
Exact Positioning of Data Approach to
Memory Mapped Persistent Stores:

Design, Analysis and Modelling

by

Anil K. Goel

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 1996

c
�

Anil K. Goel 1996





I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or indi-

viduals for the purpose of scholarly research.

I further authorize the University of Waterloo to reproduce this thesis by photocopy-

ing or by other means, in total or in part, at the request of other institutions or individuals

for the purpose of scholarly research.

iii





The University of Waterloo requires the signatures of all persons using or photocopy-

ing this thesis. Please sign below, and give address and date.

v





Abstract

One of the primary functions of computers is to store information, i.e., to deal with long

lived or persistent data. Programmers working with persistent data structures are faced

with the problem that there are two, mostly incompatible, views of structured data,

namely data in primary and secondary storage. Traditionally, these two views of data

have been dealt with independently by researchers in the programming language and

database communities.

Significant research has occurred over the last decade on efficient and easy-to-use

methods for manipulating persistent data structures in a fashion that makes the sec-

ondary storage transparent to the programmer. Merging primary and secondary storage

in this manner produces a single-level store, which gives the illusion that data on sec-

ondary storage is accessible in the same way as data in primary storage. In complex de-

sign environments, a single-level store offers substantial performance advantages over

conventional file or database access. These advantages are crucial to unconventional

database applications such as computer-aided design, text management, and geograph-

ical information systems. In addition, a single-level store reduces complexity in a pro-

gram by freeing the programmer from the responsibility of dealing with two views of

data.

This dissertation proposes, develops and investigates a novel approach for imple-

menting single-level stores using memory mapping. Memory mapping is the use of virtual

memory to map data stored on secondary storage into primary storage so that the data

is directly accessible by the processor’s instructions. In this environment, all transfer of

data to and from the secondary store takes place implicitly during program execution.

The methodology was motivated by the significant simplification in expressing com-

plex data structures offered by the technique of memory mapping. This work parallels
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other proposals that exploit the potential of memory mapping, but develops a unique

approach based on the ideas of segmentation and exact positioning of data in memory.

Rigorous experimentation has been conducted to demonstrate the effectiveness and ease

of use of the proposed methodology vis-a-vis the traditional approaches of manipulating

structured data on secondary storage.

The behaviour of high-level database algorithms in the proposed memory mapped

environment, especially in highly parallel systems, has been investigated. A quantitative

analytical model of computation in this environment has been designed and validated

through experiments conducted on several database join algorithms; parallel multi-disk

versions of the traditional join algorithms were developed for this purpose. An analytical

model of the system is extremely useful for data structure and algorithm designers for

predicting general performance behaviour without having to construct and test specific

algorithms. More importantly, a quantitative model is an essential tool for database

subsystems such as a query optimizer.
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Chapter 1

Introduction

Researchers and programmers working with complex and possibly large persistent data

structures have traditionally dealt with two different views of data, viz., the data stored

on secondary storage (e.g., a disk) and the structured data in primary storage as seen

by the processor’s instructions. These two views of data are largely incompatible with

each other. In primary storage, physical or virtual memory pointers are used to con-

struct complex relationships among data; establishing these relationships without mem-

ory pointers is often cumbersome and expensive. On the other hand, data on secondary

storage is organized without the use of memory pointers. The traditional approach of

maintaining and manipulating these two disparate views of essentially the same data

has resulted in a dichotomy that is quite artificial – researchers in the programming lan-

guage community have dealt primarily with the primary storage view of data, while the

database researchers have concerned themselves with the handling of data on secondary

storage. In addition, when dealing with secondary storage data, the programming lan-

guage community has tended to use tools, such as file systems, made available by the

operating system designers whereas the database community has designed and used

its own alternative tools. The dichotomy has meant, among other things, that the pro-

gramming language, database and operating system communities have spent significant

effort duplicating each others’ work, albeit in separate environments and with different

1



2 Introduction

immediate goals. A prime example of this replication of effort is the page replacement

strategies developed by the operating system designers as compared to the extensive

buffer management strategies developed by their counterparts in the database commu-

nity; the two strategies are often in conflict with, rather than enhancing, one another. An

additional consequence of maintaining the two views of data has been development of

applications that spend significant amounts of execution time converting data back and

forth from one view to the other. To be fair, it needs to be pointed out that the mentioned

dichotomy was borne out of, and sustained by, a lack of essential architectural tools be-

ing available at the user level. However, during recent years many of these historical

deficiencies have been removed or made less restrictive at the hardware and operating

system levels. This development, in conjunction with an increased appreciation of the

benefits provided by a merging of the two views of data, especially for complex emerg-

ing database applications, has resulted in a significant increase in collaboration among

the programming language, database and operating system communities.

1.1 The Single-Level Store

Significant research has occurred over the last decade, starting with the seminal work

by Atkinson, et al [ABC
�

83, AM85], on efficient and easy-to-use methodologies for con-

structing, storing, and subsequently retrieving and manipulating persistent data in a

fashion that makes the secondary storage transparent to the programmer. This research

extends primary storage practices and tools so that they also apply to secondary storage.

Merging primary and secondary storage in this way produces a single-level store, which

gives the illusion that data on secondary storage is accessible in the same way as data

in primary storage. This uniform view of data eliminates the need for complex and ex-

pensive execution-time conversions of structured data between primary and secondary
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storage and allows the use of the expressive power and the data structuring capabil-

ities of a general purpose programming language for creating and manipulating data

on secondary storage, which is analogous to the goals of virtual memory. Although a

single-level store was investigated as far back as the Multics system (1968) [Org72], it

has seen only limited use, even in the field of operating systems. Only in the last few

years has the use of single-level stores blossomed in both the database and program-

ming language communities [CFW90, SZ90a, LLOW91, RCS93]. In complex design en-

vironments, a single-level store offers substantial performance and programming advan-

tages over conventional file or database access. These advantages are crucial to complex

database applications such as computer-aided design, text management, and geograph-

ical information systems.

While there are several ways to implement a single-level store, some projects do so

using memory mapping. Memory mapping is the use of virtual memory to map data

stored on secondary storage into primary storage so that the data is directly accessible

by the processor’s instructions. In this environment, there are no explicit read and write

routine calls to access data on secondary storage. All I/O operations are done implicitly

by the operating system during execution of a program when pointers are calculated

and dereferenced. Hence, data structures related by pointers (e.g., a linked list) can be

stored onto secondary storage and still be manipulated directly via pointers. When the

working set of a database program can be kept entirely in memory, performance begins

to approach that of memory-resident databases.

While there are few disadvantages in using memory mapping, it is still uncommon

to see it used for accessing secondary storage in traditional file and database systems.

One explanation is a lack of general virtual memory hardware on many computers and

limited access to memory mapping capabilities by older operating systems. Stonebraker

concluded [Sto81] that the DBMSs made little or no use of services offered by the operat-
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ing system because these services were either inefficient or inappropriate. However, with

today’s large virtual address spaces (32-64 bits and more) and powerful memory man-

agement co-processors, memory mapping of secondary storage makes excellent sense,

and operating systems are beginning to provide access to this capability, e.g., the mmap

system call in UNIX and more general access to virtual memory in the Mach [TRY
�

87]

and SunOS [Sun90] operating systems.

1.2 Exact Positioning of Data Approach to Memory Mapping

All single-level stores support addresses in some form to relate data, and these addresses

directly reference the data. The particular addressing mechanism used is central to the

design and performance of each persistent storage system; Cockshott [Coc85] gives a

general overview of a number of possible addressing schemes. Fundamental to all per-

sistent storage systems is the following addressing problem. When data is copied from

secondary to primary (or virtual) storage, either the data must be positioned exactly

where it was originally created to maintain integrity of embedded pointers, or the em-

bedded pointers must be modified to reflect the new location of data in primary storage.

The former is difficult to handle because data from multiple files or databases may need

to be copied to the same locations, thereby producing an irreconcilable conflict. The

latter case is difficult to handle because it must be possible to locate all embedded point-

ers so they can be updated, and there is the additional complexity and runtime cost of

reliably modifying the pointers. Pointer modification in this manner is called pointer

swizzling [CAC
�

84, Mos90]. Pointer swizzling is essentially a software version of vir-

tual memory. A reference through a pointer to data on disk is detected by a software

or hardware check, storage is allocated in primary storage, the data from disk is copied

into that storage, and finally, the dereferenced pointer is updated (swizzled) to refer to
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the primary storage location of the data read from secondary storage. Depending upon

the actual swizzling technique used, future uses of the same pointer may need no fur-

ther checking to access the primary storage copy of the data directly. Pointer swizzling

is called lazy when done only for the pointer being dereferenced, i.e., when the pointer

is actually used during execution, and eager when done for the dereferenced pointer as

well as all pointers embedded in data read into primary storage. In the latter case, the

amount of data read in, over and above that needed by the specific pointer dereference,

varies; it can be the size of a logical unit such as an individual record, or a fixed size such

as a page or disk block. The smaller the amount of data read at one time, the greater the

total I/O cost; alternatively, the larger the amount of data read, the more pointers that

may need swizzling even if they are never dereferenced. In lazy pointer swizzling, there

is normally some additional cost for each dereference of a pointer to determine if the

pointer has already been swizzled. Eager swizzling of pointers, on the other hand, elim-

inates the per dereference check at the cost of swizzling some pointers that may never be

dereferenced. Two other types of pointer swizzling techniques that have been proposed

recently are called ad hoc and hybrid pointer swizzling.

Ad-hoc pointer swizzling uses memory mapping techniques coupled with swizzling

of pointers, as described below. In ad-hoc schemes, the persistent pointers are the same

size as the virtual memory pointers and the two may be identical. Whenever possible,

the page containing the referent data is copied into the virtual memory indicated by the

persistent pointer being dereferenced, i.e., an attempt is made to memory map the disk

page to the virtual memory locations where the page was last memory resident so that

pointers to data contained in the page remain correct. If the desired virtual memory

locations are already occupied, e.g., when two objects with identical persistent pointers

from different persistent storage areas need to be accessed simultaneously, swizzling is

employed. One major problem exhibited by ad-hoc schemes is their greedy allocation of
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virtual memory.

Hybrid pointer swizzling combines the benefits of lazy and eager schemes, and at-

tacks the greedy virtual allocation problem by dividing the swizzling process into two

phases. In the first phase, embedded pointers are swizzled into an intermediate for-

mat called partly swizzled pointers. A partly swizzled pointer is converted into its final

memory format called fully swizzled pointer when it is actually dereferenced. Details of

the various pointer swizzling techniques are presented in chapter 2. In general, direct

pointer manipulation, e.g., pointer arithmetic, is impossible in most swizzling schemes.

The first persistent storage systems to appear [PS-87, Bro89] used lazy pointer swiz-

zling implemented entirely in software. In recent times, schemes have been proposed

that perform eager pointer swizzling at page fault time [Wil91a] or employ hybrid swiz-

zling of pointers [VD92]. ObjectStore [LLOW91] is a commercial database system that

uses ad hoc pointer swizzling, and other similar schemes have recently appeared, such

as QuickStore [WD94]. However, a significant performance advantage of a single-level

store is lost if all or most of the pointers embedded in data have to be swizzled. This loss

of performance is especially significant for operations that incur high overhead in data

preparation; examples include operations like sequential scans, where the data is ac-

cessed only once, and operations that deal with large data structures with small primary

storage, where the data is implicitly fetched and prepared multiple times. Therefore,

I have pursued an alternative approach to memory mapping, called exact positioning of

data (EPD) that eliminates the swizzling overhead for pointer dereference.

1.2.1 EPD Approach

As part of this pursuit, I have developed a toolkit, called � Database (pronounced micro-

database), for building persistent data structures using the EPD approach to memory

mapping. The EPD approach employs a novel technique that allows application of an
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old solution to the problem of address collisions when multiple files or databases are

accessed simultaneously by an application. The old solution is hardware segmentation;

each hardware segment is an address space, starting at a virtual zero, in which persis-

tent data structures can be built, stored, and subsequently retrieved and updated. Data

stored in multiple segments can be simultaneously accessed by an application program

because each segment has its own non-conflicting address-space. When a segment is

mapped into primary memory, embedded pointers that refer to data within the segment

do not require modification and are treated like normal memory pointers; inter-segment

or inter-database pointers require special treatment, but in general, these pointers repre-

sent a small percentage of the total number of pointers accessed during a typical database

computation. The issue of intra and inter-segment pointers implemented in software

was addressed by van Dam and Tompa [vDT72] in 1971. More recently, the MONADS

architecture [Ros90] employs similar ideas at a hardware/architectural level in its object

store layer. The current implementation of � Database is based on the UNIX operating

system and uses the system call mmap to mimic segmentation on conventional hardware

without user accessible support for segmentation; Brown’s stable store [Bro89] predates

this work and also uses mmap to implement a single repository persistent store.

1.2.2 Multiple Accessible Databases and Inter-Database Pointers

The EPD approach, and some other memory mapping schemes, support multiple simul-

taneously accessible persistent areas or databases, each of which can be viewed as an

independent single-level store by a program. This support is fundamental to the world

view adopted in this work that there will always be multiple, independent data reposi-

tories motivated by the desire to cluster related data, enhance security, make it easier to

distribute data and simplify addressing. All schemes that support simultaneous access to

multiple databases have to deal with the problem of inter-database pointers that are re-
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quired to construct relationships among objects stored in different databases. Although

the complexity of implementing inter-database pointers varies with individual schemes,

there is usually some cost to be paid for the processing of inter-database pointers over

and above the cost of dereferencing intra-database pointers. Some schemes bypass the

problems related with accessing multiple databases by only supporting a single persis-

tent address space, i.e., all persistent objects live in a single repository and are uniformly

accessed on disk(s). Such systems usually require a format for persistent pointers that

allows a very large persistent space. However, the support is provided at the cost of pre-

cluding the notion of multiple repositories, which I believe is unrealistic. Further, these

systems incur high execution time costs associated with pointer swizzling.

As a consequence of the additional cost imposed by the processing of inter-database

pointers, the performance of all multi-database approaches degrades when an applica-

tion program dereferences a relatively large number of inter-database pointers as com-

pared to intra-database pointers. It is typical for a computation to dereference many

more intra-database pointers than inter-database pointers. The clustering of related ob-

jects in both traditional and emerging database applications is a widely accepted phe-

nomenon that supports the above assertion. It would be interesting to conduct a study

of existing applications to determine the number of near objects and far objects referenced

during a computation. Such a study, however, is beyond the scope of this work and I

was unable to find any published reports to contradict the popular wisdom as it applies

to this aspect. In other words, the degenerate case for multi-database approaches is quite

atypical for real applications and the cost of supporting multiple databases is completely

justified by the benefits derived from such support.

It should also be pointed out that the performance of multi-database memory map-

ping schemes approaches the performance of single-database memory mapping schemes

for applications that only access a single database if the memory mapping approach op-
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timizes the case where data can be copied into its previous memory locations. The dif-

ferences among various memory mapping schemes arise when an application needs to

access multiple databases simultaneously.

When compared with other multi-database approaches, the main disadvantage of

the EPD approach is the additional cost of accessing data between segments under cer-

tain scenarios. In the EPD approach, an inter-database pointer is always dereferenced

within the virtual space of the segment corresponding to the database containing the

referent data. Thus, the additional cost of dereferencing an inter-database pointer is the

cost of establishing a connection to the appropriate segment, where the actual derefer-

encing of the pointer takes place at normal intra-database pointer dereference speeds.

However, sometimes data from one database is needed simultaneously with data from

another database, e.g., when data objects from different databases need to be compared

during the execution of a program. This situation can be handled in three different ways,

depending upon the facilities provided by the hardware and the operating system:

1. by using hardware segment instructions, e.g., an inter-segment compare instruc-

tion,

2. by copying data directly from one segment to the other by means of block move

instructions, which implies an inter-segment copy instruction,

3. by copying data into and out of a shared memory area that is accessible to all

segments.

On hardware that does not support segmentation, no inter-segment instructions exist

and it is necessary for segments to share some portion of their address space for transfer-

ring information, possibly for further processing. Therefore, � Database segments have

an address space that is divided into private and shared portions implemented using

shared memory.
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The lack of segment hardware forces inter-segment copying of data, resulting in poor

performance of the EPD approach when the nature of computation requires copying

large amounts of data out of containing segment(s) to shared memory. Other multi-

database approaches have similar degenerate cases. For example, schemes that map

data from multiple databases into a single segment do not have to copy data in a man-

ner similar to the EPD approach. However, such schemes have to deal with the issue

of virtual address collisions and the solutions to this problem impose additional costs;

e.g., White and DeWitt[WD94, p. 406] showed that for the worst case scenario involving

relocations, the performance of their storage system worsened by a factor of three. What

is essential is that the degenerate case does not occur often. In subsequent chapters,

different techniques will be demonstrated that significantly reduce copying in the EPD

approach, further reducing degenerate situations.

1.2.3 EPD Persistence Model

The following terms are used in this dissertation. A file structure is defined to be a data

structure that is a container for user records or arbitrarily complex data structures on

secondary storage; a file structure may relate the contained data in a particular way, for

example, maintaining a set of records in order by one or more keys. A file structure is

conceptually similar to a database and the two terms are used inter-changeably in this

dissertation. An access method is defined to be a particular way the data objects in a

file structure are accessed; each access method provides a particular interface to the file

structure. Examples of different access methods are: one time reading of a set of records,

sequential access of records, keyed access of records, depth first traversal of a B-Tree.

The EPD approach to memory mapping uses the notion of a separate persistent area

in which data objects are built or copied if they are to persist; this decision was influenced

by ideas presented by Buhr and Zarnke [BZ86, BZ89]. From the user’s perspective the
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approach is largely traditional, as user data must be copied to and from the persistent

area through a traditional interface (e.g., get() and put()) that provides encapsulation

of the file structure to ensure its integrity. Therefore, in this design, memory mapping

normally comes into play only for the file structure designer, which is necessary to sup-

port multiple accessible file structures in a single application while allowing each file

structure to use conventional memory pointers without having to perform any pointer

modification whatsoever.

The major alternative to this persistence model is reachability. Reachability is the no-

tion that once a pointer has been made persistent, all data reachable from that pointer

also persists. In other words, a data item persists as long as some active data item refers

to it, directly or indirectly. In systems based on reachability, the executing program cre-

ates an arbitrarily complex data structure in its address space and stores a root pointer to

that data structure into a persistent store. Upon program termination, the system performs

a recursive traversal of the data structure, storing it in some way in the persistent store;

retrieval occurs in a simpler fashion by dereferencing the root pointer, which causes the

data structure and all of its referenced elements to become accessible. The concept of

reachability relies on the existence of a special object, usually called the persistent root.

All objects in the transitive closure of the persistent root are reachable from the root and,

therefore, persist.

Reachability is a powerful abstraction with some very beneficial properties especially

from the user’s point of view, because the user is completely relieved of the responsibility

of having to manage object storage. The user does not have to explicitly specify persis-

tence for the objects, neither does the user have to worry about freeing storage for ob-

jects that are no longer needed because deallocation happens automatically in a system

based on reachability. However, these benefits come at a hefty price because reachability

imposes complex storage management and garbage collection requirements upon the
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system, which in my view, constitute a prohibitive cost. As well, while system handled

storage management is useful for most applications, it prevents the implementation of

sophisticated user-defined schemes, which are essential in certain circumstances. Also,

it may be impossible to delete objects from the store if references to the objects “leak

out”, which may be an unacceptable prohibition from an object management point of

view. Reachability also implies that there can never be a dangling reference in the store.

I do not believe that such a requirement is scalable without an exorbitant implementa-

tion and/or run time cost. Finally, underlying the notion of reachability is a world view

that consists of a single ether, i.e., all objects live in a single address space that spans

all physical storage devices in the system, the network and even the entire universe.

The notion of the ether is in direct contrast to my chosen world view comprising of re-

lated objects stored in independent collections; a view I believe is much closer to the real

world of objects. While it is possible to selectively apply the abstraction of reachability

to independent collections of objects, such an attempt dilutes the concept and results in

a diminution of the benefits of reachability. In view of these reasons, I have chosen the

explicit persistent areas model over reachability for this work.

1.3 Motivation

I was motivated to investigate a memory mapped single-level store based on the EPD

approach because it seemed like the perfect solution to the dichotomy between program-

ming language and database techniques, and yet I found very little evidence of its use

in universities or in industry. At the beginning of my investigation, there were only a

few systems in various stages of development, and these systems either were based on

a world view I considered unrealistic (single persistent address space) or did not apply

the memory mapping technique as directly as I envisaged. In addition, there was a com-



1.4 The Thesis 13

plete lack of experimental evidence for or against the effectiveness of single-level stores

in general and memory mapped single-level stores in particular. A sound practical and

theoretical framework in which to measure and evaluate this emerging research was also

missing. Consequently, I have pursued the EPD approach to memory mapping, outlined

in section 1.2, for building single-level stores. I have designed and developed a method-

ology for implementing memory mapped single level stores based on the EPD approach,

performed rigorous experimentation to demonstrate the effectiveness of the approach,

developed algorithms tuned for performance in an EPD environment and constructed a

theoretical framework within which the EPD and other related approaches can be stud-

ied and evaluated. In addition to findings presented in this dissertation, the approach

followed by this work has been vindicated by the emergence of other systems that have

followed similar approaches.

1.4 The Thesis

The thesis of this dissertation is that the EPD approach to memory mapping provides a

means of simplifying the implementation and improving the performance of the meth-

ods used for manipulation of persistent data. The major issues and problems arising

from the use of the EPD approach to memory mapping as a means of building a per-

sistent storage system or database are examined. Many of the problems, such as par-

allelization of I/O, have essentially the same implications in memory mapped systems

as they do in traditional databases. However, the use of memory mapping allows more

efficient and straightforward solutions and provides an enormous benefit in terms of

simpler interfaces between the low-level database structures and the database designer,

and subsequently, between the DBMS and the end user. Memory mapped databases are

simpler to implement than their traditional counterparts, while eliminating the need for
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a traditional buffer manager as the operating system manages all I/O operations. On

the other hand, some problems, such as recovery control, are much harder to solve in a

memory mapped system, largely due to the lack of essential support at the architectural

level. As well, some inefficiencies can be introduced because of lack of control over page

replacement in most contemporary architectures.

In order to demonstrate the thesis, a prototype implementation, an experimental

testbed and a theoretical model were designed and developed:

� to allow experiments to be conducted for comparing the construction and perfor-

mance of memory mapped data structures with their traditional counterparts,

� to identify fundamental problems related to the memory mapping approach and

its implementation on conventional architectures,

� to provide strong empirical evidence that traditional database techniques can be

efficiently implemented in a memory mapped environment with significantly re-

duced programming effort,

� to show that the solutions presented are stable enough to allow the construction of

analytical models for predicting behaviour,

� to provide necessary theoretical and experimental tools that can be used for study-

ing high level sequential as well as parallel database algorithms and for perfor-

mance tuning.

In parallel with the work presented in this dissertation, a few other proposals have

been published that exploit similar ideas and contain some common features. However,

each of the other proposals has differences that make this work novel. These differences

have a profound impact on how each proposal works. In some cases, the differences are



1.4 The Thesis 15

largely in the way the overall system is constructed. The important thing to note is that

these systems have been developed independently and most have been commissioned

only in the last few years. Further, since memory mapping technology is still in a nascent

state, there are few measures by which to judge memory mapped systems, making it im-

possible to evaluate and compare these proposals. All the approaches have to be consid-

ered viable and pursued much further before a consensus or a clear winner emerges. It

is partially for this reason that I decided to do extensive modeling work; no other project

has developed a quantitative analytical model of a memory mapped system. It is my

belief that the model will prove extremely useful for studying and evaluating various

memory mapped and related systems. In addition to the conceptual differences with

other work, another unique feature of this work is the extensive experimentation that

has been carried out on a number of different database structures.

There are some aspects of the thesis that have not been implemented due to the size

of the undertaking. A deliberate decision was made to concentrate efforts on building

the core module of the system and on performing an extensive performance analysis,

both comparative and quantitative, of the system. Further, the emphasis of my work has

been on the storage aspects of a persistent system and, as such, language design issues

were not examined in detail. As a result, I chose to add persistence mechanisms to an

existing language, � C++ [BDS
�

92], by means of a set of library classes that can be linked

with the applications that need to manipulate persistent data.

1.4.1 Dissertation Overview

The dissertation is divided into the following parts:

� Single-Level Stores: Chapter 2 motivates and introduces memory mapping and

the EPD approach to building a single-level store in more detail. Advantages and
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disadvantages of memory mapping and single-level stores over the traditional ap-

proaches are outlined, followed by an extensive survey of related work.

� The EPD Approach to Memory Mapped Stores: Chapter 3 presents the main body

of this work; the contributions have been divided into four parts:

1. The EPD approach proposed and developed by this dissertation is presented

along with a detailed design and critique of the system. The presentation

includes a comparison with related work.

2. The EPD approach allows general primary storage programming languages

tools to be applied, with equal ease, to secondary storage data and its ma-

nipulation. It is demonstrated how these techniques are used in building file

structures based on the EPD approach. A detailed description of the pro-

gramming interface to � Database is also provided.

3. In addition to building sequential file structures, partitioned file structures

and parallel access methods were designed, developed and analyzed. Details

of an investigation into the issue of parallelism in an EPD based system are

presented. Parallelism is exploited both at the storage and retrieval levels.

4. An analytical model of computation for making accurate predictions is an im-

portant tool that goes a long way towards demonstrating the thesis. A survey

of the existing I/O and memory models revealed that none of these models

applied well to the system proposed in this dissertation. Consequently, sig-

nificant effort was devoted to the design and development of a reliable ana-

lytical model of the proposed system. To make the effort even more useful,

the model that has been developed is quantitative as opposed to qualitative.
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� Experimental Analysis of EPD File Structures and Access Methods: Chapter 4

presents the results of a series of experiments conducted on a carefully designed

testbed. The experience gained from conducting these experiments suggests not

only that EPD file structures and their access methods can be built more easily than

their traditional counterparts, but also that, in most cases, memory mapped struc-

tures perform as efficiently or better than their traditional counterparts. Further re-

sults presented in the chapter show that memory mapped parallel access methods

perform quite admirably in an EPD system and offer some distinct advantages.

� Applying and Validating the Analytical Model: Parallelized multi-disk versions

of several database join algorithms were designed and implemented. The analyti-

cal model developed as part of this work was employed to perform a quantitative

analysis of these algorithms when run on a specific machine. The analysis and its

verification by means of experiments are presented in chapter 5.

� Unresolved Aspects of the System: Two important services provided by a DBMS

are concurrency and recovery control. These aspects have not been dealt with in

the current phase of this work. Chapter 6 contains a discussion of problems as-

sociated with providing these services in EPD systems. The discussion includes a

survey of related work highlighting approaches taken by related memory mapped

single-level stores. Some of these solutions can be applied to systems based on the

EPD approach.





Chapter 2

Memory Mapping and Single-Level Stores

The main objective of this work is to investigate issues surrounding a single-level store

based on the exact positioning of data (EPD) approach to memory mapping. The main

reasons for using a single-level store are:

� A single-level store eliminates the need for expensive execution time conversions

of structured data that are essential in a traditional multi-level store. As well, the

cost of referencing persistent data is the same as a normal memory reference once

the initial transfer of data from secondary to primary memory has occurred.

� The uniform view of data afforded by a single-level store has various other im-

plications, the most important of these being reduced programming complexity,

and the availability of the expressive power and the data structuring capabilities

of a general purpose programming language for creating and manipulating data

stored on secondary storage.

In a single-level store based on the EPD approach, the contents of a mapped file

structure are accessible by a program just like the contents of a data structure in primary

storage. What differentiates a mapped file structure from primary memory data is that

the file structure data persists after a program using it terminates and during its use,

the time to access its data is non-uniform because the file structure is kept on secondary

19
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storage but is implicitly cached in primary storage by memory mapping. In � Database, a

file structure is maintained in a named UNIX file. A mapped file structure and its access

methods need to be optimized to achieve good performance in the face of non-uniform

access time, usually by improving locality of references by clustering related objects.

2.1 Motivation for Using Memory Mapping

Complex data structures in primary storage are usually organized with memory pointers

used directly by the processor’s instructions, rather than organized physically, such as

elements of an array or records in a disk block. It is extremely difficult and cumbersome

to construct complex relationships among data objects without the help of direct point-

ers. Thus, it is highly desirable to be able to use pointers in organizing and relating data

in a file structure. However, it is generally impossible to store and retrieve data struc-

tures containing direct pointers from secondary storage without converting (at best) the

pointers or (at worst) the entire data structure into a different format. In other words,

the data structure in primary storage has to be reorganized into a form (e.g., a stream of

bytes) that is suitable for secondary storage; the reverse must take place when the stored

data structure is retrieved into primary storage. Considerable effort, both in terms of

programming and execution time, is required to transform data from one format to the

other in this manner. As an example, figure 2.1 illustrates the transformations that occur

for restructuring a tree data structure into a stream of bytes suitable for secondary stor-

age and vice-versa. The transformations X and Y are data structure specific and must be

executed each time the data is written to or read from secondary storage. Consequently,

the use of powerful and flexible data structuring capabilities of modern programming

languages are not directly available for manipulating secondary storage data.

In spite of these rather taxing difficulties, database implementors have traditionally
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Figure 2.1: Two Views of Data

rejected the use of memory mapped files and have chosen to implement the storage level

support for databases using traditional approaches (e.g., explicit buffer management).

This rejection is not entirely based on a lack of availability of memory mapping facilities.

The earliest use of memory mapping techniques can be traced back more than 20 years

to the Multics system [BCD72]. However, earlier operating systems, including Multics,

provided these facilities in a framework that was very rigid and difficult to work with.

There are other reasons given to explain why memory mapping has not been popular

with database designers. Among the most notable of these reasons are [SZ90a, p. 90]:

� Operating systems typically provide no control over when the data

pages of a mapped file are written to disk, which makes it impossible

to use recovery protocols like write-ahead logging [RM89] and sophis-

ticated buffer management [CD85].

� The virtual address space provided by mapped files, usually limited to

32 bits, is too small to represent a large database.
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� Page tables associated with mapped files can become excessively large.

These criticisms, while valid in the past, are no longer as strong now. The rebuttals

to these criticisms, as pointed out in [CFW90], are:

� Newer operating systems, such as Mach [TRY
�

87] and SunOS [Sun90],

are considerably more liberal in what they allow users to do with the

underlying virtual memory system. Mach provides user-level facilities

to better control when the data pages of a mapped file are written back.

� The address space provided by 32 bits, while not excessively large, is

sufficient for many emerging and traditional applications. Addition-

ally, processors with larger virtual address spaces (up to 64 bits) have

become commercially available, e.g., the MIPS R4000 [Mip91] and the

DEC Alpha [Sit92] microprocessors.

� Memory management schemes are becoming more sophisticated so that

less memory is used for page tables. For example, some implementa-

tions employ N-level paging and page tables that are smaller than the

size of the area they map, by using subscript checking before indexing

the page table [RKA92].

Using memory mapping to implement a single-level store offers a number of advantages

that significantly simplify the development of file structures in complex design environ-

ments, such as CAD/CAM systems. These advantages are described in detail in section

2.2.2, and clearly outweigh any disadvantages of memory mapping described in section

2.2.3.
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2.2 Memory Mapping and the EPD Approach

As illustrated in Figure 2.2, memory mapping is the technique of using the underlying

hardware and software architectural support for virtual memory to map some portion

of the secondary storage (e.g., a disk file) into the virtual address space of a program, so

that the data stored on secondary storage becomes directly accessible by the processor’s

instructions. Once mapped, the secondary storage data has a one-to-one correspondence

with its image in virtual memory.

Secondary Storage

FILE

Primary Storage Virtual Memory
Support

object
arbitrarily complex

Figure 2.2: Memory Mapping

The concept of virtual memory has been expounded upon in detail in the literature

(see [Den70]) and a basic understanding of virtual memory is assumed in this disserta-

tion. Virtual memory capabilities and their accessibility vary substantially among differ-

ent computer architectures. In general, there are two major capabilities: segmentation

and paging, which can be used independently or together. A segment is a variable sized

contiguous area of virtual memory with a fixed starting address, usually 0. This starting

address is called the virtual zero. Conceptually, a segment is a set of contiguous pages

in virtual memory, where a page is a fixed size range of virtual addresses. The physical

memory analogue of a virtual memory page, called a memory frame, is a fixed size range
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of contiguous physical memory locations. Paging is the ability to map a non-contiguous

set of physical memory frames onto a contiguous set of virtual memory pages.

Depending on the system capabilities, memory mapping can map a file structure

into a new segment or into a portion of an existing segment. Because this work adopts

the EPD approach to memory mapping, a file structure is mapped into its own dedi-

cated segment; otherwise the mapping cannot be guaranteed to start at the same virtual

address each time the file structure is mapped, and memory pointers embedded in per-

sistent data cannot be used to access the referent data without first being relocated or

swizzled (address consistency problem). The ability to store direct memory pointers to

relate data in a file structure and to use these pointers, without modification, to access

the referent data is essential to the design presented in this dissertation. Demand seg-

mentation and paging, the abilities to copy only those pages of a segment into primary

storage that are referenced during execution, are also essential to this design because a

file structure is almost always larger than the primary storage capacity of the machine.

Notice that demand paging conceptually performs the function of a traditional buffer

manager, except that the buffering is implicit and tied into access at the instruction

fetch/store level. Ideally, different page replacement algorithms are required for dif-

ferent kinds of access patterns to achieve maximum efficiency, but the desired efficiency

is possible with relatively few different page replacement schemes [Smi85]. Although

commercial operating systems have traditionally supported a single system-wide page

replacement scheme, many systems are beginning to provide tools that allow applica-

tion programs to influence the underlying page replacement strategy. In addition, some

research projects are building operating systems with specialized paging support geared

towards persistent systems.
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2.2.1 Non-Uniform Access Speed

When constructing a memory mapped file structure, it is imperative to understand that

certain access behaviours can be expensive. While the contents of a file structure are

made directly accessible to the processor, the access speed is non-uniform – when the

page containing a reference has to be read in, a long delay occurs as for a traditional disk

read operation, otherwise the reference is direct and occurs at normal memory speed.

Non-uniform access is an aspect of performance that a file structure designer will never

be able to control in its entirety as the use of memory mapping involves a deliberate

decision to let the operating system be in control of the demand aspect of segmentation

and paging to make efficient use of primary storage and other system resources. Unless

different page replacement schemes can be selected by individual applications, a file

structure designer can, at best, influence the effects of paging by controlling the man-

agement of primary storage and, to a lesser extent, by controlling disk allocation. While

this lack of control seems like a fundamental flaw, experimental work has shown that it

presents few practical problems, except for certain specialized access patterns, depend-

ing upon the particular page replacement strategies available. The problem is further

mitigated by advancements in the operating system technology mentioned earlier.

2.2.2 Advantages

The following are some of the benefits that are derived from using single-level stores,

especially memory mapped stores, to build file structures and their access methods.

Uniformly Accessible Data: The dichotomy resulting from maintaining two disparate

views of data in traditional programming systems has been mentioned earlier.

Pointers embedded in a data structure must be transformed in order to be com-

patible with secondary storage before they can be stored and the reverse must oc-
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cur during retrieval. For example, a CAD/CAM designer may want to store data

organized in the form of a CSG tree [Req80] on a conventional file system, e.g., the

UNIX file system. The access method designer must devise ways of expressing

the CSG tree in the form of a stream of bytes, and either graph operations execute

on this stream of bytes emulating a graph, or the primary memory graph must

be regenerated during retrieval. Both approaches result in significant overhead in

terms of program complexity and execution time. A single-level store greatly re-

duces and even eliminates these deficiencies by allowing the use of programming

language constructs for organizing persistent data. No conversion of primary stor-

age data structures is necessary to store them on secondary storage, which results

in significantly improved performance.

A Single Pointer Type: Single-level stores based on pointer swizzling schemes present

a uniform view of all data to an application program but these systems use differ-

ent formats for pointers to persistent and transient data; the conversion of pointers

from one form to the other is transparent to the executing program. In the EPD ap-

proach, however, normal memory pointers are stored directly on secondary stor-

age without any transformation, and used subsequently to access the referent data.

When pointers to persistent data are dereferenced during execution of a program,

the I/O necessary to bring the referent data into primary storage occurs implicitly

through the virtual memory mechanisms.

For rather simple data structures, like a B-Tree, the elimination of pointer swiz-

zling does not result in a major performance improvement. However, for complex

data structures, such as graphical objects in a CAD/CAM system or in a geograph-

ical information system, where a large proportion of the data consists of pointers,

there is a significant performance advantage resulting from the elimination of the
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transformation of pointers from one format to the other.

Elimination of Explicit Buffer Management: Efficient buffer management is crucial for

the performance of a traditional database system and writing a good buffer man-

ager is complex. Further, given the availability of a buffer manager, a file struc-

ture designer must be skilled in its usage to achieve good performance, explicitly

invoking the buffer manager’s facilities correctly, possibly pinning/un-pinning

buffers, which results in code that is complex and difficult to write, understand

and maintain.

In a memory mapped system, all data is implicitly buffered, with the I/O be-

ing done by the underlying operating system. This model of I/O results in signif-

icantly less complex access methods. I/O management is completely transparent

and is handled at the lowest possible level, where it has the potential to have the

greatest effect on the overall efficiency of the system, particularly on a shared ma-

chine.

Unfortunately, most contemporary operating systems do not allow an applica-

tion to select its own page replacement strategy. This lack of choice nullifies the ad-

vantage of memory mapping for some specific applications. However, subsequent

results will show that, in general, the buffer management provided by a typical op-

erating system page replacement algorithm produces results that are comparable

to a hand-coded buffer-manager for a number of varied access patterns.

Simple Localization of Access: The apparent direct access of all memory locations im-

plies that any data structure can be stored on secondary storage. This feature,

which gives a false sense of control to the file structure designer, and coupled with

non-uniform access of locations can result in data structures that are not appropri-

ate for the memory mapping (or any other) approach from a performance view-
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point. The main design criterion for constructing memory mapped access meth-

ods is localization of data access. While locality of references is crucial for all data

structures where access is non-uniform, memory mapped access methods can eas-

ily take advantage of it by controlling memory layout. Simple changes to mem-

ory allocation strategies can produce significantly better performance in memory

mapped access methods due to localization of accesses.

Because the data structures on secondary storage can be manipulated directly

by the programming language, tuning for localization is straightforward. Also,

this capability provides a wider spectrum of choices for the designer. A trade off

between complexity (of increasing locality of references) and performance can be

exploited to achieve a desirable balance.

Rapid Prototyping: By relieving the file structure designer of the responsibility of deal-

ing with two different views of data in essentially two different environments, a

file structure can be reliably constructed in a shorter period of time. The file struc-

tures discussed later in this dissertation were constructed and debugged quickly.

Building a file structure based on the EPD approach is further assisted by the

ability to use all the available programming language tools. For example, language

polymorphism can be exploited to reuse existing code, and an interactive debug-

ger can facilitate quick detection of errors. When debugging, it is possible to exam-

ine secondary storage data as easily and efficiently as primary storage data. Other

programming language tools such as execution and storage management profilers,

and visualization tools are also directly usable for secondary storage data.

Better Utilization of a Shared System: In memory mapped systems, all I/O is per-

formed by the underlying page replacement algorithm, which allows the oper-

ating system to be fair to all users and to dynamically respond to the system load
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both from database and non-database access. When the system load is light, it is

perfectly reasonable to allow large portions of the database to reside in memory.

During times of heavy load, database applications share available resources with

other applications. In traditional database systems, the buffer manager is often in

conflict with other users of the machine, holding resources it is not currently using

when access to the database is low.

In general, access methods built using memory mapping cannot make guaran-

tees about absolute performance during execution on a shared system any more

than traditional access methods and buffering strategies can. In both cases, state-

ments about performance are only valid if there are no other applications running

on the machine. In reality, most database systems share the machine with other

applications that affect performance in unpredictable ways. It is my contention

that tying file access into the paging mechanism allows better overall system re-

source utilization and that memory mapped access methods have the potential to

achieve better performance on a shared system than traditional database systems.

This assertion is based on the fact that the operating system has knowledge about

the entire state of the machine, and therefore, has the potential to make informed

decisions to achieve good overall performance. Further, memory mapped access

methods can immediately benefit from any extra memory that becomes available

in the system, even on machines elsewhere in the local-area network [FMP
�

95].

Improved Support for Large Objects: Memory mapping provides the file structure de-

signer with a contiguous address space even when persistent data is not stored

contiguously, which means that a large single object may be split into several ex-

tents on one disk or several disks and the application does not need to be aware

of this splitting. In traditional systems, the buffer manager has to be designed to
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explicitly support this seamless view of individual objects in a file structure con-

sisting of non-contiguous fixed-size blocks on secondary storage.

Further, systems based on conventional pointer swizzling schemes are con-

strained to read at least a whole object. An entire object must become memory-

resident when a pointer to it is dereferenced in order to maintain integrity of refer-

ences to persistent objects. In virtual memory based systems, partial objects can be

memory-resident; only those pages of a multi-page object that are referenced need

to be read into virtual memory resulting in a significant performance advantage

for applications that make sparse use of large objects.

Elimination of Double Paging: In traditional systems, the buffer management pro-

vided by the database system can be at odds with the underlying virtual memory

management of the operating system. This conflict can result in excessive and un-

necessary I/O, unless facilities are provided to instruct the operating system not to

manage the buffer space in virtual storage. Not all operating systems provide such

a facility nor will they guarantee to honour such a request. In a memory mapped

system this problem is eliminated.

Pointer Arithmetic: An important advantage of the EPD approach for building a single-

level store is the ability to perform normal pointer arithmetic on pointers to per-

sistent data structures. While all programs may not need to perform pointer arith-

metic, certain specialized storage management schemes require this capability. The

fact that pointer arithmetic works on persistent data structures in a manner sim-

ilar to data structures in primary memory illustrates the level of transparency in

the single-store provide by the EPD approach.
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2.2.3 Disadvantages

Rigid Page Replacement Schemes: Commercial operating systems have tended to be

quite inflexible in terms of allowing application programs to control the page

replacement strategy used. Typically, a single system-wide page replacement

scheme, usually a variant of the LRU scheme, is employed. While LRU is quite

suitable for a wide variety of access patterns, it can result in excessive paging un-

der certain circumstances, e.g., when it is known in an algorithm that a page will

never be used again, the LRU scheme must still let the page age before it becomes a

candidate for removal. This problem can be removed to a large extent by providing

operating system facilities that allow an application to influence page replacement

decisions taken by the operating system. Operating system designers are begin-

ning to take notice and some application level control over page replacement is

already available in a few commercial operating systems, most notably the Mach

operating system.

Timing of Dirty Page Write Back: Another major irritant with conventional operating

systems is the lack of control over the time at which modified (or dirty) pages in

the virtual space of an application are written back to disk. Premature writing

of dirty pages in the middle of a transaction results in the data on disk being in

an inconsistent state, which increases the difficulty of implementing transactional

support for memory mapped systems. One suggested solution to overcome this

difficulty is based on page comparing techniques. The basic idea is to keep a before

copy of all pages that need to be modified during a transaction. When the trans-

action commits, the current state of the modified pages is compared against the

before copies and any differences are used to maintain recovery logs. This issue is

discussed further in chapter 6.
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2.3 Survey of Related Work

The earliest use of memory mapping techniques can be found in the Multics system

[BCD72]. However, earlier operating systems were not flexible enough to allow exploita-

tion of memory mapping techniques in a serious manner. In recent times, with the de-

velopment of more open systems, a number of efforts have been made to use memory

mapping. The following discussion covers salient work on memory mapping as well as

work on single-level stores in general.

2.3.1 Software Approaches Based on Conventional Architectures

In these systems, the emphasis is on using software systems to build a single-level store

without requiring new hardware and making no or little changes to the operating sys-

tem kernel. The main advantages of following this approach are simplicity, cost effec-

tiveness, immediate availability on existing architectures, and wide applicability. On the

other hand, there are certain aspects of building a single-level store that are difficult or

inefficient to implement without the availability of specialized hardware or operating

system support. Nevertheless, the convenience of the software approach makes it an at-

tractive pursuit, particularly in view of recent and imminent advancements in hardware

and operating system technologies. The experiences gained by pursuing the software

approach also provide valuable input in the design of desired features for future com-

mercial architectures.

While some projects have designed new or modified compilers (PS-Algol, E, Object-

Store), many of the systems have been implemented as language (particularly C++) class

libraries that can be linked with applications, and require no special compiler support.

Some systems support orthogonal persistence [ABC
�

83] implying that the same compiled

code can be used to manipulate both transient and persistent data, and objects of all data
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types definable in the language can be made persistent. On the other hand, many of the

non-orthogonal systems provide a subset of the benefits of orthogonal persistence, e.g.,

a unified type system for all data without considerations of longevity. Finally, some sys-

tems, such as the EXODUS Storage Manager, support the concept of object identity at

an additional cost, whereas most memory mapped systems do not fully support object

identity because non-garbage collected memory management is used.

In addition to the systems described below, there are other varied object managers

and storage systems that have been proposed in the last decade, e.g., the O2 Object

Manager [D
�

91] and the GemStone database system [BOS91]. The emphasis and design

of these systems is, however, quite different from my work and, as such, they are not

described here.

PS-Algol / POMS

PS-Algol [PS-87] was the first effort to add persistence to a conventional programming

language and the Persistent Object Management System (POMS) [CAC
�

84], written in

PS-Algol, can be considered the first persistent object system. An implementation of

POMS in the C language [Bro89], called CPOMS, provides the underlying support for

PS-Algol in Unix environments. In POMS, pointers to objects resident in virtual memory

have a format different from pointers to objects stored on disk; the former are called

local object numbers (LONs1) and the latter are referred to as persistent identifiers (PIDs2).

Although PIDs can be arbitrarily large, in the actual implementation of CPOMS, the

PIDs were the same size as normal pointers in PS-Algol. PS-Algol’s persistence model

is based on reachability (see section 1.2.3) – all objects stored in a database on disk are

1In CPOMS implementation, a LON is simply a virtually memory address, called a local address.
2A PID may be a simple offset within a file for single database implementations or a more complex entity,

e.g., a long pointer that identifies the disk object in a (single) universe of objects comprising all objects stored
on all disks on a network.
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reachable from a distinguished object called the root of the database. At the beginning

of program execution, the root object is loaded in virtual memory and assigned to a

global pointer accessible to all programs. The root object contains pointers (PIDs) to

other objects on disk. When a program tries to dereference an embedded PID, the system

loads the referent object into virtual memory from disk and replaces (i.e., swizzles) the

dereferenced PID with the LON of the newly loaded object in memory. Thus, all pointers

embedded in an object on disk are represented by PIDs, whereas for an object in memory,

the embedded pointers can be either LONs or PIDs. When the program finishes, all

embedded LONs are converted back (i.e., de-swizzled) to PIDs before the objects in

memory are written back to disk. All of this address translation is handled in software

and is lazy pointer swizzling because a pointer is swizzled only when it is actually used.

Since LONs and PIDs co-exist in primary memory, it is necessary for the two types of

pointers to be distinguishable. In POMS, this distinction is achieved by using the most

significant bit (MSB) of the pointer fields; PIDs have a MSB value of 1 whereas the LONs

contain a zero in that bit. At each dereference, the MSB is checked to see if the pointer

being dereferenced is a PID or a LON. These checks, called residency checks, are a potential

performance problem. Another problem with the scheme is that an object has to be

loaded in its entirety in order to avoid problems with referential integrity. Also, the size

of the PIDLAM, described next, can become a problem since it contains one entry for

every object.

During program execution, POMS maintains a two way mapping between LONs and

PIDs to facilitate swizzling and de-swizzling of pointers. The mapping is implemented

in a memory-resident data structure called the Persistent Identifier to Local Address Map

(PIDLAM), which is a two way index implemented by means of two hash tables. When

an embedded pointer in local memory is dereferenced, the dereferencing operation does

a residency check and consults the PIDLAM if the pointer is a PID. If an entry for the
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PID exists, the referent object is already in memory and, therefore, execution can resume

as soon as the dereferenced PID is replaced by the LON of the referent object from the

PIDLAM. If, however, the PIDLAM contains no entry for the PID, the referent object is

fetched from disk and loaded into local memory. An entry linking the PID with the new

LON of the object is added to the PIDLAM, the dereferenced PID is replaced by the LON

and execution continues. In both cases, any subsequent deference of the same pointer

field continues without delay after the residency check because the pointer is a LON.

Napier / Brown’s Stable Store

The Napier88 system used a stable store by A. L. Brown [Bro89, DRH
�

92]. Brown’s

store is one of the earliest proposals to exploit memory mapped files for implementing

a persistent store. The store is implemented by mapping a single, fixed length Unix file

to a single virtual address space. The mapping of the file is done at a fixed virtual zero;

the mapped data in the file starts at an offset from the beginning of the file. Since the

mapping occurs at a fixed address (EPD approach), there is no need to relocate or swizzle

memory pointers embedded in the data objects. Brown’s store does not support multiple

simultaneously accessible persistent stores; all persistent objects live and are addressed

in a single persistent store. Also missing is support for disk partitioning of the single-

level store. The Napier88 system has since been extended considerably by integration of

concurrency and distribution mechanisms into the system. This extension was carried

out by Munro [Mun93] as part of his doctoral thesis and is described briefly in section

6.1.1.
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E / EXODUS Storage Manager

E [RCS93] is a persistent programming language, developed as part of the EXODUS

project at the University of Wisconsin, that relies on the EXODUS storage manager for

providing basic support for objects, files and transactions. E extends C++ by adding

persistence and some other language features; the latest version of the E compiler is

based on the Gnu C++ compiler. The support for persistence in E is provided by means

of new data types (called database or db types) and a persistent storage class. Any C++

type/class can be defined as a db type/class, thereby defining the type of objects in the

database. The persistent storage class provides the mechanism for storing objects in a

database. In order to persist after a program is run, an object of a db type needs to have

the persistent storage class property. Additional language constructs are provided for

manipulation of persistent objects, e.g., the built-in db class collection[Type] provides a

mechanism for creating and deleting objects in a persistent collection. The support for

persistence in E is implemented in software similar to PS-Algol; each dereference of a

pointer incurs a residency check implemented by means of in-lined code.

The style of persistence provided by E is called allocation-based persistence; the de-

signers of E rejected the notion of reachability (see section 1.2.3) for reasons outlined in

[RCS93]. In E, the persistence of an object of db type needs to be explicitly specified

(either by declaring a persistent variable or by placing the object in a persistent collec-

tion). Another aspect in which E differs from PS-Algol and other systems is its rejection

of orthogonal persistence. Only objects of db types can persist, i.e., E has a dual type

system: objects of db types may persist whereas objects of normal types are all transient.

One of the implications of this dual approach is that only pointers to db types incur the

cost of a run time residency check. Another reason cited by the designers of E for reject-

ing orthogonal persistence is the wasted space that results by making all pointers long
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pointers.

Other Language Efforts

In addition to PS-Algol, Napier and E, there have been several other language design

efforts that add persistence to a traditional programming language. One of the more

prominent of these languages is O++ [DAG93, BDG93] based on the Ode/EOS object

manager. O++ is a database programming language based on C++ that provides support

for orthogonal persistence. The compiler is implemented as a front end called ofront

that translates O++ code into C++ code to be compiled and linked together with the

Ode Object Manager, which is implemented on top of the EOS storage system. EOS

manipulates data on disk in units of disk pages and objects are essentially uninterpreted

sequences of bytes with some header information. One of the important features of O++

is its support for making the virtual pointers of C++ persist, i.e., it allows objects with

virtual members to be persistent.

Texas: Pointer Swizzling at Page Fault Time

Paul Wilson [Wil91a] has developed a scheme that combines the concepts of pointer

swizzling and run-time page faulting to support huge persistent address spaces with ex-

isting virtual memory hardware. Texas [SKW92] is a persistent store based on Wilson’s

scheme of pointer swizzling at page fault time. In Wilson’s scheme, pointers on sec-

ondary store have a format different from the pointers in primary storage, which allows

for a persistent store that is larger in size than the virtual space supported by a given

hardware. Wilson’s scheme requires a special page fault handler that is responsible for

swizzling pointers.

The basic strategy is to fetch pages as opposed to objects as is done in classical lazy
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pointer swizzling. When a page fault occurs, i.e., the virtual memory hardware detects

an attempt to dereference a pointer to a location in a non-resident disk page, virtual

memory for the disk page is allocated (if not done already) and the page is fetched in

memory. An address translation table maintains the current mapping of virtual memory

to disk pages. The table contains one entry per page rather than one entry per object

resulting in a considerably smaller and fixed size table.

During fetching, a disk page is scanned and all embedded persistent pointers are

translated into virtual memory pointers, which requires knowledge of all pointers. Thus,

memory resident pages in Wilson’s scheme never contain persistent pointers, only vir-

tual memory pointers. Extra information is maintained on disk to permit the finding of

all pointers embedded in data and there is an associated run-time cost of processing this

extra information. Furthermore, objects that cross page boundaries require additional

language support.

For embedded persistent pointers that refer to disk pages seen previously during the

current execution, the translation table is used to swizzle the pointers into correspond-

ing virtual memory values. To facilitate the translation of other embedded persistent

pointers, all the referent disk pages are greedily allocated virtual memory space and

appropriate entries are made in the translation table. However, the disk pages are not

actually loaded at this time. Thus, the faulting of a single page can result in virtual

memory being allocated for a rather large number of other pages. Some of these pages

may never be used and, therefore, Wilson’s scheme can result in underutilization of vir-

tual space. Wilson has proposed some solutions to these problems, such as periodically

invalidating all the mappings and rebuilding them; however, the solutions increase sig-

nificantly the complexity and cost of his basic scheme. For example, if virtual memory

space is exhausted during execution of a transaction, some of the memory-resident pages

have to be written back to disk in order to recover virtual memory space. Evacuation
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of memory-resident pages in this manner requires a significantly complex de-swizzling

process, which results in a serious degradation of performance.

Hybrid Pointer Swizzling

Vaughan and Dearle [VD92] have presented a hybrid pointer swizzling scheme that re-

tains the salient features of both the lazy swizzling employed by POMS and the eager

swizzling of Wilson’s scheme. The hybrid scheme splits the pointer swizzling process

into two phases in order to avoid the problems associated with Wilson’s greedy vir-

tual memory allocation. The hybrid scheme mandates that persistent pointers be at

least twice the size of virtual memory pointers. The low order bits in a pointer field

are used for machine addressing and the extra space available in a swizzled pointer is

used to maintain some additional information used to simplify the de-swizzling pro-

cess. Pointer fields in memory-resident pages can contain valid virtual memory pointers

to either actual objects or entries in a memory-resident translation table; the former are

called fully swizzled pointers and the latter partially swizzled pointers. To dereference

a partially swizzled pointer, the system consults the translation table to see if the cor-

responding disk page is memory-resident; if not, a page fault occurs and the disk page

is brought into virtual memory. At this time, each pointer embedded in the newly read

page is changed to a fully swizzled pointer if it refers to a memory-resident page, or to

a partially swizzled pointer if the referent page has not yet been fetched into memory.

Dereferencing of fully swizzled pointers proceeds without interruption, thereby avoid-

ing the per reference cost associated with lazy swizzling. Since references to non-resident

pages are not immediately translated into virtual memory pointers, the greedy alloca-

tion of virtual memory is avoided; a disk page is allocated virtual memory only when

actually used. The main additional costs with the hybrid scheme are a special software

dereference operator and the increased size (at least double length) of pointers.
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ObjectStore

The ObjectStore Database System [Atw90, LLOW91], developed by Object Design Inc.,

is a commercial object oriented DBMS that makes use of conventional hardware in con-

junction with an ad hoc pointer swizzling scheme for storing virtual memory pointers on

secondary storage. The swizzling scheme used is similar to Wilson’s scheme except that

in ObjectStore, normal programming language pointers are used to refer to persistent as

well as transient objects. ObjectStore supports simultaneous access to multiple databases

and individual databases are allowed to be larger than the virtual address space. These

capabilities are achieved by maintaining a mapping between disk pages and the vir-

tual memory addresses assigned when the pages were last memory-resident. The exact

details of the scheme used by ObjectStore are proprietary3. However, the QuickStore

system, described below, is believed to use the same scheme.

Every new persistent object in ObjectStore is explicitly created in a particular

database. Individual databases are subdivided into segments4 and the application can

cluster related objects by specifying the segment within a database where the new object

is to be created. An inter-database pointer in ObjectStore is treated differently from an

intra-database pointer. In general, an inter-database pointer is transient, i.e., it is valid

only during the scope of the assigning transaction. A persistent inter-database pointer

needs to be explicitly distinguished and is implemented as a long pointer.

ObjectStore is based on the client/server paradigm; the server maintains the persis-

tent store and provides all fundamental support services including concurrency and re-

covery control. The server makes available, on demand at page fault time, the necessary

pages of secondary storage, which are then mapped by the client into its virtual address

3The description in this section is based on information obtained from [LLOW91] and [Obj93]
4The term segment in this section refers to a logical sub-division of a larger database and does not mean

a hardware supported segment as discussed in section 1.2.
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space; the granularity of server transfers can be changed from a page to a segment, with

the latter resulting in en masse transfer of a complete segment. For each transaction, only

those parts of the database(s) that are accessed by the transaction are mapped into the

address space of the client. This strategy introduces a restriction on the total amount of

data that can be referred to by any single transaction. Large operations need to be broken

down into a series of smaller transactions.

When a page is mapped into the virtual address space, ObjectStore dynamically as-

signs a virtual address where the mapping is to take place. An attempt is made to assign

the address so that the pointers stored on the server continue to be valid in virtual mem-

ory of the client, which is possible when the page being mapped as well as all the pages

referred to by pointers embedded in the mapped page can be assigned the same virtual

addresses where the pages were last resident. No pointers need to be swizzled in this

scenario and execution can continue as soon as the page is mapped. In all other cases,

the server has to find all the pointers embedded into the page and swizzle the pointers as

needed, which requires that some portion of the type system be available at run time in

order to locate all embedded pointers. ObjectStore keeps this information in an auxiliary

data structure called the tag table, which records the location and type of every object in

the database. The tag table is used in conjunction with the database schema to locate all

pointers embedded in objects stored in the page being mapped.

At the end of a transaction, all pages in the client’s address space are unmapped

and any modified pages are transmitted back to the server; the client blocks until the

pages are written back to the server’s disk(s). Unmapped pages stay in the client’s cache

until room is needed for other new pages. A client cache coherency scheme is used to

accommodate sharing of pages by multiple clients. In this aspect, ObjectStore’s storage

management is similar to the one employed by the EXODUS Storage Manager.
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Cricket

Cricket[SZ90a] is a storage system that uses the memory management primitives of

the Mach operating system [TRY
�

87] to provide the abstraction of a “shared, transac-

tional single-level store that can be directly accessed by user applications” [SZ90a, p.

89]. Cricket follows the client/server paradigm and, upon an explicit request, maps the

database directly into the virtual space of the client application. Cricket uses direct mem-

ory pointers and the database is mapped to the same range of virtual addresses so that

pointer modification is unnecessary. However, the mapping takes place in the address

space of the application, and hence, only one database at a time can be used by an ap-

plication. Indeed, the concept of a disk file to group related objects into one collection is

not supported in Cricket. Cricket takes the view that everything an application needs to

use is placed in a single large persistent store. The designers of Cricket did acknowledge

the need to support files and planned on providing an implementation for files in future

work. However, it may be almost impossible to support a truly general implementation

of files within the framework of Cricket’s architecture.

QuickStore

QuickStore [WD94] is a storage system for persistent C++ that is built on top of the EX-

ODUS Storage Manager (ESM), offers nearly the same functionality as E, makes use of

memory mapping, and performs pointer swizzling at page-fault time similar to Object-

Store. Because of its use of ESM, QuickStore has a client-server architecture with support

for transactions. There are no limits placed on the size of a database; the amount of data

accessible by a single transaction is limited to the size of virtual memory. The persistent

pointers in QuickStore are the same as virtual memory pointers. The value of a pointer

to a persistent object in QuickStore is the virtual memory address of the object when the
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page containing the object was last memory resident.

Dereferencing a pointer to a non-resident object causes a page fault to be detected by

hardware causing the QuickStore page fault handler to request ESM to fetch the page

containing the object into the ESM client buffer pool; from there the object is memory

mapped into the virtual address space of the application program for direct manipu-

lation. While fetching, the page fault handler performs actions such as swizzling of

embedded pointers before the client application resumes. Virtual memory is greedily

allocated for the page being fetched as well as for all the other pages that are referred to

by embedded pointers. Like ObjectStore, an attempt is made to assign the same virtual

frames as used previously. If all of the pages can be assigned their old virtual frames, no

swizzling of pointers is needed and the application can resume execution. If some disk

pages get mapped to new virtual addresses, however, the faulted page is scanned and

any embedded pointers that refer to the relocated page(s) are updated.

In order to perform swizzling, QuickStore maintains extra information for memory-

resident and persistent data. The main memory-resident data structure is a table that

keeps track of the current logical mapping from virtual memory frames to disk pages.

This table contains one entry, called a page descriptor, for every page that has been

fetched into memory or is referred to by pointers embedded in memory-resident pages.

Page descriptors contain the virtual memory and disk addresses of corresponding pages.

The page descriptor table is consulted during allocation of virtual memory addresses to

disk pages.

The information maintained on disk for each disk page includes a mapping object

and a bitmap. The mapping object for a disk page, say pi, records the mapping between

virtual frames referred to by pointers embedded in pi and the corresponding disk pages

at the time when pi was last memory resident. The size of a mapping object can vary

and, therefore, the mapping object is not stored as part of its disk page; instead, a pointer
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to the mapping object is kept in a special fixed-size meta object stored at the beginning of

the disk page. The bitmap for a disk page is maintained by means of the type information

made available at run time and is used to locate all embedded pointers so that they can be

swizzled, if necessary. The bitmap is also stored independently of its disk page because

the bitmap for a disk page is only needed if pages are relocated at page fault time.

2.3.2 Architectural Approaches

This section describes major projects on single-level stores other than Multics, which has

been mentioned before, that focus on memory mapping at the hardware and operating

system level. By its very nature, this work takes an entirely different approach than

the software based systems described earlier. Architectural approaches are significantly

more expensive to investigate and represent important work that provides insights into,

and hopefully guides the development of future hardware and operating system support

in commercial systems.

Bubba Database System

The designers of Bubba [BAC
�

90, CFW90], a highly parallel database system developed

at Microelectronics and Computer Technology Corporation (MCC), exploited the con-

cept of a single-level store to represent objects uniformly in a large virtual address space.

Cricket borrowed several ideas from Bubba. The focus of Bubba was on developing

a scalable shared-nothing architecture, which could scale up to thousands of hardware

nodes and the implementation of a single-level store was only a small, though impor-

tant, portion of the overall project. In Bubba, the Flex/32 version of the AT&T UNIX Sys-

tem V Release 2.2 was extensively modified to build a single-level store, which makes

the store highly unportable. The programming interface to Bubba is FAD, a parallel
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database programming language.

MONADS Architecture

The MONADS project [RK87, Ros90] started in 1976 at the University of Newcastle,

Australia developed a new computer architecture that supports orthogonal persistence

by means of a uniform virtual memory as one of its central design goals. The MONADS

architecture provides explicit support for objects, both at the architectural and the system

software levels. The implementation of the MONADS architecture took the route of

employing a combination of hardware, microcode and software. The virtual memory in

MONADS is uniformly addressable using a segment addressing scheme. Segments are

essentially arbitrary size chunks of addresses in a very large virtual address space (up to

128 bits).

The virtual store in MONADS, unlike many other architectures, is divided into re-

gions called address spaces and as such is not flat. A non-flat store was motivated by a

desire to make the store as efficient and flexible as a conventional file system, which al-

lows related data objects to be grouped together and managed independently of other

groups of objects (see section 1.2). To facilitate efficient and easy addressing, each virtual

address in MONADS consists of two components, the address space number and the

offset within the address space. The segment addressing scheme in MONADS builds

upon the conventional segmentation schemes such as the one used in Multics.

Model for Address-Oriented Software

In [SW92], Smith and Welland introduce a concept called address-oriented software to de-

scribe any software that makes use of the value of memory addresses it references. The

authors further propose a general model of the operations, called address-management,
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such software uses. The model is being used to design a new operating system and

hardware that is more conducive to supporting the class of address-oriented software.

The address-oriented services in their model relevant to this work include support for

virtual memory and a persistent object store.

The model proposes a single large persistent address space, larger than the address

space of the processor. As such, object pointers are not the same as memory addresses

and address translation must take place before a pointer can be dereferenced. At the time

of opening the store, the root objects of the store are copied into memory and converted

to the memory format. At the same time, virtual address space is allocated to all objects

that are referenced in the root objects; no physical memory is allocated yet. When a new

object is referenced, it is read into memory using virtual addresses that have previously

been allocated for the object and new virtual space is allocated for all objects that have

references in the newly read object. This process repeats as the computation progresses,

as for Texas, ObjectStore and QuickStore.

In the same paper, Smith and Welland presented a hardware model for implement-

ing their address-management model of address-oriented services and describe the im-

plementation of a subset of their hardware design in the memory management unit of

the ARM 600, a processor being built by Advanced RISC Machines, Ltd. of Cambridge,

England.

Single Address Space Operating Systems (SASOSs)

Quite recently, some research has been done on developing a new class of operating

systems called Single Address Space Operating Systems (see [CFL93] for a description of

some issues and problems with SASOSs; this section includes a brief relevant discus-

sion). An SASOS is fundamentally different from traditional operating systems in that

it uses a single global virtual address space for all protection domains as opposed to
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assigning each protection domain (e.g., a UNIX process) its own private virtual space.

The single address space approach has become viable with the commercial availability

of workstations with large virtual address spaces because it is now realistically possible

for all computation on a node to occur within a single address space. The global address

space is shared by all threads executing on the system. Thus, all threads work with the

same virtual to physical mapping of addresses and any virtual address in the system can

be dereferenced by any thread. Access to data, however, is determined by the thread’s

protection domain.

The goal of an SASOS is not to provide persistence but to facilitates sharing of the

transient address space; in some sense, an SASOS does for transient data what � Database

does for persistent data. Nevertheless, SASOSs have some relevance to this work because

of their promotion of EPD and the use of large virtual address spaces. One of the best

known SASOSs is Opal [CLBHL92, CLFL94] developed at the University of Washington.

Opal is built on top of the Mach operating system and thus, co-exists with UNIX. The

virtual memory allocation unit in Opal is a virtual memory segment, which is a vari-

able sized set of contiguous virtual memory pages. Opal supports recoverable as well

as distributed virtual memory segments. Upon allocation, a virtual memory segment

is assigned a unique range of addresses in the global address space in order to avoid

address conflicts in the event of sharing. One of the major similarities between Opal and

� Database is support for sharing of pointer-based data structures. � Database facilitates

sharing via the EPD approach to persistence, whereas in Opal, the use of a single ad-

dress space allows independently developed tools (e.g., editors and debuggers) to pass

and manipulate transient pointer-based data structures.
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Grasshopper Operating System

The Grasshopper operating system [DdBF
�

94] is an attempt to develop an orthogonally

persistent operating system that runs on conventional hardware. The desire to develop

a new operating system is motivated by the fact that it is often inefficient or too hard to

build an orthogonal persistence system on top of a conventional operating system due to

their fundamentally different natures. A persistent operating system like Grasshopper

removes this inefficiency by providing support for orthogonal persistence in the operat-

ing system itself. Nevertheless, there are some limitations that remain due to the lack of

required features in conventional hardware.

The fundamental abstractions used in Grasshopper to support orthogonal persis-

tence are called containers (storage), loci (computation) and capabilities (access control).

The three abstractions are orthogonal in nature and, as such, can be applied indepen-

dently. Grasshopper adopts a fully partitioned address space model, i.e., there is no

global address space. Instead, there are fully independent address spaces each of which

can be arbitrarily sized. Processes execute within one of these address spaces (host address

space) and access is limited to data stored within the host address space. Further, the con-

ventional association of address spaces with processes is non-existent because processes

(loci) are orthogonal to address spaces (containers). A Grasshopper system contains a set

of address spaces and a set of loci executing within the set of address spaces. A locus can

execute in and access data stored within one container at a time. Unlike other operating

system designs, loci or processes in Grasshopper are inherently persistent. The orthogo-

nality of loci and containers facilitates support for multi-threaded programming because

a number of loci can execute within one container simultaneously. Finally, access control

over containers and loci in Grasshopper is capability based.
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IBM RS 6000 and AS/400

Malhotra and Munroe [MM92] have proposed schemes to support persistent objects on

the architectures of IBM RS/6000 and IBM AS/400 computer systems. Both these sys-

tems incorporate support for single large virtual memories that are subdivided into seg-

ments, although segments have slightly different semantics in the two systems. The au-

thors argue that using virtual memory references to access objects is both more efficient

than other approaches, including swizzling, and easier to implement since the operating

system does most of the work.

Recoverable Virtual Memory

Thatte [Tha86] has described a persistent memory system based on a uniform memory

abstraction for a storage system in which both transient and persistent objects are man-

aged in a uniform manner. The memory is viewed as a collection of variable size blocks of

consecutive addresses, in a single large virtual space, interconnected with virtual mem-

ory pointers. Reachability (see section 1.2.3) is used for the persistent model; an object

in the virtual space persists as long as it is reachable from a persistent root. Thatte’s

proposal includes a recovery scheme at the level of virtual memory itself because his

scheme assumes no separate file system.

In [Kol90], Kolodner presents a critique of Thatte’s persistent memory and proposes

an alternative scheme.

Camelot Distributed Transaction System

The Camelot project [STP
�

87] used the memory management facilities of the Mach op-

erating system to provide a single-level store. However, the store was not directly acces-

sible to the application processes but was to be used within a “data server” for storing
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persistent data. In this regard, Camelot differs from Cricket and the approach I have

developed lies somewhere between these two extremes.

IBM’s 801 prototype hardware architecture

IBM’s 801 architecture [CM88] incorporated an operating system that provided mapped

files with automatic concurrency control and recovery. The major share of the support for

operations on mapped files was provided by adding special hardware, which resulted

in a solution lacking both flexibility and portability.

Clouds Distributed Operating System

The Clouds project [DLA87, PP88, DC90] was an attempt to build a general purpose

distributed computing environment for a wide variety of user communities. An “ob-

ject” in Clouds is the fundamental entity used to build the system. A Clouds object is

conceptually a persistent virtual space and lightweight threads are used to perform com-

putations through code stored in objects. The persistent objects and threads, give rise to

a programming environment composed of a globally shared permanent memory.

2.3.3 Others

The following are some other interesting efforts at exploiting mapped files and single-

level stores. The focus of these works is quite different from my work, and they are

described here for completeness.

� Some other notable projects that proposed new architectures to address problems

faced by persistent programming community include EOS, an environment for

object-based systems [GADV92] and work done on Choices, an object-oriented

operating system [CRJ87, RC89, MC92].
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� Inohara, et al [ISU
�

95] describe an optimistic page-based concurrency control

scheme for memory mapped persistent object systems.

� Peter van Oosterom [vO90] used shared mapped files to introduce persistent ob-

jects in the object-oriented programming language Procol [vdBL89] as part of his

Ph.D. thesis on reactive data structures for Geographical Information Systems.

� The Hurricane Operating System [SUK92] is a shared memory multi-processor op-

erating system that runs on The Hector Multiprocessor [VSWL91] and uses mem-

ory mapping to implement its file system.

� Orran Krieger, et al [KSU91] describe a stream I/O interface for Unix using mem-

ory mapping facilities.

2.4 Summary

This chapter presented the raison d’être for this work: how a single-level store based on

the EPD approach is beneficial for managing persistent data. An extensive survey of all

major software and architectural approaches to building persistent systems is presented

as background material for the design of an EPD based system presented in the next

chapter. The software approach to building EPD persistent stores imposes some restric-

tions on what can be achieved realistically and efficiently, but it provides an excellent

opportunity to explore new ideas and to establish a solid framework in which these and

other related ideas can be evaluated and analyzed.





Chapter 3

Using the EPD Approach to Build a

Single-Level Store

As stated earlier, this work has resulted in the design and development of a toolkit called

� Database to implement the EPD approach to memory mapped persistent stores on

conventional hardware running the UNIX operating system. � Database has been used to

study a number of sequential and parallel access methods. Also, a theoretical framework

has been established by means of an analytical model of computation in � Database. This

chapter presents all these contributions in detail.

3.1 � Database Design Methodology

The design methodology developed as part of this work provides the necessary envi-

ronment to build efficient file structures and their access methods in a memory mapped

environment based on the EPD approach. As stated earlier, a toolkit approach has been

adopted, which allows file structure designers to participate in some of the design activ-

ity; � Database allows extensible additions or simple replacement of low-level compo-

nents by file structure designers. While � Database shares the underlying principles of a

single-level store with other proposals [CM88, CFW90, SZ90a, LLOW91, STP
�

87, WD94],

53
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it offers features that make it unique and an attractive alternative. � Database is intended

to provide easy-to-use and efficient tools for developing new databases, and for convert-

ing and maintaining existing databases. It also fulfills a need for a set of educational tools

for teaching operating system and database concepts. The design is based on some im-

portant decisions, described next, that were made at the outset of this work.

3.1.1 Design Objectives

Employ the EPD approach to memory mapping. � Database develops and exploits the

EPD approach so that an arbitrary programming language data structure can be

stored on secondary storage as is; neither restructuring of data nor pointer swiz-

zling is required for accessing and manipulating the data structure. In the case of

a B-Tree, for example, the tree structure can be stored in its entirety on disk using

programming language pointers, to be retrieved and navigated at a later date. The

routines for performing B-Tree operations in primary storage are used directly on

persistent data, which allows conventional programming techniques for data structures

that happen to be stored in a file. The absence of any transformation of pointers

has a beneficial impact on execution costs.

Retain conventional user interfaces. A deliberate design decision was made to retain

the conventional semantics of opening and closing a file. A file structure must be

made accessible explicitly because the file content is not directly accessible to the

processor(s) until it is memory mapped, and therefore, this aspect should be re-

flected in the semantics of the constructs and not hidden by making the file im-

plicitly accessible at all times. Like pointer-swizzling, there is some problem with

efficiently detecting the first access to a file structure so that the additional data

structures needed during access can be created. However, the most difficult prob-
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lem with implicit access is knowing when the access can be terminated, which is a

particular concern with concurrency control.

Use light-weight threading. To provide highly concurrent access to the file structures,

it was decided to use a concurrent shared-memory thread library as the basis of

the design. This decision ensured that concurrency issues were dealt with starting

at the lowest levels of the design, thereby avoiding the problems associated with

trying to add concurrency post hoc on an inherently sequential design.

Provide library of routines. The current implementation of � Database is designed as a

multi-level modular system, based on the toolkit approach, with each level per-

forming a particular aspect of the overall system. The system is available as a C++

library that can be linked with user applications. This route was preferred, at least

for the present, over making language extensions via a new front end parser or a

modified compiler.

Use conventional hardware and software. � Database follows the software approach

of building a persistent store on top of conventional hardware and operating sys-

tem. It is one of the fundamental goals of this work to base the design on a standard

commercial architecture while keeping the design flexible enough to cope with ad-

vances in architecture design. This decision makes the research immediately avail-

able to theoreticians and practitioners alike. Also, the use of a standard system has

highlighted certain problems that need to be addressed at the architecture level

before memory mapped systems can become mainstream.

Multiple simultaneously accessible databases. � Database allows individual applica-

tions to simultaneously access multiple file structures or databases. Conversely,

multiple applications can share the same file structure. This decision has been in-
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fluenced by the recognition of the merits of a world view that tends to relate objects

by their functionality and groups related objects together. Groups of functionally

related objects are shared freely among applications in this world view while pro-

viding the necessary abstraction, protection and efficiency. The current scope of

� Database does not cover inter-database pointers, only intra-database pointers are

fully implemented.

Reachability does not extend to world view. Many current systems (e.g., Cedar, Lisp,

Smalltalk, PS-Algol, Napier) use reachability as the fundamental mechanism that

determines the persistence of data. Conceptually, reachability can be applied as

easily locally, to determine persistence of data items within a single program or

process, as globally, to determine persistence of data that is independent of pro-

grams, such as conventional files and databases. This feature permits special pro-

gramming language constructs, such as files, databases, directories, names spaces,

etc., to be replaced by simpler arrays or linked-list structures. However, reacha-

bility places complex storage-management requirements [BDZ89] on the file struc-

ture designer. As explained in section 1.2.3, instead of reachability, � Database uses

the notion of a separate persistent area, in which data objects are built or copied

if they are to persist. Reachability has also been rejected by some other systems

described earlier, e.g., E and ObjectStore provide a style of persistence similar to

that of � Database.

The world is not flat. � Database envisions a pragmatic non-flat view of the world. The

persistent store in � Database consists of a collection of files stored in a conven-

tional file system. To become accessible to a program, each file is mapped into an

independent segment with its own virtual space. Thus, each inter-segment persis-

tent address in � Database is conceptually divided into a handle for a conventional
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file (e.g., the Unix file name) and an address within the virtual space correspond-

ing to the file. This model extends to a hierarchical address, including machine or

node id on which the file structure resides.

Separate transient and persistent data. Data associated with accessing the file struc-

ture, such as traversal locations in the structure, are not mapped in the file struc-

ture. This organization facilitates performance and recovery after system failure

by ensuring that this data is never written to the disk.

Finally, persistence in the current implementation of � Database is not orthogonal

because of the restrictions imposed on the use of persistent and transient pointers. How-

ever, � Database provides some of the features and benefits associated with an orthogo-

nal persistence system. For example, creating and manipulating data structures within a

persistent area is the same as in a program, i.e., all data within a persistent area is treated

uniformly irrespective of its longevity, which means that code written for primary mem-

ory data structures can be used, without re-compilation, to manipulate persistent data.

3.1.2 Basic Structure

In order to simplify the specification of file structures, object-oriented programming tech-

niques are used in the implementation of � Database, but are not essential; an imple-

mentation may be done in a non-object-oriented programming language. C++ [ES90]

is used as the concrete implementation programming language. The constructors and

destructors in C++ eliminate the need to have explicit initializations and clean ups, and

allow an implementor to make certain assumptions about correct usage (e.g., pre- and

post-conditions). Concurrency facilities employed by � Database are provided by � C++

[BDS
�

92], which is the preferred implementation language for writing access methods
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in � Database. � C++ is a superset of C++ with concurrency extensions. However, the

fundamental ideas are implementable in any imperative programming language.

The design involves several levels, each performing a particular aspect of the storage

or access management of the file structure. The design structure is illustrated in Figure

3.1 and the components at each level are discussed below in detail.

primary

disk file

secondary
storage memory persistent

volatile
storage

mapping

representative

accessor1 accessor2 accessor3 accessor4 file structure
implementor

or user
database implementor

application1 application2

Figure 3.1: � Database Design Methodology: Basic Structure

3.1.3 Representative

To allow virtual memory pointers to be stored in the file structure and subsequently used

without modification, the system maps each file into its own segment. None of the op-

erating systems available for this work provide the facility of segmentation even when

the underlying hardware is capable of supporting such a facility. To overcome this defi-

ciency, � Database mimics a segment by using a UNIX process. The disk file is mapped

into the virtual space of the UNIX process starting at a fixed memory location, called
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the Segment Base Address. The segment base address is conceptually the virtual zero of a

separate segment. In the current implementation, the value 16M has been chosen as the

Segment Base Address, which leaves a sufficiently large space for the process’s transient

data and program code. In an ideal situation, where independent creation of new vir-

tual memory segments is allowed, each disk file would be mapped into its own segment;

separate segments are possible, at least at the hardware level, on the Intel 386/486, IBM

RS/6000 and the IBM 400 series computers.

The object that manages the segment is called its representative in � Database, and it

is responsible for the creation and initialization of the file structure, the storage manage-

ment of access method data in primary storage, concurrent accesses to the file structure’s

contents, consistency and recovery. Each file structure has a unique representative. The

representative is created implicitly on demand, during creation of a file structure and

for subsequent access by a user application, and it exists only as long as required by ei-

ther of these operations. Thus, the representative for a file structure is created when the

first access request is received for the file structure and terminates when all the access

requests have completed. For each application program, there is a one to one correspon-

dence between a file structure and its representative, i.e., at any given time there is at

most one active representative for a file structure irrespective of the number of different

tasks accessing the file structure simultaneously (as the scope of � Database is expanded,

there will be only one representative per file structure across an entire system).

A representative’s memory is divided into two sections: private and shared; Figure

3.2 illustrates this storage structure. Private memory can only be accessed by the thread

of control associated with the UNIX process that created it, i.e., the representative. The

persistent file structure is mapped into the private memory of the representative while all

data associated with concurrent access to the file structure is contained in the represen-

tative’s shared memory; such data is always transient. Shared memory is accessible by
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Figure 3.2: Storage Model for the Representative

multiple threads that interact with the representative’s thread. There is no implicit con-

currency control among threads accessing shared memory except at the memory word

level where synchronization is enforced by the hardware. Mutual exclusion must be ex-

plicitly programmed by the file structure designer using the light-weight tasking facility

of � C++ [BS90, BDS
�

92]. The light-weight tasking facilities allow virtually any concur-

rency control scheme to be implemented in the representative.

Some operating systems arbitrarily restrict the maximum accessible virtual space

size of a process (e.g., DYNIX has a restriction of 256M), while the hardware is capable

of supporting much larger virtual spaces (4G or more). Because of the EPD approach

used by � Database, the maximum allowable size of any single file structure is the maxi-

mum accessible virtual space size minus the Segment Base Address. For databases larger

than the maximum allowed virtual space size, it is possible to subdivide the database
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into multiple files, which the representative can handle by creating sub-representatives;

however, this strategy increases the complexity of the file structure. With the increasing

number of 64 bit processors becoming available, the restriction imposed on the database

size is no longer an issue.

It is possible for an application in � Database to have multiple file structures accessi-

ble simultaneously because each file structure is mapped into its own representative that

has an independent private mapping area. Figure 3.3 shows the memory organization

of an application using 3 file structures simultaneously. Since each representative is a

separate segment, relocation of pointers in a file structure is never required.

MAP MAP

private shared private
memory memory memory

private
memory

file1 file3

MAP

file2

representative application representative

representative

Figure 3.3: Simultaneously Accessing Multiple File Structures

The effect of mapping each disk file into a different virtual space is to move the ab-

straction of a single-level store from the domain of the application (which is the case in

systems such as Cricket [SZ90a]) into the domain of the file structure designer. This strat-

egy may compromise performance and complexity slightly, but any potential loss is sig-

nificantly offset by the added protection for the file structure and the flexibility provided
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by multiple accessible disk files. Nevertheless, for specialized situations, � Database

makes it possible to have a single file structure mapped into the application address

space, which allows the application direct access to the file structure data at the cost of

having only one specialized file structure accessible at a time. However, the use of this

facility is intended mostly for temporary data that is generated by the program doing the

mapping. The design philosophy of � Database discourages general use of this feature.

The representative for a file structure partitioned across multiple disks works by

mapping the individual partitions into a single address space similar to single-disk non-

partitioned file structures. A partitioned file structure consists of a list of UNIX files each

of which may exist on a different disk. The representative partitions its address space

based on the list of files and maps each file into a partition of its address space as depicted

in figure 3.4. This scheme makes many of the details of partitioning transparent to the

application program. One obvious drawback of the scheme is that the size to which each

partition can grow is restricted.

3.1.4 Accessors

The representative of a file structure provides all the low-level support and the file struc-

ture is “hidden” in that the representative does not provide any direct access to it. The

mechanisms for requesting and providing access to a file structure are provided in the

form of another entity called an accessor. Declaration of an instance of an accessor, called

an access object, constitutes the explicit action required to gain access to a file structure’s

contents (i.e., create the mapping). Creating an access object corresponds to opening a

file in traditional systems but is tied into the programming language block structure.

As well, the access object contains any transient data associated with a particular access

(e.g., the current locations in the file structure), while the representative contains global

transient information (e.g., the type of access for each accessor). At least one accessor
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must be provided for each file structure definition. However, it is possible to have multi-

ple accessors, each providing a particular form of access, e.g., initial loading, sequential

access, keyed retrieval. An application can choose the particular accessor it wants to use

for a given transaction depending upon the type of access needed and the functionality

provided by the available accessors. It is also possible to have multiple access objects

communicating with the same representative, which allows an application to have mul-

tiple simultaneous views of the same data, as illustrated in Figures 3.1 and 3.2.

In order to gain access to a file structure, an application program creates an instance

of an accessor available for the file structure. The connection between accessor and file
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structure is established by passing the file object to the access object. The file object also

contains a transient pointer to the representative for the file structure. The access object

initiates the creation of the representative if it does not already exist. The execution of the

termination code of the last access object for a file structure terminates the corresponding

connection to the representative. Further details of the programming interface to the

representative and the accessors are presented later in section 3.4.8.

Once instantiated, the access object can be used by the application to perform oper-

ations on the file structure by invoking the methods of the access object. For example,

in order to read from the file structure, a call may be made to a method called read()

provided by the accessor. The method read() communicates with the representative, to

perform the desired operation. Depending on the particular kind of concurrency control

requested, the declaration of the access object or individual access object method calls

may block until it is safe to access the file contents.

Using the techniques discussed earlier, a library of several memory mapped access

methods has been built. Currently, these access methods are used for comparison pur-

poses among themselves and with traditional access methods, but they will ultimately

provide database access-method designers with a starting point for construction of new

databases. The programming interface for the � Database library, file structures and their

access methods is presented in section 3.4.

3.1.5 Critique of � Database

A pointer to an object stored in a file structure can be dereferenced only within the

address space of the file structure’s representative. Therefore, dereferencing an inter-

segment pointer may require the object to be copied out of the representative segment

via shared memory. This copying involves an extra cost but is necessary, in general, to

protect the integrity of the file structure.
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Currently, � Database does not provide support for the virtual pointers of C++ be-

cause these pointers refer to data in the text segment of an executing program and the

referential integrity of these pointers cannot be guaranteed across multiple invocations

of the program. Virtual pointers are an important mechanism used by C++ to support

inheritance and dynamically linkable code. Partial solutions to this problem have been

reported in the literature (see [BDG93]) and can be applied to � Database.

Currently, � Database is based on a shared-memory design and is not distributed.

[RD95b] contains a collection of papers that deal with the issue of distribution in per-

sistent object stores. Further, an object store can be built on top of � Database but in its

current form, � Database does not incorporate an object management system.

Many persistent systems make code as well as data persist due to the advantages

that arrive from it. Some systems even provide support for making the current state of

execution persistent, i.e., they allow for the current state of a program to be preserved

for resuming at a later time. � Database, in its current form, does not deal with storing

code in the persistent store; see section 6.3.1 for a brief discussion of the issues involved.

3.2 Comparison of � Database with Related Approaches

� Database is more closely related, both in scope and intent, to the software based ap-

proaches described in section 2.3.1 than to the architectural approaches described in

section 2.3.2.

The basic memory mapping scheme used in Brown’s stable store is identical to the

one employed by a single � Database representative. The major difference lies in the

fact that Brown’s store is flat while the store in � Database consists of a collection of

address spaces that all start at the same virtual zero. Thus, � Database provides support

for multiple simultaneously accessible persistent areas for an application. Both schemes
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suffer from the same problems insofar as operating system support is concerned, e.g.,

less control over the time at which dirty pages are actually written out.

ObjectStore and � Database share many goals and objectives. Some of these include

ease of learning, no translation1 between the disk-resident representation of data and the

main memory-resident representation used during execution, full expressive power of

a general purpose programming language when accessing persistent data, re-usability

of code and statically type-checked access to data. In ObjectStore, there is a limitation

on the size of data a single transaction can access simultaneously because ObjectStore

maps only portions of a file at a given time. In � Database, an entire file structure is

mapped into an individual segment, which restricts the maximum size of any single file

structure to be less than the virtual space supported by the available hardware; large file

structures have to be split into multiple smaller ones. There is, however, no restriction

on how much data a single transaction can access simultaneously. Admittedly, the re-

striction imposed in ObjectStore may be less severe than the one imposed in � Database,

especially with small virtual address spaces. In ObjectStore, all pointers embedded in

a data page may need to be found and relocated when the page is mapped. This prob-

lem is non-existent in � Database because each database is mapped into a different vir-

tual space and relocation of pointers is unnecessary. However, in � Database additional

copying of data has to occur for inter-segment pointers from the file structure segment

to the application segment. Some of this copying is unavoidable in any mapped system,

including ObjectStore. Overall, I believe that any additional copying costs will be less

than the total cost of doing relocation and, in general, is required to protect the integrity

of the file structure, anyway.

The ObjectStore server is conceptually analogous to the � Database representative.

1Note that, unlike � Database, ObjectStore only achieves this goal in the special case when it can reload
data into memory where the data was last manipulated; otherwise, pointers must be modified (swizzled).
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There is some difference in the treatment of inter-segment pointers between ObjectStore

and � Database. In ObjectStore, inter-database pointers can be short-lived (created and

valid during the scope of a transaction) or long-lived; the former are implemented using

normal virtual memory pointers whereas the latter are long pointers. It is possible for

ObjectStore to use short-lived normal pointers because a transaction maps all databases

it accesses into the same address space. � Database, on the other hand, maps each in-

dividual database into its own segment, and, therefore, it must use long pointers for

all inter-database pointers except for one special file mapped into the application seg-

ment. Clustering of objects in � Database can be attained by means of simple storage

management primitives.

Cricket is similar to � Database in its use of direct memory pointers that are always

mapped to the same locations in the virtual address space, thereby eliminating the need

for relocation. The fundamental difference between these two systems lies in their view

of the address space. Unlike Cricket, � Database uses a structured rather than a flat

virtual space. In Cricket, everything that an application ever needs to use must exist in

a single database whereas � Database allows the application(s) to group related data in

independent collections that can be used and shared as desired as long as there are few

data inter-relationships; otherwise, the performance of the system degrades. � Database

builds on top of the concept of files to provide multiple, individually sharable collection

areas, and provides for sharing of information stored in files, with each different file

being mapped into its own individual segment.

Texas and similar schemes are clear winners for applications that require extremely

large persistent address spaces, larger than the address space of currently available hard-

ware. For applications that do not require persistent address spaces that are larger

than the virtual space of modern computers (32-64 bits), the simplicity and efficiency

of � Database put it at a distinct advantage over the scheme used by Texas. In other
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cases, I believe that splitting a very large database into smaller databases of related ob-

jects is a very good approach simply for organizational reasons while eliminating the

need for complicated swizzling mechanisms.

QuickStore uses memory mapping to create the mapping between virtual memory

frames and disk pages in its client buffer pool. However, its use of memory mapping

techniques is quite different from the EPD approach followed in � Database. QuickStore

is essentially a pointer swizzling scheme that manages to avoid swizzling the pointers

in some cases, as does ObjectStore. And like ObjectStore, it has to maintain all the infor-

mation needed by a swizzling system. Also, since it is built on top of another storage

system (EXODUS storage manager), it does not gain from all the benefits afforded by a

fully memory mapped implementation.

Texas and QuickStore have many of the same problems as ObjectStore with regard

to dynamic relocation and multiple accessible databases, and as such, the critique of

ObjectStore is applicable here as well. Also, the need to relocate pages in these systems

has the potential of seriously degrading performance for certain access patterns.

Systems described in section 2.3.2 make use of new hardware and operating sys-

tems and, as such, are usually not portable to other systems. � Database can run on

any UNIX system that supports the mmap system call. Unlike Bubba, the current de-

sign of � Database is based on a multiprocessor shared-memory architecture and is not

intended to be used in a distributed environment unless the environment supports dis-

tributed shared memory[SZ90b, WF90] which, I believe, will allow the current design to

scale up to a distributed environment. The representative in � Database is quite similar

to the Clouds object, except that the representative has its own thread of control while

the Clouds object is totally passive. Also, the focus of Clouds was to build a new operat-

ing system, while � Database is an attempt to make memory mapping ideas available to

database designers in the form of a toolkit that can be supported on any operating sys-
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tem that provides support for segmentation. Malhotra and Munroe make some of the

same arguments that I have made for � Database when it comes to using virtual memory

references to access objects. Their proposed long object identifier for the RS 6000 system

is similar to the one employed by � Database: a long identifier consists of a file id and an

address within the virtual space corresponding to the file. Like MONADS, the virtual

store in � Database is not flat; it consists of a collection of independent areas as described

in section 3.1.1. The segmentation addressing scheme employed in MONADS is similar

to the one envisioned for � Database. However, due to the nature of the current imple-

mentation of � Database, it is not possible to make use of an addressing scheme identical

to MONADS.

3.3 Parallelism in � Database

Generally speaking, there are two distinct forms of parallelism that can be exploited in

database systems to achieve better performance and functionality. The two forms of

parallelism, as depicted in figure 3.5, are:

Concurrent Retrieval of Data. The slowest link in accessing a file structure is transfer-

ring data to and from secondary storage. Secondary storage speeds range from

1,000 to 100,000 times slower than primary storage. Further, there does not appear

to be any imminent technological advancements that will significantly reduce this

ratio in speed between secondary and primary storage; in fact, the difference has

only increased over the last decade. Therefore, the only approach that is currently

available to improve performance is to partition data onto multiple secondary stor-

age devices and access these devices in parallel. Disk arrays (RAIDs) are the most

common implementation of this idea [PGK88, WZS91]. Once the data is parti-

tioned, significant performance advantage can be obtained by partitioning indi-
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vidual queries and executing the resulting sub-queries in parallel.

Concurrent Accessors. Supporting concurrent access to a database improves its uti-

lization, in the same way that multiprogramming operating systems improve uti-

lization of a computer—by having several simultaneous requests to execute, it is

possible to perform some of the requests in parallel if the requests access data in a

non-conflicting manner. There is no difference in the turnaround time of an indi-

vidual request (in fact, there may be a slight increase in turnaround) in comparison

to serial execution of the same request, but the total throughput of requests is im-

proved. However, there is a high cost in complexity that must be paid to ensure

proper access to shared data. Problems such as livelock, deadlock, and starvation

must all be dealt with, while attempting to achieve as much parallelism between
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the processors and the I/O devices. As well, such systems can quickly saturate

because of the I/O bottleneck; therefore, attempts to achieve optimal parallelism

in accessing persistent data are often fruitless.

Note that concurrent retrieval and concurrent access are orthogonal aspects of paral-

lelism; systems exist that provide one or the other or both.

The question addressed in this section is how to use the EPD techniques for partition-

ing file structures across multiple disks and accessing partitioned data to achieve con-

current retrieval. The issue of concurrent accessors for EPD file structures is addressed

in chapter 6. Further, the design, implementation and analysis of the parallelized multi-

disk versions of three database join algorithms is presented in chapter 5.

3.3.1 Partitioned File Structures and Concurrent Retrievals

Concurrent retrieval attempts to deal with the CPU-I/O bottleneck by partitioning data

across multiple disks and then accessing the data in parallel. A typical disk-array system

partitions a file structure into several stripes, each stored on a different disk. Both static

and dynamic allocation of file structures across several disks have been addressed in the

literature. One of the major issues is that the striping or partitioning algorithm should

partition the data so that the access time for a particular access method is minimized and

the I/O load is balanced across the disks. The partitioning algorithm can be application

specific or general. While partitioning, balancing the I/O load does not imply a physi-

cally even distribution of data across several disks. The goal is to partition data in such

a manner that during retrievals, the data units that need to be accessed are as evenly

distributed as possible across disks.

In the discussion here and in chapter 4, the general concern is not about access to

the index portion of the file structure. Normally the index is relatively small and highly
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accessed so that most of it remains resident in main memory, and consequently, does

not contribute significantly to disk accesses. Nevertheless, the discussion can be easily

extended, if necessary, to include the index portions of file structures.

A B
�

-Tree and an R-Tree based on the EPD approach were modified so that insert

operations automatically partition the data across several disks and the query operations

retrieve data from multiple disks in parallel. The partitioning of the two file structures

is discussed in chapter 4, while some general issues are presented below.

3.3.2 Query Types and Parallelism

Exact match queries (e.g., retrieving a single record to match a specified key) usually

cannot take advantage of partitioning because the index is already in memory and there

is only one disk access required to service the request. Note, however, that in some disk

array based implementations, individual data records are also split across multiple disks.

Retrieving a record in such a system involves a parallel reading of the individual pieces

of the record from multiple disks.

Range queries, on the other hand, can exploit partitioned file structures to perform

parallel retrievals if the data needed for responding to a query is distributed across multi-

ple disks. A specified range query can be broken down into multiple smaller sub-queries

that can be executed in parallel inside the DBMS. By dividing the original query so that

the resulting sub-queries access data on different disks, the overall query can be pro-

cessed much faster. Similarly, if the file structure is aware of the access pattern for its

data blocks, it can employ pre-reading techniques to increase the parallelism in reading

blocks of data from secondary storage.

Several different kinds of range queries common in database applications were de-

signed, implemented and evaluated using � Database to demonstrate the effectiveness

of parallelism in a memory mapped environment based on the EPD approach. In partic-
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ular, the following three types of range queries were investigated:

1. A range query, called a <K,K> range query, described by two key values K1 and K2.

All records with key values between K1 and K2 inclusive are returned as a result of

the query. Neither K1 nor K2 need be in the database.

2. A range query, called a <K,C> range query, described by a key value K and a

signed integer C. The query result consists of �C � consecutive records starting with

the record with key value K. The direction traversed from K is specified by the

sign of C. A positive C indicates traversal in the order that the keys are sorted in

the file structure—for ascending order, values greater than K are returned and for

descending order, values less than K are returned. A negative C causes traversal

to occur in the opposite direction.

3. A range query, called a <K,C,C> range query, described by a key value K and two

positive integer values C1 and C2. C1 records with keys before and C2 records with

keys after the record with the key value K are returned.

In general, the records returned from a range query are unordered.

3.3.3 Range Query Generators or Iterators

In � Database, an application program performs a range query by using a programming

construct called a generator or an iterator [LAB
�

81, Sha81, RCS93]. A typical range query

generator provides at least two methods, namely, an initialization routine and an iter-

ative operator. The initialization routines are used to specify a range query. Once the

generator has been initialized, each successive invocation of the iterative operator re-

turns another object from the result of the specified query until all records have been

returned. Further discussion of generators is presented in section 3.4. The generators
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developed for the partitioned file structures perform parallel retrieval of data needed to

process the specified range query. Each generator provides an iterative operator >> that

can be invoked to retrieve, one record at a time, the result of the specified range query.

As an example, consider the following code fragment: This code fragment initializes an

instance of a B-Tree generator object, gen, to process a <Key,100> range query on the B-

Tree structure referred to by the access object, accessObject. Each successive call to the

>> operator of gen returns a pointer to another record from the result of the <Key,100>

range query. When all the records have been exhausted, the NULL pointer is returned,

which causes the loop to terminate.

// <K,C> range query application

for ( BTreeRangeQuery gen(accessObject, Key, 100); gen >> rec; ) {

// process rec

}

3.3.4 Generic Concurrent Retrieval Algorithm

Once a file structure has been partitioned, the issue of accessing it while employing

as much parallelism as possible can be addressed. The main concern is increasing the

degree of parallelism at the back end of the DBMS. A concurrent retrieval algorithm can

take advantage of the potential parallelism, but only if sufficient hardware is available.

First, multiple disks must be accessible in parallel, which implies that disks must be

capable of concurrent seeks. Second, if multiple processors are available, they must be

capable of performing any file-structure administration in parallel with the application

program processing the results of the range query. The Sequent Symmetry computer

configuration described in section 4.1 satisfied both of these hardware requirements.

The following algorithm was developed to perform concurrent retrievals on EPD
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file structures. The algorithm is generic in nature and can be easily specialized for per-

forming concurrent retrievals on any arbitrarily complex indexed file structure. Recall,

in � Database, a file structure is a single object with one representative. When the file

structure is partitioned across D disks, the file structure segment is also divided into D

contiguous partitions (see section 3.1.3) and the D file structure partitions are memory

mapped, one after the other, into the divided segment by the representative. Then M

kernel threads (UNIX processes in � C++) are created to share the representative segment

containing the mapped file structure partitions; M is a control variable specified by the

experimenter. The M kernel threads execute D
�

1 light-weight tasks that are created to

perform retrieval requests. D of the tasks, called retrievers, copy records from the pri-

vate memory of the representative to shared memory and the remaining task is called

the leaf retrieval administrator (LRA) as depicted in figure 3.6. When a generator object is

instantiated for executing a specified range query, the generator allocates a buffer area of

specified size to be shared between the specified accessor object and its representative.

In addition, another task, called the file structure traverser (FST), is created. The FST

organizes and maintains the allocated buffer space as a sharable buffer pool. As well, the

FST traverses the file structure index and generates a list of pointers to leaf nodes that

contain all the records satisfying the query being executed, without actually dereferenc-

ing any leaf node pointers. For each pointer in the list, the FST communicates with the

LRA specifying the leaf node pointer, number of records needed from the referent leaf

node (obtained from an appropriate index entry), and a handle for the buffer pool. The

LRA partitions and distributes the FST requests among the retriever tasks. A retriever

task dereferences the specified pointer causing the referent leaf node to be retrieved from

disk, allocates a buffer from the buffer pool, and copies as many records from the leaf

node as will fit into the buffer. The last step is repeated until all the selected records in

the leaf node have been copied into the buffer pool and then the retriever task waits for
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Figure 3.6: Generic Concurrent Retrieval Algorithm

more work from the LRA. This design ensures that the only bottleneck in parallel pro-

cessing of the specified query is the speed with which the bounded buffer can be filled

and emptied. In general, an application program can keep ahead of a small number of

disks (1-7 disks), depending upon the complexity of data processing involved, because

the data processing time is significantly less than the I/O time.

A retriever task may or may not be tied to a particular disk. In EPD terminology,

being tied to a particular disk means accessing only that part of the address space that

contains the mapping for the disk. When a retriever task is not tied to a particular disk,

the task can be asked to process any leaf node by the LRA. In this strategy, the LRA
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maintains a single FIFO queue of requests from the FST. When any of the retrievers

is free, the LRA passes on the FST request at the front of the queue, causing the leaf

nodes to be processed in FIFO order. The problem with this scheme is that parallelism is

compromised when several consecutive leaf node requests in the queue are for the same

disk. In this case, many or all of the retriever tasks may block on a single disk while other

disks (and their controllers) remain un-utilized. Therefore, it is usually more efficient to

tie each retriever task to a particular disk by making the LRA create D queues, one for

each disk. Upon arrival at the LRA, a leaf retrieval request from the FST is queued on one

of the D queues depending upon the disk containing the leaf node to be processed. Each

retriever task processes requests from one queue only. In this scheme, the throughput is

directly controlled by the slowest disk in the chain, resulting in a near optimal solution.

This observation was verified by running experiments on both of these strategies (see

chapter 4).

Finally, double buffering can be exploited by tying more than one retriever task to

each disk so that while one retriever is processing data for a leaf node, another one is

reading the next leaf node to be processed from the same disk. Note that in order to

gain from this strategy, the number of kernel threads must be at least the number of

retriever tasks, because in a memory mapped system, the kernel thread causing a page

fault blocks until the faulted page has been brought into memory.

The generic concurrent retrieval algorithm described above can be used for different

indexed file structures by specializing the FST and the components of a retriever task

responsible for processing of individual leaf nodes to extract information.
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3.4 Programming Issues and Interfaces

A memory mapped file structure should be able to use all the capabilities of the imple-

mentation programming language. This chapter illustrates some of the ways in which

the EPD approach to memory mapping achieves this goal in � Database.

3.4.1 Polymorphism

The polymorphic facilities of C++ can be applied to generalize the definitions of file struc-

tures and to allow reuse of the file structure’s implementation by other file structures.

Generalization allows existing file structure code to be specialized by users and reuse

allows file structure designers to write new file structures in a shorter time with fewer

errors (on the assumption that the old file structure is debugged). The desire to gen-

eralize and reuse code arose during the construction of the file structures used in the

experiments described in chapter 4. During this process, two issues were noticed:

1. A file structure and its access methods are usually polymorphic, that is, they can

handle a number of different record (and possibly key) types. However, this poly-

morphism is usually achieved at the loss of type safety by dealing with blocks

of untyped bytes. Some systems [GR83, CLV91] provide dynamic type/format

checking to tackle this problem. I believe that the interface to an access method of

a file structure should be statically type checked to permit early detection of errors

and efficient code generation (as in E [RCS93]). Therefore, there is a need to be able

to generalize a file structure and its access-method interface across the record (and

possibly key) type.

2. Many file structure algorithms incorporate both a data structure and a storage

management scheme, e.g., a B-Tree is an N-ary tree with fixed or variable sized
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data records stored in uniform sized nodes. Storage management deals with un-

typed blocks of bytes of a segment and, therefore, it is not possible to perform

static type-checking at the storage management level [BDZ89]. Among different

file structures, there is a significant amount of duplicated code dealing with storage

management that can be abstracted out and reused. By factoring out the storage

management aspect, it is possible to deal with the data structure independently

of storage management, which can be encapsulated into a separate tool that can

be used in varying ways with different data structures. In � Database, only file

structure designers work at this level; users usually work at a statically type-safe

level.

The rest of this section describes work done to achieve the above two goals. Object-

oriented programming techniques are employed, but languages with other forms of

polymorphism, e.g., parametric polymorphism, are equally applicable. C++ [ES90] is

used as the concrete implementation programming language. A general knowledge of

object-oriented programming is assumed throughout this discussion. In addition, a ba-

sic familiarity with C++ is assumed, although most of the examples are self-explanatory.

3.4.2 Generic File Structures and Access Methods

From a code reuse standpoint, the code to manage a file structure is largely independent

of the record (and possibly key) types. A simple example is an ordered linked-list. The

linked-list data structure is independent of the type of elements stored in a node of the

list, requiring only assignment on the record type if stored by value, and comparison

on the key type. However, the access-method routines used to modify a file structure

need to be specialized in the record (and possibly key) type so that static type-checking
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is possible. Therefore, an access method needs to be generic in these fields and possibly

generalized in other aspects. To accomplish these design requirements, I initially used a

preliminary version of the C++ template facility [FON90] to define generic file structures

and their access methods; the code was subsequently changed to use the standard C++

templates when they became available.

The template facility allows all components of a file structure to be statically type-

safe. A user application specializes a generic file structure by the data stored in it. For

example, a B-Tree file structure is declared as follows:

BTreeFile<int,float> db( "testdb", greater );

which creates a B-Tree stored in a UNIX file named "testdb", with int keys and float

data records, and the B-Tree is structured by a user supplied key comparison routine

greater(). Generic linked-list and B-Tree file structures are presented later in this chapter

to demonstrate the basic concept, and I have applied this approach to construct R-Tree,

general N-ary Tree, generalized graph and other file structures.

3.4.3 Storage Management

One of the most complex parts of any data structure is efficient storage management.

In fact, much of a file structure designer’s time is spent organizing data in memory and

on secondary storage. For memory mapped file structures, organizing data in memory

indirectly organizes the data on secondary storage.

This section discusses the conventions and software tools used to organize and man-

age a file structure’s storage. By following these conventions and using the appropriate

tools, it is possible to significantly reduce the time it takes to construct a complex file

structure. The details of the programming interface to the memory management tools

are presented and then a tutorial in which a simple persistent linked-list data structure
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and a generic B-Tree are built using the tools.

To a large extent, this is the approach of many garbage collection systems that provide

system- or program-wide storage management [Wil91b]. The criterion used to judge the

success of this approach is whether an independent facility for storage management

can provide performance that is close to traditional schemes that incorporate storage

management directly with the data structure.

Memory Organization

In the EPD approach, memory is conceptually divided into three major levels for storage

management:

address space is a set of addresses from 0 to N used to refer to bytes or words of

memory. This memory is conceptually contiguous from the user’s perspective,

although it might be implemented with non-contiguous pages. An address space

is supported by hardware and managed by the operating system.

segment is a contiguous portion of an address space. Usually, there is a one-to-one

correspondence between an address space and a segment, but it is possible for

an address space to be subdivided into multiple segments, e.g., with segmented

hardware addressing. In � Database, a segment is also mapped onto a portion of

the secondary storage. A segment is supported by hardware and managed by the

address-space storage manager (the representative).

heap is a contiguous portion of a segment whose internal management is independent

of the storage management of other heaps in the segment, but heaps at a particular

storage level interact. A heap is not supported by hardware and is managed by its

containing storage manager.
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Since � Database is capable of creating multiple mappings simultaneously (see sec-

tion 1.2.2), multiple segments can exist at the same time. In a traditional programming

environment with only a single heap, dynamic memory management routines for the

heap are usually provided by the programming language system (e.g., new and delete

operators). This facility is no longer adequate for the multiple segments in � Database

for the following reasons:

1. When multiple segments are present simultaneously with each having its own

heap, a target segment must be specified each time a memory allocation request

occurs.

2. The programming language heap is a general purpose storage area. A mapped

segment, on the other hand, is almost always dedicated to a particular data struc-

ture, e.g., a linked list or a B-Tree. Therefore, there is an opportunity for optimizing

the storage management scheme based on the contained data structure. In addi-

tion, many data structures require special action to be taken when storage over-

flows and underflows, e.g., when a node in a B
�

-Tree fills up during insert, the

data structure requires the creation of a new node and the movement of a subset of

data from the old node to the new one. The storage management facility must be

able to accommodate application specific actions for these cases. The basic concept

of using multiple independent heaps has been employed by many other systems,

e.g., the area variables in PL/I [IBM81].

To achieve the above, � Database memory management facilities are provided in the

form of generic memory manager classes. Memory manager objects instantiated from these

classes are self-contained units capable of managing a contiguous piece of storage of ar-

bitrary size, starting at an arbitrary address. If a segment is managed by a given mem-

ory manager object, invoking member routines within the object implicitly performs the



3.4 Programming Issues and Interfaces 83

desired management on its segment. Since the different managed areas are controlled

by independent memory managers, it is possible to create memory management classes

with different storage management schemes to suit the needs of different data structures.

Finally, a programming technique is provided that allows application specific overflow

action.

3.4.4 Nested Memory Structure

All segments are nested in an address space. All heaps are nested in a segment. Further,

since a heap is simply a block of storage, it is possible for heaps to be nested within one

another. This structure is illustrated in Figure 3.7. The form of an address for each level

may depend on the storage management scheme at that level.

In theory there is no limit on the depth of nesting of heaps, but in practice there is a

limit imposed by the number of bits in the address used to reference data in the lowest

level heap. In general, a small number of sub-heaps are sufficient for most practical

problems; see [BZ88] for a further discussion of expressing nesting.

3.4.5 Address Space Tools

As mentioned, an address space is managed by the operating system so there is usu-

ally little or no control over it by the file structure designer. However, some operating

systems support specifications like sequential or random access of an address space,

providing different paging schemes for each; facilities to control which page is replaced

would be extremely useful. If address-space management tools are available, they can

make a significant difference in the performance of a file structure, but currently such

tools are almost non-inexistent in commercial systems.
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3.4.6 Segment Tools

Segment tools create, manage and destroy segments in an address space. Furthermore,

flexible capabilities are provided for mapping one or more disk files into a segment. The

capability to map multiple disk files is discussed in chapters 3 and 4 where it is used

for partitioned file structures. In this chapter, the focus is on mapping a single file into

a segment. All segment capabilities are provided through the representative for a file

structure. The programming interface for these facilities is discussed next.
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3.4.7 � Database Programming Interface

An application program that uses � Database consists of the following basic modules

that are linked together to form an executable program.

1. � Database library: This library is the core module that contains the basic imple-

mentation of the representative and the accessor, both of which are generic and

provide all low-level support needed to employ the EPD approach to memory

mapping for building file structures.

2. File structures and their access methods: A specific file structure and its access

methods are implemented as classes that inherit from the specialized versions of

the base representative and the accessor respectively. An alternative to inheritance

is to make a specialized instance of the representative a member object of the file

structure class. It is the responsibility of the file structure designer to provide defi-

nitions and implementations for the file structure and its access methods. A library

consisting of several different file structures, both sequential and parallel, has been

developed as part of this work.

3. Application program: In order to manipulate data stored in a file structure, the

application program declares instances of the file structure and the accessor objects

and uses the interface provided by the accessor class to perform operations on the

file structure.

Code in the � Database library as well as file structure code is executed in the repre-

sentative segment, while application program code is executed in its own address space.

With the use of wrappers provided in the � Database library and described in section 3.4.8,

application code can be executed in the context of the representative segment.
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3.4.8 Representative Interface

The representative interface in the � Database library is provided by three related classes:

Rep, RepAccess and RepWrapper.

Class Rep

Rep is the representative data structure. It is responsible for mapping and un-mapping

files to/from segments, and controlling the size of the segment, which determines the

size of the file. The basic public interface of Rep is shown in Program 3.1; some details

have been omitted to simplify the following discussion.

uMonitor Rep {
public:

virtual void *start(); // starting address of mapping
virtual int size(); // current size of mapping
virtual void resize(int size); // resize mapping
virtual bool created(); // UNIX file created by this rep?
void createExtraProcs(int Num); // add extra virtual processors
void deleteExtraProcs(); // remove extra processors

};

Program 3.1: Basic Representative Interface

uMonitor is a � C++ artifact that declares a monitor class. Briefly, a monitor class is a nor-

mal C++ class except that concurrent execution of the public member routines of a moni-

tor class is serialized (see [BFC95] for further details on monitors). The member routine

start returns the starting address of the mapping, the segment base address, which is cur-

rently 16M. The member routine size reports the current size of the mapped space and

thus the size of the mapped file. The routine resize sets the size of the mapped space, and

indirectly, the file size to the value specified as its argument. The routine created returns

true if the requested UNIX file was created by the current representative, and false if
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the file was present before the representative was created. The routine createExtraProcs

creates extra virtual processors that are attached to the address space of the representa-

tive segment. Extra virtual processors are useful for increasing parallelism and can be

destroyed when not needed by invoking the companion routine deleteExtraProcs.

Class Rep is not intended to be instantiated directly by the file structure code, which

is why it has no public constructors. Instead, a representative is created indirectly

through class RepAccess, which may create a new instance of Rep for the file struc-

ture, if one does not exist yet, or use an existing one. Thus, the only way to control

file mapping and un-mapping is through an instance of RepAccess. The representative

access object takes part in maintaining the � Database global representative table that

guarantees a one-to-one relationship between representatives and file structures in an

application.

Class RepAccess

The basic interface to RepAccess is shown in Program 3.2. RepAcess is generic in the

type of a specialized representative that is created by inheriting from Rep. Usually, a spe-

cialized representative is not needed and RepAcess is specialized with class Rep itself.

The constructor’s parameter for RepAccess is the name of a UNIX file for a file structure

or a list of the names of UNIX files comprising a partitioned file structure. Upon the cre-

ation of an instance of RepAccess, the global representative table for the application is

searched in an attempt to locate an active representative for the file structure specified by

the given UNIX file(s). If a representative is present, the corresponding file structure is

already mapped and a new mapping is unnecessary. A pointer to the existing represen-

tative is stored in the newly created RepAccess instance, the representative’s use count

in the global table is incremented, and the creation is complete. If, however, no represen-
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tative is found for the file structure, an instance of class RepType is created and entered

into the representative table. If the file structure does not already exist in the UNIX file

system, it is created and initialized. The file structure is always mapped at the same

starting location, the segment base address (see section 3.1.3). However, an advanced fa-

cility is provided for specifying the starting address for the mapping. This facility must

be used with caution and only when no dereferencing of embedded pointers is to take

place during execution.

template<class RepType> class RepAccess {
public:

RepAccess( char *filename );
RepAccess( char *filename[ ], int NumPartitions);
void *start(); // starting address of mapping
int size(); // current size of mapping
void resize(int size); // resize mapping
int created(); // UNIX file created by this rep?

};

Program 3.2: Basic Access Class Interface

The member routines start, size, resize and created are covers for similar ones in class

Rep. RepAccess routines perform the same functions as their counterparts in Rep. They

are present so the full functionality of the representative is available to the file structure

designer via the access class. This approach serves to completely isolate the represen-

tative objects from the file structure code. However, this intended isolation presents a

problem for objects stored within the persistent area for the following reasons:

1. A persistent object within the file structure cannot reliably refer to an existing

RepAccess object created outside the persistent area because a RepAccess ob-

ject is created on a per access basis and has a many-to-one relationship with the

persistent space.
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2. A RepAccess object cannot be created from inside the persistent area because that

would result in a pointer out of the mapped area, which is a pointer to a transient

object from a persistent area.

3. The RepAccess constructor takes the name of the UNIX backing file as an argu-

ment. To supply the argument, the name of the file has to be stored inside the

persistent area, which means that the UNIX backing file cannot be renamed once

it is created by � Database. This limitation is quite unacceptable.

Because of the above problems, the only access to mapping control for objects within the

persistent area is by a direct pointer to the Rep structure.

Organization of Representative and Access Classes

After the representative is created (indirectly by an accessor object), the file is mapped

into a new segment, and by convention, the representative writes a pointer to itself at the

beginning of the newly mapped space for the following reason. The storage manager for

a segment or heap must exist before the area it manages so there is at least somewhere to

store a pointer to the new segment or heap. Therefore, the storage manager is allocated

out of an existing storage area and the new storage area is conceptually nested in the

storage area that contains its storage manager. In general, the nesting relationship needs

both a pointer from parent to child and vice versa. Without the back pointer from child to

parent or a pointer to the root of the storage hierarchy, it is not possible to find the parent

storage manager when a child needs more storage. The pointer inserted at the beginning

of a segment for a newly instantiated mapped file structure provides the back pointer for

storage managers in the segment to communicate with the representative’s storage man-

ager. For abstraction, this pointer is contained in an instance of a pre-defined � Database

class, RepAdmin, which is stored at the beginning of the segment by convention.
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Figure 3.8 shows the organization of representatives and their access classes and seg-

ments. The representatives are chained together to allow them to be searched when an

access object is created to see if there is already an active representative for the specified

file structure. Notice, also, a pointer from the segment to the representative. Having

a pointer from persistent memory to transient memory for the representative violates

a previous design restriction because a pointer to the transient representative from the

persistent file is invalid as soon as the application that created the representative ter-

minates or destroys the representative object. However, this scheme works because the

representative pointer is dynamically initialized on the first access to the corresponding

persistent area during an application’s execution, i.e., when the representative object is

created and the persistent area is mapped, the representative segment pointer is initial-

ized. Once the file structure has been unmapped, the representative segment pointer at

the beginning of its persistent area becomes meaningless.

RepAccess

Rep

segment

database implementor

shared memory
private memory

or user

implementor
file structure

Figure 3.8: Organization of Representatives

Upon the destruction of an instance of RepAccess, the use count for the represen-
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tative in the global table is decremented. If the use count for the representative reaches

zero, all access requests for the corresponding file structure have been closed. The map-

ping is then terminated and the representative object destroyed.

Class RepWrapper

Since the file structure is mapped into the representative’s private memory, user appli-

cation code does not have direct access to the contents of the file structure; the applica-

tion code only has access to shared memory. The class RepWrapper, with an interface

shown in Program 3.3, provides the mechanism to allow application code to access pri-

vate memory for a particular representative’s segment.

class RepWrapper {
public:

RepWrapper( RepAccess &repacc );
};

Program 3.3: Basic Wrapper Interface

RepWrapper is a wrapper class and, therefore, does not have any member routine of

its own; all actions of the wrapper class are carried out by the constructor and destructor

of the wrapper. When a wrapper is declared inside a program block, both of the wrap-

per’s operations are guaranteed to be performed, even if the block is terminated by an

exception. The RepWrapper constructor takes an instance of RepAccess as an argument,

which indirectly refers to a representative’s address space and any segment(s) mapped

into it. The main action taken by the constructor is to reset the current segment pointer,

to a value corresponding to the specified RepAccess object, from which addresses are

implicitly related. In effect, the current thread of control is migrated to another segment

in which addresses have a new meaning, except for those addresses that refer to data
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in the common shared area of each segment. However, since � Database executes on an

architecture without segmentation capabilities, switching the current segment pointer

is achieved indirectly by explicitly migrating the current thread of control to another

UNIX process, which has a different page table and, hence, a different mapping for the

private part of the address space. In practice, the UNIX process executing the thread

stops and the other UNIX process continues executing the thread’s code. The destruc-

tor executes the reverse action, i.e., it migrates the current thread of execution back to

the address space where the constructor was executing. The cost of either operation is

a light-weight context switch and possibly a heavy weight context switch if the UNIX

process associated with the destination address space is currently blocked.

As soon as an instance of RepWrapper is created, the specified representative’s ad-

dress space becomes accessible to the executing program in addition to the already ac-

cessible shared memory; the duration of accessibility is the life of the wrapper. Note,

however, that two wrappers cannot be active at the same time because only one address

space can be in effect at a time so only segments in that address space are accessible.

Therefore, a process cannot have direct access to two or more mapped files simultane-

ously. One way to ensure this restriction is to only create one instance of RepWrapper

per block and make the wrapper the first declaration to ensure the segment is accessible

before operations are performed on it, as shown in Program 3.4. This convention further

ensures that the wrapper’s actions occur as the first and last operations of a program

block.

3.4.9 Heap Tools

As mentioned earlier, a segment has no inherent facilities to manage allocation and deal-

location of its memory. This section discusses heap tools that can be used to manage

a segment’s memory. If none of the tools presented in this section is appropriate for a
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void list::rtn() {
RepWrapper( repacc ); // rep’s address space becomes accessible

// may access data in shared segment and rep’s segment only

} // back to previous address space and rep’s address space is inaccessible

Program 3.4: Using a Wrapper

given application, it is possible to build specialized heap management tools.

Storage Management Schemes

While there are a large number of storage management schemes possible, three basic

schemes are provided in � Database. The first version of these schemes was implemented

by A. Wai as part of his M.Math essay [Wai92]. The schemes presented below are ordered

in increasing functionality and runtime cost.

uniform has fixed allocation size. The size is specified during the creation of the mem-

ory manager object and cannot be changed afterwards. Uniform memory manage-

ment is often used to divide a segment into fixed sized heaps (e.g., B-Tree fixed-

sized nodes).

variable has variable allocation size. The size is specified on a per allocation basis but

once allocated, cannot be changed. This is a general purpose scheme very similar

to the malloc and free routines of C [KR88].

dynamic has variable allocation size. The size is specified on a per allocation basis and

can be expanded and contracted any time as long as the area remains allocated.

Because of this property, the locations of allocated blocks are not guaranteed to

be fixed. Therefore, an allocation returns an object descriptor instead of an absolute

address. An allocated block does not have an absolute address and must be ac-
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cessed indirectly through its descriptor. Because of this indirection, it is possible to

perform compaction on the managed space. Therefore, fragmentation can be dealt

with in an application independent manner.

These three storage management schemes should cope with most application de-

mands. Should special needs arise, special purpose memory management schemes can

be created and easily integrated into � Database, possibly reusing code from the supplied

schemes.

Nesting Heaps

With many applications, a segment has to be subdivided into multiple heaps that are

managed independently of each other. The nodes of a B-Tree are examples of such heaps.

Since the heaps are themselves pieces of storage that are usually allocated and released

dynamically, it is logical to have a higher level memory manager to deal with these

heaps. The segment then becomes an upper level heap with dynamically allocated sub-

heaps nested inside.

A heap may be accessed in two ways: by the file structure implementor and by a

nested heap. For example, the storage management for a B-Tree has 3 levels: the segment,

which is managed by the representative, within which uniform-size B-Tree nodes are

allocated, within which uniform or variable sized records are allocated. Depending on

the particular implementation of the storage manager at each level, different capabilities

are provided. A file structure implementor makes calls to the lowest level (uniform or

variable storage manager) to allocate records. A uniform or variable memory manager

can then be created within the node. After that, the lower level memory manager for

the node can be called to allocate data records in that node. Figure 3.10 on page 116

illustrates this storage structure.
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Overflow Control

When a heap fills, a generic storage manager can sensibly take three actions:

1. enlarge the heap by adding additional storage at the end of the contiguous heap.

However, when there are multiple heaps at a particular nesting level, this may

necessitate moving one or more other heaps.

2. allocate a new heap which is larger than the existing heap, copy the contents of the

old heap to the new heap, and delete the old heap.

3. allocate a new heap and copy some portion of the contents to the new heap so that

each heap has some free space. This action results in two independent heaps that

must be managed.

Moving heaps or their contents requires finding and relocating pointers to data being

moved. Since generic memory managers are independent of the type of data they man-

age, it is impossible for them to take these actions on behalf of the file structure. There-

fore, a generic memory manager does not deal with expansion.

Instead, a generic memory manager is designed with an expansion exit, which is ac-

tivated when a heap fills, so that a data-structure specific action can be performed to

deal with heap overflow. The following are two examples of such data-structure specific

actions. When a B-Tree node fills during an insert operation, an additional node is al-

located and some of the contents of the old node are migrated to the new node. When

a variable-size character string heap fills, the heap may be copied to a new heap that is

larger and the previous heap freed.

To encapsulate this application specific dependency, the concept of an expansion exit

is implemented using an expansion object. An expansion object is written as part of a file

structure definition and it contains enough intelligence to deal with overflow. All expan-
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sion objects are derived from a special expansion base class and one must be provided to

the generic memory manager when the latter is created. When the generic memory man-

ager detects that a heap is full during an allocation operation, it calls member routines

in the expansion object to deal with the situation.

Note that heap underflow can also be dealt with in a similar manner, but is not dis-

cussed here.

Expansion Object

As mentioned earlier, a basic memory manager does not deal with heap overflow. In

order to handle overflow, a specialized heap expansion definition must be created to

perform application specific overflow action. The class uExpand, shown in Program 3.5,

is the interface between the memory manager and the overflow handler.

class uExpand {
public:

virtual bool expand( int ) { // default expand routine
cerr << "uExpand::expand(" << this <<

"): no expand routine defined." << endl;
uExit( -1 );

}
};

Program 3.5: Heap Expansion Object

The member routine expand is called from within the memory manager whenever

more storage is needed due to a heap overflow. The routine takes an integer argument

that specifies the amount of additional storage requested. A file structure specific ex-

pansion class must derive from class uExpand and redefine the expand routine to per-

form the desired overflow action, adding more private variables to the class definition

as necessary. The expand routine’s return code controls the future action of the memory
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manager. If the expand routine returns false, the allocation process fails. If the expand

routine returns true, the memory manager re-attempts to allocate memory out of the

expanded heap and fails if there is still insufficient storage after the expansion.

As shown in program 3.5, ordinarily the expand routine would be defined as a C++

virtual routine so that it can be replaced by specialized derived expansion classes. How-

ever, expansion objects associated with persistent data structures are stored in the per-

sistent area together with the data they manage. As mentioned in Section 3.1.5, virtual

members are currently not supported in a persistent area. Consequently, the expand rou-

tine is defined as a regular member routine and specialized using the generic (template)

facility in C++. The memory managers, which invoke the file structure specific version of

expand, are parameterized based on the file structure expansion class. The interface of

the generic uniform memory manager is shown in Program 3.6.

template<class T> class uUniform {
public:

uUniform( void *mstart, int msize, T &expn, int usize );
void *alloc();
void free( void *p );
void sethsize( int newsize );

};

Program 3.6: Interface for Uniform Storage Manager

The constructor takes four arguments: mstart is the starting address of the managed

space (i.e., the heap), msize is the initial heap size, expn is a reference to the specialized

expansion object and usize is the allocation size for the uniform heap. Once initialized,

the member routines alloc and free are used to allocate and free uniform sized blocks of

storage in the heap. The member routine sethsize is used to inform the memory manager

of a change in heap size and is intended to be invoked by the expansion object.



98 Using the EPD Approach to Build a Single-Level Store

To create a specialized uniform memory manager for use in a file structure, a special-

ized expansion class is defined first, as shown in Program 3.7. This program creates a

uniform memory manager to manage storage that starts at the beginning of the persis-

tent area referred to by the access object repacc, is initially 1000 bytes in size, is allocated

in 100 byte blocks and overflow is handled by myExpObj.

class myExpand : public uExpand {
// variables necessary to perform expansion

public:
myExpand( . . . ); // specify data needed for expansion
bool expand( int ) {

// code to perform expansion
}

};

myExpand myExpObj; // create specialized expansion object

// create and initialize the storage manager
uUniform<myExpand> myUniSM( repacc.start(), 1000, myExpObj, 100 );

Program 3.7: Specializing a Uniform Storage Manager

For more flexible storage management, a variable or dynamic memory manager may

be required. The interfaces of these two parameterized classes are shown in Program

3.8. The constructors takes three arguments mstart, msize and expn, which specify the

starting address, the initial size of the heap and the expansion object, respectively, just

as they do in the uniform manager constructor. Further, member routines alloc, free

and sethsize perform the same functions as those in the uniform manager. The dynamic

manager deals with movable memory blocks, and therefore the alloc and free routines

make use of the indirect pointer type Descriptor instead of the direct pointer type void *.

Specialized variable and dynamic memory managers are created in the same manner as

specialized uniform managers described earlier.



3.4 Programming Issues and Interfaces 99

template<class T> class uVariable {
public:

uVariable( void *mstart, int msize, T &expn );
void *alloc( int size );
void free( void *fb );
void sethsize( int newsize );

};

template<class T> class uDynamic {
public:

uDynamic( void *mstart, int msize, T &expn );
Descriptor alloc( int size );
void free( Descriptor p );
void sethsize( int newsize );
Descriptor realloc(Descriptor area, int addition);

};

Program 3.8: Interfaces for Variable and Dynamic Storage Managers

3.4.10 Linked List Example

This section illustrates basic techniques and tools for constructing a persistent file struc-

ture by building a generic singly linked list with nodes containing a variable length string

value. Note that for a more flexible linked list, the type of the data stored in the nodes

can also be parameterized.

List Application

At the application level, the file structure designer makes available four data struc-

tures: one to form the nodes of the list (listNode), one to declare a persistent linked

list (list<class nodeType>), one to access it (listAccess<class nodeType>) and one to tra-

verse it (listGen<class nodeType>). Program 3.9 shows a simple application program

using the persistent linked list.

There are several distinguishable components of the persistent linked list application.

First, there is a definition of the specialized list node, myNode, which must inherit from
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class myNode : public listNode { // inherit from list node
public:

char value[0]; // variable sized string
}; // myNode

char *next_string() { . . . }; // a random string generator

void process_string(char *p) { . . . }; // modify contents of string

void uMain::main() {
list<myNode> l( "abc" ); // create persistent list
listAccess<myNode> la( l ); // open list

for (int i = 1; i <= 100; i += 1) { // create nodes in list
la.add( next_string() );

} // for

listGen<myNode> gen; // used to scan through list
myNode *p;
char name[MAX_STRING_LEN]; // buffer space for strings

for ( gen.over( la ); gen >> p; ) { // modify the list indirectly
la.get( p, name ); // copy out information
process_string( name ); // modify contents as needed
la.put( p, name ); // copy information back

} // for

for ( gen.over( la ); gen >> p; ) { // destroy the list
la.remove( p );

} // for
} // uMain::main

Program 3.9: Linked List Example

listNode to get the appropriate link fields added. Since the data in each node is a variable

length string, the node structure only defines a place holder field, value, of zero size, and

the actual storage for the string is allocated as each node is created. Second is the creation

of the persistent list file structure, l, with UNIX file name "abc". Third is the declaration

of the access class object, la, for persistent list object, l. Both the persistent list class and

its access class are generic in the type of the node so that all accesses to the two classes
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can be statically type checked.

The next three loops add, update and remove nodes using the access class routines

add, get and put, and remove, respectively. The generic linked-list generator, listGen,

returns a sequence of pointers to nodes stored in the persistent list. However, these

pointers cannot be dereferenced in the application program; they can only be used as

place holders to nodes and passed to other access routines, like get and put. It is possible

to create a special list pointer type that restricts dereferencing to authorized list objects.

3.4.11 Linked List File Structure

Figure 3.9 shows all the list data structures created and their inter-relationships in the

persistent linked list file structure.

List Node

The abstract class, listNode, shown in Program 3.10, contains the fields needed by each

node in a linked list to relate the data. The member routine next allows indirect access

to the link field.

class listNode { // abstract class containing link field
listNode *nxt;

public:
listNode *&next() { // access to link field

return nxt;
} // listNode::next

}; // listNode

Program 3.10: Abstract List Node Class
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Figure 3.9: Linked List Storage Structure

Administration

Information pertinent to a particular linked list, e.g., the pointer to the head of the list

and the memory management information for the persistent area, must outlive the ap-

plication program that creates the list, i.e., information other than the linked list data

itself must persist. Therefore, this information must be stored in the same persistent area

as the linked list itself. By convention, all such persistent administrative information is

encapsulated into an administrative object stored at the beginning of the persistent area

or the segment. Furthermore, the administrative type must inherit from the pre-defined
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abstract type RepAdmin (see section 3.4.8).

The code for the list administrative class is presented in Program 3.11. The class

contains a pointer, head, to the root of the persistent linked list, the expansion object

for the persistent area for the list, and the variable memory manager that manages the

persistent area. As discussed in section 3.4.8, the representative initializes a pointer to

itself at the beginning of its persistent area. This pointer can be accessed from subclasses

of RepAdmin through the protected variable rep and is the reason for the convention

requiring the administrative class to inherit from RepAdmin and for the administrative

object to be stored at the beginning of the persistent area or segment. The constructor for

the administrative class takes an integer, indicating the initial heap size, as an argument,

initializes the expansion object, expobj, the variable memory manager, vsm, and then

sets the list root pointer to NULL, indicating an empty list. The two private member rou-

tines alloc and free are utility routines that make use of the underlying variable memory

manager. The routine alloc is important because it casts the untyped bytes returned from

the variable memory manager into the type of the generic list node, thereby providing

type-safe access to the routines of the linked list file structure.

Expansion Class

The expansion class for the linked list is defined in Program 3.12. The constructor

initializes a reference to the administrative object so that the expansion object can ac-

cess both the containing storage manager, listAdmin::vsm, and the list representative,

listAdmin::RepAdmin::rep. The member routine expand first extends the persistent area

by calling the representative’s resize routine. It then informs the variable memory man-

ager of the change by calling its sethsize routine and finally, returns true indicating that
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template<class T> class listAdmin : public RepAdmin {
friend class listExpType<T>; // give access to expansion class
friend class list<T>;

T *head; // root node of the list
listExpType<T> expobj; // expansion object to extend list memory
uVariable< listExpType<T> > vsm; // variable sized list storage manager

T *alloc( int size ) {
return (T *)vsm.alloc( sizeof(T) + size );

} // listAdmin<T>::alloc

void free( T *p ) {
vsm.free( p );

} // listAdmin<T>::free
public:

listAdmin( int fileSize ) :
expobj( *this ),
vsm((void *)this + sizeof(listAdmin<T>),

fileSize - sizeof(listAdmin<T>),
expobj

) {
head = NULL;

} // listAdmin<T>::listAdmin<T>
}; // listAdmin<T>

Program 3.11: List Administration Class

the original allocation operation should be re-attempted2.

File Structure Class

The purpose of the list file structure class is to establish a connection between the exe-

cuting program and the UNIX file that contains the list data structure. It does not make

the file accessible unless it is creating the file, and then the file is made accessible only

long enough to initialize the file structure. Program 3.13 contains the definition of the

list class, list.

2An additional error check is required to deal with failure to obtain sufficient storage from the segment,
but has been removed for clarity.
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template<class T> class listExpType : public uExpand {
listAdmin<T> &admin;

public:
listExpType( listAdmin<T> &adminobj ) : admin( adminobj ) {
}; // listExpType<T>::listExpType

bool expand( int extension ) {
// extend the segment
admin.rep->resize( admin.rep->size() + extension );
// inform the storage manager
admin.vsm.sethsize( admin.rep->size() - sizeof(listAdmin<T>) );
return true;

} // listExpType<T>::expand
}; // listExpType<T>

Program 3.12: List Expansion Class

The constructor of list takes two arguments. The first one indicates the name of the

UNIX file that contains the persistent linked list. The second argument is optional and

indicates the initial size of the persistent storage that contains the linked list nodes, if

the file structure is to be created; otherwise this parameter is ignored. The constructor

makes a copy of the UNIX file name in shared memory, establishes a mapping to the

file by creating a RepAccess object, makes the resulting segment accessible by creating

a RepWrapper, obtains a pointer to the beginning of the segment to use as the location

of the administrative object, and checks to see if the file was created on access. If the file

has been newly created, the segment is extended to the specified size and the adminis-

trative object is created at the beginning of the segment, which initializes itself through

its constructor, creating an empty list.

The private member routines first, add and remove manipulate the list nodes. These

routines are in the list object so that the list can be modified by other objects within the

persistent area. The first routine returns a pointer to the beginning of the list. The add

routine calls the variable storage manager in the administrative object to obtain storage

for a node of type myNode that can contain the string parameter, copies the parameter
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template<class T> class list {
friend class listAccess<T>;
friend class listGen<T>;

char *fileName; // UNIX file containing the list
listAdmin<T> *admin; // administrator for the list segment

list( const list & ); // prevent copying
list &operator=( const list );

T *first() { // return pointer to first node in list
return admin->head;

} // list<T>::first

void add( char *value ) { // add name to the beginning of the list
T *newNode = admin->alloc( strlen( value ) );
. . . // initialize newNode with value and put at head of list

} // list<T>::add

void remove( T *p ) { // remove node from list
if ( p == admin->head ) { // remove first node

admin->head = (T *)p->next();
} else { // remove node in list

. . . // search for and remove node p from list
} // if
admin->free( p );

} // list<T>::remove

public:
list( char *name, int initSize = 4 * 1024 ) {

fileName = new char[strlen(name) + 1]; // allocate storage for file name
strcpy( fileName, name ); // copy file name
RepAccess<Rep> repacc( fileName ); // map file
{

RepWrapper wrapper( repacc ); // migrate to file segment

admin = (listAdmin<T> *)repacc.start(); // admin object at start of segment
if ( repacc.created() ) { // file created when mapped ?

repacc.resize( initSize ); // initialize segment
new(admin) listAdmin<T>( repacc.size() ); // initialize admin object

} // if
}

} // list<T>::list

~list() {
delete [ ] fileName;

} // list<T>::~list
}; // list<T>

Program 3.13: Linked List Class
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into the new node, and chains the node onto the head of the list. The remove routine

removes the given node from the list and frees the storage for the node. These routines

make use of standard singly linked-list algorithms using pointers.

Access Class

An access class defines the duration for which a file structure segment is accessible. The

access class for the list file structure, called listAccess, is shown in Program 3.14 and

provides routines to operate on the list. It is the sole means for the application code to

access list data. listAccess also contains per access information, in a manner similar to a

UNIX file descriptor.

The constructor of listAccess takes a reference to a list class object as an argument.

The reference is retained for subsequent access to the list routines and a file structure

mapping is established by creating a RepAccess object. The member routines add and

remove are covers for the corresponding routines in the list object whereas get and put

are cover routines that copy data out of or into the value field of a list node, respectively.

All these routines make the list segment accessible by creating a RepWrapper object

before performing an operation on the list.

Generator

As discussed in section 3.3.3, a generator iterates over a data structure, returning some

or all of the elements of the data structure. Generators provide access to the elements

of a data structure without having to use or access the particular data structure’s imple-

mentation; hence, generators enforce the notion of abstract data types. Depending on the

data structure, there may be multiple generators that iterate over the data structure in

different ways and/or a generator may have several parameters that control the precise
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template <class T> class listAccess {
friend class listGen<T>;
friend class listWrapper<T>;

RepAccess<Rep> repacc; // access class for representative
list<T> &lst; // list being accessed

listAccess( const listAccess & ); // prevent copying
listAccess &operator=( const listAccess );

public:
listAccess( list<T> &lst ) : lst( lst ), repacc( lst.fileName ) {
} // listAccess<T>::listAccess

void add( char *value ) {
RepWrapper wrapper( repacc );

lst.add( value );
} // listAccess<T>::add

void get( T *p, char *value ) {
RepWrapper wrapper( repacc );

strcpy( value, p->value );
} // listAccess<T>::get

void put( T *p, char *value ) {
RepWrapper wrapper( repacc );

strcpy( p->value, value );
} // listAccess<T>::put

void remove( T *p ) {
RepWrapper wrapper( repacc );

lst.remove( p );
} // listAccess<T>::remove

}; // listAccess<T>

Program 3.14: List Access Class
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way the generator iterates over the data structure.

The list generator, as defined in program 3.15, has two constructors. The first con-

structor allows the specification of a list access object and initializes the generator to the

beginning of the list. This constructor is employed when the generator object is going to

be used only once for one particular list object, as in:

for ( listGen<myNode> gen( la ); gen >> p; ) { . . . }

The second constructor is employed to create a generator that is subsequently re-

initialized to work with a particular list access object, as shown in Program 3.16. In this

case, when the list generator object is created, it is not associated with a particular list

access object. The association occurs through the over member routine, which initializes

the generator to the beginning of the specified list. Notice that the same generator object,

gen, is used to iterate over two different list access objects, la and ma, which may be

accessing the same or different lists; the only requirement is that both access objects refer

to lists that contain nodes of type myNode. Finally, the iterative operator >> is used to

extract the next place holder to an element in the data structure. While the place holder

may be declared to be a normal pointer, in general, it cannot be dereferenced in the

application program because it points into the list segment, which is not accessible from

the application (exceptions to this rule are discussed next). Instead, the place holder is

used by other member routines in an access object to transfer element data out of or into

appropriate list nodes in the list segment.

Wrapper

Program 3.9 showed how an application can modify linked list data by copying data

out of a list node, changing it, and copying it back by invoking the access class routines;

hence, the data is modified indirectly in the original list nodes. The reason for copying

is that a pointer returned by a list generator cannot be used in the application program
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template<class T> class listGen {
listAccess<T> *la;
T *curr;

listGen( const listGen & ); // prevent copying
listGen &operator=( const listGen );

public:
listGen( const listAccess<T> &la ) {

RepWrapper wrapper( la.repacc );

listGen::la = &la;
curr = la.lst.first();

} // listGen<T>::listGen

listGen() {
} // listGen<T>::listGen

void over( const listAccess<T> &la ) {
RepWrapper wrapper( la.repacc );

listGen::la = &la;
curr = la.lst.first();

} // listGen<T>::over

int operator>>( T *&p ) {
RepWrapper wrapper( la->repacc );

p = curr; // return current node
if ( curr != NULL ) { // if possible, advance to next node

curr = (T *)curr->next();
} // if
return p != NULL;

} // listGen<T>::operator>>
}; // listGen<T>

Program 3.15: List Generator

listGen<myNode> gen; // one generator
listAccess<myNode> la, ma; // two lists
. . .
for ( gen.over( la ); gen >> p; ) { . . . } // generator used with different lists
for ( gen.over( ma ); gen >> p; ) { . . . }

Program 3.16: Using the List Generator
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since it points into the list segment, which is not directly accessible from the application.

As mentioned in Section 3.4.8, a wrapper is used to make the representative’s address

space accessible. This technique can be extended to the application program by pro-

viding a wrapper that makes the list segment directly accessible; pointers from the list

generator can then be used directly to modify data in list nodes, as shown in Program

3.17. A new block is started to define the duration of the list segment access and the

list wrapper is declared. Within the block, pointers returned from the generator can be

directly dereferenced to read and modify the list node data. A substantial performance

gain can be achieved by this technique, because the list segment is only made accessible

once for all accesses to the list data and the copying of the list data is eliminated.

{
listWrapper<myNode> dummy( la ); // make la’s segment accessible

for ( gen.over( la ); gen >> p; ) { // modify the list directly
process_string( p->value );

} // for
}

Program 3.17: Using a Linked List Wrapper

The list wrapper is defined in Program 3.18 and is simply a cover definition for declar-

ing a RepWrapper for the specified list segment.

3.4.12 Programming Conventions

The simple generic linked-list illustrated all the basic conventions and tools for building

a persistent file structure. The conventions are:

� The representative writes a pointer to itself at the beginning of the newly mapped

segment.
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template<class T> class listWrapper {
RepWrapper wrapper;

listWrapper( const listWrapper & ); // prevent copying
listWrapper &operator=( const listWrapper );

public:
listWrapper( const listAccess<T> &la ) : wrapper( la.repacc ) {
} // listWrapper<T>::listWrapper

}; // listWrapper<T>

Program 3.18: Definition of a Linked List Wrapper

� All persistent administrative information is encapsulated into an administrative

object that is stored at the beginning of the segment. Further, the type of the ad-

ministrative object inherits from RepAdmin to ensure there is space for the back

pointer to the representative.

� A block is started before declaring a wrapper so that the wrapper’s action occurs

as the first and last operations of the block.

� Only one access wrapper can be declared in a block, because only shared memory

and one segment’s memory can be accessible at a time.

Each basic file structure should provide the following classes at the application level: a

node abstract class, a file structure class, one or more access classes, and (usually) one or

more generator classes. At the file structure level, there is the administrative class.

3.4.13 B-Tree Example

The following example further illustrates advanced techniques and tools, such as nesting

storage managers, for constructing a persistent data structure by building a generic B-

Tree file structure. However, the basic structure of the B-Tree file structures follows the

persistent linked list exactly.
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B-Tree Application

Similar to the persistent linked list, the B-Tree makes available three data structures:

one to declare it (BTreeFile), one to access it (BTreeAccess), and one to traverse it

(BTreeGen). The nodes of the B-Tree are not created directly by users and, hence, this

structure does not exist. All these class definitions are parameterized on two classes

KeyType and RecordType to specify the types of the key and the data records, respec-

tively, for the B-Tree.

Program 3.19 illustrates the usage of these classes to write a small application pro-

gram that creates a persistent B-Tree, inserts a number of records into the B-Tree and

finally, retrieves the records from the B-Tree in their sorted order. The program first de-

fines a class Record to describe the structure of the data records to be stored into the

B-Tree. The type of the key used to index the records in the B-Tree is the built-in type int.

In general, both KeyType and DataType can be defined as arbitrarily complex data struc-

tures with the requirement that there exist an assignment operator that can be invoked

to copy objects. This requirement is necessary so that records and keys can be copied to

and from shared and private memory.

Next, a comparison routine is defined to specify a function that takes two objects of

type KeyType and returns a true or false value depending upon whether the first object

is “greater” or “smaller” than the second. The comparison routine provides the mech-

anism necessary to order keys in the B-Tree. In Program 3.19, the comparison routine

greater results in the records being arranged in descending order by their keys.

The program then creates the B-Tree, if it does not already exist, with an initial size

of 30K by creating a BTreeFile object, db, which is passed as an argument to a newly

created B-Tree access object. Once the access object has been created, its member routine

insert is invoked to insert a number of records into the B-Tree. Finally, a B-Tree generator
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struct Record { // data record
float field1, field2;
Record &operator = (const Record &rhs) { // define assignment

field1 = rhs.field1;
field2 = rhs.field2;
return( *this );

}
};

bool greater( const int &op1, const int &op2 ) { // key ordering routine
return op1 > op2;

}

void uMain::main() { // uMain is a uC++ artifact
BTreeFile<int, Record> db( "testdb", greater, 30 Kb ); // create B-Tree
BTreeFileAccess<int, Record> dbacc( db ); // open B-Tree
Record rec, *recp;

// insert records
for ( int key = 1; key <= 1000; key += 1 ) {

rec.field1 = key / 10.0;
rec.field2 = key / 100.0;
dbacc.insert( key, &rec ); // static type-checking

}

// retrieve records
for ( BTreeGen<int, Record> gen(dbacc); gen >> recp; ) {

. . . // process recp
}

}

Program 3.19: Example Program using a Generic B-Tree

object gen is invoked to retrieve the records stored in the B-Tree in order.

Nested Memory Manager

As discussed in Section 3.4.9, heaps managed by memory managers can be nested within

each other. A B-Tree file structure is a good example where nesting is needed. The file

space is divided into uniform sized B-Tree nodes managed by a uniform memory man-

ager. A variable memory manager is created within each node to manage the variable
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sized B-Tree records contained within the node (See Figure 3.10).

The administrative class for the B-Tree, shown in Program 3.20, is defined in the same

manner as the linked list structure in section 3.4.10. Note that the class definitions in this

section are not presented as generic classes for simplification of presentation. In practice,

these classes are parameterized in the types of keys and records. The administrative

class contains a uniform memory manager and an expansion object for the manager.

class BTreeAdmin {
public:

Rep *rep; // initialized automatically
. . . . // at beginning of mapping
void *Root; // root node of the B-Tree
BTreeExpType expobj;
uniform<BTreeExpType> usm;

BTreeAdmin( int FileSize, char *TypeName, int BlkSize );
. . . .

}; // BTreeAdmin

BTreeAdmin::BTreeAdmin( int FileSize, char *TypeName, int BlkSize ) :
expobj( *this ),
usm((void *)this + sizeof(BTreeAdmin),

FileSize - sizeof(BTreeAdmin),
expobj,
BlkSize

) {
Root = NULL;

} // BTreeAdmin::BTreeAdmin

Program 3.20: Administrative Class for the B-Tree

The expansion class is defined in Program 3.21. The expansion object attempts to

expand the size of the mapped file by calling the representative’s resize routine, which

is the typical action taken by the top level expansion object.

A B-Tree node can be used to hold B-Tree indices or data records. The former is

called an index node while the latter is called a leaf node. Both types keep their infor-
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Figure 3.10: B-Tree Storage Structure
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class BTreeExpType : public expand_obj {
BTreeAdmin &admin;

public:
BTreeExpType( BTreeAdmin &adm ) : admin( adm ) {};
int expand( int extension );

}; // BTreeExpType

int BTreeExpType::expand( int extension ) {
admin.rep->resize( admin.rep->size() + extension );
admin.usm.sethsize( admin.rep->size() - sizeof(BTreeAdmin) );
return 1; // retry allocation

} // BTreeExpType::expand

Program 3.21: Expansion Class for the B-Tree Storage Manager

mation within variable sized records managed by a variable memory manager. The leaf

node class BTreeLeaf is shown in Program 3.22 and the expansion class for the memory

manager vsm is shown in Program 3.23.

class BTreeLeaf {
friend BTreeLeafExpType;
BTreeLeafExpType expobj;
variable<BTreeLeafExpType> vsm;
. . .
void MoveRecords( . . . );
retcode SplitLeaf( . . . );

public:
BTreeLeaf();

}; // BTreeLeaf

BTreeLeaf::BTreeLeaf() : expobj(*this), vsm( (void *)this +
sizeof(BTreeLeaf), NodeSize - sizeof(BTreeLeaf), expobj) {

. . . .
} // BTreeLeaf::BTreeLeaf

Program 3.22: B-Tree Leaf Node Class

Because all B-Tree nodes are fixed size, a node cannot be enlarged when full. Instead,

the member routine SplitLeaf, shown in Program 3.24, within the BTreeLeaf class is
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class BTreeLeafExpType : public expand_obj {
BTreeLeaf &leaf;
. . . .
BTreeLeafExpType( BTreeLeaf &lf ) : leaf( lf ){}

public:
int expand( int );

}; // BTreeLeafExpType

int BTreeLeafExpType::expand(int) {
leaf.SplitLeaf( . . . . );
return 0; // done, give up allocation

} // BTreeLeafExpType

Program 3.23: Expansion Class for the B-Tree Leaf Node Storage Manager

called to split the node into two. First, the SplitLeaf routine allocates a new node by

calling the top level memory manager. Then, the tree is reorganized by moving some of

the data records into the newly created empty node, thus making more space available in

the current node. Note that the leaf nodes in a B-Tree are usually chained together in the

form of a doubly-linked list. Existing generic linked list code can be reused to implement

linking of the B-Tree leaf nodes, thereby avoiding the need to implement linked lists in

B-Tree code.

retcode BTreeLeaf::SplitLeaf( BTreeLeaf *OldLeafPtr, . . . ) {
// create a new node
BTreeLeaf *NewLeafPtr = new (SegZero->usm.alloc(NodeSize)) BTreeLeaf();
// move some records out the current node and into the new node
MoveRecords( OldLeafPtr, NewLeafPtr );
. . .
return 1;

} // BTreeLeaf::SplitLeaf

Program 3.24: Leaf Node Member Routine for Splitting

At the file structure level, an access-method implementor makes calls to the lowest

level (variable storage manager BTreeLeaf::vsm) to allocate records as shown in program
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3.25. The variable storage manager in turn calls the higher level, BTreeAdmin::usm, if

necessary, as described earlier.

retcode BTreeLeaf::InsertRecord( . . . ) {

// call lowest level variable storage manager to allocate space within node
BTreeLeafRecord *FreeRecPtr = (BTreeLeafRecord *) vsm.alloc( /* leaf rec. size */ );

. . .

} // BTreeLeaf::InsertRecord

Program 3.25: Leaf Node Member Routine for Inserting a New Record

3.5 Analytical Modelling of the System

Chapter 4 presents an experimental framework for studying file structures based on

the EPD approach to memory mapping. Conducting experiments of this magnitude is

exorbitantly expensive in terms of both human and machine resources. Consequently, I

felt that an important research contribution could be made to the study of EPD persistent

stores by developing a mathematical model for the system. After surveying a number

of theoretical models for memory and I/O systems, none of the existing models was

found to represent the EPD system closely enough to make accurate predictions about

the behaviour of real experiments.

This section describes work done towards the development of an accurate quantita-

tive model for an EPD system that can be employed to accurately predict performance

of algorithms in the EPD environment. A related goal is to investigate the behaviour

of database algorithms in a memory mapped environment based on the EPD approach,

especially in highly parallel systems. I believe that results from this work should apply
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to other kinds of memory mapped single-level stores as well.

The model can be used to analyze and study sequential and parallel algorithms on a

physical machine. My hope is that the model can act as a high-level filter for data struc-

ture and algorithm designers to predict general performance behaviour without having

to construct and test specific approaches. Only those approaches that look promising

from the model need to be more fully tested. Further, a quantitative model is an essen-

tial tool for subsystems such as a database query optimizer where the model can be used

to compute costs for alternative execution strategies in order to plan optimal schemes

for executing specified queries.

3.5.1 Survey of Related Work

The influences on this work stretch across many areas within computer science. The

following survey of the modelling literature is divided into two areas: theoretical I/O

modelling and other relevant studies on database joins, particularly in shared-memory

environments.

Theoretical Models

Classical theoretical models of computation in random access machines have, in recent

years, been extended to cover hierarchical memories and the resulting I/O bottleneck as

well as spatial and temporal locality. This section presents a brief survey of this work,

both in sequential and parallel shared-memory settings.

The classical model of a Random Access Machine, or RAM [AHU83] consists of a pro-

cessor executing instructions on data stored in a uniformly accessible collection of mem-

ory cells. The Parallel Random Access Machine, or PRAM [FW78] is an extension of RAM

for a parallel shared memory machine, which consists of a number of processors commu-
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nicating through shared-memory. Each processor has access to two types of memories:

local and shared (or global) and is capable of performing standard RAM operations as

well as reading and writing of cells in global memory. There are several aspects of PRAM

that make it unsuitable as a practical model of computation. Nevertheless, the PRAM

has served as a useful platform for several subsequent models that are more realistic.

Refinements of the older models have resulted in increasingly complex models. One

of the major problems with PRAM as a realistic model is its lack of distinction between

local and global memory [PU87, AC88]. The Block PRAM, or BPRAMp �
� [ACS89], makes

this distinction by assigning different access times to local and global memory, resulting

in a two-level memory. Further, a block size based cost model is introduced by the notion

of start-up memory transfer costs – words in local memory are uniformly accessible

whereas the cost of accessing a block of b contiguous cells in global memory is b
��� ,

where � is the machine dependent latency. However, BPRAM like models fail to capture

the real life notion of a fixed block size and block boundaries. Moreover, by its very

nature, the two-level model does not account for differential costs in accessing different

sections of memory from the point of view of multiple processors.

Further models have recently been proposed for multi-level memory [AACS87,

ACS87, ACFS94], both in the sequential and parallel settings. In the Hierarchical Memory

Model, a hierarchical organization of memory cells is modelled by assigning access time

for location x as f
�
x � , for functions such as f

�
x � � log x and f

�
x � � xα [AACS87]. Block

transfer capability is added to the basic model by computing the cost of accessing a block

of b bits starting at location x as f
�
x � � �

b � 1 � [ACS87]. The notions of block transfer and

hierarchy are developed further by modelling the memory as a tree of modules, where

computation takes place at the leaves [ACFS94]. In this model, data is transfered be-

tween modules by buses; parameters of the model include size of blocks, bandwidths of

buses, and branching at each level.
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I/O complexity models [HK81, AV88, VS94a, VS94b] take a slightly different ap-

proach, e.g., Aggarwal and Vitter [AC88] consider a two-level memory model in which

a single CPU communicates with a single disk; several blocks of memory can be trans-

ferred in a single I/O operation. Vitter and Shriver [VS94a, VS94b] changed this model

so that secondary storage consists of several disks and each disk can transfer a single

block in one operation.

The memory mapped analytical model presented in this chapter draws on ideas from

several of the above papers, though the intent is not to characterize the complexity of

problems, but rather to predict performance on many real architectures.

Database Studies

Many database modelling efforts related to this work use the join algorithm for analysis

and validation purposes. Joining is a merging of data from two collections of data ob-

jects, R and S, where an R object contains a join attribute that refers to an S object, and

data from each is combined to form the join.

This work builds on the framework proposed by Shekita and Carey [SC90], which

presents an analytical single-processor, single-disk model that can be viewed as a sim-

pler version of my subsequent multiprocessor, multi-disk model. In their model, three

pointer-based join algorithms are analyzed: nested loops, sort-merge and hybrid hash.

However, no experimental data is presented to validate their model.

Shekita and Carey make a number of simplifying assumptions some of which are

removed or modified in my analysis. For instance, for joining of a relation R with another

relation S, they assume that every object in relation S is referenced by exactly one object

in R. While my analysis retains this assumption, it leaves open the possibility for a one-

to-many relationship between the two relations. They assume the cost of I/O on a single

byte to be a constant, not taking into account seek times or the possibility of savings



3.5 Analytical Modelling of the System 123

using block transfer; they do not distinguish between sequential and random I/O; they

do not consider the fact that the minimum I/O transfer unit on virtually all computers

is at least a disk sector and more commonly a virtual memory page.

Two assumptions made in their paper need to be extracted from the analysis:

constant-time hashing, and clustering of identical references in a single hash chain dur-

ing the hybrid-hash algorithm so that a given object from S need only be read once to

perform the join. My analysis replaces the second assumption with a weaker assumption

that all of the objects of S referenced in one hash chain can fit into the portion of memory

not used by the hash table. In the traditional hybrid-hash algorithm, only one object (or

one block) of S is present in memory at any given time.

Shapiro [Sha86] analyzes sort-merge and three hash-based algorithms and also pro-

vides a discussion of various memory management strategies. Again, no experimental

data is provided to validate the model.

Lieuwen, DeWitt and Mehta [LDM93] analyze parallel versions of Hash-Loops and

Hybrid-Hash pointer-based join algorithms (see section 5.1) and compare them to a new

algorithm, the Probe-child join algorithm. Their work also builds upon Shekita and

Carey [SC90] but has a different emphasis from my work in that I develop a validated

model for a shared memory architecture based upon the EPD approach.

Martin, Larson and Deshpande [MLD94] present a validated analytical model for

a multi-processor, single disk situation. Their model makes a number of assumptions

that can introduce unpredictable amounts of both positive and negative error. For in-

stance, the assumptions of perfect inter-process parallelism and perfect processing-I/O

parallelism tend to decrease the model’s estimate of elapsed time, but the assumption of

maximum processor contention for spin locks tends to increase the estimate.

I have extended the work in the above papers in several ways: by allowing multi-

ple processors and multiple disks (resulting in further algorithm design decisions in the
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course of parallelizing the standard join algorithms), by drawing a distinction between

private and shared memory, and of course by using an EPD environment. The paral-

lelization used in my algorithms has been influenced by ideas presented in [SD89]. In

addition, my analysis is quantitative as opposed to the qualitative analysis in other mod-

els. The model uses measured parameters that quantify the computing environment in

which the join occurs, such as how disk I/O is affected by all aspects of the join.

Munro, et al [MCM
�

95] have, quite recently, reported some early work on validating

an I/O cost model, called MaStA, for database crash recovery mechanisms. Like this

work, MaStA takes into account the peculiarities of a persistent system and attempts to

provide more realistic and finer grained estimation of I/O costs than previous attempts.

One of the major areas where MaStA differs from this work is the modelling of disk

transfer time, dtt
� � (see section 3.5.2). MaStA divides the I/O costs into a number of dif-

ferent access pattern categories (sequential, asynchronous, clustered synchronous, etc.)

with each category assigned a different cost model. The � Database model, on the other

hand, estimates I/O costs on the basis of a single unified cost model. The amortized

cost model developed in this work implicitly incorporates effects of disk access patterns

by defining average cost as a function as opposed to a constant. Both models work by

assigning an average cost per disk access for a specific I/O category. In the � Database

model, the average cost function, dtt
� � , is obtained by experiment. Finally, MaStA con-

centrates exclusively on I/O costs whereas the � Database model models CPU costs as

well. It is my experience that in a database computation, while the CPU costs are usually

not dominant, they can be quite substantial.

3.5.2 Modelling

This section presents the basic model, developed for EPD based systems, and its param-

eters. The model has as components a number of processes, each having its own seg-
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ment with a private area of memory, a shared area of memory accessible to all processors

through which communication takes place, and a number of disks allowing parallel I/O.

The parameters of the model are shown in figure 3.11 and table 3.1.

Private MemoryShared MemoryPrivate Memory

Pi Pj

B B

CS

P

MTsp MTps

MTss MTpp

D

dtt dtt

MSHMPi MPj

Figure 3.11: Basic Structure of the Analytical Model

The parameter D usually refers to the number of disk controllers, not disks, since

there is a one-to-many relationship between controllers and disks (see results in section

4.4 concerning performance effects from disk controllers). When simultaneous requests

arrive for the same disk, the disk arbitration mechanism is left unspecified. Alternatives

for future refinement of the model include denying algorithms simultaneous access, se-

rializing overlapping requests, and a priority scheme for simultaneous requests.

Memory transfer times are given in the form of combined read/write times because
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Parameter Description

P number of processes used by a given algorithm
CS amount of time for a context switch from one process to another
M number of bytes of memory, private and shared

MPi number of bytes of private memory used by process Pi

MSH number of bytes of shared memory available for use to P processes
B size, in bytes, of a block or page of virtual memory
D number of disks that can be operated in parallel
dtt disk transfer time
dttr disk transfer time – read
dttw disk transfer time – write
MTsp shared to private memory transfer time
MTss shared to shared memory transfer time
MTps private to shared memory transfer time
MTpp private to private memory transfer time

newMap time to create a mapping for new area of disk
openMap time to create a mapping for existing area of disk

deleteMap time to destroy mapping as well as disk area

Table 3.1: Parameters of the Model

all segment transfers move data using assignment statements, which read and then

write. Furthermore, these transfer times can be used even if the architecture implements

an explicit block move instruction that does not directly involve process registers; in this

case, the transfer time may be parameterized by the length of the move because a block

move may be more efficient for longer transfers. As an example of the use of memory

transfer times, if one process transfers k bytes from shared memory to private memory,

this takes time k � MTsp. For machine with block move instructions, this time could be

MTsp
�
k � .
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Disk Transfer Time

Modelling disk transfer is complex because it is a function of the data access pattern

due to the inherent sequentiality of the components of a disk access. The nature of

join algorithms is such that data access is clustered into contiguous bands on the disk

during certain parts of an algorithm. Intense (random or sequential) I/O occurs in a

band followed by similar I/O occurring in the next band and so on. This clustering of

accesses is modelled by measuring the average cost per block of sequentially accessing

bands in which random access occurs, over a large area of disk. The size of the disk

area is irrelevant; it only has to be large enough to obtain an average access time for the

band size. The layout of data on disk is always given to explain the band size in further

algorithmic discussion.

In general, the disk transfer time function, dtt, has two arguments: the unit of data

transfer, and the span, in blocks, over which random disk accesses take place, i.e., the

size of the band. In the physical machine used for this work, the first argument is always

B, the virtual memory page size; therefore, the first argument of dtt is dropped from all

of the subsequent formulas, i.e., dtt is considered to be a function of band size alone.

Figure 3.12(a) shows the average time, for the Sequent Symmetry used for experiments

(see section 5.5.1), to transfer a block (4K) to or from disk with respect to a given band

size. When the band size is one, access is sequential; when the band size is greater, access

is random over that area. Thus, average time increases as the band size increases. One

curve is for random reading in a band with no repetition of blocks; the other curve is for

random writing in the band with no repetition of blocks. One might intuitively expect

the read and write times to be identical. However, while a read page fault must cause an

immediate I/O operation, writing dirty pages can be deferred allowing for the possibility

of parallel I/O and optimization using shortest seek-time scheduling algorithms. Thus,
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writes, on average, cost less than reads. The two curves are used to interpolate disk

transfer times for reading, dttr, and writing, dttw, respectively. Both dttr and dttw are

machine-dependent and must be measured for the physical environment in which the

join is executed.

It needs to be emphasized that the band size in the dtt functions is the not the logical

span in the database over which accesses takes place but rather the actual span on disk.

In other words, the argument to the dtt function has to take into account the actual

layout of the database file on disk (which includes non-contiguous layout of data by the

operating system). In order to measure the dtt curves shown in figure 3.12(a), the test

file is laid out contiguously on disk so that the logical bands in the file also correspond

to similar bands on disk.

Finally, the shape of the dtt curves is determined by two distinct phenomenon,

namely, the number of times the disk arm changes direction, which is an expensive

operation, and the total amount of distance traveled. The latter increases linearly, after

a threshold value is reached, with band size and is reflected in the rise in the dtt values

in the upper portions of the curves. The total number of times the disk arm changes di-

rections increases very rapidly when the band size is increased from 1 but soon reaches

a saturation value and stays relatively constant after that. This behaviour is the main

cause of the initial growth of the dtt curves in figure 3.12(a).

Memory Mapping Costs

The cost of three fundamental memory mapping operations, namely, creating a mapping

for a new area of disk, establishing a mapping to an existing area of disk, and destroying

a mapping as well as its data in an existing area of disk, is modelled by three measured

functions, newMap, openMap and deleteMap. Each of these functions takes the size of the

mapping as an argument.
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Figure 3.12: Measured Machine Dependent Functions (for a Sequent Symmetry running
DYNIX 3.1 with Fujitsu M2344K and M2372K disk drives)
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Figure 3.12(b) shows the measured values, for the Sequent Symmetry used for exper-

iments (see section 5.5.1), of memory mapping costs. All mapping costs increase with

size because constructing the page table and acquiring disk space increases linearly with

the size of the file mapped. New mappings are more expensive than existing mappings

because new disk space must be acquired. Deleting is the least expensive because only

the storage for the page table and disk space need to be freed.

In absolute terms these costs are very high and constitute a significant performance

problem. However, the high cost is mostly a function of the particular memory mapping

implementation in DYNIX and of the slow hardware. Measuring the same costs on

a SUN SPARCserver 670MP running the SunOS 5.3 operating system results in much

smaller values, e.g., the cost of creating a new mapping of 50,000 4K blocks on the SUN

machine is less than 0.1 second.

3.5.3 Using the Model to Analyze an Algorithm

Chapter 5 contains a discussion on the design of three parallel join algorithms that were

implemented and analyzed by means of the model presented earlier. This section out-

lines the general procedure for analyzing a given algorithm within the framework of the

model. The analysis can be used to predict the performance of the algorithm on a phys-

ical machine. The specifics of the physical machine are incorporated into the analysis

by means of the measured parameters such as disk transfer time and memory mapping

costs. Additional parameters can be added as needed to analyze the given algorithm,

e.g., in order to analyze heap-sort the cost of inserting and removing an element from

the heap of pointers in memory must be measured. Once all the required parameters

have been compiled and their values determined, they can be used for computing the

costs of the individual steps performed by the algorithm.

One of the expensive activities in a database algorithm is I/O cost, which can vary
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substantially depending upon how the algorithm accesses disk blocks. As such, it is

essential to identify the patterns of disk access in various steps or phases of the algo-

rithm. After determining the nature of I/O in a particular phase of an algorithm, the

appropriate dtt formulas are applied to compute the I/O cost of the specific phase. The

nature of I/O for a phase is determined not only by the total amount of disk blocks read

and written, but also by the type of disk access (sequential or random) and by the span

of disk over which the I/O takes place. Finally, the memory, CPU and I/O costs of the

various phases of the algorithm are summed, as appropriate, to predict the total cost of

the algorithm on the physical machine. Any parallelism in the algorithm is accounted

for by computing the serial cost of computations that occur in parallel.

3.6 Summary

The design of � Database is motivated by a desire to eliminate the complexity and ex-

pense of swizzling pointers, support persistence within a compartmentalized view of

persistent objects in which individual programs are allowed to simultaneously manipu-

late data stored in multiple collections, and follow the software approach based on con-

ventional architectures for its immediate accessibility and portability. This work iden-

tifies and quantifies some components of a persistent system that are quite difficult or

inefficient to construct with conventional operating system and hardware support. The

support for multiple persistent areas is provided by employing the notion of hardware

segments, which are implemented on conventional architectures by a novel usage of

Unix processes. This chapter also illustrated the programming interfaces and conven-

tions used for developing applications in � Database. The ease with which powerful pro-

gramming techniques such as polymorphism and storage management can be applied

to persistent as well as transient data is amply demonstrated in the process. The lack of
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support at the compiler level means that programming in the current stage of � Database

relies on certain conventions being strictly followed. The � Database programming in-

terfaces can be simplified and made more secure by providing some language support,

which is also needed for implementing services like recovery control (see chapter 6).

Presenting a generic concurrent retrieval algorithm for partitioning file structures

demonstrates how parallelism can be exploited easily and naturally in the EPD approach.

For instance, by mapping various partitions of a file structure into a single address space,

many partitioning issues are made transparent to the executing program, resulting in

code that is less complex and more efficient. Finally, this chapter presented the design

and development of a quantitative analytical model of computation in the EPD environ-

ment. Once validated (see chapter 5), the model can be used to predict the performance

of specific algorithms as the system and data parameters are tweaked, resulting in sig-

nificant benefits when studying new algorithms.



Chapter 4

Experimental Analysis of EPD File

Structures

One of the important goals of this work is to demonstrate the feasibility and viability of

the EPD approach to memory mapped file structures. The most effective way of doing so

is to design and construct illustrative EPD file structures and run experiments on them

using a tightly controlled test bed.

As mentioned earlier, many of the traditionally cited reasons for rejecting the use

of mapped files are no longer valid, and compelling arguments have been made for

the use of memory mapped single-level stores for implementing databases. Further,

memory mapping techniques can be used advantageously not only for complex data

structures but also for simpler traditional database structures. Traditional databases can

be accessed using memory mapped access methods without requiring any changes to the

existing data. It is my thesis that memory mapping techniques can provide performance

comparable to traditional approaches while making it much easier to construct, maintain

and augment the access methods of a file structure (i.e., to support extensible databases)

by greatly reducing program complexity. In spite of all these arguments, there is still

resistance and skepticism in the database community to memory mapping. One reason

for this skepticism is the lack of hard data to support arguments in favour of memory

133
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mapped file structures and their access methods.

At the beginning of this work, no major undertaking to conduct experiments on a

memory mapped storage system had been reported and there was no experimental evi-

dence available to support the view that memory mapped file structures could perform

as well as or better than traditional file structures. Therefore, to demonstrate the feasibil-

ity of the EPD approach to memory mapping, I decided to implement several illustrative

file structures using both the EPD approach and the traditional buffer management ap-

proach. The performance of these file structures in the two environments was measured

and compared. For this purpose, an experimental testbed was designed and imple-

mented. The testbed allowed the experiments to be conducted in a tightly controlled

environment and was employed to make reliable performance measurements.

In addition to conducting experiments on sequential file structures, it was also de-

cided to study the behaviour of partitioned file structures in an EPD environment since

parallel access methods represent an important and active area of research in database

technology. Two of the sequential single-disk EPD file structures were partitioned by us-

ing data striping techniques and algorithms were designed to perform parallel queries

on these striped structures. Experiments were conducted to study the benefits obtained

from data partitioning and parallel access methods in the memory mapped environ-

ments based on the EPD approach.

All these experiments are an important and somewhat unique aspect of this work

that has been well received by other researchers working in this area [BGW92]. In addi-

tion to demonstrating the effectiveness of the EPD approach, this work establishes the

beginnings of benchmarks against which other work in the area can be evaluated. The

rest of this chapter presents the design of the experimental testbed and various file struc-

tures, the experiments conducted on the testbed and an analysis of the results obtained.
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4.1 Testbed

4.1.1 Hardware/Software Platform

All the experiments presented in this dissertation were conducted on a 10-processor (In-

tel i386) Sequent Symmetry [Sym87], a shared-memory symmetric multi-processor, run-

ning the DYNIX 3.1 operating system. The system contained 64M of physical memory,

one Sequent dual-channel disk controller (DCC) and eight Fujitsu M2344K/M2372K disk

drives. The DYNIX operating system uses a simple page replacement algorithm that em-

ploys a FIFO queue per page table augmented by a global LRU cache of replaced pages

so there is a second chance to recover a memory frame before it is reallocated. In order

to analyze the experimental results, it is important to understand the organization of the

DCC and the DYNIX page replacement algorithm. Therefore, a summary of these two

aspects is presented before describing the other details of the testbed. The information

presented in sections 4.1.2 and 4.1.3 has been derived from the Sequent Symmetry tech-

nical summary guide [Sym87]. Also, figures 4.1 and 4.2 have been reproduced from the

same source.

4.1.2 Sequent Dual-Channel Disk Controller (DCC)

The Sequent dual-channel disk controller (DCC) controls 8 disk drives using the S MD-

E (Storage Module Drive – Extended) disk interface. Transfer of data to and from the

disks takes place at bursts of up to 3 megabytes per second. The DCC provides two

independent data channels, each of which connects 4 disk drives to the system bus. The

dual-channel design, depicted in figure 4.1, allows two drives, one on each channel, to

transfer data simultaneously in each direction. All drives are capable of simultaneous

seeks. The drives are connected to the data channels of the DCC via two multiplexors,

with each multiplexor connecting two drives each to the two channels.
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Channel A
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SYSTEM BUS
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Controller

Disk 6 Disk 4
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Disk 2 Disk 0

Disk 1

Multiplexor 1 Multiplexor 2

Figure 4.1: Sequent Dual-channel Disk Controller (DCC)

4.1.3 DYNIX Virtual Memory Implementation

DYNIX employs the virtual memory management implementation first used in the

VAX/VMS operating system for the VAX-11/780 (see [LL82] for details of the VAX/VMS

implementation). At boot time, the DYNIX kernel allocates physical memory for itself

and its basic data structures. The remaining pages of physical memory are inserted into

a queue called the free list. All memory needed for user processes is taken from the free

list. When a process starts executing, the pages of virtual memory it needs are loaded

on demand at page fault time. Each process has a resident set, which consists of the list

of physical memory pages allocated to that process. The maximum size of the resident

set for each process is limited, to prevent any one process from monopolizing physical

memory, and can be specified by invoking a system call; otherwise the operating sys-

tem uses a heuristic to determine the maximum resident set for the process. During the

initial flurry of page faults after a process starts executing, the process obtains physical
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memory by depleting the free list (see figure 4.2(a)1). After the resident set is filled up,

however, the page replacement algorithm is invoked at page fault time to trade a page

from the resident set with one from the free-list (see figure 4.2(b)). When pages are added

to the free list, they go to the tail of the list. A page that is not reclaimed by its process

eventually reaches the head of the free list and is claimed by a new process.

Free
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(c) Reclaiming page A4

Figure 4.2: DYNIX Page Replacement Algorithm

1The letter in a page label indicates a process that owns the page and the following digits indicate the
page number within the address space of the process.
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The page replacement algorithm is a modification of FIFO and is implemented with a

pointer per process that cycles through the pages of the resident set of a process. When a

page fault occurs, the page indicated by the pointer is swapped with a page from the free

list. A record is maintained of all the pages a process has placed on the free list. If one

of these pages is referenced again by the process, the resulting page fault, called a minor

page fault, simply reclaims the page from the free list (see figure 4.2(c)), thereby avoiding

the need to read the page from disk. By contrast, a major page fault results in reading

the faulted page from disk. Thus, page faults in figures 4.2(a) and 4.2(b) are major page

faults while the one in figure 4.2(c) is a minor page fault. Once a page is brought back to

the resident set, it is not replaced until the FIFO pointer makes another pass through the

resident set.

To handle pages modified during execution, the above process is modified slightly by

the introduction of another queue called the dirty list that works in a manner similar to

the free list. If a page being replaced has been modified during execution, the page gets

added to the dirty list instead of the free list. When free memory gets low, an operating

system daemon process writes out a subset of the pages in the dirty list to disk and

transfers these pages to the free list as clean pages.

4.1.4 Experimental Testbed

The testbed designed and developed as part of this work allows experiments to be run

in a controlled environment. In test mode, the only activities taking place on the system

are the ones concerning the experiment. Thus, the experiments run without any external

interference. This environment was made possible by the following manipulations of

the DYNIX operating system mechanisms.

During test mode, the system runs in its normal multi-user mode but all operating

system services except the ones needed by the experiments are disabled or shut down,
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which includes disabling external login, and all network services.

The parameters that can be controlled by the experimenter include:

Maximum resident set: The maximum resident set for each individual process can be

specified at run time, which controls the maximum amount of real memory avail-

able to the experiment during execution. Upon exceeding that size, the page re-

placement algorithm described in section 4.1.3 is invoked to make room for a new

page.

Total amount of free physical memory in the system: Due to the nature of the DYNIX

virtual memory implementation and to avoid working with extremely large

databases, it was important to control the total amount of free memory available

to the experiment. This restriction was achieved by using non-swappable memory

blocking programs. A blocking program causes a specified amount of physical

memory to be allocated and goes to sleep. Because the blocking program is made

non-swappable, the physical memory allocated to it is not available for any other

computation; it is as if that memory was not in the system.

During experiments, the total free memory was kept at a level that left a very

small amount of free memory in the global cache after memory had been allocated

to the executing processes. This strategy allowed the processes to continue execu-

tion while ensuring that the experiment did not benefit from any extra available

memory in the global cache.

During experiments, the virtual memory system was tuned (by means of the vmtune

facility of DYNIX) to reduce the size of global free memory as much as possible and

to turn off operating system optimizations such as disk read-aheads. Some additional

changes made subsequently to the testbed are described in section 5.5.1.
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For parallel experiments presented in this dissertation, a maximum of 4 disks, with

one disk attached to each side of the two multiplexers of the DCC, were used. This con-

figuration allowed the experiments to make parallel use of the 4 disks. Note, however,

that there were only two channels with two disks on each channel, which introduced

some contention for data transfer.

4.2 Experimental Structure for Feasibility Studies

Several experiments were constructed to demonstrate the feasibility of the EPD approach

to memory mapping. The general form of an experiment is to implement a file structure

in both the traditional and the EPD styles, create and populate the file structures, mea-

sure performance of retrievals from the file structures, and compare the results. While

every effort was made to keep the two types of file structures as similar as possible, some

system limitations precluded absolutely identical execution environments. In particular,

the traditional file structures are accessed through a custom built LRU buffer manager

that performed raw I/O to and from disk. DYNIX does not support memory mapping

using raw I/O, and therefore, regular file system I/O is employed for the EPD file struc-

tures. Separate experiments were conducted to ensure that memory mapping through

the file system did not result in any advantages due to buffering; it was found that a

mapped file does not make use of file system buffers. To make the comparisons equal,

all file structures used 8K node sizes and all I/O was performed in 8K blocks.

In order to use the experimental testbed described in section 4.1, the following gen-

eral steps are taken. First, a set of blocking programs are run whose only purpose is to

reduce the amount of available physical in the system so that it is just enough to be the

total amount of memory needed for an experiment. The blocking programs sleep during

the experiment so as not to cause any interference. After the amount of available system



4.3 Sequential File Structures 141

memory has been reduced to the desired level, the DYNIX limit command is used to re-

strict the maximum resident set size for the program(s) constituting the experiment. The

experiment is run in this restricted environment. The DYNIX ptime utility is employed

to obtain performance measurements such as the number of page faults and elapsed

time for the program. If it is necessary to measure the performance of the individual

phases of the program, appropriate system calls are embedded into the program code.

For example, getusclk() can be invoked to access the micro-second clock.

The traditional file structures were implemented on top of the LauRel database

[Lar88]. The DYNIX page replacement algorithm (see section 4.1.3) was matched against

the custom-built LRU buffer-manager used by LauRel. Experiments were run both

stand-alone to preclude external interference and on a loaded machine. The amount

of memory available for the experiment and total free global memory were tightly con-

trolled using blocking programs so that both types of file structures had exactly the same

amount of buffer space during execution.

The test file structures varied in size from 6 to 32 megabytes. The total amount of

primary storage available for the experiments was restricted to keep the ratio of primary

to secondary storage as 1:10 and 1:20 respectively for two different sets of experiments.

Thus, primary storage for the experiments ranged in size from .6M to 3.2M and .3M to

1.6M. These primary to secondary storage ratios are common in the current generation

of computers, supporting medium (0.1G-.5G) to large databases (1G-4G) but not very

large databases (1T).

4.3 Sequential File Structures

In order to show that the EPD approach to memory mapping is suitable and efficient for

the implementation of traditional (pointer-less) and complex (incorporating many point-
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ers) data structures alike, experiments were conducted on a prefix B
�

-Tree [BU77] and an

R-Tree [Gut84], which are pointer-less, and a complex network graph structure, which

contains many pointers. In each case, the cost of performing representative queries or

traversals was measured in a controlled environment. The results, presented in sec-

tion 4.4, demonstrate that the EPD structures perform quite admirably when compared

against their traditional counterparts.

This section presents the sequential single-disk file structures implemented for exper-

imentation and the details of the actual queries performed on individual file structures.

The queries are designed to cover many realistic access patterns.

4.3.1 Prefix B
�

-Tree

The prefix B
�

-Tree [BU77] is a well studied and widely used data structure for maintain-

ing indexes, and, as such, was an ideal candidate for inclusion in this study.

For the experiments with the B
�

-Tree, 100,000 uniformly distributed records were

generated whose (order) keys were taken from the unit interval. Records had variable

lengths with an average length of 27 bytes. The records were inserted into a prefix B
�

-

Tree in the order of their generation, i.e., the records were inserted into the B
�

-Tree in a

uniformly distributed order of their keys. For the resulting B
�

-Tree, four different query

files were generated, each file requiring that 10,000 records be read in total in response

to a collection of range queries of a given size. An individual query in each file was

specified by a random key (based on a uniform distribution) and a fixed number of

records (the size of the range query) to be read sequentially starting from the specified

key. In the rest of this chapter, each of the four query files is described by a tuple <n,m>

where n is the total number of queries in the file and m is the size of each query. For

example, <10,1000> implies 10 queries of size 1,000 records each – the query file consists

of 10 keys from a uniform distribution and, for each key, the experiment searches for the
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key in the B
�

-Tree and then reads 1,000 data records sequentially by following the leaf

node links of the B
�

-Tree.

An additional fifth query file contained 10,000 exact match queries obtained from

a normal distribution with a mean of 0.5 and a variance of 0.1. For each query in this

file, the experiment searched for the specified key in the B
�

-Tree index and retrieved the

corresponding data record.

4.3.2 R-Tree

The R-Tree [Gut84] is a data structure and an access method for multi-dimensional ob-

jects (e.g., points and regions) and is used for representing spatial data, e.g., in geo-

graphical information systems. An R-Tree is a natural extension of the B-Tree for multi-

dimensional data. This discussion is restricted to 2-dimensional objects, referred to as

2-dimensional rectangles.

A 2-dimensional rectangle is a tuple containing two (x,y) pairs, which denote the

lower-left and the upper-right corners of a rectangular area in a 2-dimensional space.

Thus, a 2-dimensional rectangle might be used to represent an area on a planar surface

while a 3-dimensional rectangle might represent a box in space. The structure of an

R-Tree is similar to that of a B
�

-Tree except that the leaf nodes, called data nodes, of

an R-Tree contain pointers to data rectangles while index nodes, called directory nodes,

contain minimum bounding rectangles instead of keys. A minimum bounding rectangle

for a given set of rectangles is the smallest sized rectangle that completely encloses all the

rectangles in the given set (see figure 4.3); a rectangle is said to enclose another rectangle

if the former overlaps the latter along each dimension. Thus, an index entry in an R-

Tree directory node consists of a pointer to a next level (data or directory) node and a

rectangle, which is the minimum bounding rectangle for all rectangles contained in the

sub-tree rooted at the referent next level node. The R-Tree supports point queries and
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several types of window queries. A point query on an R-Tree asks for all rectangles that

cover a given query point whereas a window query asks for all rectangles that enclose,

intersect or are contained in a given query rectangle. An R-Tree window query is similar

to a B
�

-Tree range query. However, in terms of data access, there is one basic difference:

index pages are accessed more frequently and involve much more computation for the

R-Tree than for the B
�

-Tree.

Minimum Bounding Rectangle

(a)

Minimum Bounding Rectangle

(b)

Figure 4.3: Minimum Bounding Rectangles in an R-Tree

For the R-Tree experiments, a 2-dimensional R-Tree was implemented in both the

traditional and the EPD environments. The maximum number of entries in individual

R-Tree nodes were limited to 450 in data nodes, and 455 in directory or index nodes. Each

R-Tree was populated with data obtained from a standardized testbed [BKSS90]. The

data consisted of 100,000 2-dimensional rectangles where each rectangle is assumed to be

in the unit cube [0,1]2. The centres of the rectangles follow a 2-dimensional independent
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uniform distribution; see [BKSS90] for further details of the test data. The query file used

for the experiments was also taken from the same testbed and consisted of 1000 point

queries and 400 each of the enclosement, intersection and containment window queries.

4.3.3 Network Graph

To simulate access patterns found in complex non-traditional data intensive applications

(e.g. hypertext or object-oriented databases), a large directed graph was constructed con-

sisting of 64,000 nodes of size 512 bytes each. The nodes were grouped into clusters of

64 nodes each; the nodes within a cluster were spatially localized on secondary storage.

An edge going out from a node had a high probability (85%, 90% or 95%) of referenc-

ing another node within the same cluster. Inter-node edges were paired with randomly

selected nodes. Figure 4.4 illustrates this structure. Each experiment consisted of 40 ran-

dom walks within the graph; each walk traversed 500 edges. These traversals simulated

a CAD/CAM system where multiple users access a particular part and then access the

part information in different ways.

4.4 Results and Analysis of Experiments on Sequential File

Structures

For each experiment, three performance measures were gathered: the CPU time, the

elapsed time, and number of read operations from secondary storage. Multiple pro-

cessors were used in both traditional and memory mapped experiments. The retrieval

application process ran on one processor while the access method for the file structure

ran on another processor. The measured CPU time is the total computing time spent

by all processors in a given test run and the elapsed time is the real clock time from the

beginning to the end of a test run. Hence, CPU time for an experiment may be greater
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Figure 4.4: Network Graph Structure

than elapsed time. Both times include any system overhead.

4.4.1 Stand-alone System: No External Interference

The results of running the experiments on a stand-alone system are presented in table

4.1. For the CPU times, the memory mapped access methods are generally better than

the traditional ones because there is less CPU time spent doing buffer management. For

the elapsed times, the memory mapped access methods are comparable (
�

10%) to their

traditional counterparts. An exception occurs when the traditional LRU buffer space is

only 5% of the file size for sequential reads because the LRU algorithm is suboptimal

in this case and results in some extra input operations. The memory mapped FIFO

page replacement algorithm is almost optimal in this case and can work with smaller

amounts of primary memory without degrading performance. All of the results show

that the DYNIX page replacement scheme performed well enough to be comparable to
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the traditional LRU buffer-manager.

These results confirm the thesis about memory mapped file structures, i.e., the EPD

approach to memory mapping provides performance comparable to that obtained with

traditional file structures for random queries.

4.4.2 Loaded System: External Interference

To verify the conjecture about the expected behaviour of mapped access methods on a

loaded machine, the previous B
�

-Tree experiments were repeated during peak-load peri-

ods. The memory mapped and traditional retrievals were started at the same time during

peak load (3:00pm) and, hence, were competing with each other as well as all other users

on the system. The two file structures were on different disks accessed through different

controllers so the retrievals were not interacting at the hardware I/O level. However, the

amount of global cache was not restricted, so if free memory was available, the memory

mapped access method would benefit from it. Table 4.2 shows the averages of trials on

5 different week-days.

Note that for the EPD file structures, the amount of local memory allocated to the

experiment was 10% of the database size, i.e., the maximum resident set of the program

was restricted to be 10% of database size plus an allowance for program code and data.

However, the program’s data can be cached by the operating system in any global mem-

ory that is not being used by other competing programs running on the system. As can

be seen, there was a large difference when there were a significant number of random

reads. In those cases, the memory mapped access methods make use of any extra free

memory to buffer data. This effect is particularly noticeable for the normal distribu-

tion because any extra memory produces a significant improvement. Clearly, the LRU

buffer manager could be extended to dynamically increase and decrease buffer space

depending on system load, but doing so is non-trivial and further complicates the buffer
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Memory Mapped Traditional
Block Size = 8K CPU Elapsed Major CPU Elapsed Disk

Access Query Time Time Page Time Time Reads
Method Distribution (secs) (secs) Faults (secs) (secs)

Prefix <1,10000> 35 19 61 32 32 53
B

�

-Tree <10,1000> 35 19 56 32 32 58
<100,100> 37 22 147 35 35 150
<10000,1> 98 217 8789 240 223 8746
normal 91 181 6777 202 183 6638

R-Tree window 154 174 1414 330 334 1462
point 109 124 934 230 234 896

Network 85% local ref 318 476 15294 526 458 15004
Graph 90% local ref 271 375 11278 449 370 11368

95% local ref 207 243 6584 337 254 6539

(a) Primary Memory Size 10% of Database Size

Memory Mapped Traditional
Block Size = 8K CPU Elapsed Major CPU Elapsed Disk

Access Query Time Time Page Time Time Reads
Method Distribution (secs) (secs) Faults (secs) (secs)

Prefix <1,10000> 35 19 61 35 35 117
B

�

-Tree <10,1000> 35 19 66 34 33 131
<100,100> 37 22 155 37 36 216
<10000,1> 127 255 9415 260 224 9723
normal 126 235 8250 253 217 9313

R-Tree window 181 227 2913 367 374 3396
point 136 184 2647 279 289 3491

Network 85% local ref 383 565 17772 563 495 16550
Graph 90% local ref 330 462 13602 484 403 12781

95% local ref 264 316 8338 361 276 7400

(b) Primary Memory Size 5% of Database Size

Table 4.1: Comparison of Memory Mapped and Traditional Access Methods
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Allocated Primary Memory Size 10% of Database Size
Memory Mapped Traditional

Block Size = 8K CPU Elapsed Major CPU Elapsed Disk
Access Query Time Time Page Time Time Reads
Method Distribution (secs) (secs) Faults (secs) (secs)

Prefix <1,10000> 35 21 60 34 35 53
B

�

-Tree <10,1000> 36 21 56 34 36 58
<100,100> 37 25 143 37 38 150
<10000,1> 111 277 6677 263 263 8746
normal 97 134 2063 221 217 6638

Table 4.2: Peak Load Retrievals

manager while duplicating facilities provided by the operating system.

4.5 Partitioned B
�

-Tree

A B
�

-Tree based on the EPD approach was modified to become a partitioned B
�

-Tree and

evaluated. This section presents the modifications made to the B
�

-Tree and the results

of the experiments run using the methods presented in section 3.3.

4.5.1 Partitioning Algorithms

Two different partitioning algorithms, viz., a near-optimal algorithm by Seeger and Lar-

son [SL91] and a simple round-robin algorithm, were studied. Given D disks, the Seeger-

Larson algorithm guarantees that each leaf node in any sub-sequence of leaves of size

D � 2 or smaller is stored on a distinct disk. In the round-robin partitioning algorithm

with D disks, numbered 0 through D � 1, when a node splits, the new node is allocated

on disk
�
M

�
1 � modD, where M is the disk containing the splitting node. The round

robin algorithm distributes new nodes cyclicly over the D disks, and its performance

was compared to the Seeger-Larson algorithm.
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4.5.2 Modified File Structure

The prefix B
�

-Tree (see section 4.3.1) was modified to achieve:

efficient partitioning of data: The B
�

-Tree is partitioned across several disks during the

insert operation; when a node splits, the new node is allocated on a disk different

from the one containing the splitting node. The disk for the new node is deter-

mined by the partitioning algorithm being used.

efficient parallel execution of range queries: A parallel retrieval algorithm was de-

signed and implemented for this purpose. The algorithm splits the specified range

query into multiple smaller sub-queries that access data on different disks and are

executed in parallel.

To achieve the first of the above goals, the structure of the B
�

-Tree nodes is modified

to store the cardinal number of the containing disk with each index entry and leaf node.

This modification allows the traversal algorithm to determine the containing disk for a

node referred to by an index entry without having to rely on a special format for the

node pointers.

Partitioning a <K,K> range query involves searching the index for the two keys to

determine the leaf nodes for the keys and then partitioning the set of leaf nodes by

following the leaf node links. In order to allow the <K,C> and <K,C,C> range queries

to be processed equally efficiently, the B
�

-Tree node structure is further modified as

follows. The total number of records stored in the sub-tree of an index entry is stored

with the index entry as depicted in figure 4.5.

This structure allows a <K,C> style query to be changed into a <K,K> style query by

using the record counts in index entries to locate the bounds of the <K,C> style range

query. For example, execution of a <K,C> query first searches the index for key K and
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Figure 4.5: Modified B
�

-Tree File Structure

then traverses right (assuming C has a positive sign) from K, summing record counts

from index entries until C is equaled or exceeded at key Kb; the query <K,Kb> bounds the

leaf nodes that must be retrieved to service the <K,C> query. Note that the above process

traverses down the tree only up to the last index node level and does not dereference the

leaf node pointers. With record counts stored in index nodes, the cost for searching

the index structure to locate the bounds of a <K,C> style query is very low because the

index pages for low to moderately sized B
�

-Trees are usually cached in memory and

thus require no disk accesses.

The cost paid for the above modifications to the B
�

-Tree is reduced fan-out caused by

the reduction in number of index entries per node because of the increased size of each

entry. However, this overhead becomes significant only when the average length of the

keys stored in the index nodes is relatively small.
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4.5.3 Concurrent Retrieval Algorithm

For retrievals, a specialized form of the generic concurrent retrieval algorithm described

in section 3.3.4 is used. During execution of a query on the B
�

-Tree, very little processing

takes place in the index nodes. Therefore, a single task is employed to traverse the index

portion of the B
�

-Tree.

4.5.4 Experimental Analysis

Recall, the machine used for experiments was a Sequent Symmetry with 10 processors

and 8 disk drives, of which 4 were used (see section 4.1). In each experiment, 1000

<K,C> range queries were processed, where each individual query consisted of reading

a random number of sequential records starting at a randomly selected key. The average

query size was 2000 records. A control experiment was performed first, in which the

B
�

-Tree had only a single partition. The code executed is the same as in the partitioned

case but there is no parallelism at the back end from the single partition. The partitioned

B
�

-Tree experiments were conducted with 4 partitions and the application program did

no processing on query results. Thus, the application program did not introduce any

delays.

As before, the performance parameters measured in each experiment included the

elapsed time, the total CPU time over all processes and the total number of major page

faults (see section 4.1.3). These parameters provide real time evaluation of the concurrent

retrieval algorithm, and the partitioning algorithm. The results obtained for the parti-

tioned B
�

-Tree are presented in table 4.3 and figure 4.6. The largest decrease in elapsed

time is from 1 to 2 processors because there are 2 channels allowing 2 disks to transfer

data without contention. After that, the decrease is less because of the data transfer con-

tention on the channels, until the elapsed time begins to rise because of this contention.
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Nevertheless, a speedup of 3.2 with 4 disks is quite noteworthy. Note that the graphs

for the single disk case have only two data points. With only a single disk to work with,

there is no benefit derived by having multiple CPUs to do the I/O because all I/O re-

quests are serialized at the disk and a kernel thread blocks until a page fault is serviced.

As a result, there is no saving in elapse time. In fact, the time increases slightly as the

number of CPUs is increased because of the extra contention introduced by multiple

CPUs accessing the single disk.
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Figure 4.6: Comparison of Single Disk B
�

-Tree with Four Disk B
�

-Tree

During execution of the program, statistical information is collected in the LRA to

measure the effectiveness of the two partitioning algorithms for the query set being stud-

ied. First, the total number of retrieval requests, indicating total I/O to be done, received

by the LRA is maintained. Second, the distribution of these requests over various disks is
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Primary Memory Size 10% of the Database Size
Round Robin Seeger-Larson
Partitioning Partitioning

Total Num Total Num
Num Number CPU Elapsed Page CPU Elapsed Page
Disks CPUs Time Time Faults Time Time Faults

1 1 254 427 13458 254 427 13458
2 324 440 13313 324 440 13313

4 1 259 438 13655 256 424 13623
2 297 296 13545 290 263 13639
3 454 262 13754 372 252 13646
4 491 325 13650 454 262 13754

Table 4.3: Comparison of Single Disk B
�

-Tree with Four Disk B
�

-Trees

measured. An even distribution across all disks indicates that the partitioning algorithm

achieved good overall load balance and good throughput. However, global load balance

in itself is not sufficient to achieve good local load balance and response time for individ-

ual queries. For example, if each query retrieves data from a single disk, but individual

queries are spread evenly over all disks, the statistical information will indicate an even

overall distribution of disk retrievals. However, there would be no improvement in the

response time of any one query and neither is there any improvement in throughput.

What is needed, therefore, is another criterion to measure the effective performance

gain that takes into account the gain achieved by individual queries. For this purpose,

a new parameter, called the performance gain, is defined to serve as a theoretical mea-

sure of the gain achieved by partitioning the file structure across multiple disks. Let Q0,

Q1, ..., QN � 1 be the list of queries executed on a B
�

-Tree partitioned across D disks. For

the i-th query, let di j
�
0

�
j � D � 1 � be the number of leaf nodes retrieved from disk

j. D j � ∑N � 1
i � 0 di j is the total number of leaf nodes retrieved from disk j to process all N

queries and Total � ∑D � 1
j � 0 D j is the total number of leaves retrieved from all disks. Now,
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for the i-th query, Totali � ∑D � 1
j � 0 di j is the total number of disk reads, and Maxi � maxD � 1

j � 0 di j

is the minimum number of serialized disk reads required for executing the query; in other

words, the disk with the largest number of I/O operations is the bottleneck and dictates

the shortest possible time to process the query. Hence, Totali � Maxi indicates the maxi-

mum speedup possible by executing the i-th query in parallel. If an individual query

accessed data equally from all disks, this number for the query is equal to D indicating a

D fold speedup in the parallel execution of the query.

The performance gain over all queries is computed as Total � ∑N � 1
i � 0 Maxi and provides

a theoretical measure of the effectiveness of the partitioning algorithm alone. The per-

formance gain, as computed for the round robin and the Seeger-Larson partitioning al-

gorithms, is shown in Table 4.4. As can be seen, the Seeger-Larson algorithm performs

much better than the round robin algorithm. However, in practice, the round robin al-

gorithm performs reasonably well given its simplicity. Further, a sequential reading of

the entire B
�

-Tree indicated that the Seeger-Larson algorithm partitioned the B
�

-Tree

almost perfectly with a performance gain of approximately 3.95 with four disks. The

corresponding performance gain for the round robin algorithm was slightly lower at 3.6.

Effect of Employing Extra Segments for Retrieving Data

In the experiments described so far, all the retriever tasks operated on a single mapping

created by the representative (see Figure 4.7(a)) with its own page table and resident set.

This arrangement can lead to some interference among the access patterns of individual

retriever tasks because all the retriever tasks share the same resident set in primary stor-

age. Thus, a page fault generated by one retriever task can potentially remove a page

that might be needed immediately by another retriever task. For the B
�

-Tree experi-

ments, however, the effect is not likely to be large because of the uniform distribution of

requests. To test this conjecture, another set of experiments was run, where additional
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Num Leaf Disk Counts Perf.
Disks Count D0 D1 D2 D3 Max Gain

1 15189 15189 - - - 15189 1.000
4 15189 4065 4057 3534 3533 6144 2.472

(a) Round Robin Partitioning

Num Leaf Disk Counts Perf.
Disks Count D0 D1 D2 D3 Max Gain

1 15189 15189 - - - 15189 1.000
4 15189 3728 3824 3835 3802 4883 3.111

(b) Seeger-Larson Partitioning

Table 4.4: Expected Effectiveness of B
�

-Tree Partitioning Algorithms

segments were created for the exclusive use of the retriever tasks, while the represen-

tative retained its own original segment (see Figure 4.7(b)). The retriever tasks were

distributed evenly across the additional segments; the number of additional segments

is a control variable. The additional segment created for a retriever task mapped the

corresponding partition, of the representative segment, in its own address space, with

its own page table and resident set.

The results of the experiments with extra retriever or worker segments are presented

in Table 4.52. With no worker segments, all the tasks execute on the representative seg-

ment, and therefore, any available CPU can execute any ready task. However, when

worker segments are created, each with one CPU, the tasks are partitioned into disjoint

subsets with each subset executing on a different segment; the retriever tasks are dis-

tributed uniformly across the available worker segments and all remaining tasks such as

2The last 4 rows from table 4.3 have been reproduced for easy reference.
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Figure 4.7: Using Multiple Segments for Retriever Tasks (FSTs)

the LRA, the FSTs and the iterator stay on the representative segment.

Unfortunately, this partitioning of tasks is detrimental to parallelism afforded by

multiple CPUs. When there is only one worker segment (rows 5 and 6 of table 4.5), all

the retriever tasks use one CPU and the remaining tasks are executed by the CPU(s) on

the representative segment. As a consequence, the representative segment CPUs spend

significant amounts of time waiting for the worker segment CPU to retrieve data from

disks via one of the retriever tasks. During this wait, a representative segment CPU

either spins or goes to sleep depending upon the spin time configuration3 and the actual

3Setting the spin time appropriately involves a trade-off between CPU and elapsed times. If the spin
time is too small, the CPU may go to sleep too frequently resulting in lower CPU times but higher elapsed
times caused by the cost involved in waking a CPU up. On the other hand, an excessively large value of
spin time can result in wasted CPU cycles. For the experiment presented in this dissertation, the spin time
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waiting time.

Primary Memory Size 10% of Database Size
Round Robin Seeger-Larson

Number of Disks = 4 Partitioning Partitioning

Number CPUs on Total Num Total Num
Worker Rep Total CPU Elapsed Page CPU Elapsed Page

Segments Segment CPUs Time Time Faults Time Time Faults
0 1 1 259 438 13655 256 424 13623

2 2 297 296 13545 290 263 13639
3 3 454 262 13754 372 252 13646
4 4 491 325 13650 454 262 13754

1 1 2 533 430 13720 533 362 13711
2 3 743 506 14030 755 433 14090

2 1 3 338 361 13152 337 301 13131
4 1 5 304 426 13118 303 416 13137

Table 4.5: Effect of Extra Worker Segments on Concurrent B
�

-Tree Retrievals

As can be seen from table 4.5, using a single worker segment with one CPU on the

representative segment (rows 5-6) generates approximately the same number of page

faults as using no worker segments (rows 1-4) because all the retriever tasks are still

sharing the same segment. It is not clear why a slight increase in the number of page

faults occurs with two CPUs on the representative segment when a single worker seg-

ment is employed (row 6). At the same time, the use of a single worker segment (rows

5-6) substantially increases the total amount of CPU time because of the spinning of the

CPU(s) mentioned before. As well, the elapsed time (rows 5-6) increases because of the

loss of data parallelism caused by reducing the number of CPUs available for the re-

triever tasks. When the number of worker segments is increased to 2 (row 7), there are

was set to 1 ms, which is the cost of waking up a UNIX process on the testbed used.



4.5 Partitioned B
�

-Tree 159

indeed fewer page faults generated, thus confirming the hypothesis about the interfer-

ence among different retriever tasks. The total CPU time is reduced because now the

representative segment CPU communicates in parallel with two worker segment CPUs,

and therefore, spends significantly less time spinning. The elapsed time (row 7) also

comes down because of the two fold data parallelism made possible by the two worker

segment CPUs to execute the retriever tasks. Finally, when the number of worker seg-

ments is further increased to 4 (row 8), data parallelism increases so that retrieval re-

quests generated by the tasks on the representative segment are processed faster; hence,

the representative segment CPU(s) have higher utilization, which means less spinning,

and hence, a lower CPU time. The elapsed time does not reduce any further because the

amount of data parallelism is restricted by the number of available disk controllers.

Thus, the reduction in the number of page faults afforded by the extra worker seg-

ments is not substantial and does not offset the overhead introduced by the additional

segments, as is evident from comparing the elapsed times in table 4.5 when the total

number of CPUs employed is taken into account. For example, faster elapsed time is

achieved by employing three CPUs on the representative segment instead of splitting

the CPUs across one representative and two worker segments in spite of the slightly

reduced number of page faults caused by the extra worker segments in the latter case.

These results seem to disfavour the use of additional segments for retriever tasks.

Hardware systems with more advanced virtual memory capabilities might make this

approach viable in the future. What is noteworthy is that � Database allows for all these

different options to take advantage of available hardware.
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4.6 Partitioned R-Tree

The R-Tree file structure (see section 4.3.2) was modified and partitioned to achieve par-

allel execution of queries. Note that point queries as well as window queries on an

R-Tree are range queries capable of benefiting from parallel execution. Devising efficient

partitioning algorithms for the R-Tree is much more complicated than for the B
�

-Tree be-

cause there is a significant amount of computation that takes place in the index nodes of

an R-Tree during traversal. The nature of computation depends upon the query being ex-

ecuted and influences how the tree should be partitioned to achieve good performance.

4.6.1 Partitioning Algorithms

For partitioning an R-Tree across multiple disks in the EPD environment and for ex-

ecuting queries (point, enclosure, intersection, containment) in parallel, a round-robin

partitioning algorithm was used. For the purposes of this study, data rectangles, as op-

posed to pointers to data rectangles, are stored in leaf nodes of the R-Tree. This structure

trivially ensures that the data portion of the R-Tree is spread over various disks without

requiring any special attention and does not affect the outcome or the validity of the

experiments.

As in the case of the B
�

-Tree, the round robin partitioning algorithm is used for

striping the R-Tree: when a node needs to be split, the next round robin disk is chosen

for storing the new node. On average, the round robin algorithm is expected to provide

reasonable performance and has minimal computational cost during partitioning.

4.6.2 Modified File Structure

The only modification made to Guttman’s Linear R-Tree [Gut84] is the addition of an

extra field to the next node pointer in each index entry. The extra field consists of the disk
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number containing the referent node and allows the LRA (see section 3.3.4) to determine,

by analyzing an index entry, the disk on which a leaf node is stored. The resulting

reduction in fan out of the R-Tree is not significant, because the extra space taken by the

new field is small compared to the total size of an entry containing a multi-dimensional

rectangle.

4.6.3 Concurrent Retrieval Algorithm

For retrievals, a specialized form of the generic concurrent retrieval algorithm described

in section 3.3.4 is used. During execution of a query on the R-Tree, processing of index

nodes is very computation intensive. Therefore, instead of using a single task to traverse

the index portion of the R-Tree, provision is made to employ multiple file structure tra-

verser (FST) tasks (see figure 3.6). The effect, on performance, of varying the number of

these tasks is studied in the experiments conducted on the partitioned R-Tree.

4.6.4 Experimental Analysis

The round robin partitioning algorithm was implemented and studied. The experimen-

tal structure used is analogous to that used for the B
�

-Tree partitioning experiments

described in section 4.5.4. In all the experiments described in the rest of this section,

the primary memory size is 5% of the database size. The results presented in Figure 4.8

provide a measured comparison of the single-disk R-Tree with a four-disk partitioned

R-Tree. For all of these experiments 4 FST tasks were employed.

Expectedly, the partitioned R-Trees perform much better than a single-disk R-Tree.

Another point to note about the results is the fact that, unlike for the B
�

-Tree, elapsed

time goes down for the single disk case when the number of CPUs is increased from one

to two because of the CPU parallelism for processing that takes place at the directory
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Primary Memory Size 5% of Database Size
Number of File Structure Traverser Tasks = 4
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Figure 4.8: Comparison of Single Disk R-Tree with Four Disk R-Trees
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nodes of an R-Tree.

The performance gain parameter, as defined in section 4.5.4, is also computed for the

R-Tree partitioning algorithm. These results are presented in Table 4.6.

Primary Memory Size 5% of Database Size
Num Leaf Disk Counts Perf.
Disks Count D0 D1 D2 D3 Max Gain

Window Queries
1 32359 32359 - - - 32359 1.000
4 32359 7752 8291 7678 8638 10662 3.035

Point Queries
1 11491 11491 - - - 11491 1.000
4 11491 2513 2986 2556 3436 4741 2.424

Table 4.6: Theoretical Effectiveness of Round-Robin R-Tree Partitioning Algorithm

Further experiments were conducted to investigate the effect of employing multiple

FST tasks. In the case of the B
�

-Tree, there is very little computation carried out in the

index nodes during execution of a query. Therefore, a single task is able to traverse the

index without creating a bottleneck. On the other hand, an R-Tree index search involves

a significant amount of computation within each index node starting from the root of the

tree. This computation raises the possibility that using a single task to traverse the index

portion of the tree may create a bottleneck if the single task is unable to generate the list

of leaf nodes for the LRA at a high enough speed. One solution is to divide the work

of traversing the index portion among a number of tasks. For example, two concurrent

tasks can be made to work on odd and even entries of an index node respectively. Figure

4.9 contains the results obtained by varying the number of tasks that search the index.

In addition, tables 4.7 and 4.8 also tabulate the actual number of page faults generated

in each case.
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Primary Memory Size 5% of Database Size
Number of Disks = 4

200

250

300

350

400

450

1 2 3 4

Elapsed
Time
(sec)

Number of Index Search Tasks

1 CPU
�

� � �

2 CPUs
�

�

�
�

4 CPUs
�

�

�

�

(a) Window Queries - Round Robin

100

120

140

160

180

200

1 2 3 4

Elapsed
Time
(sec)

Number of Index Search Tasks

�

� �

�

�
�

�

�

�

(b) Point Queries - Round Robin

Figure 4.9: Using Multiple Index Search Tasks to Perform Parallel Queries

In all cases, where more than one processor is employed, an improvement in the

elapsed time is obtained by using multiple index searching tasks. With only one CPU,

there is not much to be gained by increasing the number of FSTs; indeed, the extra

contention can even deteriorate performance slightly. With multiple CPUs, the results

clearly establish that using multiple FSTs is beneficial. The most benefit is derived by

increasing the number of FSTs from one to two, which causes an increase in the speed

at which leaf node references are presented to the LRA for processing. A more detailed

explanation of these results is provided later in this section.

As can be seen from tables 4.7 and 4.8, the number of page faults is not affected by an

increase in the number of FSTs in most cases because the amount of I/O to be done is still

the same. However, an apparent anomaly occurs for some cases (e.g., for the single disk
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Primary Memory Size 5% of Database Size
Num Index Num
Rep Search CPU Elapsed Page

CPUs Tasks Time Time Faults

Single Disk
1 1 282 446 14275

2 291 470 13611
4 295 473 12919

2 1 394 453 15073
2 375 428 13934
4 383 435 13597

4 Disks Round Robin
Partitioning

1 1 283 439 13464
2 285 438 12737
4 290 440 12403

2 1 339 313 13520
2 314 269 13045
4 320 257 12815

3 1 431 295 13547
2 379 239 13538
4 368 217 13825

4 1 570 314 14261
2 489 247 14206
4 445 211 14292

Table 4.7: Using Multiple Index Search Tasks for Parallel Window Queries

case in table 4.7) whereby the number of page faults decreases slightly as the number of

FSTs is increased from one. The cause of this anomaly needs to be investigated further.

Experiments were also conducted to study the effect of interference among retrieval

tasks working on the same segment. These results are presented in tables 4.9 and 4.10. In

order to analyze the results presented in tables 4.7 through 4.10, the algorithm of figure
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Primary Memory Size 5% of Database Size
Num Index Num
Rep Search CPU Elapsed Page

CPUs Tasks Time Time Faults

Single Disk
1 1 143 178 3318

2 145 186 3259
4 147 191 3309

2 1 187 174 3822
2 173 149 3522
4 178 152 3467

4 Disks Round Robin
Partitioning

1 1 143 179 3252
2 143 189 3273
4 147 186 3278

2 1 173 142 3410
2 158 119 3345
4 162 112 3426

3 1 221 143 3621
2 190 112 3623
4 186 99 3651

4 1 284 149 3967
2 240 110 3920
4 222 98 3982

Table 4.8: Using Multiple Index Search Tasks for Parallel Point Queries

3.6 is reduced to a queueing system as shown in figure 4.10.

The LRA accepts leaf node references from the FST(s) and queues them up for the

retriever tasks. The retriever tasks dereference the pointers and queue the resulting data

for the iterator task to fetch on demand. The interface between the LRA and the FSTs can

be considered a producer-consumer interface with a bounded buffer of size M, where M
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Primary Memory Size 5% of Database Size
Round Robin

Number of Disks = 4 Partitioning

Num Num Index Num
Worker Rep Search CPU Elapsed Page

Segments CPUs Tasks Time Time Faults

1 1 1 361 441 15562
2 379 462 15485
4 383 473 15526

2 1 481 454 15809
2 452 435 15841
4 455 441 15756

2 1 1 377 340 14315
2 394 338 14203
4 406 344 14374

2 1 498 349 14730
2 462 306 14729
4 473 305 14719

4 1 1 414 307 14962
2 438 290 15004
4 444 272 14978

2 1 534 314 15310
2 493 251 15344
4 514 231 15306

Table 4.9: Using Multiple Representative Segments for Parallel Window Queries

Retrievers LRA FST(s)

>>

αβγτ

Figure 4.10: Queueing System for the Generic Concurrent Retrieval Algorithm
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Primary Memory Size 5% of Database Size
Round Robin

Number of Disks = 4 Partitioning

Num Num Index Num
Worker Rep Search CPU Elapsed Page

Segments CPUs Tasks Time Time Faults

1 1 1 171 177 4585
2 179 191 4601
4 184 196 4573

2 1 226 184 4783
2 207 168 4776
4 211 170 4773

2 1 1 181 152 4029
2 194 161 4107
4 194 165 4074

2 1 235 156 4188
2 214 134 4245
4 220 134 4187

4 1 1 189 145 4042
2 204 151 3054
4 209 151 3068

2 1 249 153 4285
2 226 123 4236
4 235 120 4338

Table 4.10: Using Multiple Representative Segments for Parallel Point Queries

is the number of FSTs, i.e., each FST acts like a node in a buffer after it has computed a

request but blocks because the LRA is busy. The rate, α at which items are placed in the

buffer for the LRA is a linear function of M, i.e., doubling the number of FSTs doubles the

rate of arrival at the buffer. A similar producer-consumer relationship exists between the

LRA and the retriever tasks, and between the retriever tasks and the iterator task. The

number of effective consumers for the data generated by the LRA is the number of CPUs
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(or the number of worker segments) executing the retriever irrespective of the number

of retriever tasks because a retriever task is blocked on I/O most of the time, which

correspondingly blocks the CPU it is executing on. This situation is analogous to having

a single consumer whose rate of consumption, τ, is a linear function of the number of

worker segments, N. Finally, the LRA, all the FST tasks and the iterator share the P

CPU(s) available on the representative segment.

An informal analysis of the queueing system in figure 4.10 is employed to explain

the results. There are three control variables, M, N and P. The effect of changing each of

these variables is discussed next.

Effect of changing N, the number of worker segments: Increasing N makes more

CPUs available for performing parallel I/O from the disks resulting in reduced

elapsed time. The reduction in elapsed time diminishes as the number of seg-

ments approaches the number of available disk controllers. Also, in order for the

parallelism to be fully exploited, the rate of production, γ, for the LRA must be

high enough to ensure that the queue for the retriever tasks is kept non-empty,

which in turn implies that α must be high enough to ensure that the LRA’s input

queue is non-empty. Thus, in order for the algorithm to benefit optimally from an

increase in N, the representative segment must have matching resources. Finally,

if the matching is not perfect, an increase in total CPU time is expected from the

increase in the number of CPUs employed due to spinning.

Effect of changing P, the number of CPUs on the representative segment: The goal of

increasing resources on the representative segment is to increase γ, which can be

exploited by the retriever tasks assuming they are not blocked on I/O. Since the

LRA does not do much work, γ can only be increased by ensuring that the LRA’s

input queue is non-empty, i.e., by increasing α. With one FST, increasing the num-
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ber of CPUs does not provide any benefits because the FST blocks after generating

a request if the LRA is busy because there is no actual buffer between them, i.e.,

the FST makes synchronous calls to the LRA to deliver a request. In fact, perfor-

mance may deteriorate a little due to the extra scheduling contention of multiple

CPUs trying to execute a single task. With multiple FSTs, increasing the number

of CPUs helps because the FSTs can exploit the extra processing power to increase

α, so a reduction in elapsed time is expected. In all cases, increasing the number of

CPUs on the representative segment should result in increased CPU times caused

by spinning.

Effect of changing M, the number of FSTs: For elapsed time, there are two distinct

phenomena that need consideration. As stated earlier, increasing the number of

FSTs increases α, which should result in reduced elapsed time as long as the LRA is

not blocked waiting for retriever tasks. On the other hand, the extra FSTs increase

the average length of the ready queue for the representative segment cluster, and

therefore, the iterator task runs a little slower because it has to contend with an

increased number of tasks for the available CPUs. A slowing down of the iterator

task has the effect of increasing elapsed time. In order for the overall elapsed time

for the algorithm to decrease, the increased elapsed time of the iterator task must

be offset by a reduction in elapsed time caused by an increased γ.

With one worker segment, there is a bottleneck at the disks (i.e., no data par-

allelism), and as such, no gain can be made by increasing γ. Consequently, the

increased elapsed time due to the iterator is not offset and there is an overall in-

crease in elapsed time. With multiple worker segments, an increase in γ causes

an improvement until the retriever CPUs once again become the bottleneck. Thus,

when M is increased the elapsed time reduces initially, levels off when the retriever



4.7 Summary 171

tasks become the bottleneck, and eventually increases due to a slowing of the iter-

ator task (as mentioned above). The leveling off point depends upon the number

of worker segments – with more worker segments the bottleneck is achieved at a

higher number of FSTs.

For CPU time, there are two distinct components: time during which computa-

tion is done and time when the CPU(s) spin waiting for work before going to sleep.

Because there is a fixed amount of work to be performed by the FST(s), when M

is increased, the total amount of computation actually increases slightly because

of the overhead of the extra task(s). However, the spinning time is affected by the

total elapsed time – in general, an increase in elapsed time (such as the ones de-

scribed above) results in an increase in the CPU time because of the extra spinning

in between computation. Thus, with an increase in M, CPU time follows the same

pattern as elapsed time. An exception occurs when M becomes more than P and

there is an extra increase in CPU time that I am unable to explain.

As with the B
�

-Tree, it was found that the effect on page faults of using the worker

segments is only marginal and does not improve performance to any significant degree.

The reduction in page faults is not significant enough to offset the extra overhead of

using additional segments as evidenced by the large increase in CPU and elapsed times.

4.7 Summary

This chapter demonstrated the feasibility and viability of the EPD approach to memory

mapping by comparing EPD file structures with their traditional counterparts. The ex-

periments were conducted on a custom designed testbed and clearly showed that, for a

variety of access patterns, the EPD environment provides performance that is compara-

ble to that of a traditional LRU buffer manager. Subsequent chapters will show that the
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EPD approach requires special page replacement support to be competitive in certain

situations, but in most cases this is unnecessary. In addition, it was demonstrated that

the EPD approach works particularly well when EPD file structures compete with other

applications at execution time because all memory management is supervised by the

operating system. This chapter further investigated the issue of parallelism in an EPD

system by conducting experiments with parallel access methods.



Chapter 5

Application and Validation of the Analytical

Model

This chapter presents the design and analysis of three new parallel join algorithms in

the EPD system. The analysis is done according to the general procedure described in

section 3.5.3 and validated by conducting experiments described later in this chapter.

The validation of the model, as with other cost models, is an attempt to establish confi-

dence in the accuracy of the model and is done by the following method. An algorithm is

chosen for validation purposes and an analysis of the algorithm is performed within the

context of the analytical model of the system. The analysis of the algorithm, the values

of the parameters of the model and a description of a chosen data set is used to predict

performance behaviour of the algorithm on the specified physical machine. The results

of the analysis are compared against the performance measurements obtained by run-

ning experiments with the algorithm on the specified machine and with the chosen data

set. A close match between prediction and actual behaviour establishes the accuracy of

the model for that particular environment and the model can be used with a degree of

confidence for predicting the behaviour of the algorithm under varying circumstances.

Further, it needs to be emphasized that the goal of this work is to develop a new

model for the EPD system because none of the existing models apply, and to use the

173
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new model to study new algorithms in the EPD system by being able to predict their

performance on a physical machine. It is not the goal of this work to contrast the perfor-

mance of algorithms in the EPD to other systems.

5.1 Parallel Pointer-Based Join Algorithms

In order to validate the analytical model of the EPD system, parallel pointer-based ver-

sions of three join algorithms were designed, implemented and analyzed: nested loops,

sort-merge, and a variation of Grace [KTMo83]. “Because any data model supporting

sets and lists requires at least intersection, union, and difference operations for large

sets, I believe that [the discussion of join algorithms] is relevant to relational, extensi-

ble, and object-oriented database systems alike.” [Gra94] In each case, a complete join

of one relation, R, with another, S, is considered. The prediction from the analysis was

compared against results obtained through experiments conducted with the parallel join

algorithms.

The use of (location) pointers in an EPD environment provides a unique advantage

with respect to joins and other algorithms. To demonstrate this advantage, the tradi-

tional join algorithms were modified so that the join attribute embedded in an object

stored in the R relation is a pointer to an object in the S relation. Such algorithms, called

pointer-based join algorithms, are ideal for an EPD environment and result in significant

performance advantages; the most important being that a pointer provides the order-

ing of objects in S, which can be exploited to eliminate the usual sorting or hashing of

S in sort-merge and hash-based joins, respectively. Note that in the conventional join

algorithms the ordering of the two joining relations is not important, i.e., either of the

two relations can be joined with the other producing with the same result. This feature

is no longer available for pointer-based join algorithms, unless the S relation contains
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back-pointers to objects in the R relation.

Further, each join algorithm is parallelized so that the data is partitioned across sev-

eral disks and the join performed in parallel on individual disks. It is assumed that S

is initially partitioned on D disks into equal-sized partitions S1 ��������� SD and that the par-

tition in which a particular object of S resides can be computed from a pointer to that

object. The time for computing this mapping is denoted by map1. In addition, R is also

assumed to be divided into equal-sized partitions R1 ��������� RD. Excellent partitioning algo-

rithms exist for different kinds of data structures (see sections 4.5 and 4.6). It is assumed

that join attributes are randomly distributed in R. Finally, each relation is managed by a

process (Rproc and Sproc, respectively), which is aware of the structure of the relations,

and in particular, Rproc is capable of carrying out the join itself.

The following parameters are defined for various relations and their subsets. �X �
denotes the number of objects in X , PX is the number of pages in X , and x denotes the

size of a single object in relation X .

For the algorithms, private memory is viewed as being divided into D pieces, where

the i-th piece is associated with partition Ri. An algorithm is described as it progresses

on the i-th piece, with the understanding that work on the remaining D � 1 pieces is

progressing in an analogous fashion in parallel. Each Rproci is a lightweight task; the

number of real processors available for these tasks is a control parameter; D processors

each for R and S are usually employed to achieve maximum parallelism (see figure 5.1).

The partitions of R are conceptually divided into sub-partitions based on the partitions of

S to which the join attributes refer; the subset of Ri with join attributes referring to objects

in partition S j is called Ri � j . RS j denotes the set of all objects in R that have pointers

1Such a computation is feasible in the EPD environment where multiple file structure partitions are
mapped into a single segment and the mapping of each partition consists of a distinct range of virtual ad-
dresses. For other schemes, the join attribute could be made a composite field with an embedded partition
number.
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to objects in S j , i.e., RS j �
� D

i � 1 Ri � j . This substructure is illustrated in the figures for

subsequent algorithms. For a given i, the Ri � j sub-partitions may have some skew in size

because objects in Ri may contain more references to some S j and fewer to others; the

amount of skew is defined as skew � maxD
j � 1

���
Ri � j ��

Ri
� �

D � . Skew is important as it affects the

performance of certain algorithms.

All the parameters introduced in this section are tabulated in table 5.1, which also

contains two parameters, sptr and G, to be described later. Additional parameters are

defined for each specific algorithm as needed. Finally, because every algorithm forms

and outputs the same join, the analysis does not count the time to perform this step, nor

does it assume that the join results are generated in any particular order.

R segment

D

RD

Rproci RprocD

R1

MAP MAP MAP

Mi MD
contiguous

M1

Ri

Rproc1

Figure 5.1: Segment Partitioning Structure

The analyses of join algorithms computes quantities of time that can be summed to

give the total elapsed time for Rproci. Because there is little or no contention during the



5.1 Parallel Pointer-Based Join Algorithms 177

Variable Description

R � S two joining relations
R1 �

� � �

� RD partitions of R across D disks
S1 �

� � �

� SD partitions of S across D disks
Rproc process to manage R

Sproc process to manage S

Rproci light-weight task to manage Ri

Sproci light-weight task to manage Si

Ri � j subset of Ri with join attributes pointing to S j

RS j subset of R with join attributes pointing to S j

Parameter Description

map time to map a join attribute to the referent S partition
�X � number of objects in relation X

PX number of pages in relation X

x size of a single object in relation X

skew skew in relative sizes of Ri sub-partitions
sptr the size of a pointer to an S-object
G size of the shared buffer used for transferring data out of S

Table 5.1: Variables and Parameters Used for all Joins

D-fold parallelism2, the total elapsed time for Rproci also represents the total time for the

entire join. To account for the effect of skew, the maximum of the elapsed time for the

various Rproci is taken to be the time for the join.

While it is convenient to speak of data being read or written in the algorithms, input

and output is not explicitly requested by any of the algorithms. When speaking of read-

ing a block of data, the implementation actually accesses a location in virtual memory

mapped to that block. If the block is not in primary memory, it is read in by means of

2The contention for S is eliminated by the scheduled reading of objects from S, as explained later in this
chapter.
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a page fault; otherwise, no disk access takes place. Similarly, when speaking of writing

a file, no explicit action, other than to write cells of virtual memory, occurs in the im-

plementation; the writing of a (dirty) block of data takes place when the corresponding

page is replaced by the operating system. These actions are similar to what occurs in an

explicitly managed buffer pool, where objects are fetched from already read buffers and

written only when the buffer is written, albeit with more user control than in memory

mapping.

5.2 Parallel Pointer-Based Nested Loops

Nested loops performs a join by sequentially traversing R. For each object in R, the

algorithm accesses the S-object pointed to by the embedded join attribute. R is called

the outer relation and S the inner. The resulting random accesses to S significantly slow

nested loops. A naive parallel version may partition R and S so that each Ri can perform

its join in parallel with other R partitions, accessing different S j partitions simultaneously.

However, parallelism in this case is severely inhibited by contention when several Ri

reference the same S j; this contention can be reduced or eliminated by careful algorithm

design.

In the traditional nested loops algorithm, it is usually the smaller of the two relations

that is used as the inner relation so that it can be kept in the buffer pool. In the EPD

algorithm, S is always the inner relation unless back pointers from S to R are available in

S objects.

5.2.1 Algorithm

For each partition Ri in parallel, the algorithm operates in two passes. In pass 0 (see

figure 5.2), Ri is read, one object at a time, into the private memory of Rproci, which
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translates, in terms of actual I/O, to reading Ri in chunks of the virtual memory page

size, B.

RPi � 1

RPi � D

RP1 � D

RprocD

Rproci

Rproc1 (i,b), ...

(D,c), ...

(1,d), ...

(D,f), ...

(1,g), ...

(i,h), ...
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RPD � i

Ri RPi Si
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e
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d
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Sproc1

Sproci

SprocD

Figure 5.2: Parallel Pointer-Based Nested Loops

In figure 5.2, an R-object is represented by a tuple
�
MAP

�
sptr � � sptr � , where sptr is the

join attribute and MAP
�
sptr � is the number of the S partition containing the object pointed

to by sptr. For each object in Ri, the S partition is computed from the join attribute and

the object is copied (written) to a sub-partition inside of a temporary area RPi, which is

mapped onto the same disk as partition Ri; all the R-objects in Ri that point to an object

in S j are grouped together in sub-partition RPi � j. This sub-partitioning largely eliminates

disk contention in the next pass.



180 Application and Validation of the Analytical Model

Instead of putting RPi in its own segment, managed by another process, the storage

for the RPi segment is made part of the storage for Rproci. That is, Ri is located at the

lowest address of the Rproci segment and storage for RPi is located after the storage for

Ri. Hence, both Ri and RPi are mapped to the private memory of Rproci, which eliminates

the costs of segment-to-segment transfer, namely copying data through shared memory.

It also eliminates the cost of creating and managing an additional process for RPi. The

drawback of this optimization is that the maximum size of Ri is approximately half of

the maximum available address space size.

As an optimization, the objects in Ri that point to objects in Si are immediately joined,

in pass 0, by extracting the join pointer, and having Sproci read the corresponding S ob-

ject. Sproci dereferences the join attribute resulting in a loading of the page of Si con-

taining the referent object, if that page is not already in memory, and makes the S object

available for the join by putting it into shared memory. Rproci then does the join. As a

further optimization, the requests for objects from Si are grouped into a buffer of size G

to reduce context switches between Rproci and Sproci.

Pass 1 (see figure 5.2) eliminates disk contention by staggering access to Si through

a series of D � 1 phases, without synchronizing the phases. In phase t (t � 1 � 2 ������� D � 1),

RPi � offset
�
i � t � is joined with Soffset

�
i � t � , where offset

�
i � t � � � � i �

t � 1 � mod D � �
1. For example,

a typical phase joins a sub-partition RPi � j with S j ; because of the offset, S j is only accessed

by one Rproci in any one phase, assuming no skew. In the presence of skew, there are

different numbers of objects in each RPi � j , so there may be some contention when multiple

Rproci access the same S j. Rproci loops over objects in RPi � offset
�
i � t � in private memory; for

each one, it extracts the join pointer and asks Sprocoffset
�
i � t � for the corresponding S object.

Because a random distribution of join attributes in R is assumed and there is exactly

one reference to each object of S, the references to S-objects in each Ri are uniformly

distributed, and therefore, skew is very close to 1.0. As a result, no synchronization
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is used after each phase of pass 1 for all the Rproci; any contention that does occur is

insignificant, as was verified by running experiments with synchronization after each

phase of pass 1. In the best case, there was a 0.5% decrease in I/O and total time due

to reduced contention. This saving was not considered significant enough to warrant

complicating the algorithm and the analysis with synchronization.

5.2.2 Parameter Choices

MRproci should be large enough to hold, in pass 0, at least one block of the input Ri and

at least one block for each RPi � j. Since Si is being read randomly, MSproci should be as

large as possible. G should be large enough to avoid many context switches between

Rproci and Sproci, but small enough so that the volume of pending requests does not

force important information out of memory. In an EPD environment, the value of G

should be, but is not required to be, a multiple of the block size, B. The implementation

used a value of B for G.

5.2.3 Analysis

Given �Ri � � �R ��� D and �Ri � i � �
� �Ri ��� D � � skew � � �R ��� D2 � � skew, for the largest of Ri � i, then

�RPi � is
�Ri � � �Ri � i � � �R �

D
�
�R �
D2

� skew�

Ri is not adjusted by skew because there is no synchronization between phases in this

algorithm; in essence, the skew in RPi � j is compensated for by the additional parallelism

resulting from the lack of synchronization among the Rproci between passes 0 and 1.

In pass 0, Ri is read sequentially, RPi is written (mostly) randomly, and Si is read

randomly. Figure 5.3 shows the disk layout of the three partitions.

Since each partition is accessed, the band size of disk arm movement, in the worst
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Ri Si RPi

PRPiPSiPRi

Figure 5.3: Disk Layout: Parallel Pointer-Based Nested Loops

case, is the total size of all partitions:

BandSizepass0 � PRi

�
PSi

�
PRPi �

PR

D
� PS

D
�

�
PR

D
�

PR

D2
� skew � �

As well, because random reads and writes are interspersed on the same disk, all

dtt formula are for random I/O (i.e., it does not matter that some objects are read se-

quentially). The disk transfer times for Ri and RPi, then, are PRi
� dttr

�
BandSizepass0 � and

PRPi
� dttw

�
BandSizepass0 � , respectively.

�Ri � i � S-objects are read randomly from Si, one object at a time, during the join, but

some of those objects may be in memory already when requested. The analysis uses a

result of Mackert and Lohman [ML89] to approximate the number of page faults, which

corresponds to disk transfers. [ML89] derives the following approximation: given a

relation of N tuples over t pages, with i distinct key values and a b-page LRU buffer, if x

key values are used to retrieve all matching tuples, then the number of page faults is

YLRU
�
N � t � i � b � x � ������

���
t �

�
1 � qx � if x

�
n

t ��� � 1 � qn � �
p �

�
x � n � � qn 	 if x 
 n
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where

n � max
�

j : j
�

i � t �

�
1 � q j � �

b � and q � 1 � p ������
���
�
1 � 1 � t � N

�
i if t � i

�
1 � 1 � i � N

�
t if t � i

�

Assuming the references to S are randomly distributed in R, the disk transfer time for

reading objects from Si, in pass 0, is

YLRU

�
�RSi � � PSi

� �RSi � �
MSproci

B
� �Ri � i � � � dttr

�
BandSizepass0 � �

In pass 1, RPi is read sequentially, and Si is read randomly. Since only the partitions Si

and RPi are used, the band size of disk arm movement, in the worst case, is the total size

of both partitions: BandSizepass1 � PSi

�
PRPi . As well, because random reads and writes

are interspersed on the same disk, all dtt formulas are again for random I/O. The disk

transfer times for RPi and Si are, therefore,

PRPi
� dttr

�
BandSizepass1 � and YLRU

�
�RSi � � PSi

� �RSi � �
MSproci

B
� �RPi � � � dttr

�
BandSizepass1 � �

respectively.

Furthermore, in pass 0, each object of Ri is moved once, either to RPi or to shared

memory for the join, and appropriate objects of Si are moved to shared memory for the

join. The transfers from Ri to RPi are simple memory transfers among areas of Rproci’s

memory because of the organization of Rproci’s memory (see section 5.2.1). The corre-

sponding data transfer cost is �RPi � � r � MTpp
� �Ri � i � �

�
r

�
sptr

�
s � � MTps.

The transfers from Si require a data movement from Sproci’s private memory to

shared memory so that an object can be accessed by Rproci; this requires two context

switches, from Rproci to Sproci and back again so that Sproci can perform the transfer. To
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optimize context switching, shared memory of size G is used (see section 5.2.1). During

the sequential pass of Ri, objects for Ri � i and their join attributes (i.e., the S-pointers) are

placed into this buffer until there is only room for the corresponding Si objects. While

the S-pointer is embedded in the R object, it is copied out so that Sproci does not have

to know about the internal structure of R objects. The buffer is then given to Sproci to

copy the corresponding S-objects into the remaining portion of the buffer. The objects

in the buffer can now be joined. The buffer reduces the number of context switches to

Sproci. Also, copying the Ri object into the buffer prevents additional I/O in Ri during

the join due to references back to previously read objects. The alternative is to join each

individual R object when found during the sequential scan, which results in a context

switch to Sproci for each object.

In pass 1, each object of RPi is moved once to shared memory, and the referent objects

from Si are moved to shared memory for the join in a total time of �RPi � �

�
r

�
sptr

�
s � � MTps .

The buffering technique employed in pass 0 is also used in pass 1 to retrieve S-objects.

The context switching costs for pass 0 and 1 are

2 � CS �

� �Ri � i ��
G � � r �

sptr
�

s ����� and 2 � CS �

� �RPi ��
G � � r �

sptr
�

s ����� �

respectively. The cost of mapping the join attributes to their S partitions in pass 0 is

�Ri � � map. Finally, the setup cost (see section 3.5.2) for mapping Ri, Si and RPi is

D �

�
openMap

�
PRi � �

openMap
�
PSi � �

newMap
�
PRPi � � �

The setup time is multiplied by D because manipulating a mapping of a partitioned file

structure is a serial operation.
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5.3 Parallel Pointer-Based Sort-Merge

In nested loops, the random access of S slows down the join. Sort-merge changes the

random access of nested loops to a single sequential scan of S, resulting in a significant

performance gain. While Shapiro’s sort-merge [Sha86] assumes only two passes, my

algorithm permits multiple passes, writing out full records at each pass. Also, as noted

earlier, the use of S-pointers as the join attribute makes sorting of S unnecessary.

5.3.1 Algorithm

The first two passes of the parallel sort-merge algorithm are the same as for parallel

nested loops (see section 5.2.1) except for one difference: in nested loops, Ri � i in pass 0

and RPi � j in pass 1 are joined with Si, whereas in sort-merge, Ri � i and RPi � j are written out

to RS j . Fig. 5.4 shows the two passes for sort-merge.

Once the RSi partitions have been formed, the sequential sort-merge algorithm is

executed on each partition in parallel. The algorithm proceeds by first sorting, in parallel,

all RSi with respect to the join attributes to allow sequential processing of Si. The sorting

of RSi is done using multi-way merge sort, with the aid of a heap and with intermediate

runs stored on disk. In the final pass, Si is read in sequentially to perform the join.

As in nested loops, data movement is optimized by combining several partitions

in Rproci’s segment. That is, Ri is located at the lowest address of the Rproci segment,

storage for RPi is located after that, and then all partitions for the RSi . Hence, all these

partitions are in the private memory of Rproci. The saving in data transfers through

shared memory is significant and is possible because RPi and the RS j are temporary areas

where the data is manipulated as composite objects without the need to dereference

embedded pointers. The drawback is that the maximum size of Ri is approximately D
�

1

times less than the maximum address space size. If this optimization poses a problem,
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Figure 5.4: Parallel Pointer-Based Sort-Merge

the RS j can be separate segments and data can be copied to them through shared memory

using a buffer.

The design and analysis of Sort-Merge introduce a number of additional parameters,

tabulated in table 5.2, some chosen by the programmer, and some that are specified by

the implementation. The programmer must choose IRUN, the length of a run created

from unsorted data from pass 1, and NRUN, the number of runs to be merged in a given

merging pass. In pass 2 of the sort-merge algorithm, IRUN R-objects are read in from RSi

and a heap of pointers to these memory-resident objects is created in memory. Heapsort

is applied to the heap of pointers and the sorted list of pointers is used to sort, in place,

the corresponding R-objects. The resulting sorted run of IRUN R-objects is eventually



5.3 Parallel Pointer-Based Sort-Merge 187

written out to disk. These actions are repeated to sort successive runs until all of RSi has

been processed.

Parameter Description

IRUN length of sort runs
NRUN number of sort runs

hp size of an element in a heap of pointers
compare time to compare two heap elements

swap time to exchange two heap elements
trans f er time to move a heap element

Table 5.2: Parameters of Sort-Merge Join

On subsequent merging passes, groups of NRUN sorted runs are merged using

delete-insert operations on a heap of NRUN pointers. The heap always contains pointers

to the next unprocessed element from each sorted run; when a pointer is deleted from

the heap, the corresponding object is moved to the output run, and a pointer to the next

object from the input run that contained the moved object is inserted into the heap. The

merged run is written out to disk and becomes the input for the next merging pass. The

process is repeated until all the remaining runs can be merged in a single pass.

On the last merging pass, instead of writing out the merged R-objects, the corre-

sponding objects from Si are read sequentially and the join computed. The reading of

the objects from Si is accomplished, as in nested loops, by means of a shared memory

buffer of size G.
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5.3.2 Parameter Choices

IRUN is chosen to be the largest number such that an entire run, plus space for the heap

of pointers, fits in available memory, i.e.,

IRUN �
�
MRproci

r
�

hp � �

where hp is the size, in bytes, of an element in the heap of pointers.

Ideally, merging of runs requires at least one page of memory for each run; other-

wise excessive thrashing occurs because pages are replaced before they are completely

processed. In reality, with this minimum memory, pages are replaced prematurely be-

cause the LRU paging scheme makes the wrong decisions when replacing a page during

the merging passes. That is, when objects in an input page have been processed, the

page is no longer needed, but it must age before it is finally removed; during the aging

process, a page that is still being used for the output runs gets paged out, resulting in

additional I/O. In the current implementation, the problem is avoided by reducing the

value of NRUN, which is chosen to be MRproci �
�
3 � B � during all but the last pass (denoted

NRUNABL), and MRproci �
�
2 � B � during the last pass. In other words, memory is underuti-

lized to compensate for this anomaly so that the program behaves more consistently. The

amount of underutilization is based on an approximation of the working set of the pro-

gram during these passes. The same problem occurs in the Grace algorithm, discussed

later. For the Grace algorithm, the processing is left unchanged and an analysis is done

to quantify the amount of extra I/O that occurs due to premature replacement of pages.

Thus, two alternative strategies of attacking the problem have been investigated.
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5.3.3 Analysis

Given �Ri � � �R ��� D and �Ri � i � �
� �Ri ��� D � � skew � � �R ��� D2 � � skew, for the largest of Ri � i, then

�RPi � is
�Ri � � skew � �Ri � i � � �R �

D
� skew �

�R �
D2

� skew�

Ri is adjusted by skew because there is synchronization between phases in this algorithm,

therefore the worst case must be considered for each individual pass.

In pass 0, Ri is read sequentially, RPi is written mostly randomly, and RSi is written

sequentially. Figure 5.5 shows the disk layout, resulting in the band size of disk arm

movement, in the worst case, of

BandSizepass0 � PRi

�
PSi

�
PRSi

�
PRPi �

PR

D
� PS

D
� PR

D
�

�
PR

D
�

PR

D2 � � skew

Ri Si

PSiPRi

RSi

PRSi

RPi

PRPi

Mergei

PRSi

Figure 5.5: Disk Layout: Parallel Pointer-Based Sort Merge

The disk transfer times for Ri, RSi and RPi are

PRi
� dttr

�
BandSizepass0 � , PRSi

� dttw
�
BandSizepass0 � and PRPi

� dttw
�
BandSizepass0 � �

respectively. In pass 1, RPi is read sequentially, and RSi is written sequentially, giving
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BandSizepass1 � PRSi

�
PRPi . The disk transfer times for RSi and RPi are

PRSi

� dttw
�
BandSizepass1 � and PRPi

� dttr
�
BandSizepass1 � �

respectively. All dtt formulas are for random I/O because of wide fluctuations in the

disk arm between regions read or written sequentially.

In pass 0, each object of Ri is moved once within Rproci’s segment, either to RPi or to

RSi , at a cost of �Ri � � r � MTpp. In pass 1, each object of RPi is moved once within Rproci’s

segment to the appropriate RSi at a cost of �RPi � � r � MTpp. Since all of the data move-

ments are with Rproci’s segment, there are no context switch costs in passes 0 and 1. The

mapping cost for pass 0, which generate a S partition from an S-pointer, is �Ri � � map.

In pass 2 (the heap-sorting pass), runs of size IRUN objects from RSi are sequentially

read in and sorted in place. Since there is no explicit writing, the previous sorted run is

written back by the operating system as the pages age with mostly random writes. This

pattern results in a disk band size that is twice the size of a sort run: 2 �

�
r � IRUN � B � . The

disk transfer times for reading RSi and writing back the sorted runs are

PRSi

� dttr

�
2 �

r � IRUN
B

� and PRSi

� dttw

�
2 �

r � IRUN
B

� �

respectively.

As shown in table 5.2, compare is the amount of time Rproci requires to compare

two elements in a heap of pointers to R-objects, stored in memory. Similarly, swap is

the amount of time to swap two heap elements stored in memory, and trans f er is the

amount of time to move an element to or from the heap. These times do not count oper-

ations necessary to restore heap discipline after moving an element. The time required

to restore heap discipline is computed separately.
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In order to heap-sort each individual run, an array of pointers to the IRUN R-objects

in memory is converted into a heap using Floyd’s heap construction algorithm (see

[GM86, GBY91]). The heapsort method outlined in [SS93] is then used with a modifi-

cation suggested by Munro [Mun95] that allows the heapsort to complete, in the aver-

age case, with approximately N logN comparisons and transfers. The creation of the heap

takes time

1 � 77 � �RSi � �

�
compare

� 1
2

� swap � � �RSi � � trans f er

while the cost of heap-sorting the heap by repeated deletion of minima is

�RSi � � log IRUN �

�
compare

�
trans f er � 3 �

A further cost of �RSi � � r � MTpp is required to permute the actual R-objects, in place, based

on the sorted list of pointers.

The choice of IRUN and NRUNABL in turn determines NPASS, the number of merging

passes, and LRUN, the number of runs on the last pass.

NPASS � max

�
j : j � 1 �

� �Ri �
IRUN �

�
NRUNABL � j � 1 � �

NRUN �

LRUN �
� �Ri �
IRUN �

�
NRUNABL � NPASS � 1 �

In the third and subsequent passes, groups of NRUNABL (or LRUN in the last pass)

input runs are read in, merged into one, and written out. RSi and Mergei (see figure 5.5)

alternate as source and destination of these runs. In the last pass, RSi (if NPASS is odd) or

3Notice the omission of a ceiling on the value of log computations here and in subsequent formulae,
which compensates for the fact that the heaps are not perfect and may have leaf nodes at two different
levels.
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Mergei (if NPASS is even) contains all the objects that are merged into a single run, which

is then joined with Si. The disk band size during all but the last pass is

BandSizeABL � PRSi

�
PRPi

�
PMergei

�

and during the last merging/joining pass is

BandSizeLast � PSi

�
PRSi

� �
PRPi

�
PMergei � �

� �
NPASS

�
1 � mod 2 � �

The disk transfer time, except for the last pass, for reading and writing RSi and Mergei,

NPASS � 1 times are

PRSi

� dttr
�
BandSizeABL � �

�
NPASS � 1 � � and PRSi

� dttw
�
BandSizeABL � �

�
NPASS � 1 � �

respectively. During the last pass, I/O costs for RSi and Si are

PRSi

� dttr
�
BandSizeLast � and PSi

� dttr
�
BandSizeLast �

respectively.

During the merge, except for the last pass, the delete-insert operation [GBY91, p. 214]

is used on a heap of size NRUNABL and the heap operations for each of the
�
NPASS � 1 �

passes take time

� �
2 � compare

�
swap � �

�
NRUNABL

�
1 � � k �

�
NRUNABL � 2 � � 2k

NRUNABL

�
2 � trans f er � � �RSi �

where k � �
log NRUNABL � �

1. The size of the heap used during the last merge pass is
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LRUN and the corresponding heap operations take time

� �
2 � compare

�
swap � �

�
LRUN

�
1 � � k �

�
LRUN � 2 � � 2k

LRUN
�

2 � trans f er � � �RSi �

where k � �
logLRUN � �

1. The data transfer cost during the NPASS � 1 merge passes and

the last merge pass are �RSi � � r � MTpp
�

�
NPASS � 1 � and �RSi � �

�
r

�
sptr

�
s � � MTps, respectively,

with the corresponding context switching time of

2 � CS �

� �RSi ��
G � � r �

sptr
�

s ��� � �

Finally, the setup cost for mapping Ri, Si, RSi , RPi and Mergei is

D �

�
openMap

�
PRi � �

openMap
�
PSi � �

newMap
�
PRSi

� �
newMap

�
PRPi � �

newMap
�
PSi � � �

The setup time is multiplied by D because manipulating a mapping is a serial operation.

An additional cost of
�
deleteMap

�
PSi � �

newMap
�
PSi � � �

�
NPASS � 1 � is incurred in all merge

passes but the last, to switch the source and destination areas for the merge.

Figure 5.6 illustrates the progress made by a particular run of the sort-merge join

algorithm with actual times obtained from an experiment. The figure provides insights

into the workings of the parallel sort-merge join algorithm because of its complexity.

The term staggered starts used in the figure indicates where multiple threads perform

a brief serial operation, e.g., initialization of shared structures, before proceeding with

their individual parallel computation.
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5.4 Parallel Pointer-Based Grace

Sort-merge improves the performance of the join by sorting Ri by the S-pointer, which

allows sequential reading of Si. However, sorting is an expensive operation. Hash-

based join algorithms replace the sort with hashing to improve performance further. As

an example of the hash-based join algorithms, I have chosen to model a parallelized

pointer-based version of the Grace algorithm.

As with sort-merge, the spatial ordering property of the S-pointers makes it unnec-

essary to hash Si. By carefully designing the hash algorithm, it can be ensured that each

hash bucket contains monotonically increasing locations in Si, so that Si can be read se-

quentially.

5.4.1 Algorithm

The first two passes of the Grace algorithm, shown in fig. 5.7, are the same as in parallel

nested loops, except for one difference; in nested loops, R-objects are joined with Si,

whereas in Grace, the join attributes (i.e., the S-pointers) from R-objects are hashed into

one of K sub-partitions (or buckets) that make up RSi . The value of K is chosen by the

programmer based on the amount of memory available. The jth sub-partition of RSi is

referred to as BSi � j, i.e., RSi �
� K

j � 1 BSi � j. Figure 5.7 shows these two passes of the modified

Grace algorithm and table 5.3 contains additional parameters for the algorithm.

Parameter description

TSIZE range of the hash function in pass 1
K number of hash buckets formed

f uzz hash table overhead factor

Table 5.3: Parameters for Grace Join
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BSi � k

BSi � x

BSi � 1

BSD � k

BSD � x

BSD � 1

BS1 � k

BS1 � x

BS1 � 1

RprocD

Rproci

Rproc1

RPi

Pass 1

RP1 � i

RP1 � D

RPi � 1
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RPD � 1

RPD � i

Ri

(1,a)

(D,c)
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(D,f)

(1,d)
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(i,h)
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(D,i)

(i,b), ...

(D,c), ...

(1,d), ...
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(i,h), ...

Pass 0

RSi

Figure 5.7: Parallel Pointer-Based Grace

As in the case of other parallel join algorithms described earlier, the parallel version

of the Grace algorithm first repartitions each Ri into Ri � j sub-partitions on the basis of

the join attributes (which happen to be pointers), moves the objects of each Ri � j to disk j

to form RS j , and then, in parallel, executes a sequential algorithm on each
�
RS j

� S j � pair

without disk contention.

In pass 0, Rproci reads Ri, one object at a time, and depending upon the value of the

join attribute, either moves the object into an RPi � j or hashes the object into one of the K

buckets of RSi . In pass 1, Rproci reads Ri � j (for all j
�� i) one R-object at a time, and hashes

each object into one of the K sub-partitions of RS j . As for pass 1 of the nested loops

algorithm, the reading and hashing of Ri � j in pass 1 takes place in phases to eliminate
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contention for the disks. At the end of pass 1, each RSi contains K sub-partitions that

contain hashed R-objects. The hash function is chosen so as to cluster R-objects by the

value of their join attributes. Therefore, BSi � j � j � 1 ������� K � 1, contains R-objects with join

attributes smaller than that of any R-object in BSi � j
�

1.

In pass 1
�

j ( j � 1 � 2 ������� K), for every i in parallel, BSi � j is read in, and the value of

the join attribute in each object is used as input to another hash function that further

refines the partitioning given by the first hash function. The range of this hash function

is TSIZE , a parameter chosen by the programmer. Once all of BSi � j has been hashed into

an in-memory hash table, the table is processed in order. Common references to objects

in Si (i.e., references that result in a collision when hashed) are in the same hash chain. If

it is assumed that there are no more than MSproci � s different references to objects in Si in

any one hash chain during the processing of that hash chain, all objects from Si needed

during the processing of that hash chain can fit in memory; hence each object referenced

from S need only be read once in order to perform the join. The reading of the objects

from Si is accomplished by means of a shared memory buffer of size G, as before.

5.4.2 Parameter Choices

During pass 1
�

j, j � 1 � 2 ������� K, Rproci reads each R-object in BSi � j into a memory resident

hash table. The value of K should be chosen such that each BSi � j along with its associated

hash table overhead fits entirely in memory.

TSIZE should be small enough to not cause excessive hash-table overhead because of

underutilization of memory and large enough so that the size of individual hash chains

is low. Theoretically, the minimum amount of memory that needs to be made available

to each Rproci, in pass 0, to avoid thrashing is D
� ���

f uzz � �Ri � � r � B � blocks, where f uzz

makes room for the hash table overhead. In reality, even this threshold memory results

in thrashing because the working set for the algorithm is greater than the theoretical
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threshold memory and the LRU paging scheme then makes the wrong decision, remov-

ing useful pages prematurely. See [Sha86, Sto81] for more discussion on this problem.

The next section derives an approximation for the amount of extra I/O that takes place

when memory is insufficient.

5.4.3 Analysis

The disk band sizes during pass 0 and pass 1 are BandSizepass0 � PRi

�
PSi

�
PRSi

�
PRPi

and BandSizepass1 � PRSi

�
PRPi , where PRPi is the same size as in sort-merge because

there is synchronization between phases. Pass 0 involves reading objects from Ri,

one object at a time, and writing each object to either RPi or to one of the K buckets

in RSi . The corresponding I/O costs are PRi
� dttr

�
BandSize0 � , PRPi

� dttw
�
BandSize0 � and

�
PRi � i �

K � � dttw
�
BandSize0 � . The number of pages written to RSi has been increased by K

to account for the fact that objects read from Ri � i are hashed into K buckets in RSi . The

additional costs incurred in pass 0 include �Ri � � map to map the join attributes to their

corresponding S partition, �Ri � i � � hash to hash the Ri � i objects into one of K RSi-buckets and

�Ri � � MTPP to move the Ri objects in private memory to either RPi or RSi .

An urn model is used to derive an approximation for the amount of extra I/O that

takes place due to lack of memory in pass 0. In pass 0, R-objects from Ri are placed

in one of RPi � j or in one of the K buckets of RSi . The analysis computes the probability

that, just after a page belonging to RSi is hit (either in memory or causing a page fault),

that it gets hit again before it gets replaced. Once hit, a bucket page is replaced when

there are MRproci � B references to newer pages before it is hit again; the probability of

hashing t further objects without a second hit is
�
1 � 1 � K � t . At any given time, some of

the pages in memory are partially filled or read pages (current pages) and some pages

have been completely processed or filled (fill events), but which stay around because

they are recently accessed and have not aged enough. It is assumed that the D current
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pages for Ri and RPi � j stay in memory until processed completely because these pages

are processed at a much faster rate than the pages in RSi .

For convenience, divide the hashing of objects after a hit into epochs; the first α0

objects, the next α1, and so on. The number of fill events that have occurred at the begin-

ning of epoch q is a random variable, which can be approximated as follows. Since the

page replacement algorithm prefers clean pages over dirty pages, the fill events caused

by the processing of Ri can be ignored. The fill rate for RPi � j is
� �

D � 1 � � �B � � , and for

RSi is
�
1 � � K � �B � � � , the latter being negligible. Therefore, the number of fill events is

�
H j

�

�
D � 1 � � �B � � , where H j � ∑ j � 1

n � 0 αn is the number of objects hashed at the beginning of

epoch j.

The probability that at most
�
H j

�

�
D � 1 � � �B � � �

D buckets are not hit by the beginning

of the epoch, denoted p j, multiplied by the probability that a page gets hit again during

epoch j, denoted y j , is the probability that the page is not present in memory during

a second hit in epoch j. Summing over all epochs and multiplying by �Ri � i � gives an

approximation to the expected number of times a page of RSi gets replaced prematurely.

The probability p j can be computed by reference to Johnson and Kotz [JK77, p.110],

who show that the probability of exactly k urns being empty after n balls are randomly

placed into m urns is

Pr �X � k 	 � � m
k
� �

�
1 �

k
m
� n

�

m � k � 1

∑
j � 0

�
m � k

j
� � � 1 � j

�
1 �

j
m � k

� n

�

Every premature replacement necessitates one extra write (to replace the page) and

one extra read (when the page is referenced again) for a total cost of reading and writing

of �Ri � i � � ∑ j
�

1
�
p j

� y j � blocks.

In pass 1, objects in RPi � j are read, one object at a time, and each object is hashed into
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one of the K buckets in RS j . The costs of reading RPi and writing RSi are

PRPi
� dttr

�
BandSize1 � and

�
PRPi

�
K � � dttw

�
BandSize1 � �

respectively. Once again, the number of pages written to RS j has been increased by K. It

takes a further time of �RPi � � MTPP to move the objects in private memory.

After pass 1, the subsequent reading of the partitioned RSi , one bucket at a time, and

the corresponding Si objects requires time

�
PRSi

�
PSi � � dttr

�
1

K � 2
� PRSi

� �

The band size for dttr is chosen to be half the size, in blocks, of the objects that fit in the

hash table in order to approximate the actual behaviour, which is to read sequentially

objects from a sub-partition of RSi followed by the corresponding objects in Si and so on.

Each object in RSi is hashed once during the processing of each bucket, for time �RSi � �

hash. The cost of transferring objects to shared memory is �RSi � � MTPS
�

�
r

�
sptr

�
s � with

the corresponding context switching time of

2 � CS �

� �RSi ��
G � � r �

sptr
�

s ��� � �

Finally, the setup costs for mapping Ri and Si for reading, creating the new mappings

for RSi and RPi in pass 0 and setting up RSi for reading in pass 1 is

D �

�
openMap

�
PRi � �

openMap
�
PSi � �

newMap
�
PRSi

�
PRPi � �

openMap
�
PRSi

� � .
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5.5 Model Validation

In order to validate the model and the analysis presented earlier, experiments were run

that performed full joins on two relations with 409,600 objects each. A generated data set

was used to populate the two relations for all the experiments presented in this chapter.

The join attributes in R were generated by means of a random number generator obtained

from the standardized testbed described in section 4.3.2. The size of data set is the same

as that used in [MLD94]. The objects in each relation were of size 128 bytes. R and S were

partitioned across 4 disks with one R and one S partition on each disk. Table 5.4 contains

the values used for various parameters of the model.

5.5.1 Experimental Testbed

The testbed described in section 4.1 was used to run validation experiments. The follow-

ing extensions were made to the testbed for the validation experiments:

� the operating system kernel was rebuilt so that it put aside the minimum amount

of memory for use as DYNIX buffers. This change was made to verify the earlier

assumption that memory mapping a regular DYNIX file by-passes the file system

buffering and does not benefit from DYNIX buffer memory.

� all the file systems used for storing data for the experiments were rebuilt with a

file system block size of 4K, the size of the DYNIX virtual memory page. Thus, all

I/O took place in 4K blocks, instead of 8K blocks that were used in experiments

in chapter 4. This change in file system block size made the block size the same

as the virtual memory system page size. A similar change could not be made for

experiments conducted earlier for historical reasons.
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Parameter Measured Value

CS 145 µseconds
dtt see figure 3.12(a)

MTsp 0.31 µseconds
MTss 0.31 µseconds
MTps 0.31 µseconds
MTpp 0.31 µseconds

newMap see figure 3.12(b)
openMap see figure 3.12(b)

deleteMap see figure 3.12(b)
map 11µseconds
skew 0.98

compare 5.45 µseconds
swap 4.3 µseconds

trans f er 2.1 µseconds
hash 2 µseconds

Parameter Assumed Value

P 4
M variable
B 4096
D 4
�R � 409600
� S � 409600
r 128
s 128

sptr 4
hp 8
G 4096

Table 5.4: Validation Values of Model Parameters
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5.5.2 Results

Figure 5.8 shows the predicted and measured elapsed times for running the various join

algorithms with varying amounts of memory available. The discontinuities in the sort-

merge graph occur when additional merging phases are required. The curve in the Grace

graph at low memory levels results from thrashing caused by the page replacement

algorithm.

As is evident from the graphs, the model does an excellent job of predicting perfor-

mance for the various join algorithms in almost all conditions. In particular, there is a

close match between prediction and actual performance for nested loops and sort-merge.

All the experiments were repeated several times in order to factor out any small devi-

ations caused by the operating system (e.g., page replacement) behaviour and to make

sure that the results were consistent, accurate and reproducible. For Grace, the approxi-

mation for I/O caused by thrashing at low memory levels is reasonably accurate; there

is scope for further refinement of this approximation. A major part of the difference be-

tween prediction and actual behaviour at low memory levels comes from the overhead

introduced by the particular replacement strategy used by the Dynix operating system.

Further refinement of modelling this aspect of the page replacement scheme will be done

in future work.

5.6 Predictions

Once the model has been validated, it can be used to accurately predict the performance

of a join algorithm for any given set of resources; Figure 5.9 depicts the predicted per-

formance of the three join algorithms as a function of available memory with each of R

and S partitioned across 4 disks. All the graphs follow the same pattern as the validated

portion of the curves.
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Figure 5.8: Model Validation
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Figure 5.9: Model Predictions
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5.6.1 Speedup and Scaleup

Further predictions with the model can be made to study the speedup and scaleup be-

haviours of the three parallel join algorithms. Speedup is an indication of performance

improvement as available physical resources are increased while keeping the problem

size constant. Scaleup also measures the effect on performance of increasing all available

resources while at the same time increasing the problem size by the same proportion. In

the case of joins, the problem size is indicated by the size, in blocks, of R and S and the

relevant resources are CPUs, disks and physical memory. These predictions significantly

stress the model and should illustrate any obvious anomalies.

Figure 5.10 presents the performance of the three join algorithms as the number of

disks and other resources are increased; in each case, the size of R and S is kept fixed at

6400 blocks each. The number of CPUs is the same as the number of disks and absolute

memory per disk is kept fixed, resulting in a corresponding increase in total memory as

the number of disks is increased, i.e., MPi increases, which is the total memory available

for processing of relation P. For each join algorithm, there are two graphs; one shows the

actual reduction in time as resources are increased whereas the second plots the speedup

factor. The speedup factor is simply the time spent with 1 disk divided by the time taken

with D disks. The optimal speedup for an algorithm is linear speedup and is depicted in

figure 5.10 for comparison.

The nested-loops algorithm displays good speedup behaviour with some interesting

features. For nested-loops, increasing resources results in a performance increase better

than linear speedup. This behaviour is caused by the random reading of S objects in the

two passes. When the number of disks is increased while keeping Mi constant, the rela-

tive amount of memory available for random I/O substantially increases, which means

there is a significantly greater probability that a referenced page is already in memory.
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As an illustration, consider the following setup:

LR � LS � 409600 � D � 1 � B � 4096 � Mi � 1600 � B � r � s � 128 � and skew � 1 � 0 �

With one disk to work with, all the 409600 S objects are retrieved in a single pass and the

total number of input operations is:

YLRU
�
409600 � 409600 � 128 � 4096 � 409600 � 1600 � 409600 � � 358468 �

Now, if the number of disks is increased to 2, the size of each Si is reduced to 204800

records and each Sproci is only responsible for retrieving 204800 S records. Half of the

Si records are read in pass 0 of the nested loops because of the direct join, without con-

tention, on the same disk and the other half are read in pass 1 during the low contention

staggered reading. Therefore, 102400 records are retrieved in each pass resulting in a

total

2 � YLRU
�
204800 � 204800 � 128 � 4096 � 204800 � 1600 � 102400 � � 154007

disk blocks read. Thus, increasing the number of disks from 1 to 2 results in a speedup

factor of 358468
154007 � 2 � 32 as compared to a linear speedup factor of 2. Similarly, with 8 disks

in the above example, total number of disk blocks read is

YLRU
�
51200 � 51200 � 128 � 4096 � 51200 � 1600 � 6400 � � 1571 in pass 0, and

YLRU
�
51200 � 51200 � 128 � 4096 � 51200 � 1600 � 44800 � � 1600 in pass 1

for a speedup factor of 358468
1571

�
1600 � 113 in the reading of S as opposed to the corresponding

linear speedup factor of 8. This component of the total elapsed time causes the time to

fall rapidly.
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The sort-merge algorithm displays speedup behaviour that is closest to linear

speedup. It starts with a linear speedup and stays that way until reaching its satura-

tion point after which it begins to lag off. The Grace algorithm displays linear speedup

for portions of its curve but the speedup factor is not close to optimal, i.e., the line has

a slope much less than the desired value of 1.0. This behaviour is explained by the fact

that the Grace algorithm does not make use of any extra memory that is made available,

which implies that increasing resources does not succeed in improving the performance

of the Grace algorithm by an equivalent proportion. Other more modern hash-based join

algorithms, such as the hybrid-hash, make better use of available memory.

Figure 5.11 on page 211 presents similar results for the scaleup measurements. The

sizes of R and S are increased in conjunction with a corresponding increase in avail-

able resources. In an ideal situation, this should result in time remaining constant; in

practice, perfect scaleup is hard to achieve. In order to achieve perfect scaleup, the algo-

rithms must employ perfect parallelism. As can be seen from figure 5.11, none of the al-

gorithms displays behaviour close to the desired one. In each case, not only is the curve

much lower than the desired value, but it also continues to a downward drop, which

means that increasing parallelism achieves only marginal speedup. To understand the

reason for this behavior, the total cost was broken down into its individual components

and biggest cause of the problem is the memory mapping costs associated with each

algorithm. The reason is that the memory mapping for the multiple partitions of a file

structure is done in a serial manner. Therefore, as the number of partitions is increased,

the memory mapping setup costs increase linearly and soon become quite significant.

Clearly, this behaviour negatively impacts on performance and can be solved by paral-

lelizing the initial setting up of the various partitions of the file structure. However, it is

not obvious how this parallelization can be efficiently achieved.

In order to see the impact of the serial mapping setup costs, the scaleup graphs were
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recomputed after subtracting the memory mapping setup costs from total costs. The

resulting graphs are presented in figure 5.12 on page 212, and the results are clearly

much better. All the algorithms display similar scaleup behaviour. Scaleup is not very

good in the lowest part of the curve but after about 4 disks, the curves straighten out

and stay horizontal indicating near-perfect scaleup after that point.

5.7 Summary

The analytical model developed in chapter 3 was used to predict the performance of the

parallel multi-disk versions of three database join algorithms, namely, nested loops, sort-

merge and Grace. The parallel versions were developed as part of this work and were

especially tuned for performance in the EPD environment. A unique aspect of the algo-

rithms is the use of a virtual pointer as the join attribute, which results in considerable

time savings by eliminating the sorting or hashing of one of the two joining relations.

Note however, that the use of pointer-based joins is not appropriate in all applications,

e.g., the use of a pointer as the join attribute makes updates to the database much more

expensive. The accuracy of the analytical model has been verified by conducting ex-

periments on a controlled testbed. This chapter also highlighted a fundamental problem

associated with abrogating control to the operating system for making page replacement

decisions. In a rigid operating system, this lack of control can seriously hamper perfor-

mance under specific scenarios. Therefore, to achieve the maximum performance out of

the EPD approach, the use of an operating system system with flexible page replacement

and related support is required.
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Figure 5.11: Scaleup ( P � D ���R ��� 3200)
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Chapter 6

Unresolved Issues and Future Work

As stated earlier, some aspects of constructing a persistent system based on the EPD ap-

proach to memory mapping have not been dealt with in this dissertation due to the size

of the undertaking. A deliberate decision was made to concentrate efforts on designing

and building an EPD based store that supported multiple simultaneously accessible per-

sistent areas and on extensively measuring and analyzing the resulting store. Some of

the unresolved issues have been dealt with by other researchers while some problems

are still open research issues. This chapter describes the major unresolved problems, by

means of a partial survey of related work, and future work.

6.1 Concurrency Control

Concurrency control deals with front-end concurrency mentioned in section 3.3, i.e., how

to deal with multiple simultaneous reads and writes to a persistent store while maintain-

ing the consistency of data. The concurrency control problem has been studied exten-

sively by the database community and there are excellent solutions available, e.g., see

[BK91] for a good survey of concurrency control techniques for advanced database sys-

tems. However, the traditional concurrency control solutions are often not directly appli-

cable or are inefficient for persistent systems, especially page-based persistent systems.

213
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Most of the persistent systems built so far have been single-user systems that ig-

nore problems of concurrent accesses to a persistent store by multiple users and appli-

cations. In fact most existing persistent systems provide no support for concurrency

control [RD95a]. The concurrency problem as it applies to persistent systems remains a

largely open research issue, although some work dealing with the problem is beginning

to appear (see [RD95b]). For example, Inohara, et al [ISU
�

95] have proposed a versioned

optimistic (VO) page based scheme for memory mapped persistent systems.

One of the major problems with using conventional concurrency control schemes

is the granularity of locking. Conventional schemes work best for object-grain locking

whereas persistent systems tend to be page-based; providing object level locking in a

page-based persistent store is quite problematic. A central issue to be resolved is to de-

termine what constitutes a unit of data for the purposes of locking, atomicity, etc. While

it might be desirable to use the individual objects in a file structure as the units of data

on which atomic operations are permitted, this is clearly not feasible in the proposed

architecture of � Database with implicit concurrency (it is possible with explicit concur-

rency). This support requires the availability of an object manager, as in object-oriented

database systems/servers such as ORION [KBC
�

88] and GemStone [PSM87]. Further-

more, it must be possible to lock arbitrary collection of bytes in memory, a luxury not

usually available to a mapped system.

The VO scheme developed by Inohara, et al, derives from conventional optimistic

schemes while adding support for multi-version page images and a new validation al-

gorithm. Optimistic schemes usually work by letting concurrent clients work on differ-

ent versions of objects; each client updates its own copy of data independently of other

clients. At transaction commit time, a validation algorithm attempts to determine if the

changes made by the specific transaction are consistent with other committed transac-

tions. If not, the transaction is aborted. Practical validation algorithms attempt to seri-
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alize as many as possible (instead of all) transactions that could, in theory, be serialized;

doing otherwise has been claimed to be an NP-complete problem. Thus, some transac-

tions that could be committed safely are aborted. The validation algorithm used by the

VO scheme commits all read-only transactions and is claimed to perform better than the

original optimistic schemes for other transactions.

6.1.1 Integration of Concurrency, Distribution and Persistence

As part of his doctoral work Munro [Mun93] investigated the integration of distribution

and concurrency mechanisms into an existing orthogonal persistence system, Napier88

[Bro89]. Munro modified the Napier88 architecture and Brown’s stable store, while

maintaining upward compatibility to the extent possible, in the process of his inves-

tigation. One of the main contributions of Munro’s work is the development of a new

layered architecture, now called Flask [MCM
�

94], whose principal aim is to provide sup-

port for building generic concurrency mechanisms for persistent stores. Like � Database,

Flask rejects the notion of hard-wiring fixed concurrency schemes into the store itself. In-

stead, it provides a framework on top of the store that can be exploited to build whatever

notions of concurrency are desirable for specific applications. Future work on concur-

rency in � Database can gain from an incorporation of ideas from Flask. For instance,

[MCM
�

94] includes a design of concurrent shadow paging mechanisms for providing

stability (see section 6.2 for a discussion of stability in persistent stores). In Flask, stability

is provided in a layer built on top of the concurrency layer.

6.1.2 Scalability

A related issue is that of scalability along two dimensions, namely, the number of simul-

taneously accessed databases and the number of concurrent applications accessing these
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databases. Increasing the number of databases accessed by a � Database application re-

quires a linear increase in the number of representative segments (i.e., UNIX processes)

and the accompanying resources such as physical memory for resident sets and swap

space on disk. Currently, � Database does not support concurrent access to the same

database by multiple applications. When such support is implemented in the future, an

important consideration is to ensure that multiple applications share common resources

allocated for a single database. In other words, there should not be a multiplicative ef-

fect on the amount of resources required as the number of applications and databases is

increased.

6.2 Recovery Control

It is important for a persistent system to guarantee that all stored data is in a consistent

state, i.e., the system must maintain the integrity of all data. This guarantee must be

made in the face of system failure, such as system crashes and unsuccessful disk writes

caused by disk failure. Recovery control is the mechanism to guarantee integrity of data

by being able to recover from system failures. On restart after a failure, the recovery

process returns the system to a previously recorded consistent state; the property of

a system to recover from failures is also called stability. A number of proposals for

stability in persistent systems have appeared in the literature (see [RHB
�

90] for a list of

references). Some of these proposals, especially the ones for page-based systems, can

be adapted for the EPD system described in this dissertation. The rest of this section

provides a general description of some of the proposed recovery schemes.
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6.2.1 Shadow Paging

The earliest proposal for stability in persistent stores for database systems [Lor77] devel-

oped a new scheme called shadow paging, which has since been adapted by many other

proposals.

The essential idea in a stable persistent system is to move the system from one con-

sistent state to another as updates are made. If the system crashes before fully progress-

ing to a new state, it must go back to a previous consistent state before applications are

allowed to resume after restarting. Two basic operations required to implement this fa-

cility are the ability to perform an atomic update and the ability to distinguish the before

and the after states of the system with respect to a commit or stabilize operation.

Challis’s algorithm [Cha78] provides the underlying mechanism for implementing

the atomic update operation. The basic idea is that a new copy of the data stored in

the persistent system is made after each stabilize operation; each copy of the data is

assigned a version number that distinguishes it from all other copies and can also be used

to determine the temporal ordering of two copies. Each copy of the data also contains a

mapping table that can be used to locate all the data components on disk. The location of

the mapping table for a copy of the data on disk is maintained in a fixed location on disk

called a root block; there are two root blocks with each describing a different consistent

copy of data. The version number of the data pointed to by a root block is stored both

at the beginning and the end of the root block; if the two copies of the version number

stored in a root block match, the data copy pointed to by the root block is consistent. All

changes to data are made to the current (or new) copy. In order to commit an update,

the root block containing the oldest version number is updated to refer to the current

updated copy of data. After a successful writing of the root block, the old copy of data

can be removed. In the case of restarting after a failure, the status of the two root blocks
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is checked to find the one with the latest consistent version number, which is then used to

revert the state of the system to the consistent state referred to by the root block. Should

both root blocks be corrupted, it is called a catastrophic failure and not covered by the

recovery mechanism.

The basic shadow paging scheme provides recovery control for a paged persistent

store and is an adaptation of the expensive atomic update procedure described above.

In order to implement shadow paging, a mapping between the virtual address space of

the persistent store to the stored pages on disk is maintained. The mapping is called the

disk page table and can be used to locate all pages of disk that make up a virtual address

space. At the start of an update operation, a transient copy of the disk page table is made

in primary memory, which is used to locate pages on disk to service page fault. When

a location in a page in main memory needs to be changed, the paging system creates a

copy of the page being updated on disk, if a copy does not already exist, and changes the

transient disk page table to refer to the new copy. The copy of the page on disk is called

a shadow page and ensures that a dirty page is never written back to the same location

where it was read from. Note that the creation of a shadow page does not involve an

actual copying of data from the original disk page to the new page. Instead, the image

of the original page in memory is simply written back to a new location on disk.

Shadow paging makes copies of only those pages of data that are actually modified

as opposed to copying all data as is done in the atomic update operation. In order

to perform the stabilize operation, the system writes back all dirty pages in primary

memory to the shadow disk pages, copies the transient disk table to the disk in a new

location, and then updates the root block of the system in a manner similar to the atomic

update operation. The above is a high-level description of the shadow paging scheme;

see [RHB
�

90] for more details.

It is non-trivial to implement a shadow paging scheme on top of an existing paging
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mechanism; some operating system support is necessary.

6.2.2 Write Ahead Logging

Conventional write ahead logging schemes (e.g., see [RM89]) can be used for paged

persistent stores provided the paging mechanism can be modified to defer the writing

back of dirty pages until explicitly requested. The essential idea is to let the persistent

data be modified in place during updates and to make copies of all changes made to data

in a separate persistent log. The actual persistent data is not written back to disk until

after the changes have been safely written into the log. In case of failure, the system can

be restored to a consistent state by means of the logs written since the last checkpoint. An

earlier version of Texas [SKW92] used a write-ahead logging scheme. Again, operating

system support is essential.

6.2.3 Page Diffing

One problem with logging entire pages is the inefficiency caused by saving too much

unchanged data, e.g., changing a single byte results in the entire containing page be-

ing logged. What is needed is the ability to checkpoint subsets of pages, or sub-pages.

Dirty bits for sub-pages is one possible solution but it requires special hardware and/or

software support. A simpler solution that requires virtually no hardware and software

support is to save only the changed portions of a page by performing a word-by-word

comparison of the modified page with a clean copy. This technique is called page diffing

and has been use by Texas, QuickStore and others. Write protection traps are usually

employed in page diffing; when the paging system detects a write fault exception, it

copies the contents of the faulted page into a separate clean pages buffer, un-protects

the original page and lets the execution continue. At the time of committing (or, when
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a dirty page needs to written back due to paging), the current dirty pages are compared

against their respective clean copies and the differences are used to generate logs. The

dirty pages themselves are not written back to the disk until after logging is complete.

A space saving optimization used by Texas employs a bounded buffer for storing clean

copies of dirty buffers; when the buffer fills up, some dirty pages are written out.

Finally, the problems of concurrency and recovery control become even more difficult

when the persistent store is distributed; [RD95b] contains some early work to deal with

the problem on distribution in persistent systems.

6.3 Support for Virtual Pointers

Recall, the current version of � Database does not support virtual pointers for persis-

tent objects. Virtual pointers are used internally by C++ to implement virtual member

functions and virtual base classes, two important reuse mechanisms in C++. This sec-

tion assumes a basic understanding of the C++ virtual pointer implementation. Virtual

pointers embedded in an object are stored as part of the object memory storage and are

initialized by the compiler when the object is first created during program execution.

As shown in figure 6.1(a), a virtual pointer embedded in an object refers to the ap-

propriate virtual function table (V.F.T.), which is stored in transient memory in the text

segment. There is exactly one virtual function table created by the compiler for each type

declared in an application. Since the exact location in memory of virtual function tables

is determined only at the program linking/loading time, the values of virtual pointers

stored in an object have a meaning only during the life of the program. This restriction

does not cause any problems for transient objects because the objects also vanish when

the program terminates, and are recreated and reinitialized when the program is run

again.
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Figure 6.1: Embedded Virtual Pointer Problem

However, as shown in figure 6.1(b), once an object with embedded virtual pointers

is made persistent, a problem occurs because the object on disk now contains a reference

to a transient object, and as such, the integrity of embedded virtual pointers is no longer

guaranteed by the compiler across program invocations. It is up to the persistent system

to ensure that the virtual pointers embedded in a persistent object are properly initial-

ized at object loading time to refer to the current locations of the corresponding virtual

function tables.

A solution adapted in O++ [BDG93] to support virtual pointers works by modifying

all user-defined constructors to perform an initialization of embedded virtual pointers

if a special global condition is true; otherwise, the normal constructor code is executed.

When a persistent pointer to a non-memory-resident object is dereferenced, the system

loads the disk page(s) containing the object into memory and invokes a constructor after

asserting the special global condition mentioned earlier. This special invocation of the

constructor results in the virtual pointer(s) embedded in the newly loaded object being
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initialized; the special global condition is reset after the invocation to allow subsequent

calls to the same constructor to proceed normally.

The O++ solution can be easily implemented for � Database with the help of a front-

end translator. However, this solution violates the � Database design objective of elimi-

nating pointer modification every time an object is reloaded. While some pointer modifi-

cation is unavoidable in order to support virtual pointers, the rest of this section outlines

a possible solution that significantly reduces the extent of such modifications. The basic

idea is illustrated in figure 6.2 and is based on the observation that in a persistent system

the total number of different types of objects is much smaller than the total number of

objects.
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Figure 6.2: Efficiently Supporting Virtual Pointers

When the representative for a segment is first created, it queries the run-time system

to locate all virtual function tables (VFTs) and copies them into fixed locations in the

persistent area. It is important to note that the VFT for a given type is always copied
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to the same location in the persistent area so that any existing persistent pointers to the

VFT stay valid. With the VFT copies in place, when a new persistent object of a type

with virtual members is created, its embedded virtual pointers are initialized to refer to

the persistent copies of the VFTs instead of the transient VFTs. When such an object is

reused during a subsequent execution, the integrity of its embedded virtual pointers is

guaranteed. This scheme, therefore, avoids the cost of pointer modification each time an

object is reloaded. Instead, the scheme incurs a one time initialization cost of copying the

VFTs when the persistent segment is first made accessible. This solution would require

some compiler support to ensure the correct initialization of VFT pointer for an object,

or some compiler-level modifications by � Database.

6.3.1 Persistent Code

� Database does not contain any mechanisms for storing compiled code in the persis-

tent store because of the size of the undertaking and due to an inherent conflict with

the � Database design goal to eliminate swizzling of pointers. As with virtual pointers,

future versions of � Database may have to compromise this goal to make code persist

but still retain the performance benefits of not having to swizzle pointers relating data.

Some of the basic issues in persistent code are similar to persistent virtual pointers dis-

cussed in the previous section. In essence, loading and linking of code is just a complex

form of pointer swizzling. A detailed discussion of these issues is beyond the scope of

this work; see [BDBV94] for some relevant material.

6.4 Implementation of Inter-Database Pointers

As discussed earlier, a system that supports simultaneous access to multiple persistent

areas has to deal with inter- as well as intra-database pointers. Providing a uniform in-
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terface for the two types of pointers, while desirable, results in very poor performance

because of the extra cost involved with dereferencing inter-database pointers. Conse-

quently, most systems settle on a different representation for the two types of pointers.

Recall, in ObjectStore, a user has to explicitly declare inter-database pointers.

An inter-database pointer, by definition, has two logical components: a reference to

a database or persistent area, and the location of the referent object within the persistent

area. The current version of � Database does not support inter-database pointers but

does allow inter-database pointers to be passed among segments, i.e., the entity derefer-

encing an intra-database pointer from another segment has to use its knowledge about

the missing component and get the pointer dereferenced within the address space of the

segment’s representative. This lack of support is a clearly unacceptable situation and

future work must concentrate on a suitable implementation of inter-database pointers.

The rest of this section discusses some related issues.

Inter-database pointers can be implemented by means of smart or long pointers. A

smart pointer is an abstract data type(ADT) that encapsulates the information needed to

represent an inter-database pointer: the name of the containing database, the virtual ad-

dress of the referent object within the corresponding persistent area and any other perti-

nent information (e.g., access information for the object). In addition, a smart pointer has

a method that is invoked when an instance is dereferenced. For � Database, this method

can create a representative for the database, establish a mapping, cause the virtual ad-

dress of the object to be dereferenced within the address space, and the data copied out

of the representative segment. After the dereferencing has been completed, the represen-

tative can be destroyed. The per dereference mapping costs in this procedure represent

a high cost, and yet, it is the only probable solution if the semantics of the inter-database

pointers have to be kept invisible at the user level. What is needed is a mechanism to

save the context at the first dereference until after the last pointer that needs to be deref-
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erenced in the same context has been processed. If the inter-database pointers can be

made visible at the program level (e.g., as in the with clause in PASCAL), it is possible

to implement the above solution at a reasonable cost.

6.5 Modelling

The analytical model developed as part of this work does an excellent job of predicting

performance but there are several areas where new work or refinement of existing work

can be done:

Modelling disk contention: When multiple disk requests arrive at a disk at the same

time, the current model leaves the disk arbitration mechanism unspecified, which

can result in some error, especially for algorithms that cause significant disk con-

tention. It is possible to model the contention at the disk analytically or change the

DTT measurements to include amortized disk contention costs.

More hash-based algorithms: There is scope to investigate more hash-based join algo-

rithms given the importance of these algorithms; the more modern hash-based

algorithms make much better use of available memory than the Grace algorithm.

Also, there is a need to develop new pointer-based algorithms that further exploit

the EPD environment.

Better modelling of the page replacement strategy: In the analysis of the Grace algo-

rithm an attempt has been made to model the thrashing that occurs when the

underlying page replacement algorithm makes non-optimal choices. While the

attempted modelling produced acceptable results, there is scope for further refine-

ment.





Chapter 7

Conclusions

Chapter 6 outlines some unresolved issues and much work that still needs to be done.

In this chapter, I summarize what has been done.

7.1 Review of Work Done

A number of objectives that were set out have been achieved. The work done as part

of this dissertation has been made available to the research community as three pub-

lished articles, [BGW92], [BGNR96b] and [BGNR96a]. The achievements can be broadly

classified into the following categories.

7.1.1 Static Type Safety

One of the fundamental motivations behind pursuing a single-level store is the desire

to ensure type safety for accessing persistent data just like for transient programming

language data. An attempt to achieve statically type checked access to a database has

been partially successful. Currently, static type safety cannot be guaranteed for access

to the UNIX file system and the storage management of a file structure’s address space.

However, once these two aspects of a file structure are specified correctly, all subsequent

access to the database file structure are statically type-checked. The latter constitutes the
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majority of references to a typical file structure.

7.1.2 Development of the EPD Approach

The rationale for the EPD approach to memory mapping was developed based on an

extensive survey of other related work. Using the EPD approach in conjunction with a

world view, which is not flat and envisions persistent data objects being stored in col-

lections of related objects, poses special challenges and problems. A working solution

to these problems was investigated, developed and painstakingly measured. The solu-

tion has been shown to work remarkably well in spite of several outstanding problems

some of which may indeed defy solution within the software non-architectural platform.

The methodology that has been developed allows direct use of virtual memory point-

ers without any modification for referring to persistent and transient objects alike while

allowing simultaneous access to multiple persistent areas or databases.

7.1.3 Experimental Work

Extensive experimentation is a novel and important part of this work. No other project

has documented experimental results obtained from real or prototypical programs run

on a memory mapped single-level store. Experiments were conducted to demonstrate

the feasibility and viability of the EPD approach, to study the behaviour of parallel al-

gorithms in an EPD environment, and for validating an analytical model of the system.

In order to conduct all these experiments, a tightly controlled testbed was designed and

developed. The testbed provided instrumentation support and allowed consistent ex-

periments to be conducted with precision.
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7.1.4 Feasibility Studies

I have shown that the EPD approach to memory mapping is an attractive alternative

for implementing traditional file structures, both sequential and parallel, for databases.

I have also presented a convincing case for using the EPD based databases in complex

design environments such as CAD/CAM, text management and GIS. EPD based file

structures are simpler to code, debug and maintain, while giving comparable perfor-

mance when used stand-alone or on a loaded system than for traditional file structures.

Further, buffer management supplied through the page replacement scheme of the op-

erating system seems to provide excellent performance for many, though not all, access

patterns. Finally, these benefits can be made available in toolkit form on any UNIX sys-

tem that supports the mmap system call.

Significant work was also done towards the study of parallel multi-disk file struc-

tures. Data partitioning is an important strategy essential for improving performance

of persistent stores in the face of a primary to secondary storage speed disparity. Parti-

tioned file structures and parallel access methods were found to work remarkably well in

the EPD environment. The work on parallel structures included the design of a generic

concurrent retrieval algorithm and related tools.

7.1.5 Analytical Modelling

I have designed and validated a quantitative analytical model for database computing

in an EPD environment. The model is successfully used to make accurate predictions

about the real time behaviour of three different parallel join algorithms, namely, nested-

loops, sort-merge and a variation of Grace. The EPD methodology allows the use of

virtual pointers as the join attributes, which introduces significant performance gain by

eliminating the need to sort/hash one of the two relations. The analysis of the join al-
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gorithms also highlighted an inherent drawback in single-level stores: the lack of con-

trol over buffer management on the part of the database application results in incorrect

decisions being made at times by the underlying page replacement strategy. While ac-

cepting this inefficiency, I have demonstrated two approaches to achieving predictable

behaviour, an essential property in a database system. With single-level stores becoming

more common, it is my hope that future research and development in operating system

architecture will make it feasible for database applications to exercise more control over

the replacement strategies used [AL91]. There is scope for further improvement in the

design of the model, especially in the modelling of the underlying paging behaviour.

Future work will involve extending the model to other memory mapped environments

in order to perform comparative studies. It will also be an interesting exercise to explore

the applicability of the model to traditional join algorithms.
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