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Abstract—Code review is an essential element of any mature
software development project; it aims at evaluating code contri-
butions submitted by developers. In principle, code review should
improve the quality of code changes (patches) before they are
committed to the project’s master repository. In practice, bugs
are sometimes unwittingly introduced during this process.

In this paper, we report on an empirical study investigating
code review quality for Mozilla, a large open-source project. We
explore the relationships between the reviewers’ code inspections
and a set of factors, both personal and social in nature, that
might affect the quality of such inspections. We applied the
SZZ algorithm to detect bug-inducing changes that were then
linked to the code review information extracted from the issue
tracking system. We found that 54% of the reviewed changes
introduced bugs in the code. Our findings also showed that both
personal metrics, such as reviewer workload and experience, and
participation metrics, such as the number of involved developers,
are associated with the quality of the code review process.

Index Terms—Code review, code review quality, bug-inducing
changes, mining software repositories, Mozilla, empirical study.

I. INTRODUCTION

Code review is an essential element of any mature software
development project; it aims at evaluating code contributions
submitted by developers. Code review is considered to be one
of the most effective QA practices for software projects; it is
relatively expensive in terms of time and effort, but provides
good value in identifying defects in code changes before they
are committed into the project’s code base [1]. Reviewers are
the gatekeepers of a project’s master repository; they must
carefully validate the design and implementation of patches to
ensure they meet the expected quality standards.

In principle, the code review process should improve the
quality of code changes (patches) before they are committed
to the project’s master repository. However, in practice, the
execution of this process can still allow bugs to enter into the
codebase unnoticed. This work aims to investigate the quality
of code review.

In this paper, we have studied code review of a large open
source system: the Mozilla project. For Mozilla, code review
is an important and vital part of their development process,
since contributions may come not only from core Mozilla
developers but also from the greater user community. The
Mozilla community embraces code review to help maintain

consistent design and implementation practices among the
many casual contributors and across the various modules that
comprises the Mozilla codebase [2]. They have found that
code review increases code quality, promotes best practices,
and reduces regressions [3].

The Mozilla code review process requires that every submit-
ted patch be evaluated by at least one reviewer [4]. Reviewers
are advised to grant approval to a patch if 1) they believe that
the patch does no harm, and 2) the patch has test coverage
appropriate to the change. If a reviewer feels unable to provide
a timely, expert review on a certain patch, they can re-direct
the patch to other reviewers who may be better able to perform
the task. However, even given the careful scrutiny that patches
undergo, software defects are still found after the changes have
been reviewed and committed to the version control repository.
These post-release defects raise red flags about the quality of
code reviews. Poor-quality reviews that permit bugs to sneak
in unnoticed can introduce stability, reliability, and security
problems, affecting the user’s experience and ultimately their
satisfaction with the product.

Previous research on code review has examined topics
such as the relation between code coverage/participation and
software/design quality [5], [6]; however, the topic of code
review quality remains largely unexplored. In this paper, we
perform an empirical case study of a large open source Mozilla
project including its top three largest modules: Core, Firefox,
and Firefox for Android. We apply the SZZ algorithm [7]
to detect bug-inducing changes that are then linked to the
code review data extracted from the issue tracking system.
We address the following overarching research questions:

RQ1: Do code reviewers miss many bugs?
The goal of code review is to identify problems (e.g., the
code-level problems) in the proposed code changes. Yet,
software systems remain bug-prone.

RQ2: Do personal factors affect the quality of code reviews?
Previous studies found that code ownership has a strong
relationship with both pre- and post-release defect-
proneness [8]–[10].

RQ3: Does participation in code review influence its quality?
A recent study demonstrated that low review participation
has a negative impact on software quality [5].

mailto:okononen@uwaterloo.ca
mailto:migod@uwaterloo.ca
mailto:yaxin.cao@umontreal.ca
mailto:olga.baysal@umontreal.ca
mailto:latifa.guerrouj@polymtl.ca


Paper organization. The rest of the paper is organized as
follows. We first provide some background about the Mozilla
code review process in Section II. Section III describes the
methodology followed in this study. In Section IV, we present
and discuss the results of our three research questions. In
Section V, we address the threats to validity. In Section VI,
we discuss related research. Finally, Section VII summarizes
our results, and highlights future work.

II. THE MOZILLA CODE REVIEW PROCESS

Mozilla employs a two-tiered code review process for
assessing submitted patches: review and super review [2]. A
review is performed by the owner of the module (or peers of
the module) in question; reviewers thus have domain expertise
in the specific problem area of concern. Super reviews are
required if the patch involves integration or modifies core
Mozilla infrastructure (e.g., major architectural refactoring,
changes to API, or changes that affect how code modules in-
teract). Currently, there are 30 super-reviewers for all Mozilla
modules [3], 162 reviewers for the Core module, 25 reviewers
for Firefox, and 11 reviewers for Firefox for Android (also
called “Fennec”) [11]. However, any person who is not on the
list of designated reviewers but has level three commit access
— i.e., core product access to the Mercurial version control
system — can review a patch.

The Mozilla team reviews every patch using the Bugzilla
issue-tracking system, which records and stores all information
related to code review tasks. The process works this way.
First, a developer submits a patch to Bugzilla that contains
their proposed code changes; they then request a review from
a designated reviewer of the module where the code will
be checked in. Patches that have significant impact on the
design of Mozilla may trigger a super review. After the code
has been reviewed, the reviewer will indicate a positive or
negative outcome, and may provide feedback comments. Once
the reviewers approve a patch, the code changes are committed
to Mozilla’s source code repository.

As we can see, Mozilla employs a strict review policy.
Investigating what makes developers miss bugs in code during
review process is the topic of our work.

III. METHODOLOGY

To address our research questions we followed a data mining
process shown in Figure 1 that consists of the following
stages. First, we extracted commits from the Mozilla’s version
control repository (step 1). We then linked these commits to
the corresponding bug reports in the Bugzilla issue tracking
system (step 2). After that, we extracted information about
linked bug reports and review-related information for patches
attached to them (steps 3 and 4). Finally, we established the
links between commits and reviewed patches (step 5) and
identified bug-inducing commits (step 6).

A. Studied Systems

Mozilla uses Mercurial as their version control system
and maintains several repositories, with each repository built
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Fig. 1: Process overview.

TABLE I: Overview of the studied systems.

System Commits Reviews Writers Reviewers
Mozilla-all 27,270 28,127 784 469
Core 18,203 18,759 544 362
Firefox 2,601 2,668 214 110
Firefox for Android 2,106 2,160 108 72

around a specific purpose and/or set of products. We consid-
ered mozilla-central1 as the main repository; it contains
the master source code for Firefox and Gecko, Mozilla’s layout
engine.

For our study, we took all code changes that were committed
to mozilla-central between January 1, 2013 and January
1, 2014. In this paper, we use terms “code change” and
“commit” interchangeably. We studied four systems: Mozilla-
all (full set of commits), as well as the three largest modules:
Core, Firefox, and Firefox for Android. Table I describes the
main characteristics of these systems; the numbers represent
“clean” datasets that we obtained after performing the steps
described in Sections III-B, III-C, and III-D. We report the
number of commits, reviews, writers, and reviewers for our
Mozilla-all, Core, Firefox, and Firefox for Android datasets.

B. Data extraction

We extracted a total of 44,595 commits from
mozilla-central. During the extraction phase, we
collected a variety of information about each commit
including its unique identifier, the name and email address of
the person who made this commit, the date it was added to
the repository, the textual description of a change, and the
size statistics of the commit. To calculate the size statistics,
we analyzed the diff statements of each commit. We looked
only at textual diffs, and we excluded those that describe
a change in binary files such as images. We recorded the
number of files changed, the total number of lines that were
added and removed, and the total number of code chunks
found in the investigated diffs.

Linking revisions to bugs. Prior to identifying bug-
inducing changes, we had to detect changes that aim to fix
bugs. For that, we linked commits in the version control
repository to bugs in the issue tracking system using the

1http://hg.mozilla.org/mozilla-central
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commit descriptions. Manual inspection of commit summaries
confirmed that developers consistently include a bug ID in the
commit summary, and also tend to use the same formatting.
Based on this finding, we wrote a set of case-insensitive
regular expressions to extract bug ID values. If a regular
expression found a match, we checked whether a commit de-
scription contains any review flags to eliminate matches from
unreviewed commits. If such flags were found and commits
contained bug ID numbers, we linked bug ID numbers to them.

As a result of this, we were able to assign bug ID values
to 35,668 (80%) commits. As suggested by Kim et al. [12],
we manually checked summaries of both matched and non-
matched commits and found no incorrectly assigned bug IDs.
The analysis of non-matched commits (8,927 in total) showed
that 2,825 commits (6.3%) were backed out commits, 5,520
(12.3%) commits were merges, 413 (1%) of them were “no
bug” commits, and 169 of them were other commits.

Getting additional data from Bugzilla. We scraped
Bugzilla for each linked bug ID to get detailed information,
including the date when the bug was submitted, the name
and email address of the person who reported the bug, the
bug severity and priority, the module affected by the bug, and
the list of proposed patches. For each patch, we recorded the
author of the patch, the submission date, and the review-related
flags. For each review-related flag, we extracted the date and
time it was added, as well as the email address of the person
who performed the flag update.

Out of 22,015 unique bug IDs assigned to the commits,
we were unable to extract the data for 188 bugs that required
special permissions to access them. For 490 bugs, we did find
no patches with review-related flags. Such a situation might
arise in only two cases: if we incorrectly assigned bug ID in
the first place, or if a patch landed into the code base without
undergoing the formal code review process. To investigate this,
we performed a manual check of several randomly-selected
bug IDs. We found no examples of incorrect assignment: all
of the checked bug IDs were bugs with no reviewed patches in
Bugzilla. Since commits having no information about reviews
can not contribute to our study, we disregarded them, reducing
the number of unique bug IDs by 678 and the number of
commits in the dataset to 34,654.

C. Linking Patches and Commits

Since each commit in the version control system is typically
associated with a single patch, we linked each commit to
its corresponding patch and its review-related information.
However, establishing these links requires effort. The best
matching of a patch to a commit can be achieved by comparing
the content of the commit to the contents of each patch,
and then verifying if the two are the same. However, this
approach does not work in the environment where developers
constantly make commits to the repository independently from
one another. For example, a patch p1 was added to Bugzilla at
time t1 and was committed to the repository at time t2. If there
were no changes to the files affected by the patch between t1
and t2, the commit and the patch would be the same. If another

patch p2 changing some of those files was committed to the
repository during that time frame, the content of the commit
of p1 might not match the content of the patch p1 itself. The
most precise way of matching patches and commits would be
to employ some code cloning techniques to detect matches
on the string level; however, applying such techniques was
beyond the scope of our paper.

In our approach, we decided to opt for a less precise but
conservative way of mapping commits to patches. For each
commit with a bug ID attached, we took all reviewed patches
ordering them by their submission date. We then searched for
the newest patch such that (1) the last review flag on that patch
was review+ or super-review+, and (2) this review was
granted before the changes were committed to the version
control system. Previous research showed that patches can be
rejected after they receive a positive review [13], [14]. The
first heuristic makes sense as patches with last review flags
being review- are unlikely to land into the code. On the
contrary, patches that were first rejected and later accepted
(e.g., another more experienced reviewer reverted a previous
negative review decision) are likely to be incorporated into the
code base. The second heuristic ensures that changes can not
be committed without being reviewed first; it facilitates proper
mapping when several commits in the version control system
are linked to the same bug, and there are multiple patches on
that bug. For example, a bug can be fixed, reopened, and fixed
again. In this case, we would have two different patches linked
to two commits; without the second heuristic, the same patch
would be linked to both commits.

By applying these heuristics, we were able to successfully
link 28,888 out of a total of 34,654 (i.e., 83%) commits to
appropriate patches. The manual inspection of the remaining
17% of the commits revealed that the main reason why we
did not find corresponding patches in Bugzilla was incorrect
date and time values of the commits when they were added
to the version control system. For example, a commit with
ID 147321:81cee5ae7973 was “added” to the repository
on 2013-01-28; the bug ID value assigned to this commit is
904617. Checking this bug history in Bugzilla revealed that
the bug was reported on 2013-08-13, almost 7 months after it
was fixed.

D. Data Pre-Processing

Prior to data analysis, we tried to minimize noise in our data.
To eliminate outliers, we performed data cleanup by applying
three filters:

1) We removed the largest 5% of commits to account for
changes that are not related to bug fixes but rather to
global code refactoring or code imports (e.g., libraries).
Some of the commits are obvious outliers in terms of
size. For example, the largest commit (“Bug 724531
- Import ICU library into Mozilla tree”) is about 1.1
million lines of code, while the median value for change
size is only 34 lines of code. This procedure removed all
commits that were larger than 650 lines (1,403 commits
in total).



2) Some changes to binary files underwent code review.
However, since the SZZ algorithm can not be applied to
such changes, we removed the commits containing only
binary diffs (52 commits in total).

3) We found that for some changes the submission date
of their associated patches was before the start of our
studied period. We believe that these patches fell on the
floor but later were found and reviewed. To eliminate
these outliers, we removed all commits representing
patches that were submitted before 2012-09-01. This
filter excluded 163 commits.

Our final dataset2 contains 27,270 unique commits, which
corresponds to 28,127 reviews (some linked patches received
multiple positive reviews, thus, commits can have more than
one review).

E. Identifying Bug-Inducing Changes

To answer our research questions, we had to identify
reviews that missed bugs, i.e., the reviews of the patches
that were linked to bug-inducing commits. We applied the
SZZ algorithm proposed by Śliwerski et al. [7] to identify
the list of bug-inducing changes. For each commit that is a
bug fix, the algorithm executes diff between the revision
of the commit and the previous revision. In Mercurial, all
revisions are identified using both a sequential numeric ID and
an alphanumeric hash code. Since Mercurial is a distributed
version control system, RevisionId - 1 is not always a
previous revision and thus cannot be used in the algorithm.
To overcome this problem, we extracted the parent revision
identifier for each revision and used it as a previous revision
value for executing diff. The output of diff produces
the list of lines that were added and/or removed between
the two revisions. The SZZ algorithm ignores added lines
and considers removed lines as locations of bug-introducing
changes.

Next, the Mercurial annotate command (similar to
blame in Git) is executed for the previous revision. For
each line of code, annotate adds the identifier of the most
recent revision that modified the line in question. SZZ extracts
revision identifiers for each bug-introducing line found at
the previous step, and builds the list of revisions that are
candidates for bug-inducing changes.

Kim et al. addressed some limitations of the SZZ algorithm
as it may return imprecise results if diff contains changes
in comments, empty lines, or formatting [17]. The problem
with false positives (precision) occurs because SZZ treats those
changes as bug-introducing changes even though such changes
have no effect on the execution of the program. Since we
implemented SZZ according to the original paper, i.e., without
any additional checks, we wanted to find out how many
false positives are returned by SZZ. To assess the accuracy
of the SZZ algorithm, we performed a manual inspection of
the returned results (that is, potential candidates returned by
SZZ) for 100 randomly selected commits. We found 9% (39

2https://cs.uwaterloo.ca/∼okononen/bugzilla public db.zip

out of 429 candidates) of false positives with 19 of those
being changes in formatting and the rest 20 candidates being
changes in comments and/or empty lines. While we think the
percentage of false positives is relatively small, the limitations
of SZZ remain a threat to validity.

Finally, the algorithm eliminates those candidates that were
added to the repository after the bug associated with a commit
was reported to the issue tracking system. The remaining
revisions are marked as bug-inducing code changes.

We ran the SZZ algorithm on every commit with a bug ID,
and obtained the list of changes that led to bug fixes. Some
of the changes might have been “fixed” outside of our studied
period and thus would not be marked as bug-inducing. To
account for such cases, we also analyzed the changes that were
committed within a six-month time frame after our studied
period: we assigned bug ID values, scraped Bugzilla for bug
report date, and executed the SZZ algorithm; the results were
added to the list of bug-inducing commits. The commits from
the dataset were marked as bug-inducing if they were present
in this list; otherwise, they were marked as bug-free commits.

F. Determining Explanatory Factors

Previous work demonstrated that various types of metrics
have relationship with code review time and outcome [14].
Similarly, we grouped our metrics into three types: technical,
personal, and participation.

Table II describes the metrics used in our study and provides
rationale for their selection. The metrics for technical factors
were calculated on our dataset. However, the personal and
participation metrics could not be extracted from our data
due to its fixed time frame. For example, one developer
started to participate in code review in 2013, while another
one has been performing review tasks since 2010; if we
compute their expertise on the data from our dataset (i.e.,
a 12-month period of 2013), the experience of the second
developer will be incorrect, i.e., his experience for previous
three years (2010–2012) will be not taken into account. To
overcome this problem, we queried an Elastic Search cluster
containing the complete copy of the data from Bugzilla [18].
The nature of how Elastic Search stores the data allowed us
to get the “snapshots” of Bugzilla for any point in time and
to accurately compute the personal and participation metrics.
While computing the review queue values, we found that
many developers have a noticeable number of “abandoned”
review requests, i.e., the requests that were added to their
loads but never completed. Such requests have no value for
the review queue metric; therefore, any pending review
request on the moment of 2014-01-01 was ignored when
calculating developer review queues.

The metrics of three types presented in this section served as
explanatory variables for building our models that we describe
next.

G. Model Construction and Analysis

To study the relationship between personal and participation
factors and the review quality of the studied systems, we built

https://cs.uwaterloo.ca/~okononen/bugzilla_public_db.zip


TABLE II: A taxonomy of considered technical, personal, and participation metrics used.

Type Metric Description Rationale
Te

ch
ni

ca
l

Size (LOC) The total number of added and removed
lines of code.

Large commits are more likely to be bug-prone [15]; thus the intuition
is it is easier for reviewers to miss problems in large code changes.

Chunks The total number of isolated places
(as defined by diff) inside the file(s)
where the changes were made.

We hypothesize that reviewers are more likely to miss bugs if the
change is divided into multiple isolated places in a file.

Number of files The number of modified files. Similar, reviews are more likely to be prone to bugs if the change
spread across multiple files.

Module The name of the Mozilla module (e.g.,
Firefox).

Reviews of changes within certain modules are more likely to be prone
to bugs.

Priority Assigned urgency of resolving a bug. Our intuition is that patches with higher priority are more likely to be
rushed in and thus be more bug-prone than patches with lower priority
levels.

Severity Assigned extend to which a bug may
affect the system.

We think that changes with higher levels of severity introduce less
bugs because they are often reviewed by more experienced developers
or by multiple reviewers.

Super review Indicator of whether the change re-
quired super review or not

Super review is required when changes affect core infrastructure of
the code and, thus, more likely to be bug-prone.

Number of previous
patches

The number of patches submitted be-
fore the current one on a bug.

Developers can collaborate on resolving bugs by submitting improved
versions of previously rejected patches.

Number of writer’s previ-
ous patches

The number of previous patches sub-
mitted by the current patch owner on a
bug.

A developer can continue working on a bug resolution and submit
several versions of the patch, or so called resubmits of the same patch,
to address reviewers concerns.

Pe
rs

on
al

Review queue The number of pending review re-
quests.

While our previous research [14] demonstrated that review loads are
weakly correlated with review time and outcome; we were interested
to find out whether reviewer work loads affect code review quality.

Reviewer experience The overall number of completed re-
views.

We expect that reviewers with high overall expertise are less likely to
miss a bug.

Reviewer experience for
module

The number of completed reviews by a
developer for a module.

Reviewers with high reviewing experience in a certain module are
less likely to miss defects; and on the contrary, reviewers with no past
experience in performing code reviews for some modules are more
likely to fail to catch bugs.

Writer experience The overall number of submitted
patches.

Developers who contribute a lot to the project — have high expertise
— are less likely to submit buggy changes.

Writer experience for
module

The number of submitted patches for a
module.

Developers who make few changes to a module are more likely to
submit buggy patches.

Pa
rt

ic
ip

at
io

n

Number of developers on
CC

The number of developers on the CC
list at the moment of review decision.

Linus’s law states that “given enough eyeballs, all bugs are shal-
low” [16].

Number of comments The number of comments on a bug. The more discussion happens on a bug, the better the quality of the
code changes [5].

Number of commenting
developers

The number of developers participating
in the discussion around code changes.

The more people are involved in discussing bugs, the higher software
quality [5].

Average number of com-
ments per developer

The ratio of the comment count over
the developer count.

Does the number of comments per developer has an impact on review
quality?

Number of reviewer com-
ments

The number of comments made by a
reviewer.

Does reviewer participation in the bug discussion influence the quality
of reviews?

Number of writer com-
ments

The number of comments made by a
patch writer.

Does patch writer involvement in the bug discussion affect review
quality?

Multiple Linear Regression (MLR) models. Multiple linear
regression attempts to model the relationship between two
or more explanatory variables and a response variable by
fitting a linear equation to observed data [19]. The model
is presented in the form of y = β0 + β1x1 + β2x2 + ...
+ βnxn, where y is the response variable and x1, x2,... xn
are explanatory variables. In our MLR models, the response
variable is the code review quality (buggy or not) and the
explanatory variables are the metrics described in Table II.
The value of the response variable ranges between 0 and 1
— we used the value of 1 for bug-prone reviews and the
value of 0 for bug-free inspections. Our goal was to explain
the relationship (if any) between the explanatory variables
(personal and participation metrics) and the response variable
(code review quality). In our models we control for several

technical dependent factors (size, number of files, etc.) that
are likely to influence the review quality. We build our models
similar to the ones described in [5], [14], [20], [21].

Transformation. To eliminate the impact of outliers on
our models, we applied a log transformation log(x + 1) to
the metrics whose values are natural numbers (e.g., size,
chunks, number of files, experience, review queues, etc.).
Since categorical variables can not be entered directly into a re-
gression model and be meaningfully interpreted, we transform
such variables (e.g., priority, severity, etc.) using a “dummy
coding” method, which is a process of creating dichotomous
variables from a categorical variable. For example, if we have
a categorical variable such as priority that has 5 levels
(P1–P5), then four dichotomous variables are constructed that
contain the same information as the single categorical variable.
By using these dichotomous variables we were able to enter



the data presented by categorical metrics directly into the
regression model.

Identifying Collinearity. Collinearity, or excessive correla-
tion among explanatory variables, can complicate or prevent
the identification of an optimal set of explanatory variables
for a statistical model. We identified collinearity among ex-
planatory variables using the variance inflation factor (VIF).
A VIF score for each explanatory variable is obtained using
the R-squared value of the regression of that variable against
all other explanatory variables. After calculating VIF scores,
we removed those with high values. The VIF score threshold
was set to 5 [22], thus if the model contained a variable with
VIF score greater than 5, this variable was removed from the
model and VIF scores for the variables were recalculated. We
repeated this step until all variables in our model had VIF
scores below the threshold.

Model Evaluation. We evaluated our models by reporting
the Adjusted R2 values. We also performed a stepwise se-
lection [23], a method of adding or removing variables based
solely on the t-statistics of their estimates. Since we had many
explanatory variables, it was useful to fine tune our model by
selecting different variables. Our goal was to identify the best
subset of the explanatory variables from our full model. For
the stepwise variable selection, we applied both the “forward”
and “backward” methods.

IV. RESULTS

In this section, we present and discuss the results of our
empirical study performed on various Mozilla systems.

RQ1: Do code reviewers miss many bugs?
In theory, code review should have a preventive impact on

the defect-proneness of changes committed to the project’s
source code. Yet, code review might induce bugs since identi-
fying the code-level problems and design flaws is not a trivial
task [24]. We determine the proportion of buggy code reviews
for the different projects by computing the number of bug-
inducing code reviews for each Mozilla module.

As indicated in Table IV, we find that overall 54% of
Mozilla code reviews missed bugs in the approved commits.
This value proved to be remarkably consistent across the
different modules we looked at: the Core module contained
54.3% buggy reviews, Firefox contained 54.2%, and Firefox
for Android contained 56%. While the studied systems are of
widely varying sizes and have different numbers of commits
and reviewers (as reported in Table I), the proportion of
“buggy” code reviews in these modules is almost identical.

While we were surprised to see such minute variation across
the different modules, the proportion of buggy changes (54–
56%) we observed is within the limits of the previously
reported findings. Kim et al. [12] reported that the percentage
of buggy changes can range from 10% to 74% depending on
the project; with Mozilla project having 30% of buggy changes
for the 2003–2004 commit history when Mozilla code base
was still growing. Śliwerski, Zimmerman, and Zeller [7] found
42% of bug-inducing changes for Mozilla and 11% for Eclipse
projects (the dataset contained changes and bugs before 2005).

TABLE IV: Number of code reviews that missed bugs.

System # Reviews # Buggy Reviews % Buggy Reviews
Mozilla-all 28,127 15,188 54.0 %
Core 18,759 10,184 54.3 %
Firefox 2,668 1,447 54.2 %
Firefox4Android 2,160 1,210 56.0 %

RQ2: Do personal factors affect the quality of code
reviews?

Intuitively, one would expect that an experienced reviewer
would be less likely to miss design or implementation prob-
lems in code; also, one would expect smaller work loads would
allow reviewers to spend more time on code inspections and,
thus, promote better code review quality. To investigate if these
are accurate assumptions, we added technical and personal
metrics from Table II to our MLR model.

Table IIIa shows that review queue length has a statistically
significant impact on whether developers catch or miss bugs
during code review for all the four studied systems. The
regression coefficients of the review queue factor are positive,
demonstrating that reviewers with longer review queues are
more likely to submit poor-quality code evaluations. These
results support our intuition that heavier review loads can
jeopardize the quality of code review. A possible improvement
would be to “spread the load on key reviewers” [25] by
providing a better transparency on developer review queues
to bug triagers.

For all studied systems, reviewer experience seems to be a
good predictor of whether the changesets will be effectively
reviewed or not. Negative regression coefficients for this
metric demonstrate that less experienced developers — those
who have conducted relatively fewer code review tasks —
are more likely to neglect problems in changes under review.
These results follow our intuition about reviewer experience
being a key factor to ensure the quality of code reviews. It
was surprising to us that writer experience (overall or module-
based) does not appear to be an important attribute in most
of the models (with the exception of Core). We expected
to see that less active developers having little experience
in writing patches would be more likely to submit defect-
prone contributions [9], [26] and thus, increase the chances
of reviewers in failing to detect all defects in poorly written
patches.

Factors such as the number of previous patches on a bug
and the number of patches re-submitted by a developer seem
to have a positive effect on review quality for one of the
four systems: Firefox for Android (and also on the overall
Mozilla-all). A possible explanation is that Firefox for Android
is a relatively new module, and the novelty of the Android
platform may attract a variety of developers to be more
involved in contributing to the Android-based browser support
building on each other’s work (i.e., improving previously
submitted patches). However, we have not attempted to test
this hypothesis.

Among the technical factors, size of the patch has a statis-
tically significant effect on the response variable in all four



TABLE III: Model statistics for fitting data. Values represent regression coefficients associated with each variable.

(a) Technical and personal factors.

Mozilla Core Firefox FF4A
Adjusted R2 0.128 0.123 0.173 0.138
Size (LOC) 0.102*** 0.098 *** 0.108*** 0.115***
Chunks † † † †
Number of files 0.058*** 0.059 *** 0.109*** 0.062*
Module ? n/a n/a n/a
Priority ? ? ‡ ·
Severity ‡ ‡ · ‡
Super review -0.139** -0.177*** · n/a
Review queue 0.017*** 0.0204*** 0.038** 0.045**
Reviewer exp. -0.013*** -0.012*** -0.029*** -0.041***
Reviewer exp. (mod.) † † ‡ 0.018*
Writer exp. · -0.004* ‡ ‡
Writer exp. (module) † † ‡ ·
# prev patches † † † -0.045***
# writer patches -0.012*** · · †
†Disregarded during VIF analysis (VIF coefficient > 5).
? “It’s complicated”: for categorical variables see explanation of the results

in Section IV.
FF4A = Firefox for Android.

(b) Technical and participation metrics.

Mozilla Core Firefox FF4A
Adjusted R2 0.134 0.128 0.173 0.147
Size (LOC) 0.105*** 0.103*** 0.105*** 0.117***
Chunks † † † †
Number of files 0.060*** 0.059*** 0.090*** 0.067***
Module ? n/a n/a n/a
Priority ‡ ? ‡ ?
Severity ? ‡ ? ‡
Super review -0.124*** -0.160*** ‡ n/a
# of devs on CC 0.053*** 0.056*** ‡ 0.049*
# comments † † † †
# commenting devs -0.124*** -0.102*** -0.075*** -0.176***
# comments/ # dev -0.039*** -0.029** ‡ ‡
# reviewer comments 0.010** ‡ 0.026* ‡
# writer comments · · · -0.047**

‡Disregarded during stepwise selection.
Statistical significance: ’***’ p < 0.001; ’**’ p < 0.01; ’*’ p < 0.05; ’·’
p ≥ 0.05.

models. Its regression coefficients are positive, indicating that
larger patches lead to a higher likelihood of reviewers missing
some bugs. Similarly, number of files has a good explanatory
power in all four systems. The need for a super review
policy is well explained, as super reviews have a positive
impact on the review quality. This shows that such reviews are
taken seriously by Mozilla-all and Core projects (our dataset
contains no super reviews for Firefox for Android). It is not
surprising as the role of super reviewer is given to highly
experienced developers who demonstrated their expertise of
being a reviewer in the past and who has a greater overall
knowledge of the project’s code base.

When examining the impact of module factor on code re-
view effectiveness, we noticed that for some Mozilla modules
such as Core, Fennec Graveyard, Firefox, Firefox for Metro,
Firefox Health Report, Mozilla Services, productmozilla.org,
Seamonkey, Testing, and Toolkit, the model contains negative
regression coefficients that are statistically significant; this
indicates that these modules maintain a better practice of
ensuring high quality of their code review process.

We found that while the bug priority level is associated
with a decrease of poorly conducted reviews (P5 patches for
Mozilla-all with regression coefficient being -0.13, p < 0.05
and P3 patches for Core module with the regression coefficient
= -0.10, p < 0.05), it does not have a significant impact on
other two modules.

RQ3: Does participation in code review influence its
quality?

Previous research found that the lack of participation in
code review has a negative impact on quality of software
systems [5]. To investigate whether code review quality is
affected by the involvement of the community, we added
metrics that relate to developer participation in review process,
described in Table II to our models.

Table IIIb shows that the number of developers on the CC
list has a statistically significant impact on review bugginess

for three of the four systems; and its regression coefficients
are positive, indicating that the larger number of developer
names is associated with the decrease in review quality.
This may sound counterintuitive at first. However, from the
developer perspective, their names can be added to CC for
different reasons: developer submitted the bug, wrote a patch
for the bug, wants to be aware of the bug, commented on
the bug, or voted on the bug. Thus, we think that CC is
negatively associated with review quality due to its ambiguous
purpose: “CC is so overloaded it doesn’t tell you why you are
there” [25].

The number of commenting developers has a statistically
significant impact on the models of all four of the studied
systems. The regression coefficients are negative, indicating
that the more developers that are involved in the discussion
of bugs and their resolution (that is, patches), the less likely
the reviewers are to miss potential problems in the patches.
A similar correlation exists between review quality and the
metric representing average number of comments per devel-
oper and having statistically significant negative coefficients
for two of the four systems (Mozilla-all and Core). This shows
that reviews that are accompanied with a good interactions
among developers discussing bug fixes and patches are less
prone to bugs themselves. The number of comments made
by patch owners is also demonstrated to have a statistically
significant negative impact on review bug-proneness in the
model for Firefox for Android only. These results reveal that
the higher rate of developer participation in patch discussions
is associated with higher review quality.

While any developer can collaborate in bug resolution or
participate in critical analysis of submitted patches, reviewers
typically play a leading role in providing feedback on the
patches. Thus, we expected to see that the number of com-
ments made by reviewers has a positive correlation with review
quality. However, in Table IIIb we can see that while having
a statistically significant impact in the models for two of the
four systems, the regression coefficients are positive, indicating



that more reviewers participate in discussing patches, the more
likely they would miss bugs in the patches they review. A pos-
sible explanation of these surprising results is that if a reviewer
posts many comments on patches, it is possible that he is very
concerned with the current bug fix (its implementation, coding
style, etc.). Or, as our previous qualitative study revealed, the
review process can be sensitive due to its nature of dealing
with people’s egos [25]. As one developer mentions “there
is no accountability, reviewer says things to be addressed,
there is no guarantee that the person fixed the changes or
saw the recommendations.” Code review is a complex process
involving personal and social aspects [27].

Table IIIb demonstrated that while developer participation
has an effect on review quality, technical attributes such as
patch size and super review are also good predictors. All
models suggest that the larger the code changes, the easier
it is for reviewers to miss bugs. However, if changes require
a super review, they are expected to undergo a more rigorous
code inspections. For two of the three studied systems, super
review has negative regression coefficients; but it does not have
a significant impact for Firefox (Firefox for Android patches
have no super reviews).

Code reviews in modules such as Core, Fennec Graveyard,
Firefox, Firefox for Metro, Firefox Health Report, Mozilla
Services, productmozilla.org, Seamonkey, Testing, and Toolkit
are statistically less likely to be bug-prone; the regression
coefficients for these modules have negative values and are
-0.209 (p < 0.05), -0.339 (p < 0.01), -0.191 (p < 0.05),
-0.205 (p < 0.05), -0.197 (p < 0.05), -0.263 (p < 0.05),
-0.679 (p < 0.001), -0.553 (p < 0.01), -0.204 (p < 0.05) and
-0.297 (p < 0.001) respectively. Similar to the findings for
RQ2, code inspections performed in these modules appear to
be more watchful than in other components.

Priority as a predictor has a statistically significant impact
on review outcome for Core and Firefox for Android only. For
the Core module, priority P3 has a negative effect (regression
coefficient = -0.09, p < 0.05), i.e., the patches with P3 level
are expected to undergo more careful code inspections. For
Firefox for Android, patches with priority P1 are more likely
to be associated with poor reviews (regression coefficient =
0.17, p < 0.001). Among severity categories, we found that
patches of trivial severity have statistically significant negative
impact on review bug-proneness in the models for Mozilla-
all and Firefox (regression coefficients =-0.125 and =-0.385
p < 0.05, respectively). Developers find that “priority and
severity are too vague to be useful” [25] as these fields are
not well defined in the project. But since these metrics are
associated with the review quality, developer should be given
some estimation of the risks involved to decide how much
time to spend on patch reviews.

While the predictive power of our models remain low (even
after rigorous tune-up efforts), the best models appear to be for
Firefox (Adjusted R2 = 0.173 for fitting technical and personal
factors, as well as technical and participation metrics). The
goal in this study is not to use MLR models for predicting
defect-prone code reviews but to understand the impact our

personal and participation metrics have on code review quality,
while controlling for a variety of metrics that we believe are
good explainers of review quality. Thus, we believe that the
Adjusted R2 scores should not become the main factor in
validating the usefulness of this study.

V. THREATS TO VALIDITY

External validity. Our findings cannot be generalized
across all open source projects. While we only study one
(large) open source community, we considered various Mozilla
modules including Core, Firefox, and Firefox for Android. Our
goal was to study a representative open source system in detail.
Nevertheless, further research studies are needed to be able to
provide greater insight into code review quality.

Internal validity concerns with the rigour of the study
design. In this study, the heuristics used, as well as the data
filtering techniques adopted may be a threat. We mitigate such
a threat by providing details on the data extraction and filtering
and by using a well-known outliers filtering procedure. The
choice of metrics may be seen as a threat. We selected widely
used metrics characterizing code review activities, bugs, code
changes (patches/commits), and developer attributes.

We assume that a code review is documented and commu-
nicated via Bugzilla issue tracking system. While this assump-
tion holds in most cases, some code review tasks can be carried
out via other channels such as email, face-to-face meetings,
etc. When investigating the relation between code change and
reviewer, we assumed that patches are independent; this might
have introduced some bias since several different patches can
often be associated with the same bug ID and “mentally” form
one large patch. In our study we considered that the most
recent patch is the one that gets incorporated into the code.

In Bugzilla, bug reports per se actually serve several pur-
posed: they can be bug-fix requests, or requests for adding new
functionality, or documentation-related changes, etc. Since
Bugzilla does not provide mechanisms of distinguishing be-
tween “true” bugs and new feature requests, we treat all
changes as bug fixes.

When calculating review queue length of developers, we
assume that at any given point the number of review requests
for a developer defines his or her current review load. This
heuristic is a “best effort” approximation; accurate review
loads are hard to determine by scraping the data from the
existing code review system.

Conclusion validity is the degree to which conclusions we
reach about relationships in our data are reasonable. Proper
regression models were built for the sake of showing the
impact of studied factors on the code reviews bugginess. In
particular, we built our MLRs for two types of metrics and
evaluated them based on the appropriate measures such as the
deviance explained and Adjusted R2.

VI. RELATED WORK

In this section, we present the main contributions relevant
to code review, software quality, as well as code review and
software quality.



A. Code Review

Rigby and German have shown the existence of a number of
review patterns and quantitatively analyzed the review process
of the Apache project [28]. Later, Rigby and Storey discovered
that the identification of defects is not the sole motivation for
modern code review. Other motivations exist including non-
technical issues such as feature, scope, or process issues [29].

This finding is inline with those by Baysal et al. who have
shown that review positivity, i.e., the proportion of accepted
patches, is also influenced by non-technical factors [14].
Organizational (the company) and personal dimensions (re-
viewer load and activity, patch writer experience) influence
review timeliness, as well as the likelihood of a patch being
accepted [14]. This corroborates the results by Nagappan et
al. who demonstrated that organizational metrics are better
predictors of defect-proneness than traditional measures [30].

Jiang et al. have empirically shown that developer expe-
rience, patch maturity, and priori subsystem churn affect the
patch acceptance while reviewing time is impacted by submis-
sion time, the number of affected subsystems, the number of
suggested reviewers and developer experience [31].

A recent qualitative study at Microsoft revealed that while
finding defects remains the main motivation for review, other
motivations exist such as knowledge sharing among team
members [24].

B. Software Quality

Researchers have studied the impact of design and code
review on software quality. For example, Kemerer et al. have
empirically shown that allowing sufficient preparation time for
reviews and inspections can produce better performance [32].
Other recent works have studied software risky changes. For
example, Śliwerski et al. suggested a technique called, SZZ,
to automatically locate fix-inducing changes by linking a
version archive to a bug database [7]. In this study we applied
SZZ to detect bug-inducing changes which we later link to
code review data. SZZ was successfully applied to understand
whether refactorings inducing bug-fixes [33], as well as to
build prediction models that focus on identifying defect-prone
software changes [34]. Eyolfson et al. analyzed the relation
between a change bugginess and the time of the day the change
was committed and the experience of the developer who made
the change [26]. Several other technical metrics have been
proposed as well [35]–[39].

Rahman and Devanbu suggested that code review is an
essential part of the software quality assurance [9] while
Mende and Koschke [40] have proposed effort-aware bug
prediction models to help allocate software quality assurance
efforts including code review.

C. Code Review and Software Quality

Recently, McIntosh et al. empirically shown that code
review coverage and participation significantly impact on
software quality. These results confirm that poor code review
negatively affect software quality [5]. Beller et al. found
that the types of changes due to the modern code review

process in OSS are similar to those in the industry and
academic systems from literature, featuring a similar ratio of
maintainability-related to functional problems [41]. Mäntylä
and Lassenius suggest that code reviews may be most valuable
for long-lived software products [42] while Hatton [43] found
relevant differences in defect finding capabilities among code
reviewers.

Previous research agree that personal and organizational fac-
tors have a significant impact on software quality. Understand-
ing these factors, and properly allocating people resources can
help managers enhance quality outcomes. We hypothesize that
a modern code review process can neglect buggy changes and
that this may be due to several factors technical, personal, and
organizational.

VII. CONCLUSION

Code review is an essential and vital part of modern
software development. Code review explicitly addresses the
quality of contributions before they are integrated into project’s
codebase. Due to volume of submitted contributions and the
need to handle them in a timely manner, many code review
processes have become more lightweight and less formal in
nature. This evolution of review process increases the risks
of letting bugs slip into the version control repository, as
reviewers are unable to detect all of the bugs.

In this paper, we have explored the topic of code review
quality by investigating what factors might affect it. We tried to
understand what aspects contribute to poor code review quality
to help software development projects better understand their
processes and practice. We built and analyzed MLR models
to explain the relationships between personal characteristics of
developers, team participation and involvement in code review,
and technical properties of contributions on the effectiveness
of code review.

Our findings suggest that developer participation in discus-
sions surrounding bug fixes and developer-related character-
istics such as their review experience and review loads are
promising predictors of code review quality for all studied
systems. Among technical properties of a change, its size,
the number of files it affects, its impact on the rest of the
project’s code (or the need to perform a super review) have
also a significant link with the review bug-proneness. We
believe that these findings provide practitioners with strong
empirical evidence for revising current code review policies
and promoting better transparency of the developers’ review
queues and their expertise on the modules.

While in this work we have provided only a quantitative
investigation of what factors may influence code review quality
(with some triangulation with our previous qualitative study),
as a part of our future work we plan to conduct an extensive
qualitative study with Mozilla developers. We are working
on designing a survey and want to conduct interviews and
observations with developers to study the reasons of why they
miss bugs when performing code review tasks.
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