure;
_Exception OpenFailure;
_Exception CloseFailure;
_Exception ReadFailure;
_Exception ReadTimeout;
_Exception WriteFailure;
_Exception WriteTimeout;
_Exception SendfileFailure;
_Exception SendfileTimeout

};

Figure 4.5: uSocketServer Interface

machine, or a pointer to a location where a free port number, selected by the UNIX system, is placed. The optional

default type and protocol parameters are explained in the UNIX manual entry for socket. Only types SOCK_STREAM

and SOCK_DGRAM communication can be specified, and any protocol appropriate for the specified communication

type (usually 0). The optional default backlog parameters is explained in the UNIX manual entry for listen; it specifies a

limit on the number of incoming connections from clients and is only applicable for peer-connection, SOCK_STREAM,

communication.

The last two constructors of uSocketServer are for specifying a specific ip address with the INET address family

on the local host. All parameters are the same as for the local host case, except the specific local address is specified

by the ip parameter.

The destructor of uSocketServer terminates the socket (close) and checks if there are any registered accessors

using the server, and raises the exception CloseFailure if there are.

It is not meaningful to read or to assign to a uSocketServer object, or copy a uSocketServer object (e.g., pass it as

a value parameter).

The member routine setClient changes the address of the default client for the short forms of sendto and recvfrom.

80 CHAPTER 4. INPUT/OUTPUT

The member routine getClient returns the address of the default client.

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,

with the following exceptions:

• getpeername is only applicable for connected sockets.

• The first parameter to these UNIX routines is unnecessary, as it is provided implicitly by the uSocketServer

object.

• The lack of address for the overloaded member routines sendto and recvfrom.

The server implicitly remembers the address of the initial connection and each recvfrom call. Therefore, no

address needs to be specified in the sendto, as the data is sent directly back to the last address received. If a

server needs to communicate with multiple clients without responding back immediately to each request, explicit

addresses can be specified in both sendto and recvfrom.

This capability eliminates the need to connect datagram sockets to use the short communication forms send

and recv, using the connected address. In general, connected datagram sockets have the same efficiency as

unconnected ones, but preclude specific addressing via sendto and recvfrom. The above scheme provides the

effect of a connected socket while still allowing specific addressing if required.

• The optional parameter timeout, which points to a maximum waiting time for completion of the I/O operation

before aborting the operation by raising an exception (see Section 11.2.4, p. 145).

The member routine fd returns the file descriptor for the server socket.

Appendix H.5.2, p. 195 shows a server communicating with multiple clients using a UNIX socket and datagram

messages. Appendix H.5.4, p. 198 shows a server communicating with multiple clients using an INET socket and

stream communication with an acceptor.

4.4.3 Server Acceptor

After a server socket is created for peer-connection communication, it is possible to accept connections from clients

by declaration of a uSocketAccept object, e.g.:

uSocketAccept acceptor(server);

which creates an acceptor object, acceptor, that blocks until a client connects to the UNIX socket, abc, represented by

server object server. The operations provided by uSocketAccept are listed in Figure 4.6:

The parameters for the constructors of uSocketAccept are as follows. The s parameter is a uSocketServer object

through which a connection to a client is made. The optional default adr and len parameters, are explained in the

UNIX manual entry for accept, and are used to determine information about the client the acceptor is connected

to. The optional timeout parameter is a pointer to a maximum waiting time for completion of the connection before

aborting the operation by raising an exception (see Section 11.2.4, p. 145). The optional doAccept parameter is a

boolean where true means do an initial accept during initialization of the acceptor and false means do not do an initial

accept. If the doAccept parameter is not specified, its value is true.

The destructor of uSocketAccept terminates access to the socket (close) and deregisters with the associated

uSocketServer object.

It is not meaningful to read or to assign to a uSocketAccept object, or copy a uSocketAccept object (e.g., pass it as

a value parameter).

The member routine accept closes any existing connection to a client, and accepts a new connection with a client.

This routine uses the default values adr, len and timeout as specified to the uSocketAccept constructor for the new

connection, unless the optional timeout parameter is specified, which is used for the current accept and replaces the

default timeout for subsequent accepts. The member routine close closes any existing connection to a client.

The parameters and return value for the I/O members are explained in their corresponding UNIX manual entries,

with the following exceptions:

• The first parameter to these UNIX routines is unnecessary, as it is provided implicitly by the uSocketAccept

object.

• The optional parameter timeout, which points to a maximum waiting time for completion of the I/O operation

before aborting the operation by raising an exception (see Section 11.2.4, p. 145).

4.4. BSD SOCKETS 81

_Monitor uSocketAccept {
public:

uSocketAccept(uSocketServer & s, struct sockaddr * adr = nullptr, socklen_t * len = nullptr);
uSocketAccept(uSocketServer & s, uDuration * timeout, struct sockaddr * adr = nullptr, socklen_t * len = nullptr);
uSocketAccept(uSocketServer & s, bool doAccept, struct sockaddr * adr = nullptr, socklen_t * len = nullptr);
uSocketAccept(uSocketServer & s, uDuration * timeout, bool doAccept, struct sockaddr * adr = nullptr,

socklen_t * len = nullptr);
~uSocketAccept();

void accept();
void accept(uDuration * timeout);
void close();

_Mutex const struct sockaddr * getsockaddr(); // must cast result to sockaddr_in or sockaddr_un
_Mutex int getsockname(struct sockaddr * name, socklen_t * len);
_Mutex int getpeername(struct sockaddr * name, socklen_t * len);

int read(char * buf, int len, uDuration * timeout = nullptr);
int readv(const struct iovec * iov, int iovcnt, uDuration * timeout = nullptr);
_Mutex int write(const char * buf, int len, uDuration * timeout = nullptr);
int writev(const struct iovec * iov, int iovcnt, uDuration * timeout = nullptr);
int send(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int sendto(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int sendto(char * buf, int len, struct sockaddr * to, socklen_t tolen, int flags = 0, uDuration * timeout = nullptr);
int sendmsg(const struct msghdr * msg, int flags = 0, uDuration * timeout = nullptr);
int recv(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int recvfrom(char * buf, int len, int flags = 0, uDuration * timeout = nullptr);
int recvfrom(char * buf, int len, struct sockaddr * from, socklen_t * fromlen, int flags = 0,

uDuration * timeout = nullptr);
int recvmsg(struct msghdr * msg, int flags = 0, uDuration * timeout = nullptr);
ssize_t sendfile(FileAccess & file, off_t * off, size_t len, uDuration * timeout = nullptr);
int fd();

_Exception Failure;
_Exception OpenFailure;
_Exception OpenTimeout;
_Exception CloseFailure;
_Exception ReadFailure;
_Exception ReadTimeout;
_Exception WriteFailure;
_Exception WriteTimeout;
_Exception SendfileFailure;
_Exception SendfileTimeout;

};

Figure 4.6: uSocketAccept Interface

The member routine fd returns the file descriptor for the accepted socket.

✷ µC++ does not support out-of-band data on sockets. Out-of-band data requires the ability to install a

signal handler (see Section 4.1, p. 71). Currently, there is no facility to do this. ✷

82 CHAPTER 4. INPUT/OUTPUT

Chapter 5

Exceptions

C++ has an exception handling mechanism (EHM) based on throwing and catching in sequential programs; however,

this mechanism does not extend to a complex execution-environment. The reason is that the C++ EHM only deals

with a single raise-mechanism and a simple execution-environment, i.e., throwing and one stack. The µC++ execution

environment is more complex, and hence, it provides additional raising-mechanisms and handles multiple execution-

states (multiple stacks). These enhancements require additional language semantics and constructs; therefore, the

EHM in µC++ is a superset of that in C++, providing more advanced exception semantics. As well, with hindsight

some of the poorer features of C++’s EHM are replaced by better mechanisms.

5.1 EHM

An exception is an event that is (usually) known to exist but which is ancillary to an algorithm, i.e., an exception

usually occurs with low frequency. Some examples of exceptions are division by zero, I/O failure, end of file, pop

from an empty stack, inverse of a singular matrix. Often an exception occurs when an operation cannot perform its

desired computation (Eiffel’s notion of contract failure [Mey92, p. 395]). While errors occur infrequently, and hence,

are often considered an exception, it is incorrect to associate exceptions solely with errors; exceptions can complement

regular control flow in an algorithm.

An exception is often represented in a programming language by a type name, called an exception type. An

exception is an instance of an exception type, which is used in a special operation, called raising, indicating an

ancillary (exceptional) situation. Raising results in an exceptional change of control flow in the normal computation

of an operation, i.e., control propagates immediately to a dynamically specified handler. To be useful, the handler

location must be dynamically determined, as opposed to statically determined; otherwise, the same action and context

for that action is executed for every exceptional change.

Two actions can sensibly be taken for an exception.

1. The operation can fail requiring termination of the expression, statement or block from which the operation is

invoked. In this case, if the handler completes, control flow continues after the handler, and the handler acts as

an alternative computation for the incomplete operation.

2. The operation can fail requiring a corrective action before resumption of the expression, statement or block

from which the operation is invoked. In this case, if the handler completes, control flow returns to the operation,

and the handler acts as a corrective computation for the incomplete operation.

Both kinds of actions are supported in µC++. Thus, there are two possible outcomes of an operation: normal completion

possibly with a correction action, or failure with change in control flow and alternate computation.

✷ Even with the availability of modern EHMs, the common programming techniques often used to

handle exceptions are return codes and status flags (although this is slowly changing). The return code

technique requires each routine to return a correctness value on completion, where different values indi-

cate a normal or exceptional result during a routine’s execution. An intermediate approach is the return

union, which combines return-code/result and implicitly checks the return code on result access (see C++

83

84 CHAPTER 5. EXCEPTIONS

optional and variant). Alternatively, or in conjunction with return codes, is the status flag technique re-

quiring each routine to set a shared variable on completion, where different values indicate a normal or

exceptional result during a routine’s execution, e.g., errno in UNIX systems. The status value remains as

long as it is not overwritten by another routine. ✷

5.2 µC++ EHM

The following features characterize the µC++ EHM, and differentiate it from the C++ EHM.

• µC++ exceptions are generated from a specific kind of type, which can be thrown and/or resumed. All exception

types are also grouped into a hierarchy by publicly inheriting among the exception types. µC++ extends the C++

set of predefined exception-types1 covering µC++ exceptional runtime and I/O events.

• µC++ restricts raising of exceptions to the specific exception-types; C++ allows any instantiable type to be raised.

• µC++ supports two forms of raising, throwing (terminating) and resuming; C++ only supports throwing. All

µC++ exception-types can be either thrown or resumed. µC++ has two forms of resuming to support different

algerbraic effects [BP15] (see Section 5.5.3.1, p. 91).

• µC++ supports two kinds of handlers, termination and resumption, which match with the kind of raise; C++ only

supports termination handlers.

• µC++ supports raising of nonlocal and concurrent exceptions so exceptions can be used to affect control flow

among coroutines and tasks. A nonlocal exception occurs when the raising and handling execution-states are

different, and control flow is sequential, i.e., the thread raising the exception is also the thread handling the

exception. A concurrent exception also has different raising and handling execution-states (hence, concurrent

exceptions are also nonlocal), but control flow is concurrent, i.e., the thread raising the exception is different from

the thread handling the exception. The µC++ kernel implicitly polls for both kinds of exceptions at the soonest

possible opportunity. It is also possible to (hierarchically) block these kinds of exceptions when delivery would

be inappropriate or erroneous.

5.3 Exception Type

While C++ allows any type to be used as an exception type, µC++ restricts exception types to those defined by

_Exception, which has all the properties of a class:

_Exception exception-type name {
. . .

};

As well, every exception type must have a public default and copy constructor.

✷ Because C++ allows any type to be used as an exception type, it seems to provide additional generality,

i.e., there is no special exception type in the language. However, in practice, this generality is almost

never used. First, using a builtin type like int as an exception type is dangerous because the type has

no inherent meaning for any exception. That is, one library routine can raise int to mean one thing

and another routine can raise int to mean another; a handler catching int may have no idea about the

meaning of the exception. To prevent this ambiguity, programmers create specific types describing the

exception, e.g., overflow, underflow, etc. Second, these specific exception types are rarely used in normal

computations, so the sole purpose of these types is for raising unambiguous exceptions. In essence, C++

programmers ignore the generality available in the language and follow a convention of creating explicit

exception-types. This practice is codified in µC++. ✷

1std::bad_alloc, std::bad_cast, std::bad_typeid, std::bad_exception, std::basic_ios::failure, etc.

5.3. EXCEPTION TYPE 85

5.3.1 Creation and Destruction

An exception is the same as a class object with respect to creation and destruction:

_Exception E { . . . };
E e; // local exception
_Resume e;
E * ep = new E; // dynamic exception
_Resume *ep;
delete ep;
_Throw E(); // temporary local exception

5.3.2 Inherited Members

Each exception type, if not derived from another exception type, is implicitly derived from the exception type

uBaseException.

_Exception exception-type name : public uBaseException . . .

where the interface for the base-class uBaseException is:

class uBaseException {
protected:

uBaseException(const char * const msg = "");
void setSrc(uBaseCoroutine & coroutine);
void setMsg(const char * const msg);

public:
enum RaiseKind { ThrowRaise, ResumeRaise };

const char * message() const;
const uBaseCoroutine & source() const;
const char * sourceName() const;
RaiseKind getRaiseKind() const;
const void * getRaiseObject() const { return boundObject; }
const void * setRaiseObject(void * object);
virtual void defaultTerminate();
virtual void defaultResume();

};

The constructor routine uBaseException has the following form:

uBaseException(const char * const msg = "") – creates an exception with specified message, which is printed

in an error message if the exception is not handled. The message is copied when an exception is created so it

is safe to use within an exception even if the context of the raise is deleted.

The member routine setSrc is an alternate way to associate the coroutine/task raising a non-local exception. The

member routine setMsg is an alternate way to associate a message with an exception.

The member routine message returns the string message associated with an exception. The member routine source

returns the coroutine/task raising a non-local exception; if an exception is raised locally, the value nullptr is returned.

In some cases, the coroutine or task may be deleted when the exception is caught so this reference may be undefined.

The member routine sourceName returns the name of the coroutine/task raising a non-local exception; if an exception

is raised locally, the value "*unknown*" is returned. This name is copied from the raising coroutine/task when

an exception is created so it is safe to use even if the coroutine/task is deleted. The member routine getRaiseObject

returns the address of the object that raised the exception, which is used with bound exceptions (see Section 5.6, p. 93).

The member routine setRaiseKind (re)sets the object raising the exception and returns the previous object that raised

the exception. Changing the raising object is useful if an object invokes another object that raises an exception, but the

invoking object wants to be identified as raising the exception for bound exceptions.

The member routine defaultTerminate is implicitly called if an exception is thrown but not handled; the de-

fault action is to raise an uBaseCoroutine::UnhandledException (see Section 5.10.2, p. 99). The member routine

defaultResume is implicitly called if an exception is resumed but not handled; the default action is to throw the

exception, which begins the search for a termination handler from the point of the initial resume. In both cases, a

user-defined default-action may be implemented by overriding the appropriate virtual member.

86 CHAPTER 5. EXCEPTIONS

5.4 Raising

There are two raising mechanisms: throwing and resuming; furthermore, raising can be done locally, nonlocally or

concurrently. The kind of raising for an exception is specified by the raise statements:

_Throw [exception-type] ;
_Resume [exception-type] [_At uBaseCoroutine-id] ;

If _Throw has no exception-type, it is a rethrow, meaning the currently thrown exception continues propagation. If

there is no current thrown exception but there is a currently resumed exception, that exception is thrown. Otherwise,

the rethrow results in a runtime error. If _Resume has no exception-type, it is a reresume, meaning the currently

resumed exception continues propagation. If there is no current resumed exception but there is a currently thrown

exception, that exception is resumed. Otherwise, the reresume results in a runtime error. The optional _At clause

allows the specified exception or the currently propagating exception (reresume) to be raised at another coroutine or

task. Nonlocal and concurrent raise is restricted to resumption because the raising execution-state is often unaware of

the current state for the handling execution-state. Resumption allows the handler the greatest flexibility in this situation

because it can process the exception as a resumption or rethrow the exception for termination (which is the default

behaviour, see Section 5.3.2).

Exceptions in µC++ are propagated differently from C++. In C++, the throw statement creates a copy of the static

type for the exception and propagates the copy. In µC++, the _Throw and _Resume statements create a copy of the

dynamic type for the exception and propagates the copy. For example:

C++ µC++

class B {};
class D : public B {};
void f(B & t) {

throw t;
}
D m;
f(m);

_Exception B {};
_Exception D : public B {};
void f(B & t) {

_Throw t;
}
D m;
f(m);

in the C++ program (left), routine f is passed an object of derived type D but throws a copy of an object for base type

B, because the static type of the operand for throw, t, is of type B. However, in the µC++ program (right), routine f is

passed an object of derived type D and throws a copy of the original object for type D. This change makes a significant

difference in the organization of handlers for dealing with exceptions by allowing handlers to catch the specific rather

than the general exception-type.

✷ Note, when subclassing is used, it is better to catch an exception by reference for termination and re-

sumption handlers. Otherwise, the exception is truncated from its dynamic type to the static type specified

at the handler, and cannot be down-cast to the dynamic type. Notice, catching truncation is different from

raising truncation, which does not occur in µC++. ✷

5.4.1 Nonlocal Propagation

A nonlocal exception can be used to affect control flow with respect to sequential execution among coroutines. That

is, a source execution raises an exception at a faulting execution; propagation occurs in the faulting execution. The

faulting execution polls at certain points to check for pending nonlocal-exceptions; when nonlocal exceptions are

present, the oldest matching exception is propagated (FIFO service) as if it had been raised locally at the point of the

poll. Nonlocal exceptions among coroutines are possible because each coroutine has its own execution-state (stack).

For example, in Figure 5.1 coroutine C is started in its constructor so it can enable (see Section 5.4.2) nonlocal

exceptions and suspend after initialization. main then raises a nonlocal exception E at coroutine c. Since coroutine

control-flow is sequential, the exception type E is not propagated immediately. In fact, the exception can only be

propagated the next time coroutine c becomes active. Hence, main must call c.mem so mem resumes c, and the

pending exception propagates from the suspend and is caught by the handler for E. If multiple nonlocal-exceptions

are raised at a coroutine, the exceptions are delivered serially but only when the coroutine becomes active. Note,

nonlocal exceptions are initially turned off for a coroutine, so handlers can be set up before any nonlocal exception

can be propagated.

5.4. RAISING 87

_Exception E {};
_Coroutine C {

void main() {
try {

_Enable { // allow nonlocal exceptions
. . . suspend(); . . .

} // disable all nonlocal exceptions
} catch(E) { . . . }

}
public:

C() { resume(); } // prime loop
void mem() { resume(); }

};
int main() {

C c;
_Resume E() _At c; // exception pending
c.mem(); // trigger exception

}

Figure 5.1: Nonlocal Propagation

5.4.2 Enabling/Disabling Propagation

µC++ allows dynamic enabling and disabling of nonlocal exception-propagation. The constructs for controlling prop-

agation of nonlocal exceptions are the _Enable and the _Disable blocks, e.g.:

_Enable <E1> <E2> . . . { _Disable <E1> <E2> . . . {
// code in enable block // code in disable block

} }

The arguments in angle brackets for the _Enable or _Disable block specify the exception types allowed to be prop-

agated or postponed, respectively. Specifying no exception type is shorthand for specifying all exception types. The

specified exception types may overlap due to exception inheritance (see Sections 5.3.2, p. 85 and 5.7, p. 95), e.g., both

base and derived exception types.

Nested _Enable or _Disable blocks are additive, meaning the set of enabled or disabled exceptions increases on

entry and decreases on exit, appropriately.

_Enable <E> {
// non-local exception E enabled
_Enable <F>

// non-local exception E & F enabled
_Enable {

// all non-local exceptions enabled
}
// non-local exception E & F enabled

}
// non-local exception E enabled

}

_Disable <E> {
// non-local exception E disabled
_Disable <F>

// non-local exception E & F disabled
_Disable {

// all non-local exceptions disabled
}
// non-local exception E & F disabled

}
// non-local exception E disabled

}

Nested _Enable and _Disable blocks are substractive, meaning the set of enabled or disabled exceptions decreases on

entry and increases on exit, appropriately.

_Enable <E> {
// non-local exception E enabled
_Disable <E>

// non-local exception E disabled
_Disable {

// all non-local exceptions disabled
}
// non-local exception E disabled

}
// non-local exception E enabled

}

_Disable <E> {
// non-local exception E disabled
_Enable <E>

// non-local exception E enabled
_Enable {

// all non-local exceptions enabled
}
// non-local exception E enabled

}
// non-local exception E disabled

}

88 CHAPTER 5. EXCEPTIONS

Upon entering a _Enable block, exceptions of the specified types are propagated, even if the exception types were

previously disabled. Similarly, upon entering a _Disable block, exceptions of the specified types are disabled, even if

the exception types were previously enabled. Upon exiting a _Enable or _Disable block, the propagation of exceptions

of the specified types are restored to their state prior to entering the block.

Initially, nonlocal propagation is disabled for all exception types in a coroutine or task, so handlers can be set up

before any nonlocal exceptions can be propagated, resulting in the following µC++ idiom in a coroutine or task main:

void main() {
// initialization, nonlocal exceptions disabled
try { // setup handlers for nonlocal exceptions

_Enable { // enable propagation of all nonlocal exception-types
// rest of the code for this coroutine or task

} // disable all nonlocal exception-types
} catch . . . // catch nonlocal exceptions occurring in enable block
// finalization, nonlocal exceptions disabled

}

Several of the predefined kernel exception-types are implicitly enabled in certain contexts to ensure their prompt

delivery (see Section 5.10.1, p. 99).

The µC++ kernel implicitly polls for nonlocal exceptions (and cancellation, see Section 6, p. 103) at these points:

• when an _Enable statement begins/ends,

• when a _Disable statement ends,

• when a uEnableCancel object is instantiated (see Section 6.2, p. 104),

• before a coroutine/task’s main routine is executed (needed for immediate cancellation),

• after a call to uBaseCoroutine::suspend or uBaseCoroutine::resume,

• after a call to uBaseTask::yield,

• when a uLock::acquire spins because of yielding,

• after a call to _Accept unblocks for uMutexFailure,

• after a call to a _Mutex member unblocks for uMutexFailure,

• after a call to task migrates to another cluster because of yielding,

• after a task unblocks after trying to perform I/O.

If this level of polling is insufficient, explicit polling is possible by calling:

int uEHM::poll();

The routine uEHM::poll returns the number of asynchronous exceptions propagated by this call to poll. uEHM::poll is

a static member-routine that always polls the calling thread’s asynchronous exception-queue. Section 5.4.2 discusses

nonlocal propagation control in detail. In general, explicit polling is only necessary if pre-emption is disabled, a large

number of nonlocal exception-types are arriving, or timely propagation is essential.

5.4.3 Concurrent Propagation

A local exception raised within a task is the same as for a coroutine; both propagate looking for a matching handler.

A nonlocal exception between a task and a coroutine is the same as between coroutines (sequential). A concurrent

exception between tasks is more complex due to the multiple threads.

Concurrent exceptions provide an additional kind of communication over a normal member call. That is, a concur-

rent exception can be used to force a communication when an execution state might otherwise be computing instead

of accepting calls. For example, two tasks may begin searching for a key in different sets; the first task to find the key

needs to inform the other task to stop searching, e.g.:

_Task searcher {
searcher & partner; // other searching task
void main() {

try {
_Enable {

. . . // implicit or explicit polling is occurring
if (key == . . .)

_Resume stop() _At partner; // inform partner search is finished
}

} catch(stop) { . . . }

5.5. HANDLER 89

Without this control-flow mechanism, both tasks have to poll for a call from the other task at regular intervals to know

if the other task found the key. Concurrent exceptions handle this case and others.

When a task performs a concurrent raise, it blocks only long enough to deliver the exception to the specified task

and then continues. Hence, the communication is asynchronous, whereas member-call communication is synchronous.

Once an exception is delivered to a task, the runtime system propagates it at the soonest possible opportunity. If

multiple concurrent-exceptions are raised at a task, the exceptions are delivered serially.

5.5 Handler

A handler catches a propagated exception and attempts to deal with the exception. Each handler is associated with a

particular block of code, called a guarded block. µC++ supports two kinds of handlers, termination and resumption,

which match with the kind of raise. An unhandled exception is dealt with by an exception default-member (see

Section 5.3.2, p. 85).

5.5.1 Termination

A termination handler is a corrective action after throwing an exception during execution of a guarded block. When

a termination handler begins execution, the stack from the point of the throw up to and including the guarded block

is unwound; hence, all block and routine activations on the stack at or below the guarded block are deallocated,

including all objects contained in these activations. After a termination handler completes, i.e., it does not perform

another throw, control continues after the guarded block it is associated with. A termination handler often only has

approximate knowledge of where an exception occurred in the guarded block (e.g., a failure in library code), and

hence, any partial results of the guarded-block computation are suspect. In µC++, a termination handler is specified

identically to that in C++: catch clause of a try statement. (The details of termination handlers can be found in a C++

textbook.) Figure 5.2 shows how C++ and µC++ throws an exception to a termination handler. The differences are

using _Throw instead of throw, throwing the dynamic type instead of the static type, and requiring a special exception

type for all exceptions.

C++ µC++

class E {
public:

int i;
E(int i) : i(i) {}

};

void f() {
throw E(3);

}
int main() {

try {
f();

} catch(E e) {
cout << e.i << endl;
throw;

} // try
}

_Exception E {
public:

int i;
E(int i) : i(i) {}

};

void f() {
_Throw E(3);

}
int main() {

try {
f();

} catch(E e) {
cout << e.i << endl;
_Throw;

} // try
}

Figure 5.2: C++ versus µC++ Terminating Propagation

5.5.2 Resumption

A resumption handler is an intervention action after resuming an exception during execution of a guarded block.

When a resumption handler begins execution, the stack is not unwound; hence, all block and routine activations on

the stack at or below the guarded block are retained, including all objects contained in these activations. After a

resumption handler completes, i.e., it does not perform a throw, control returns after the raise statement initiating

the propagation. To obtain precise knowledge of the exception, information about the exception and variables at the

resumption raise are passed to the handler so it can effect a change before returning. Alternatively, the resumption

90 CHAPTER 5. EXCEPTIONS

handler may determine a correction is impossible and throw an exception, effectively changing the original resume

into a throw, which unwinds the stack. Unlike normal routine calls, the call to a resumption handler is dynamically

bound rather than statically bound, so different corrections can occur for the same static context.

To provide resumption, µC++ extends the try block to include resumption handlers, where the resumption handler

is denoted by a _CatchResume clause at the end of a try block:

try {
. . .

} _CatchResume(E1 &) { . . . } // must appear before catch clauses
// more _CatchResume clauses
_CatchResume(. . .) { . . . } // must be last _CatchResume clause
catch(E2 &) { . . . } // must appear after _CatchResume clauses
// more catch clauses
catch(. . .) { . . . } // must be last catch clause

Any number of resumption handlers can be associated with a try block. All _CatchResume handlers must precede

any catch handlers in a try statement. Like catch(. . .) (catch-any), _CatchResume(. . .) must appear at the end of the

list of the resumption handlers. A resumption handler can access any types and variables visible in its local scope, but

it cannot perform a break, continue or return from within the handler.

✷ A resumption handler is a corrective action so a computation can continue. If a correction is impossi-

ble, the resumption handler should throw an appropriate exception not step into an enclosing block using

break, continue or return to cause the stack to unwind. There may be recovery actions closer to the raise

point that can better deal with the problem. ✷

Values at the raise site can be modified directly in the handler if variables are visible in both contexts, or indirectly

through reference or pointer variables in the caught exception:

_Exception E {
public:

int & r; // reference to something
E(int & r) : r(r) {} // initialize reference

};
void f() {

int x;
. . . _Resume E(x); . . . // set exception reference to point to x

}
void g() {

try {
f();

} _CatchResume(E & e) {
. . . e.r = 3; . . . // change x at raise via reference r

}
}

5.5.3 Termination/Resumption

The form of the raise dictates the set of handlers examined during propagation:

• terminating propagation (_Throw) only examines termination handlers (catch),

• resuming propagation (_Resume) only examines resumption handlers (_CatchResume). However, the standard

default resumption handler converts resuming into terminating propagation (see Section 5.3.2, p. 85).

Often the set of exception types for termination and resumption handlers are disjoint because each exception type has

a specific action. However, it is possible for the set of exception types in each handler set to overlap. For example, the

exception type R appears in both the termination and resumption handler-sets:

_Exception E {};
void rtn() {

try {
_Resume E();

} _CatchResume(E &) { _Throw E(); } // H1
catch(E &) { . . . } // H2

}

5.5. HANDLER 91

The body of the try block resumes exception-type E, which is caught by resumption-handler _CatchResume(E) and

handler H1 is invoked. The blocks on the call stack are now (stack grows from left to right):

rtn → try _CatchResume(E),catch(E) → H1

Handler H1 throws E and the stack is unwound until the exception is caught by termination-handler catch(E) and

handler H2 is invoked.

rtn → H2

It is unusual for handlers in the same guarded block to be eligible for matching, but the termination handler is available

because resuming does not unwind the stack.

5.5.3.1 Recursive Resuming

Resuming does not unwind the stack. As result, handlers defined in previous scopes continue to be present during

resuming propagation. In terminating propagation, the handlers in previous scopes disappear as the stack is unwound.

In some languages with a resuming propagation [Mac77, BMZ92, Geh92], the presence of resumption handlers in

previous scopes can cause a situation called recursive resuming. The simplest situation where recursive resuming

can occur is when a handler for a resuming exception-type resumes the same exception, e.g.:

_Exception E {};
void rtn() {

try {
_Resume E();

} _CatchResume(E &) { _Resume E(); } // H1
}

Routine rtn sets up a try block for resuming exception-type E with resumption-handler _CatchResume(E), respec-

tively. Handler H1 is invoked by the resume in the body of the try block, and the blocks on the call stack are:

rtn → try _CatchResume(E) → H1

Then handler H1 resumes an exception of type E again, which finds the handler just above it at _CatchResume(E)

and invokes H1 again; these steps continue until the runtime stack overflows. Recursive resuming is similar to infinite

recursion, and is difficult to discover both at compile time and at runtime because of the dynamic choice of a han-

dler. Concurrent resuming compounds the difficulty because it can cause recursive resuming where it is impossible

otherwise because the concurrent exception can be delivered at any time.

✷ An implicit form of recursive resuming can occur if yield or uEHM::poll is called from within the

resumption handler. Each of these operations results in a check for delivered exceptions, which can then

result in a call to another resumption handler. As a result, the stack can grow, possibly exceeding the task’s

stack size. In general, this error is rare because there is usually sufficient stack space and the number of

delivered resuming exceptions is small. Nevertheless, care must be taken when calling yield or uEHM::poll

directly or indirectly from a resumption handler. ✷

5.5.3.2 Preventing Recursive Resuming

Recursive resuming is probably the only legitimate criticism against resuming propagation. However, not all excep-

tions handled by a resumption handler cause recursive resuming. Even if a resumption handler resumes the exception it

handles, which guarantees activating the same resumption handler again, (infinite) recursive resuming may not happen

because the handler can take a different execution path as a result of a modified execution state. Because the resuming

propagation suggested previously searches for a handler by simply going down the runtime stack one stack frame at a

time, it has the recursive resuming problem. µC++ has a modified propagation mechanism that provides a solution to

the recursive resuming problem. Furthermore, the mechanism is extended to cover concurrent exceptions.

The modified propagation mechanism provides two starting points for the resumption propagation: from the cur-

rent handler (_Resume) or from the top of the (unwound) stack (_ResumeTop). Given the _Resume semantics and

the previous runtime stack:

rtn → try _CatchResume(E) → H1

the _Resume in handler _CatchResume(E) starts it search below the try block. Hence, the exception cannot be

handled by the current _CatchResume(E), the recursion is avoided, and the default action occurs for exception E.

Essentially, this rule follows a common rule for terminating and resuming propagation: between a raise and its handler,

each handler is eligible only once.

92 CHAPTER 5. EXCEPTIONS

_Exception E { public: int i = 0; };

void rtn(int depth, int resumes) {
if (depth > 0) rtn(depth - 1, resumes); // recursion
else {

try {
_Resume E(); // start ping/pong

} _CatchResume(E & e) { // ping handler
if (e.i < resumes) _Resume e; // invoke pong

}
}

}
int main() {

try {
rtn(3, 3); // start recusion

} _CatchResume(E & e) { // pong handler
e.i += 1; // advance counter
_ResumeTop e; // invoke ping

}
}

Figure 5.3: Using ResumeTop

Note, it is still possible to construct infinite recursions with respect to propagation; i.e., the _Resume propagation

does not preclude all infinite recursions, e.g.:

_Exception E {};
void rtn() {

try {
_Resume E();

} _CatchResume(E) { rtn(); } // H1
}

Here each call to rtn creates a new try block to handle the next recursion, resulting in an infinite number of handlers:

rtn → try _CatchResume(E) → rtn → try _CatchResume(E) → . . .

As a result, there is always an eligible handler to catch the next exception in the recursion. This situation is considered

a programming error with respect to recursion (no base case) not propagation.

There is an interesting interaction between resuming, defaultResume (see Section 5.3.2, p. 85), and throwing.

_Exception E {};
void rtn() {

try {
_Resume E(); // resume not throw

} catch(E &) { . . . } // H1, no _CatchResume!!!
}

which results in the following call stack:

rtn → try{} catch(E) → defaultResume

When E is resumed, there is no eligible handler. However, when the base of the stack is reached, defaultResume is

called, and its default action is to throw E. Terminating propagation then unwinds the stack until there is a match with

the catch clause in the try block, so the behaviour is same as the example in Section 5.5.3, p. 90.

The alternative resumption propagation mechanism, _ResumeTop, always starts the propagation at the top of the

unwound stack so all handlers between the raise and handlers are eligible multiple times, and hence, recursive resump-

tion can occur. Figure 5.3 shows an example using _Resume and _ResumeTop to recursively call two resumption

handlers. At the end of the resumption recursion, the stack is as follows:

main → try _CatchResume(E) → rtn → rtn → rtn → rtn → try _CatchResume(E) →
ping → pong → ping → pong → ping → pong → ping

The two resumption handlers are in main and the fourth call of rtn. rtn uses _Resume so it does not select its own

handler and start an infinite recursion with itself. main uses _ResumeTop to search for rtn’s resumption handler further

up the stack. The handlers in main and rtn then call each other recursively four times.

Finally, a nonlocal exception is propagated with _Resume starting propagation from the current stack position.

5.6. BOUND EXCEPTIONS 93

5.5.3.3 Commentary

Of the few languages with resumption, the language Mesa [MMS79] is probably the only one that also solved the

recursive resuming problem. The Mesa scheme prevents recursive resuming by not reusing a handler clause bound

to a specific invoked block, i.e., once a handler is used as part of handling an exception, it is not used again. The

propagation mechanism always starts from the top of the stack to find an unmarked handler for a resume exception.

However, this unambiguous semantics is often described as confusing.

The following more complex program demonstrates how µC++ and Mesa solve recursive resuming, but with dif-

ferent solutions:

_Exception R1 {};
_Exception R2 {};

void rtn() {
try {

try {
try {

_Resume R1();
} _CatchResume(R2) { _Resume R1(); } // H1 -- cycle between handler H2 & H1

_CatchResume(R1) { _Resume R2(); } // H2
_CatchResume(R2) { . . . } // H3

}

The following stack is generated at the point when handler H2 is invoked by the raise of an exception of type R1 in the

inner-most try block:

rtn → try _CatchResume(R2) → try _CatchResume(R1) → try _CatchResume(R2) → H2

Handler H2 now raises an exception of type R2. The potential infinite recursion occurs because there is handler

_CatchResume(R2), which resumes an exception of type R1, while handler _CatchResume(R1) is still on the

stack. Hence, handler H2 invokes H1 and vice versa with no base case to stop the recursion.

µC++ propagation prevents the infinite recursion when handler H2 resumes an exception of type R2 because the

next eligible handler is the one associated with H3. Mesa propagation prevents the infinite recursion by marking an

unhandled handler, i.e., a handler that has not returned, as ineligible, resulting in:

rtn → try _CatchResume(R2) → try _CatchResume(R1) → try _CatchResume(R2) → H2

Hence, when handler H2 resumes an exception of type R2 the next eligible handler is the one associated with H1. As

a result, H1 resumes an exception of type R1 and there is no infinite recursion. However, the confusion with the Mesa

semantics is that there is no longer any handler for R1 due to its marking, even though the nested try blocks appear to

properly deal with this situation. In fact, looking at the static structure, a programmer might assume there is an infinite

recursion between handlers 1 and 2, as they resume one another. These confusions result in a reticence by language

designers to incorporate resuming facilities in new languages. However, as µC++ shows, there are reasonable solutions

to these issues, and hence, there is no reason to preclude resuming facilities.

5.6 Bound Exceptions

To allow for additional control over the handling of exceptions, µC++ supports the notion of bound exceptions. This

concept binds the object raising an exception with the raised exception; a reference to the object can be used in a

handler clause for finer-grain matching, which is more consistent with the object-oriented design of a program.

5.6.1 C++ Exception-Handling Deficiencies

In C++, only the exception type of the raised exception is used when matching catch clauses; the object raising the

exception does not participate in the matching. In many cases, it is important to know which object raised the exception

type for proper handling. For example, when reading from a file object, the exception-type IOError may be raised:

file Datafile, Logfile;
try {

. . . Datafile.read(); . . .

. . . Logfile.read(); . . .
} catch (IOError) {

// handle exception from which object ?
}

94 CHAPTER 5. EXCEPTIONS

The try block provides a handler for IOError exceptions generated while reading file objects Datafile and Logfile.

However, if either read raises IOError, it is impossible for the handler to know which object failed during reading.

The handler can only infer the exception originates in some instance of the file class. If other classes throw IOError,

the handler knows even less. Even if the handler can only be entered by calls to Datafile.read() and Logfile.read(), it

is unlikely the handler can perform a meaningful action without knowing which file raised the exception. Finally, it

would be inconvenient to protect each individual read with a try block to differentiate between them, as this would

largely mimic checking return-codes after each call to read.

Similar to package-specific exceptions in Ada [Int95], it is beneficial to provide object-specific handlers, e.g.:

try {
. . . Datafile.read(); . . .
. . . Logfile.read(); . . .

} catch (Datafile.IOError) {
// handle Datafile IOError

} catch (Logfile.IOError) {
// handle Logfile IOError

} catch (IOError) {
// handler IOError from other objects

}

The first two catch clauses qualify the exception type with an object to specialize the matching. That is, only if the

exception is generated by the specified object does the match occur. It is now possible to differentiate between the

specified files and still use the unqualified form to handle the same exception type generated by any other objects.

✷ Bound exceptions cannot be trivially mimicked by other mechanisms. Deriving a new exception type

for each file object (e.g., Logfile_IOError from IOError) results in an explosion in the total number of

exception types, and cannot handle dynamically allocated objects, which have no static name. Passing the

associated object as an argument to the handler and checking if the argument is the bound object, as in:

catch(IOError e) { // pass file-object address at raise
if (e.obj == &f) . . . // deal only with f
else throw // reraise exception

requires programmers to follow a coding convention of reraising the exception if the bound object is

inappropriate [BMZ92]. Such a coding convention is unreliable, significantly reducing robustness. In

addition, mimicking becomes infeasible for derived exception-types using the termination model, as in:

class B {. . .}; // base exception-type
class D : public B {. . .}; // derived exception-type
. . .
try {

. . . throw D(this); // pass object address
} catch(D e) {

if (e.o == &o1) . . . // deal only with o1
else throw // reraise exception

} catch(B e) {
if (e.o == &o2) . . . // deal only with o2
else throw // reraise exception

// bound form
} catch(o1.D) {

} catch(o2.B) {

When exception type D is raised, the problem occurs when the first handler catches the derived exception-

type and reraises it if the object is inappropriate. The reraise immediately terminates the current guarded

block, which precludes the handler for the base exception-type in that guarded block from being con-

sidered. The bound form (on the right) matches the handler for the base exception-type. Therefore, the

“catch first, then reraise” approach is an incomplete substitute for bound exceptions. ✷

5.6.2 Object Binding

In µC++, every exception derived from the three basic exception types can potentially be bound. Binding occurs

implicitly when using µC++’s raising statements, i.e., _Resume and _Throw. In the case of a local raise, the binding

is to the object in whose member routine the raise occurs. In the previous example, an exception raised in a call to

Datafile.read() is bound to Datafile; an exception raised in a call to Logfile.read() is bound to Logfile. If the raise occurs

inside a static member routine or in a free routine, there is no binding. In the case of a non-local raise, the binding is

to the coroutine/task executing the raise.

5.7. INHERITANCE 95

5.6.3 Bound Handlers

Bound handlers provide an object-specific handler for a bound exception. Matching is specified by prepending the

binding expression to the exception type using the “.” field-selection operator; the “catch-any” handler, . . ., does not

have a bound form.

5.6.3.1 Matching

A bound handler matches when the binding at the handler clause is identical to the binding associated with the currently

propagated exception and the exception type in the handler clause is identical to or a base-type of the currently

propagated exception type.

Bound handler clauses can be mixed with normal (unbound) handlers; the standard rules of lexical precedence

determine which handler matches if multiple are eligible. Any expression that evaluates to an lvalue is a valid binding

for a handler, but in practice, it only makes sense to specify an object that has a member function capable of raising

an exception. Such a binding expression may or may not be evaluated during matching, and in the case of multiple

bound-handler clauses, in undefined order. Hence, care must be taken when specifying binding expressions containing

side-effects.

5.6.3.2 Termination

Bound termination handlers appear in the C++ catch clause:

catch(raising-object . exception-declaration) { . . . }

In the previous example, catch(Logfile.IOError) is a catch clause specifying a bound handler with binding Logfile and

exception-type IOError.

5.6.3.3 Resumption

Bound resumption handlers appear in the µC++ _CatchResume clause (see Section 5.5.2, p. 89):

_CatchResume(raising-object . exception-declaration) { . . . }

5.7 Inheritance

Table 5.1 shows the forms of inheritance allowed among C++ types and µC++ exception-types. First, the case of single

public inheritance among homogeneous kinds of exception type, i.e., base and derived type are the both _Exception,

is supported in µC++ (major diagonal), e.g.:

_Exception Ebase {};
_Exception Ederived : public Ebase {}; // homogeneous public inheritance

In this case, all implicit functionality matches between base and derived types, and hence, there are no problems.

Public derivation of exception types is for building the exception-type hierarchy, and restricting public inheritance to

only exception types enhances the distinction between the class and exception hierarchies. Single private/protected

inheritance among homogeneous kinds of exception types is not supported:

_Exception Ederived : private Ebase {}; // homogeneous private inheritance, not allowed
_Exception Ederived : protected Ebase {}; // homogeneous protected inheritance, not allowed

because each exception type must appear in the exception-type hierarchy, and hence must be a subtype of another

exception type. Neither private nor protected inheritance establishes a subtyping relationship.

base public only / NO multiple inheritance

derived struct/class exception

struct/class
√

X

exception
√ √

Table 5.1: Inheritance among Exception Types

Second, the case of single private/protected/public inheritance among heterogeneous kinds of type, i.e., base and

derived type of different kind, is supported in µC++ only if the base kind is an ordinary class, e.g.:

96 CHAPTER 5. EXCEPTIONS

class Cbase {}; // only struct/class allowed

_Exception Ederived : public Cbase {}; // heterogeneous public inheritance

An example for using such inheritance is different exception types using a common logging class. The ordinary class

implements the logging functionality and can be reused among the different exception types.

Heterogeneous inheritance from exception types by other kinds of class, exception type, coroutine, mutex or task,

is not allowed, e.g.:

_Exception Ebase {};

struct StructDerived : public Ebase {}; // not allowed
class ClassDerived : public Ebase {}; // not allowed
_Coroutine CorDerived : public Ebase {}; // not allowed
_Monitor MonitorDerived : public Ebase {}; // not allowed
_Task TaskDerived : public Ebase {}; // not allowed

A structure/class cannot inherit from an exception type because operations defined for exception types may cause

problems when accessed through a class object. This restriction does not mean exception types and non-exception-

types cannot share code. Rather, shared code must be factored out as an ordinary class and then inherited by exception

types and non-exception-types, e.g.:

class CommonBase {. . .};

class ClassDerived : public CommonBase {};
_Exception Ederived : public CommonBase {};

Technically, it is possible for exception types to inherit from mutex, coroutine, and task types, but logically there

does not appear to be a need. Exception types do not need mutual exclusion because a new exception is generated

at each throw, so the exception is not a shared resource. For example, arithmetic overflow can be encountered by

different executions but each arithmetic overflow is independent. Hence, there is no race condition for exception

types. Finally, exception types do not need context switching or a thread to carry out computation. Consequently, any

form of inheritance from a mutex, coroutine or task by an exception type is rejected.

Multiple inheritance is allowed for private/protected/public inheritance of exception types from struct/class for

the same reason as single inheritance.

5.8 Predefined Exception Routines

C++ supplies several builtin routines to provide information and deal with problems during propagation. The semantics

of these builtin routines changes in a concurrent environment.

5.8.1 terminate/set terminate

The terminate routine is called implicitly in a number of different situations when a problem prevents successful

propagation (see a C++ reference manual for a complete list of propagation problems). The most common propagation

problem is failing to locate a matching handler. The terminate routine provides an indirect mechanism to call a

terminate handler, which is a routine of type terminate_handler:

typedef void (* terminate_handler)();

and is set using the builtin routine set_terminate, which has type:

terminate_handler set_terminate(terminate_handler handler) noexcept;

The previously set terminate handler is returned when a new handler is set. The default terminate handler aborts the

program; a user-defined terminate handler must also terminate the program, i.e., it may not return or raise an exception,

but it can perform some action before terminating, e.g.:

void new_handler() {
// write out message
// terminate execution (abort/exit)

}
terminate_handler old_handler = set_terminate(new_handler);

In a sequential program, there is only one terminate handler for the entire program, which can be set and restored as

needed during execution.

5.8. PREDEFINED EXCEPTION ROUTINES 97

In a concurrent program, having a single terminate handler for all tasks does not work because the value set by

one task can be changed by another task at any time. In other words, no task can ensure that the terminate handler

it sets is the one that is used during a propagation problem. Therefore, in µC++, each task has its own terminate

handler, set using the set_terminate routine. Hence, each task can perform some specific action when a problem

occurs during propagation, but the terminate handler must still terminate the program, i.e., no terminate handler may

return (see Section 7.2.2, p. 110). The default terminate handler for each task aborts the program.

Notice, the terminate handler is associated with a task versus a coroutine. The reason for this semantics is that

the coroutine is essentially subordinate to the task because the coroutine is executed by the task’s thread. While

propagation problems can occur while executing on the coroutine’s stack, these problems are best dealt with by the

task executing the coroutine. In fact, for the propagation problem of failing to locate a matching handler, the coroutine

implicitly forwards the predefined exception uBaseCoroutine::UnhandledException at its last resumer coroutine (see

Section 7.2.3.1, p. 111), which ultimately transfers back to a task that either handles this exception, forwards it, or has

its terminate handler invoked.

5.8.2 unexpected/set unexpected

The unexpected routine is called implicitly for the specific propagation problem of raising an exception that does not

appear in a routine’s exception specification (throw list), e.g.:

int rtn(. . .) throw(Ex1) { // exception specification
. . . throw Ex2; . . . // Ex2 not in exception specification

}

The unexpected routine provides an indirect mechanism to call an unexpected-handler, which is a routine of type

unexpected_handler:

typedef void (* unexpected_handler)();

and is set using the builtin routine set_unexpected, which has type:

unexpected_handler set_unexpected(unexpected_handler handler) noexcept;

The previously set unexpected-handler is returned when a new handler is set. The default unexpected-handler calls the

terminate routine; like a terminate handler, a user-defined unexpected-handler may not return, but it can perform some

action and either terminate or raise an exception, e.g.:

void new_handler() {
// write out message
// raise new exception

}
unexpected_handler old_handler = set_unexpected(new_handler);

In a sequential program, there is only one unexpected-handler for the entire program, which can be set and restored as

needed during execution.

In a µC++ program, having a single unexpected-handler for all coroutines/tasks does not work for the same reason

as for the terminate handler, i.e., the value can change at any time. Because it is possible to handle this specific

propagation-problem programmatically (e.g., raise an exception) versus terminating the program, a coroutine can

install a handler and deal with this problem during propagation on its stack. Therefore, in µC++, each coroutine (and

hence, task) has its own unexpected-handler, set using the set_unexpected routine. The default unexpected-handler

for each coroutine/task calls the terminate routine.

5.8.3 uncaught exception

The uncaught_exception routine returns true if propagation is in progress.2 In a µC++ program, the result of this routine

is specific to the coroutine/task that raises the exception. Hence, the occurrence of propagation in one coroutine/task

is independent of that occurring in any other coroutine/task. For example, a destructor may not raise a new exception

if it is invoked during propagation; if it does, the terminate routine is called. It is possible to use uncaught_exception

to check for this case and handle it differently from normal destructor execution, e.g.:

2C++17 depreciates uncaught_exception with uncaught_exceptions (notice the plural), which returns the number of uncaught exception objects,

so greater than 0 implies propagation is in progress.

98 CHAPTER 5. EXCEPTIONS

~T() { // destructor
if (. . . && ! uncaught_exceptions()) { // prevent propagation problem

// raise an exception because cleanup problem
} else {

// cleanup as best as possible
}

}

5.9 Programming with Exceptions

Like many other programming features, an EHM aims to make certain programming tasks easier and improve the

overall quality of a program. Indeed, choosing to use the EHM over other available flow control mechanisms is a

tradeoff. For example, a programmer may decide to use exceptions over some conditional statement for clarity. This

decision may sacrifice runtime efficiency and memory space. In other words, universal, crisp criteria for making a

decision do not exist. Nevertheless, some important guidelines are given to encourage good use of exceptions.

First, use exceptions to indicate events in library code that a user cannot ignore, as is possible with return codes and

status values. Hence, exceptions improve safety and robustness, while still allowing a library user to explicitly catch

and do nothing about an exception. Second, use exceptions to improve clarity and maintainability over techniques

like status return values and status flags where normal and exceptional control-flow are mixed together within a block.

Using exceptions not only separates the normal flow in a guarded block from the exceptional flow in handlers, but also

avoids mixing normal return-values with exceptional return-values. This separation makes subsequent changes easier.

Third, use exceptions to indicate conditions that happen rarely at runtime for the following reasons:

• The normal flow of the program should represent what should happen most of the time, allowing programmers

to easily understand the common functionality of a code segment. The exceptional flow then represents subtle

details to handle rare situations, such as boundary conditions.

• Because the propagation mechanism requires a search for the handler, it is usually expensive. Part of the cost is

a result of the dynamic choice of a handler. Furthermore, this dynamic choice can be less understandable than

a normal routine call. Hence, there is a potential for high runtime cost with exceptions and control flow can be

more difficult to understand. Nevertheless, the net complexity is reduced using exceptions compared to other

approaches.

5.9.1 Terminating Propagation

Typical use of terminating propagation is for graceful termination of an operation, coroutine, task or program. Ter-

mination is graceful if it triggers a sequence of cleanup actions in the execution context. Examples of abrupt (or

non-graceful) termination include the abort routine (abort in C) and the kill -9 command in UNIX. Graceful termina-

tion is more important in a concurrent environment because one execution can terminate while others continue. The

terminating operation must be given a chance to release any shared resources it has acquired (the cleanup action) in

order to maintain the integrity of the execution environment. For example, deadlock is potentially a rare condition and

a thrown exception can force graceful termination of an operation, consequently leading to the release of some shared

resources and breaking of the deadlock.

5.9.2 Resuming Propagation

Typical use of resuming propagation is to do additional computation, in the form of a resumption handler, for an

exception or as a form of polymorphism, where an action is left unspecified (e.g., in a library routine) and specified by

a user using dynamic lookup (similar to a virtual routine in a class). The additional computation may modify the state

of the execution, which can be useful for error recovery. Alternatively, it may cause information about the execution

to be gathered and saved as a side-effect without effectively modifying the execution’s computation.

5.9.3 Terminating/Resuming Propagation

Any exception type can be both thrown or resumed. When feasible, it is best to initially resume an exception-type to

avoid loss of local information. If no resumption handler handles the exception, the same exception-type can be thrown

(default action). For example, in a real-time application, missing a real-time constraint, say an execution cannot finish

before a deadline, is considered an exception. For some applications, the constraint violation can result in termination.

5.10. PREDEFINED EXCEPTION-TYPES 99

Other applications can modify internal parameters to increase execution by sacrificing the quality of the solution or by

acquiring more computing resources to speedup execution.

5.10 Predefined Exception-Types

µC++ provides a number of predefined exception-types, which are structured into the hierarchy in Figure 5.4, divided

into two major groups: kernel and I/O. The kernel exception-types are raised by the µC++ runtime kernel when

problems arise using the µC++ concurrency extensions. The I/O exception-types are raised by the µC++ I/O library

when errors arise performing network and file I/O. Only the kernel exception-types are discussed, as the I/O exception-

types are OS specific.

5.10.1 Implicitly Enabled Exception-Types

Certain of the predefined kernel exception-types are implicitly enabled in certain contexts to ensure prompt delivery

for nonlocal exceptions. The predefined exception-type uBaseCoroutine::Failure is implicitly enabled and polling

is performed when a coroutine restarts after a suspend or resume. The predefined exception-type uMutexFailure is

implicitly enabled and polling is performed when a task restarts from blocking on entry to a mutex member. This

situation also occurs when a task restarts after being blocked on an _Accept or a wait. The predefined exception-type

uBaseCoroutine::UnhandledException is implicitly enabled so a forwarded unhandled exception is always processed

immediately by by the receiver. The predefined exception-type uMutexFailure::RendezvousFailure is implicitly enabled

and polling is performed when an acceptor task restarts after blocking for a rendezvous to finish.

5.10.2 Unhandled Exception

An exception raised and not handled inside a coroutine/task terminates it, and either the default or exception specific

defaultTerminate member is called. The default action is to copy the unhandled exception into an UnhandledException,

which is forwarded as a nonlocal exception to the last resumer for a coroutine or the joiner for a task. If the exception

specific defaultTerminate returns, the default forwarding action occurs.

For example, in Figure 5.5a, p. 101 the call to c.mem resumes coroutine c, and inside c.main an exception is raised

that is not handled locally by c. When the exception of type E reaches the top of c’s stack without finding an appropriate

handler, coroutine c terminates and the nonlocal exception of type uBaseCoroutine::UnhandledException is implicitly

raised at c’s last resumer rather than c’s starter. This behaviour reflects the fact that the last resumer is most capable of

understanding and reacting to a failure of the operation it just invoked. Furthermore, the last resumer is guaranteed to be

restartable because it became inactive when it did the last resume. Finally, when the last resumer restarts, the implicitly

raised nonlocal exception is immediately delivered by the context switch back, which triggers the propagation of the

implicitly enabled UnhandledException exception. If the UnhandledException exception is caught by _CatchResume,

the handler returns after the resume() in C::mem(). If the UnhandledException exception is caught by catch, because

the default handler for resumption exceptions _Throws the exception (see Section 5.3.2, p. 85), the handler returns

after the try in program main.

Similarly, in Figure 5.5b, p. 101, when the exception of type E reaches the top of t’s stack without finding an

appropriate handler, task t terminates and the nonlocal exception of type uBaseCoroutine::UnhandledException is

implicitly raised at its joiner task, which is the program main try block where t is declared. This behaviour reflects the

fact that the joiner is most capable of understanding and reacting to a failure from the task object it is deallocating.

Furthermore, the joiner task is guaranteed to be restartable because it became inactive when it did the join. Finally,

when the joiner restarts, the implicitly raised nonlocal exception is immediately delivered by the task’s destructor,

which triggers the propagation of the implicitly enabled UnhandledException exception. If the UnhandledException

exception is caught by _CatchResume, the handler returns after the block or delete deallocating the task. If the

UnhandledException exception is caught by catch, the handler returns after the try in program main. Note, forwarding

can occur across any number of coroutines and tasks, until the program main forwards and then the program terminates

by calling main’s set_terminate.

In many cases, the resumer/joiner of a coroutine/task is unaware of the implementation, and hence, cannot respond

directly to forwarded unhandled exceptions, which is why the general UnhandledException exception is raised rather

than the specific unhandled exception. To provide for the case where a resumer/joiner does know about forwarded

exceptions task, the exception UnhandledException contains a copy of the unhandled exception. In the handler for an

UnhandledException, it is possible to trigger the copied exception using member routine triggerCause. For example,

100 CHAPTER 5. EXCEPTIONS

uBaseException
uKernelFailure

uMutexFailure
uMutexFailure::EntryFailure
uMutexFailure::RendezvousFailure

uCondition::WaitingFailure
uBarrier::BlockFailure
uBaseCoroutine::Failure

uBaseCoroutine::UnhandledException
uPthreadable::Failure

uPthreadable::CreationFailure
uFutureFailure

uCancelled
uDelivery

uIOFailure
uFile::Failure

uFile::TerminateFailure
uFile::StatusFailure
uFile::FileAccess::Failure

uFile::FileAccess::OpenFailure
uFile::FileAccess::CloseFailure
uFile::FileAccess::SeekFailure
uFile::FileAccess::SyncFailure
uFile::FileAccess::ReadFailure

uFile::FileAccess::ReadTimeout
uFile::FileAccess::WriteFailure

uFile::FileAccess::WriteTimeout
uSocket::IPConvertFailure
uSocket::Failure

uSocket::OpenFailure
uSocket::CloseFailure
uSocketServer::Failure

uSocketServer::OpenFailure
uSocketServer::CloseFailure
uSocketServer::ReadFailure

uSocketServer::ReadTimeout
uSocketServer::WriteFailure

uSocketServer::WriteTimeout
uSocketServer::SendfileFailure

uSocketServer::SendfileTimeout
uSocketAccept::Failure

uSocketAccept::OpenFailure
uSocketAccept::OpenTimeout

uSocketAccept::CloseFailure
uSocketAccept::ReadFailure

uSocketAccept::ReadTimeout
uSocketAccept::WriteFailure

uSocketAccept::WriteTimeout
uSocketAccept::SendfileFailure

uSocketAccept::SendfileTimeout
uSocketClient::Failure

uSocketClient::OpenFailure
uSocketClient::OpenTimeout

uSocketClient::CloseFailure
uSocketClient::ReadFailure

uSocketClient::ReadTimeout
uSocketClient::WriteFailure

uSocketClient::WriteTimeout
uSocketClient::SendfileFailure

uSocketClient::SendfileTimeout

Figure 5.4: µC++ Predefined Exception-Type Hierarchy

5.10. PREDEFINED EXCEPTION-TYPES 101

_Exception E {};
_Coroutine C {

void main() { _Throw E(); } // unwind
// defaultTerminate⇒ _Resume UnhandledException() _At resumer()
//⇒ coroutine activates last resumer (not starter) and terminates

public:
void mem() { resume(); } // nonlocal exception?⇒ _Resume UnhandledException()

}; // _CatchResume continues after resume()
int main() {

C c;
try {

c.mem();
} _CatchResume(uBaseCoroutine::UnhandledException &) {. . .} // one of

catch(uBaseCoroutine::UnhandledException &) {. . .}
// catch continues after try

}

(a) Coroutine

_Exception E {};
_Task T {

void main() { _Throw E(); } // unwind
};
int main() {

try {
{ // extra block

T t;
} // continue _CatchResume

} _CatchResume(uBaseCoroutine::UnhandledException &) {. . .} // one of
catch(uBaseCoroutine::UnhandledException &) {. . .}

// catch continues after try
}

(b) Task

Figure 5.5: Unhandled Exception

. . . as above . . .
int main() {

C c;
try {

. . .
try {

c.mem();
} catch (uBaseCoroutine::UnhandledException & ex) {

ex.triggerCause(); // trigger copied exception
}
. . .

} catch (E) {} // handle copied exception
}

the resume in c.mem indirectly raises the nonlocal exception UnhandledException, because c.main does not handle

exceptions of type E. The handler triggers a copy of the initial exception of type E, which is raised in exactly the same

way as the raise in the resumed coroutine (i.e., matching _Throw or _Resume). In this way, the resumer coroutine

can use all exception matching mechanisms provided by µC++ to identify the initial unhandled exception.

5.10.3 Breaking a Rendezvous

As mentioned in Section 2.9.2.2, p. 22, the accept statement forms a rendezvous between the acceptor and the accepted

tasks, where a rendezvous is a point in time at which both tasks wait for a section of code to execute before continuing.

It can be crucial to correctness that the acceptor know if the accepted task does not complete the rendezvous code,

otherwise the acceptor task continues under the incorrect assumption that the rendezvous action has occurred. To

this end, an exception of type uMutexFailure::RendezvousFailure is raised at the acceptor task if the accepted member

terminates abnormally. It may also be necessary for a mutex member to know if the acceptor has restarted, and

102 CHAPTER 5. EXCEPTIONS

hence, the rendezvous has ended. This situation can happen if the mutex member calls a private member, which may

conditionally wait, which ends the rendezvous. The macro uRendezvousAcceptor can be used only inside mutex types

to determine if a rendezvous has ended:

uBaseCoroutine * uRendezvousAcceptor();

It returns nullptr if the rendezvous is ended; otherwise it returns the address of the rendezvous partner. In addition, call-

ing uRendezvousAcceptor has the side effect of cancelling the implicit resume of uMutexFailure::RendezvousFailure

at the acceptor. This capability allows a mutex member to terminate with an exception without informing the acceptor.

Chapter 6

Cancellation

Cancellation is a mechanism to safely terminate the execution of a coroutine or task. Any coroutine/task may cancel

itself or another coroutine/task by calling uBaseCoroutine::cancel() (see Section 2.7.2, p. 14). The deletion of a non-

terminated coroutine (see page 13) implicitly forces its cancellation. Cancelling a coroutine/task does not result

in immediate cancellation of the object; cancellation only begins when the coroutine/task encounters a cancellation

checkpoint, such as uEHM::poll() or uBaseTask::yield() (see page 88 for a complete list), which starts the cancellation

for the cancelled object. The following self-cancellation illustrates the need to explicitly trigger cancellation.

_Coroutine C {
void main() {

cancel(); // self-cancellation
uEHM::poll(); // force cancellation
// control does not reach here

}
public:

void mem() {
resume();
// control returned here after cancellation

}
};

Note, all cancellation points are polling points for asynchronous exceptions and vice-versa. The more frequently

cancellation checkpoints are encountered, the timelier the cancellation starts. There is no provision to “uncancel” a

coroutine/task once it is cancelled. However, it is possible for the cancelled coroutine/task to control if and where

cancellation starts (see Section 6.2).

Once cancellation starts, the stack of the coroutine/task is unwound, which executes the destructors of objects

allocated on the stack as well as catch-any exception handlers (i.e., catch (. . .)). Executing this additional code

during unwinding allows safe cleanup of any objects declared in a cancelled coroutine/task via their destructors, and

supports the common C++ idiom of using catch-any handlers to perform cleanup actions during exceptional control-

flow and then reraising the exception. The C++ idiom follows from the fact that a catch-any handler has no specific

information about an exception, and hence, cannot properly handle it; therefore, it only makes sense to execute local

cleanup in the catch-any handler and continue propagation by reraising the exception so a specific handler can be

found.

There are two scenarios in which a catch-any handler may finish. In the first scenario, all exceptions raised directly

or indirectly from a guarded block are handled by a common action, with normal program execution continuing after

it. However, using a catch-any handler to specify the common action is considered poor style. If a group of exceptions

has a common handling action, it is highly likely all its members are logically related, and hence, should be structured

into an exception hierarchy (see Section 5.7, p. 95) allowing all the group members to be caught by the hierarchy’s root

rather than a catch-any. In the second scenario, all exceptions are caught at a high level (often the top-most level) in a

task in order to prevent the program’s termination due to an uncaught exception. In this case, code after the handler is

often finalization/restart code to be performed unconditionally before ending or restarting the task.

Unlike a nonlocal exception (see Section 5.4, p. 86), cancellation cannot be caught or stopped unless the cleanup

code aborts the program, which is the ultimate termination of all coroutines/tasks. Therefore, if a catch-any handler

finishes during cancellation, i.e., without throwing or rethrowing, the only logical behaviour is for stack unwinding to

103

104 CHAPTER 6. CANCELLATION

continue. This behaviour is different from normal completion of a catch-any handler, which continues after the han-

dler. The correctness of a program relying on execution to continue after a catch-any handler for convenience (scenario

1) or restart (scenario 2) reasons is unaffected since cancellation ultimately terminates the task, and hence, normal ex-

ecution/restart cannot be expected. However, the correctness of programs relying on execution to continue after a

catch-any handler for finalization reasons (scenario 2) is compromised by cancellation. Such programs are incom-

patible with cancellation as control cannot logically continue after the handler. In this situation, the program must be

restructured to check for cancellation and invoke the finalization code within the handler. It is possible to programmati-

cally check for an ongoing cancellation by calling routine uBaseCoroutine::cancelInProgress (see Section 2.7.2, p. 14)

during cleanup (catch-any handler or destructor), which is analogous to using std::uncaught_exception.

Cancellation does not work if a new exception is thrown inside a catch-any handler because the stack unwinding

due to termination cannot be altered, e.g.:

catch (. . .) {
. . . _Throw anotherException(); . . .

}

The resulting program behaviour is undefined, and such constructs must be avoided if cancellation is to be used. Again,

routine uBaseCoroutine::cancelInProgress (see Section 2.7.2, p. 14) can be used to check for this situation, so the

throw can be conditional. Alternatively, ensuring a coroutine’s main routine terminates prevents implicit cancellation.

6.1 Using Cancellation

Cancellation is used in situations where the work of a task is not required any more and its resources should be

freed. Figure 6.1 shows a generic example in which a solution space is divided into sub-domains and worker tasks

are dispatched to search their respective sub-domain for a suitable solution. For this particular problem class, any

specific solution is sufficient. After the program main creates the tasks, it waits for a solution to be found by any of

the Worker tasks. If a Worker task finds a solution, it stores it in the Result monitor and restarts main (if appropriate).

Since a solution has been found, the other worker solutions are not required and allowing these workers to proceed is

a waste of resources. Hence, the program main marks them all for cancellation and uses the result. After the result has

been processed, the worker tasks are deleted, which allows for execution overlap of result processing with the worker

tasks detecting, starting, and finishing cancellation. Alternatively, the workers can be deleted immediately, with the

consequence that the program main may have to wait for the worker tasks to finish cancellation before processing the

result.

6.2 Enabling/Disabling Cancellation

A cancellee may not stop cancellation once in progress, but it can control when the cancellation starts. The ability to de-

fer the start of cancellation can be used to ensure a block of code is completely executed, similar to enabling/disabling

propagation (see Section 5.4.2, p. 87).

By default, cancellation is implicitly enabled for a coroutine/task (which is the opposite of nonlocal excep-

tions). Explicitly enabling/disabling cancellation is controlled by declaring an instance of one of the following types:

uEnableCancel or uDisableCancel. The object’s constructor saves the current cancellation state (enabled or disabled)

and sets the state appropriately; the object’s destructor resets the cancellation state to the previous state, e.g.:

{
uDisableCancel cancelDisable; // save current state, set to disable (variable name unimportant)
. . .
{

uEnableCancel cancelEnable; // save current state, set to enable (variable name unimportant) and
. . . // implicit poll/cancellation checkpoint

} // revert back to disabled
. . .

} // revert back to previous cancellation status

Note, creating an instance of uEnableCancel is a cancellation checkpoint, which polls for both cancellation and asyn-

chronous exceptions.

6.3. COMMENTARY 105

const int NumOfWorkers = 16;
const unsigned int Domain = 0xffffffff;

_Monitor Result {
int res;
uCondition c;

public:
Result() : res(0) {}
int getResult() {

if (res == 0) c.wait(); // wait if no result has been found so far
return res;

}
void finish(int r) {

res = r; // store result
c.signal(); // wake up task main

}
};

_Task Worker {
Result & r;
int subdomain;

public:
Worker(int sub, Result & res) : subdomain(sub), r(res) {}
void main() {

int finalresult;
// perform calculations with embedded cancellation checkpoints
r.finish(finalresult); // if result is found, store it in Result

}
};

int main() {
Worker * w[NumOfWorkers];
Result r;
for (int i = 0; i < NumOfWorkers; i += 1) {

w[i] = new Worker(i * Domain / NumOfWorkers, r); // create worker tasks
}
int result = r.getResult();
for (int i = 0; i < NumOfWorkers; i += 1) {

w[i]->cancel(); // mark workers for cancellation
}
// do something with the result
for (int i = 0; i < NumOfWorkers; i += 1) {

delete w[i]; // only block if cancellation has not terminated worker
}

}

Figure 6.1: Cancellation Example

6.3 Commentary

Despite their similarities, cancellation and nonlocal exceptions are fundamentally different mechanisms in µC++. As a

result, the approach of using _Enable/_Disable with a special uCancellation type to control cancellation delivery was

rejected, e.g.:

_Enable <uCancellation> <. . .> /* asynchronous exceptions */ {
. . .

}

This approach is rejected because it suggests cancellation is part of the exception handling mechanism represented by

the exception type uCancellation, which is not the case. There is no way to raise or catch a cancellation as there is

with exceptions. In addition, the blanket _Enable/_Disable, which applies to all nonlocal exceptions, does not affect

cancellation.

106 CHAPTER 6. CANCELLATION

Chapter 7

Errors

The following are examples of the static/dynamic warnings/errors that can occur during the compilation/execution of

a µC++ program.

7.1 Static (Compile-time) Warnings/Errors

These static warnings/errors are generated by the µC++ translator not by the underlying C++ compiler. These warn-

ings/errors are specific to usage problems with the µC++ concurrency extensions. The following examples show

different situations, the message generated and an explanation of the message. While not all warning/error situations

are enumerated, the list covers the common one present in most µC++ programs.

The following program:

_Task T {
void main() {

_Accept(mem);
}

public:
void mem() {}

};

generates this error:

test.cc:3: uC++ Translator error: accept on a nomutex member ”mem”, possibly caused by accept state-

ment appearing before mutex-member definition.

because the accept of member mem appears before the definition of member mem, and hence, the µC++ translator

encounters the identifier mem before it knows it is a mutex member. C++ requires definition before use in most

circumstances.

The following program:

_Task T {
public:

void mem() {}
private:

void main() {
_Accept(mem);
or _Accept(mem);

}
};

generates this error:

test.cc:7: uC++ Translator error: multiple accepts of mutex member ”mem”.

because the accept statement specifies the same member, mem, twice. The second specification is superfluous.

The following program:

107

108 CHAPTER 7. ERRORS

_Task T1 {};
_Task T2 {

private:
void main() {

_Accept(~T1);
}

};

generates this error:

test.cc:5: uC++ Translator error: accepting an invalid destructor; destructor name must be the same as the

containing class ”T2”.

because the accept statement specifies the destructor from a different class, T1, within class T2.

The following program:

_Mutex class M {};
_Coroutine C : public M {};
_Task T1 : public C {};
_Task T2 : public M, public C {};

generates these errors:

test.cc:2: uC++ Translator error: derived type ”C” of kind ”COROUTINE” is incompatible with the base type

”M” of kind ”MONITOR”; inheritance ignored.

test.cc:3: uC++ Translator error: derived type ”T1” of kind ”TASK” is incompatible with the base type ”C” of

kind ”COROUTINE”; inheritance ignored.

test.cc:4: uC++ Translator error: multiple inheritance disallowed between base type ”M” of kind ”MONITOR”

and base type ”C” of kind ”COROUTINE”; inheritance ignored.

because of inheritance restrictions among kinds of types in µC++ (see Section 2.15, p. 33).

Similarly, the following program:

_Exception T1 {};
_Exception T2 : private T1 {};
_Exception T3 : public T1, public T2 {};

generates these errors:

test.cc:2: uC++ Translator error: non-public inheritance disallowed between the derived type ”T2” of kind

”EXCEPTION” and the base type ”T1” of kind ”EXCEPTION”; inheritance ignored.

test.cc:3: uC++ Translator error: multiple inheritance disallowed between base type ”T1” of kind ”EXCEP-

TION” and base type ”T2” of kind ”EXCEPTION”; inheritance ignored.

because of inheritance restrictions among exception types in µC++ (see Section 5.7, p. 95).

The following program:

_Task T; // prototype
_Coroutine T {}; // definition

generates this error:

test.cc:2: uC++ Translator error: ”T” redeclared with different kind.

because the kind of type for the prototype, _Task, does not match the kind of type for the definition, _Coroutine.

The following program:

_Mutex class M1 {};
_Mutex class M2 {};
_Mutex class M3 : public M1, public M2 {}; // multiple inheritance

generates this error:

test.cc:3: uC++ Translator error: multiple inheritance disallowed between base type ”M1” of kind ”MONI-

TOR” and base type ”M2” of kind ”MONITOR”; inheritance ignored.

7.1. STATIC (COMPILE-TIME) WARNINGS/ERRORS 109

because only one base type can be a mutex type when inheriting.

The following program:

_Task T {
public:

_Nomutex void mem();
};
_Mutex void T::mem() {}

generates this error:

test.cc:5: uC++ Translator error: mutex attribute of ”T::mem” conflicts with previously declared nomutex

attribute.

because the kind of mutual exclusion, _Nomutex, for the prototype of mem, does not match the kind of mutual

exclusion, _Mutex, for the definition.

The following program:

_Task T {
public:

_Nomutex T() {} // must be mutex
_Mutex void * operator new(size_t) {} // must be nomutex
_Mutex void operator delete(void *) {} // must be nomutex
_Mutex static void mem() {} // must be nomutex
_Nomutex ~T() {} // must be mutex

};

generates these errors:

test.cc:3: uC++ Translator error: constructor must be mutex, nomutex attribute ignored.

test.cc:4: uC++ Translator error: ”new” operator must be nomutex, mutex attribute ignored.

test.cc:5: uC++ Translator error: ”delete” operator must be nomutex, mutex attribute ignored.

test.cc:6: uC++ Translator error: static member ”mem” must be nomutex, mutex attribute ignored.

test.cc:8: uC++ Translator error: destructor must be mutex for mutex type, nomutex attribute ignored.

because certain members may or may not have the mutex property for any mutex type. The constructor(s) of a mutex

type must be mutex because the thread of the constructing task is active in the object. Operators new and delete of

a mutex type must be nomutex because it is superfluous to make them mutex when the constructor and destructor

already ensure the correct form of mutual exclusion. The static member(s) of a mutex type must be nomutex because

it has no direct access to the object’s mutex properties, i.e., there is no this variable in a static member to control the

mutex object. Finally, a destructor must be mutex if it is a member of a mutex type because deletion requires mutual

exclusion.

The following program:

_Mutex class T1;
class T1 {}; // conflict between forward and actual qualifier

class T2 {};
_Mutex class T2; // conflict between forward and actual qualifier

_Mutex class T3; // conflicting forward declaration qualifiers
_Nomutex class T3; // ignore both forward declaration qualifiers

_Mutex class T4 {
void mem(int); // default nomutex

public:
void mem(int, int); // default mutex

};

generates these errors:

test.cc:2: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring

previous declaration.

test.cc:5: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Ignoring

this declaration.

110 CHAPTER 7. ERRORS

test.cc:8: uC++ Translator error: may not specify both mutex and nomutex attributes for a class. Assuming

default attribute.

test.cc:13: uC++ Translator error: mutex attribute of ”T4::mem” conflicts with previously declared nomutex

attribute.

because there are conflicts between mutex qualifiers. For type T1, the mutex qualifier for the forward declaration does

not match with the actual declaration because the default qualifier for a class is _Nomutex. For type T2, the mutex

qualifier for the later forward declaration does not match with the actual declaration for the same reason. For type

T3, the mutex qualifiers for the two forward declarations are conflicting so they are ignored at the actual declaration.

For mutex type T4, the default mutex qualifiers for the overloaded member routine, mem, are conflicting because one

is private, default _Nomutex, the other is public, default _Mutex, and µC++ requires overloaded members to have

identical mutex properties (see Sections 2.9.2.1, p. 20 and 2.19, p. 44).

The following program:

_Task /* no name */ {};

generates this error:

test.cc:1: uC++ Translator error: cannot create anonymous coroutine or task because of the need for

named constructors and destructors.

because a type without a name cannot have constructors or destructors since both are named after the type, and the

µC++ translator needs to generate constructors and destructors if not present for certain kinds of types.

7.2 Dynamic (Runtime) Warnings/Errors

These dynamic warnings/errors are generated by the µC++ runtime system not by the C++ runtime system. These

warnings/errors are specific to usage problems with the µC++ concurrency extensions. The following examples show

different situations, the message generated and an explanation of the message. While not all warning/error situations

are enumerated, the list covers the common one present in most µC++ programs.

7.2.1 Assertions

Assertions define runtime checks that must be true or the basic algorithm is incorrect; if the assertion is false, a message

is printed and the program is aborted. Assertions are written using the macro assert and requires #include <assert.h>.

assert(boolean-expression);

Asserts can be turned off by defining the preprocessor variable NDEBUG before including assert.h.

7.2.2 Termination

A µC++ program can be terminated without failure using the UNIX routine exit, which stops all thread execution and

returns a status code to the invoking shell. To terminate a program and print an error message, use the µC++ free

routine exit:

void exit(int status, const char * format, . . .)

format is a string containing text to be printed and printf style format codes describing how to print the following

variable number of arguments. The number of elements in the variable argument list must match with the number of

format codes, as for printf. Note, when exit is used to terminate a program, all global destructors are still executed.

Any tasks, clusters, or processors not deleted by this point are not flagged with an error, unlike normal program

termination.

A µC++ program can be terminated with a failure using the UNIX routine abort, which stops all thread execution

and generates a core file for subsequent debugging (assuming the shell limits allow a core file to written). To terminate

a program, generate a core file, and print an error message, use the µC++ free routine abort:

void abort(const char * format, . . .)

format is a string containing text to be printed and printf style format codes describing how to print the following

variable number of arguments. The number of elements in the variable argument list must match with the number

of format codes, as for printf. In addition to printing the user specified message, which normally describes the error,

routine abort prints the name of the currently executing task type, possibly naming the type of the currently executing

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 111

coroutine if the task’s thread is not executing on its own execution state at the time of the call, and a back-trace of the

stack.

7.2.3 Messages

The following examples show different error situations, the error message generated and an explanation of the error.

While not all error situations are enumerated, the list covers the common errors present in most µC++ programs.

Finally, most of these errors are generated only when using the -debug compilation flag (see Section 2.4.1, p. 10).

7.2.3.1 Default Actions

The following examples show the default actions taken when certain exceptions are not caught and handled by the

program (see Section 5.3.2, p. 85). For coroutines the default action raises another exception at the coroutine’s resumer,

while for tasks the default action prints an appropriate error message and terminates the program. While not all default

actions are enumerated, the list covers the common problems present in many µC++ programs.

The following program in C++11:

void f() throw() { // throw no exceptions
throw 1;

}
int main() {

f();
}

generates this error:

uC++ Runtime error (UNIX pid:4280) Exception propagated through a function whose exception-specification

does not permit exceptions of that type. Type of last active termination: int. Error occurred while executing

task program main (0x7fffffffe530).

because routine f defines it raises no exceptions and then an exception is raised from within it. While the following

program in C++17:

void f() noexcept { // throw no exceptions
throw 1;

}
int main() {

f();
}

generates this error:

uC++ Runtime error (UNIX pid:5247) Propagation failed to find a matching handler. Possible cause is

a missing try block with appropriate catch clause for specified or derived exception type, or throwing an

exception from within a destructor while propagating an exception. Type of last active termination: int.

Error occurred while executing task program main (0x7fffffffe530).

because routine f defines it raises no exceptions and then an exception is raised from within it, the task’s terminate

function is called.

The following program:

_Exception E {};

_Coroutine C {
void main() { _Throw E(); }

public:
void mem() { resume(); }

};
int main() {

C c;
c.mem(); // first call fails

}

generates this error:

112 CHAPTER 7. ERRORS

uC++ Runtime error (UNIX pid:4976) (uBaseCoroutine &)0x7fffffffe530 : Unhandled exception in task

program main raised non-locally through 1 unhandled exception(s) from coroutine/task C (0x84efb0) be-

cause of an unhandled thrown exception of type E. Error occurred while executing task program main

(0x7fffffffe530).

because the call to c.mem resumes coroutine c and then coroutine c throws an exception it does not handle. As a

result, when the top of c’s stack is reached, an exception of type uBaseCoroutine::UnhandledException is raised at the

program main, since it last resumed c. A more complex version of this situation occurs when there is a resume chain

and no coroutine along the chain handles the exception. The following program:

_Exception E {};

_Coroutine C2 {
void main() { _Throw E(); }

public:
void mem() { resume(); }

};
_Coroutine C1 {

void main() {
C2 c2;
c2.mem();

}
public:

void mem() { resume(); }
};
int main() {

C1 c1;
c1.mem(); // first call fails

}

generates this error:

uC++ Runtime error (UNIX pid:5375) (uBaseCoroutine &)0x7fffffffe530 : Unhandled exception in task pro-

gram main raised non-locally through 2 unhandled exception(s) from coroutine/task C2 (0x88f820) be-

cause of an unhandled thrown exception of type E. Error occurred while executing task program main

(0x7fffffffe530).

because the call to c1.mem resumes coroutine c1, which creates coroutine c2 and call to c2.mem to resume it, and then

coroutine c2 throws an exception it does not handle. As a result, when the top of c2’s stack is reached, an exception of

type uBaseCoroutine::UnhandledException is raised at the program main, since it last resumed c.

The following program:

int main() {
throw 1;

}

generates this error:

uC++ Runtime error (UNIX pid:5507) Propagation failed to find a matching handler. Possible cause is

a missing try block with appropriate catch clause for specified or derived exception type, or throwing an

exception from within a destructor while propagating an exception. Type of last active termination: int.

Error occurred while executing task program main (0x7fffffffe530).

because no try statement with an appropriate catch clause is in effect for the program main, propagation fails to locate

a matching handler.

The following program:

int main() {
throw; // rethrow

}

generates this error:

uC++ Runtime error (UNIX pid:21148) terminate called without an active exception Error occurred while

executing task program main (0x7fffffffe530).

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 113

because a rethrow must occur in a context with an active (already raised) exception so that exception can be raised

again.

The following program:

_Monitor M {
public:

void mem() {}
};
int main() {

M * m = new M;
delete m; // delete storage
m->mem(); // make call to mutex member

}

generates this error:

uC++ Runtime error (UNIX pid:12109) (uSerial &)0x1fa9af8 : Entry failure while executing mutex destruc-

tor: mutex object has been destroyed. Error occurred while executing task program main (0x7ffd36532540).

because the main routine deletes the monitor m and then calls the member routine mem through the deleted pointer.

As a result, the program main finds the mutex object has been destroyed.

The following program:

_Task T1 {
uCondition w;

public:
void mem() { w.wait(); }

private:
void main() {

_Accept(mem); // let T2 in so it can wait
w.signal(); // put T2 on acceptor/signalled stack
_Accept(~T1); // main routine is calling the destructor

}
};
_Task T2 {

T1 & t1;
void main() { t1.mem(); }

public:
T2(T1 & t1) : t1(t1) {}

};
int main() {

T1 * t1 = new T1;
T2 * t2 = new T2(* t1);
delete t1; // delete in same order as creation
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:3678) (uSerial &)0x2631cf8 : Entry failure while executing mutex destructor:

task program main (0x7ffcba9bd0e0) found blocked on acceptor/signalled stack. Error occurred while

executing task T2 (0x2671e08).

because task t2 is allowed to wait on condition variable w in t1.mem, and then task t1 signals condition w, which

moves task t2 to the acceptor/signalled stack, and accepts its destructor. As a result, when the program main attempts

to delete task t1, it finds task t2 still blocked on the acceptor/signalled stack. Similarly, the following program:

_Task T1 {
public:

void mem() {}
private:

void main() { _Accept(~T1); }
};

114 CHAPTER 7. ERRORS

_Task T2 {
T1 & t1;

public:
T2(T1 & t1) : t1(t1) {}

private:
void main() { t1.mem(); }

};

int main() {
T1 * t1 = new T1;
T2 * t2 = new T2(*t1);
delete t1;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:15587) (uSerial &)0x2595cf8 : Entry failure while executing mutex destruc-

tor: task program main (0x7ffcbbd644e0) found blocked on entry queue. Error occurred while executing

task T2 (0x25d5e08).

because task t2 happens to block on the call to t1.mem, and then task t1 accepts its destructor. As a result, when the

program main attempts to delete task t1, it finds task t2 still blocked on the entry queue of t1.

The following program:

_Exception E {};

_Task T {
uBaseTask & t;

public:
T(uBaseTask & t) : t(t) {}
void mem() {

// uRendezvousAcceptor();
_Throw E();

}
private:

void main() {
_Accept(mem);

}
};

int main() {
T t(uThisTask());
try {

t.mem();
} catch(E & e) {
}

}

generates this error:

uC++ Runtime error (UNIX pid:27411) (uSerial &)0x22cbff0 : Rendezvous failure in accepted call from task

program main (0x7ffdac373900) to mutex member of task T (0x22cbd80). Error occurred while executing

task T (0x22cbd80).

because in the call to t.mem from the main routine, the rendezvous terminates abnormally by rais-

ing an exception of type E. As a result, the program main implicitly resumes an exception of type

uMutexFailure::RendezvousFailure concurrently at task t so it knows the call did not complete and can take appro-

priate corrective action (see Section 5.10.3, p. 101). If the call uRendezvousAcceptor() is uncommented, an exception

of type uMutexFailure::RendezvousFailure is not resumed at task t, and task t restarts as if the rendezvous completed.

A more complex version of this situation occurs when a blocked call is aborted, i.e., before the call even begins. The

following program:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 115

_Exception E {};

_Task T {
uBaseTask & t;

public:
T(uBaseTask & t) : t(t) {}
void mem() {}

private:
void main() {

_Resume E() _At t;
_Accept(mem);

}
};
int main() {

T t(uThisTask());
try {

_Enable {
t.mem();

}
} catch(E & e) {
}

}

generates this error:

uC++ Runtime error (UNIX pid:8347) (uSerial &)0xa6bff0 : Rendezvous failure in accepted call from task

program main (0x7ffc27a57790) to mutex member of task T (0xa6bd80). Error occurred while executing

task T (0xa6bd80).

because the blocked call to t.mem from the main routine is interrupted by the concurrent exception of type E. When the

blocked call from the program main is accepted, it immediately detects the concurrent exception and does not start the

call. As a result, the program main implicitly resumes an exception of type uMutexFailure::RendezvousFailure concur-

rently at task t so it knows the call did not occur and can take appropriate corrective action (see Section 5.10.3, p. 101).

The following program:

_Task T1 {
uCondition w;

public:
void mem() { w.wait(); }

private:
void main() { _Accept(mem); }

};
_Task T2 {

T1 & t1;
void main() { t1.mem(); }

public:
T2(T1 & t1) : t1(t1) {}

};
int main() {

T1 * t1 = new T1;
T2 * t2 = new T2(*t1);
delete t1;
delete t2;

}

generates this error:

uC++ Runtime error (UNIX pid:18211) (uCondition &)0x2742da8 : Waiting failure as task program main

(0x7ffc1067f990) found blocked task T2 (0x2782e08) on condition variable during deletion. Error occurred

while executing task T2 (0x2782e08).

because the call to t1.mem blocks task t2 on condition queue w and then task t1 implicitly accepts its destructor when

its main terminates. As a result, when the program main attempts to delete task t1, it finds task t2 still blocked on the

condition queue.

116 CHAPTER 7. ERRORS

7.2.3.2 Coroutine

Neither resuming to nor suspending from a terminated coroutines is allowed; a coroutine is terminated when its main

routine returns. The following program:

_Coroutine C {
void main() {}

public:
void mem() { resume(); }

};
int main() {

C c;
c.mem(); // first call works
c.mem(); // second call fails

}

generates this error:

uC++ Runtime error (UNIX pid:14490) Attempt by coroutine main (0x7ffe4dd9f820) to resume terminated

coroutine C (0x10c3fb0). Possible cause is terminated coroutine’s main routine has already returned. Error

occurred while executing task program main (0x7ffe4dd9f820).

because the first call to c.mem resumes coroutine c and then coroutine c terminates. As a result, when the main

routine attempts the second call to c.mem, it finds coroutine c terminated. A similar situation can be constructed using

suspend, but is significantly more complex to generate, hence it is not discussed in detail.

Member suspend resumes the last resumer, and therefore, there must be a resume before a suspend can execute

(see Section 2.7.3, p. 16). The following program:

_Coroutine C {
void main() {}

public:
void mem() {

suspend(); // suspend before any resume
}

};
int main() {

C c;
c.mem();

}

generates this error:

uC++ Runtime error (UNIX pid:484) Attempt to suspend coroutine C (0xd0bfb0) that has never been re-

sumed. Possible cause is a suspend executed in a member called by a coroutine user rather than by the

coroutine main. Error occurred while executing task program main (0x7fffacf28f90).

because the call to C::mem executes a suspend before the coroutine’s main member is started, and hence, there is no

resumer to reactivate. In general, member suspend is only called within the coroutine main or non-public members

called directly or indirectly from the coroutine main, not in public members called by other coroutines.

Two tasks cannot simultaneously execute the same coroutine; only one task can use the coroutine’s execution at a

time. The following program:

_Coroutine C {
void main() {

uBaseTask::yield();
}

public:
void mem() {

resume();
}

};

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 117

_Task T {
C & c;
void main() {

c.mem();
}

public:
T(C & c) : c(c) {}

};
int main() {

C c;
T t1(c), t2(c);

}

generates this error:

uC++ Runtime error (UNIX pid:26853) Attempt by task T (0x135ada0) to resume coroutine C (0x135a990)

currently being executed by task T (0x135aa90). Possible cause is two tasks attempting simultaneous

execution of the same coroutine. Error occurred while executing task T (0x135ada0).

because t1’s thread first calls routine C::mem and then resumes coroutine c, where it yields the processor. t2’s threads

now calls routine C::mem and attempts to resume coroutine c but t1 is currently using c’s execution-state (stack). This

same error occurs if the coroutine is changed to a coroutine monitor and task t1 waits in coroutine c after resuming it:

_Cormonitor CM {
uCondition w;
void main() {

w.wait();
}

public:
void mem() {

resume();
}

};
_Task T {

CM & cm;
void main() {

cm.mem();
}

public:
T(CM & cm) : cm(cm) {}

};
int main() {

CM cm;
T t1(cm), t2(cm);

}

As mentioned in Section 2.4, p. 9, the µC++ kernel provides no support for automatic growth of stack space for

coroutines and tasks. Several checks are made to mitigate problems resulting from lack of dynamic stack growth. The

following program:

int main() {
char x[512 * 1024]; // array larger than stack space
uThisTask().verify();

}

generates this error:

uC++ Runtime error (UNIX pid:24494) Stack overflow detected: stack pointer 0x24090a0 below limit

0x240f000. Possible cause is allocation of large stack frame(s) and/or deep call stack. Error occurred

while executing task program main (0x7ffd314a6730).

because the declaration of the array in the main routine uses more than the current stack space.

The following program:

118 CHAPTER 7. ERRORS

int main() {
{

char x[uThisCluster().getStackSize()]; // array larger than stack space
for (int i = 0; i < uThisCluster().getStackSize(); i += 1) {

x[i] = ’a’; // write outside stack space
}

} // delete array
uThisTask().verify();

}

generates this error:

uC++ Runtime error (UNIX pid:4533) Attempt to address location 0x2458000. Possible cause is reading

outside the address space or writing to a protected area within the address space with an invalid pointer

or subscript. Error occurred while executing task program main (0x7ffdf4b5a830).

because the declaration of the array in the main routine uses more than the current stack space, and by writing into the

array, steps outside its current stack space.

7.2.3.3 Mutex Type

It is a restriction that a task must acquire and release mutex objects in nested (LIFO) order (see Section 2.8, p. 16).

The following program:

_Task T;

_Cormonitor CM {
T * t;
void main();

public:
void mem(T * t) { // task owns mutex object

CM::t = t;
resume(); // begin coroutine main

}
};

_Task T {
CM & cm;
void main() {

cm.mem(this); // call coroutine monitor
}

public:
T(CM & cm) : cm(cm) {}
void mem() {

resume(); // restart task in CM::mem
}

};
void CM::main() {

t->mem(); // call back into task
}
int main() {

CM cm;
T t(cm);

}

generates this error:

uC++ Runtime error (UNIX pid:12292) Attempt to perform a non-nested entry and exit from multiple ac-

cessed mutex objects. Error occurred while executing task T (0x1c09d80).

because t’s thread first calls mutex routine CM::mem (and now owns coroutine monitor cm) and then resumes coroutine

cm, which now calls the mutex routine T::mem (t already owns itself). The coroutine cm resumes t from within T::mem,

which restarts in CM::mem (full coroutining) and exits before completing the nested call to mutex routine T::mem

(where cm is suspended). Therefore, the calls to these mutex routines do not terminate in LIFO order. The following

program is identical to the previous one, generating the same error, but the coroutine monitor has been separated into

a coroutine and monitor:

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 119

_Monitor M;
_Task T;

_Coroutine C {
M * m;
void main();

public:
void mem(M * m) {

C::m = m;
resume(); // begin coroutine main

}
};
_Monitor M {

C & c;
T * t;

public:
M(C & c) : c(c) {}
void mem1(T * t) { // task owns mutex object

M::t = t;
c.mem(this);

}
void mem2();

};

void C::main() {
m->mem2();

}
_Task T {

M & m;
C & c;
void main() {

m.mem1(this); // call monitor
}

public:
T(M & m, C & c) : m(m), c(c) {}
void mem() {

resume(); // restart task in C::mem
}

};
void M::mem2() {

t->mem(); // call back into task
}
int main() {

C c;
M m(c);
T t(m, c);

}

Ownership of a mutex object by a task applies through any coroutine executed by the task. The following program:

_Task T;

_Coroutine C {
T * t;
void main();

public:
void mem(T * t) {

C::t = t;
resume();

}
};

_Task T {
C & c;
void main() {

c.mem(this);
yield();

}
public:

T(C & c) : c(c) {}
void mem() {

resume();
}

};

void C::main() {
t->mem();

}
int main() {

C c;
T t1(c), t2(c);

}

generates this error:

uC++ Runtime error (UNIX pid:29903) Attempt by task T (0xd27d80) to activate coroutine C (0xd27940)

currently executing in a mutex object owned by task T (0xd27a50). Possible cause is task attempting

to logically change ownership of a mutex object via a coroutine. Error occurred while executing task T

(0xd27d80).

because t1’s thread first calls routine C::mem and then resumes coroutine c, which now calls the mutex routine T::mem.

t1 restarts in C::mem and returns back to T::main and yields the processor. t2’s threads now calls routine C::mem and

attempts to resume coroutine c, which would restart t2 via c in T::mem. However, this resumption would result in a

logical change in ownership because t2 has not acquired ownership of t1. This same error can occur if the coroutine is

changed to a coroutine monitor and task t1 waits in coroutine c after resuming it:

120 CHAPTER 7. ERRORS

_Task T;

_Coroutine C {
T * t;
void main();

public:
void mem(T * t) {

C::t = t;
resume();

}
};

_Task T {
uCondition w;
C & c;
void main() {

c.mem(this);
w.wait();

}
public:

T(C & c) : c(c) {}
void mem() {

resume();
}

};

void C::main() {
t->mem();

}
int main() {

C c;
T t1(c), t2(c);

}

It is incorrect storage management to delete any object if there are outstanding nested calls to the object’s members.

µC++ detects this case only for mutex objects. The following program:

class T;

_Monitor M {
public:

void mem(T * t);
};
class T {

M * m;
public:

void mem1() {
m = new M; // allocate object
m->mem(this); // call into object

}
void mem2() {

delete m; // delete object with pending call
}

};

void M::mem(T * t) {
t->mem2(); // call back to caller

}
int main() {

T t;
t.mem1();

}

generates this error:

uC++ Runtime error (UNIX pid:31045) Attempt by task program main (0x7ffdd8d77cd0) to call the destruc-

tor for uSerial 0x24e5af8, but this task has outstanding nested calls to this mutex object. Possible cause is

deleting a mutex object with outstanding nested calls to one of its members. Error occurred while executing

task program main (0x7ffdd8d77cd0).

It is incorrect to perform more than one delete on a mutex object, which can happen if multiple tasks attempt

to perform simultaneous deletes on the same object. µC++ detects this case only for mutex objects. The following

program:

_Monitor M {
uCondition w;

public:
~M() {

w.wait(); // force deleting task to wait
}

};

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 121

_Task T {
M * m;
void main() {

delete m; // delete mutex object
}

public:
T(M * m) : m(m) {}

};
int main() {

M * m = new M; // create mutex object
T t(m); // create task
delete m; // also delete mutex object

}

generates this error:

uC++ Runtime error (UNIX pid:31653) Attempt by task T (0x1e96da0) to call the destructor for uSerial

0x1e9bad8, but this destructor was already called by task program main (0x7ffd9ce70430). Possible

cause is multiple tasks simultaneously deleting a mutex object. Error occurred while executing task T

(0x1e96da0).

7.2.3.4 Task

The destructor of a task cannot execute if the thread of that task has not finished (halted) because the destructor

deallocates the environment in which the task’s thread is executing. The following program:

_Task T {
uCondition w;
void main() {

_Accept(~T); // task main invokes destructor
w.wait(); // T continues but blocks, which restarts the program main

}
};
int main() {

T t;
} // implicitly invoke T::~T

generates this error:

uC++ Runtime error (UNIX pid:24374) After implicitl/explicit accept of a destructor call, task T (0x1e83d90)

blocks, which restarts the destructor call before the task’s main has terminated. Possible cause is task

blocked on a condition queue. Error occurred while executing task program main (0x7ffdd7629650).

because the call to the destructor restarts the accept statement (see Section 2.9.2.3, p. 23), and the thread of t blocks on

condition w, which restarts the destructor. However, the destructor cannot cleanup without invalidating any subsequent

execution of task t.

Cannot raise an exception across implicit task joins. The following program:

_Task T {
void main() {

. . .
}

};

_Exception E {};

int main() {
T t;
_Throw E();

} // implicitly invoke T::~T

generates this error:

uC++ Runtime error (UNIX pid:24374) Attempt to propagate exception across implicit task join. Possible

cause is missing try block before task join. Try catching exception uBaseException and print the exception’s

message.

122 CHAPTER 7. ERRORS

because the implicit destructor call for t is invoked during propagation of exception E and waiting for t to finish could

cause a deadlock as the exception is pointing out an issue has occurred.

7.2.3.5 Condition Variable

Only the owner of a condition variable can wait and signal on it (see Section 2.9.3.1, p. 24). The following program:

_Task T {
uCondition & w;
void main() {

w.wait();
}

public:
T(uCondition & w) : w(w) {}

};
int main() {

uCondition w;
T t(w);
w.wait();

}

generates this error:

uC++ Runtime error (UNIX pid:23772) Attempt to wait on a condition variable for a mutex object not locked

by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex

object owning the variable. Error occurred while executing task T (0x143cda0).

because the condition variable w is passed from the main routine to t, and then there is a race to wait on the condition.

The error message shows that the program main waited first so it became the condition owner, and then t’s attempt to

wait fails. Changing wait in T::main to signal generates a similar message with respect to signalling a condition not

owned by mutex object t. It is possible for one mutex object to create a condition and pass it to another, as long as the

creator does not wait on it before passing it.

The same situation can occur if a wait or signal is incorrectly placed in a nomutex member of a mutex type. The

following program:

_Task T {
uCondition w;
void main() { w.wait(); }

public:
_Nomutex void mem() {

w.signal();
}

};
int main() {

T t;
yield();
t.mem();

}

generates this error:

uC++ Runtime error (UNIX pid:6710) Attempt to signal a condition variable for a mutex object not locked

by this task. Possible cause is accessing the condition variable outside of a mutex member for the mutex

object owning the variable. Error occurred while executing task program main (0x7ffc0894aad0).

because task t is first to wait on condition variable w due to the yield in the main routine, and then the program main

does not lock mutex-object t when calling mem as it is nomutex. Only if the program main has t locked can it access

any condition variable owned by t. Changing signal in T::mem to wait generates a similar message with respect to

waiting on a condition not locked by mutex object main.

A condition variable must be non-empty before examining data stored with the front task blocked on the queue

(see Section 2.9.3.1, p. 24). The following program:

int main() {
uCondition w;
int i = w.front();

}

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 123

generates this error:

uC++ Runtime error (UNIX pid:24249) Attempt to access user data on an empty condition. Possible cause

is not checking if the condition is empty before reading stored data. Error occurred while executing task

program main (0x7ffc44099980).

because the condition variable w is empty so there is no data to return.

7.2.3.6 Accept Statement

An _Accept accept statement can only appear in a mutex member. The following program:

_Monitor M {
public:

void mem1() {}
_Nomutex void mem2() {

_Accept(mem1); // not allowed in nomutex member
}

};
int main() {

M m;
m.mem2();

}

generates this error:

uC++ Runtime error (UNIX pid:4088) Attempt to accept in a mutex object not locked by this task. Possible

cause is accepting in a nomutex member routine. Error occurred while executing task program main

(0x7ffd8a9e5dd0).

7.2.3.7 Calendar

When creating an absolute time value using uTime (see Section 11.2.1, p. 144), the value must be in the range 00:00:00

UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, which is the UNIX start and end epochs. The following

program:

int main() {
uTime t(-17);

}

generates this error:

uC++ Runtime error (UNIX pid:2700) Attempt to create uTime(year=-17, month=0, day=0, hour=0, min=0,

sec=0, nsec=0), which is not in the range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January 19,

2038. Error occurred while executing task program main (0x7fffec02ac70).

7.2.3.8 Locks

The argument for the uLock constructor (see Section 2.16.2, p. 36) must be 0 or 1. The following program:

int main() {
uLock l(3);

}

generates this error:

uC++ Runtime error (UNIX pid:31313) Attempt to initialize uLock 0xe850c0 to 3 that exceeds range 0-1.

Error occurred while executing task program main (0x7ffce021a300).

because the value 3 passed to the constructor of uLock is outside the range 0–1.

7.2.3.9 Cluster

A cluster cannot be deleted with a task still on it, regardless of what state the task is in (i.e., blocked, ready or running).

The following program:

124 CHAPTER 7. ERRORS

_Task T {
void main() {}

};
int main() {

T * t = new T;
}

generates this error:

uC++ Runtime error (UNIX pid:2916) Attempt to delete cluster userCluster (0x1144200) with task T (0x1205a88)

still on it. Possible cause is the task has not been deleted. Error occurred while executing task uBootTask

(0x651ce0).

because the uBootTask happens to delete the user cluster (see Section 8.3, p. 127) after the program main terminates

and before the dynamically allocated task t has terminated. Deleting the task associated with t before the main routine

terminates solves the problem.

Similarly, a cluster cannot be deleted with a processor still located on it, regardless of what state the processor is

in (i.e., running or idle). The following program:

int main() {
uProcessor & p = *new uProcessor(uThisCluster());

}

generates this error:

uC++ Runtime error (UNIX pid:11982) Attempt to delete cluster userCluster (0x26a5200) with processor

0x2766a88 still on it. Possible cause is the processor has not been deleted. Error occurred while executing

task uBootTask (0x64fce0).

because the uBootTask deletes the user cluster (see Section 8.3, p. 127) after the program main terminates but the

dynamically allocated processor p is still on the user cluster. Deleting the processor associated with p before the main

routine terminates solves the problem.

7.2.3.10 Heap

µC++ provides its own concurrent dynamic memory allocation routines. Unlike most C/C++ dynamic memory alloca-

tion routines, µC++ does extra checking to ensure that some aspects of dynamic memory usage are done correctly. The

following program:

int main() {
int * ip = (int *)1; // invalid pointer address
delete ip;

}

generates this error:

uC++ Runtime error (UNIX pid:16554) Attempt to free storage 0x1 with address outside the heap. Possible

cause is duplicate free on same block or overwriting of memory. Error occurred while executing task

program main (0x7ffca9d0ec20).

because the value of pointer ip is not within the heap storage area, and therefore, cannot be deleted.

The following program:

int main() {
int * ip = new int[10];
delete &ip[5]; // not the start of the array

}

generates this error:

uC++ Runtime error (UNIX pid:1538) Attempt to free storage 0xa0aa9c with address outside the heap.

Possible cause is duplicate free on same block or overwriting of memory. Error occurred while executing

task program main (0x7ffd78aa1ca0).

because the pointer passed to delete must always be the same as the pointer returned from new. In this case, the value

passed to delete is in the middle of the array instead of the start.

7.2. DYNAMIC (RUNTIME) WARNINGS/ERRORS 125

The following program:

_Task T {
void main() {}

public:
void mem() {}

};
int main() {

T * t = new T;
delete t;
t->mem(); // use deleted storage

}

generates this error:

uC++ Runtime error (UNIX pid:31732) (uSerial &)0x1fb6cf8 : Entry failure while executing mutex destruc-

tor: mutex object has been destroyed. Error occurred while executing task program main (0x7ffddcadf7f0).

because an attempt is made to use the storage for task t after it is deleted, which is always incorrect. This storage may

have been reallocated to another task and now contains completely different information. The problem is detected

inside of the µC++ kernel, where there are assertion checks for invalid pre- or post-conditions. In this case, the invalid

storage happened to trigger a check for a task acquiring a spin lock twice, which is never suppose to happen. Using

storage incorrectly can trigger other “internal errors” from the µC++ kernel, e.g.:

uC++ Runtime error (UNIX pid:2670) (uSpinLock &)0x92a50.acquire() : internal error, attempt to multiply

acquire spin lock by same task. Error occurred while executing task program main (0xffbef008).

As well, a warning message is issued at the end of a program if all storage is not freed.

uC++ Runtime warning (UNIX pid:3914) : program terminating with 32(0x20) bytes of storage allocated

but not freed. Possible cause is unfreed storage allocated by the program or system/library routines called

from the program.

This is not an error; it is a warning. While this message indicates unfreed storage, it does not imply the storage is

allocated by the user’s code. Many system (e.g., exceptions) and library (e.g., string type and socket I/O) operations

allocate storage (such as buffers) for the duration of the program, and therefore, there is little reason to free the storage

at program termination. (Why cleanup and then terminate?) There is nothing that can be done about this unfreed

storage. Therefore, the value printed is only a guide in determining if all of a user’s storage is freed.

What use is this message? Any sudden increase of unfreed storage from some base value may be a strong indication

of unfreed storage in the user’s program. A quick check of the dynamic allocation can be performed to verify all user

storage is being freed.

7.2.3.11 I/O

There are many different I/O errors; only those related to the µC++ kernel are discussed. The following program:

int main() {
uThisCluster().select(-1, 0, nullptr);

}

generates this error:

uC++ Runtime error (UNIX pid:11833) Attempt to select on file descriptor -1 that exceeds range 0-1023.

Error occurred while executing task program main (0x7fff904723d0).

The following program:

int main() {
uThisCluster().select(-1, nullptr, nullptr, nullptr, nullptr);

}

generates this error:

uC++ Runtime error (UNIX pid:3614) Attempt to select with a file descriptor set size of -1 that exceeds

range 0-1024. Error occurred while executing task program main (0x7ffdd3d008b0).

126 CHAPTER 7. ERRORS

7.2.3.12 Processor

The following program:

#include <uSemaphore.h>
int main() {

uSemaphore s(0);
s.P(); // block only thread => synchronization deadlock

}

generates this error:

uC++ Runtime error (UNIX pid:24003) No ready or pending tasks. Possible cause is tasks are in a synchro-

nization or mutual exclusion deadlock. Error occurred while executing task uProcessorTask (0x19c13a8)

in coroutine uProcessorKernel (0x1900cf0).

because the only thread blocks so there are no other tasks to execute, resulting in a synchronization deadlock. This

message also appears for the more complex form of deadlock resulting from mutual exclusion.

7.2.3.13 UNIX

There are many UNIX related errors, of which only a small subset are handled specially by µC++.

A common error in C++ programs is to generate and use an invalid pointer. This situation can arise because of an

incorrect pointer calculation, such as an invalid subscript. The following program:

int main() {
int * ip = nullptr; // set address to 0

*ip += 1; // use the bad address
}

generates this error:

uC++ Runtime error (UNIX pid:16921) Attempt to address location (nil). Possible cause is reading out-

side the address space or writing to a protected area within the address space with an invalid pointer or

subscript. Error occurred while executing task program main (0x7ffdf61dc890).

because the value of pointer ip is probably within the executable code, which is read-only, but an attempt to write is

occurring.

If a µC++ program is looping for some reason, it may be necessary to terminate its execution. Termination is

accomplished using a shell kill command, sending signal SIGTERM to the UNIX process. µC++ receives the termination

signal and attempts to shutdown the application, which is important in multikernel mode with multiple processors. The

following program:

#include <unistd.h> // getpid prototype
int main() {

kill(getpid(), SIGTERM); // send SIGTERM signal to program
}

generates this error:

uC++ Runtime error (UNIX pid:18636) Application interrupted by a termination signal. Error occurred while

executing task program main (0x7ffc075a2bf0).

because the µC++ program sent itself a termination (SIGTERM) signal.

Chapter 8

µC++ Kernel

The µC++ kernel is a library of classes and routines that provide low-level lightweight concurrency support on unipro-

cessor and multiprocessor computers running the UNIX operating system. On uniprocessors, parallelism is simulated

by rapid context switching at non-deterministic points so a programmer cannot rely on order or speed of execution.

Some of the following facilities only have an effect on multiprocessor computers but can be called on a uniprocessor

so that a program can be seamlessly transported between the two architectures.

The µC++ kernel does not call the UNIX kernel to perform a context switch or to schedule tasks, and uses shared

memory for communication. As a result, performance for execution of and communication among large numbers of

tasks is significantly increased over UNIX processes. The maximum number of tasks that can exist is restricted only by

the amount of memory available in a program. The minimum stack size for an execution state is machine dependent,

but can be as small as 256 bytes. The storage management of all µC++ objects and the scheduling of tasks on virtual

processors is performed by the µC++ kernel.

8.1 Pre-emptive Scheduling and Critical Sections

Care must be taken when writing threaded programs calling certain UNIX library routines that are not thread-safe. For

example, the UNIX random number generator rand maintains an internal state between successive calls and there is no

mutual exclusion on this internal state. Hence, one task executing the random number generator can be pre-empted and

the generator state can be modified by another task, which may result in problems with the generated random values

or errors. Therefore, when writing µC++ programs, always use the thread-safe versions of UNIX library routines, such

as rand_r to generate random numbers.

For some non-thread-safe UNIX library-routines, µC++ provides a thread-safe equivalent, such as abort/abort, exit

(see Section 7.2.2, p. 110), sleep, usleep, and the µC++ I/O library (see Chapter 4, p. 71).

8.2 Memory Management

In µC++, all user data is located in memory that is accessible by all kernel threads started by µC++. In order to make

memory management operations safe, the C++ memory management operators new and delete are indirectly redefined

through the C routines malloc and free to allocate and free memory correctly by multiple tasks. These memory

management operations provide identical functionality to the C++ and C equivalent ones.

8.3 Cluster

As mentioned in Section 2.3.1, p. 8, a cluster is a collection of µC++ tasks and processors; it provides a runtime

environment for execution. This environment controls the amount of parallelism and contains variables to affect how

coroutines and tasks behave on a cluster. Environment variables are used implicitly, unless overridden, when creating

an execution state on a cluster:

stack size is the default stack size, in bytes, used when coroutines or tasks are created on a cluster.

The variable(s) is either explicitly set or implicitly assigned a µC++ default value when the cluster is created. A cluster

is used in operations like task or processor creation to specify the cluster on which the task or processor is associated.

127

128 CHAPTER 8. µC++ KERNEL

After a cluster is created, it is the user’s responsibility to associate at least one processor with the cluster so it can

execute tasks.

The cluster interface is the following:

class uCluster {
public:

uCluster(unsigned int stackSize = uDefaultStackSize(), const char * name = "*unnamed*");
uCluster(const char * name);
uCluster(uBaseSchedule<uBaseTaskDL> & ReadyQueue,

unsigned int stackSize = uDefaultStackSize(), const char * name = "*unnamed*");
uCluster(uBaseSchedule<uBaseTaskDL> & ReadyQueue, const char * name = "*unnamed*");

const char * setName(const char * name);
const char * getName() const;
unsigned int setStackSize(unsigned int stackSize);
unsigned int getStackSize() const;

enum { ReadSelect = 1, WriteSelect = 2, ExceptSelect = 4 };

int select(int fd, int rwe, timeval * timeout = nullptr);
int select(int nfds, fd_set * rfd, fd_set * wfd, fd_set * efd, timeval * timeout = nullptr);

const uBaseTaskSeq & getTasksOnCluster();
unsigned int getProcessors() const;
const uProcessorSeq & getProcessorsOnCluster();

};

uCluster clus(8196, "clus") // 8K default stack size, cluster name is “clus”

The overloaded constructor routine uCluster has the following forms:

uCluster(unsigned int stackSize = uDefaultStackSize(), const char * name = "*unnamed*") – this form uses

the user specified stack size and cluster name (see Section 12.1, p. 155 for the first default value).

uCluster(const char * name) – this form uses the user specified name for the cluster and the current cluster’s

default stack size.

When a cluster terminates, it must have no tasks executing on it and all processors associated with it must be freed.

It is the user’s responsibility to ensure no tasks are executing on a cluster when it terminates; therefore, a cluster can

only be deallocated by a task on another cluster.

The member routine setName associates a name with a cluster and returns the previous name. The member routine

getName returns the string name associated with a cluster.

The member routine setStackSize is used to set the default stack size value for the stack portion of each execution

state allocated on a cluster and returns the previous default stack size. The new stack size is specified in bytes. For

example, the call clus.setStackSize(8000) sets the default stack size to 8000 bytes.

The member routine getStackSize is used to read the value of the default stack size for a cluster. For example, the

statement i = clus.getStackSize() sets i to the value 8000.

The overloaded member routine select works like the UNIX select routine, but on a per-task basis per cluster. That

is, all I/O performed on a cluster is managed by a poller task for that cluster (see Section 4.1, p. 71). In general, select

is used only in esoteric situations, e.g., when µC++ file objects are mixed with standard UNIX file objects on the same

cluster. These members return the total number of file descriptors set in all file descriptor masks, and each routine has

the following form:

select(int fd, int rwe, timeval * timeout = nullptr) – this form is a shorthand select for a single file descriptor.

The mask, rwe, is composed of logically “or”ing flags ReadSelect, WriteSelect, and ExceptSelect. The timeout

value points to a maximum delay value, specified as a timeval, to wait for the I/O to complete. If the timeout

pointer is null, the select blocks until the I/O operation completes or fails. This form is more efficient than the

next forms with complete file descriptor sets, but handles only a single file.

select(int nfds, fd_set * rfd, fd_set * wfd, fd_set * efd, timeval * timeout = nullptr) – this form examines the

first nfds I/O file descriptors in the sets pointed to by rfd, wfd, and efd, respectively, to see if any of their file

descriptors are ready for reading, or writing, or have exceptional conditions pending. The timeout value points

8.4. PROCESSORS 129

to a maximum delay value, specified as a timeval, to wait for an I/O to complete. If the timeout pointer is null,

the select blocks until one of the I/O operations completes or fails.

There does not seem to be any standard semantics action when multiple kernel threads access the same file de-

scriptor in select. Some systems wake all kernel threads waiting for the same file descriptor; others wake the kernel

threads in FIFO order of their request for the common file descriptor. µC++ adopts the former semantic and wakes all

tasks waiting for the same file descriptor. In general, this is not a problem because all µC++ file routines retry their I/O

operation, and only one succeeds in obtaining data (which one is non-deterministic).

Finally, it is impossible to precisely deliver select errors to the task that caused it. For example, if one task

in waiting for I/O on a file descriptor and another task closes the file descriptor, the UNIX select fails but with no

information about which file descriptor caused the error. Therefore, µC++ wakes up all tasks waiting on the select at

the time of the error and the tasks must retry their I/O operation. Again, all µC++ file routines retry their I/O operations

after waiting on select.

✷ Unfortunately, UNIX does not provide adequate facilities to ensure that signals sent to wake up a

blocked UNIX process or kernel thread is always delivered. There is a window between sending a signal

and blocking using a UNIX select operation that cannot be closed. Therefore, the poller task has to wake

up once a second to deal with the rare event that a signal sent to wake it up is missed. This problem only

occurs when a task is migrating from one cluster to another cluster on which I/O is being performed. ✷

The member routine getTasksOnCluster returns a list of all the tasks currently on the cluster. The member routine

getProcessors returns the number of processors currently on the cluster. The member routine getProcessorsOnCluster

returns a list of all the processors currently on the cluster. These routines are useful for profiling and debugging

programs.

The free routine:

uCluster & uThisCluster();

is used to determine the identity of the current cluster a task resides on.

8.4 Processors

As mentioned in Section 2.3.2, p. 8, a µC++ virtual processor is a “software processor”; it provides a runtime environ-

ment for parallel thread execution. This environment contains variables to affect how thread execution is performed

on a processor. Environment variables are used implicitly, unless overridden, when executing threads on a processor:

pre-emption time is the default time, in milliseconds, to the next implicit yield of the currently executing task to

simulate non-deterministic execution (see Section 8.4.1, p. 131).

spin amount is the default number times the cluster’s ready queue is checked for an available task to execute before

the processor blocks (see Section 8.4.2, p. 131).

processors is the default number of processors created implicitly on a cluster.

The variables are either explicitly set or implicitly assigned a µC++ default value when the processor is created.

In µC++, a virtual processor is implemented as a kernel thread (possibly via a UNIX process) that is subsequently

scheduled for execution on a hardware processor by the underlying operating system. On a multiprocessor, kernel

threads are usually distributed across the hardware processors and so some execute in parallel. The maximum number

of virtual processors that can be created is indirectly limited by the number of kernel/processes the operating system

allows a program to create, as the sum of the virtual processors on all clusters cannot exceed this limit.

As stated previously, there are two versions of the µC++ kernel: the unikernel, which is designed to use a single

processor; and the multikernel, which is designed to use several processors. The interfaces to the unikernel and

multikernel are identical; the only difference is that the unikernel has only one virtual processor. In particular, in

the unikernel, operations to increase or decrease the number of virtual processors are ignored. The uniform interface

allows almost all concurrent applications to be designed and tested on the unikernel, and then run on the multikernel

after re-linking.

The processor interface is the following:

130 CHAPTER 8. µC++ KERNEL

class uProcessor {
public:

uProcessor(unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin());
uProcessor(bool detached, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());
uProcessor(uCluster & cluster, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());
uProcessor(uCluster & cluster, bool detached, unsigned int ms = uDefaultPreemption(),

unsigned int spin = uDefaultSpin());

uPid_t getPid() const;
uCluster & setCluster(uCluster & cluster);
uCluster & getCluster() const;
uBaseTask & getTask() const;
bool getDetach() const;
unsigned int setPreemption(unsigned int ms);
unsigned int getPreemption() const;
unsigned int setSpin(unsigned int spin);
unsigned int getSpin() const;
bool idle() const;

};

uProcessor proc(clus); // processor is attached to cluster clus

A processor can be non-detached or detached with respect to its associated cluster. A non-detached processor is auto-

matically/dynamically allocated and its storage is managed by the programmer. A detached processor is dynamically

allocated and its storage is managed by its associated cluster, i.e., the processor is automatically deleted when its

cluster is deleted.

The overloaded constructor routine uProcessor has the following forms:

uProcessor(unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin()) – creates a non-

detached processor on the current cluster with the user specified time-slice and processor-spin duration (see

Section 12.1, p. 155 for the default values).

uProcessor(bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin())

– creates a detached/non-detached processor on the current cluster with the user specified time-slice and

processor-spin duration (see Section 12.1, p. 155 for the default values). The indicator for detachment is false

for non-detached and true for detached.

uProcessor(uCluster & cluster, unsigned int ms = uDefaultPreemption(), unsigned int spin = uDefaultSpin())

– creates a non-detached processor on the specified cluster using the user specified time-slice and processor-

spin duration.

uProcessor(uCluster & cluster, bool detached, unsigned int ms = uDefaultPreemption(), unsigned int spin =

uDefaultSpin()) – creates a detached/non-detached processor on the specified cluster using the user specified

time-slice and processor-spin duration. The indicator for detachment is false for non-detached and true for

detached.

The member routine getPid returns the current UNIX process id that the processor is associated with.

The member routine setCluster moves a processor from its current cluster to another cluster and returns the cur-

rent cluster. The member routine getCluster returns the current cluster the processor is associated with, and hence,

executing tasks for.

The member routine getTask returns the current task that the processor is executing.

The member routine getDetach returns if the processor is non-detached (false) or detached (true).

The member routine setPreemption is used to set the default pre-emption duration for a processor (see Sec-

tion 8.4.1) and returns the previous default pre-emption duration. The time duration between interrupts is specified

in milliseconds. For example, the call proc.setPreemption(50) sets the default pre-emption time to 0.05 seconds for

a processor. To turn pre-emption off, call proc.setPreemption(0). The member routine getPreemption is used to read

the current default pre-emption time for a processor. For example, the statement i = proc.getPreemption() sets i to the

value 50.

The member routine setSpin is used to set the default spin-duration for a processor (see Section 8.4.2) and returns

the previous default spin-duration. The spin duration is specified as the number of times the cluster’s ready queue is

8.4. PROCESSORS 131

checked for an available task to execute before the processor blocks. For example, the call proc.setSpin(500) sets the

default spin-duration to 500 checks for a processor. To turn spinning off, call proc.setSpin(0). The member routine

getSpin is used to read the current default spin-duration for a processor. For example, the statement i = proc.getSpin()

sets i to the value 500.

The member routine idle indicates if this processor is currently idle, i.e., the UNIX process has blocked because

there were no tasks to execute on the cluster it is associated with.

The free routine:

uBaseProcessor & uThisProcessor();

is used to determine the identity of the current processor a task is executing on.

The following are points to consider when deciding how many processors to create for a cluster. First, there is

no advantage in creating significantly more processors than the average number of simultaneously active tasks on the

cluster. For example, if on average three tasks are eligible for simultaneous execution, creating significantly more than

three processors does not achieve any execution speedup and wastes resources. Second, the processors of a cluster

are really virtual processors for the hardware processors, and there is usually a performance penalty in creating more

virtual processors than hardware processors. Having more virtual processors than hardware processors can result

in extra context switching of the underlying kernel threads or operating system processes (see Section 8.4.3) used

to implement a virtual processor, which is runtime expensive. This same problem can occur among clusters. If a

computational problem is broken into multiple clusters and the total number of virtual processors exceeds the number

of hardware processors, extra context switching occurs at the operating system level. Finally, a µC++ program usually

shares the hardware processors with other user programs. Therefore, the overall operating system load affects how

many processors should be allocated to avoid unnecessary context switching at the operating system level.

✷ Changing the number of processors is expensive, since a request is made to the operating system to

allocate or deallocate kernel threads or processes. This operation often takes at least an order of magnitude

more time than task creation. Furthermore, there is often a small maximum number of kernel threads

and/or processes (e.g., 20–40) that can be created in a program. Therefore, processors should be created

judiciously, normally at the beginning of a program. ✷

8.4.1 Implicit Task Scheduling

Pre-emptive scheduling is enabled by default on both unikernel and multikernel. Each processor is periodically inter-

rupted in order to schedule another task to be executed. Note that interrupts are not associated with a task but with a

processor; hence, a task does not receive a time-slice and it may be interrupted immediately after starting execution

because the processor’s pre-emptive scheduling occurs and another task is scheduled. A task is pre-empted at a non-

deterministic location in its execution when the processor’s pre-emptive scheduling occurs. Processors on a cluster

may have different pre-emption times. The default processor time-slice is machine dependent but is approximately

0.1 seconds on most machines. The effect of this pre-emptive scheduling is to simulate parallelism. This simulation is

usually accurate enough to detect most situations on a uniprocessor where a program might be dependent on order or

speed of execution of tasks.

✷ On many systems the minimum pre-emption time may be 10 milliseconds (0.01 of a second). Setting

the duration to an amount less than this simply sets the interrupt time interval to this minimum value. ✷

✷ The overhead of pre-emptive scheduling depends on the frequency of the interrupts. Furthermore,

because interrupts involve entering the UNIX kernel, they are relatively expensive if they occur frequently.

An interrupt interval of 0.05 to 0.1 seconds gives adequate concurrency and increases execution cost by

less than 1% for most programs. ✷

8.4.2 Idle Virtual Processors

When there are no ready tasks for a virtual processor to execute, the idle virtual processor has to spin in a loop or block

or both. In the µC++ kernel, an idle virtual processor spins for a user-specified number of checks of the cluster’s ready

queue before it blocks. During the spinning, the virtual processor is constantly checking for ready tasks, which would

be made ready by other virtual processors. An idle virtual processor is ultimately blocked so that machine resources

are not wasted. The reason that the idle virtual processor spins is because the block/unblock time can be large in

comparison to the execution of tasks in a particular application. If an idle virtual processor is blocked immediately

132 CHAPTER 8. µC++ KERNEL

upon finding no ready tasks, the next executable task has to wait for completion of an operating system call to restart

the virtual processor. If the idle processor spins for a short period of time, any task that becomes ready during the

spin duration is processed immediately. Selecting a spin amount is application dependent and it can have a significant

effect on performance.

8.4.3 Blocking Virtual Processors

To ensure maximum parallelism, it is desirable that a task not execute an operation that causes the processor it is

executing on to block. It is also essential that all processors in a cluster be interchangeable, since task execution may

be performed by any of the processors of a cluster. When tasks or processors cannot satisfy these conditions, it is

essential that they be grouped into appropriate clusters in order to avoid adversely affecting other tasks or guarantee

correct execution. Each of these points is examined.

There are two forms of blocking that can occur:

heavy blocking which is done by the operating system on a virtual processor as a result of certain system requests

(e.g., I/O operations).

light blocking which is done by the µC++ kernel on a task as a result of certain µC++ operations (e.g., _Accept, wait

and calls to a mutex routine).

The problem with heavy blocking is that it removes a virtual processor from use until the operation is completed; for

each virtual processor that blocks, the potential for parallelism decreases on that cluster. In those situations where

maintaining a constant number of virtual processors for computation is desirable, tasks should block lightly rather

than heavily, which is accomplished by keeping the number of tasks that block heavily to a minimum and relegated

to a separate cluster. This can be accomplished in two ways. First, tasks that would otherwise block heavily instead

make requests to a task on a separate cluster which then blocks heavily. Second, tasks migrate to the separate cluster

and perform the operation that blocks heavily. This maintains a constant number of virtual processors for concurrent

computation in a computational cluster, such as the user cluster.

On some multiprocessor computers not all hardware processors are equal. For example, not all of the hardware

processors may have the same floating-point units; some units may be faster than others. Therefore, it may be necessary

to create a cluster whose processors are attached to these specific hardware processors. (The mechanism for attaching

virtual processors to hardware processors is operating system specific and not part of µC++. For example, the Dynix

operating system from Sequent provides a routine tmp_affinity to lock a UNIX process on a processor.) All tasks that

need to perform high-speed floating-point operations can be created/placed on this cluster. This segregation still allows

tasks that do only fixed-point calculations to continue on another cluster, potentially increasing parallelism, but not

interfering with the floating-point calculations.

✷ µC++ tasks are not implemented with kernel threads or operating system processes for two reasons.

First, kernel threads have a high runtime cost for creation and context switching. Second, an operating

system process is normally allocated as a separate address space (or perhaps several) and if the system

does not allow memory sharing among address spaces, tasks have to communicate using pipes and sockets.

Pipes and sockets are runtime expensive. If shared memory is available, there is still the overhead of

entering the operating system, page table creation, and management of the address space of each process.

Therefore, kernel threads and processes are called heavyweight because of the high runtime cost and

space overhead in creating a separate address space for a process, and the possible restrictions on the forms

of communication among them. µC++ provides access to kernel threads only indirectly through virtual

processors (see Section 2.3.2, p. 8). A user is not prohibited from creating kernel threads or processes

explicitly, but such threads are not administrated by the µC++ runtime environment. ✷

Chapter 9

POSIX Threads (pthreads)

Posix threads (pthreads) is a relatively low-level C-language thread-library providing two basic concurrency mech-

anisms: threads and locks. As pthreads is designed for C rather than C++, pthreads does not take advantage of any

high-level features of C++. A thread is started (forked) in a routine, possibly passing a single type-unsafe argument, and

another thread can wait for this thread’s termination (join), possibly returning a single type-unsafe value. Two kinds

of locks are available: for synchronization, pthread_cond, which is like µC++’s uCondLock (see Section 2.16.5, p. 38),

and for mutual exclusion, pthread_mutex, which is like µC++’s uOwnerLock (see Section 2.16.4, p. 37). See a pthreads

reference-manual [But97] for complete details on the syntax and semantics of using this library to construct concurrent

programs.

9.1 Combining Pthreads with µC++

Pthreads is the threading standard for POSIX-compliant systems and has become the de-facto standard for concurrent

programming in C; hence, there exists a significant number of applications and libraries built using pthreads. To help

concurrent programmers leverage this existing resource, while still writing high-level concurrent programs in C++,

µC++ provides a subset of the most commonly used pthreads routines (see Figure 9.1). Thus, a µC++ programmer

can use high-level concurrent features in µC++, along with existing C/C++ source code or pre-compiled code that

uses pthreads functionality. It is also possible to take a native pthreads programs and – with only minor changes –

convert it to a µC++ program using µC++’s pthreads support. In this way, programmers can incrementally transform

and extend pthreads applications to use higher-level C++ approaches, starting with a combination of low-level pthreads

threads/locks and high-level µC++ capabilities, and ultimately moving to all high-level mechanisms. There are three

basic ways in which µC++ can be used in conjunction with pthreads:

• linking against pre-compiled binaries using pthreads,

• recompilation of separate translation units using pthreads,

• recompilation of entire pthreads programs.

9.1.1 Linking µC++ and Pthreads Binaries

In most cases, existing object files using pthreads routines can be directly linked with a µC++ program. For example,

a µC++ program, program.cc, is compiled and linked with a pthreads-dependent object-file, plib.o, by:

u++ [C++ options] program.cc plib.o

Note, the standard pthreads library, libpthread, must not be linked with this program (i.e., -lpthreads) as only the

pthreads routines provided by µC++ work. However, this approach fails if plib.o uses routines not provided by µC++

(see Figure 9.1), the object file defines the entry point into the program (i.e., routine main), or if plib.o calls pthreads

routines inside global constructors or destructors. The second and third cases can be corrected if the source for plib.o

can be changed and recompiled (described next).

9.1.2 Recompiling Pthreads Modules

If a translation unit declares global objects with constructors and destructors calling pthreads routines (i.e., before/after

the initial starting routine), the translation unit must be recompiled with the u++ command (see Section 2.4.1, p. 10).

133

134 CHAPTER 9. POSIX THREADS (PTHREADS)

//######################### Creation #########################
int pthread_create(pthread_t * new_thread_id, const pthread_attr_t * attr, void * (* start_func)(void *), void * arg);
int pthread_attr_init(pthread_attr_t * attr);
int pthread_attr_destroy(pthread_attr_t * attr);
int pthread_attr_setscope(pthread_attr_t * attr, int contentionscope);
int pthread_attr_getscope(const pthread_attr_t * attr, int * contentionscope);
int pthread_attr_setdetachstate(pthread_attr_t * attr, int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t * attr, int * detachstate);
int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_t * attr, size_t * stacksize);
int pthread_getattr_np(pthread_t threadID, pthread_attr_t * attr); // GNU extension
int pthread_yield(void); // GNU extension
//######################### Exit #########################
void pthread_exit(void * status);
int pthread_join(pthread_t threadID, void ** status);
int pthread_tryjoin_np(pthread_t threadID, void ** status); // GNU extension
int pthread_timedjoin_np(pthread_t threadID, void ** status, const struct timespec * abstime); // GNU extension
int pthread_detach(pthread_t threadID);
//######################### Parallelism #########################
int pthread_getconcurrency(void); // XOPEN extension
int pthread_setconcurrency(int new_level); // XOPEN extension
//######################### Thread Specific Data #########################
void pthread_deletespecific_(void * pthreadData); // see uMachContext::invokeTask
int pthread_key_create(pthread_key_t * key, void (* destructor)(void *));
int pthread_key_delete(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void * value);
void * pthread_getspecific(pthread_key_t key);
//######################### ID #########################
pthread_t pthread_self(void);
int pthread_once(pthread_once_t * once_control, void (* init_routine)(void));
//######################### Cancellation #########################
int pthread_cancel(pthread_t threadID);
int pthread_setcancelstate(int state, int * oldstate);
int pthread_setcanceltype(int type, int * oldtype);
void pthread_testcancel(void);
void pthread_cleanup_pop(int ex);
void pthread_cleanup_push(void (* routine) (void *), void * args);
//######################### Mutex #########################
int pthread_mutex_init(pthread_mutex_t * mutex, const pthread_mutexattr_t * attr);
int pthread_mutex_destroy(pthread_mutex_t * mutex);
int pthread_mutex_lock(pthread_mutex_t * mutex);
int pthread_mutex_trylock(pthread_mutex_t * mutex);
int pthread_mutex_unlock(pthread_mutex_t * mutex);
//######################### Condition #########################
int pthread_cond_init(pthread_cond_t * cond, const pthread_condattr_t * attr);
int pthread_cond_destroy(pthread_cond_t * cond);
int pthread_cond_wait(pthread_cond_t * cond, pthread_mutex_t * mutex);
int pthread_cond_timedwait(pthread_cond_t * cond, pthread_mutex_t * mutex, const struct timespec * abstime);
int pthread_cond_signal(pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

Figure 9.1: Implemented Pthreads Routines

9.2. µC++ TASK AS A PTHREADS THREAD 135

As well, the pthreads module containing the initial entry point main must be recompiled with the u++ command.

9.2 µC++ Task as a Pthreads Thread

In order to ease the co-operation with pthreads code, and possibly help transition from low-level pthreads concurrency

to high-level µC++ concurrency, a µC++ task can become a quasi-pthreads thread by inheriting from uPthreadable:

_Task uPthreadable { // abstract class (inheritance only)
protected:

void * joinval; // pthreads return value
pthread_attr_t pthread_attr; // pthread attributes

uPthreadable(const pthread_attr_t * attr_);
uPthreadable(uCluster & cluster, const pthread_attr_t * attr_);
uPthreadable(); // same constructors as for uBaseTask
uPthreadable(unsigned int stackSize);
uPthreadable(uCluster & cluster);
uPthreadable(uCluster & cluster, unsigned int stackSize);

public:
_Nomutex pthread_t pthreadId(); // returns a pthread id for a uC++ task

_Excpetion Failure; // exceptions
_Exception CreationFailure;

};

_Task T : public uPthreadable { // inherit so uC++ task can mimic pthreads task
. . .

public:
T(. . .) : uPthreadable(. . .) {} // initialize uPthreadable as for uBaseTask
. . .

};

It is best to think of a uPthreadable task as a µC++ task that can mimic a pthreads thread by providing some pthreads

properties and capabilities. (Note, type uPthreadable is an abstract class for inheritance only; it cannot be instantiated

directly.) The duality of a uPthreadable task allows it to use all the high-level features of µC++ concurrency and yet

interact with existing pthreads code, which is helpful in situations where pthreads and µC++ are mixed, and provides a

path to transition from pthreads to µC++ concurrency.

A derived class of type uPthreadable has direct access to variables joinval and pthread_attr. Variable joinval must be

assigned by the derived class to return a value from pthread_join. Variable pthread_attr is the task’s pthreads attributes,

which can be read and written by appropriate pthreads attribute routines.

The overloaded constructor routine uPthreadable has the following forms:

uPthreadable(const pthread_attr_t * attr_) – creates a task on the current cluster with the specified pthreads

attributes. Currently, only the stack-size attribute is observed by the uPthreadable task. The other values are

stored, but are otherwise ignored by the uPthreadable task.

uPthreadable(uCluster & cluster, const pthread_attr_t * attr_) – creates a task on the specified cluster with the

specified pthreads attributes.

uPthreadable(. . .) are the same as for uBaseTask (see Section 2.13.2, p. 30).

An exception of type uPthreadable::CreationFailure is thrown during task instantiation if a pthread identifier cannot be

created.

The member routine pthreadId returns a unique pthreads identifier for the task. This pthreads identifier, which is

also returned when a uPthreadable task calls pthread_self, can be passed to any pthreads routine taking a pthread_t

type, including pthread_join and pthread_cancel. As a result, pthreads threads can join with or cancel uPthreadable

tasks with correct pthreads cleanup functionality. Note, (de)registering a cleanup handler using pthread_cleanup_push/-

pop can be performed by any kind of thread but only when executing on a pthreads or uPthreadable task’s stack; the

cleanup handler is associated with the stack frame on the task’s stack where the (de)registration occurs.

It is important to note that a uPthreadable task follows µC++ semantics rather than pthreads semantics and is not

considered a pthreads thread, which is defined as a task created by pthread_create. In particular, the life time of a

136 CHAPTER 9. POSIX THREADS (PTHREADS)

uPthreadable task is the same as an ordinary µC++ task, and it becomes a monitor after its main routine ends. The

program main is a uPthreadable task.

9.3 Semantic Inconsistencies between Pthreads and µC++

The combination of pthreads and µC++ creates some conflicts, which are resolved in the following ways:

9.3.1 Termination of main

When the program main routine ends, pthreads semantics cause immediate termination of the program and any out-

standing threads, whereas µC++ semantics require that all threads be programmatically terminated. This inconsistency

is resolved dynamically in favour of pthreads if any pthreads threads are running when the program main ends. In this

case, the application is shut-down causing all threads (pthreads and µC++) to be terminated abruptly, i.e., no finalization

code is executed for any of these threads. Recall that uPthreadable tasks are not considered pthreads threads.

9.3.2 Cleanup Semantics

The ability to perform cleanup is important in writing robust concurrent programs. Pthreads generalized the notion of

cleanup to thread termination (exit or cancellation) by allowing cleanup routines to be registered/de-registered using

pthread_cleanup_push and pthread_cleanup_pop. An equivalent capability is provided in C++ using class destructors

and catch clauses. When a µC++ program has a combination of both C++ and pthreads cleanup mechanisms, both are

invoked during thread termination.

Cleanup routines are executed in the reverse order of registration (LIFO). However, within a routine, the ordering

between C++ and pthreads cleanups is undefined, e.g., if an object is declared before a call to pthread_cleanup_push

in the same routine, its destructor may be executed before the pthreads cleanup. Note, among themselves, C++ and

pthreads cleanups always execute in proper order.

As part of a pthreads thread termination, all C++’s catch-any handlers (catch(. . .)) are also executed, which is the

same behaviour as for µC++ cancellation (see Section 6, p. 103). When all C++ and pthreads cleanups have been exe-

cuted, the thread terminates. The reason for executing catch-any handlers is the same as for µC++ cancellation, which

is to support the common C++ idiom of using catch-any handlers to perform cleanup actions. Like µC++ cancellation,

if a catch-any handler finishes, control does not resume after the try-block it guards, but instead, termination continues

with its associated stack unwinding. This behaviour differs from some pthreads implementations that mix C++ and

pthreads cleanup. In these implementations, the program is aborted if a catch-any handler finishes during pthreads

cleanup. The rationale for aborting is that the normal semantics of resuming execution after the handler’s try-block

is incompatible with the termination semantics for a thread. However, such a design is inconsistent with µC++ can-

cellation (see Section 6, p. 103 for the rationale). As well, if the catch-any handler throws a new exception during

cancellation, the program’s behaviour is undefined, as for µC++ cancellation.

9.4 Commentary

The pthreads simulation in µC++ also provides implicit compatibility and safety for programs calling POSIX-compliant

library routines in UNIX:

All functions defined by this volume of IEEE Std 1003.1-2001 shall be thread-safe, except that the fol-

lowing functions need not be thread-safe.

... small subset of POSIX functions ...

Implementations shall provide internal synchronization (mutual exclusion) as necessary in order to satisfy

this requirement. [POS08, pp. 507–508]

The most common mechanism to provide mutual exclusion within such library routines is to use pthreads locks. As

well, some POSIX compliant routines rely on thread-specific data provided by pthreads. Once pthreads calls are

embedded into standard UNIX implementations, it is difficult to use other thread designs due to the problems of

interaction between thread libraries. For example, a conflict occurs if a language/library concurrency system (e.g.,

µC++) does not use pthreads for its underlying concurrency, i.e., the language/library implements the whole concur-

rency system directly using atomic instructions and kernel threads. The reason a language/library may build its own

concurrency runtime is to achieve specialized behaviour that is different from pthreads (e.g., unblocking order, task

scheduling, priorities, thread model, etc.). However, when a language/library thread calls a POSIX routine, the routine

9.4. COMMENTARY 137

may call a pthreads routine for thread safety resulting in two different concurrency systems’ attempting to manage the

same thread. For example, a pthreads lock in a POSIX routine may attempt to block the executing thread, but if the

thread is created and managed by a different concurrency system, this operation is logically inconsistent and is likely

to fail. The µC++ pthreads simulation handles this problem by interposing its pthreads routines so they are called

from within the POSIX-compliant library routines. The simulation routines correctly interact with the µC++ runtime

system, while still providing thread-safe access to POSIX library routines. As a result, a µC++ program is portable

among POSIX-compliant systems and provides access to most legacy pthreads code.

138 CHAPTER 9. POSIX THREADS (PTHREADS)

Chapter 10

OpenMP

OpenMP [Ope15] is a set of concurrent programming extensions to C, C++, and Fortran. It presents a very different

model of concurrency from µC++: rather than create tasks directly, each with an independent control flow, an OpenMP

program creates teams of threads (using the omp parallel directive), with each thread in the team following the same

basic control flow. Execution can be divided up among threads in a team using the work-sharing directives omp for and

omp sections. For some applications (particularly ones that operate on large arrays of data, often found in scientific

and financial computations) OpenMP can be used to transform a sequential program into a concurrent program with

the addition of only a few directives, which often shows good parallel speedup.

OpenMP’s strength is its ability to abstract away the notion of threads entirely for certain problems. However,

for programs that cannot be expressed at this high level, OpenMP offers only primitive support. OpenMP has no

extensible abstractions to represent threads and shared data in the system (such as µC++’s tasks and monitors) and no

support for type-safe communication among threads (such as µC++’s accept statement). Finally, many algorithms with

obvious concurrency potential cannot take advantage of OpenMP’s high-level abstractions.

10.1 Using OpenMP in µC++ programs

When µC++ is used with an OpenMP-aware C++ compiler, the full range of OpenMP constructs are available for use in

µC++ programs (see Section 12.2 for supported compilers). This capability makes it straightforward to take an existing

OpenMP program and compile it using µC++.

When invoking the µC++ translator u++ to compile or link a program using OpenMP directives, it is necessary to

pass a command-line argument indicating that OpenMP is in use. The specific argument to be passed depends on the

C++ compiler used by u++: the GNU C++ compiler uses -fopenmp.

10.2 OpenMP and Parallelism

In µC++, each OpenMP thread is implemented as a µC++ task. These tasks are created on the cluster associated with

the task that begins execution of a parallel block, and are scheduled implicitly across the virtual processors on that

cluster (see Section 2.3.2). By default, all tasks are created on the same cluster, and this cluster has only one virtual

processor. In this case, the program executes correctly but without parallel execution, and hence, no speedup.

To obtain parallel execution, it is necessary to create a number of virtual processors so more than one task can be

scheduled at a time. Virtual processors are created by modifying the program to create objects of class uProcessor

(see Section 8.4). By creating and deleting uProcessor objects it is possible to control precisely the parallelism

available at any point in the program. For some programs it may be desirable to control the level of parallelism

from outside the program, just as the number of OpenMP threads can be controlled using the environment variable

OMP_NUM_THREADS. For this reason, the environment variable UOMP_NUM_PROCESSORS specifies a number

of virtual processors to be created at program startup1. These virtual processors are outside the direct control of the

program, and so there is no way to delete one of these processors or otherwise reduce the number of virtual processors

during execution. Note that to realize hardware parallelism, it is necessary to use the µC++ multikernel, i.e., compile

and link with -multi (see Section 2.4.1).

1A µC++ program only respects UOMP_NUM_PROCESSORS if it is linked with the appropriate OpenMP-enabling command-line argument

(-openmp or -fopenmp).

139

140 CHAPTER 10. OPENMP

Chapter 11

Real-Time

Real-time programming is defined by the correctness of a program depending on both the accuracy of the result and

when the result is produced. The latter criterion is not present in normal programming. Without programming language

facilities to specify timing constraints, real-time programs are usually built in ad-hoc ways (e.g., cyclic executive), and

the likelihood of encountering timing errors increases through manual calculations. The introduction of real-time

constructs is a necessity for accurately expressing time behaviour, as well as providing a means for the runtime system

to evaluate whether any timing constraints have been broken. Furthermore, explicit time-constraint constructs can

drastically minimize coding complexity as well as analysis. Various programming language constructs for real-time

environments are discussed in [SD92, Mar78, LN88, KS86, KK91, ITM90, HM92, GR91, CD95, Rip90].

11.1 Duration and Time

The convenient manipulation of time is an essential characteristic in any time-constrained environment. Manipulating

time, in turn, yields another metric that expresses a span or duration of time. uDuration is a class whose instances

represent a span of time, e.g., subtracting two time values results in a difference that is a time duration (2:00 − 1:30 =

30 minute duration). The creation and manipulation of uDuration values are performed through the member routines

of class uDuration (see Figure 11.1).

The overloaded constructor routines uDuration provide a choice of specifying a duration value. The parameters

have the following meanings:

sec – a number of seconds.

nsec – a number of seconds and nanoseconds.

timeval / timespec – a UNIX timeval or timespec, which is converted to a uDuration value.

A UNIX timeval and timespec value can be used to initialize or assign to a uDuration value, and a uDuration value

can be cast into a timeval or timespec value, e.g.:

timeval d1 = { 1, 0 }; // (seconds / microseconds)
uDuration d2 = d1, d3; // convert from timeval to uDuration (initialization)
timespec d4 = d2; // convert from uDuration to timespec (seconds / nanoseconds) (implicit cast)
d1 = (timeval)d2; // convert from uDuration to timeval (cast)
d3 = d1; // convert from timeval to uDuration (assignment)
d1 = d3; // convert from uDuration to timeval (implicit cast)

Conversion is guaranteed to be exact. The member routine seconds returns the duration value in seconds. The member

routine nanoseconds returns the duration value in nanoseconds.

Arithmetic operations may be performed on uDuration values, e.g.:

uDuration x, y, z;
int n;
x += 1; // implicitly create a uDuration of length 1 second
x = y + z; // add two uDurations producing a uDuration
x = y - z; // subtract two uDurations producing a uDuration
x = y * n; // multiply a uDuration n times
x = n * y; // multiply a uDuration n times
x = y / n; // divide a uDuration by n

141

142 CHAPTER 11. REAL-TIME

class uDuration {
public:

uDuration(); // initialize to zero
uDuration(long int sec);
uDuration(long int sec, long int nsec);
uDuration(const timeval tv);
uDuration(const timespec ts);

uDuration operator=(const timeval tv);
uDuration operator=(const timespec ts);
operator timeval() const;
operator timespec() const;
long int seconds() const;
int64_t nanoseconds() const;

uDuration operator-=(uDuration op);
uDuration operator+=(uDuration op);
uDuration operator*=(int64_t op);
uDuration operator/=(int64_t op);

}; // uDuration

uDuration operator+(uDuration op);
uDuration operator+(uDuration op1, uDuration op2);
uDuration operator-(uDuration op);
uDuration operator-(uDuration op1, uDuration op2);
uDuration operator*(uDuration op1, long long int op2);
uDuration operator*(long long int op1, uDuration op2);
uDuration operator/(uDuration op1, long long int op2);
long long int operator/(uDuration op1, uDuration op2);
bool operator==(uDuration op1, uDuration op2);
bool operator!=(uDuration op1, uDuration op2);
bool operator>(uDuration op1, uDuration op2);
bool operator<(uDuration op1, uDuration op2);
bool operator>=(uDuration op1, uDuration op2);
bool operator<=(uDuration op1, uDuration op2);
ostream & operator<<(ostream & os, const uDuration op);

Figure 11.1: Duration Class

In addition, relational comparison operators are defined for uDuration values.

uTime is a class, whose instance represents an absolute time. Time can be specified using some combination of

year, month, day, hour, minute, second, and nanosecond in UTC. It is important to note that a time value must be

in the range 00:00:00 UTC, January 1, 1970 to 03:14:07 UTC, January 19, 2038, which is the UNIX start and end

epochs. The creation and manipulation of uTime values are performed through the member routines of class uTime

(see Figure 11.2).

The overloaded constructor routines uTime provide a choice of specifying a time value. The parameters have the

following meanings:

year – a year greater than or equal to 1970 and less than or equal to 2038.

month – a number between 1 and 12 inclusive, where 1 represents January and 12 represents December.

day – a number between 1 and 31 inclusive, where 1 represents the first day of the month and 31 the last day.

hour – a number between 0 and 23 inclusive, where 0 represents 12:00am and 23 represents 11:00pm.

min – a number between 0 and 59 inclusive, where 0 is the first minute of the hour and 59 the last.

sec – a number between 0 and 60 inclusive, where 0 is the first second of the minute and 59 the last, and 60 allows

for a leap second.

nsec – a number between 0 and 999999999 inclusive, where 0 is the first nanosecond of the second and 999999999

the last.

timeval / timespec – a UNIX timeval or timespec, which is converted to a uTime value.

Values may be in any range (+/-) but the result must be in the UNIX epoch.

11.2. TIMEOUT OPERATIONS 143

class uTime {
public:

uTime(); // initialize to zero
// explicit => unambiguous with uDuration(long int sec)
explicit uTime(int year, int month = 1, int day = 1, int hour = 0, int min = 0,

int sec = 0, int64_t nsec = 0);
uTime(timeval tv);
uTime(timespec ts);

uTime operator=(timeval tv);
uTime operator=(timespec ts);
operator timeval() const;
operator timespec() const;
operator tm() const;
void convert(int & year, int & month, int & day, int & hour, int & minutes,

int & seconds, int64_t & nseconds) const;
uint64_t nanoseconds() const;

uTime operator-=(uDuration op);
uTime operator+=(uDuration op);

}; // uTime

uTime operator+(uTime op1, uDuration op2);
uTime operator+(uDuration op1, uTime op2);
uDuration operator-(uTime op1, uTime op2);
uTime operator-(uTime op1, uDuration op2);
bool operator==(uTime op1, uTime op2);
bool operator!=(uTime op1, uTime op2);
bool operator>(uTime op1, uTime op2);
bool operator<(uTime op1, uTime op2);
bool operator>=(uTime op1, uTime op2);
bool operator<=(uTime op1, uTime op2);
ostream & operator<<(ostream & os, const uTime op);

Figure 11.2: Time Class

uTime t1(2020, 1, 5, 9, 0, 0, 100000000000LL); // 2020 Jan 5 09:01:40
uTime t2(1969, 13, 5, 9); // 1970 Jan 5 09:00:00
uTime t3(1970, 25, 366, 48, 120, -120, 60000000000LL); // 1973 Jan 2 01:59:00

A UNIX timeval and timespec value can be used to initialize or assign to a uTime value, and a uTime value may be

cast into a timeval or timespec value, e.g.:

timeval t1;
gettimeofday(&t1, nullptr); // current time (seconds / microseconds)
uTime t2 = t1, t3; // convert from timeval to uTime (initialization)
timespec t4 = t2; // convert from uTime to timespec (seconds / nanoseconds) (implicit cast)
t3 = t1; // convert from timeval to uTime (assignment)
t1 = (timeval)t2; // convert from uTime to timeval (cast)
t1 = t3; // convert from uTime to timeval (implicit cast)

Conversion is guaranteed to be exact. The member routine convert unpacks the time into its time components. The

member routine nanoseconds returns the time value in nanoseconds.

As for uDuration values, arithmetic and relational operations may be performed on uTime values. As well, mixed

mode operations are possible involving durations and time. A duration may be added to or subtracted from a time to

yield a new time; two times can be subtracted from each other producing a duration.

11.2 Timeout Operations

It is sometimes necessary to delay a task’s execution for a relative duration or until an absolute time. It is also necessary

to prevent certain operations from blocking indefinitely. Two such common operations are waiting for an accepted call

to occur and waiting for I/O to complete. µC++ provides mechanisms to delay execution for a time interval or terminate

an operation after a time interval.

144 CHAPTER 11. REAL-TIME

11.2.1 Time Delay

In µC++, a time delay is expressed by either of the following two statements:

_Timeout(duration); // parenthesis required
_Timeout(time); // parenthesis required

With a duration value, _Timeout specifies a delay time relative to the start of execution of the statement (i.e., a

duration). That is, a task blocks for at least the span of time indicated by the duration value; the task does not consume

any resources during this period, nor does it respond to any requests. With a time value, _Timeout specifies a delay

to an absolute time in the future. That is, a task blocks until at least the specified absolute time has occurred. If the

duration value be less than or equal to zero, the task does not block. Similarly, if the time value has already occurred,

the task does not block. The UNIX routines sleep and usleep can also be used to sleep for a duration of seconds and

microseconds, respectively.

The extended form of the _Timeout statement is:

_When (conditional-expression) // optional guard
_Timeout(duration or time) // optional timeout clause

A _When guard is considered true if it is omitted or if its conditional-expression evaluates to non-zero. Before the

_Timeout statement is executed, the guard must be true. In this case, the guard is the same as an if statement, e.g.:

_When (count == 0) _Timeout(. . .); ≡ if (count == 0) _Timeout(. . .);

11.2.2 Accept Statement

The extended form of the _Accept statement may specify a timeout value through a _Timeout clause, e.g.:

_When (conditional-expression) // optional guard
_Accept(mutex-member-name-list)

statement-1 // action
or

. . .
. . .

or _When (conditional-expression) // optional guard
_Timeout(duration or time) // optional timeout clause

statement-2 // action

The _Timeout clause must be the last clause in an _Accept statement, or the second last if followed by a terminating

_Else clause (see Section 2.9.2.1, p. 20). When a _Timeout clause and a terminating _Else clause appear in the same

_Accept statement, the pairing is only meaningful if the terminating _Else clause is conditional, i.e., has a _When

guard; otherwise, the _Else clause always overrides the _Timeout. If there is no guard on a timeout or the guard is

true, but a call is accepted before the timeout interval expires, the statement behaves exactly like a normal _Accept

statement. If there is no guard on a timeout or the guard is true, and no call is accepted before the timeout interval

expires, the acceptor is removed from the acceptor/signalled stack, restarts, and executes the statement associated with

the _Timeout clause.

✷ WARNING: Beware of the following possible syntactic confusion with the timeout clause:

_Accept(mem); _Accept(mem);
or _Timeout(uDuration(1)); _Timeout(uDuration(1));

The left example accepts a call to member mem or times out in 1 second. The right example accepts a

call to member mem and then delays for 1 second. The left example is a single accept statement, while

the right example is an accept statement and a timeout statement. ✷

✷ WARNING: Beware of the following possible syntactic confusion with the timeout clause:

_Accept(mem); _Accept(mem);
or _Timeout(uDuration(1)); _When(C1) _Else
_When(C1) _Else _Timeout(uDuration(1));

The left example accepts a call to member mem or times out in 1 second or performs the terminating

_Else, depending on the value of its guard. The right example accepts a call to member mem or performs

the terminating _Else, depending on the value of its guard; if the terminating _Else is performed, it then

delays for 1 second. The left example is a single accept statement, while the right example is an accept

statement and a timeout statement, bracketed as follows.

11.2. TIMEOUT OPERATIONS 145

_Accept(mem);
_When(C1) _Else {

_Timeout(uDuration(1));
}

✷

11.2.3 Select Statement

The extended form of the _Select statement may specify a timeout value through a _Timeout clause, e.g.:

_When (conditional-expression) // optional guard
_Select(selector-expression)

statement-1 // action
and/or

. . .
. . .

or _When (conditional-expression) // optional guard
_Timeout(duration or time) // optional timeout clause

statement-n // action

The _Timeout clause must be the last clause in a _Select statement, or the second last if followed by a terminating

_Else clause (see Section 3.3.1, p. 51). When a _Timeout clause and a terminating _Else clause appear in the same

_Select statement, the pairing is only meaningful if the terminating _Else clause is conditional, i.e., has a _When

guard; otherwise, the _Else clause always overrides the _Timeout. If there is no guard on a timeout or the guard

is true, but the selector-expression associated with the entire statement becomes satisfied before the timeout interval

expires, the statement behaves exactly like a normal _Select statement. If there is no guard on a timeout or the guard

is true, and the selector-expression associated with the entire statement fails to become satisfied before the timeout

interval expires, the selector task restarts and executes the statement associated with the _Timeout clause. One or

more of the actions for select clauses composing the select statement may have already triggered when a timeout

occurs.

✷ WARNING: Beware of the following possible syntactic confusion with the timeout clause:

_Select(f1); _Select(f1);
or _Timeout(uDuration(1)); _Timeout(uDuration(1));

The left example waits for future f1 to becomes available or times out in 1 second. The right example

waits for future f1 to becomes available and then delays for 1 second. The left example is a single select

statement, while the right example is a select statement and a timeout statement. ✷

✷ WARNING: Beware of the following possible syntactic confusion with the timeout clause:

_Select(f1); _Select(f1);
or _Timeout(uDuration(1)); _When(C1) _Else
_When(C1) _Else _Timeout(uDuration(1));

The left example waits for future f1 to becomes available or times out in 1 second or performs the ter-

minating _Else, depending on the value of its guard. The right example waits for future f1 to becomes

available or performs the terminating _Else, depending on the value of its guard; if the terminating _Else

is performed, it then delays for 1 second. The left example is a single select statement, while the right

example is a select statement and a timeout statement, bracketed as follows.

_Select(mem);
_When(C1) _Else {

_Timeout(uDuration(1));
}

✷

11.2.4 I/O

Similarly, timeouts can be set for certain I/O operations that block waiting for an event to occur (see details in Ap-

pendix H.5.2, p. 195). Only a duration is allowed as a timeout because a relationship between absolute time and I/O

seems unlikely. A pointer to the duration value is used so it is possible to distinguish between no timeout value (nullptr

pointer) and a zero-timeout value. The former usually means to wait until the event occurs (i.e., no timeout), while

146 CHAPTER 11. REAL-TIME

the latter can be used to poll by trying the operation and returning immediately if the event has not occurred. The I/O

operations that can set timeouts are read, readv, write, writev, send, sendto, sendmsg, recv, recvfrom and readmsg. If

the specified I/O operation has not completed when the delay expires, the I/O operation fails by throwing an exception.

The exception types are ReadTimeout for read, readv, recv, recvfrom and readmsg, and WriteTimeout for write, writev,

send, sendto and sendmsg, respectively. For example, in:

try {
uDuration d(3, 0); // 3 second duration
fa.read(buf, 512, &d);
// handle successful read

} catch(uFileIO::ReadTimeout) {
// handle read failure

}

the read operation expires after 3 seconds if no data has arrived.

As well, a timeout can be set for the constructor of a uSocketAccept and uSocketClient object, which implies that if

the acceptor or client has not made a connection when the delay expires, the declaration of the object fails by throwing

an exception (see details in Appendix H.5.4, p. 198). For example, in:

try {
uDuration d(60, 0); // 60 second duration
uSocketAccept acceptor(sockserver, &d); // accept a connection from a client
// handle successful accept

} catch(uSocketAccept::OpenTimeout) {
// handle accept failure

} // try

See, also, the server examples in Appendix H.5, p. 192.

11.3 Clock

A clock defines an absolute time and is used for interrogating the current time. Multiple clocks can exist; each one can

be set to a different time. In theory, all clocks tick together at the lowest clock resolution available on the computer.

The type uClock creates a clock object, and is defined:

class uClock {
public:

uClock();
uClock(uDuration adj);
void resetClock(uDuration adj);
uTime getTime();
static uDuration getResNsec();
static uDuration getRes();
static uTime currTime();
static uTime getCPUTime();

}; // uClock

The overloaded constructor routine uClock has the following forms:

uClock() – creates a clock as a real-time clock running at the same time as the underlying operating system.

uClock(uDuration adj) – creates a clock as a virtual clock adjusted forward/backward by duration adj.

The member routine resetClock resets the virtual clock adjustment:

resetClock(uTime adj) – this form sets the clock to a virtual clock starting at time adj.

The overloaded member routine getTime returns the current time, and each routine has the following form:

getTime() – this form returns the current time as a uTime value, i.e., in nanoseconds from the start of the UNIX

epoch.

getTime(int & year, int & month, int & day, int & hour, int & minutes, int & seconds, long int & nsec) – this

form returns the current time broken up into the traditional non-fixed radix units of time.

The static member routine currTime returns the current time with nanoseconds accuracy from the start of the UNIX

epoch. The static member routine convertTime converts the specified time in nanoseconds from the start of the UNIX

epoch into a traditional non-fixed radix units of time.

11.4. PERIODIC TASK 147

11.4 Periodic Task

Without a programming language construct to specify periodicity, and without programming language facilities to

express time, it is almost impossible to accurately express time specifications within a program. Specifying a periodic

task in a language without proper time constructs can introduce catastrophic inaccuracies. For example, in:

1 for (; ;) {
2 // periodic work
3 uDuration DelayTime = NextTime - CurrentTime();
4 _Timeout(DelayTime);
5 }

if the task is context-switched after executing line 3 (or context-switched after the call to CurrentTime in line 3), the

DelayTime would be inaccurate. As a result, the blocking time of the program is erroneous.

The above problem can be eliminated by specifying an absolute time to _Timeout (specifying NextTime as the

parameter to _Timeout). However, with this form of periodic task specification, it is infeasible to specify other forms

of deadlines. Ada only supports the periodic task specification using delays, and the system guarantees a periodic task

delays for a minimum time specified in DelayTime, but makes no guarantee as to when the periodic task actually gets

to execute [BP91]. As a result, a task can request to block for 10 seconds (and Ada guarantees it blocks for at least 10

seconds), but end up executing 20 seconds later.

To circumvent this problem, µC++ provides a periodic task. The general form of the periodic task type is the

following:

_PeriodicTask task-name {
private:

. . . // these members are not visible externally
protected:

. . . // these members are visible to descendants
void main(); // starting member

public:
. . . // these members are visible externally

};

Like a task, a periodic task type has one distinguished member, named main, in which the new thread starts execution.

If not derived from some other periodic task type, each periodic task type is implicitly derived from the task type

uPeriodicBaseTask, e.g.:

_Task task-name : public uPeriodicBaseTask {
. . .

};

where the interface for the base class uPeriodicBaseTask is:

_Task uPeriodicBaseTask {
protected:

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration period;

public:
uPeriodicBaseTask(uDuration period, uCluster & cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uTime firstActivateTask, uTime endTime,

uDuration deadline, uCluster & cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster & cluster = uThisCluster());
uPeriodicBaseTask(uDuration period, uTime firstActivateTask, uEvent firstActivateEvent,

uTime endTime, uDuration deadline, uCluster & cluster = uThisCluster());
uDuration getPeriod() const;
uDuration setPeriod(uDuration period);

};

A periodic task starts by one of two mechanisms. The first is by specifying a start time, FirstActivateT, at which

the periodic task begins execution. The second is by specifying an event, FirstActivateE (an interrupt), upon receipt the

event the periodic task begins execution. If both start time and event are specified, the task starts either on receipt of an

event or when the specified time arrives, whichever comes first. If neither time nor event are specified, the periodic task

148 CHAPTER 11. REAL-TIME

starts immediately. An end time, EndTime, may also be specified. When the specified end time occurs, the periodic

task halts after execution of the current period. A deadline, Deadline, may also be specified. A deadline is expressed

as the duration from the beginning of a task’s period by which its computation must be finished. A zero argument

for any of the parameters indicates the task is free from the constraints represented by the parameter (the exception is

Period, which cannot have a zero argument). For example, if the FirstActivate parameter is zero, the task is scheduled

for initial execution at the next available time it can be accommodated. Finally, the cluster parameter specifies which

cluster the task should be created in. Should this parameter be omitted, the task is created on the current cluster.

An example of a periodic task declaration that starts at a specified time and executes indefinitely (without any

deadline constraints) is:

_PeriodicTask task-name {
void main() { periodic task body }

public:
task-name(uDuration period, uTime time) : uPeriodicBaseTask(period, time, 0, 0) { };

};

The task body, i.e., routine main, is implicitly surrounded with a loop that performs the task body periodically. As a

result, terminating the task body requires a return (or the use of an end time); falling off the end of the main routine

does not terminate a periodic task.

11.5 Sporadic Task

A sporadic task is similar to a periodic task, except there is a minimum duration between executions instead of a

fixed period. In the declaration of a sporadic task, this minimum duration is specified as a frame. It is the user’s

responsibility to ensure the execution does not exceed the specified minimum duration (i.e., frame); otherwise, the

scheduler cannot ensure correct execution. The reason the scheduler cannot automate this process, as it does for

periodic tasks, is because of the unpredictable nature of the inter-arrival time of sporadic tasks.

In µC++, a sporadic task is similar to a periodic task. A _SporadicTask task type, if not derived from some other

sporadic task type, is implicitly derived from the task type uSporadicBaseTask, e.g.:

_Task uSporadicBaseTask {
protected:

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;
uDuration frame;

public:
uSporadicBaseTask(uDuration frame, uCluster & cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uTime firstActivateTask, uTime endTime,

uDuration deadline, uCluster & cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster & cluster = uThisCluster());
uSporadicBaseTask(uDuration frame, uTime firstActivateTask, uEvent firstActivateEvent,

uTime endTime, uDuration deadline, uCluster & cluster = uThisCluster());
uDuration getFrame() const;
uDuration setFrame(uDuration frame);

};

11.6 Aperiodic Task

An aperiodic task has a non-deterministic start pattern. As a result, aperiodic tasks should only be used in soft real-time

applications.

In µC++, an aperiodic task is similar to a periodic task. A _RealTimeTask task type, if not derived from some

other aperiodic task type, is implicitly derived from the task type _RealTimeTask, e.g.:

11.7. PRIORITY INHERITANCE PROTOCOL 149

_Task uRealTimeBaseTask {
protected:

uTime firstActivateTime;
uEvent firstActivateEvent;
uTime endTime;

public:
uRealTimeBaseTask(uCluster & cluster = uThisCluster());
uRealTimeBaseTask(uTime firstActivateTask, uTime endTime, uDuration deadline,

uCluster & cluster = uThisCluster());
uRealTimeBaseTask(uEvent firstActivateEvent, uTime endTime, uDuration deadline,

uCluster & cluster = uThisCluster());
uRealTimeBaseTask(uTime firstActivateTask, uEvent firstActivateEvent, uTime endTime,

uDuration deadline, uCluster & cluster = uThisCluster());
uDuration getDeadline() const;
uDuration setDeadline(uDuration deadline);

};

11.7 Priority Inheritance Protocol

The priority-inheritance protocol attacks the problem of priority inversion, where a high-priority task waits while

lower-priority tasks prevent it from executing. Rajkumar proposed the basic priority-inheritance protocol [RSL88,

SRL90, Raj91], which puts a bound on the occurrence of priority inversion. The solution is to execute a critical section

at the priority of the highest blocked task waiting to enter it. The basic priority-inheritance protocol bounds the time

priority inversion occurs: should there be n lower-priority tasks in the system, and the n lower-priority tasks access m

distinct critical sections, a task can be blocked by at most min(n,m) critical sections. Despite this bound, the blocking

duration for a task can still be significant, however. Suppose at time t0, a low-priority task τ2 arrives and locks monitor

M0. At time t1, a medium priority task τ1 arrives, pre-empts τ2, and locks monitor M1. At time t2, a high-priority

task τ0 arrives, needing to sequentially access both monitors M0 and M1. Since both monitors are locked by two

lower-priority tasks, τ0 must wait for the duration of two critical sections (till M1 is released by τ1, then, M0 is released

by τ2). This problem is known as chain blocking. Finally, this priority-inheritance protocol does not deal with the

problem of deadlock.

In µC++, tasks wait for entry into a mutex object on a prioritized-entry queue. More specifically, each of the mutex

object’s member routines have an associated prioritized-entry queue. When the mutex object becomes unlocked, the

next task that enters is the one with the highest priority among all the entry queues. Should a mutex object be locked

and a higher-priority task arrives, the current task executing inside the mutex object “inherits” the priority of the

highest-priority task awaiting entry. This semantics ensures the task inside the mutex object can only be interrupted by

a higher-priority task, allowing the task in the mutex object to complete and leave as soon as possible, which speeds

entry of a waiting higher-priority task.

Condition variables and their associated queues of waiting tasks are also a fundamental part of mutex objects.

Signalling a condition variable makes the highest-priority task on the queue eligible to run. In µC++, the signaller

continues execution after signalling, at the priority of the highest-priority task awaiting entry to the mutex object. As

well, the signalled task is given preference over other tasks awaiting entry to the mutex object. Therefore, the signalled

task is the next to execute in the mutex object, regardless of whether there are higher-priority tasks waiting in the entry

queues. This behaviour, in turn, creates the possibility of priority inversion. Should a high-priority task be awaiting

entry to the mutex object, and a lower-priority task executing in the mutex object signals a condition queue whose

most eligible task has a lower priority than a task awaiting entry to the mutex object, priority inversion results. Hence,

the semantics of µC++ mutex objects increases the original algorithm’s bound for priority inversion by the amount it

takes to complete the execution of all the tasks in the signalled stack.

Finally, in µC++, tasks running inside a mutex object have the additional capability of specifically accepting any

one of the mutex member routines. This capability also brings about the possibility of bypassing higher-priority tasks

waiting on other entry queues. When a member routine is accepted, the acceptor is moved to the signalled stack,

thus causing the acceptor to block; the highest-priority task waiting on the accepted member routine then executes.

When a task leaves a mutex object, the next task that executes is selected first from the signalled stack not the entry

queues. Thus, the amount of time when priority inversion can take place when accepting specific member routines is

unbounded, since tasks can continually arrive on a member routine’s entry queue, and tasks executing in the mutex

object can continually accept the same specific member routine.

150 CHAPTER 11. REAL-TIME

11.8 Real-Time Scheduling

The notion of priority becomes a crucial tool for implementing various forms of scheduling paradigms [AGMK94,

BW90, Gol94]. In general, the term priority has no single meaning. The priority of a task may signify its logical

importance to a programmer, or may simply be a property determined by its periodic characteristics, as is the case

with certain scheduling algorithms.

In µC++, the notion of priority simply determines the order by which a set of tasks executes. As far as the real-

time system is concerned, the ready task with the highest priority is the most eligible task to execute, with little or no

regard for the possible starvation of lower-priority ready tasks. This form of scheduling is referred to as a prioritized

pre-emptive scheduling.

Each task’s priority can be redefined and queried by the routines provided from the following abstract class (dis-

cussed further in the next section):

template<typename Node> class uBaseSchedule {
protected:

uBaseTask & getInheritTask(uBaseTask & task) const;
int getActivePriority(uBaseTask & task) const;
int setActivePriority(uBaseTask & task1, uBaseTask & task2);
int getBasePriority(uBaseTask & task) const;
int setBasePriority(uBaseTask & task, int priority);

}; // uBaseScheduleFriend

Scheduler objects inherit from uBaseSchedule to use these routines, not replace them. These routines provide suffi-

cient information about the dynamic behaviour of tasks on a cluster to schedule them in various ways.

To provide the facilities for implementing various priority-changing scheduling algorithms (such as priority in-

heritance), a µC++ task has two priorities associated with it: a base priority and an active priority. It is up to the

scheduler implementor or programmer to set the appropriate priority values, or to determine whether the base priority

or the active priority is the priority utilized in scheduling tasks, if used at all.1

The member routine getInheritTask returns the task that this task inherited its current active priority from or nullptr.

The member routines getActivePriority and setActivePriority read and write a task’s active priority, respectively. The

member routines getBasePriority and setBasePriority read and write a task’s base priority, respectively.

A task’s priority can be used for more than just determining which task executes next; priorities can also dic-

tate the behaviour of various synchronization primitives such as semaphores and monitors [BW90]. µC++ monitors

have been extended so that entry queues (see Section 2.9.1, p. 20) are prioritized.2 The highest-priority task that

calls into a monitor always enters the monitor first, unless a particular entry queue is explicitly accepted (see Sec-

tion 2.9.2.1, p. 20), in which case, the highest-priority task in the particular entry queue executes. Condition queues

(see Section 2.9.3.1, p. 24) within a monitor are also prioritized: signaling a condition queue schedules the highest-

priority task waiting on the queue. Thus, both the monitor entry queues and the condition queues are prioritized, with

FIFO used within each priority level. The current implementation provides 32 priority levels. Support for more or less

priority levels can be implemented (see Section 11.9).

If an application is not real-time, all tasks are assigned an equal, default priority level. Thus, all tasks have one

active priority, and the scheduling is FIFO.

11.9 User-Supplied Scheduler

One of the goals of real-time in µC++ is to provide a flexible system, capable of being adapted to various real-time

environments and applications. The wide availability of various real-time scheduling algorithms, coupled with each

algorithm’s suitability for different forms of real-time applications, makes it essential that the language and runtime

system provide as few restrictions as possible on which algorithms may be utilized and implemented.

Scheduling is the mechanism by which the next task to run is chosen from a set of runnable tasks. However,

this selection mechanism is closely tied to the data structure representing the set of runnable tasks. In fact, the data

structure containing the set of runnable tasks is often designed with a particular scheduling algorithm in mind.

To provide a flexible scheduler, the ready “queue”3 is packaged as an independent entity – readily accessible and

replaceable by a scheduler designer. Consequently, the rules and mechanisms by which insertion and removal take

place from the ready data-structure is completely up to the implementor.

1
µC++ sets the base and the active priority of a task to a uniform default value, if no other priority is specified.

2A task’s active priority is utilized by a µC++ monitor to determine a task’s priority value
3The term “ready queue” is no longer appropriate because the data structure may not be a queue.

11.10. REAL-TIME CLUSTER 151

A ready data-structure is generic in the type of nodes stored in the structure and must inherit from the abstract

class:

template<typename Node> class uBaseSchedule {
public:

virtual void add(Node * node) = 0;
virtual Node * pop() = 0;
virtual bool empty() const = 0;
virtual bool checkPriority(Node & owner, Node & calling) = 0;
virtual void resetPriority(Node & owner, Node & calling) = 0;
virtual void addInitialize(uSequence<uBaseTaskDL> & taskList) = 0;
virtual void removeInitialize(uSequence<uBaseTaskDL> & taskList) = 0;
virtual void rescheduleTask(uBaseTaskDL * taskNode, uBaseTaskSeq & taskList) = 0;

};

The µC++ kernel uses the routines provided by uBaseSchedule to interact with the user-defined ready queue.4 A user

can construct different scheduling algorithms by modifying the behaviour of member routines add and pop, which add

and remove tasks from the ready queue, respectively. To implement a dynamic scheduling algorithm, an analysis of

the set of runnable tasks is performed for each call to add and/or pop by the kernel; these routines alter the priorities

of the tasks accordingly. The member routine empty returns true if the ready queue is empty and false otherwise. The

member routine checkPriority provides a mechanism to determine if a calling task has a higher priority than another

task, which is used to compare priorities in priority changing protocols, such as priority inheritance. Its companion

routine resetPriority performs the same check, but also raises the priority of the owner task to that of the calling task

if necessary. addInitialize is called by the kernel whenever a task is added to the cluster, and removeInitialize is called

by the kernel whenever a task is deleted from the cluster. In both cases, a pointer to the ready queue for the cluster

is passed as an argument so it can be reorganized if necessary. The type uSequence<uBaseTaskDL> is the type of

a system ready queue (see Appendix F, p. 171 for information about the uSequence collection). The list node type,

uBaseTaskDL, stores a reference to a task, and this reference can be retrieved with member routine task:

class uBaseTaskDL : public uSeqable {
public:

uBaseTaskDL(uBaseTask &_task);
uBaseTask & task() const;

}; // uBaseTaskDL

Note, adding (or deleting) tasks to (or from) a cluster is not the same as adding or popping tasks from the ready queue.

With a static scheduling algorithm, for example, task-set analysis is only performed upon task creation, making the

addInitialize function an ideal place to specify such analysis code. The member routine rescheduleTask is used to

recalculate the priorities of the tasks on a cluster based on the fact that a given task, taskNode, may have changed

some of its scheduling attributes.

11.10 Real-Time Cluster

A real-time cluster behaves just like a normal µC++ cluster, except a real-time cluster can have a special ready data-

structure associated with it (the ready data-structure, in turn, has a scheduling or task-dispatching policy associated

with it). The ready data-structure must inherit from the uBaseSchedule class, however, and passed as an argument

when creating a real-time cluster. A real-time cluster has the following constructors:

class uRealTimeCluster : public uCluster {
public:

uRealTimeCluster(uBaseSchedule<uBaseTaskDL> & rq, int size = uDefaultStackSize(),
const char * name = "");

uRealTimeCluster(uBaseSchedule<uBaseTaskDL> & rq, const char * name);
~uRealTimeCluster() {};

};

11.10.1 Deadline Monotonic Scheduler

The deadline monotonic scheduling algorithm is an example of a task-dispatching policy requiring a special ready

data-structure, which can be plugged into a real-time cluster. The underlying ready data-structure for the deadline

4Operating systems such as Amoeba [TvRvS+90], Chorus [RAA+88], and Apertos [Yok92] employ a similar mechanism by which the kernel

utilizes external modules to modify its behaviour.

152 CHAPTER 11. REAL-TIME

Priority 0

Priority 31 Task

Priority 30

Priority 2

Priority 1

Figure 11.3: Deadline Monotonic Ready-Queue

monotonic implementation is a prioritized ready-queue, with support for 32 priority levels. The add routine adds a

task to the ready-queue in a FIFO manner within a priority level. The pop routine returns the most eligible task with

the highest priority from the ready-queue. Both add and pop utilize a constant-time algorithm for the location of the

highest-priority task. Figure 11.3 illustrates this prioritized ready-queue.

The addInitialize routine contains the heart of the deadline monotonic algorithm. In addInitialize, each task in the

ready-queue is examined, and tasks are ordered in increasing order by deadline. Priorities are, in turn, assigned to

every task. With the newly assigned priorities, the ready queue is re-evaluated, to ensure it is in a consistent state. As

indicated in Section 11.9, p. 150, this routine is usually called only by the kernel. If a task is removed from the cluster,

the relative order of the remaining tasks is unchanged; hence, the task is simply deleted without a need to re-schedule.

A sample real-time program is illustrated in Figure 11.4. To utilize the deadline-monotonic algorithm include

header file uDeadlineMonotonic.h. In the example, the creation of the real-time scheduler and cluster is done at the

beginning of the main routine. Note, the argument passed to the constructor of uRealTimeCluster is an instance of

uDeadlineMonotonic, which is a ready data-structure derived from uBaseSchedule.

The technique used to ensure that the tasks start at a critical instance is not to associate a processor with the cluster

until after all tasks are created and scheduled on the cluster. As each task is added to the cluster addInitialize is called,

and cluster’s task-set is analyzed and task priorities are (re)assigned. After priority assignment, the task is added to the

ready queue, and made eligible to execute. Only when all tasks are created is a processor finally associated with the

real-time cluster. This approach ensures that when the processor is put in place, the task priorities are fully determined,

and the critical instant is ensured.

11.10. REAL-TIME CLUSTER 153

#include<uDeadlineMonotonic.h>

_PeriodicTask PeriodicTask1 {
public:

PeriodicTask1(uDuration period, uTime endtime, uDuration deadline, uCluster & cluster) :
uPeriodicBaseTask(period, uTime(), endtime, deadline, cluster) {

}
void main() {

// periodic task body
}

};

_PeriodicTask PeriodicTask2 {
public:

PeriodicTask2(uDuration period, uTime endtime, uDuration deadline, uCluster & cluster) :
uPeriodicBaseTask(period, uTime(), endtime, deadline, cluster) {

}
void main() {

// periodic task body
}

};

int main() {
uDeadlineMonotonic dm; // create real-time scheduler
uRealTimeCluster RTClust(dm); // create real-time cluster with scheduler
uProcessor * processor;
{

// These tasks are created, but they do not begin execution until a
// processor is created on the “RTClust” cluster. This is ideal, as
// “addInitialize” is called as each task is added to the cluster.

uTime currTime = uClock::currTime();
PeriodicTask1 t1(15, currTime+90, 5, RTClust); // 15 sec period, 5 sec deadline
PeriodicTask2 t2(30, currTime+90, 10, RTClust); // 30 sec period, 5 sec deadline
PeriodicTask1 t3(60, currTime+90, 20, RTClust); // 60 sec period, 20 sec deadline

// Only when all tasks are on the cluster, and the scheduling algorithm
// as ordered the tasks, is a processor associated with cluster
// “RTClust” to execute the tasks on the cluster.

processor = new uProcessor(RTClust);
} // wait for t1, t2, and t3 to finish
delete processor;

}

Figure 11.4: Sample Real-Time Program

154 CHAPTER 11. REAL-TIME

Chapter 12

Miscellaneous

12.1 Default Values

µC++ has a number of environment variables set to reasonable initial values for a basic concurrent program. However,

some concurrent programs may need to adjust these values to obtain correct execution or enhanced performance.

Currently, these variables affect tasks, processors, and the heap.

A default value is specified indirectly via a default routine, which returns the specific default value. A routine

allows an arbitrary computation to generate an appropriate value. Each default routine can be replaced by defining a

routine with the same name and signature in an application, e.g.:

unsigned int uDefaultStackSize() {
return 64 * 1024; // 64K default stack size

}

If the value of a global variable is used in the computation, the application can change the default value dynamically by

changing this global variable; hence, actions performed at different times are initialized with different default values

(unless overridden locally). However, the global variable must be statically initialized because its value may be used

to initialize objects at the start of the µC++ runtime, i.e., before the application’s code starts execution.

12.1.1 Task

The following default routines directly or indirectly affect tasks:

unsigned int uDefaultStackSize(); // cluster coroutine/task stack size (bytes)
unsigned int uMainStackSize(); // uMain task stack size (bytes)
unsigned int uDefaultPreemption(); // processor scheduling pre-emption duration (milliseconds)

Routine uDefaultStackSize returns a stack size to initialize a cluster’s default stack-size (versus being used directly to

initialize a coroutine/task stack-size). A coroutine/task created on a cluster without an explicit stack size is initialized

to the cluster’s default stack-size; hence, there is a level of indirection between this default routine and its use for

initializing a stack size. As well, a cluster’s default stack-size can be explicitly changed after the cluster is created

(see Section 8.3, p. 127). Routine uMainStackSize is used directly to provide a stack size for the program main (see

Section 2.2, p. 8). Since this initial task is defined and created by µC++, it has a separate default routine so it can be

adjusted differently from the application tasks. Routine uDefaultPreemption returns a time in milliseconds to initialize

a virtual processor’s default pre-emption time (versus being used directly to initialize a task’s pre-emption time). A

task executing on a processor is rescheduled after no more than this amount of time (see Section 8.4, p. 129).

12.1.2 Processor

The following default routines directly affect processors:

unsigned int uDefaultSpin(); // processor spin amount before becoming idle
unsigned int uDefaultProcessors(); // number of processors created on the user cluster

Routine uDefaultSpin returns the maximum number of times the cluster’s ready queue is checked for an available

task to execute before the processor blocks. As well, a processor’s default spin can be explicitly changed after the

processor is created (see Section 8.4, p. 129). Routine uDefaultProcessors returns the number of implicitly created

155

156 CHAPTER 12. MISCELLANEOUS

virtual processors on the user cluster (see Section 2.3.2, p. 8). When the user cluster is created, at least this many

processors are implicitly created to execute tasks concurrently.

12.1.3 Heap

The following default routine directly affects the heap:

unsigned int malloc_expansion(); // heap expansion size (bytes)
unsigned int malloc_mmap_start(); // division point (bytes)
size_t malloc_unfreed(); //

Routine malloc_expansion returns the amount to extend the heap size once all the current storage in the heap is

allocated (see Section 7.2.3.10, p. 124). Routine malloc_mmap_start returns the division point after which allocation

requests are separately mmapped rather than being allocated from the heap area. Routine malloc_unfreed returns the

amount subtracted to adjust for unfreed program storage (debug only).

12.2 Installation Requirements

µC++ comes configured to run on any of the following platforms (single and multiple processor):

• linux-x86 32 : Linux 5.x.x or greater, AMD/Intel 32-bit

• linux-x86 64 : Linux 5.x.x or greater, AMD/Intel 64-bit

• linux-arm 64 : Linux 5.x.x or greater, ARM 64-bit

µC++ requires at least GNU [Tie90] g++-7.0.0 or greater. These compilers can be obtained free of charge. µC++ does

NOT compile using other compilers or operating systems.

12.3 Installation

The current version of µC++ can be obtained from Github. Execute the following command to install:

$ git clone https://github.com/pabuhr/uCPP.git
$ cd uCPP
$ sudo sh install.sh

or from:

http: //plg.uwaterloo.ca/∼usystem/pub/uSystem/u++-7.0.0.sh

Execute the following command to install and uninstall:

$ sudo sh u++-7.0.0.sh
$ u++-uninstall

12.4 Reporting Problems

If you have problems or questions or suggestions, send e-mail to usystem@plg.uwaterloo.ca: As well, visit the

µSystem web site at: http: /plg.uwaterloo.ca/∼usystem

12.5 Contributors

While many people have made numerous suggestions, the following people were instrumental in turning this project

from an idea into reality. The original design work, Version 1.0, was done by Peter Buhr, Glen Ditchfield and Bob

Zarnke [BDZ89], with additional help from Jan Pachl on the train to Wengen. Brian Younger built Version 1.0 by

modifying the AT&T 1.2.1 C++ compiler [You91]. Version 2.0 was designed by Peter Buhr, Glen Ditchfield, Rick

Stroobosscher and Bob Zarnke [BDS+92]. Version 3.0 was designed by Peter Buhr, Rick Stroobosscher and Bob

Zarnke. Rick Stroobosscher built both Version 2.0 and 3.0 translator and kernel. Peter Buhr wrote the documentation

and built the nonblocking I/O library as well as doing other sundry coding. Version 4.0 kernel was designed and

implemented by Peter Buhr. Nikita Borisov and Peter Buhr fixed several problems in the translator. Amir Michail

started the real-time work and built a working prototype. Philipp Lim and Peter Buhr designed the first version of

the real-time support and Philipp did most of the implementation with occasional help from Peter Buhr. Ashif Harji

and Peter Buhr designed the second version of the real-time support and Ashif did most of the implementation with

https://github.com/pabuhr/uCPP
http://plg.uwaterloo.ca/~usystem/pub/uSystem/u++-7.0.0.sh
http://plg.uwaterloo.ca/~usystem

12.5. CONTRIBUTORS 157

occasional help from Peter Buhr. Russell Mok and Peter Buhr designed the first version of the extended exception

handling and Russell did most of the implementation with occasional help from Peter Buhr. Roy Krischer and Peter

Buhr designed the second version of the extended exception handling and Roy did most of the implementation with

occasional help from Peter Buhr. Version 5.0 kernel was designed and implemented by Richard Bilson and Ashif

Harji, with occasional help from Peter Buhr. Tom, Sasha, Tom, Raj, and Martin, the “gizmo guys”, all helped Peter

Buhr and Ashif Harji with the gizmo port. Finally, the many contributions made by all the students in CS342/CS343

(Waterloo) and CSC372 (Toronto), who struggled with earlier versions of µC++, is recognized.

The indirect contributers are Richard Stallman for providing emacs and gmake so that we could accomplish useful

work in UNIX, Michael D. Tiemann and Doug Lea for providing the initial version of GNU C++ and Dennis Vadura

for providing dmake (used before gmake).

158 CHAPTER 12. MISCELLANEOUS

Appendix A

µC++ Grammar

The grammar for µC++ is an extension of the grammar for C++ given in [C++98, Annex A]. The ellipsis in the following

rules represent the productions elided from the C++ grammar.

function-specifier :

. . .

mutex-specifier

mutex-specifier :

_Mutex queue-typesopt

_Nomutex queue-typesopt

queue-types :

< class-name >

< class-name , class-name >

class-key :

mutex-specifieropt class

. . .

mutex-specifieropt _Coroutine

mutex-specifieropt _Task queue-typesopt

_RealTimeTask queue-typesopt

_PeriodicTask queue-typesopt

_SporadicTask queue-typesopt

_Exception

_Actor

_CorActor

statement :

. . .

accept-statement ;

select-statement ;

_Enable exception-typesopt statementopt ;

_Disable exception-typesopt statementopt ;

exception-types :

< exception-name >

exception-types < exception-name >

jump-statement :

break identifieropt ;

continue identifieropt ;

. . .

accept-statement :

or-accept

159

160 APPENDIX A. µC++ GRAMMAR

or-accept timeout-clause

or-accept else-clause

or-accept timeout-clause else-clause

or-accept :

accept-clause

or-accept or accept-clause

accept-clause :

when-clauseopt _Accept ((mutex-)identifier-list) statement // identifier separator is ’,’ or ’| |’

select-statement :

or-select

or-select timeout-clause

or-select else-clause

or-select timeout-clause else-clause

or-select :

and-select

or-select or and-select

and-select :

select-clause

and-select and select-clause

select-clause :

when-clauseopt (or-select)

when-clauseopt _Select ((selector-)expression) statement

when-clause :

_When (expression)

else-clause :

when-clauseopt _Else statement

timeout-clause :

or when-clauseopt _Timeout ((time-)expression) statement

try-block :

try compound-statement handler-seq finallyopt

handler :

_CatchResume (exception-declaration) compound-statement

_CatchResume (lvalue . exception-declaration) compound-statement

catch (exception-declaration) compound-statement // alternative _Catch

catch (lvalue . exception-declaration) compound-statement

finally :

_Finally compound-statement

throw-expression :

. . .

_Throw assignment-expressionopt

_Resume assignment-expressionopt at-expressionopt

_ResumeTop assignment-expressionopt at-expressionopt

at-expression :

_At assignment-expression

Appendix B

Heap Allocator

µC++ uses its own heap allocator, which is a binning allocator where allocation requests are rounded up to a bin size

and each bin is protected with a lock. This structure reduces contention by using fine-grain locking for each bin.

The bin sizes are close together for smaller sizes and further apart for larger sizes (Zipf distribution). A free list is

maintained for each bin size. The free list for the corresponding bin size is quickly checked for a free allocation

of the correct size. If there is no free allocation to reuse in a bin, a new allocation is requested from a contiguous

heap-buffer, which is protected with a single lock. If there is no free space in the heap buffer, space is requested

from the operating system using sbrk. At an adjustable point, the allocator switches from binning in the heap area

to using mmap for allocations; these allocations are returned to the operating system immediately after deallocation.

This approach avoids external fragmentation as large allocations are infrequent. Each allocation starts with a header

containing management information. No coalescing of free storage is performed in the heap buffer and the buffer is

never reduced in size.

The µC++ allocator provides the standard C heap-operations:

malloc(size) allocate size bytes and return a pointer to the allocated memory; memory is uninitialized.

calloc(N, size) allocate N elements of size bytes (N × size bytes) and return a pointer to the allocated memory;

memory is zero filled up to the allocation size.

realloc(addr, size) change the size of the memory allocation pointed-to by addr to size bytes and return a pointer

to the allocated memory; the size change can be smaller or larger than the original allocation. As much data as

possible it copied from the old storage to the new and the old storage is freed.

memalign(alignment, size) allocate size bytes and return a pointer to the allocated memory; the address returned is

a multiple of alignment and memory is uninitialized. The alignment must be a power of two ≥ to the minimum

architecture-alignment, e.g., multiple of 16.

aligned_alloc(alignment, size) allocate size bytes and return a pointer to the allocated memory; the address re-

turned is a multiple of alignment and memory is uninitialized. The alignment must be a power of two ≥ to the

minimum architecture-alignment.

posix_memalign(memaddr, alignment, size) allocate size bytes and return a pointer to the allocated memory

through output-parameter memaddr; the address returned is a multiple of alignment and memory is uninitialized.

The alignment must be a power of two ≥ to the minimum architecture-alignment. The routine returns zero on

success or an error value.

free(addr) deallocate memory pointed-to by addr, which must be allocated by one of the allocation routines. If addr

is the nulladdr, no operation is performed.

A zero-sized allocation returns nullptr; the program aborts if an allocation cannot be fulfilled because memory is full.

The µC++ allocator extended the standard C heap functionality by preserving zero fill and alignment on reallo-

cation. Hence, if the old reallocation storage is aligned, the storage returned from realloc has the same alignment.

Similarly, if the old storage is zero filled, storage from the old size to the new size is zero filled. Without this ex-

tension, it is unsafe to realloc storage initially allocated with zero-fill/alignment as these properties are not preserved.

This silent generation of a problem is unintuitive to programmers and difficult to locate because it is transient.

161

162 APPENDIX B. HEAP ALLOCATOR

As well, the following additional heap operations are provided, which completes programmer expectation with

respect to accessing the different allocation properties.

resize(oaddr, size) re-purpose an old allocation for a new type without preserving fill or alignment.

resize(oaddr, alignment, size) re-purpose an old allocation with new alignment but without preserving fill.

realloc(oaddr, alignment, size) same as previous realloc but adding or changing alignment.

aalloc(dim, elemSize) same as calloc except memory is not zero filled.

amemalign(alignment, dim, elemSize) same as aalloc with memory alignment.

cmemalign(alignment, dim, elemSize) same as calloc with memory alignment.

The µC++ allocator provides the following non-standard heap-operations:

mallopt(parameter, value) adjust parameters of the memory allocator. Supported parameters are (see also Sec-

tion 12.1.3, p. 156):

M_TOP_PAD sets the amount to extend the heap size once all the current storage in the heap is allocated.

M_MMAP_THRESHOLD sets the division point after which allocation requests are separately memory mapped

rather than being allocated from the heap area.

malloc_alignment(addr) returns the alignment of the allocation pointed-to by addr. If the allocation is not aligned

or addr is the nulladdr, the minimal alignment is returned.

malloc_zero_fill(addr) returns a boolean result indicating if the memory pointed-to by addr is allocated with zero

fill, e.g., by calloc/cmemalign.

malloc_size(addr) returns the size of the memory allocation pointed-to by addr.

malloc_usable_size(addr) returns the usable size of the memory pointed-to by addr, i.e., the bin size containing

the allocation, where malloc_size(addr) ≤ malloc_usable_size(addr).

malloc_stats_fd(fd) set file-descriptor number for printing memory-allocation statistics (default STDERR_FILENO).

This file descriptor is used implicitly by malloc_stats and malloc_info.

malloc_stats() print memory-allocation statistics on the file-descriptor set by malloc_stats_fd. If the shell variable

UPP_MALLOC_STATS is defined, malloc_stats is implicitly called at program termination.

malloc_info(options, stream) print memory-allocation statistics as an XML string on the specified file-descriptor

set by malloc_stats_fd. The options argument must be zero.

Appendix C

Pseudo Random Number Generator

Random numbers are values generated independently, i.e., new values do not depend on previous values (independent

trials), e.g., lottery numbers, shuffled cards, dice roll, coin flip. While a primary goal of programming is computing

values that are not random, random values are useful in simulation, cryptography, games, etc. A random-number gen-

erator is an algorithm that computes independent values. If the algorithm uses deterministic computation (a predictable

sequence of values), it generates pseudo random numbers versus true random numbers.

All pseudo random-number generators (PRNG) involve some technique to scramble bits of a value, e.g., mul-

tiplicative recurrence:

rand = 33967 * (rand + 1063); // scramble bits

Multiplication of large values adds new least-significant bits and drops most-significant bits.

bits 63–32 (most) bits 31–0 (least)

0x0 0x3e8e36

0x5f 0x718c25e1

0xad3e 0x7b5f1dbe

0xbc3b 0xac69ff19

0x1070f 0x2d258dc6

By dropping bits 63–32, bits 31–0 become scrambled after each multiply. The least-significant bits appear random

but the same bits are always generated given a fixed starting value, called the seed (value 0x3e8e36 above). Hence, if

a program uses the same seed, the same sequence of pseudo-random values is generated from the PRNG. Often the

seed is set to another random value like a program’s process identifier (getpid) or time when the program is run; hence,

one random value bootstraps another. Finally, a PRNG usually generates a range of large values, e.g., [0, UINT_MAX],

which are scaled using the modulus operator, e.g., prng() % 5 produces random values in the range 0–4.

µC++ provides 32/64-bit sequential PRNG classes only accessible by a single thread (not thread-safe) and a set of

global routines and companion task members accessible by multiple threads without contention. To use the PRNG

interface requires #include <uPRNG.h>.

• The PRNG classes for sequential programs, including coroutining, are:

class PRNG32 {
// opaque type, no copy or assignment

public:
PRNG32(); // random seed
PRNG32(uint32_t seed); // fixed seed
void set_seed(uint32_t seed); // set seed
uint32_t get_seed() const; // get seed
uint32_t operator()(); // [0,UINT_MAX]
uint32_t operator()(uint32_t u); // [0,u)
uint32_t operator()(uint32_t l, uint32_t u); // [l,u]
uint32_t calls() const; // number of calls
void copy(PRNG32 & src); // checkpoint PRNG state

};

163

164 APPENDIX C. PSEUDO RANDOM NUMBER GENERATOR

PRNG sprng1, sprng2; // select appropriate 32/64-bit PRNG
sprng1.set_seed(1009); sprng2.set_seed(1009);
for (unsigned int i = 0; i < 10; i += 1) {

// Do not cascade prng calls because side-effect functions called in arbitrary order.
cout << sprng1() << ’ ’; cout << sprng1(5) << ’ ’; cout << sprng1(0, 5) << ’\t’;
cout << sprng2() << ’ ’; cout << sprng2(5) << ’ ’; cout << sprng2(0, 5) << endl;

}

37301721 2 2
1681308562 1 3
290112364 3 2
1852700364 4 3
733221210 1 3
1775396023 2 3
123981445 2 3
2062557687 2 0
283934808 1 0
672325890 1 3

37301721 2 2
1681308562 1 3
290112364 3 2
1852700364 4 3
733221210 1 3
1775396023 2 3
123981445 2 3
2062557687 2 0
283934808 1 0
672325890 1 3

Figure C.1: Sequential PRNG

class PRNG64 {
// opaque type, no copy or assignment

public:
PRNG64(); // random seed
PRNG64(uint64_t seed); // fixed seed
void set_seed(uint64_t seed); // set seed
uint64_t get_seed() const; // get seed
uint64_t operator()(); // [0,UINT_MAX]
uint64_t operator()(uint64_t u); // [0,u)
uint64_t operator()(uint64_t l, uint64_t u); // [l,u]
uint64_t calls() const; // number of calls
void copy(PRNG64 & src); // checkpoint PRNG state

};

The type PRNG is aliased to PRNG64 on 64-bit architectures and PRNG32 on 32-bit architectures. A PRNG

object is used to randomize behaviour or values during execution, e.g., in games, a character makes a random

move or an object takes on a random value. In this scenario, it is useful to have multiple PRNG objects, e.g.,

one per player or object. However, sequential execution is still repeatable given the same starting seeds for all

PRNGs. Figure C.1 shows an example that creates two sequential PRNGs, sets both to the same seed (1009),

and illustrates the three forms for generating random values, where both PRNGs generate the same sequence of

values. Note, to prevent accidental PRNG copying, the copy constructor and assignment are hidden. To copy a

PRNG for checkpointing, use the explicit copy member.

• The PRNG global routines and companion task members are for concurrent programming, such as randomizing

execution in short-running programs, e.g., yield(prng() % 5).

void set_seed(size_t seed); // set global seed
size_t get_seed(); // get global seed
// SLOWER, global routines
size_t prng(); // [0,UINT_MAX]
size_t prng(size_t u); // [0,u)
size_t prng(size_t l, size_t u); // [l,u]
// FASTER, task members
size_t uBaseTask::prng(); // [0,UINT_MAX]
size_t uBaseTask::prng(size_t u); // [0,u)
size_t uBaseTask::prng(size_t l, size_t u); // [l,u]

The only difference between the two sets of prng routines is performance.

Because concurrent execution is non-deterministic, seeding the concurrent PRNG is less important, as repeatable

execution is impossible. Hence, there is one system-wide PRNG (global seed) but each µC++ task has its own

non-contended PRNG state. If the global seed is set, tasks start with this seed, until it is reset and then tasks

165

_Task T {
void main() { // thread address is ’this’ pointer

for (unsigned int i = 0; i < 10; i += 1) {
// Do not cascade prng calls because side-effect functions called in arbitrary order.
cout << ::prng() << ’ ’; cout << ::prng(5) << ’ ’; cout << ::prng(0, 5) << ’\t’; // SLOWER
cout << prng() << ’ ’; cout << prng(5) << ’ ’; cout << prng(0, 5) << endl; // FASTER

}
}

}; // T
int main() {

set_seed(1009);
uBaseTask & th = uThisTask(); // program-main thread-address
for (unsigned int i = 0; i < 10; i += 1) {

// Do not cascade prng calls because side-effect functions called in arbitrary order.
cout << ::prng() << ’ ’; cout << ::prng(5) << ’ ’; cout << ::prng(0, 5) << ’\t’; // SLOWER
cout << th.prng() << ’ ’; cout << th.prng(5) << ’ ’; cout << th.prng(0, 5) << endl; // FASTER

}
cout << endl;
T t; // run task

}

37301721 2 2
290112364 3 2
733221210 1 3
123981445 2 3
283934808 1 0
1414344101 1 3
871831898 3 4
2142057611 4 4
802117363 0 4
2346353643 1 3

1681308562 1 3
1852700364 4 3
1775396023 2 3
2062557687 2 0
672325890 1 3
873424536 3 4
866783532 0 1
17310256 2 5
492964499 0 0
2143013105 3 2

// same output as above from thread t

Figure C.2: Concurrent PRNG

start with the reset seed. Hence, these tasks generate the same sequence of random numbers from their specific

starting seed. If the global seed is not set, tasks start with a random seed, until the global seed is set. Hence,

these tasks generate different sequences of random numbers. If each task needs its own seed, use a sequential

PRNG in each task. The slower prng global routines call uThisTask internally to indirectly access the current

task’s PRNG state, while the faster uBaseTask::prng members directly access the task through the implicit this

pointer. If a task pointer is available, e.g., in task main, eliminating the call to uThisTask significantly reduces

the cost of accessing the task’s PRNG state. Figure C.2 shows an example using the slower/faster concurrent

PRNG in the program main and a thread.

166 APPENDIX C. PSEUDO RANDOM NUMBER GENERATOR

Appendix D

Stack Object Allocation

C++ has no mechanism to created an array of objects where each array element is initialized via the object’s constructor

to a different value. As result, it is necessary to use the heap.

struct Obj {
const int id; . . .
Obj(int id) : id(id) { . . . }
void mem(. . .) { . . . }

}
ostream & operator<<(ostream & os, const Obj & obj) {

return os << obj.id;
}
cin >> size;
Obj * objs[size];
for (int id = 0; id < size; id += 1)

objs[id] = new Obj(id);
. . .
for (int id = 0; id < size; id += 1)

delete objs[id];

#include <memory>

{
unique_ptr<Obj> objs[size];
for (int id = 0; id < size; id += 1)

objs[id] = make_unique<Obj>(id);
. . .

} // automatically delete objs array elements

D.1 uNoCtor

µC++ provides template uNoCtor for stack allocations of an array of objects (VLA) without calling the default con-

structor using the placement new mechanism (like optional::emplace_back).

template< typename T, bool runDtor = true > class uNoCtor {
public:

const T * operator&() const;
T * operator&();
const T & operator*() const;
T & operator*();
const T * operator->() const;
T * operator->();
T & ctor();
T & operator()(); // same as ctor
template< typename. . . Args > T & ctor(Args &&. . . args);
template< typename. . . Args > T & operator()(Args &&. . . args); // same as ctor

template< typename RHS > T & operator=(const RHS & rhs);
void dtor();
~uNoCtor(); // destroy (array) element ?

};t

The template parameters specify the type of object embedded in the uNoCtor and a boolean indicating if the uNoCtor

destructor runs the embedded object’s destructor (true) or relies on an explicit call to member dtor (false). In the latter

case, if an object has no destructor, no call to dtor is required.

The following example shows how uNoCtor is used to create an array of objects on the stack and initialize each

array element to a different value using the old-style constructor syntax (parenthesis versus curly brackets).

167

168 APPENDIX D. STACK OBJECT ALLOCATION

{
uNoCtor<Obj> objs[size]; // objs on stack and no default constructor calls
for (int id = 0; id < size; id += 1)

objsid; // initialize and use
. . .

} // automatically delete objs array elements

As for unique_ptr, use * for object and -> for field access.

for (int id = 0; id < size; id += 1)
cout << *objs[id] << ’ ’ << objs[id]->id << endl;

uNoCtor can be used with all new µC++ types, e.g.:

_Coroutine C {
const int id;
void main(){ }

public:
C(int i) : id(id) { cout << "ctor" << endl; }
~C() { cout << "dtor" << endl; }

};
int main() {

uNoCtor<C> c[10];
for (int i = 0; i < 10; i += 1) {

ci;
}

} // automatically delete coroutine array elements calling destructors on each element

Creating large VLAs on a coroutine or task stack can overflow the stack. For potentially large arrays, increase the

coroutine/task stack size (see Section 2.7.2, p. 14) or use the heap.

_Coroutine C {
void main() { // 64K stack

Obj objs[100000]; // overflow
// implicit initialize with ctor calls
. . .

} // implicitly array deallocate
};

_Coroutine C {
void main() {

uNoCtor<Obj> * objs = new uNoCtor<Obj>[100000];
// explicit initialize with ctor calls
. . .
delete [] objs; // explicit array deallocation

}
};

The uNoCtor array is in the heap but the constructor calls for that array can be done after the allocation. Alternatives

are large stacks (waste virtual space) or dynamic stack growth (complex and pauses).

D.2 uArray

µC++ provides wrappers uArray and uArrayPtr for single-dimension uNoCtor arrays with subscript checking.

{ // GOOD, use stack
cin >> size;
uArray(Obj, objs, size); // macro: type, variable, dimension
for (int id = 0; id < size; id += 1)

objsid; // subscript checking, constructor call
. . .

} // automatically delete objs

Macro uArray(Obj, objs, size) is the same as uNoCtor<Obj> objs[size], but the uArray type redefines the subscript

operator to check the subscript is within the dimension range 0. .N-1; otherwise uArray usage is the same as uNoCtor.

When large local variables are allocated on a small stack use uArrayPtr.

_Coroutine C {
void main() { // 64K stack

Obj objs[100000]; // overflow
// implicit initialize with ctor calls
. . .

} // implicitly array deallocate
};

_Coroutine C {
void main() {

uArrayPtr(Obj, objs, 100000)
// explicit initialize with ctor calls
. . .

} // implicitly array deallocate
};

uArrayPtr dynamically allocates the array in the heap, and implicitly frees it at the end of the block (like unique_ptr).

Appendix E

String to Integer

The C++ stoi routine does not handle an erroneous string of the form "123ABC" correctly, returning a valid integer

result instead of raising an invalid_argument exception. The µC++ convert routine:

intmax_t convert(const char * str);

correctly handles erroneous string-to-integer conversions.

#include <iostream>
#include <string>
using namespace std;

int main() {
try {

intmax_t i = convert("123");
cout << i << endl;
i = convert("123ABC");
cout << i << endl;

} catch(invalid_argument) {
cout << "invalid integer" << endl;

}
}

123
invalid integer

169

170 APPENDIX E. STRING TO INTEGER

Appendix F

Data Structure Library (DSL)

µC++ makes use of several basic data structures to manage objects in its runtime environment: stack, queue and

sequence. For efficiency, these data structures are inlined throughout the µC++ runtime, and hence, are included

implicitly in a µC++ application. When appropriate, using these data structures in an application program can save

time and effort, while increasing performance.

A data structure is defined to be a group of nodes, containing user data, organized into a particular format, with

specific operations peculiar to that format. For all data structures in this library, it is the user’s responsibility to create

and delete all nodes. Because a node’s existence is independent of the data structure that organizes it, all nodes are

manipulated by address not value; hence, all data structure routines take and return pointers to nodes and not the nodes

themselves.

The µC++ DSL uses intrusive nodes meaning each node must predefine the link fields for the data-structure format

using inheritance. Intrusive nodes eliminate the need to dynamically allocate/deallocate the link fields when a node

is added/removed to/from a data-structure. Reducing dynamic allocation is important in concurrent programming

because the heap is a shared resource with the potential for high contention. The two formats are one link field, which

form a collection, and two link fields, which form a sequence.

data

data

collection node sequence node

uStack and uQueue are collections and uSequence is a sequence. To get the appropriate link fields associated with a

user node, it must be a public descendant of uColable or uSeqable, respectively, e.g.:

class stacknode : public uColable { . . . }
class queuenode : public uColable { . . . }
class seqnode : public uSeqable { . . . }

A node inheriting from uSeqable can appear in a sequence/collection but a node inherting from uColable can only

appear in a collection. Along with providing the appropriate link fields, the types uColable and uSeqable also provide

one member routine:

bool listed() const;

which returns true if the node is an element of any collection or sequence and false otherwise.

Finally, no header files are necessary to access the µC++ DSL.

Some µC++ DSL restrictions are:

• None of the member routines are virtual in any of the data structures for efficiency reasons. Therefore, pointers

to data structures must be used with care or incorrect member routines may be invoked.

171

172 APPENDIX F. DATA STRUCTURE LIBRARY (DSL)

F.1 Stack

A uStack is a collection that defines an ordering among the nodes: nodes are returned by pop in the reverse order that

they are added by push.

/0

data data data

top

stack

template<typename T> class uStack {
public:

uStack();
bool empty() const;
T * head() const
T * top() const;
T * addHead(T * n);
T * add(T * n);
T * push(T * n);
T * drop();
T * pop();

};

T must be a public descendant of uColable.

The member routine empty returns true if the stack has no nodes and false otherwise. The member routine head

returns a pointer to the top node of the stack without removing it or nullptr if the stack has no nodes. The member

routine top is a synonym for head. The member routine addHead adds a node to the top of the stack and returns a

pointer to the node. The member routine add is a synonym for addHead. The member routine push is a synonym for

addHead. The member routine drop removes a node from the top of the stack and returns a pointer to it or nullptr if

the stack has no nodes. The member routine pop is a synonym for drop.

F.1.1 Iterator

The iterator uStackIter<T> generates a stream of the elements of a uStack<T>.

template<typename T> class uStackIter {
public:

uStackIter();
uStackIter(const uStack<T> & s);
void over(const uStack<T> & s);
bool operator>>(T *& tp);

};

It is used to iterate over the nodes of a stack from the top of the stack to the bottom.

The overloaded constructor routine uStackIter has the following forms:

uStackIter() – creates an iterator without associating it with a particular stack; the association must be done sub-

sequently with member over.

uStackIter(const uStack<T> & s) – creates an iterator and associates it the specified stack; the association can

be changed subsequently with member over.

The member routine over resets the iterator to the top of the specified stack. The member routine >> attempts to

move the iterator’s internal cursor to the next node. If the bottom (end) of the stack has not been reached, the argument

is set to the address of the next node and true is returned; otherwise the argument is set to nullptr and false is returned.

Figure F.1 illustrates creating and using a stack and stack iterator.

F.2 Queue

A uQueue is a collection that defines an ordering among the nodes: nodes are returned by drop in the same order that

they are added by add.

F.2. QUEUE 173

struct stackNode : public uColable {
int v;
stackNode(int v) : v(v) {}

};
int main() {

uStack<stackNode> stack;
uStackIter<stackNode> stackiter;
stackNode * sp;
int i;

for (i = 0; i < 10; i += 1) { // fill stack
stack.push(new stackNode(2 * i));

}
for (stackiter.over(stack); stackiter >> sp;) { // print stack

cout << sp->v << " ";
}
cout << endl;
for (i = 0; i < 10; i += 1) { // empty stack

sp = stack.pop();
delete sp;

}
}

Figure F.1: DSL Stack

0/

data data data

queue

tailhead

template<typename T> class uQueue {
public:

uQueue();
bool empty() const;
T * head() const
T * tail() const;
T * succ(T * n) const;
T * addHead(T * n);
T * addTail(T * n);
T * add(T * n);
T * dropHead();
T * drop();
T * dropTail();
T * remove(T * n);
void transfer(uQueue<T> & from);
void split(uQueue<T> & from, T * n);

};

T must be a public descendant of uColable.

The member routine empty returns true if the queue has no nodes and false otherwise. The member routine head

returns a pointer to the head or first node of the queue without removing it or nullptr if the queue has no nodes. The

member routine tail returns a pointer to the tail or last node of the queue without removing it or nullptr if the queue

has no nodes. The member routine succ returns a pointer to the successor node after the specified node (toward the

tail) or nullptr if the specified node is the last node in the sequence. The member routine addHead adds a node to the

head or front of the queue and returns a pointer to the node. The member routine addTail adds a node to the tail or end

of the queue and returns returns a pointer to the node. The member routine add is a synonym for addTail. The member

routine dropHead removes a node from the head or front of the queue and returns a pointer to it or nullptr if the queue

has no nodes. The member routine drop is a synonym for dropHead. The member routine dropTail removes a node

from the tail or end of the queue and returns a pointer to it or nullptr if the queue has no nodes. The member routine

remove removes the specified node from the queue (any location) and returns a pointer to the node. The member

routine transfer transfers all nodes from the “from” list to the tail or end of the specified queue; the “from” list is empty

174 APPENDIX F. DATA STRUCTURE LIBRARY (DSL)

struct queueNode : public uColable {
int v;
queueNode(int v) : v(v) {}

};
int main() {

uQueue<queueNode> queue;
uQueueIter<queueNode> queueiter;
queueNode * qp;
int i;

for (i = 0; i < 10; i += 1) { // fill queue
queue.add(new queueNode(2 * i));

}
for (queueiter.over(queue); queueiter >> qp;) { // print queue

cout << qp->v << " ";
}
cout << endl;
for (i = 0; i < 10; i += 1) { // empty queue

qp = queue.drop();
delete qp;

}
}

Figure F.2: DSL Queue

after the transfer. The member routine split transfer the “from” list up to node “n” to the end of the specified queue;

the “from” list becomes the list after node “n”. Node “n” must be in the “from” list.

F.2.1 Iterator

The iterator uQueueIter<T> generates a stream of the elements of a uQueue<T>.

template<typename T> class uQueueIter {
public:

uQueueIter();
uQueueIter(const uQueue<T> & q);
void over(const uQueue<T> & q);
bool operator>>(T *& tp);

};

It is used to iterate over the nodes of a queue from the head of the queue to the tail.

The overloaded constructor routine uQueueIter has the following forms:

uQueueIter() – creates an iterator without associating it with a particular queue; the association must be done

subsequently with member over.

uQueueIter(const uQueue<T> & q) – creates an iterator and associates it the specified queue; the association

can be changed subsequently with member over.

The member routine over resets the iterator to the head of the specified queue. The member routine >> attempts to

move the iterator’s internal cursor to the next node. If the tail (end) of the queue has not been reached, the argument is

set to the address of the next node and true is returned; otherwise the argument is set to nullptr and false is returned.

Figure F.2 illustrates creating and using a queue and queue iterator.

F.3 Sequence

A uSequence is a collection that defines a bidirectional ordering among the nodes: nodes can be added and removed

from either end of the collection; furthermore, nodes can be inserted and removed anywhere in the collection.

F.3. SEQUENCE 175

0/

0/

tailhead

data data data

sequence

template<typename T> class uSequence {
public:

uSequence();
bool empty() const;
T * head() const
T * tail() const;
T * succ(T * n) const;
T * pred(T * n) const;
T * insertBef(T * n, T * bef);
T * insertAft(T * aft, T * n);
T * addHead(T* n);
T * addTail(T* n);
T * add(T* n);
T * dropHead();
T * drop();
T * dropTail();
T * remove(T * n);
void transfer(uSequence<T> & from);
void split(uSequence<T> & from, T * n);

};

T must be a public descendant of uSeqable.

The member routine empty returns true if the sequence has no nodes and false otherwise. The member routine

head returns a pointer to the head or first node of the sequence without removing it or nullptr if the sequence has no

nodes. The member routine tail returns a pointer to the tail or last node of the sequence without removing it or nullptr

if the sequence has no nodes. The member routine succ returns a pointer to the successor node after the specified node

(toward the tail) or nullptr if the specified node is the last node in the sequence. The member routine pred returns a

pointer to the predecessor node before the specified node (toward the head) or nullptr if the specified node is the first

node in the sequence. The member routine insertBef adds a node before the specified node or at the end (tail) if bef is

nullptr. The member routine insertAft adds a node after the specified node or at the beginning (head) if aft is nullptr.

The member routine addHead adds a node to the head or front of the sequence and returns a pointer to the node. The

member routine addTail adds a node to the tail or end of the sequence and returns returns a pointer to the node. The

member routine add is a synonym for addTail. The member routine dropHead removes a node from the head or front

of the sequence and returns a pointer to it or nullptr if the sequence has no nodes. The member routine drop is a

synonym for dropHead. The member routine dropTail removes a node from the tail or end of the sequence and returns

a pointer to it or nullptr if the sequence has no nodes. The member routine remove removes the specified node from

the sequence (any location) and returns a pointer to the node. The member routine transfer transfers all nodes from the

“from” list to the tail or end of the specified sequence; the “from” list is empty after the transfer. The member routine

split transfer the “from” list up to node “n” to the end of the specified sequence; the “from” list becomes the list after

node “n”. Node “n” must be in the “from” list.

A sequence behaves like a queue when members add and drop are used. The example program in Section H.3, p. 186

makes use of a sequence and modifies it so that nodes are maintained in order.

F.3.1 Iterator

The iterator uSeqIter<T> generates a stream of the elements of a uSequence<T>.

template<typename T> class uSeqIter {
public:

uSeqIter();
uSeqIter(const uSequence<T> & s);
void over(const uSequence<T> & s);
bool operator>>(T *& tp);

};

176 APPENDIX F. DATA STRUCTURE LIBRARY (DSL)

struct seqNode : public uSeqable {
int v;
seqNode(int v) : v(v) {}

};
int main() {

uSequence<seqNode> seq;
uSeqIter<seqNode> seqiter;
seqNode * sp;
int i;

for (i = 0; i < 10; i += 1) { // fill sequence
seq.add(new seqNode(2 * i));

}
for (seqiter.over(seq); seqiter >> sp;) { // print sequence forward

cout << sp->v << " ";
}
cout << endl;
for (uSeqIterRev<seqNode> seqiterrev(seq); seqiterrev >> sp;) { // print sequence reverse

cout << sp->v << " ";
}
cout << endl;
for (seqiter.over(seq); seqiter >> sp;) { // empty sequence

seq.remove(sp); // can remove nodes during iteration
delete sp;

}
}

Figure F.3: DSL Sequence

It is used to iterate over the nodes of a sequence from the head of the sequence to the tail.

The iterator uSeqIterRev<T> generates a stream of the elements of a uSequence<T>.

template<typename T> class uSeqIterRev {
public:

uSeqIterRev();
uSeqIterRev(const uSequence<T> & s);
void over(const uSequence<T> & s);
bool operator>>(T *& tp);

};

It is used to iterate over the nodes of a sequence from the tail of the sequence to the head.

The overloaded constructor routine uSeqIter has the following forms:

uSeqIter() – creates an iterator without associating it with a particular sequence; the association must be done

subsequently with member over.

uSeqIter(const uSeq<T> & q) – creates an iterator and associates it the specified sequence; the association can

be changed subsequently with member over.

The member routine over resets the iterator to the head or tail of the specified sequence depending on which iterator

is used. The member routine >> attempts to move the iterator’s internal cursor to the next node. If the head (front) or

tail (end) of the sequence has not been reached depending on which iterator is used, the argument is set to the address

of the next node and true is returned; otherwise the argument is set to nullptr and false is returned.

Figure F.3 illustrates creating and using a sequence and sequence iterator.

Appendix G

GDB for µC++

The symbolic debugging tools (e.g., dbx, gdb) do not work well with µC++, because each coroutine and task has its

own stack and the debugger does not know about these stacks. When a program terminates with an error, only the

stack of the coroutine or task in execution at the time of the error is understood by the debugger. The following gdb

and Python macros allow gdb to understand the µC++ runtime environment: tasks (see Section 2.13, p. 29), processors

(see Section 8.4, p. 129), and clusters (see Section 8.3, p. 127).

These instructions assume the install <prefix> for µC++ is /usr/local/u++-7.0.0; if installed elsewhere, change

<prefix>. Copy <prefix>/gdb/.gdbinit to your home directory or merge it into your existing .gdbinit file. If installed

elsewhere, edit the <prefix> within the .gdbinit file to the install location. Thereafter, gdb automatically loads the

.gdbinit file from the home directory at start up making the following new gdb commands available.

Debugging involves setting one or more breakpoints in a program. When a breakpoint is encountered, the entire

concurrent program stops, i.e., all user and kernel threads. At this point, it is possible to examine the stacks of each

µC++ task stack by listing all the tasks (command task), switching to an individual task (command task 2), and printing

the back trace (command backtrace) for its stack. The brace trace shows where that task is executing, and by moving

up and down the back trace, it is possible to examine the variables in each stack frame.

G.1 Clusters

Command Description Example

info clusters print list of clusters info clus

clusters (alias)

G.2 Processors

Command Description Example

info vprocessors print virtual processors in userCluster info vproc

info vprocessors clusterName print virtual processors in cluster clusterName info vproc clusterA

vprocessors (alias)

G.3 Tasks

Command Description Example

task print tasks (ids) in userCluster, application tasks only task

task clusterName print tasks (ids) in clusterName, application tasks only task clusterA

task all print all clusters, all tasks task all

task id switch debugging stack to task id on userCluster task 2

task 0xaddress switch debugging stack to task 0xaddress on any cluster task 0x80024875

task id clusterName switch debugging stack to task id on cluster clusterName task 2 clusterA

prevtask switch debugging back to the previous task on the stack prevtask

177

178 APPENDIX G. GDB FOR µC++

Note, in µC++, the name of the program main is changed to uCpp_main; hence, to set a break point at the start of

the application main, do the following:

(gdb) break uCpp_main

During execution, the debugger cannot step through a context switch for either a coroutine or task. Therefore, it

is necessary to put break points after the suspend/resume or signal/wait to acquire control, and just continue execu-

tion through the context switch. Once the breakpoint is reached, it is possible to next/step through the lines of the

coroutine/task until the next context switch.

For debuggers that handle multiple kernel threads (corresponding to µC++ virtual processors), it is also possible to

examine the active task running on each kernel thread.

(gdb) info threads # list all kernel threads
(gdb) thread 2 # switch to kernel thread 2

Finally, it is necessary to tell the debugger that µC++ is handling UNIX signals SIGALRM and SIGUSR1 to perform

pre-emptive scheduling. For gdb, the following debugger commands allows the application program to handle signal

SIGALRM and SIGUSR1:

(gdb) handle SIGALRM nostop noprint pass
(gdb) handle SIGUSR1 nostop noprint pass

This step is handled automatically in the specified .gdbinit file.

Appendix H

Example Programs

H.1 Readers And Writer

The readers and writer problem deals with controlling access to a resource that can be shared by multiple readers, but

only one writer can use it at a time (e.g., a sequential file). While there are many possible solutions to this problem,

each solution must deal with unbounded waiting of reader and/or writer tasks if a continuous stream of one kind of

task is arriving at the monitor. For example, if readers are currently using the resource, a continuous stream of reader

tasks should not make an arriving writer task wait forever. Furthermore, a solution to the readers and writer problem

should provide FIFO execution of the tasks so that a read that is requested after a write does not execute before the

write, thus reading old information. This phenomenon is called the stale readers problem. Hoare gave a monitor

solution in [Hoa74] that has a bounded on waiting but non-FIFO execution.

// -*- Mode: C++ -*-

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// RWEx1.cc -- Readers and Writer Problem

//

// Author : Peter A. Buhr

// Created On : Thu Aug 2 11:51:34 1990

// Last Modified By : Peter A. Buhr

// Last Modified On : Mon Dec 19 22:28:57 2016

// Update Count : 103

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

#include <iostream>

using std::cout;

using std::osacquire;

using std::endl;

_Monitor ReadersWriter {

179

180 APPENDIX H. EXAMPLE PROGRAMS

int rcnt, wcnt;

uCondition RWers;

enum RW { READER, WRITER };

public:

ReadersWriter() : rcnt(0), wcnt(0) {}

void startRead() {

if (wcnt !=0 | | ! RWers.empty()) RWers.wait(READER);

rcnt += 1;

if (! RWers.empty() && RWers.front() == READER) RWers.signal();

} // ReadersWriter::startRead

void endRead() {

rcnt -= 1;

if (rcnt == 0) RWers.signal();

} // ReadersWriter::endRead

void startWrite() {

if (wcnt != 0 | | rcnt != 0) RWers.wait(WRITER);

wcnt = 1;

} // ReadersWriter::startWrite

void endWrite() {

wcnt = 0;

RWers.signal();

} // ReadersWriter::endWrite

}; // ReadersWriter

volatile int SharedVar = 0; // shared variable to test readers and writers

_Task Worker {

ReadersWriter &rw;

void main() {

yield(rand() % 100); // don’t all start at the same time

if (rand() % 100 < 70) { // decide to be a reader or writer

rw.startRead();

osacquire(cout) << "Reader:" << this << ", shared:" << SharedVar << endl;

yield(3);

rw.endRead();

} else {

rw.startWrite();

SharedVar += 1;

osacquire(cout) << "Writer:" << this << ", wrote:" << SharedVar << endl;

yield(1);

rw.endWrite();

} // if

} // Worker::main

public:

Worker(ReadersWriter &rw) : rw(rw) {

} // Worker::Worker

}; // Worker

int main() {

enum { MaxTask = 50 };

ReadersWriter rw;

Worker *workers[MaxTask];

H.2. BOUNDED BUFFER 181

for (int i = 0; i < MaxTask; i += 1) {

workers[i] = new Worker(rw);

} // for

for (int i = 0; i < MaxTask; i += 1) {

delete workers[i];

} // for

osacquire(cout) << "successful completion" << endl;

} // main

// Local Variables: //

// tab-width: 4 //

// compile-command: “u++ RWEx1.cc” //

// End: //

H.2 Bounded Buffer

Two processes communicate through a unidirectional queue of finite length.

H.2.1 Using Monitor Accept

// -*- Mode: C++ -*-

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// MonAcceptBB.cc -- Generic bounded buffer problem using a monitor and uAccept

//

// Author : Peter A. Buhr

// Created On : Thu Aug 2 11:35:05 1990

// Last Modified By : Peter A. Buhr

// Last Modified On : Mon Dec 19 08:52:13 2016

// Update Count : 125

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

template<typename ELEMTYPE> _Monitor BoundedBuffer {

const int size; // number of buffer elements

int front, back; // position of front and back of queue

int count; // number of used elements in the queue

ELEMTYPE *Elements;

public:

BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;

Elements = new ELEMTYPE[size];

182 APPENDIX H. EXAMPLE PROGRAMS

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {

delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {

return count;

} // BoundedBuffer::query

void insert(ELEMTYPE elem);

ELEMTYPE remove();

}; // BoundedBuffer

template<typename ELEMTYPE> inline void BoundedBuffer<ELEMTYPE>::insert(ELEMTYPE elem) {

if (count == size) { // buffer full ?

_Accept(remove); // only allow removals

} // if

Elements[back] = elem;

back = (back + 1) % size;

count += 1;

} // BoundedBuffer::insert

template<typename ELEMTYPE> inline ELEMTYPE BoundedBuffer<ELEMTYPE>::remove() {

ELEMTYPE elem;

if (count == 0) { // buffer empty ?

_Accept(insert); // only allow insertions

} // if

elem = Elements[front];

front = (front + 1) % size;

count -= 1;

return elem;

} // BoundedBuffer::remove

#include "ProdConsDriver.i"

// Local Variables: //

// tab-width: 4 //

// compile-command: “u++ MonAcceptBB.cc” //

// End: //

H.2.2 Using Monitor Condition

// -*- Mode: C++ -*-

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// MonConditionBB.cc -- Generic bounded buffer problem using a monitor and condition variables

//

// Author : Peter A. Buhr

// Created On : Thu Aug 2 11:35:05 1990

// Last Modified By : Peter A. Buhr

// Last Modified On : Mon Dec 19 22:26:27 2016

// Update Count : 58

//

H.2. BOUNDED BUFFER 183

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

template<typename ELEMTYPE> _Monitor BoundedBuffer {

const int size; // number of buffer elements

int front, back; // position of front and back of queue

int count; // number of used elements in the queue

ELEMTYPE *Elements;

uCondition BufFull, BufEmpty;

public:

BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;

Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {

delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {

return count;

} // BoundedBuffer::query

void insert(ELEMTYPE elem) {

if (count == size) {

BufFull.wait();

} // if

Elements[back] = elem;

back = (back + 1) % size;

count += 1;

BufEmpty.signal();

}; // BoundedBuffer::insert

ELEMTYPE remove() {

ELEMTYPE elem;

if (count == 0) {

BufEmpty.wait();

} // if

elem = Elements[front];

front = (front + 1) % size;

count -= 1;

BufFull.signal();

184 APPENDIX H. EXAMPLE PROGRAMS

return elem;

}; // BoundedBuffer::remove

}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //

// tab-width: 4 //

// compile-command: “u++ MonConditionBB.cc” //

// End: //

H.2.3 Using Task

// -*- Mode: C++ -*-

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// TaskAcceptBB.cc -- Generic bounded buffer using a task

//

// Author : Peter A. Buhr

// Created On : Sun Sep 15 20:24:44 1991

// Last Modified By : Peter A. Buhr

// Last Modified On : Mon Dec 19 23:03:29 2016

// Update Count : 75

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

template<typename ELEMTYPE> _Task BoundedBuffer {

const int size; // number of buffer elements

int front, back; // position of front and back of queue

int count; // number of used elements in the queue

ELEMTYPE *Elements;

public:

BoundedBuffer(const int size = 10) : size(size) {

front = back = count = 0;

Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {

delete [] Elements;

} // BoundedBuffer::~BoundedBuffer

_Nomutex int query() {

return count;

} // BoundedBuffer::query

H.2. BOUNDED BUFFER 185

void insert(ELEMTYPE elem) {

Elements[back] = elem;

} // BoundedBuffer::insert

ELEMTYPE remove() {

return Elements[front];

} // BoundedBuffer::remove

protected:

void main() {

for (;;) {

_Accept(~BoundedBuffer)

break;

or _When (count != size) _Accept(insert) {

back = (back + 1) % size;

count += 1;

} or _When (count != 0) _Accept(remove) {

front = (front + 1) % size;

count -= 1;

} // _Accept

} // for

} // BoundedBuffer::main

}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //

// tab-width: 4 //

// compile-command: “u++ TaskAcceptBB.cc” //

// End: //

H.2.4 Using P/V

// -*- Mode: C++ -*-

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// SemaphoreBB.cc --

//

// Author : Peter A. Buhr

// Created On : Thu Aug 15 16:42:42 1991

// Last Modified By : Peter A. Buhr

// Last Modified On : Thu Nov 12 13:33:14 2020

// Update Count : 60

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

#include <uSemaphore.h>

186 APPENDIX H. EXAMPLE PROGRAMS

template<typename ELEMTYPE> class BoundedBuffer {

const int size; // number of buffer elements

int front, back; // position of front and back of queue

uSemaphore full, empty; // synchronize for full and empty BoundedBuffer

uSemaphore ilock, rlock; // insertion and removal locks

ELEMTYPE *Elements;

public:

BoundedBuffer(const BoundedBuffer &) = delete; // no copy

BoundedBuffer(BoundedBuffer &&) = delete;

BoundedBuffer & operator=(const BoundedBuffer &) = delete; // no assignment

BoundedBuffer & operator=(BoundedBuffer &&) = delete;

BoundedBuffer(const unsigned int size = 10) : size(size), full(0), empty(size) {

front = back = 0;

Elements = new ELEMTYPE[size];

} // BoundedBuffer::BoundedBuffer

~BoundedBuffer() {

delete Elements;

} // BoundedBuffer::~BoundedBuffer

void insert(ELEMTYPE elem) {

empty.P(); // wait if queue is full

ilock.P(); // serialize insertion

Elements[back] = elem;

back = (back + 1) % size;

ilock.V();

full.V(); // signal a full queue space

} // BoundedBuffer::insert

ELEMTYPE remove() {

ELEMTYPE elem;

full.P(); // wait if queue is empty

rlock.P(); // serialize removal

elem = Elements[front];

front = (front + 1) % size;

rlock.V();

empty.V(); // signal empty queue space

return elem;

} // BoundedBuffer::remove

}; // BoundedBuffer

#include "ProdConsDriver.i"

// Local Variables: //

// tab-width: 4 //

// compile-command: “u++ SemaphoreBB.cc” //

// End: //

H.3 Disk Scheduler

The following example illustrates a fully implemented disk scheduler. The disk scheduling algorithm is the elevator

algorithm, which services all the requests in one direction and then reverses direction. A linked list is used to store

H.3. DISK SCHEDULER 187

incoming requests while the disk is busy servicing a particular request. The nodes of the list are stored on the stack of

the calling processes so that suspending a request does not consume resources. The list is maintained in sorted order

by track number and there is a pointer which scans backward and forward through the list. New requests can be added

both before and after the scan pointer while the disk is busy. If new requests are added before the scan pointer in the

direction of travel, they are serviced on that scan.

The disk calls the scheduler to get the next request that it services. This call does two things: it passes to the

scheduler the status of the just completed disk request, which is then returned from scheduler to disk user, and it

returns the information for the next disk operation. When a user’s request is accepted, the parameter values from the

request are copied into a list node, which is linked in sorted order into the list of pending requests. The disk removes

work from the list of requests and stores the current request it is performing in CurrentRequest. When the disk has

completed a request, the request’s status is placed in the CurrentRequest node and the user corresponding to this

request is reactivated.

// -*- Mode: C++ -*-

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// LOOK.cc -- Look Disk Scheduling Algorithm

//

// The LOOK disk scheduling algorithm causes the disk arm to sweep bidirectionally across the disk surface until there

// are no more requests in that particular direction, servicing all requests in its path.

//

// Author : Peter A. Buhr

// Created On : Thu Aug 29 21:46:11 1991

// Last Modified By : Peter A. Buhr

// Last Modified On : Thu Nov 12 13:33:58 2020

// Update Count : 288

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

#include <iostream>

using std::cout;

using std::osacquire;

using std::endl;

typedef char Buffer[50]; // dummy data buffer

const int NoOfCylinders = 100;

enum IOStatus { IO_COMPLETE, IO_ERROR };

class IORequest {

public:

int track;

int sector;

Buffer *bufadr;

IORequest() {}

188 APPENDIX H. EXAMPLE PROGRAMS

IORequest(int track, int sector, Buffer *bufadr) {

IORequest::track = track;

IORequest::sector = sector;

IORequest::bufadr = bufadr;

} // IORequest::IORequest

}; // IORequest

class WaitingRequest : public uSeqable { // element for a waiting request list

public:

WaitingRequest(const WaitingRequest &) = delete; // no copy

WaitingRequest(WaitingRequest &&) = delete;

WaitingRequest & operator=(const WaitingRequest &) = delete; // no assignment

WaitingRequest & operator=(WaitingRequest &&) = delete;

uCondition block;

IOStatus status;

IORequest req;

WaitingRequest(IORequest req) {

WaitingRequest::req = req;

}

}; // WaitingRequest

class Elevator : public uSequence<WaitingRequest> {

int Direction;

WaitingRequest *Current;

Elevator(const Elevator &) = delete; // no copy

Elevator(Elevator &&) = delete;

Elevator & operator=(const Elevator &) = delete; // no assignment

Elevator & operator=(Elevator &&) = delete;

public:

Elevator() {

Direction = 1;

} // Elevator::Elevator

void orderedInsert(WaitingRequest *np) {

WaitingRequest *lp;

for (lp = head(); // insert in ascending order by track number

lp != 0 && lp->req.track < np->req.track;

lp = succ(lp));

if (empty()) Current = np; // 1st client, so set Current

insertBef(np, lp);

} // Elevator::orderedInsert

WaitingRequest *remove() {

WaitingRequest *temp = Current; // advance to next waiting client

Current = Direction ? succ(Current) : pred(Current);

uSequence<WaitingRequest>::remove(temp); // remove request

if (Current == 0) { // reverse direction ?

osacquire(cout) << "Turning" << endl;

Direction = !Direction;

Current = Direction ? head() : tail();

} // if

return temp;

} // Elevator::remove

}; // Elevator

_Task DiskScheduler;

H.3. DISK SCHEDULER 189

_Task Disk {

DiskScheduler &scheduler;

void main();

public:

Disk(DiskScheduler &scheduler) : scheduler(scheduler) {

} // Disk

}; // Disk

_Task DiskScheduler {

Elevator PendingClients; // ordered list of client requests

uCondition DiskWaiting; // disk waits here if no work

WaitingRequest *CurrentRequest; // request being serviced by disk

Disk disk; // start the disk

IORequest req;

WaitingRequest diskterm; // preallocate disk termination request

void main();

public:

DiskScheduler() : disk(*this), req(-1, 0, 0), diskterm(req) {

} // DiskScheduler

IORequest WorkRequest(IOStatus);

IOStatus DiskRequest(IORequest &);

}; // DiskScheduler

_Task DiskClient {

DiskScheduler &scheduler;

void main();

public:

DiskClient(DiskScheduler &scheduler) : scheduler(scheduler) {

} // DiskClient

}; // DiskClient

void Disk::main() {

IOStatus status;

IORequest work;

status = IO_COMPLETE;

for (;;) {

work = scheduler.WorkRequest(status);

if (work.track == -1) break;

osacquire(cout) << "Disk main, track:" << work.track << endl;

yield(100); // pretend to perform an I/O operation

status = IO_COMPLETE;

} // for

} // Disk::main

void DiskScheduler::main() {

uSeqIter<WaitingRequest> iter; // declared here because of gcc compiler bug

CurrentRequest = nullptr; // no current request at start

for (;;) {

_Accept(~DiskScheduler) { // request from system

break;

} or _Accept(WorkRequest) { // request from disk

} or _Accept(DiskRequest) { // request from clients

} // _Accept

} // for

190 APPENDIX H. EXAMPLE PROGRAMS

// two alternatives for terminating scheduling server

#if 0

for (; ! PendingClients.empty();) { // service pending disk requests before terminating

_Accept(WorkRequest);

} // for

#else

WaitingRequest *client; // cancel pending disk requests before terminating

for (iter.over(PendingClients); iter >> client;) {

PendingClients.remove(); // remove each client from the list

client->status = IO_ERROR; // set failure status

client->block.signal(); // restart client

} // for

#endif

// pending client list is now empty

// stop disk

PendingClients.orderedInsert(&diskterm); // insert disk terminate request on list

if (! DiskWaiting.empty()) { // disk free ?

DiskWaiting.signal(); // wake up disk to deal with termination request

} else {

_Accept(WorkRequest); // wait for current disk operation to complete

} // if

} // DiskScheduler::main

IOStatus DiskScheduler::DiskRequest(IORequest &req) {

WaitingRequest np(req); // preallocate waiting list element

PendingClients.orderedInsert(&np); // insert in ascending order by track number

if (! DiskWaiting.empty()) { // disk free ?

DiskWaiting.signal(); // reactivate disk

} // if

np.block.wait(); // wait until request is serviced

return np.status; // return status of disk request

} // DiskScheduler::DiskRequest

IORequest DiskScheduler::WorkRequest(IOStatus status) {

if (CurrentRequest != nullptr) { // client waiting for request to complete ?

CurrentRequest->status = status; // set request status

CurrentRequest->block.ignal(); // reactivate waiting client

} // if

if (PendingClients.empty()) { // any clients waiting ?

DiskWaiting.wait(); // wait for client to arrive

} // if

CurrentRequest = PendingClients.remove(); // remove next client’s request

return CurrentRequest->req; // return work for disk

} // DiskScheduler::WorkRequest

void DiskClient::main() {

IOStatus status;

IORequest req(rand() % NoOfCylinders, 0, 0);

yield(rand() % 100); // don’t all start at the same time

osacquire(cout) << "enter DiskClient main seeking:" << req.track << endl;

H.4. UNIX FILE I/O 191

status = scheduler.DiskRequest(req);

osacquire(cout) << "enter DiskClient main seeked to:" << req.track << endl;

} // DiskClient::main

int main() {

const int NoOfTests = 20;

DiskScheduler scheduler; // start the disk scheduler

DiskClient *p;

srand(getpid()); // initialize random number generator

p = new DiskClient[NoOfTests](scheduler); // start the clients

delete [] p; // wait for clients to complete

cout << "successful completion" << endl;

} // main

// Local Variables: //

// tab-width: 4 //

// compile-command: “u++ LOOK.cc” //

// End: //

H.4 UNIX File I/O

The following example program reads in a file and copies it into another file.

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// File.cc -- Print multiple copies of the same file to standard output

//

// Author : Peter A. Buhr

// Created On : Tue Jan 7 08:44:56 1992

// Last Modified By : Peter A. Buhr

// Last Modified On : Sat Jan 20 08:03:21 2024

// Update Count : 47

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

#include <uFile.h>

#include <iostream>

using std::cout;

using std::cerr;

using std::endl;

_Task Copier {

uFile &input;

192 APPENDIX H. EXAMPLE PROGRAMS

void main() {

uFile::FileAccess in(input, O_RDONLY);

int count;

char buf[1];

for (int i = 0;; i += 1) { // copy in-file to out-file

count = in.read(buf, sizeof(buf));

if (count == 0) break; // eof ?

cout << buf[0];

if (i % 20 == 0) yield();

} // for

} // Copier::main

public:

Copier(uFile &in) : input(in) {

} // Copier::Copier

}; // Copier

int main(int argc, char *argv[]) {

switch (argc) {

case 2:

break;

default:

cerr << "Usage: " << argv[0] << " input-file" << std::endl;

exit(EXIT_FAILURE);

} // switch

uFile input(argv[1]); // connect with UNIX files

{

Copier c1(input), c2(input);

}

} // main

// Local Variables: //

// compile-command: “u++ File.cc” //

// End: //

H.5 UNIX Socket I/O

The following example illustrates bidirectional communication between a client and server socket. A client starts a

task to read from standard input and write the data to a server socket. The server or its acceptor for that client, reads

the data from the client and writes it directly back to the client. The client also starts a task that reads the data coming

back from the server or its acceptor and writes it onto standard output. Hence, a file is read from standard input and

written onto standard output after having made a loop through a server. The server can deal with multiple simultaneous

clients.

H.5.1 Client - UNIX/Datagram

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1999

//

// ClientUNIXDGRAM.cc -- Client for UNIX/datagram socket test. Client reads from standard input, writes the data to the

// server, reads the data from the server, and writes that data to standard output.

//

// Author : Peter A. Buhr

// Created On : Thu Apr 29 16:05:12 1999

// Last Modified By : Peter A. Buhr

// Last Modified On : Sat Jan 20 08:02:52 2024

H.5. UNIX SOCKET I/O 193

// Update Count : 54

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

#include <uSemaphore.h>

#include <uSocket.h>

#include <iostream>

using std::cin;

using std::cout;

using std::cerr;

using std::osacquire;

using std::endl;

// minimum buffer size is 2, 1 character and string terminator, ’\0’

enum { BufferSize = 65 };

const char EOD = ’\377’;

unsigned int rcnt = 0, wcnt = 0;

// Datagram sockets are lossy (i.e., drop packets). To prevent clients from flooding the server with packets, resulting

// in dropped packets, a semaphore is used to synchronize the reader and writer tasks so at most N writes occur before a

// read. As well, if the buffer size is increased substantially, it may be necessary to decrease N to ensure the server

// buffer does not fill.

enum { MaxWriteBeforeRead = 5 };

uSemaphore readSync(MaxWriteBeforeRead);

_Task Reader {

uSocketClient &client;

void main() {

uDuration timeout(20, 0); // timeout for read

char buf[BufferSize];

int len;

//struct sockaddr_un from;

//socklen_t fromlen = sizeof(from);

try {

for (;;) {

len = client.recvfrom(buf, sizeof(buf), 0, &timeout);

//len = client.recvfrom(buf, sizeof(buf), (sockaddr *)&from, &fromlen, 0, &timeout);

readSync.V();

// osacquire(cerr) << “reader read len:” << len << endl;

if (len == 0) abort("client %d : EOF ecountered without EOD", getpid());

rcnt += len;

// The EOD character can be piggy-backed onto the end of the message.

if (buf[len - 1] == EOD) {

rcnt -= 1; // do not count the EOD

194 APPENDIX H. EXAMPLE PROGRAMS

cout.write(buf, len - 1); // do not write the EOD

break;

} // exit

cout.write(buf, len);

} // for

} catch(uSocketServer::ReadTimeout &) {

cout << "Warning: client timeout, possible cause lost data on datagram socket" << endl;

} // try

} // Reader::main

public:

Reader(uSocketClient &client) : client (client) {

} // Reader::Reader

}; // Reader

_Task Writer {

uSocketClient &client;

void main() {

char buf[BufferSize];

//struct sockaddr_un to;

//socklen_t tolen = sizeof(to);

//client.getServer((sockaddr *)&to, &tolen);

for (;;) {

cin.get(buf, sizeof(buf), ’\0’); // leave room for string terminator

int len = strlen(buf);

// osacquire(cerr) << “writer read len:” << len << endl;

if (buf[0] == ’\0’) break;

wcnt += len;

readSync.P();

client.sendto(buf, len);

//client.sendto(buf, len, (sockaddr *)&to, tolen);

} // for

readSync.P();

client.sendto(const_cast<char *>(&EOD), sizeof(EOD));

//client.sendto(const_cast<char *>(&EOD), sizeof(EOD), (sockaddr *)&to, tolen);

} // Writer::main

public:

Writer(uSocketClient &client) : client(client) {

} // Writer::Writer

}; // Writer

int main(int argc, char *argv[]) {

switch (argc) {

case 2:

break;

default:

cerr << "Usage: " << argv[0] << " socket-name" << endl;

exit(EXIT_FAILURE);

} // switch

// remove tie due to race between cin flush and cout write by writer and reader tasks

cin.tie(nullptr);

uSocketClient client(argv[1], SOCK_DGRAM); // connection to server

{

Reader rd(client); // emit worker to read from server and write to output

Writer wr(client); // emit worker to read from input and write to server

}

if (wcnt != rcnt) {

H.5. UNIX SOCKET I/O 195

abort("Error: client not all data transfered, wcnt:%d rcnt:%d", wcnt, rcnt);

} // if

} // main

// Local Variables: //

// compile-command: “u++-work ClientUNIXDGRAM.cc -o Client” //

// End: //

H.5.2 Server - UNIX/Datagram

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1999

//

// ServerUNIXDGRAM.cc -- Server for UNIX/datagram socket test. Server reads data from multiple clients. The server reads

// the data from the client and writes it back.

//

// Author : Peter A. Buhr

// Created On : Fri Apr 30 16:36:18 1999

// Last Modified By : Peter A. Buhr

// Last Modified On : Sat Jan 20 08:04:29 2024

// Update Count : 50

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

#include <uSocket.h>

#include <iostream>

#include <unistd.h> // unlink

using std::cerr;

using std::osacquire;

using std::endl;

enum { BufferSize = 8 * 1024 };

_Task Reader {

uSocketServer &server;

void main() {

uDuration timeout(20, 0); // timeout for read

char buf[BufferSize];

int len;

//struct sockaddr_un to;

//socklen_t tolen = sizeof(to);

try {

for (;;) {

len = server.recvfrom(buf, sizeof(buf), 0, &timeout);

//len = server.recvfrom(buf, sizeof(buf), (sockaddr *)&to, &tolen, 0, &timeout);

196 APPENDIX H. EXAMPLE PROGRAMS

// osacquire(cerr) << “reader read len:” << len << endl;

if (len == 0) abort("server %d : EOF ecountered before timeout", getpid());

server.sendto(buf, len); // write byte back to client

//server.sendto(buf, len, (sockaddr *)&to, tolen); // write byte back to client

} // for

} catch(uSocketServer::ReadTimeout &) {

} // try

} // Reader::main

public:

Reader(uSocketServer &server) : server(server) {

} // Reader::Reader

}; // Reader

int main(int argc, char *argv[]) {

switch (argc) {

case 2:

break;

default:

cerr << "Usage: " << argv[0] << " socket-name" << endl;

exit(EXIT_FAILURE);

} // switch

uSocketServer server(argv[1], SOCK_DGRAM); // create and bind a server socket

{

Reader rd(server); // execute until reader times out

}

unlink(argv[1]); // remove socket file

} // uMain

// Local Variables: //

// compile-command: “u++-work ServerUNIXDGRAM.cc -o Server” //

// End: //

H.5.3 Client - INET/Stream

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// ClientINETSTREAM.cc -- Client for INET/stream socket test. Client reads from standard input, writes the data to the

// server, reads the data from the server, and writes that data to standard output.

//

// Author : Peter A. Buhr

// Created On : Tue Jan 7 08:42:32 1992

// Last Modified By : Peter A. Buhr

// Last Modified On : Sat Jan 20 08:02:26 2024

// Update Count : 163

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

H.5. UNIX SOCKET I/O 197

//

#include <uSocket.h>

#include <iostream>

using std::cin;

using std::cout;

using std::cerr;

using std::osacquire;

using std::endl;

// minimum buffer size is 2, 1 character and string terminator, ’\0’

enum { BufferSize = 65 };

const char EOD = ’\377’;

const char EOT = ’\376’;

unsigned int rcnt = 0, wcnt = 0;

_Task Reader {

uSocketClient &client;

void main() {

char buf[BufferSize];

int len;

for (;;) {

len = client.read(buf, sizeof(buf));

// osacquire(cerr) << “reader read len:” << len << endl;

if (len == 0) abort("client %d : EOF ecountered without EOD", getpid());

rcnt += len;

// The EOD character can be piggy-backed onto the end of the message.

if (buf[len - 1] == EOD) {

rcnt -= 1; // do not count the EOD

cout.write(buf, len - 1); // do not write the EOD

client.write(&EOT, sizeof(EOT)); // indicate EOD received

break;

} // exit

cout.write(buf, len);

} // for

} // Reader::main

public:

Reader(uSocketClient &client) : client (client) {

} // Reader::Reader

}; // Reader

_Task Writer {

uSocketClient &client;

void main() {

char buf[BufferSize];

for (;;) {

cin.get(buf, sizeof(buf), ’\0’); // leave room for string terminator

if (buf[0] == ’\0’) break;

int len = strlen(buf);

// osacquire(cerr) << “writer read len:” << len << endl;

wcnt += len;

client.write(buf, len);

} // for

client.write(&EOD, sizeof(EOD));

} // Writer::main

198 APPENDIX H. EXAMPLE PROGRAMS

public:

Writer(uSocketClient &client) : client(client) {

} // Writer::Writer

}; // Writer

int main(int argc, char *argv[]) {

switch (argc) {

case 2:

break;

default:

cerr << "Usage: " << argv[0] << " port-number" << endl;

exit(EXIT_FAILURE);

} // switch

// remove tie due to race between cin flush and cout write by writer and reader tasks

cin.tie(nullptr);

uSocketClient client(atoi(argv[1])); // connection to server

{

Reader rd(client); // emit worker to read from server and write to output

Writer wr(client); // emit worker to read from input and write to server

}

if (wcnt != rcnt) {

abort("Error: client not all data transferred, wcnt:%d rcnt:%d", wcnt, rcnt);

} // if

} // main

// Local Variables: //

// compile-command: “u++-work ClientINETSTREAM.cc -o Client” //

// End: //

H.5.4 Server - INET/Stream

//

// uC++ Version 7.0.0, Copyright (C) Peter A. Buhr 1994

//

// ServerINETSTREAM.cc -- Server for INET/stream socket test. Server accepts multiple connections from clients. Each

// client then communicates with an acceptor. The acceptor reads the data from the client and writes it back.

//

// Author : Peter A. Buhr

// Created On : Tue Jan 7 08:40:22 1992

// Last Modified By : Peter A. Buhr

// Last Modified On : Sat Jan 20 08:04:13 2024

// Update Count : 194

//

// This library is free software; you can redistribute it and/or modify it

// under the terms of the GNU Lesser General Public License as published by the

// Free Software Foundation; either version 2.1 of the License, or (at your

// option) any later version.

//

// This library is distributed in the hope that it will be useful, but WITHOUT

// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

// FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License

// for more details.

//

// You should have received a copy of the GNU Lesser General Public License

// along with this library.

//

#include <uSocket.h>

H.5. UNIX SOCKET I/O 199

#include <iostream>

using std::cout;

using std::cerr;

using std::osacquire;

using std::endl;

enum { BufferSize = 8 * 1024 };

const char EOD = ’\377’;

const char EOT = ’\376’;

_Task Server; // forward declaration

_Task Acceptor {

uSocketServer &sockserver;

Server &server;

void main();

public:

Acceptor(uSocketServer &socks, Server &server) : sockserver(socks), server(server) {

} // Acceptor::Acceptor

}; // Acceptor

_Task Server {

uSocketServer &sockserver;

Acceptor *terminate;

int acceptorCnt;

bool timeout;

public:

Server(uSocketServer &socks) : sockserver(socks), acceptorCnt(1), timeout(false) {

} // Server::Server

void connection() {

} // Server::connection

void complete(Acceptor *terminate, bool timeout) {

Server::terminate = terminate;

Server::timeout = timeout;

} // Server::complete

private:

void main() {

new Acceptor(sockserver, *this); // create initial acceptor

for (;;) {

_Accept(connection) {

new Acceptor(sockserver, *this); // create new acceptor after a connection

acceptorCnt += 1;

} or _Accept(complete) { // acceptor has completed with client

delete terminate; // delete must appear here or deadlock

acceptorCnt -= 1;

if (acceptorCnt == 0) break; // if no outstanding connections, stop

if (timeout) {

new Acceptor(sockserver, *this); // create new acceptor after a timeout

acceptorCnt += 1;

} // if

} // _Accept

} // for

} // Server::main

}; // Server

void Acceptor::main() {

200 APPENDIX H. EXAMPLE PROGRAMS

try {

uDuration timeout(20, 0); // timeout for accept

uSocketAccept acceptor(sockserver, &timeout); // accept a connection from a client

char buf[BufferSize];

int len;

server.connection(); // tell server about client connection

for (;;) {

len = acceptor.read(buf, sizeof(buf)); // read byte from client

// osacquire(cerr) << “Server::acceptor read len:” << len << endl;

if (len == 0) abort("server %d : EOF ecountered without EOD", getpid());

acceptor.write(buf, len); // write byte back to client

// The EOD character can be piggy-backed onto the end of the message.

if (buf[len - 1] == EOD) break; // end of data ?

} // for

len = acceptor.read(buf, sizeof(buf)); // read EOT from client

if (len != 1 && buf[0] != EOT) {

abort("server %d : failed to read EOT", getpid());

} // if

server.complete(this, false); // terminate

} catch(uSocketAccept::OpenTimeout &) {

server.complete(this, true); // terminate

} // try

} // Acceptor::main

int main(int argc, char *argv[]) {

switch (argc) {

case 1:

break;

default:

cerr << "Usage: " << argv[0] << endl;

exit(EXIT_FAILURE);

} // switch

short unsigned int port;

uSocketServer sockserver(&port); // create and bind a server socket to free port

cout << port << endl; // print out free port for clients

{

Server s(sockserver); // execute until acceptor times out

}

} // uMain

// Local Variables: //

// compile-command: “u++-work ServerINETSTREAM.cc -o Server” //

// End: //

Bibliography

[Ada83] Ada. The Programming Language Ada: Reference Manual. United States Department of Defense,

Springer, New York, ANSI/MIL-STD-1815A-1983 edition, February 1983. 23

[Agh86] Gul A. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cam-

bridge, 1986. 58

[AGMK94] B. Adelberg, H. Garcia-Molina, and B. Kao. Emulating Soft Real-Time Scheduling Using Traditional

Operating System Schedulers. In Proc. IEEE Real-Time Systems Symposium, pages 292–298, 1994. 150

[Ale01] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied.

Addison-Wesley Professional, Boston, February 2001. 50

[Amd67] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale Computing

Capabilities. In Proceedings of the April 18-20, 1967, Spring Joint Computer Conference, AFIPS ’67

(Spring), pages 483–485, New York, NY, USA, 1967. ACM. 47

[AOC+88] Gregory R. Andrews, Ronald A. Olsson, Michael Coffin, Irving Elshoff, Kelvin Nilsen, Titus Purdin, and

Gregg Townsend. An Overview of the SR Language and Implementation. Transactions on Programming

Languages and Systems, 10(1):51–86, January 1988. 25

[BD92] Peter A. Buhr and Glen Ditchfield. Adding Concurrency to a Programming Language. In USENIX C++

Technical Conference Proceedings, pages 207–224, Portland, Oregon, U.S.A., August 1992. USENIX

Association. 3

[BDS+92] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher, B. M. Younger, and C. R. Zarnke. µC++: Concurrency

in the Object-Oriented Language C++. Softw. Pract. Exper., 22(2):137–172, February 1992. 156

[BDZ89] P. A. Buhr, Glen Ditchfield, and C. R. Zarnke. Adding Concurrency to a Statically Type-Safe Object-

Oriented Programming Language. SIGPLAN Not., 24(4):18–21, April 1989. Proceedings of the ACM

SIGPLAN Workshop on Object-Based Concurrent Programming, Sept. 26–27, 1988, San Diego, Cali-

fornia, U.S.A. 156

[BFC95] Peter A. Buhr, Michel Fortier, and Michael H. Coffin. Monitor Classification. ACM Computing Surveys,

27(1):63–107, March 1995. 20

[BLL88] B. N. Bershad, E. D. Lazowska, and H. M. Levy. PRESTO: A System for Object-oriented Parallel

Programming. Softw. Pract. Exper., 18(8):713–732, August 1988. 5, 32

[BMZ92] Peter A. Buhr, Hamish I. Macdonald, and C. Robert Zarnke. Synchronous and Asynchronous Handling

of Abnormal Events in the µSystem. Softw. Pract. Exper., 22(9):735–776, September 1992. 91, 94

[Boe05] Hans-J. Boehm. Threads Cannot be Implemented as a Library. SIGPLAN Not., 40(6):261–268, June

2005. 32

[BP91] T. Baker and O. Pazy. Real-Time Features of Ada 9X. In Proc. IEEE Real-Time Systems Symposium,

pages 172–180, 1991. 147

201

202 BIBLIOGRAPHY

[BP15] Andrej Bauer and Matija Pretnar. Programming with Algebraic Effects and Handlers. Journal of Logical

and Algebraic Methods in Programming, 84(1):108–123, January 2015. 84

[Bri75] Per Brinch Hansen. The Programming Language Concurrent Pascal. IEEE Trans. Softw. Eng., SE-

1(2):199–207, June 1975. 3

[Buh85] P. A. Buhr. A Case for Teaching Multi-exit Loops to Beginning Programmers. SIGPLAN Not.,

20(11):14–22, November 1985. 11

[Buh95] Peter A. Buhr. Are Safe Concurrency Libraries Possible? Communications of the ACM, 38(2):117–120,

February 1995. 3, 32

[But97] David R. Butenhof. Programming with POSIX Threads. Professional Computing. Addison-Wesley,

Boston, 1997. 133

[BW90] Alan Burns and A. J. Wellings. The Notion of Priority in Real-Time Programming Languages. Computer

Language, 15(3):153–162, 1990. 150

[C++98] International Standard Organization, Geneva, Switzerland. C++ Programming Language ISO/IEC

14882:1998, 1st edition, 1998. https://www.iso.org/standard/25845.html. 159

[Car90] Tom A. Cargill. Does C++ Really Need Multiple Inheritance? In USENIX C++ Conference Proceedings,

pages 315–323, San Francisco, California, U.S.A., April 1990. USENIX Association. 35

[CD95] Tai M. Chung and Hank G. Dietz. Language Constructs and Transformation for Hard Real-time Systems.

In Proc. Second ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Real-Time Systems,

June 1995. 141

[CG89] Nicholas Carriero and David Gelernter. Linda in Context. Communications of the ACM, 32(4):444–458,

April 1989. 3

[CHS14] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. CAF – the C++ Actor Framework for

Scalable and Resource-Efficient Applications. AGERE’14, pages 15–28, New York, NY, USA, 2014.

Proceedings of the 4th International Workshop on Programming Based on Actors Agents & Decentral-

ized Control, ACM. 58

[CKL+88] Boleslaw Ciesielski, Antoni Kreczmar, Marek Lao, Andrzej Litwiniuk, Teresa Przytycka, Andrzej

Salwicki, Jolanta Warpechowska, Marek Warpechowski, Andrzej Szalas, and Danuta Szczepanska-

Wasersztrum. Report on the Programming Language LOGLAN’88. Technical report, Institute of Infor-

matics, University of Warsaw, Pkin 8th Floor, 00-901 Warsaw, Poland, December 1988. 33

[DG87] Thomas W. Doeppner and Alan J. Gebele. C++ on a Parallel Machine. In Proceedings and Additional

Papers C++ Workshop, pages 94–107, Santa Fe, New Mexico, U.S.A, November 1987. USENIX Asso-

ciation. 32

[Dij65] Edsger W. Dijkstra. Cooperating Sequential Processes. Technical report, Technological University,

Eindhoven, Neth., 1965. https://pure.tue.nl/ws/files/4279816/344354178746665.pdf. 35

[Geh92] N. H. Gehani. Exceptional C or C with Exceptions. Softw. Pract. Exper., 22(10):827–848, October

1992. 91

[Gen81] W. Morven Gentleman. Message Passing between Sequential Processes: the Reply Primitive and the

Administrator Concept. Softw. Pract. Exper., 11(5):435–466, May 1981. 4, 55

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification. Addison-

Wesley, Reading, 2nd edition, 2000. 11, 32

[Gol94] David B. Golub. Operating System Support for Coexistence of Real-Time and Conventional Scheduling.

Technical report, Carnegie Mellon University, November 1994. 150

https://www.iso.org/standard/25845.html
https://pure.tue.nl/ws/files/4279816/344354178746665.pdf

BIBLIOGRAPHY 203

[GR88] N. H. Gehani and W. D. Roome. Concurrent C++: Concurrent Programming with Class(es). Softw.

Pract. Exper., 18(12):1157–1177, December 1988. 7, 25

[GR91] N. Gehani and K. Ramamritham. Real-Time Concurrent C: A Language for Programming Dynamic

Real-Time Systems. Journal of Real-Time Systems, 3(4):377–405, December 1991. 141

[Hal85] Robert H. Halstead, Jr. Multilisp: A Language for Concurrent Symbolic Programming. Transactions on

Programming Languages and Systems, 7(4):501–538, October 1985. 4

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR Formalism for Artificial

Intelligence. IJCAI’73, pages 235–245, Standford, California, U.S.A., August 1973. Proceedings of the

3rd International Joint Conference on Artificial Intelligence. 58

[HM92] W.A. Halang and K. Mangold. Real-Time Programming Languages. In Michael Schiebe and Saskia

Pferrer, editors, Real-Time Systems Engineering and Applications, chapter 4, pages 141–200. Kluwer

Academic Publishers, 1992. 141

[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept. Communications of the ACM,

17(10):549–557, October 1974. 5, 179

[Hol92] R. C. Holt. Turing Reference Manual. Holt Software Associates Inc., 3rd edition, 1992. 3

[Int95] International Standard ISO/IEC. Ada Reference Manual, 6.0 edition, 1995. 94

[ITM90] Y. Ishikawa, H. Tokuda, and C.W. Mercer. Object-Oriented Real-Time Language Design: Constructs

for Timing Constraints. In Proc. ECOOP/OOPSLA, pages 289–298, October 1990. 141

[KK91] K.B. Kenny and K.J.Lin. Building Flexible Real-Time Systems using the Flex Language. IEEE Com-

puter, 24(5):70–78, May 1991. 141

[KS86] E. Klingerman and A.D. Stoyenko. Real-Time Euclid: A Language for Reliable Real-Time Systems.

IEEE Transactions on Software Engineering, pages 941–949, September 1986. 141

[Lab90] Pierre Labrèche. Interactors: A Real-Time Executive with Multiparty Interactions in C++. SIGPLAN

Not., 25(4):20–32, April 1990. 32

[Lig16] Lightbend Inc. Akka Scala Documentation, Release 2.4.11, September 2016. http://doc.akka.io/docs/

akka/2.4/AkkaScala.pdf. 58

[LN88] K.J. Lin and S. Natarajan. Expressing and Maintaining Timing Constratins in FLEX. In Proc. IEEE

Real-Time Systems Symposium, pages 96–105, 1988. 141

[Mac77] M. Donald MacLaren. Exception Handling in PL/I. SIGPLAN Not., 12(3):101–104, March 1977.

Proceedings of an ACM Conference on Language Design for Reliable Software, March 28–30, 1977,

Raleigh, North Carolina, U.S.A. 91

[Mar78] T. Martin. Real-Time Programming Language PEARL – Concept and Characteristics. In IEEE Com-

puter Society 2nd International Computer Software and Applications Conference, pages 301–306, 1978.

141

[Mar80] Christopher D. Marlin. Coroutines: A Programming Methodology, a Language Design and an Imple-

mentation, volume 95 of Lecture Notes in Computer Science, Ed. by G. Goos and J. Hartmanis. Springer,

New York, 1980. 5, 12

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice-Hall Object-Oriented Series. Prentice-Hall, Englewood

Cliffs, 1992. 83

[MMPN93] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-oriented Programming

in the BETA Programming Language. Addison-Wesley, Boston, 1993. 33

http://doc.akka.io/docs/akka/2.4/AkkaScala.pdf
http://doc.akka.io/docs/akka/2.4/AkkaScala.pdf

204 BIBLIOGRAPHY

[MMS79] James G. Mitchell, William Maybury, and Richard Sweet. Mesa Language Manual. Technical Report

CSL–79–3, Xerox Palo Alto Research Center, Palo Alto, California, U.S.A., April 1979. 3, 93

[Ope15] OpenMP Application Program Interface, Version 4.5, November 2015. https://www.openmp.org/

wp-content/uploads/openmp-4.5.pdf. 139

[POS08] IEEE and The Open Group. 1003.1 Standard for Information Technology – Portable Operating System

Interface (POSIX), Base Specifications, Issue 7, 2008. 136

[RAA+88] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F. Hermann, C. Kaiser,

S. Langlois, P. Leonard, and W. Neuhauser. Chorus Distributed Operating Systems. Computing Systems,

1(4):305–370, 1988. 151

[Raj91] Ragunathan Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach. Kluwer

Academic Publishers, 1991. 149

[RH87] A. Rizk and F. Halsall. Design and Implementation of a C-based Language for Distributed Real-time

Systems. SIGPLAN Notices, 22(6):83–100, June 1987. 7

[Rip90] David Ripps. An Implementaion Guide to Real-Time Programming. Yourdon Press, 1990. 141

[RSL88] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-Time Synchronization Protocols for Mul-

tiprocessors. In Proc. IEEE Real-Time Systems Symposium, pages 259–269, 1988. 149

[SBG+90] Robert E. Strom, David F. Bacon, Arthur P. Goldberg, Andy Lowry, Daniel M. Yellin, and

Shaula Alexander Yemini. Hermes: A Language for Distributed Computing. Technical report, IBM

T. J. Watson Research Center, Yorktown Heights, New York, U.S.A., 10598, October 1990. 6

[SD92] A.E.K. Sahraoui and D. Delfieu. ZAMAN, A Simple Language for Expressing Timing Constraints. In

Real-Time Programming, IFAC Workshop, pages 19–24, 1992. 141

[Sho87] Jonathan E. Shopiro. Extending the C++ Task System for Real-Time Control. In Proceedings and Addi-

tional Papers C++ Workshop, pages 77–94, Santa Fe, New Mexico, U.S.A, November 1987. USENIX

Association. 32

[SRL90] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach to Real-Time

Synchronization. IEEE Transactions on Computers, 39(9):1175–1185, September 1990. 149

[Sta87] Standardiseringskommissionen i Sverige. Databehandling – Programspråk – SIMULA, 1987. Svensk

Standard SS 63 61 14. 32

[Str97] Bjarne Stroustrup. The C++ Programming Language. Addison Wesley Longman, 3rd edition, 1997. 1,

3

[Tie88] Michael D. Tiemann. Solving the RPC problem in GNU C++. In Proceedings of the USENIX C++

Conference, pages 343–361, Denver, Colorado, U.S.A, October 1988. USENIX Association. 33

[Tie90] Michael D. Tiemann. User’s Guide to GNU C++. Free Software Foundation, 1000 Mass Ave., Cam-

bridge, MA, U.S.A., 02138, March 1990. 10, 156

[TvRvS+90] Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp, Sape J. Mullender,

Jack Jansen, and Guido van Rossum. Experiences with the Amoeba Distributed Operating System.

Communications of the ACM, 33(12):46–63, December 1990. 151

[Yea91] Dorian P. Yeager. Teaching Concurrency in the Programming Languages Course. SIGCSE BULLETIN,

23(1):155–161, March 1991. The Papers of the Twenty-Second SIGCSE Technical Symposium on

Computer Science Education, March. 7–8, 1991, San Antonio, Texas, U.S.A. 12

[Yok92] Yasuhiko Yokote. The Apertos Reflective Operating System: The Concept and Its Implementation. In

Proc. Object-Oriented Programming Systems, Languages, and Applications, pages 414–434, 1992. 151

[You91] Brian M. Younger. Adding Concurrency to C++. Master’s thesis, University of Waterloo, Waterloo,

Ontario, Canada, N2L 3G1, 1991. 156

https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

Index

-U++ option, 10

-compiler option, 10

-debug option, 10

-fopenmp option, 139

-multi option, 10, 139

-nodebug option, 10

-nomulti option, 10

-noquiet option, 10

-quiet option, 10

<<, 71

>>, 71, 172, 174, 176

_Accept, 21, 144

_At, 86

_CatchResume, 90

_Cormonitor, 27, 39

_Coroutine, 7, 12

_Disable, 87

_Enable, 87

_Exception, 15, 84

_Finally, 12

_Monitor, 26

_Mutex, 7, 17

_Mutex _Coroutine, 27

_Cormonitor, 27, 39

_Mutex class, 26

_Monitor, 26

_Nomutex, 7, 12, 17

_PeriodicTask, 147

_RealTimeTask, 148

_Resume, 86

_Select, 51, 145

_SporadicTask, 148

_Task, 7, 29

_Throw, 86

_Timeout, 144, 145

_When, 21, 52, 144, 145

__U_CPLUSPLUS_MINOR__, 10

__U_CPLUSPLUS_PATCH__, 10

__U_CPLUSPLUS__, 10

__U_DEBUG__, 10

__U_MULTI__, 10

aalloc, 162

abort, 110, 127

accept-blocked, 21, 22

acceptor, 75

acceptor/signalled stack, 20, 21, 23, 25

access object, 73

acquire, 37

activation point, 13, 29

Active, 15

active, 4, 16

active priority, 150

actor, 58

coroutine, 65

inheritance, 64

actor model, 58

add, 172, 173, 175

addHead, 172, 173, 175

addTail, 173, 175

administrator, 55

aligned_alloc, 161

amdahl’s law, 47

amemalign, 162

aperiodic task, 148

assert, 110

assert.h, 110

asynchronous call, 47

atomic instruction

compare/assign, 41

fetch/add, 41

fetch/assign, 40

test/reset, 40

test/set, 40

barrier, 38

base priority, 150

basic priority-inheritance protocol, 149

become, 63

BEGIN, 28

behaviour, 58

binomial theorem, 22

block, 39

Blocked, 31

blocked, 4

bound exception, 93

break, 11

labelled, 11

busy wait, 36

busy waiting, 51

205

206 BIBLIOGRAPHY

C++, 40, 41

calloc, 161

cancel, 15

cancelInProgress, 15

cancellation, 103

safe cleanup, 103

cancellation checkpoint, 103

cancelled, 15

Case, 62

chain blocking, 149

class, 7

class object, 5, 7

class type, 7

client, 47, 75

CloseFailure, 74, 77, 79, 81, 100

cluster, 8

cmemalign, 162

COBEGIN, 28

code reuse, 33

COEND, 28

COFOR, 28

collection, 171

communication variables, 12, 29

compare-and-assign, 41

compilation option

-U++, 10

-compiler, 10

-debug, 10

-fopenmp, 139

-multi, 10, 139

-nodebug, 10

-nomulti, 10

-noquiet, 10

-quiet, 10

u++, 10

compile-time

errors, 107

warnings, 107

concurrency, 8, 129

concurrent exception, 23, 84, 86, 88, 91, 115

condition lock, 38

condition variable, 24

context switch, 4, 16, 21, 131

continue, 11

labelled, 11

convertTime, 146

coroutine, 5, 7, 12

full, 12

inherited members, 14

semi, 12

termination, 13

coroutine actor, 65

coroutine main, 12, 16, 39, 116

coroutine monitor, 5, 7, 27

coroutine type, 7

coroutine-monitor type, 7

counter, 36

CreationFailure, 100, 135

critical section

hardware

compare/assign, 41

fetch/add, 41

fetch/assign, 40

test/reset, 40

test/set, 40

currTime, 146

data structure library, 171

dbx, 177

deadline monotonic, 151

deadlock, 13, 24–27, 72, 98, 149

debugging

symbolic, 177

default action, 85, 91, 111

Dekker, 5

detached, 130

drop, 172, 173, 175

dropHead, 173, 175

dropTail, 173, 175

duration, 141

dynamic

errors, 110

warnings, 110

empty, 25, 36, 38, 172, 173, 175

END, 28

entry queue, 20, 24

EntryFailure, 100

epoch, 142

equals, 50

errors, 107

accept statement, 123

calendar, 123

cluster, 123

compile-time, 107

condition variable, 122

coroutine, 116

default action, 111

dynamic, 110

heap, 124

I/O, 125

lock, 123

mutex type, 118

processor, 126

runtime, 110

static, 107

task, 121

UNIX, 126

BIBLIOGRAPHY 207

warnings, 107, 110

exception, 83

bound, 93

concurrent, 23, 86, 88, 91, 115

inherited members, 85

local, 88

nonlocal, 86–88, 92, 99

resume, 84

throw, 84

exception type, 83

execution state, 4

active, 4

inactive, 4

exit, 110, 127

explicit storage management, 59

external variables, 14, 29

Failure, 14, 74, 77, 79, 81, 99, 100, 135

fcntl.h, 75

fd, 75, 78, 80, 81

fetch-and-add, 41

fetch-and-assign, 40

FileAccess, 74

CloseFailure, 74, 100

Failure, 74, 100

fd, 74

fsync, 74

lseek, 74

open, 74

OpenFailure, 74, 100

read, 74

ReadFailure, 74, 100

ReadTimeout, 74, 100

readv, 74

SeekFailure, 74, 100

SyncFailure, 74, 100

write, 74

WriteFailure, 74, 100

WriteTimeout, 74, 100

writev, 74

finally clause, 11

finite-state machine, 12, 27

fixed-point registers, 43

floating-point registers, 43

flush, 39

frame, 148

free, 127, 161

free routine, 5

front, 25, 36, 38

full coroutine, 12

future, 48

Future_ESM

available, 49

cancel, 49

cancelled, 49

delivery, 49

exception, 49

operator()(), 49

reset, 49

Future_ISM

available, 50

cancel, 50

cancelled, 50

delivery, 50

equals, 50

exception, 50

operator()(), 50

reset, 50

garbage collection, 59

gdb, 177

getActivePriority, 31

getBasePriority, 31

getClient, 80

getCluster, 31, 130

getCoroutine, 31

getDetach, 130

gethostbyip, 76

gethostbyname, 76

getName, 15, 73, 128

getPid, 130

getpid, 163

getPreemption, 130

getProcessors, 129

getProcessorsOnCluster, 129

getServer, 78

getSpin, 131

getStackSize, 128

getState, 15, 31

getTask, 130

getTasksOnCluster, 129

getTime, 146

GNU C++, 10, 156

goto

restricted, 11

guarded block, 89

Halt, 15

Handle, 64

handler, 83, 84, 89

resumption, 84, 89, 90

termination, 84, 89

head, 172, 173, 175

heap allocator, 161

heap area, 14, 29, 155

expansion size, 156

malloc unfreed, 156

mmap start, 156

208 BIBLIOGRAPHY

heavy blocking, 132

heavyweight, 132

heavyweight process, 132

hop, 60

idle, 131

implementation problems, 44

implicit scheduler, 20

Inactive, 15

inactive, 4, 16

inheritance, 33

multiple, 35, 96

private, 33

protected, 33

public, 33

single, 33, 34, 95

inherited members

coroutine, 14

exception type, 85

task, 30

insertAft, 175

insertBef, 175

internal scheduler, 24

interrupt, 130, 131

intervention, 89

intrusive node, 171

IPConvertFailure, 100

isacquire, 72

istream

isacquire, 72

itoip, 76

kernel thread, 8, 129

keyword, additions

_Accept, 21, 144

_At, 86

_CatchResume, 90

_Coroutine, 12

_Exception, 84

_Finally, 12

_Mutex, 17

_Nomutex, 12, 17

_PeriodicTask, 147

_RealTimeTask, 148

_Resume, 86

_Select, 51, 145

_SporadicTask, 148

_Task, 29

_Throw, 86

_Timeout, 144, 145

_When, 21, 52, 144, 145

labelled

break, 11

continue, 11

light blocking, 132

lightweight, 8

lightweight process, 8

local exception, 88

lock, 36

locking, 16

M_MMAP_THRESHOLD, 162

M_TOP_PAD, 162

mailbox, 58

main, 8, 12, 13, 16, 29, 32, 34, 35, 39, 43, 65, 86,

88, 104, 113–117, 122, 124, 133, 136, 147,

148, 152

malloc, 127, 161

malloc_alignment, 162

malloc_expansion, 156

malloc_info, 162

malloc_mmap_start, 156

malloc_size, 162

malloc_stats, 162

malloc_stats_fd, 162

malloc_unfreed, 156

malloc_usable_size, 162

malloc_zero_fill, 162

mallopt, 162

memalign, 161

Message, 59

allocation, 60

migrate, 31

monitor, 5, 7, 26

active, 16

inactive, 16

monitor type, 7

multi-level exit, 11

multikernel, 9, 129

mutex lock, 37

mutex member, 5, 16

mutex queue, 20

mutex type, 16

mutex-type state

locked, 16

unlocked, 16

mutual exclusion, 4

nested control structure, 11

nested locking, 72

netdb.h, 75

non-detached, 130

nonblocking i/o, 71

nonlocal exception, 84, 86–88, 92, 99, 103

object, 7

OpenFailure, 74, 77, 79, 81, 100

openmp, 139

OpenTimeout, 77, 81, 100

BIBLIOGRAPHY 209

ostream

osacquire, 72

out-of-band data, 81

over, 172, 174, 176

owner, 37

owner lock, 37, 72

P, 36

parallel execution, 8

parallelism, 8

pause, 40

periodic task, 147

placement allocate, 59

poll, 88

poller task, 71, 128, 129

pop, 172

POSIX Threads, 133

posix_memalign, 161

pre-emption, 88

default, 155

time, 129

uDefaultPreemption, 155

pre-emptive

scheduling, 31, 127, 131, 178

pred, 175

preprocessor variables

__U_CPLUSPLUS_MINOR__, 10

__U_CPLUSPLUS_PATCH__, 10

__U_CPLUSPLUS__, 10

__U_DEBUG__, 10

__U_MULTI__, 10

preStart, 63

priming

barrier, 39

printf, 110

prioritized pre-emptive scheduling, 150

priority, 150

priority level, 150

priority-inheritance protocol, 149

prng, 163

process

heavyweight, 132

lightweight, 8

UNIX, 132

processor

detached, 130

non-detached, 130

number on cluster, 129

pre-emption time, 129

spin amount, 129

program main, 8, 66, 104, 112–115, 122, 124, 136,

155

promise, 59, 61

PromiseMsg, 61, 62

delivery, 60

result, 60

propagate, 86

pseudo random-number generators, 163

pthread_attr_destroy, 134

pthread_attr_getdetachstate, 134

pthread_attr_getscope, 134

pthread_attr_getstacksize, 134

pthread_attr_init, 134

pthread_attr_setdetachstate, 134

pthread_attr_setscope, 134

pthread_attr_setstacksize, 134

pthread_cancel, 134

pthread_cleanup_pop, 134

pthread_cleanup_push, 134

pthread_cond_broadcast, 134

pthread_cond_destroy, 134

pthread_cond_init, 134

pthread_cond_signal, 134

pthread_cond_timedwait, 134

pthread_cond_wait, 134

pthread_create, 134

pthread_deletespecific_, 134

pthread_detach, 134

pthread_exit, 134

pthread_getattr_np, 134

pthread_getconcurrency, 134

pthread_getspecific, 134

pthread_join, 134

pthread_key_create, 134

pthread_key_delete, 134

pthread_mutex_destroy, 134

pthread_mutex_init, 134

pthread_mutex_lock, 134

pthread_mutex_trylock, 134

pthread_mutex_unlock, 134

pthread_once, 134

pthread_self, 134

pthread_setcancelstate, 134

pthread_setcanceltype, 134

pthread_setconcurrency, 134

pthread_setspecific, 134

pthread_testcancel, 134

pthread_timedjoin_np, 134

pthread_tryjoin_np, 134

pthread_yield, 134

pthreads, 133

see POSIX Threads,

push, 172

push-down automata, 12

raii, 72

raising, 83, 84, 86

resuming, 84, 86

210 BIBLIOGRAPHY

throwing, 84, 86

read, 71

ReadFailure, 74, 77, 79, 81, 100

ReadTimeout, 74, 77, 79, 81, 100

Ready, 31

ready, 4

real-time cluster, 151

realloc, 161, 162

recursive resuming, 91

release, 37, 38

remove, 173, 175

rendezvous, 22, 101

RendezvousFailure, 99–101, 114, 115

reresume, 86

reset, 39

resetClock, 146

resize, 162

restart, 64

resume, 14, 16

resumer, 15

resumption, 83

resumption handler, 89, 90

rethrow, 86

return code, 83

return union, 83

Running, 31

running, 4

runtime

errors, 110

warnings, 110

sbrk, 161

seed, 163

SeekFailure, 74, 100

select, 71, 128

select blocked, 51

semaphore, 35

semi-coroutine, 12

SenderMsg, 59

allocation, 60

sender, 60

SendfileFailure, 77, 79, 81, 100

SendfileTimeout, 77, 79, 81, 100

sequence, 171

server, 47, 75

set_terminate, 96

set_unexpected, 97

setClient, 79

setCluster, 130

setName, 15, 73, 128

setPreemption, 130

setServer, 78

setSpin, 130

setStackSize, 128

shared-memory model, 8

signal, 25

signalBlock, 25

sleep, 31, 127, 144

socket, 75

endpoint, 75

spin

amount, 129

default, 155

lock, 36

uDefaultSpin, 155

virtual processor, 131

split, 174, 175

sporadic task, 148

stack, 4, 172

acceptor/signalled, 20, 21, 23, 25

amount, 15

automatic growth, 9, 117

current, 15

data structure, 172

default size, 14, 30, 57, 127, 128, 155

diddling, 32

free, 15

minimum size, 127

overflow, 15

recursive resuming, 91

storage, 15

uDefaultStackSize, 155

uMainStackSize, 155

used, 15

stack object allocation, 167

stackFree, 15

stackPointer, 15

stackSize, 15

stackStorage, 15

stackUsed, 15

stale readers, 179

staring task, 8

START, 28

Start, 31

start, 64

starter, 15

StartMsg, 64

static

errors, 107

warnings, 107

static storage, 14, 29

static multi-level exit, 11

status flag, 84

StatusFailure, 74, 100

stop, 64

StopdMsg, 64

string to integer, 169

subtyping, 33

BIBLIOGRAPHY 211

succ, 173, 175

suspend, 14, 16

SyncFailure, 74, 100

synchronous call, 47

sys/socket.h, 75

sys/types.h, 75

sys/un.h, 75

system cluster, 8

tail, 173, 175

task, 5, 7, 29

aperiodic, 148

inherited members, 30

periodic, 147

sporadic, 148

termination, 29

task main, 29, 88

task type, 7

Terminate, 31

terminate, 96

terminate_handler, 96

TerminateFailure, 73, 74, 100

termination, 83

termination handler, 89

test-and-reset instruction, 40

test-and-set, 40

thread, 4

blocked, 4

running, 4

time, 141

time stamp counter, 40

time-slice, 131

times, 37

top, 172

total, 39

TraceMsg, 60

erase, 60

print, 60

reset, 60

resume, 60

retSender, 60

Return, 60

returned, 60

transfer, 173, 175

translator, 7

problems, 44

tryacquire, 37

TryP, 36

u++, 10, 139

uActor, 61

Allocation

Delete, 63

Destroy, 63

Finished, 63

Nodelete, 63

allocation, 63

ask, 63

become, 63

Delete, 59

Destroy, 59

Finished, 59

forward, 63

Handler, 63

Nodelete, 59

preStart, 63

receive, 63

restart, 63

SenderMsg

sender, 60

start, 63

StartMsg, 63

startMsg, 63

stop, 63

StopMsg, 63

stopMsg, 63

tell, 63

UnhandledMsg, 63

unhandledMsg, 63

uArray, 168

uArrayPtr, 168

uBarrier, 39

block, 39

flush, 39

last, 39

reset, 39

total, 39

waiters, 39

uBarrier.h, 39

uBaseCoroutine, 14, 31, 146

cancel, 14

cancelInProgress, 14

cancelled, 14

Failure, 14, 99, 100

getName, 14

getState, 14

resume, 14

resumer, 14

setName, 14

stackFree, 14

stackPointer, 14

stackSize, 14

stackStorage, 14

stackUsed, 14

starter, 14

suspend, 14

uEHM::poll, 103

UnhandledException, 14, 100

212 BIBLIOGRAPHY

verify, 14

uBaseException, 85

defaultResume, 85

defaultTerminate, 85, 99

getRaiseKind, 85

getRaiseObject, 85

message, 85

RaiseKind, 85

setMsg, 85

setRaiseObject, 85

setSrc, 85

source, 85

sourceName, 85

uFutureFailure, 100

uIOFailure, 100

uKernelFailure, 100

uBaseSchedule

add, 151

addInitialize, 151

checkPriority, 151

empty, 151

getActivePriority, 150

getBasePriority, 150

getInheritTask, 150

pop, 151

removeInitialize, 151

rescheduleTask, 151

resetPriority, 151

setActivePriority, 150

setBasePriority, 150

uBaseTask, 30

getActivePriority, 30

getBasePriority, 30

getCluster, 30

getCoroutine, 30

getState, 30

migrate, 30

sleep, 30

yield, 30

uBaseTask::Blocked, 31

uBaseTask::Ready, 31

uBaseTask::Running, 31

uBaseTask::Start, 31

uBaseTask::Terminate, 31

µC++ translator, 7

uCancelled, 100

uDelivery, 100

µC++ kernel, 9, 127

uClock

currTime, 146

getCPUTime, 146

getRes, 146

getResNsec, 146

getTime, 146

resetClock, 146

uCluster, 128

ExceptSelect, 128

getName, 128

getProcessors, 128

getProcessorsOnCluster, 128

getStackSize, 128

getTasksOnCluster, 128

ReadSelect, 128

select, 128

setName, 128

setStackSize, 128

WriteSelect, 128

uColable, 171

listed, 171

uCondition, 24

empty, 24

front, 24

owner, 24

signal, 24

signalBlock, 24

wait, 24

WaitingFailure, 24, 100

uCondLock, 38, 133

broadcast, 38

empty, 38

front, 38

signal, 38

wait, 38

uContext, 42

uDefaultExecutorAffinity, 57

uDefaultExecutorProcessors, 57

uDefaultExecutorRQueues, 57

uDefaultExecutorSepClus, 57

uDefaultExecutorWorkers, 57

uDefaultPreemption, 155

see setPreemption and pre-emption,

uDefaultProcessors, 155

uDefaultSpin, 155

see setSpin and spin,

uDefaultStackSize, 155

see setStackSize and stack,

uDuration, 141

uEHM

poll, 88

uEHM::poll, 88

uExecutor

send, 57

sendrecv, 57

uFile, 73

Failure, 74, 100

getName, 74

setName, 74

status, 74

BIBLIOGRAPHY 213

StatusFailure, 74, 100

TerminateFailure, 74, 100

uFile.h, 73

uFloatingPointContext, 43

uFutureFailure

uCancelled, 100

uDelivery, 100

uIOFailure, 100

uKernelFailure

uMutexFailure, 100

uLock, 36

acquire, 36

release, 36

tryacquire, 36

uMain, 8

uMainStackSize, 155

see setStackSize and stack,

uMutexFailure, 99

EntryFailure, 100

RendezvousFailure, 100

uMutexLock, 37

acquire, 37

release, 37

tryacquire, 37

uncaught_exception, 97

unexpected, 97

unexpected_handler, 97

UnhandledException, 14, 85, 97, 99, 100, 112

triggerCause, 99

UnhandledMsg, 64

unhandledMsg, 64

unikernel, 9, 129

UNIX epoch, 142

unix process, 129

unlocking, 16

uNoCtor, 167

uOwnerLock, 37, 133

acquire, 37

owner, 37

release, 37

times, 37

tryacquire, 37

uPeriodicBaseTask

getPeriod, 147

setPeriod, 147

UPP_MALLOC_STATS, 162

uPRNG.h, 163

uProcessor, 130

getCluster, 130

getDetach, 130

getPid, 130

getPreemption, 130

getSpin, 130

getTask, 130

idle, 130

setCluster, 130

setPreemption, 130

setSpin, 130

uPthreadable, 135

CreationFailure, 100, 135

Failure, 100, 135

pthreadId, 135

uQueue

add, 173

addHead, 173

addTail, 173

drop, 173

dropHead, 173

dropTail, 173

empty, 173

head, 173

remove, 173

split, 173

succ, 173

tail, 173

transfer, 173

uQueueIter, 174

>>, 174

over, 174

uRealTimeBaseTask

getDeadline, 149

setDeadline, 149

uRendezvousAcceptor, 102

uSemaphore, 35

counter, 35

empty, 35

P, 35

TryP, 35

V, 35

uSemaphore.h, 35

uSeqable, 171

listed, 171

uSeqIter, 175

>>, 176

over, 176

uSeqIterRev, 176

>>, 176

over, 176

uSequence

add, 175

addHead, 175

addTail, 175

drop, 175

dropHead, 175

dropTail, 175

empty, 175

head, 175

insertAft, 175

214 BIBLIOGRAPHY

insertBef, 175

pred, 175

remove, 175

split, 175

succ, 175

tail, 175

transfer, 175

user cluster, 8

uSerial

RendezvousFailure, 99, 101, 114, 115

usleep, 127, 144

uSocket, 76

CloseFailure, 100

Failure, 100

IPConvertFailure, 100

OpenFailure, 100

uSocket.h, 75

uSocketAccept, 80, 146

accept, 81

close, 81

CloseFailure, 81, 100

Failure, 81, 100

fd, 81

getpeername, 81

getsockaddr, 81

getsockname, 81

OpenFailure, 81, 100

OpenTimeout, 81, 100

read, 81

ReadFailure, 81, 100

ReadTimeout, 81, 100

readv, 81

recv, 81

recvfrom, 81

recvmsg, 81

send, 81

SendfileFailure, 81, 100

SendfileTimeout, 81, 100

sendmsg, 81

sendto, 81

write, 81

WriteFailure, 81, 100

WriteTimeout, 81, 100

writev, 81

uSocketClient, 76, 146

CloseFailure, 77, 100

Failure, 77, 100

fd, 77

getpeername, 77

getServer, 77

getsockname, 77

OpenFailure, 77, 100

OpenTimeout, 77, 100

read, 77

ReadFailure, 77, 100

ReadTimeout, 77, 100

readv, 77

recv, 77

recvfrom, 77

recvmsg, 77

send, 77

SendfileFailure, 77, 100

SendfileTimeout, 77, 100

sendmsg, 77

sendto, 77

setServer, 77

write, 77

WriteFailure, 77, 100

WriteTimeout, 77, 100

writev, 77

uSocketServer, 78

CloseFailure, 79, 100

Failure, 79, 100

fd, 79

getClient, 79

getpeername, 79

getsockaddr, 79

getsockname, 79

OpenFailure, 79, 100

read, 79

ReadFailure, 79, 100

ReadTimeout, 79, 100

readv, 79

recv, 79

recvfrom, 79

recvmsg, 79

send, 79

SendfileFailure, 79, 100

SendfileTimeout, 79, 100

sendmsg, 79

sendto, 79

setClient, 79

write, 79

WriteFailure, 79, 100

WriteTimeout, 79, 100

writev, 79

uSporadicBaseTask

getFrame, 148

setFrame, 148

uStack, 172

add, 172

addHead, 172

drop, 172

empty, 172

head, 172

pop, 172

push, 172

top, 172

BIBLIOGRAPHY 215

uStackIter, 172

>>, 172

over, 172

uThisCluster, 129

uThisCoroutine, 16

uThisProcessor, 131

uThisTask, 31

uTime, 142

uWaitQueue_ESM

add, 53

drop, 53

empty, 53

remove, 53

uWaitQueue_ISM

add, 53

drop, 53

empty, 53

remove, 53

V, 36

verify, 15

version number, 10

virtual processor, 8, 129, 132

vla, 167

WAIT, 28

wait, 24

wait-all, 54

wait-any, 54

wait-for-all, 51

wait-for-any, 51

waiters, 39

WaitingFailure, 24, 100

warnings

compile-time, 107

runtime, 110

write, 42, 71

WriteFailure, 74, 77, 79, 81, 100

WriteTimeout, 74, 77, 79, 81, 100

yield, 129

yield, 31, 103

	Title
	Contents
	Preface
	uC++ Extensions
	Design Requirements
	Elementary Execution Properties
	High-level Execution Constructs

	uC++ Translator
	Extending C++
	Compile Time Structure of a uC++ Program
	uC++ Runtime Structure
	Cluster
	Virtual Processor

	uC++ Kernel
	Compiling a uC++ Program
	Preprocessor Variables

	Labelled Break / Continue
	Finally Clause
	Coroutine
	Coroutine Creation and Destruction
	Inherited Members
	Coroutine Control and Communication

	Mutex Type
	Scheduling
	Implicit Scheduling
	External Scheduling
	Accept Statement
	Breaking a Rendezvous
	Accepting the Destructor
	Commentary

	Internal Scheduling
	Condition Variables and Wait/Signal Statements
	Commentary

	Monitor
	Monitor Creation and Destruction
	Monitor Control and Communication

	Coroutine Monitor
	Coroutine-Monitor Creation and Destruction
	Coroutine-Monitor Control and Communication

	Thread Creation and Destruction
	Task
	Task Creation and Destruction
	Inherited Members
	Task Control and Communication

	Commentary
	Inheritance
	Explicit Mutual Exclusion and Synchronization
	Counting Semaphore
	Commentary

	Lock
	Mutex Lock
	Owner Lock
	Condition Lock
	Barrier

	Atomic Instructions
	User Specified Context
	Predefined Floating-Point Context

	Implementation Restrictions

	Asynchronous Communication
	Futures
	Client Operations
	Server Operations
	Explicit Storage Management
	Implicit Storage Management

	Example
	Complex Future Access
	Select Statement
	Wait Queue

	Servers
	Executors

	Actor
	Storage Management
	Messages
	Actor Type

	Input/Output
	Nonblocking I/O
	C++ Stream I/O
	UNIX File I/O
	File Access

	BSD Sockets
	Client
	Server
	Server Acceptor

	Exceptions
	EHM
	uC++ EHM
	Exception Type
	Creation and Destruction
	Inherited Members

	Raising
	Nonlocal Propagation
	Enabling/Disabling Propagation
	Concurrent Propagation

	Handler
	Termination
	Resumption
	Termination/Resumption
	Recursive Resuming
	Preventing Recursive Resuming
	Commentary

	Bound Exceptions
	C++ Exception-Handling Deficiencies
	Object Binding
	Bound Handlers
	Matching
	Termination
	Resumption

	Inheritance
	Predefined Exception Routines
	terminate/set_terminate
	unexpected/set_unexpected
	uncaught_exception

	Programming with Exceptions
	Terminating Propagation
	Resuming Propagation
	Terminating/Resuming Propagation

	Predefined Exception-Types
	Implicitly Enabled Exception-Types
	Unhandled Exception
	Breaking a Rendezvous

	Cancellation
	Using Cancellation
	Enabling/Disabling Cancellation
	Commentary

	Errors
	Static (Compile-time) Warnings/Errors
	Dynamic (Runtime) Warnings/Errors
	Assertions
	Termination
	Messages
	Default Actions
	Coroutine
	Mutex Type
	Task
	Condition Variable
	Accept Statement
	Calendar
	Locks
	Cluster
	Heap
	I/O
	Processor
	UNIX

	uC++ Kernel
	Pre-emptive Scheduling and Critical Sections
	Memory Management
	Cluster
	Processors
	Implicit Task Scheduling
	Idle Virtual Processors
	Blocking Virtual Processors

	POSIX Threads (pthreads)
	Combining Pthreads with uC++
	Linking uC++ and Pthreads Binaries
	Recompiling Pthreads Modules

	uC++ Task as a Pthreads Thread
	Semantic Inconsistencies between Pthreads and uC++
	Termination of main
	Cleanup Semantics

	Commentary

	OpenMP
	Using OpenMP in uC++ programs
	OpenMP and Parallelism

	Real-Time
	Duration and Time
	Timeout Operations
	Time Delay
	Accept Statement
	Select Statement
	I/O

	Clock
	Periodic Task
	Sporadic Task
	Aperiodic Task
	Priority Inheritance Protocol
	Real-Time Scheduling
	User-Supplied Scheduler
	Real-Time Cluster
	Deadline Monotonic Scheduler

	Miscellaneous
	Default Values
	Task
	Processor
	Heap

	Installation Requirements
	Installation
	Reporting Problems
	Contributors

	uC++ Grammar
	Heap Allocator
	Pseudo Random Number Generator
	Stack Object Allocation
	uNoCtor
	uArray

	String to Integer
	Data Structure Library (DSL)
	Stack
	Iterator

	Queue
	Iterator

	Sequence
	Iterator

	GDB for C++
	Clusters
	Processors
	Tasks

	Example Programs
	Readers And Writer
	Bounded Buffer
	Using Monitor Accept
	Using Monitor Condition
	Using Task
	Using P/V

	Disk Scheduler
	UNIX File I/O
	UNIX Socket I/O
	Client - UNIX/Datagram
	Server - UNIX/Datagram
	Client - INET/Stream
	Server - INET/Stream

	Bibliography
	Index

