

execution state
of coroutine

execution state
of caller routine

JAVAVA

%r(outine

thread
binding

resume in
entry routine
N

~ .
suspend in
coroutine

el
AN

thread

execution state
of coroutine

execution state
of caller routine

2. handler found 1. throwing AE2

%/’ \\\%/ .
~—=GBa—|UGal—|GBb—=|UGb[| UGc|

Hla H2b Stack growth —1 () handler stack frame
4. signaling AE1 || block stack frame
v Ny B — invocation
] ‘
(GBa|—|UGa—{H2b H1a) raising
3. invoking 5. invoking e
handler handler . > binding between handler

Hla H2b Hla and guarded block

DV SRR e

no handler no handler
for AE1 can for AE1 can
be found be found

stack
growth

Runtime Stack

Name Hierarchy ABC

e [\

A AB |- 1
AA \ 1
AB 1

ABA T A [T T
ABB A 1
ABC |
B =S BAC | ___ ‘
S C

BA = A L
BAA < o
(&) v |

© I

BAB S B/‘TB SRS
BAC : |
BB = 1
BC !exical I.ink - B“A

C Invocation —= 4777: \‘7
CA B F-—----
CB A 1

c | v
? v

BEG N {
VAR x: NTEGER; int x;
-- invisibl in handl r // invisibl in handl r
BEG N { int x;
VAR x: NTEGER; // visibl in handl r
-- visibl in handl r try {
EXCEPT ON }
WHEN Oth rs => catch (...)
x := 0; {x=0;}
END; }
END; 3

Hla H1lb signalling AE1

@ @ Yoo B
,,,,, —— \ \ \ \
GBa \ UGa ’—'\ GBb)| |UGb | | UGc ’—'
A : ! ‘
Stack growth —=— lexical link
o
G
G
GG
f(tu)
tu
f
f
x tu f(fals)
tu

void f(bool x) { @7 |
void n st d() {

try { f(false) =177
£(!'x); T E Lo

} B
catch (E) { g nested(: 3
cout << x << ndl; =4 ;o

// is x tru of fals ? X —

f(true) ¥

5 g @ 77777

if (x) lexical link - = :

n st d(); invocation — =
1s .

signal E(); T

handl r(AE a) {

trm inat (AE a) { if (r sumabl) {
cl anup(a .x); r cov r(a .x);
} r sum ;
}
r sum (AE a) { cl anup(a .x);
rco v r(a .x); trm inat ;
} }

()p ()p

7 U 4

o handling model can beurther delayed. he handler can decide h ow to handle
the event depending on the information passed to the handler or by checking the
global contet, as sh own in the right eample of gure . . ote that additional
statements are necessary to specify when to resume and when to terminate. he

V and the A ecepti on handling systems are two eamples of this approach.

bviously, more eible handlers can be written without handler partitioning.

o

7 Mc ig um ci g g

wo propagation mechanisms, throwing and signalling, are discussed in section

ince throwing implies terminating the current operation, it is sensible to handle it
with the terminating model. owever, other possibilities for handling an event in
the presence of throwing and signalling must be eamined. or eample, a handler

may decide to resume after catching a thrown event.

ection . . suggests that there are essentially two handling models — the
terminating model and the resumption model — because the retrying model is a

special form of the terminating model.

he terminating model and throwing both imply terminating an operation. he
resumption model and signalling imply the operation is resumed. heref ore, it is
sensible to handle a thrown event with the terminating model, and a signalled event
with the resumption model. call these t wo cases m ch h d . Umch
h d 1s counter-intuitive but can be valid. he f ollowing eamines unmatching

handling of thrown and signalled events.

44

7 U m 1 of ro eve

hen an event is thrown, the stack is immediately unwound and the operation
cannot be resumed. andling a thr own event with the resumption model, therefore,
cannot resume the “terminated” operation.t d oes not matter whether the handler
is declared as resuming, or tries to resume at runtime.
owever, if the operation throwing an event epects a handler to provide an
alternative for itself, and the resuming handler catching the event epects the op-
eration raising the event to continue, the result is misleading and di cult t o under-
stand, possibly resulting an error which may only be noticed long after the handler

returns. believe that unmatching handling of thrown event is an unsafe feature.

7 U m 1 of lle eve

A handler intending to terminate has four possibilities after handling a signalled

event

. he stack is not unwound and the event is handled with the resumption

model, 1.e., the termination is ignored.

. he stack is un wound only after the handler eecutes t o completion.

. he stack 1s unwound by eecuting a special statement during eecuti on of

the handler.

4. he stack 1s unwound after nding the terminating handler but bef ore ee-

cuting it.

7 U 4

herst option is the only one that does not terminate after eecuting the ter-
minating handler. his option favours the ch oosing resumption while the
others favour the f choosing termination. believe that termi-
nation should be chosen over resumption for unmatching handling of a signalled
event for safety s sake. erminating a resumable operation at most wastes com-
puting power; resuming a non-resumable operation is unsafe. h ough signalling
implies that the suspended operation is resumable, if the terminating handler does
not carry out necessary actions to make the resumption safe, therst option opens
the possibility of unsafe resumption. heref ore, it is dismissed.
he net t wo options can result in recursive signalling in the terminating han-
dlers. he pr oblems can be avoided by the fourth option which unwinds the stack
before eecuting the handler.ndeed, a programmer does not realie when stack
unwinding takes place, either while an event propagates or after nding a handler;
the last option essentially handles the signalled event as a thrown event. he last
option also simpli es the task of writing a terminating handler because a program-
mer does not have to be concerned if the stack is unwound inside a terminating
handler. his is signi cant because stack un winding has side eects.
As it appears to be superior to the other two options favouring termination,

the last option is chosen to be the semantics of unmatching handling of signalled

events.
73 Ab r o for 1 mo el
able . summaries the semantics of all matching and unmatching handling of

abnormal events.n matching handling, one can determine what model (and the

able . atching and unmatching handling
handler using handler using
terminating model resumption model
signalled | handled with termination | handled with resumption
event | model like a throw event model (matching handling)

(unmatching handling)

thrown | handled with termination handled with termination
event | model (matching handling) | model (unmatching handling)

control ow) is used to handle a raised event by knowing either how an the event
is raised or what handler is chosen. Abstracting the resumption model and the
terminating model are done in a symmetric fashion.
he same cannot be said about unmatching handling. n particular, one can-
not tell whether a signalled event is handled with the resumption model without
knowing what handler catches it, but a thrown event is always handled with the ter-
mination model. hr owing and signalling are asymmetric in unmatching handling.
ithout knowing the handling model used for a signalled event, it becomes more
di cult t o understand the signalling mechanism than the throwing mechanism and
the signalling mechanism in matching handling. believe that unmatching handling

1s inferior to matching handling.

8 Sc 1 g

The propagation mechanism determines how handler clauses are searched to locate
a handler.t d oes not say which handler in a handler clause should be chosen

to handle an event, if there are multiple handlers capable of catching the event.

This section first discusses issues about three orthogonal criteria — specificity of a
handler, agreement and closeness — for choosing a handler among those capable
of handling a raised event, followed by issues on missing an appropriate handler.
A handler can handle an abnormal event if it is bound to the event or to one of
its ancestors. In addition, if the handler is bound to an ob ect as described in
section . . on page , the ob ect to which the raised event is bound must match

to the one specified by the handler.

8 T reeor ool r er

A handler clause can have several handlers capable of handling one event, because
of the existence of derived events and bound abnormal events. A handler clause
can have a handler for an event and another for its derived event; it can also have a
handler for a bound abnormal event and another one that is not bound. An eligible

handler is more p ¢ fic than another (in any handler clause) if

. they both handle the same event and the former applies conditional handling
while the other does not (e.g, the former handles a bound abnormal event

and the latter does not), or

2. the former handles an event derived from the one handled by the latter, and

both these handlers handle the event ¢ or c¢ 6,

Sp ¢ fic y is desirable in handling an abnormal event. It is sometimes infeasible to

tell which handler in a handler clause is more specific. In particular, a handler for

6 ff fufi k p u,
; f p p pu
Hi p p H | fi ufli
ff pfi £

an abnormal event AE and a handler conditionally handling an ancestor of AE is
equally specific to handle an event AE of the ob ect.

With throwing and signalling as the propagation mechanisms, and handler par-
titions, matching handling can be considered as an m to terminate or re-
sume an operation between the source and the faulting execution upon handling
an abnormal event. This agreement is also between the code raising the event and
the code handling the event. hoosing a handler that matches the the propaga-
tion mechanism maintains this m and 1s desirable for similar reasons to
the idea of programming with contract in Eiffel 1 and routine specification. Un-
matching handling does not provide this agreement. Agreement is only applicable
in an AEHM with the two propagation mechanisms and the handler partitioning.

The co factor says that the closest handler capable of handling an ab-
normal event is chosen. A handler is closer than another if its handler clause is
searched prior to others based on a given propagation mechanism.

A language designer has to set priorities among these three orthogonal criteria
and there are six (3P;) possible ways to order them. In addition, the priority of
handling a thrown event is orthogonal to that of a signalled event. Consequently,
there are actually 36 (the square of six) possible ways to define how to select a
handler. Instead of looking at individual selecting schemes, I examine the priorities

first.

8 Se p r ore for e rer

cfic i1s good, but putting it before ¢ ¢ omplicates the semantics of

derived events and the implementation. A handler can only protect an event from

try {
try {
throw AE2; // AE2 is derived from AE1
}
catch(AE1) {
// code for handler
}
}
catch(AE2) {
// code for handler
}

Figure 2.12: Example showing the order of priority

propagating out of a guarded block if there is no more specific matching handler
further away. Figure 2.12 illustrates why this semantics is undesirable. The event
AE9 is derived from AE;. If specificity has a higher priority than closeness, the
handler for AE9 is chosen, not the one for AE{. As event derivation cannot be
anticipated in general, no handler can guarantee to handle all the events and prevent
them from propagating further and affecting more abstract operation. Indeed,
a library routine working perfectly if invoked by ome client routine can behave
differently if invoked by a different client routine because the client routine sets
up its handlers differently. I believe this semantics is a trap for programmers
and potentially breaks down any abstraction. In addition, before committing to a
particular handler, the runtime system has to search through other handler clauses
to ensure a more specific handler is not available. Though an AEHM putting
specificity before closeness can definitely be implemented, the searching mechanism
is obviously harder and more costly to implement and the additional resources

that it requires seem unjustified. Choosing a more specific handler over a closer

90

handler for a thrown event results in more wasted computation, and potentially

irrecoverable data, as the stack is unwound further.

msh ould have a higher priority than c (i.e., the highest pri-
ority) when applicable because unmatching handling is less comprehensible, and
hence, less programmable because of the poor abstraction discussed in section 2.7.3.
Indeed, nsh ould be mandatory for thrown events because of safety con-
cern discussed at the end section 2.7.1. Also, if agreement is not mandatory, then
throwing becomes more complicated to implement taking into account the scenario
in which the stack should not be unwound beyond the closest resuming handler if
a terminating handler is not found”. It appears that the pros of this m d o y

m outweighs its cons. mis als o extended to signalled
events for consistency. Section 2. .3 shows that this extension does not result in
a loss of functionality, namely, using a terminating handler to handle a signalled

event when necessary.

An AEHM with mandatory agreement can be thought to have a terminating
handler hierarchy and a resuming handler hierarchy. A h d h chy is built
on the ¢ of the handlers. Throwing searches a handler in the former and

signalling in the latter.

ecause two handlers in the same handler clause can be equally specific to a
raised event, the system must provide additional criteria to resolve the ambiguity.
The most common one is the position of a handler in a handler clause. e.g., select

the first matching handler found in the list of the handler clause. Whatever these

pp p

8 ol

additional criteria are, they should only be applied to resolve ambiguity after using
the other three ordering criteria: agreement, closeness and specificity. Furthermore,
the programmer should be able to control the resolution, like placing the handlers
in a specific order in a handler clause, because the additional criteria used are only

conventions.

8 U ef 1 ler

I mention in section 2.2.2 that routines can be defined for an event and an event-
specific routine can be chosen as a default handler if an execution does not have
a handler for a propagated event. With mandatory agreement, it is reasonable for
an event to have a default terminating handler and a default resuming handler.

A default terminating handler allows to clean up the environment on an un-
caught thrown event. Consider using the default terminating handler of an event
declared in a library to clean up internal objects in the library. The advantage of
this practice over relying on an execution to catch the event and execute a routine
is better abstraction and less user intervention.

If a signalled event is not handled in an execution, the default resuming handler
for the event is executed. A question is whether the execution should be resumed
after executing the default “resuming” handler. However, as default handlers are
associated with an event, the question needs no specific answer. The default handler
can abort the execution, throw an event (possibly the same event) to terminate the
resumable operation but not necessarily the execution, or simply resume by ignoring
the event.

Figure 2.13 shows that default handlers can be defined in C using virtual

92

class ParentEvent {
public:
virtual void defaultResumeHandler();

// defaultHandler aborts the program
}

class ChildEvent : public ParentEvent {
public:
virtual void defaultResumeHandler();
// defaultHandler invokes a debugger

}

Figure 2.13: Defining default handlers in C

method. Details about default handlers as well as the event declarations are omit-
ted. The virtual method d faultRs um Handl is invoked automatically when
no handler can catch a raised event. y overriding the virtual method, a default
handler can be defined specifically for every event.

Executing a default resuming handler that merely throws the same event triggers
another search in the terminating handler hierarchy. The effect is handling the
signalled event with a terminating handler. I want to emphasize that this is only
a programmable option. It does not violate the m mbecause of

the explicit throw in the handler.

9 cu cy i g bm vV s

With multiple executions and possibly multiple threads, different executions can
carry out different operations associated with handling one single abnormal event.
For example, an execution raising an abnormal event, known as the source in sec-

tion 2.1, can ask another execution to propagate an abmnormal event in a third

9 Uy B \4 53

execution, the faulting execution, which eventually handles the abnormal event.

9 Corr e e vro me

Race conditions are a fundamental issue in a concurrent environment. It happens
when at least two different executions try to modify a shared resource. The solution
1s to ensure mutual exclusion via locking. An execution must lock a shared resource
before modifying it. If the resource is already locked, the execution must block and
wait.

Consider the situation where an execution is able to directly propagate an ab-
normal event in another execution — the faulting execution — in a concurrent
environment. y definiti on, propagating an abnormal event requires changing the
execution state — including the runtime stack and the program counter — of the
faulting execution. Consequently, the run-time stack and the program counter be-
come shared resources. Threads are no longer independent entities as executions
in one thread can interfere with another thread. To avoid corrupting the execu-
tion state, locking is inevitable. Hence, an execution would have to lock its own
run-time stack before calling a procedure. Obviously, this approach is extremely
ine cient with the large number of lockings to deal with a situation that occurs
rarely. Therefore, it is reasonable that only the faulting execution is allowed to

propagate the abnormal event in a concurrent environment.

9 Coro ee vro me

In a coroutine environment, locking the execution state before modifying it is un-

necessary. Race conditions do not exist as there can only be one running execution.

o4

try {
// guarded region GRa
try {
// guarded region GRb

}
catch (EventB eb) { ... }

}
catch (EventdA ea) { ... }

Figure 2.14: Possible undesirable behaviour in coroutine environment

However, even without the possibility of race conditions, it is still a bad idea
to allow an execution other than the faulting one to propagate an abnormal event.
Consider the program fragment in figure 2.14. Suppose execution EX; is suspended
in the guarded region GRb. While it is suspended, another execution EX9 propagates
abnormal event ea in EXy, which directs the flow control of EXy to the handler of
guarded region GRa(unwinding the stack in the process). ef ore EX{ starts running
again, a third execution EXg® propagates abnormal event eb. Hence, the flow
control of EX{ goes to another handler determined in the dynamic context(further
unwinding the stack). The net effect is that neither of the abnormal events is
handled by any handler in the program fragment.

The alternative approach is for EX; to propagate the abnormal events. Regard-
less of which order EX raises the two arriving events, at least a handler for one of
the events is invoked.

ecause of these confusing situations, I believe that only the faulting execution
should be able to propagate an abnormal event, as for the concurrent environment.

Since a concurrent environment can be composed of many coroutines, this common

8EX2 EX3

10 U C C Y CH v Vv 55

Key
S: the source
P: execution that propagates the event

F: the faulting execution (re;
.@qb
q)

P==F P<>F
S==F S<>F S==F S<>F
synchronous asynchronous
abnormal abnormal S==P S<>P
event event

Figure 2.15: Abnormal events in an environment with multiple executions

restriction gives overall consistency.

10 Issus sp cific Sy ¢ us Vs

As only the faulting execution can propagate an abnormal event, there are only two
possibilities left, as shown in figure 2.15, how an event is raised, propagated and
handled. Synchronous eents are abn ormal events raised by the faulting execution.
Asynchronous abnormal eents are abn ormal events raised by a different execution
— the source and the faulting execution are different. A common example of

asynchronous abnormal event is Unix signals.

The remainder of this section first looks at the communication protocol for
implementing asynchronous abnormal events. The problems of using asynchronous
abnormal event are then discussed. Then special attention is given to hardware

interrupts.

56 CHAA A H

0 Comm 0 req reme

An asynchronous abnormal event has its source different from its faulting execu-
tion. ecause only the faulting execution can propagate the abnormal event and
directly alter the control flow, the source must inform the faulting execution to
propagate the event. This consequence i1s a form of direct communication since
the communication has a clear receiver and does not involve any shared object. A
message is transmitted from the sender (in this case the source) to the receiver (the

faulting execution).

There are two major categories of direct communication: synchronous and asyn-
chronous communication. Synchronous commure aton requires the sender block
until the receiver is ready to receive the message. Asynchronous commurnc aton
does not block the sender. In both cases, the receiver is blocked if the sender has

yet to send a message.

Requirement im osed by the source

Using synchronous communication implies that the source is blocked until the fault-
ing execution executes a complementary receive call. However, an execution may
infrequently (or never) check for incoming abnormal events. (Receiving an abnor-
mal event message is discussed next.) Therefore, the source can be blocked for an
extended period of time waiting for the faulting execution to receive the abnormal
event message. Therefore, synchronous communication is dismissed. Asynchronous
communication has a non-blocking send, and hence, allows a the source to raise an

abnormal event at multiple executions without suffering the extended delay.

10 U P C C AY CH v Vv 57

Requirement im osed by the faulting execution

onetheless, the asynchronous communication for abnormal events must be differ-
ent from ordinary asynchronous communication. In the latter case, a message is
delivered only after the receiver executes some form of receive command. The
former requires the receiver to receive a message without explicitly executing a
receive because an AEHM should preclude checking for an abnormal condition,
in this case the infrequent arrival of an abnormal event message. The programmer
is only required to set up a handler to handle a rare condition. From the pro-
grammer s perspective, the delivery of an asynchronous abnormal event (message)
is transparent. Therefore, the underlying system must poll for the arrival of new
messages, and propagate the corresponding abnormal event on the arrival of the
message. The delivery of abnormal events must be timely, although not immediate.

There are two polling strategies: ezpl ¢ t poll ng and mpl ¢ t poll ng. Explicit
polling requires the programmer to insert explicit code to activate the polling,
such as executing a non-blocking receive or a blocking receive with timeout.
Implicit polling is the opposite; polling is performed by the underlying system.
Hardware interrupts involve implicit polling because the processor of the machine
automatically polls for the arrival of its interrupts.

Explicit polling gives the programmer control over when an asynchronous abnor-
mal event can be raised. Therefore, the programmer can delay, or even completely
ignore the handling of asynchronous abnormal events. Delaying and ignoring asyn-
chronous abnormal events are both undesirable. The other drawback of explicit
polling is that the programmer has to worry about when to and when not to poll.

Implicit polling alleviates programmers from polling, and hence, provides an

5 CHAP A A H

apparently easier interface to programmers. The programmer does not worry about
when to poll for asynchronous abnormal events. On the other hand, implicit polling
has its own drawbacks. First, infrequent implicit polling can still delay the handling
of asynchronous abnormal events; polling too frequently can deteriorate the runtime
e clency . Without specific knowledge about a program, it is di cult t o have the
right frequency of implicit polling. Second, implicit polling suffers the reentrant
problem, which is discussed in section 2.10.2.

Therefore, I believe an AEHM with asynchronous abnormal events should em-
ploy both implicit and explicit polling. Implicit polling reduces the degree of dam-
age that a programmer can do to the execution environment by ignoring asyn-
chronous abnormal events. However, the frequency of implicit polling should be
low to avoid unnecessary loss of e ciency. Explicit polling allows programmers
to have additional polling when it i1s necessary. The combination of implicit and
explicit polling gives a balance between programmability and e ciency.

Finally, there are certain situations where implicit polling is very undesirable.
They are mostly low-level applications where execution e ciency is very imp ortant
and the programmer 1s supposed to have extensive knowledge of the programming
task. Therefore, it is definitely beneficial to be able to turn off implicit polling,
probably by a compiler or runtime switch, to address the needs of these specific

applications.

0 Ree r problem

An imperative program often relies on side effects and state information to carry

out i1ts computation. Portions of the program must be carried out atomically for

10 U P C C AY CH v Vv 59

correctness. An example is the malloc function in . An implementation of malloc
works correctly in a pure sequential environment where there is no asynchronous
abnormal events. However, the implementation may not work when the execution
of the program can be arbitrary interrupted by an asynchronous abnormal event.
Suppose the execution is updating some state information for memory management
and 1t 1s interrupted by an asynchronous abnormal event. The memory management
system can be in an inconsistent state. If the handler for the abnormal event
invokes malloc — a reentrant invocation of malloc, the inconsistency in the memory
system can corrupt the computation. The lack of guarantee of uninterruptable
execution causes the reentrant problem. A function like malloc is said to be non-
reentrant when its correctness relies on its uninterrupted execution and yet this
uninterrupted execution is not guaranteed by its implementation. Any implicit

polling may interrupt a non-reentrant operation.

The reentrant problem should not be mistaken as a race condition. Arbitrary
interruption by asynchronous abnormal events is the cause of the reentrant problem,
while multiple threads competing for shared resources results in a race condition.
Preventing another execution from accessing a shared resource by locking can avoid
the race condition, but does not guarantee reentrance. To ensure the correctness of
a non-reentrant routine, the execution must block the delivery, and consequently
the propagation, of asynchronous abnormal events, hence temporarily precluding

interrupts.

I have considered hardware interrupts as implicitly polled asynchronous abnor-
mal events so far. The implicit polling is done by the CPU. However, these inter-

rupts can interrupt a language operation like a routine invocation that is supposed

60 CHAP A A H

to be atomic. Its effects on a programming language are similar to asynchronous
abnormal events.

The reentrant problem solution relies on blocking interruptions. As (hardware)
interrupts can happen even at times when asynchronous abnormal events cannot, it
1s more di cult to ensure proper atomicity with interrupts. The following sections

discuss programming with asynchronous abnormal events followed by interrupts.

0 3 Blo yr oo b orm 1 eve

While blocking asynchronous abnormal events is essential, an execution should be
able to selectively block some abnormal events but not all. If execution can block
an event E, there are t wo different semantics with derived abnormal events: 1) the
execution blocks onlyE, 2) the execution blocks E and all its descendants®.
locking an individual event but not its descendents, known as nd dual block-
ng, can make programming tedious as the programmer must list all the events
being blocked. ot only that, individual blocking does not complement the abnor-
mal event hierarchy. If a new derived event should be treated as an instance of its
ancestors, the event must be blocked wherever its ancestors is blocked. Individual
blocking does not automatically block the descendents of the specified events, and
therefore, introducing a new derived event probably requires modifying existing
code in order to prevent the new derived event from activating a handler bound to
its ancestor when the handler should not be allowed to execute.
The other alternative, h erarche al block ng, blocks an event and all its descen-

dents. The derivation becomes more restrictive because a derived event also inherits

o qu uA p UNI X

10 U P C C AY CH v Vv 61

the “blocking” characteristics of its parent. Compared to individual blocking, hier-
archical blocking is more complex to implement and probably has a higher runtime
cost as well. However, the improvement in programmability makes hierarchical

blocking attractive.

There i1s another criteria for selective blocking. A priority can be assigned
to each event and a derived event can override its parent event s priority when
necessary. Selective blocking can be achieved by blocking out abnormal events of
priority lower than or equal to a specified value. This selective blocking scheme
trades off the programmability and extensibility of the hierarchical blocking for

lower implementation and runtime cost.

The problem with priorities is that two different events can have the same
priority. Introducing a new abnormal event now requires an understanding of its
abnormal nature plus its priority compared to other events. Hence, defining a
new event requires an extensive knowledge of the whole system, which makes the
system less maintainable and understandable. It is also possible to add priorities
to hierarchical selective blocking; a programmer needs to specify the event and the
priority in order to block an asynchronous abnormal event. However, it does not
resolve the problem of maintaining consistent priorities throughout the abnormal
event hierarchy. In general, abnormal event priority is an additional concept that

increases the complexity of the overall system.

I believe that hierarchical blocking with derived abnormal events is better than
the other approaches in an extensible abnormal event handling mechanism. ote
that multiple derivation in section 2.2.2 complicates hierarchical blocking, and the

same arguments can be used against hierarchical blocking with multiple derivation.

62 CHAP A A H

Turning blocking on and off

A language can provide explicit routines to turn on and off the blocking of an
asynchronous abnormal event. The programming style is very similar to that of
using semaphore for locking and unlocking, and is not a very good abstraction.
Programming errors resulting from forgetting a complementary call are di cult t o

debug.

An alternative is to provide a new block structure called a protected block, which
specifies a list of asynchronous event to be blocked. When the execution enters a
protected block, its blocking of asynchronous events is modified, which is reset when

it exits the block. The effect is like entering a guarded block.

Another alternative is to turn on the blocking effect by a special routine but turn
it off automatically on exiting the block where the routine call is found. Compared
with protected blocks, using a single routine call gives a simpler structure to a block
as 1t avoids introducing the concept of protected blocks and reduces the number
of nested blocks. However, a routine call is syntactically less distinctive, which I

consider a disadvantage.

I believe that providing a protected block should be the simplest and most
consistent in an imperative language with nested blocks. Only the first approach
— explicit turning on and off blocking — is obviously inferior to the others. ote
that, regardless of how to turn it on and off, blocking should be off initially for all
but a few special abnormal events to ensure that an execution has a chance to set

up handlers.

10 U P C C AY CH v Vv 63

0 4 M 1 ple pe yr oo b orm 1 eve

o matter how often polling is done, there is a chance that multiple asynchronous
abnormal events arrive at the same execution between two polls. An asynchronous
abnormal event waiting to be raised by the faulting execution is described as pend-

ng.

Since every asynchronous abnormal event is sent via an asynchronous message,
the order of arrival can be arbitrary due to delays and parallelism among execu-
tions. The order of arrival can be chosen to determine the order of handling pending
events, which gives a sequency in event delivery. However, a strictly FIFO message
delivery order is unacceptable as illustrated by the following example. An execution
can receive a first event and blocks its delivery. Due to the FIFO delivery, events
arriving later cannot be delivered before this event and must remain pending. Con-
sequently, the delivery of an asynchronously thrown event to prevent the execution
from continuing an erroneous computation can be delayed for an extended period
of time.

It is possible to eliminate pending asynchronous abnormal events by not queue-
ing abnormal event messages. In other words, each execution has a buffer for only
one pending abnormal event. The buffer is overwritten after it is filled, or overwrit-
ten only if the new message has a higher priority, or new messages are discarded
after the buffer fills. The risk of losing an asynchronous abnormal event can make
a system less robust. Hence queuing abnormal event messages is superior.

Yet an AEHM can provide a more flexible semantics for handling pending ab-
normal events using a user-defined priority scheme. Section 2.10.3 discusses how a

priority scheme reduces extensibility. However, I do not believe it is an appropriate

64 CHAP A A H

solution in an environment emphasizing code reuse.

Pro osed delivery order for multil e ending events

It appears that FIFO order based on event arrivals should be acceptable for its
simplicity in understanding and low implementation cost. onetheless, allowing a
pending event whose delivery is blocked to prevent delivering other pending events
seems undesirable at times. Hence, an event should be able to be delivered before

earlier events if the eariler events are blocked.

This out of order delivery has important implications on the programing model
of asynchronous abnormal events. First, the programmer must be aware of the
fact that two abnormal events having the same source and faulting execution may
be delivered out of order (when the first is blocked but not the second), which
means the second event cannot be considered as a consequence of the first. This
approach may seem a bit unreasonable, especially when causal ordering is proved
to be beneficial in distributed programming. However, out of order delivery is
acceptable for emergency messages and abnormal events can represent emergency
situations. For example, an asynchronous abnormal event may be used to terminate
the current computation of the faulting execution and this event is better delivered

as soon as possible.

Considering the rarity of abnormal events, I believe that FIFO delivery order
should be followed in general. Out of order delivery is only allowed when events
arrived earlier are blocked. onetheless, the most adequate delivery scheme remains

as an open subject, and the answer may only come with experience.

10 U P C C AY CH v Vv 65

0 Ree r y err p

When a hardware interrupt occurs, an interrupt service routine (ISR) is invoked
immediately if the interrupt is not blocked!®. If it is blocked, the result can be an
immediate loss of the interrupt, a pending interrupt, which can be overwritten by
another interrupt, or a pending interrupt in a interrupt (priority) queue. However,
the exact semantics of interrupt blocking does not affect reentrancy.

Some interrupts require a immediate service and their ISR has no side effect on
the faulting execution. The interrupt can be thought as “robbing” a thread, any
thread, to execute a service routine. The execution of these ISR s is transparent to
the faulting execution and does not cause a reentrant problem.

Other interrupts aim to modify an execution either via side effect or chang-
ing control flow. It is possible to direct an interrupt to a particular execution
but the exact mechanism of directing an interrupt to an execution has no effect
on reentrancy. The execution state is modified as a result of executing the ISR.
Programming with interrupts is di cult because interrupts can happen while the
runtime stack and/or the heap is in an inconsistent state.

One way to ensure reentrancy is to use blocking facilities provided by the system.
However, this solution is definitely unacceptable. First, blocking an interrupt can
possibly lose the interrupt. In the worst case, an execution must turn on blocking
before initiating the construction or destruction of a stack frame and turn it off
immediately after modifying the stack, resulting an enormous runtime overhead.

The blocking of interrupts can be very long during stack unwinding.

108 up k kup, u f
uuu ¢ up

66 CHAP A A H

Converting interru ts to abnormal events

Another solution is to convert interrupts into language level asynchronous abnor-
mal events. The implementation is outlined here. When receiving an interrupt, an
interrupt routine is invoked immediately. The ISR sends an asynchronous abnormal
event message to the faulting execution directly, or via an intermediate execution.
In the latter case, the intermediate execution later forwards the message to the
intended execution. Regardless of whether an intermediate execution is used, in-
terrupts must be blocked when enqueuing and dequeuing the message to avoid the
possibility of corrupting the message queue by another interrupt or the execution
processing the asynchronous events. The delivery of the message at the faulting
execution can now be controlled by facilities in the AEHM, and hence, reentrant
problems caused by interrupts can be avoided.

Converting interrupts to abnormal events still requires blocking interrupts at
times when the abnormal event message queue is being manipulated and possibly
results in losing interrupts in some systems, but these systems would already lose
interrupts.

The conversion also simplifies the interface within the language. The interrupts
and blocking of interrupts can be completely hidden within the AEHM and pro-
grammers only need to handle abnormal conditions at the language level. This
approach also improves portability across operating systems.

Also note that only those interrupts modifying an execution state require block-
ing. Hence, the language runtime kernel can hide unnecessary interrupts from pro-
grammers, although the language should allow a user to have some degree of control

over hiding certain interrupts. The visibility of interrupts can be modified for in-

10 U P C C AY CH v Vv 67

void ISR_stub() {
// ISR_stub is the general structure of an ISR
try {
// start of ISR body

}
terminate (AnyThrowEvent) {
// AnyThrowEvent is the root of all thrown event

}
resuming (AnySignalEvent) {
// AnySignalEvent is the root of all signal
// events the following event can be caught by
// the above terminating handler
throw AnyThrowEvent;

Figure 2.16: Preventing thrown events from escaping an interrupt service routine

dividual execution. An invisible interrupt is also described as transparent as the
interrupted execution is not aware of the invocation of the ISR.

This scheme also allows an execution to raise an interrupt to another execution
instead of an abmnormal event via the operating system as the interrupt can be
converted to an abnormal event. However, sending interrupts does appear to be

inferior, as interrupts do not usually have arguments to pass additional information.

Interru t service routines and abnormal events Activating an ISR for a
transparent interrupt can result in raising an abnormal event. If the ISR is invoked
on the interrupted execution s stack, this abnormal event can be propagated back to
the interrupted execution. Figure 2.16 shows how to prevent propagating the event
to the interrupted execution using the existing AEHM features. Indeed, Ada 95

specifies that propagating an exception (thrown event in Ada 95) from an interrupt

6 CHAP A A H

handler has no effect. The rationale is that an interrupt handler is invoked by an
imaginary execution rather than the interrupted one, and therefore, an interrupted
execution should not be affected by interrupts[9]. Within the Ada 95 context, all
interrupts are always asynchronous and transparent. Furthermore, they are distinct
from exceptions. The no-effect semantics seems acceptable. In addition, Ada 95

does not consider interrupts as a possible communication media among executions.

onetheless, I think that abstracting interrupt services is worth further investi-
gation and the Ada 95 always-transparent semantics may be too restrictive!'. The
question that has to be answered is whether propagating an abnormal event, regard-
less of being thrown or signalled, from an ISR can benefit programming. Allowing
such propagation implies that interrupts are mostly transparent to the interrupted
execution but in some rare cases, the ISR does communicate with the interrupted

execution via abnormal events.

Apparently, in Ada 95, an ISR can only communicate with the interrupted
execution via shared objects, which possibly provides a way to emulate the effect of
propagating an abnormal event from the ISR to the interrupted execution. On the
other hand, emulating in the reverse direction seems easier as shown in figure 2.16,
and hence, seems to be more favourable. Though I prefer the latter to the former,

the possibility of giving up too much safety cannot be ignored.

U1 g u fA 95 - P
p H A 95 uf

11 PV T cU V A 69

11 Pw g R cwi v Sig g

Dynamic propagation can cause recursive signalling as described in section 2.6.
The AEHM in Mesa[19] is probably the only AEHM that attempted to solve this
problem. The rest of this section looks at the solution in Mesa, and other possible

solutions.

Hybr prop o

Though the static exception handling mechanism in section 2.4.2 on page 37 has
serious drawbacks, its static propagation model eliminates any chance of recur-
sive signalling of synchronous abnormal events. It may appear that by properly
combining the use of dynamic propagation and static propagation, a new hybrid
propagation mechanism can eliminate the drawbacks of the individual propagation
mechanisms.

In general, dynamic propagation is good except for the possibility of recursive
signalling. However, not all abnormal events signalled by a resuming handler cause
recursive signalling. Even if a resuming handler re-signals the event it handles,
which guarantees activating the same resuming handler again, (infinite) recursive
signalling may not happen because the handler can take a different execution path
as a result of modified execution state.

Therefore, it is difficult to determine when to use static propagation and dy-
namic propagation without additional knowledge about the program, and some-
times the knowledge is not available when writing a reusable library. Providing

two propagation mechanisms merely complicates the AEHM interface to program-

70 CHAPTER 2. FRAME ORK OF AEHM

mers. I believe that mixing the propagation mechanisms does not provide an easily

applicable solution to recursive signalling.

T e Me prop o

The Mesa[l9] semantics for what should happen when a signal is raised syn-
chronously, while handling another, is not very clear according to Alan Freier!
and is difficult to understand. However, I believe Mesa uses a simple marking
strategy to solve the recursive signalling problem.

A simple Mesa program in figure 2.17 with output'® illustrates the marking
of handlers in Mesa. The keyword PRO declares a procedure object. The main
program is bound by BEGIN and END. An ENABLE clause can appear at the beginning
of a block; it serves as the handler clause in Mesa. The RESUME and theONTINU E
statement can only appear in a handler. The former specifies resumption while the
latter termination.

Whenever the procedure Test is invoked, a new instance of its handler clause
1s created as well. Once a handler in a handler clause is invoked, it is marked and
cannot be invoked again until the mark is clear when this invocation terminates.
Here is the outline of the control flow of the program. After invoking Test[1]
and Test[2], Sigl is raised. The handler for Sigl in Test[2] is invoked, printing

out the first line. The handlers in the same handler clause for Sig2 and Sig3 are

similarly invoked. When handling Sig3, Sigl is raised again, which invokes the

12\ f f M If u u

2.11.

Sigl:
Sig2:

PREVE T RECUR VE A 71

————————————— subprogram -—------—-—-----
SIGNAL = CODE;
SIGNAL = CODE;
SIGNAL = CODE;

Sig3:

RaiseSigl: PROC
RaiseSig2: PROC
RaiseSig3: PROC

{ SIGNAL Sigl };
{ SIGNAL Sig2 };
{ SIGNAL Sig3 };

Test: PROC [nest: INT] = {

ENABLE {
Sigl => { PrintLn["Sigl at A"]; RaiseSig2[]; RESUME };
Sig2 => { PrintLn["Sig2 at A"]; RaiseSig3[]; RESUME };
Sig3 => { PrintLn["Sig3 at A"]; RaiseSigi[]; RESUME };
3
IF nest < 2 THEN Test[nest+1] ELSE RaiseSigil[];
3
BEGIN
ENABLE {
Sigl => { PrintLn["Sigl at top"]; CONTINUE };
Sig2 => { PrintLn["Sig2 at top"]; CONTINUE };
Sig3 => { PrintLn["Sig3 at top"]; CONTINUE };
};
Test[1];
END;
————————————— output of subprogram -------------
Sigl at A
Sig2 at A
Sig3 at A
Sigl at A
Sig2 at A
Sig3 at A
Sigl at top

Figure 2.17: Handler marking in Mesa

72 CHAPTER 2. FRAME ORK OF AEHM

handler for Sigl in Test[1] because the one in Test[2] is still marked, causing
the repeated output as shown. Sigl is then raised again, handled by the handler in

the main program. The continue statement subsequently terminates the program.

This scheme prevents recursive signalling by not reusing a handler clause bound
to a specific invoked block. The propagation mechanism always starts from the
top of the stack to find an unmarked handler for a signalled event. However, this

unambiguous semantics is often described as confusing and incomprehensible.

Look at the example in figure 2.1 (a)(a), which shows the runtime stack of a
Mesa execution. Each dotted line represents a sequence of omitted stack frames
and only stack frames of interests are named. GBa and GBb are guarded blocks
with a set of resuming handlers. In the figure, handler Hla (handler for AE1 bound
to GBa) is invoked and marked (with “**”) because of the signalled event AE1. If

AE2 is raised before Hla returns, H2b is chosen to handle the event.

For Mesa, signalling an event in a guarded block and in one of its handlers can
invoke different handlers, even though the guarded block and its handlers are in
the same lexical scope. For instance, in figure 2.1 (a), an event from Hla can be
handled by handlers bound to the callees of GBa, but one from GBa is handled by
Hla or handlers bound to the callers of GBa. Clearly, the lexical scoping does not

reflect the difference in semantics.

Not only that, the semantics is undesirable. Procedural abstraction states that
GBa should be treated as a “client” of routines that it invokes directly or indirectly.
This client should have no knowledge about the implementation of what it uses.
However, if signalling from Hla (or any other resuming handler) is a useful feature,

some knowledge about the handlers bound to a stack frame between GBa and Hla

2.11. PREVE TI RECUR IVE I A I 73

AE1

7N ﬂ
| GBa || GBI e Hia |-
Hla** H2b
()M
AE1l
7N
leBalfeBo) | |hH1a)
Hla** H2b**
() pCH++

Figure 2.1 : Marking handlers

must be available when writing the handler as well as its guarded block because
signalling an event in Hla may invoke a handler between GBa and Hla. Therefore,
the Mesa signalling mechanism conflicts with procedural abstraction.

Moreover, abnormal events are designed for communicating abnormal conditions
from callee to its caller without the drawbacks of return values. What Mesa does,
as illustrated by the example, for a re-signalled event inside a resuming handler is

more abnormal condition propagating from caller to callee than vice versa.

3 Improv e Me prop o

The propagation mechanism discussed in section 2.4 searches for a handler by sim-
ply going up the runtime stack one stack frame at a time. This simple mechanism

has the recursive signalling problem. Mesa eliminates the recursive signalling prob-

74 CHAPTER 2. FRAME ORK OF AEHM

lem by not reusing a handler bound to the same guarded block. This solution,
however, has complicated semantics.

I propose a new propagation mechanism that solves the recursive signalling
problem. Similar to that of Mesa, the new propagation mechanism also employs
marking to avoid reusing a handler. Further, the mechanism is extended to cover
asynchronous events, which Mesa does not have. Before looking at the mechanism
in detail, the concept of consequent events is defined, which helps to understand

why the semantics of the new propagation mechanism is desirable.

Consequent events

An execution raising an abnormal event synchronously indicates that an abnormal
condition is encountered. A handler can catch an event and then raise another
synchronous event when encountering another abnormal condition, resulting in a
second synchronous abnormal event.

The second event is considered a consequent event of the first. More precisely,
every synchronous event is an tmmediate consequent event of the most recent ab-
normal event being handled in the execution (if there is one). A consequent event
of AE is either the immediate consequent event of AE or the immediate consequent
event of another consequent event of AE. The consequence relation is transitive,
but not reflexive. The only events that are not a consequent event are asynchronous
events, and synchronous events that are propagated when no other events are being
handled. An asynchronous abnormal event is not considered as a consequent event
of other abnormal events propagated in the target execution because the condition

resulting in the event is encountered by another execution, and in general, is not

2.11. PREVE TI RECUR IVE I A I 75

related to the target execution. Any synchronous event raised before a handler
activated by the last asynchronous event terminates is a consequent event of the

asynchronous event.

The new propagation mechanism

In the new propagation mechanism, agreement is still mandatory if applicable;
closeness is more favourable than specificity. Hence, the propagation mechanism
can only serach one handler hierarchy even when there are two.

The propagation mechanism goes up the chosen handler hierarchy one level at a
time as it normally does in a dynamic propagation scheme to find a handler capable
of handling the event being propagated. In addition, all the handlers in the level
being “visited” are marked!* for the event and its consequent events, regardless if
a handler is found. The mark is clear only if the event is handled, meaning that
the handler that caught the event returns, i.e., terminates or resumes.

So, how does this propagation mechanism make a difference? Figure 2.1 (b)
on page 73 shows the runtime stack of the same example in figure 2.1 (a) with
the new propagation mechanism. The only difference in the figure is that handler
H2b is also marked when AE1 is propagated. Hence, even if Hla synchronously
signals AE2, the event cannot be handled by H2b, or any other resuming handlers
bound to a stack frame between GBa and Hla, inclusive. When handling an event,
the flow of the execution can enter additional guarded blocks. When the execution
encounters another synchronous (signalled or thrown) abnormal event, the handlers

of these guarded blocks are first examined as they are not marked. If no appropriate

14 f k M

76 CHAPTER 2. FRAME ORK OF AEHM

handler can be found, the event is propagated to the original handler, and then to

the invoker of its guarded block.

The modification does not affect the throwing mechanism because once a set
of handlers are marked, the handler hierarchy shrinks because of stack unwinding.
Hence, the propagation mechanism can be consistently applied to both throwing

and signalling.

The mechanism eliminates recursive signalling as a resuming handler marked
for a particular event cannot be invoked to handle its consequent events. Not only
that, propagating a synchronously raised event out of a handler does not invoke a
handler bound to a stack frame between the handler and its guarded block, similar

to an event propagated out of a guarded block. In other words,

With this propagation mechanism, a resuming handler can be treated as a
callback routine bound to a guarded block, which gets invoked by a signalled event.
A handler (synchronously) signalling a event is trying to invoke a callback provided

by the clients (or callers) of its guarded block.

If a resuming handler throws an event, a terminating handler bound to a callee
of the guarded block of the resuming handler can be invoked. I believe that this is
different from the case of signalled event because the flow of control does not return
to the resuming handler after the thrown event is handled® . After all, it does not

hurt to get a chance to clean up before terminating the callee.

No handler can be marked for an asynchronous event being propagated because

an asynchronous event is not a consequent event. Therefore, the propagation mech-

1 kI uk : k

2.12. AB ORMA EVE T AME PACE 7

anism finds a handler by going up every guarded block in the runtime stack. Hence,

a handler not eligible to handle an event and its consequent events can be chosen to

handle a recently arrived asynchronous event, reflecting the lack of consequentiality

of asynchronous events.

The propagation mechanism is clearly better than other existing propagation

mechanisms because:

1

it supports throwing and signalling and the search for a handler is uniformly

defined for both,

it prevents recursive signalling and handles synchronous and asynchronous
abnormal events according to a sensible consequence relation among abnormal

events,

the context of a handler closely resembles its guarded block as reflected by
their lexical location; in particular, an event propagated out of a handler is

handled as if the event is directly propagated out of its guarded block.

it 1s compatible with the well understood throwing mechanism, and extends
the semantics to the signalling mechanism — a clear indication that nested

events should be more comprehensible than nested signals in Mesa.

Ab m vm spc

This section discusses two issues about the abnormal event name space. The first

1s partitioning of the abnormal events into throw-only, signal-only and dual events;

the second is on an abnormal event hierarchy.

7 CHAPTER 2. FRAME ORK OF AEHM

Pr o of b orm 1 eve

During the discussion of propagation mechanisms in section 2.3.1, an abnormal
event can be tied to a particular propagation mechanism at declaration. A conse-
quence is the partitioning of abnormal events. This section examines this abnormal
event partitioning.

An abnormal event can be declared to be throw-only or signal-only, if it can only
be thrown or signalled respectively, or dual if it can be both thrown and signalled.
Without partitioning, every event becomes a dual event if the AEHM supports
throwing and signalling.

The declaration should reflect the nature of the abnormal condition causing
the event being raised. For example, an event like SIGBUS or SIGTERM in the
Unix signals always leads to the termination of an operation, and hence, should
be declared as throw-only. Indeed, having throw-only and signal-only events can
remove the mistake of using the wrong propagation mechanism.

Having dual events in addition to throw-only and signal-only events enhances
the AEHM programmability.

First, encountering an abnormal condition can lead to signalling an abnormal
event or throwing one depending on the execution context. Without dual events,
two different abnormal events must be declared, one being signal-only and the
other throw-only. These two events are apparently unrelated without an additional
naming convention. Using a single dual event is simpler.

Next, using a dual event instead of a signal-only event for some abnormal condi-
tions allows the event to be thrown if the event is signalled and no resuming handler

1s set up in the execution to handle the event. This can be done by defining a de-

2.12. AB ORMA EVE T AME PACE 79

fault resuming handler for the event which throws the event. A signal-only event
cannot be thrown.

Finally, always restricting one raising mechanism to one abnormal event has its
drawbacks. Suppose a throw-only abnormal event is declared in a library. A client
of the library has to throw the event even if the client wants to signal the event
in its context. Signalling a different event may not allow easy communication with
other clients of the library. The problem is that throw-only and signal-only events

lack the flexibility of dual events, and flexibility improves reusability.

Ab orm leve er r vy

With derived abnormal events, a language designer must decide whether one kind
of event can be derived from another, say a signal-only event from a throw-signal
event. This i1s heterogeneous derivation, as opposed to homogeneous derivation,
where derived events must be the same type as the parent event.

Homogeneous derivation is simpler to understand; on the other hand, heteroge-
neous derivation is more flexible because it allows deriving an event from any other
kind of event. It is possible to put all the abnormal events in one hierarchy with
heterogeneous derivation.

Without any restriction on heterogeneous derivation, a throw-only event can
be derived from a signal-only event and vice versa. With handler partitioning, a
terminating handler still cannot catch a signalled event as unmatching handling
of abnormal events is rejected. Heterogeneous derivation does not affect the flow
control of an AEHM and the only notable advantage of such heterogeneous deriva-

tion is in hierarchical blocking, making it easier to block events of the same kind

0 CHAPTER 2. FRAME ORK OF AEHM

regardless how one may be raised. Yet I do not think that this is a big advantage.

Other forms of heterogeneous derivation involve dual events. A heterogeneous
derivation with a parent dual event is troublesome. The child event is either throw-
only or signal-only and can be caught by a handler for the parent dual event. The
handler can throw or signal the dual event but the child event can only either be
thrown or signalled. Throwing a signal-only event or signalling a throw-only event
in the handler is definitely undesirable. On the other hand, there is neither an
obvious problem nor advantage if the dual event is the child event rather than the
parent event.

It seems that heterogeneous derivation does not simplify programming and may

confuse programmers. Hence I do not believe that it is a useful feature.

i @

13 Ev p m si A% vV S

Abnormal event parameters are useful in passing information between different
parts of a program, i.e., where an event is raised and handled. They help limit the
need for shared objects. However, with an abnormal event hierarchy, they cannot
be simply treated as data fields in a class in a class hierarchy. First, an example is
given to illustrate the problem.

A handler for AE can be considered as a mapping with the following signature:
AEin — AEout

where AE;, and AE,; are information passed into and out of the handler respec-

tively. Suppose an event Derived is derived from Parent by adding additional data

2.13. EVE T PARAMETER I ERIVE EVE T 1

fields. These new data fields are for passing information into and out of a handler.

When a Derived event is raised and caught by a handler bound to Parent, it is
being treated as a Parent event within the handler and the additional data fields
cannot be accessed within the handler. Consequently, after the handler terminates
normally, some data fields in Derived,,; may have uninitialized values.

This problem of invalid values can also happen within a class hierarchy during
a dynamic dispatch'®. An example is to initialize an object with its ancestor’s
constructor. The solution in the class hierarchy is to redefine or override inherited
methods!”. The particular choice of a method in a dynamic dispatch is solely deter-
mined by the object to which the method applies. Consequently, if a derived class
overrides one of its parent’s methods, the overridden method can never be applied
to an object of the derived class in a dynamic dispatch. A correct implementation
of the overriding method should eliminate all invalid values.

In abnormal event handling, the abnormal event being raised is merely one of
the determining factors to select a handler. In particular, a handler for Parent can
be chosen over one for Derived to handle a Derived event. As there is always the
potential of using a less specific handler, the programmer is responsible for checking
the validity of any information coming from a handler.

Apparently, the problem affects the resuming model more than the terminating
model because after a resuming handler returns, control flow returns to a context
where the event just handled is precisely what was raised, rather than what was

caught, i.e., the specific raised event rather than the caught parent event. In the

16 u C++p f

17I
u G u pp{ 5]

2 CHAPTER 2. FRAME ORK OF AEHM

terminating model, control flow never returns to the context of the specific event,

and hence, a causal programmer is less likely to make a mistake.

14 Summ y

Raising, propagating and handling an abnormal event are the three core steps in
an AEHM as a flow control mechanism. For safety sake, an AEHM should provide
two raising mechanisms: throwing and signalling. There are two useful handling
models: terminating and resumption. Handlers should be partitioned with respect
to the handling models to provide a better abstraction. Abnormal event parameters,
homogeneous derivation of abnormal events and conditional handling are features
to improve programmability and extensibility.

An AEHM in a concurrent environment must provide some blocking facilities
to solve the reentrant problem. Hierarchical blocking is the best in terms of exten-
sibility and programmability.

The new propagation mechanism I propose solves the recursive signalling prob-
lem and is better than existing propagation mechanisms. Indeed, the new propa-
gation mechanism gives a new flow control mechanism.

Some issues remain open. One is the delivery order of multiple pending asyn-
chronous events. Another is on the abnormal event hierarchy. It is still uncertain

whether one dual event hierarchy is better than multiple hierarchies in practice.

Chapter 3

Using abnormal events in yC++

This chapter shows how to use the yC++ abnormal event features. Some knowledge
about C++ exception handling mechanism, mostly its syntax is assumed (but prior
examples have informally discussed almost all of the syntax). A brief overview
about the available features is given in section 3.1. Sections 3.2 to 3.5 cover the
new syntactic elements for using pC++ abnormal events. Topics include defining
new abnormal events, raising an event, writing handlers and using asynchronous

abnormal events. A summary is given at the end.

3.1 Overview of uC++ AEHM

pC++ supports the declaration of throw-only, signal-only and dual events. Events
are implemented as class objects, just like C++ exceptions; abnormal event param-
eters are encapsulated inside a class object. Derived events are defined through
public class inheritance. Both throwing and signalling are supported. pC++ adopts

the propagation mechanism described in section 2.11.3, so recursive signalling is pre-

83

84 CHAPTER 3. USING ABNORMAL EVENTS IN pC++

vented. Resuming handlers are merely C++ routines of some particular signatures
because of the lack of nested routines in C++ and the GNU compiler. pC++ also sup-

ports implicit polling and hierarchical blocking of asynchronous abnormal events.

The memory management of abnormal events in pC++ is identical to managing
C++ exceptions, regardless of whether the event is synchronous or asynchronous.
In particular, a programmer is responsible for freeing the heap memory occupied
by an event object. Furthermore, the GNU compiler always creates a copy' of
a thrown event in the heap and does not destroy it automatically. Therefore, a
terminating handler generally has to destroy the caught event to prevent memory
leaks. However, it is unnecessary, and probably dangerous, to destroy a caught
signalled event in a resuming handler because after the resuming handler handles
the signalled event, the execution returns to a scope in which the event is still
visible. If an event is raised asynchronously, the pC++ kernel copies the event so

that the programmer can safely destroy the original copy of the event.

The pC++ kernel implicitly polls for asynchronous events when an execution is
about to resume after blocking or after a context switching operation. Section 3.5.1

shows that this is very important.

Generally speaking, an unhandled thrown event causes the termination of the
faulting execution; an unhandled signalled event is thrown if it is a dual event;

otherwise, it is ignored.

!Every abnormal event is xC++ must have a public copy constructor.

3.2. DEFINING ABNORMAL EVENTS 85
3.1.1 Missing desirable features

Since pC++ relies on the exception facilities in the GNU compiler?, some desirable
features are not available. In particular, C++ considers all eligible handlers in a
handler clause (catch clause) are equally specific, and the one closest to the keyword
try is chosen. As a result, pC++ inherits this behaviour. There is no conditional
handling facility in uC++ either because it is missing in C++ and the GNU compiler.

Currently, asynchronous events are delivered in a FIFO order. Events currently
blocked from delivery do not prevent events arrived later from being delivered. User-
defined default handlers for thrown events will be a future addition to the system

because the rtti facility in the GNU compiler is still in beta stage of development.

3.2 Defining abnormal Events

pC++ provides additional class descriptors to specify the properties of a new class.
These class descriptors can be used wherever the C++ keyword class can appear.
An example is uCoroutine for defining coroutines. Indeed, class is the only avail-
able class descriptor in C++.

Three new class descriptors uDualEvent, uThrowEvent and uRaiseEvent are
introduced for defining new abnormal events. A dual event must be derived (or pub-
licly inherited) from uAEHM: :uDualClass or one of its derived events to ensure ho-
mogeneous derivation. If no parent is specified, uAEHM: :uDualClassis chosen as the
default. Similarly, throw-only events must be derived from uAEHM: :uThrowClass

and signal-only events from uAEHM: :uRaiseClass. No event can be derived from

2A uC++ program is translated to C++ code and then compiled by the GNU compiler.

86 CHAPTER 3. USING ABNORMAL EVENTS IN pC++

more than one event.

For every abnormal event declared, e.g. SomeEvent, an initialization statement

of the form

uInitEvent (SomeEvent) ;

1s required to force the GNU compiler to define and allocate static storage for
information associated with a event. The initialization statement for every event
can be invoked exactly once in the entire program or the GNU compiler is confused
by duplicated definition.

C++ also has non-public inheritance and pC++ has enriched the C++ basic class
objects with the addition of monitors, coroutines, tasks and abnormal events.
Though C++ supports multiple inheritance, not all forms of multiple inheritance
have acceptable semantics[1]. The following explains what other forms of inheri-
tance i1s acceptable involving abnormal events.

The default resuming handler for uAEHM: :uDualClass is to throw the event,
and that for uAEHM: :uRaiseClass simply returns the value uAEHM: : HANDLED as if
the signalled event is handled by a non-default handler. Both are implemented as

a virtual method of the following signautre:

virtual uAEHM: :uRaiseReturn uDefaultResume() const;

A user-defined default resuming handler is implemented by overriding the virtual
method. The keyword const in part of the signature as it is inC++. The return type
uAEHM: :uRaiseReturn is further described in section 3.4 when discussing handlers.

As mentioned, default terminating handler is not supported at the moment.

3.2. DEFINING ABNORMAL EVENTS 87

3.2.1 Events inheriting from other object class

An abnormal event is not allowed to publicly inherit from non-event classes. Public
derivation of events is for building an event hierarchy, and the restriction on public
inheritance should enhance the distinction between class hierarchy and event hi-
erarchy. Furthermore, the operations on events and non-event objects are usually
defined differently. Handlers are for events and methods (or entries) for classes.
The former i1s a dynamic choice; the latter static. It appears that keeping events
and non-event objects separate is reasonable.

Non-public inheritance is sharing of implementation. I cannot imagine any cir-
cumstances where an event needs to inherit from a coroutine or a task. Why would
an abnormal event need context switching or a thread to carry out computation
after all? And what should happen when a hybrid of execution and event encoun-
ters another abnormal condition? Consequently, any form of inheritance from a
coroutine or a task by an abnormal event is rejected.

Though the same abnormal condition may be encountered by different execu-
tions, it does not mean that an abnormal event can or should be a shared resource.
For example, arithmetic overflow can be encountered by different executions but
each arithmetic overflow is an independent entity. Hence, there is no race condi-
tion for events, and therefore, non-public inheritance from a mutex object by an
abnormal event should not be useful. As a result, it is rejected.

Finally, there is the non-public inheritance from an ordinary class object. This
form is the only acceptable inheritance by abnormal events from non-events. An
example for using such inheritance is a set of abnormal events using similar log-

ging routines. An ordinary class can implement the logging functionalities and

88 CHAPTER 3. USING ABNORMAL EVENTS IN pC++

consequently be reused by the events.

3.2.2 Non-event classes inheriting from events

As mentioned, events should be kept distinct from non-events objects. Therefore,
non-event classes cannot publicly inherit from events.

In addition, operations defined for events like raising an event should not be
shared by non-event objects. Hence, non-public inheritance from events by non-
events is rejected as well. However, I do not mean that events and non-events
cannot share code. Rather, the shared code should be implemented as an ordinary

class and then inherited by events and non-events.

3.3 Raising an abnormal event

There are two propagation mechanisms — throwing and signalling. A programmer
specifies how a event i1s propagated in the faulting execution with the different raise

statements. The following are the acceptable forms for raising an event:

uThrow throwable();
uThrow throwable() uAt target;
uRaise raiseable();

uRaise raiseable() ulAt target;

The uThrow statement is for throwing an event. With the optional “uAt target”,
the event 1s thrown at coroutine or task target asynchronously by the executing

coroutine. The uRaise statement is for signalling an event. The keyword uRaise

3.3. RAISING AN ABNORMAL EVENT 89

1s used because uSignal in pC++1s associated with an operation for condition
variables.
The C++ throw statement truncates events. In other words, if x i1s declared as

an object of class X, the event raised by

throw x;

can only be caught by a handler capable of catching X. It is possible that the
object x refers to an object of class Y derived from X, but a handler catching Y
cannot catch the thrown x. Neither uThrow nor uRaise in pC++ truncate events,
i.e., the event actually raised at runtime can be a derived event of the one specified
in the statement.

To re-throw an event inside a terminating handler, it is necessary to use the

following to avoid memory leaks:

uThrow;

which is only valid in the context of a terminating handler. However, no similar
form exists for signalling because first, it is unnecessary as the memory leak does
not exist, and second, it is impossible to have a syntactic construct exclusively for
resuming handlers but not for functions.

A resuming handler should return a value of type uAEHM: :uRaiseReturn if it
terminates normally. This return value becomes the result of the synchronous form
of the uRaise statement. Indeed, the synchronous form of uRaise can be used as
an expression returning a value of type uAEHM: :uRaiseReturn. The proper use of

this return value is discussed in section 3.4.

90 CHAPTER 3. USING ABNORMAL EVENTS IN pC++

The synchronous uThrow statement does not have a return value because the
current scope terminates immediately when executing the statement, so there is no
place to return a value to. The asynchronous uRaise and uThrow do not have a

return value because the handler for the event is invoked asynchronously.

3.4 Handlers

Terminating handlers in uC++ are identical to those in C++ in syntax and behaviour.

A terminating handler is defined with the catch clause as in:

try {
// statements to be guarded

}
catch (uAEHM: :uDualClass &e) {

// handling statements

A resuming handler in pC++ for abnormal event AE is a function with either of

the following signatures:

uAEHM: :uRaiseReturn (*) (AE &)

uAEHM: :uRaiseReturn (*) (AE &, ARG &)

The second allows additional arguments (which are bundled into an object of class
ARG®) to be passed to the handler when handling an event. The former handler

does not take any arguments when handling the event.

3Class ARG must be publicly derived from uAEHM: :uClosure because of limited support for
templates in the GNU compiler.

3.4. HANDLERS 91

The return value from a handler belongs to the enumeration type:
enum uAEHM: :uRaiseReturn {NOT_HANDLED, PARTIALLY_HANDLED, HANDLED}

By convention, NOT_HANDLED is returned when a resuming handler is not found.
HANDLED is returned after a handler handles an event. In case a handler is not found
when re-signalling an event, the active handler can return PARTIALLY_HANDLED
instead of the other two values to distinguish the different cases.

If a handler chosen to handle a signalled dual event returns NOT_HANDLED, the
runtime system considers that the faulting execution fails to handle the event.
Subsequently, the event is thrown.

It i1s always recommended to catch the event by reference in both types of
handlers. Otherwise, the event caught by a handler is a truncated copy of the event
raised, and causing a loss in specificity when re-raising the event in the handler.

The additional copying of a thrown event can result in memory leaks.

3.4.1 Binding handlers to a block

pC++ extends the try block in C++ to set up handlers for a (guarded) block. A
terminating handler is specified with a catch clause as it 1s in C++ . A resuming
handler in pC++ is a function as described previously. The following is an example

of binding resuming handlers to a block:

try <AE1,hl,argi><AE2,h2><AE3><AE4,h4,arg4> {

// block protected by handlers

92 CHAPTER 3. USING ABNORMAL EVENTS IN pC++

In general, the try block in pC++ behaves like a template and can take an arbitrary
number of template arguments. The following three forms of template arguments

are allowed:
1. <AE1,h1,argl>
2. <AE2,h2>
3. <AE3>

The first one specifies that handler (or function) hl handles signalled event AE1.
Because nested function is not available, argi (of class ARG1) is used in the first form
for passing local information to handler h1 when handling the event. Therefore,

the signature of h1 must be:
uAEHM: :uRaiseReturn h1(AE1 &, ARG1 &)

The difference between the second and the first is that the handler h2 for event AE2

does not take additional arguments. Therefore, its signature must be:
uAEHM: :uRaiseReturn h2(AE2 &)

The third one specifies that the event AE3 is handled by a handler that simply re-
turns the value uAEHM: : HANDLED. This conveniently ignores certain signalled events.

Type checking is performed on the first two forms, but not the last one, to
ensure a proper handler is chosen to handle the designated abnormal event. In
general, the given handler should follow contravariance as a handler is chosen to

handle a descendent but not an ascendent of an event?.

“Currently, a warning is issued by the GNU compiler when a resuming handler satisfies con-
trovariance. It is an error if the handler violates both controvariance and contravariance.

3.5. DELIVERY OF ASYNCHRONOUS EVENTS 93

3.5 Delivery of asynchronous events

pC++ allows a programmer to turn on (and off) the delivery of asynchronous events.
An event is blocked if its delivery is turned off. Note that the facility only affects
asynchronous events. Initially, the delivery of every asynchronous event is turned off
in an execution, so that a programmer can set up handlers for various asynchronous
events. The constructs used for turning on and off asynchronous delivery are the

uEnable block and the uDisable block:

uEnable <AE1><AE2> { uDisable <AE1><AE2> {

// code in uEnable block // code in uDisable block

The template arguments of the uEnable block (or uDisable block) specify what
events are allowed to be delivered (or blocked). Specifying no template arguments is
a shorthand for specifying all abnormal events. Though an asynchronous event be-
ing delivered may match with more than one event specified in the closest uEnable
(or uDisable) block, it is unnecessary to define how the kernel matches it with
the specified events because the asynchronous event is either enabled or disabled

regardless of which event it i1s matched with.

An execution can enter different uEnable and uDisable blocks, and as a result,
alter the delivery of an event. When an execution enters a uEnable block, the
events specified in the block become deliverable, even if the events are currently
blocked. Similarly, an execution entering a uDisable block blocks the delivery of

the specified events.

94 CHAPTER 3. USING ABNORMAL EVENTS IN pC++

Upon exiting a uEnable or uDisable block, the execution restores the delivery

of various asynchronous events to the state before entering the block.

3.5.1 Polling for asynchronous events

Section 2.10.1 on page 57 states that there are explicit and implicit polling. A
pC++ programmer can explicitly poll for asynchronous abnormal event by calling

the function:
void uAEHM: :uDeliverEvents() ;

Blocking a thread is a basic part of synchronization and mutual exclusion. When
a synchronization or a mutual exclusive operation cannot complete normally, an
asynchronous event is sent as a notice to the blocked execution. An asynchronous
event can also be used for communicating abnormal conditions encountered among
executions. In general, it is unsafe to delay the handling of these abnormal events.
Therefore, implicit polling for asynchronous event when an execution wakes up or
becomes active provides a chance to handle these asynchronous events immediately,
unless the event is disabled.

Currently, the pC++ kernel ensures that an execution implicitly polls for asyn-
chronous events after it wakes up from a blocking operation, and when it becomes
active after a context switch. Asynchronous abnormal events can be raised for ab-
normal conditions encountered in synchronization and mutual exclusion. The next
chapter studies these abnormal conditions, and a few others in the pC++ kernel.
For safety sake, the runtime system turns on the delivery of asynchronous events
raised as a result of these abnormal conditions, preventing the user from blocking

the event.

3.6. SUMMARY 95

3.6 Summary

This chapter describes the features and the new syntax of the pC++ AEHM. Ab-
normal events are class objects that can be thrown or signalled. There are three
kinds of abnormal events: uDualEvent, uThrowEvent and uRaiseEvent. Each has
its own event hierarchy. These hierarchies are built by publicly inheriting from
another event of the same kind. The only other acceptable form of inheritance
involving an abnormal event in pC++ is non-public inheritance from a normal class
(i.e., specified by the class descriptor class) by an event.

pC++ supports throwing and signalling abnormal events, synchronously or asyn-
chronously. A terminating handler i1s defined by the catch phrase as it is in C++.
A resuming handler is defined as a function with some restrictions on its signature.
The C++ try block is extended to a properly type-checked, template-like facility in
order to support the resumption handling model.

The delivery of asynchronous events may be additionally controlled by the

uEnable and uDisable blocks. Both implicit and explicit polling are supported.

Chapter 4

Programming with

1 C++ abnormal events

This chapter describes how abnormal events are used in the pC++ kernel to deal
with abnormal conditions. Previously, these conditions either abort the program
or are ignored. A closer look at certain features in pC++ is given as well so that

the abnormal conditions in the pC++ kernel can be subsequently identified.

First, section 4.1 provides some guide lines for better use of abnormal events.
Then, section 4.2 discusses synchronization in concurrent programming. The pC++
synchronization mechanism rendezvous is studied in detail in section 4.3. The
majority of this section is to illustrate how condition variables may affect the ren-
dezvous mechanism. The abnormal conditions in the pC++ kernel are listed and
discussed in section 4.4. Some of these abnormal conditions do not exist in other
languages because coroutines and context switching operations are missing in these

languages. An abnormal event hierarchy is also given. Section 4.5 has two examples

96

4.1. GENERAL GUIDE LINES 97

to show how abnormal events can be used, followed by a summary section. The first
example 1s a maze search program. The other is an iterator for tree transversal.

The implementation uses coroutines. A summary is given at the end as well.

4.1 General guide lines

Like many other programming features, the AEHM aims to make certain program-
ming tasks easier and improve the overall quality of a program. Indeed, choosing
abnormal events over other available flow control mechanisms is a tradeoff. For
example, a programmer may decide to use abnormal events over some conditional
statement for clarity. This decision may sacrifice runtime efficiency and memory
space. It is extremely difficult to estimate the tradeoftf without knowing the internal
implementation of the compiler/interpreter being used. In other words, universal,
crisp criteria for making a decision do not exist. Nevertheless, some important
guide lines are given below to avoid abusing abnormal events.

First, using abnormal events when writing a library to indicate rare conditions
can prevent the library client from ignoring them if the client “forgets” to set up a
handler. Hence abnormal events can improve safety and robustness.

Second, using abnormal events can improve clarity and maintainability over
techniques like status return values and status flag where normal flow and abnormal
flow are mixed together throughout a block. The abnormal event technique not
only separates clearly the normal flow in guarded regions from the abnormal flow
in handlers, but also avoids mixing the normal return values with the error return

values. The abnormal event technique accommodates changes better, too.

98 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

Third, using abnormal events to indicate conditions that happen rarely at run-
time. The reason is two fold. First, the normal flow of the program represents
what should happen most of the time, so programmers can easily understand the
functionality of a code segment. The abnormal flow then represents subtle details
to handle these rare conditions, such as boundary conditions. Second, the propa-
gation mechanism requires a search for the handler and is usually expensive. Part
of the cost is a result of the dynamic choice of a handler. (See section 2.4.1 for
why the dynamic choice is essential.) Nonetheless, the dynamic choice of a handler
is less understandable than a normal routine call. If abnormal events are raised
frequently, there is a high runtime cost and the control flow of the program can

become less understandable.

4.1.1 Using a thrown event

Typical use of a thrown event is for graceful termination of an operation or even
an execution. A termination is graceful if the termination triggers a sequence of
clean up actions in the execution context. Examples of abrupt (or non-graceful)
termination include the abort function in C and the kill -9 command in Unix.
Graceful termination is more important in a concurrent environment because one
execution can terminate while others can continue. The terminating execution, or
operation, must be given a chance to release any shared resources it has claimed
(the clean up action) in order to maintain the integrity of the whole environment.
For example, deadlock is potentially a rare condition and a thrown event can force
graceful termination of a blocked operation, consequently leading to the release of

some shared resources and breaking of the deadlock.

4.1. GENERAL GUIDE LINES 99

4.1.2 Using a signalled event

A signalled event causes the faulting execution to do additional computation in
the form of a resuming handler that it does not do normally. The additional
computation may modify the state of the execution, which can be considered as
error recovery. Alternatively, it may cause information about the execution to be

gathered and saved without effectively modifying the execution state.

4.1.3 Using a dual event

A dual event is either thrown or signalled, and hence can be used as a thrown
event as well as a signalled event. What makes dual events unique is that, unlike
throw-only and signal-only events, they can be thrown and signalled. In situations
without a clear choice of termination or resumption, a dual event can be signalled
initially so that resumption is feasible to avoid loss of local information in the
termination model. If no resumption handler can handle the event, the same event

can be thrown.

One possibility of such use is in real-time applications. Missing a real-time con-
strain, say an execution cannot finish before a deadline, is considered an abnormal
condition. For some applications, the constrain violation can result in termination.
Other applications can modify some internal parameters to make its execution faster
by sacrificing the quality of the solution, or by acquiring more computing resources
making the resumption model appropriate. The dual event is ideal for this kind of

abnormal condition.

100 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

Time ——

execution 1 — - - N, execution 1 by
executing ‘
‘ . null
v synchronized: -
S — synchronized:
operation operation
execution 2 —— e execution 2
(a) synchronization session (b) synchronization point
execution 1 —— | —
— —
execution 2 ——= A— e
execution 3 —— B —

(c) nested synchronization

Figure 4.1: Synchronization

4.2 Synchronized operation

Any concurrent programming environment must support mutual exclusive and syn-
chronizing threads of execution.

When two threads synchronize, an operation is carried out. This synchronized
operation may be a null operation. When it terminates, the two threads continue
to execute independently and in parallel. Usually, one thread has to wait for an-
other before a synchronization. A synchronization session is the period of time
the two executions! synchronize. It is a synchronization point if the synchronized
operation is null. See figures 4.1(a) and 4.1(b). During a synchronized session, an
additional synchronization requirement may have to be met before the execution

of the synchronized operation can continue. Therefore, synchronized operations

1Precisely, I should say the active execution of the threads. Two executions bound to the same
thread cannot synchronize because at most one of them is active at any time.

4.2. SYNCHRONIZED OPERATION 101

can be nested as shown in figure 4.1(c). The synchronizations in the figure are

symmetric as the executions have identical roles in the synchronization.

4.2.1 Rendezvous

Synchronization often involves two executions performing two different roles, as
in the client-server model. Therefore, rather than providing an abstraction for
symmetric synchronization, Ada 83, Ada 95? and puC++ provide an asymmetric
synchronization facility known as rendezvous. The synchronized operation is im-
plemented as an entry, a routine-like element. A rendezvous begins only when one
of the executions (the caller) invokes an entry, and the other (the acceptor) accepts
the entry invocation. The acceptor may execute a sequence of post-synchronization
statements. Invoking or accepting an entry by an accepted entry may create another

rendezvous. Therefore, rendezvous can be nested many levels.

A rendezvous terminates when exiting the accepted entry. Rather than execut-
ing to completion, a rendezvous may terminate abnormally by a thrown event as
well. It is desirable to inform both the caller and the acceptor about the abnormal

termination.

Because Ada does not provide facilities to asynchronously raise an abnormal
event, informing the caller and the acceptor about an abnormal termination of a

rendezvous 1s a built-in facility in the language.

2For convenience, I denote the two standards of Ada as Ada 83 and Ada 95. The term Ada
refers to the whole Ada language family.

102 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

4.3 uC++ rendezvous

pC++ also has rendezvous and the synchronized operation is implemented as an
entry, but its rendezvous mechanism and that of Ada family have subtle and fun-
damental differences.

An object in pC++ not only has an object state, but may also have an execution
state and a thread. It may also require mutually exclusive access. The properties
of the puC++ objects are described in section 1.3, and pC++ uses an entry to ab-
stract various requirements imposed by the kind of an object. When discussing
rendezvous, it i1s sufficient to classify the entry into two categories: blocking and
non-blocking entries. A blocking entry avoids race conditions by blocking its caller
thread when the mutex object is locked by another thread. A non-blocking entry
1s like a normal routine and never blocks its caller.

pC++ allows only blocking entries to be accepted. The acceptor must be the
execution locking the mutex object. Besides getting accepted, an invoked blocking
entry can begin executing when no other thread is locking the object. Whether
an entry invocation proceeds with or without an acceptor is generally a runtime
phenomenon. On the contrary, the Ada language defines what can be accepted and
what not at compile time, reflecting the conceptual distinction between mutual
exclusion and synchronization.

Obviously, the pC++ design is more flexible as rendezvous can help controlling
the order of entry execution of a mutex object. Indeed, rendezvous in uC++ is a
control mechanism allowing the acceptor to select a particular blocking entry. Upon
accepting an entry, the acceptor passes the exclusive right to access a mutex object

to the caller, and subsequently, the caller can proceed.

4.3. puC++ RENDEZVOUS 103
4.3.1 Condition variables in pyC++

#C++ provides condition variables to suspend a thread executing a blocking entry.
Since an accepted entry must be a blocking entry, the pC++ orthogonal design
allows suspending a thread executing an accepted entry as well.

A condition variable in pC++ is always associated with one and only one mutex
object — the owner of the condition variable. pC++ has two statements operating

on condition variables that affect how n entry is executed:

e uWait blocks the current thread of control and forces it to release the lock on

the mutex object owning the condition variable.

e uSignal removes a blocked thread from a condition variable, if there is one,
and pushes it onto an internal stack of the mutex object. The pushed thread
gains control of the mutex object only when it is chosen by the internal
scheduler after the mutex object becomes unlocked. uSignal has no effect if

no thread is blocked on a condition variable.

Although the condition variable is a common feature in concurrent languages
and libraries, no work has shown how condition variables interact with rendezvous
because the two facilities are usually not available together. The rest of this section
discusses how condition variable affects the control flow of the caller and acceptor

of a rendezvous.

4.3.2 Condition variable and rendezvous

Upon establishing a rendezvous, the pC++ kernel pushes the acceptor onto the

internal stack of the mutex object, and forces the acceptor to relinquish the mutex

104 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

become] release
another Bl ready uSignal lock
thread A 3
3 v
caller C e - -
/\ uSignal uWait berCe%nJ;/ng
ACCEPIOr A — > = - - - - - s o mm oo
rendezvous
begins
top top
internal top E top C top
stack A A A A A

Figure 4.2: An example of uWait and uSignal

object to the caller, giving the caller exclusive access to the mutex object. While
executing the accepted entry, the caller can uSignal any condition variable in the
mutex object, possibly pushing more threads onto the internal stack. When the
caller releases the mutex object by executing a uWait statement or terminating
the entry invocation, the internal scheduler chooses the thread on the top of the
internal stack in the mutex object to resume executing the previously blocked entry.
Therefore, the acceptor may not be restarted immediately. Furthermore, if another
thread is chosen, this thread can wake up other threads (possibly the caller) with
uSignal as illustrated in figure 4.2. As a result, the caller resumes before the

acceptor.

An execution can uWait on a condition variable whenever the current thread
locks the owner of the condition variable. However, the uWait only suspends the
thread executing the blocking entry. The acceptor of the entry, if there is one, is not
suspended. Though it is possible for the internal schedular to pick the acceptor, the

uWait mechanism does not guarantee the acceptor to resume. It is even possible

4.3. pC++ RENDEZVOUS 105

that the caller wakes up and exits the accepted entry before the acceptor proceeds
to the post-synchronization statements. It all depends on which thread gets the
lock of the mutex object at different time, as illustrated in figure 4.3. The thick
solid line i1s used when the caller of a rendezvous owns the mutex object; the thin
solid line for the acceptor. The dotted line does not specify who owns the mutex

object; the owner can possibly be the caller, but not the acceptor.

Obviously, the uWait mechanism should be considered as suspending the cur-
rent thread but never suspending a rendezvous®. Any mechanism that suspends a
rendezvous should suspend both the caller and the acceptor, plus releasing the lock
of the mutex object. Without releasing the lock, the mechanism is not significantly

different from nested rendezvous.

There 1s a subtle point for uWait suspending a blocking entry. pC++ allows
a thread to enter a mutex object multiple times once it has acquired the mutex
lock. Figure 4.4 shows an execution having invoked blocking entries of object A
three times. Note that after a thread has entered a mutex object, any subsequent
entry invocation of the same object by the thread cannot be accepted, because
an accepted entry requires a different thread executing an accept statement in the
mutex object. Now if the thread in figure 4.4 uWaits on a condition variable of
mutex object A, the lock of object A becomes free and the acceptor of entry 1 of A
may resume. The acceptor of entry 1 of object B cannot resume because the lock

of B is not free.

3Using “rendezvous” to refer to the execution of an accepted entry in uC++ may be confusing
for those familiar with Ada rendezvous mechanism, especially with the ability to suspend the
caller but not the acceptor.

106 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

Key caller acceptor - unspecified
thread thread owner
Time —#
MUIEX OWNEI — e
rendezvous accepted entry acceptor
begins terminates resumes
(a) without uWait
uWait
mutex owner R IR EEEEEE —_—
rendezvous acceptor accepted entry
begins resumes terminates

(b) with uWait, acceptor resumes before entry exits

Mutex OWNer —————— = — -
rendezvous accepted entry acceptor
begins terminates resumes

(c) with uWait, entry exits before acceptor resumes

Figure 4.3: Ownership of a mutex object when executing an accepted entry

» Mutex A » Mutex B Mutex A Mutex A
Entry 1 Entry 1 Entry 2 Entry 3

* accepted entry

Figure 4.4: Entering a mutex object multiple times

4.4. ABNORMAL CONDITIONS IN THE pC++ KERNEL 107
4.3.3 Abnormal termination of an accepted entry in puC++

The uWait and uSignal makes it difficult to determine whether the acceptor should
be informed about the abnormal termination of an entry because of all the possible
scenarios shown in figure 4.3. However, unlike Ada, pC++ allows throwing and
signalling of an asynchronous abnormal event. A pC++ programmer can easily

signal or throw an asynchronous event at the acceptor by using the macro
uRendezvousAcceptor

to determine the acceptor of a blocking entry. The marco returns a pointer to
an execution (uBaseCoroutine *). It returns the pointer to the acceptor if one
exists and remains blocked as a result of accepting the entry. Otherwise, the macro
returns NULL. The macro is applicable only inside a blocking entry. In figure 4.4,

the macro returns NULL in entry 2 and entry 3 because there is no acceptor.

4.4 Abnormal conditions in the yC++ kernel

This section discusses some important abnormal conditions in the pC++ kernel
based on the principles outlined in section 4.1. The scope of the discussion is lim-
ited to a concurrent programming context. Abnormal conditions like cannot open
file in file operations are not discussed because of previous work on abnormal
events in sequential programming.

pC++ uses entries to hide context switching, mutual exclusion and synchroniza-
tion inside an object from users. Abnormal conditions encountered as a result of
these operations in a concurrent environment are the focus of this section. Generally

speaking, if an entry invocation encounters an abnormal condition, an abnormal

108 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

event is raised, similar to the way an event is raised inside an object method in a
sequential language.

It is important to realize that for objects that have an execution state, if the
execution terminates, the object is still accessible and it retains its mutex property.
This semantics is a result of the pC++ orthogonal design. Consequently, invoking
an entry of a terminated task is functionally equivalent to invoking an entry of a
mutex object. Only when an object 1s destroyed, does access to the object become
erroneous. Currently, accessing a destroyed object results in undefined behaviour
in pC++ because the programmer is responsible for memory management issues,
which is true for all C++ objects.

The abnormal conditions are discussed from section 4.4.1 to section 4.4.3. Sec-
tion 4.4.4 covers what events are raised in these conditions, with the event hierarchy

for the pC++ kernel.

4.4.1 Abnormal conditions in context switching

Context switching refers to a change in the execution binding of a thread. A
context switch is executed sequentially as only one thread is available. pC++ context
switching facilities are the uSuspend and the uResume statements.

uResume is for resuming an inactive execution. However, it is possible that
the execution is terminated when this happens, and hence, an event is thrown to
abnormally terminate the operation. Similarly, suspending the current execution
by executing uSuspend may cause a context switch back to a terminated execution,
causing the abnormal termination of the operation.

Occasionally, an execution wants to communicate an abnormal condition to an-

4.4. ABNORMAL CONDITIONS IN THE pC++ KERNEL 109

other execution. In particular, it appears desirable that the one that most recently
resumes the current execution. Consider a coroutine that implements a server. A
request is made when invoking one of its entry routine which results in a context
switch to the server. If the server coroutine terminates abnormally and consequently
fails to satisfies the most recent request, it is reasonable to inform the client, i.e,
the coroutine that most recently resumes the server.

As a result, pC++ provides programmers a method to determine the last execu-

tion that resumed a coroutine:

uBaseCoroutine& uBaseCoroutine: :ulLastResume();

The entry returns NULL if there has not been a resumer.

4.4.2 Abnormal termination of an execution

An execution may terminate abnormally upon a thrown event. One of the goals of
using abnormal events is to prevent abnormal conditions from being ignored easily.
In a concurrent environment, this requires informing other executions.

If the execution is a coroutine, a dual event is signalled asynchronously at the
execution which starts* the terminating coroutine. A signalled dual event is used
because the faulting execution may want to delay or ignore the condition, and can
continue the propagation if no explicit action is specified for the dual event. The
event is asynchronous simply because the condition originates from an external

execution. The starter is chosen over the last resumer for the following reasons:

1A coroutine starts executing when another execution does the first resume of a coroutine.

110 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

e The start relation of coroutines is hierarchical but the resume relationship
is potentially cyclic. Using the last resumer may lead to incomprehensible

behaviour because the resumer can be a terminated coroutine.

o If a thrown event cannot be handled by a coroutine, the programmer can
choose to propagate the event at the last resumer using a terminating handler
like:

void main() { // the main body of a coroutine
try {

}
catch(all_event &e) {
uThrow e uAt *uLastResume(); delete &e;

}
} // end main

and let the coroutine terminate normally.

e When a coroutine terminates normally, the default semantics of pC++ also
chooses to resume the starter. Extending this to the abnormal termination

seems reasonable.

One would expect a similar design to handle abnormal termination of a task.
However, this is not the case because pC++ does not impose any hierarchical termi-
nating sequence of tasks. There seems no reasonable choice of an execution in which
the propagation of the event should continue. Furthermore, when a task terminates
normally, its thread is dead and no more execution is done by the thread. Extend-
ing this to the abnormal case is to ignore the thrown event at the end, which is
undesirable. Consequently, the pC++ kernel simply aborts the whole program when

a task terminates abnormally.

4.4. ABNORMAL CONDITIONS IN THE pC++ KERNEL 111

4.4.3 Abnormal conditions for invoking a blocking entry

Besides abnormal conditions raised while an execution is running, i.e., actively exe-
cuting statements inside an entry, invoking a blocking entry may lead to additional
abnormal conditions absent in sequential computation.

First, a mutex object can be destroyed while threads are blocked waiting to
access the mutex object after invoking a blocking entry. These threads can be
blocked on the entry queues, in a condition variable or the internal stack of the
mutex object. The blocked entry invocations should not be allowed to continue.
Therefore, an asynchronous event is thrown at the executions executing these entries
by the execution destroying the mutex object. Note the pC++ kernel always enables
the delivery of this event, so it is impossible to prevent the event from being disabled
at the faulting execution.

As mentioned, an entry invocation can be a rendezvous. For the caller, the
behaviour of invoking a blocking entry is the same whether the entry is accepted or
not. The programmer can signal a dual event at the acceptor if the entry is accepted.
Using a dual event with the signal mechanism makes resumption possible.

A rare anomaly can happen. Both the acceptor and the caller of an active ren-
dezvous can be blocked in an mutex object as a result of nested rendezvous. While
they remains blocked, another execution can destroy the mutex object. Conse-
quently, the caller and the acceptor receive an asynchronous thrown event. The
caller, upon the abnormal termination of the accepted entry, signals another event
at the acceptor. This semantics is undesirable because there are two asynchronous
events arrives at the acceptor as a result of the “premature” destruction of the

mutex object. The programmer must be aware of this situation.

112 CHAPTER 4. PROGRAMMING WITH ;C++ ABNORMAL EVENTS

uAEHM::uDualClass
uKernelFailure
the root of all kernel events
uSerial::uFailure
general abnormal condition in a blocking entry
uSerial::uEntryFailure
entry fails while being blocked at entry or suspended in internal stack
uCondition::uSuspendedFailure
entry suspended in a condition variable terminates abnormally
BaseCoroutine::uFailure
general abnormal condition in an execution
uBaseCoroutine::uTerminated
context switching to a terminated execution or
abnormal termination of a coroutine

Figure 4.5: pC++ abnormal event hierarchy

4.4.4 pC++ abnormal event hierarchy

Previous sections discuss abnormal conditions in the pC++ kernel and this sec-
tion states what abnormal events are raised for these abnormal conditions. Fig-
ure 4.5 shows the abnormal event hierarchy defined for the puC++ kernel. The
event uBaseCoroutine: :uTerminated is signalled asynchrounsly at the starter of
a coroutine that terminates on a thrown event. All other abnormal conditions result

in a thrown event because the current operation is not resumable.

The kernel abnormal events are all dual events because dual events are more
flexible. However, uC++ allows defining throw-only and signal-only events, partly
because it is far from certain whether throw-only and signal-only events are use-
less. More importantly, the presence of throw-only and signal-only events allow a

programmer to experiment with with abnormal flow control in their application.

4.5, ABNORMAL EVENTS AS A FLOW CONTROL MECHANISM 113

4.5 Abnormal events as a flow control mechanism

This section provides two examples of using abnormal events more as a flow control
mechanism than an error handling mechanism. The examples are single-threaded
because the focus is to illustrate how the control low changes in an execution. The
first example illustrates how signalled events can be used, followed by one showing

how to use thrown events with multiple coroutines.

4.5.1 Searching a maze

The program fragment in figure 4.6 is from a maze search program. Some of the
details of class maze are omitted. The program creates a maze and starts searching
an exit path from location (5,10). It searches around that position and if the exit
is found, an abnormal event ShowPath is signalled. The resuming handler set up at
each recursive call re-signals the event before printing out a location. Abstractly,
the signalling of ShowPath causes the execution to print out the path from the
starting position to the current position. The program terminates on a thrown
abnormal event Quit.

The program does not use return values to indicate the success or failure of the
search. Nor does it use the heap to keep track of its current search path. It takes
advantage of the closure implemented to support resuming handlers and nested
routines. Unlike recursive routine call, the re-signalling does not cause infinite
recursion with the new propagation mechanism. Another point worth mentioning
1s that in a concurrent environment, another execution can signal ShowPath at an

execution finding an exit path and create a snapshot of the current search path.

114 CHAPTER 4. PROGRAMMING WITH uC++ ABNORMAL EVENTS
#include<uC++.h>
#include<iostream.h>

uRaiseEvent ShowPath {};
uThrowEvent Quit {};

struct Position : public uAEHM::uClosure {

int x,y;
Position(int x, int y) : x(x), y(y) {3
3
uAEHM: :uRaiseReturn showPos(ShowPath &event, Position &p) {
uRaise event; // resignal the event
cout << "At grid (" << p.x << 7,’ << p.y << ")\n";

return uAEHM: :HANDLED;
}

class maze; // details omitted

void maze::search(int x, int y) {
Position pos(x,y);
try <ShowPath, showPos, pos> {
if targetReached(x,y) {
signal ShowPath; throw Quit;
}

if visited(x,y) return;

search(x+1,y); search(x-1,y); search(x,y+1); search(x,y-1);
} // end try
} // end maze::search

main () {
maze t;
try <ShowPath> {
t.search(5,10);
}
catch (Quit) {
cout << "path found\n";
}
}

Figure 4.6: A maze search program using signalled abnormal events

4.6. SUMMARY 115

4.5.2 Inorder enumeration of binary tree

Inorder enumeration of a binary tree retrieves the elements in the binary tree, one
element at a time, following the order of inorder traversal. The code in figure 4.7
llustrates how to implement an iterator in pC++ to accomplish this. The emphasis
of this implementation is to show that the pC++ coroutine can do what a Sather
style iterator[21] does. Indeed, the fundamental ideas of the given solution is from
the language Sather.

Each iterator, essentially a uC++ coroutine, for a tree creates an iterator for each
of its subtree. When a tree is exhausted, a thrown event is raised at the execution
invoking the entry routine next of an iterator. The iterator then terminates and
no more elements can be retrieved from the exhausted iterator because resuming a
terminated coroutine is invalid.

The implementation uses a lot memory as each coroutine has its own stack.
Indeed, it is unnecessary to create an iterator for every subtree. Figure 4.8 is a
better implementation using less memory as only one coroutine.

In both examples, the only way to notice the main function uMain: :main the
end of the transveral is by a thrown event because all the values in int are a

legitimate return value for the entry InTran: :next.

4.6 Summary

This chapter identifies the abnormal conditions that may arise from terminating an
execution in a concurrent environment, context switching, and executing a block-

ing entry. These conditions are chosen because they must be handled in a unique

116 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

#include<uC++.h> node->rt->insert(x);
#include<iostream.h> }
else {
class btree { node = new tnode(x);
private: }
struct tnode { }
int key;
btree *1f; uCoroutine InTran {
btree *rt;
tnode(int k) : key(k) { btree &root;
1f = new btree(); int result;
rt = new btree();
} uThrowEvent done {
public:
virtual “tnode() { done() {}
if (1f) delete 1f; ~“done() {}
if (rt) delete rt; };
}
}; // end tnode public:

InTran(btree &t) : root(t) {3}

tnode *node;
int next() {

public: if (root.is_empty()) {
btree() : node(NULL) {}; uThrow done();
“btree() { }
if (node) delete node; uResume;
} return result;
}
bool is_empty() {
return node == NULL; protected:
} void main();
void insert(int x) { }; // end btree::InTran
if (node != NULL) {
if (x <= node->key) };
node->1f->insert(x);
else // continue on the following page

Figure 4.7: Sather style iterator in pC++

4.6. SUMMARY

void btree::InTran::main() {
if (root.is_empty()) {
uThrow done() uAt
*this->ulLastResume();
uSuspend;
} else {

uEnable {
try {
InTran 1f(*root.node->1f);
for(;;) {
result = 1f.next();
uSuspend;
}
}
catch(done &d) {delete &d;}

result = root.node->key;
uSuspend;

try {
InTran rt(*root.node->rt);
for(;;) {
result = rt.next();
uSuspend;
}
}
catch(done &d) {
delete &d;
uThrow done() uAt
*this->ulastResume();

117

}} // end uEnable
} // end if
} // end btree:InTran::main

uInitEvent (btree: :InTran: :done) ;

void uMain::main() {
uEnable {

srand (1000) ;

btree t;

for(int i=0; i< 20; i++) {
int tmp = rand() % 65536;
cout << tmp <<’ 7;
t.insert(tmp);

}
cout << endl << endl;

btree: :InTran iter(t);

try {
for(;;) {
cout << iter.next() << endl;
}
}

catch (btree::InTran: :done &d) {
cout << endl;
delete &d;

}

}} // end uMain::main

118 CHAPTER 4. PROGRAMMING WITH ;,C++ ABNORMAL EVENTS

#include<uC++.h>

#include<iostream.h> void main() {
traverse(root);
class btree {
// details omitted // end of transversal at this point
}; exhausted = true;

} // end btree:InTran::main

uCoroutine btree::InTran { }; // end uCoroutine btree::InTran
btree &root;
int result;

bool exhausted; void uMain::main() {
void traverse(btree &t) { srand(1000) ;
if (t.is_empty()) btree t;
return;
for(int i=0; i< 20; i++) {
traverse(*t.node->left) ; int tmp = rand() % 65536;
cout << tmp <<’ 7
result = t.node->key; t.insert(tmp) ;
uSuspend ; }

cout << endl << endl;
traverse(*t.node->right) ;

} // end traverse InTran iter(t);
public: try {
InTran(btree &t) : root(t) {} for(;;) {
cout << iter.next() << endl;
int next() { }
uResume; }
if (exhausted) catch (uAEHM: :uThrowClass &ae) {
uThrow uAEHM: :uThrowClass(); cout << endl;
else delete &ae;
return result; }
} } // end uMain::main

Figure 4.8: puC++ implementation of an inorder tree iterator

4.6. SUMMARY 119

fashion in pC++ as a result of its orthogonal design and its context switching fa-
cility. Indeed, abnormal events are successfully introduced without changing the
orthogonal design and semantics of the language.

The abnormal event hierarchy for pC++ kernel is presented in this chapter. Only
dual events are used in the kernel because a single dual event hierarchy is simpler
and more flexible. The kernel uses throwing and signalling, indicating that both
are significant in the AEHM. Asynchronous abnormal events are found useful in
both the kernel and an example. It also eliminates the need of additional built-in
features to deal with abnormal conditions encountered in synchronization, implying

that the proposed design is indeed comprehensive.

Chapter 5

Conclusion and future work

The focus of this research is about abnormal events as a flow control mechanism in
a concurrent programming language. It can be divided into two major parts: first,
providing a framework for implementing an AEHM for a concurrent programming
language, and second, using pC++ as an experimental platform to implement and

apply the framework.

While several concurrent programming languages have abnormal events, rarely
does one support both the terminating and resumption models. Those with re-
sumption model, for example, Mesa and Exceptional C, do not properly address
the recursive signalling problem. Indeed, many find the resumption facility in Mesa
confusing. Consequently, terminating facility is a lot more popular than resumption

facility in modern languages.

The design proposed for an AEHM based on the framework is generally ap-
plicable and comprehensive. It also eliminates the recursive signalling problem by

employing a new propagation mechanism. As a result, the resumption model be-

120

121

comes more attractive and can be introduced to an existing AEHM that currently
supports only the terminating model to enhance its functionality.

Furthermore, the framework clearly shows that separating events for the two
handling models is not always necessary. Indeed, integrating these events simplifies
the AEHM. An abnormal event merely represents a rare condition, and how the
system should handle the condition, 1.e., choosing the terminating or resumption
model, is mostly an independent decision.

An event hierarchy has been shown to be a useful feature in an object-oriented
environment. I extend its usage to hierarchical blocking of asynchronous events.

Based on the framework, a comprehensive AEHM for ;C++ is implemented. The
new features are used to handle abnormal conditions that may arise at runtime.
Previously, these conditions are mostly ignored.

In particular, abnormal conditions related to pC++ concurrent programming
features including context switching, rendezvous and condition variable are dis-
cussed. The language unique orthogonal design requires original ways of using
abnormal events. Indeed, the implemented pC++ AEHM retains the overall or-

thogonal design of the language.

Future work pC++ also provides a set of real-time facilities. Violating a real-
time constrain, e.g., missing a deadline, can be treated as an abnormal condition.
The new abnormal event features provide a set of tools dealing with these abnormal
conditions. However, a study on the abnormal conditions related to the real-time
facilities is necessary in order to construct an event hierarchy. The potential use of

the throwing and the new signalling mechanism must be investigated.

Appendix A

Glossary

Active execution is an execution bound to a thread. Hence, the thread is
carrying out some computation that changes the execution state of the active exe-

cution.

Class descriptor describes the different properties of a class being defined. In
other words, it specifies if a class has an execution state, if it requires mutual

exclusive access, if it has a thread, and if it can be thrown or signalled.

Concurrent environment refers to an environment having multiple threads

and multiple executions.

Context switch refers to a change in the binding from a thread to an execution.
The execution that gets bound to a thread as a result of a context switch becomes

active.

122

123

Coroutine environment refers to an environment having one thread and many

executions.

Entry isindeed a class method. It is originally used in Ada to refer to a “method”
in a task. A task calling an entry may be blocked. The term “entry” is chosen to

emphasize the blocking property of a class method in a concurrent OO language.

Execution is an object implementing a sequential computation. Indeed, the
object state is the execution state of the sequential computation. An execution can

be either a coroutine or a task. A task has a thread, but not a coroutine.

Execution state refers to the context information of a sequential computation

including program counter, the stack and global variables.

Faulting execution is the execution propagating and handling a raised abnor-

mal event.

Guarded block is a sequence of statements protected by a set of handlers.

These handlers can catch an event propagated into the guarded block.

Handler is a sequence of statements executed when handling an abnormal event.
A handler catches a raised event when it is selected the propagation mechanism.

The handler is said to have handled the event only if it returns.

Handler clause is the set of handlers associated with the same guarded block.

In C++, all the catch phrases of a try block forms the catch clause.

124 APPENDIX A. GLOSSARY

Mandatory agreement refers to the requirement that a signalled event can only

be caught by a resuming handler, and a thrown event by a terminating handler.

Non-resumable operation is an operation that is erroneous to continue after

an abnormal condition occurs.

Propagating an event in an execution is the step of looking for a handler and

directing the control flow of that execution to the chosen handler.

Propagation mechanism defines how to find a handler for a raised abnormal
event. Propagating an event into a block means that the propagation mechanism
1s looking for a handler bound to that block, or more precisely, to one of its invo-

cations.

Raising an event means executing a raise statement statement in this thesis,
though it often implies propagating the event and unwinding the stack in other lit-
eratures. For asynchronous events, executing a raise statement is clearly separated

from propagating the event.

Resume has multiple meanings in this thesis. In the context of coroutine, it i1s a
context switching operation. It is also a handler return mechanism for an abnormal
event handling mechanism. Lastly, it refers a thread changing to the running state.

The context in which it is used should eliminate any ambiguity.

Signalling is the propagation mechanism without stack unwinding.

125

Source (execution) is the execution that raises an abnormal event. The source

and the faulting execution are different for an asynchronous abnormal event.

Stack unwinding is the destruction of one or more stack frames as a result of
a raised abnormal event. Stack unwinding usually happens during the propagation

of an event.

Thread is the element capable of executing statements of an execution sequen-
tially. Two or more threads execute statements independently unless they are
synchronized. In my concurrency framework, thread and execution state are two
orthogonal concepts because a thread can switch from one execution to another.
Nonetheless, a “thread” commonly refers to what I call a task, an object having a

thread and an execution state.

Throwing is the propagation mechanism with stack unwinding.

Bibliography

1]

BuHr, P. A., AND DITCHFIELD, G. Adding concurrency to a program-
ming language. In USENIX C++ Technical Conference Proceedings (Portland,
Oregon, U.S.A., Aug. 1992), USENIX Association, pp. 207-224.

BuHr, P. A., MACDONALD, H. 1., AND ZARNKE, C. R. Synchronous and

asynchronous handling of abnormal events in the uSystem. Software—Practice

and Ezperience 22, 9 (Sept. 1992), 735-776.

CARDELLI, L., DONAHUE, J., GLASSMAN, L., JORDAN, M., KaLsow, B.,
AND NELSON, G. Modula-3 report (revised). Tech. rep., DEC Systems Re-
search Center, 1989.

CARGILL, T. A. Does C++ really need multiple inheritance? In USENIX
C++ Conference Proceedings (San Francisco, California, U.S.A., Apr. 1990),
USENIX Association, pp. 315-323.

CASTAGNA, G. Covariance and Contravariance : Conflict without a cause.

ACM Trans. Program. Lang. Syst. (1995).

DreEw, S. J., AND GoucH, K. J. Exception Handling: Expecting the Un-

expected. Computer Languages 20, 2 (May 1994).

126

BIBLIOGRAPHY 127

7]

[10]

[11]

[12]

[13]

[14]

GEHANI, N. H. Exceptional C or C with Exceptions. Software—Practice and

Ezperience 22,10 (Oct. 1992), 827-848.

GOODENOUGH, J. B. Exception handling: Issues and a proposed notation.

Commun. ACM 18, 2 (Feb. 1975), 683-696.

GUERBY, L. 7Hypertext Ada 95 Rationale”. Intermetrics, Inc., 733
Concord Ave., Cambridge, Massachusetts 02138, Jan. 1995. Check

http://www.adahome.com/ for an online copy.

INTERNATIONAL BUSINESS MACHINES. OS and DOS PL/I Reference Manual,

first ed., Sept. 1981. Manual GC26-3977-0.

KENAH, L. J., GOLDENBERG, R. E., AND BATE, S. F. VAX/VMS Internals
and Data Structures Version 4.4. Digital Press, 1988, ch. 4.

KNUDSEN, J. L. Exception handling — a static approach. Software— Practice

and Ezxperience 14, 5 (May 1984), 429-449.

KNUDSEN, J. L. Better exception handling in block structured systems. IEEE

Software 4, 3 (May 1987), 40-49.

KOOENIG, A., AND STROUSTRUP, B. Exception Handling for C++ (revised).
In Proceedings of the USENIX C++ Conference (1990), USENIX Association,
USENIX Association, pp. 149-176.

Liskov, B. H., AND SNYDER, A. Exception handling in CLU. IEEE Trans.
Softw. Eng. SE-5, 6 (Nov. 1979), 546-558.

128

[16]

[20]

[21]

BIBLIOGRAPHY

MACLAREN, M. D. Exception handling in PL/I. SIGPLAN Notices 12, 3
(Mar. 1977), 101-104. Proceedings of an ACM Conference on Language Design
for Reliable Software, March 28-30, 1977, Raleigh, North Carolina, U.S.A.

MADSEN, O. L., M@LLER-PEDERSEN, B., AND NYGAARD, K. Object-
Oriented Programming in the BETA programming Language. Addison Wesley,
1993.

MEYER, B. Object-oriented Software Construction. Prentice Hall International

Series in Computer Science. Prentice-Hall, 1988.

MITCHELL, J. G., MAYBURY, W., AND SWEET, R. Mesa language manual.

Tech. Rep. CSL-79-3, Xerox Palo Alto Research Center, Apr. 1979.

MoTET, G., MAPINARD, A., AND GEOFFROY, J. Design of Dependable Ada

Software. Prentice Hall, 1996.

MURER, S., OMOHUNDRO, S., STOUTAMIRE, D., AND SZYPERSKI, C. It-

eration abstraction in sather. ACM Trans. Program. Lang. Syst. 18, 1 (Jan.
1996), 1-15.

STROUSTRUP, B. The Design and Evolution of C++. Addison Wesley, 1994.

TENNENT, R. D. Language design methods based on semantic principles.

Acta Infomatica 8, 2 (1977), 97-112. reprinted in [24].

WASSERMAN, A. I.. Ed. Tutorial: Programming Language Design. Computer

Society Press, 1980.

