
No Name: Just Notes on Software Reuse

Robert Biddle, Angela Martin, James Noble
Victoria University of Wellington, New Zealand.

{robert,angela,kjx}@mcs.vuw.ac.nz

ABSTRACT
In the beginning, so our myths and stories tell us, the programmer
created the program from the eternal nothingness of the void. In
this essay, we recognise that programs these days are like any other
assemblage, and suggest that in fact programming has always been
about reuse. We also explore the nature of reuse, and claim that
Components themselves are not the most important consideration
for reuse; it is the end product, the composition. The issues still in-
volve value, investment, and return. But pervasive reuse promotes
a change in the method of construction of the program, and in the
program itself.

Categories and Subject Descriptors
D.2.13 [Reusable Software]: Reuse models

General Terms
Design

Keywords
Software Reuse, Components, Object-Oriented Programming

1. PROGRAMMING
In the beginning, so our myths and stories tell us, the program-

mer created the program from the eternal nothingness of the void.
Whether it is Stallman typing teco macros and wearing out the
shift keys; Chuck Moore typing backwards at Kitt Peak; Gold-
berg, Deutsch, Robson et. al. in the parclands of California; billg
hunched over Allen’s Altair emulator; Bill Joy’s VAX crashing and
deleting vi multibuffer support for the next ten years; Gabriel do-
ing The Right Thingat Lucid; or Larry Wall doing whatever: ’tsall
good.

All of our subtribes have programmer heros: wearing tramping
boots in the machine room. Mythic figures who bestrode the earth
in the beginning. But we are no longer in the beginning, and pro-
grammers no longer write programs like the Don Knuth of our fa-
bles — typing all the source of TEX from memory into a single

Copyright is held by the author/owner.
OOPSLA’03,October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

Figure 1: Name Story — This essay concerns components,
reuse, value, and beauty. All photographs were taken at No
Name Building Recyclers, Wellington, New Zealand, with their
kind permission.

teletype, compiling without any syntax errors, printingThe Art of
Computer Programmingfrom that first binary.

Programs these days are like any other assemblage — films, lan-
guage, music, art, architecture, writing, academic papers even —
a careful collection of preexisting and new components (if we had
the money and could afford them) pieced together not to tell some
overwhelming story, but to get the job done, meet the deadline, get
paid and go home.

The goals, the stepwise refinements, the structure charts, the Uni-
fied Modelling Language diagrams, the problems, the solutions —
although they may be obvious at the start — soon splinter and frag-
ment because the program is no longer one grand design, but a
whole series of little stories, user stories even, little parts, pieces,
components, objects, classes, files, modules, load-time objects, run-
time checks, aspects, subjects, packages, assemblies, bat files, dot
files, app files, some large, some small, something old, something
new, something borrowed, something blue, some typed, some gen-
erated, some stolen, some bought, some crufted together automat-
ically by emacs macros, some downloaded from Google, some
from an expensive framework library given away free with a box of
breakfast cereal, some larger, some smaller, and the only common-
ality being their lack of commonality, lack of anything that marks
them as being part of the program except the indisputable fact that
if you delete any one of them the program might stop working.

Number One: Every Number One song ever written is only made
up from bits from other songs. There is no lost chord. No
changes untried. No extra notes to the scale or hidden beats
to the bar. There is no point in searching for originality.
—Jimmy Caulty and Bill Drummond,The Manual[5]

240

2. KNUTH

The most important lesson I learned during that past
nine years is thatsoftware is hard; and it takes a long
time. From now on I shall have significantly greater
respect for every successful software tool that I en-
counter. My original plan was to spend one year work-
ing on algorithms for typography; but that was in the
spring of 1977, and I soon found that much more work
would be needed to finish the job. Even so, if my
health continues to be good, I think it will turn out that
those nine years were not wasted, because they will
have improved my efficiency enough that I’ll be able
to recover the time during the next decade or so. Most
importantly, those nine years were surely not wasted,
because I learned an enormous number of things that
will “feed” the theoretical work that I do in the future.

. . .

The amount of technical detail in a large system is one
thing that makes programming more demanding than
book-writing. Another is that programming demands
a significantly higher standard of accuracy. Programs
don’t simply have to make sense to another human be-
ing, they must make sense to a computer. For example,
I write the entire TEX compiler and desk-checked it be-
fore I did any debugging on a machine. At that point
I had in my hands a document of some 500 pages,
containing the program and an informal proof of its
correctness. If I had submitted the program to human
referees for verification, they would presumably have
found a few problems that could readily be fixed, after
which I might have published my program as a theo-
retical demonstration that “there exists a way to com-
pile TEX.” But of course the computer was a much
sterner taskmaster than any human referees would be;
therefore I had to spend another five months of intense
activity before my program actually ran well enough
for me to believe that it did the right things.

(Chapter 9, Theory and Practice III)

One of the main reasons I’ve chosen to speak about
Theory and Practice this morning is that I’ve spent the
past 12 years working on a project that has given me an
unusual opportunity to observe how theory and prac-
tice support each other.

. . .

What were the lessons I learned from so many years
of intensive work on the practical problem of setting
type by computer? One of the most important lessons,
perhaps, is the fact thatSOFTWARE IS HARD. From
now on I shall have significantly greater respect for
every successful software tool that I encounter. During
the past decade I was surprised to find that the writing
of programs for TEX and for METAFONT proved to
be much more difficult than all the other things I had
done (like proving theorems or writing books).

(Chapter 10, Theory and Practice IV)

— Donald E. Knuth,Selected Papers on Computer
Science[16]

Figure 2: Sink Story — These components are easily recog-
nisable, but note they are kept in pairs because users typically
want to acquire matched pairs.

Figure 3: Sink Story — Other components are less recognis-
able, but play important roles in creating larger assemblies,
and knowledgeable users may combine them as appropriate.

101-ISM: The tendency to pick apart, often in minute detail, all as-
pects of life using half-understood pop psychology as a tool.
— Douglas Coupland,Generation X[9]

3. CONSTANTINE

We recycle so many things, from grocery bags to toner
cartridges, why not recycle code? Why not reuse de-
signs and models rather than always starting from scratch?
The rewards of reuse seem to be enormous. What
code is cheaper to write than code you don’t have to
write at all? With higher levels of reuse supported by
larger component libraries, we might double or triple
effective productivity. All we have to do is change the
whole culture of software development and maybe the
personalities of programmers.

Reuse is hardly a new idea. The lowly subroutine was
conceived so that the same instructions did not have to
be written out each time a particular calculation was
needed.

Then, what is the problem? Unfortunately, most pro-
grammers like to program. Some of them would rather
program than eat or bathe. Most of them would much
rather cut code than chase documentation or search
catalogs or try to figure out some other stupid pro-
grammer’s idiotic work. Software developers develop
things; users use them. Other things being equal, pro-
grammers design and build from scratch rather than
recycle.

. . .

Reusable component libraries have been around for al-
most as long as people have been programing. The first

241

to yield to reuse were math routines, followed soon by
input-output. Except for the sheer joy or perversity of
doing it, no applications or tool developer writes their
own sine-cosine routines anymore.

. . .

If it takes the typical programmer more than 2 minutes
and 27 seconds to find something, they will conclude
it does not exist and therefore will reinvent it.

. . .

The payoff is finding the component you need in a rea-
sonable time and then finding that it can be readily
used or adapted for your use. Every time this happens,
you are being reinforced for it. The habit of initially
consulting the library or repository becomes ingrained
without being tied to increasing the number of green
stamps you get or your quarterly code bonus.

— Larry L. Constantine,The Peopleware Papers: Notes
on the Human Side of Software[6](pp. 141–145)

4. COOPER

The primary side effect of code reuse is that large por-
tions of most programs exist not because some interac-
tion designer wanted them to exist, but because some
other programmer already did the work on someone
else’s budget. Much of the software that we interact
with exists for the sole reason that it existed before.

. . .

A fascinating aspect of the imperative to reuse code
is the willingness with which programmers will adopt
code with a questionable pedigree. Some inexperi-
enced programmer will hack out the first interaction
idea that pops into his head, but once it is written, that
piece of code becomes the basis for all subsequent ef-
forts because it is so aggressively reused.

In Windows, for example, the really experienced pro-
grammers built the internal processing of the operating
system, but the first sample applications that showed
third-party developers how to communicate with the
user were written by a succession of summer interns
and junior coders at Microsoft. The Windows inter-
nal code has been upgraded and rewritten over six ma-
jor releases, and it has steadily improved. However,
an embarrassingly large number of popular applica-
tions have in their hearts long passages of program
code written by 21-year-old undergraduates spending
a summer in Redmond. The same is true for the Web.
Amateur experimenters hacked out the first Web sites,
but those who followed cloned those first sites, and
their sites were cloned in turn.

As you can see, there is a clear conflict of interest be-
tween what the user needs and what the programmer
needs. We anticipate conflict of interest in countless
activities and professions, and we have built in safe-
guards to curb its influence. While judges and lawyers
have skills in common, we never let lawyers adjudi-
cate their own cases. We never let basketball play-
ers referee their own basketball games. The conflict-
ing interests are clearly visible, yet we consistently let

Figure 4: Sink Story — Large components may be acquired
separately without any related components included.

programmers make design decisions based on personal
implementation considerations.

— Alan Cooper,The Inmates are Running the Asylum
[7](pp.106–108)

5. GATES

INTERVIEWER:In a company like Microsoft, where
you have 160 programmers, how do you go about cre-
ating an environment where you can develop success-
ful programs?

GATES: One way is to have small project teams, typ-
ically four or five people, and one of those people has
to have the proven ability to really absorb a program.
And when that lead person is uncertain about some-
thing, he or she should be able to discuss it with even
more experienced programmers.

Part of our strategy is getting the programmers to think
everything through before they go to the coding phase.
Writing the design documents is crucial, because a lot
of simplification comes when you see problems ex-
pressed as algorithms. They’re kind of in the smallest
form then, where you can see what the overlap is.

Another important element is code review, making sure
you look through the code and see if senior people can
provide hints about how to do something better. And
you have to review similar projects that have gone su-
per, super, well; programmers can look at how those
other people performed previously, and get ideas from
other projects about how to improve their own pro-
gram.

— Bill Gates interviewed by Susan Lammers,Pro-
grammers at Work[18](p. 74)

242

Figure 5: Sink Story — Alternatively, large components may be
acquired with additional matching components included and
already assembled.

Figure 6: Sink Story — Entire packages of components are also
available with all related components included and assembled,
ready for installation.

CANNIBALIZE 1. To take salvageable parts from (as a disabled
machine) for use in building or repairing another machine.
. . . 3. To use or draw onmaterial of (as another writer or
an earlier work) [a volume. . . that not only∼ previous pub-
lications but is intended itself to be cannibalized — R.M.
Adams]. 4. To make use of (a part take from one thing) in
building or repairing something else.

Webster’s Ninth New Collegiate Dictionary (Springfield, Mass.:
Merriam-Webster, 1990). Quoted by Rem Koolhaas and Bruce
Mau, inS,M,L,XL[17]

6. LANGUAGE
Programming language has always been about reuse.
A computer programme, like a concert programme, might con-

sist of a single sequence. But from the earliest experience of pro-
gramming, we made up language to make programming easier by
supporting reuse.

Selection and iteration allow instructions to be reused, executed
again without re-specification, subject to varying conditions. A
stored program computer allows a computer program to be spec-
ified once, and then stored for later use and reuse.

Procedures allow a body of instructions to be named and then
reused from different contexts. Procedure parameters allow a body
of instructions to be customised to suit the needs of differing calling
contexts. Procedural encapsulation allows procedures to be reused
without regard to their implementation.

Records allow data structures to be named and then reused to
specify different data with the same structure.

Classes and objects allow data structures to be bound with proce-
dures that use them, so that both data and procedures can be reused
together. Encapsulation of classes and objects means they can be
reused according to their specification, and without regard to their
implementation.

Figure 7: Window Story — Large composite components are
available ready to install, though some adjustments may be nec-
essary to achieve the desired result.

Types allow checking the specification of names and their later
use and reuse to determine if the use or reuse is appropriate.

Late binding of procedure names allows calling contexts to be
reused by calling different bodies of instructions in different cir-
cumstances. Late binding of class or object names allows the con-
textual frameworks to be reused by working data structure with dif-
ferent implementation and behaviour.

And macros, and generators, and aspects, and so on. Program-
ming language has always been about reuse; programs work in this
way. Software wants to be reused.

7. LOVELACE

Those who may desire to study the principles of the
Jacquard-loom in the most effectual manner, viz. that
of practical observation, have only to step into the Ade-
laide Gallery or the Polytechnic Institution. In each of
these valuable repositories of scientific illustration, a
weaver is constantly working at a Jacquard-loom, and
is ready to give any information that may be desired as
to the construction and modes of acting of his appara-
tus. The volume on the manufacture of silk, in Lard-
ner’s Cyclopædia, contains a chapter on the Jacquard-
loom, which may also be consulted with advantage.

The mode of application of the cards, as hitherto used
in the art of weaving, was not found, however, to be
sufficiently powerful for all the simplifications which
it was desirable to attain in such varied and compli-
cated processes as those required in order to fulfil the

243

Figure 8: Window Story — Also, smaller sub-components are
available for assembly into composite structures. Note that
these components are presented in a way so as to assist the user
in locating and selecting the correct item.

purposes of an Analytical Engine. A method was de-
vised of what was technically designated backing the
cards in certain groups according to certain laws. The
object of this extension is to secure the possibility of
bringing any particular card or set of cards into use any
number of times successively in the solution of one
problem. Whether this power shall be taken advantage
of or not, in each particular instance, will depend on
the nature of the operations which the problem under
consideration may require. The process is alluded to
by M. Menabrea, and it is a very important simplifica-
tion. It has been proposed to use it for the reciprocal
benefit of that art, which, while it has itself no appar-
ent connexion with the domains of abstract science,
has yet proved so valuable to the latter, in suggesting
the principles which, in their new and singular field of
application, seem likely to place algebraical combina-
tions not less completely within the province of mech-
anism, than are all those varied intricacies of which in-
tersecting threads are susceptible. By the introduction
of the system of backing into the Jacquard-loom itself,
patterns which should possess symmetry, and follow
regular laws of any extent, might bewoven bymeans
of comparatively few cards.

Those who understand the mechanism of this loom
will perceive that the above improvement is easily ef-
fected in practice, by causing the prism over which
the train of pattern-cards is suspended to revolve back-
wards instead of forwards, at pleasure, under the req-
uisite circumstances; until, by so doing, any partic-
ular card, or set of cards, that has done duty once,
and passed on in the ordinary regular succession, is
brought back to the position it occupied just before it
was used the preceding time. The prism then resumes
its forward rotation, and thus brings the card or set of
cards in question into play a second time. This process
may obviously be repeated any number of times.

— Augusta Ada King, Countess of Lovelace,Anno-
tated translation of Sketch of the Analytical Engine
Invented by Charles Babbage, by L. F.Menabrea of
Turin, Officer of the Military Engineers[8](Note C)

Figure 9: Window Story — The repository also stores reusable
elements needed to built components. These are typically not
available to users, but are recovered and retained by the repos-
itory management to facilitate creation of components suitable
for users.

244

NOW DENIAL: To tell oneself that the only time worth living in
is the past, and that the only time that may ever be interesting
again is the future.
— Douglas Coupland,Generation X[9]

8. TURING

Outline of Logical Control

We also wish to be able to arrange for the splitting up
of operations into subsidiary operations. This should
be done in such a way that once we have written down
how an operation is done we can use it as a subsidiary
to any other operation.

. . .

When we wish to start on a subsidiary operation we
need only make a note of where we left off the ma-
jor operation and then apply the first instruction of the
subsidiary. When the subsidiary is over we look up
the note and continue with the major operation. Each
subsidiary operation can end with instructions for this
recovery of the note. How is the burying and disinter-
ring of the note to be done? There are of course many
ways. One is to keep a list of these notes in one or more
standard size delay lines (1024), with the most recent
last. The position of the most recent of these will be
kept in a fixed TS, and this reference will be modified
every time a subsidiary is started or finished. The bury-
ing and disinterring processes are fairly elaborate, but
there is fortunately no need to repeat the instructions
involved, each time, the burying being done through a
standard instruction table BURY, and the disinterring
by the table UNBURY.

— Alan Turing,Proposed Electronic Calculator[34]

9. WILKES, WHEELER, AND GILL

Closed Subroutines

A “closed” subroutine is one which is called into use
by a special group of orders incorporated in the master
routine or main program. It is designed so that when its
task is finished it returns control to the master routine
at a point immediately following from that which it
was called in.

. . .

The library catalog used in the Laboratory is drawn up
in two sections. One gives a concise specification of
the purpose of each subroutine together with sufficient
information to enable a programmer to make use of
it; this includes information about the operating time
and storage space occupied. The second section gives
the orders of each subroutine in full. The catalog is
contained in loose leaf books so that new sheets can
be inserted as new subroutines are added to the library.

— Maurice V. Wilkes, David J. Wheeler and Stanley
Gill, The Preparations of Programs for An Electronic
Computer: With special reference to the EDSAC and
the use of a library of subroutines[37]

As soon as the EDSAC began to work I called a meet-
ing of those interested in development of programming
methods — it would have been premature to call them
programmers — and we constituted ourselves into a
committee to establish a library of such subroutines in
order that every user should not have to start from the
bottom. At first we thought of the library as containing
subroutines of the type just mentioned and subroutines
for the computation of elementary functions; later it
became clear that it could be expanded in various di-
rections, notably by inclusion of subroutines for per-
forming some of the standard operations of numerical
analysis. It was so clear to me that we should base our
system of programming on a library of subroutines that
I was somewhat surprised a few years later to find that
not everyone had gone this way.

— Maurice V. Wilkes,Memoirs of a Computer Pio-
neer[36]

10. NYGAARD AND DAHL

The syntax for this new language feature was easy to
find. The “links” could be declared separately, without
any information about the other process classes which
use link instances as a prefix layer. Since the pro-
cesses of these other process classes were at the same
time both “links” and something more, it was natural
to indicate this by textually prefixing their declarations
with the process class identifier of this common prop-
erty, namely “link”. These process classes would the
be “subclasses” of “link”.

It was evident that when prefixing was introduced, it
could be extended to multiple prefixing, establishing
hierarchies of process classes. (In the example, “car”
would be a subclass of “link”, “truck” and “bus” sub-
classes of “car”.) It was also evident that this “con-
catenation” of a sequence of prefixes with a main part
could well be applied to the action parts of processes
as well.

Usually a new idea was subjected to rather violent at-
tacks in order to test its strength. The prefix idea was
the only exception. We immediately realised that we
now had the necessary foundation for a completely
new language approach, and in the days which fol-
lowed the discovery we decided that:

1. We would design a new general programming
language, in terms of which an improved SIM-
ULA I could be expressed.

2. The basic concept should beclassesof objects.

3. The prefix feature, and thus the subclass concept,
should be a part of the language.

4. Direct, qualified references should be introduced.

— Kristen Nygaard and Ole-Johan Dahl,The develop-
ment of the SIMULA languages[25]

245

Figure 10: Window Story — The repository will use recov-
ered components to assemble composite components suitable
for users. Sometimes the repository will also incorporate new
components as well.

Figure 11: Window Story — Complete composite components
are offered ready for users to install. Note that such compo-
nents may have important and distinctive features, and so they
are displayed prominently to make these features evident to po-
tential users.

11. PARNAS

In discussions of system structure it is easy to confuse
the benefits of a good decomposition with those of a
hierarchical structure. We have a hierarchical structure
if a certain relation may be defined between the mod-
ules or programs and that relation is a partial ordering.
The relation we are concerned with is “uses” or “de-
pends upon.” It is better to use a relation between pro-
grams since in many cases one module depends upon
only part of another module (. . .). It is conceivable
that we could obtain the benefits that we have been
discussing without such a partial ordering, e.g. if all
the modules were on the same level. The partial or-
dering gives us two additional benefits. First, parts of
the system are benefited (simplified) because they use
the services of lower levels. Second, we are able to cut
off the upper levels and still have a usable and useful
product. For example, the symbol table can be used in
other applications; the line holder could be the basis
of a question answering system. The existence of the
hierarchical structure assures us that we can “prune”
off the upper levels of the tree and start a new tree on
the old trunk. If we had designed a system in which
the “low level” modules made some use of the “high
level” modules, we would not have the hierarchy, we
would find it much harder to remove portions of the
system, and “level” would not have much meaning in
the system.

. . .

We have tried to demonstrate by these examples that it
is almost always incorrect to begin the decomposition
of a system into modules on the basis of a flowchart.
We propose instead that one begins with a list of dif-
ficult design decisions or design decisions which are

246

likely to change. Each module is then designed to
hide such a decision from the other. Since, in most
cases, design decisions transcend time of execution,
modules will not correspond to steps in the processing.
To achieve an efficient implementation we must aban-
don the assumption that a module is one or more sub-
routines, and instead allow subroutines and programs
to be assembled collections of code from various mod-
ules.

— David Lorge Parnas,On the criteria to be used in
decomposing systems into modules[26]

12. LISKOV AND ZILLES

What we desire from an abstraction is a mechanism
which permits the expression of relevant details and
the suppression of irrelevant details. In the case of pro-
gramming, the use which may be made of an abstrac-
tion is relevant; the way in which the abstraction is
implemented is irrelevant. If we consider conventional
programming languages, we discover that they offer a
powerful aid to abstraction: the function or procedure.
When a programmer makes use of a procedure, he is
(or should be) concerned only with what it does —
what function it provides for him. He is not concerned
with the algorithm executed by the procedure. In ad-
dition, procedures provide a means of decomposing a
problem — performing part of the programming task
inside a procedure, and another part in the program
which calls the procedure. Thus, the existence of pro-
cedures goes quite far toward capturing the meaning of
abstraction.

Unfortunately, procedures alone do not provide a suf-
ficiently rich vocabulary of abstractions. The abstract
data objects and control structures of the abstract ma-
chine mentioned above are not accurately represented
by independent procedures. Because we are consider-
ing abstraction in the context of structured program-
ming, we will omit discussion of control abstractions.

This leads us to the concept of abstract data type which
is central of the design of the language. Anabstract
data typedefines a class of abstract objects which is
completely characterized by the operations available
on those objects. This means that an abstract data type
can be defined by defining the characterizing opera-
tions for that type.

We believe that the above concept captures the fun-
damental properties of abstract objects. When a pro-
grammer makes use of an abstract data object, he is
concerned only with the behaviour which that object
exhibits but not with any details of how that behaviour
is achieved by means of an implementation. The be-
haviour of an object is captured by the set of character-
izing operations. Implementation information, such as
how the object is represented in storage, is only needed
when defining how the characterizing operations are to
be implemented. The user of the object is not required
to know or supply this information.

— Barbara Liskov and Stephen Zilles,Programming
with abstract data types, [19]

13. JOHNSON AND FOOTE

One of the most important kinds of reuse is reuse of
designs. A collection of abstract classes can be used
to express an abstract design. The design of a pro-
gram is usually described in terms of the program’s
components and the way they interact. For example,
a compiler can be described as consisting of a lexer, a
parser, a symbol table, a type checker, and a code gen-
erator. An object-oriented abstract design, also called a
framework, consists of an abstract class for each major
component. The interfaces between the components
of the design are defined in terms of sets of messages.
There will usually be a library of subclasses that can
be used as components in the design.

. . .

Frameworks are useful for reusing more than just main-
line application code. They can also describe the ab-
stract designs of library components. The ability of
frameworks to allow the extension of existing library
components is one of their principal strengths. Frame-
works are more than well written class libraries. A
good example of a set of library utility class definitions
is the Smalltalk Collection hierarchy. These classes
provide ways of manipulating collections of objects
such as Arrays, Dictionaries, Sets, Bags, and the like.
In a sense, these tools correspond to the sorts of tools
one might find in the support library for a conventional
programming system. Each component in such a li-
brary can serve as a discrete, stand-alone, context in-
dependent part of a solution to a large range of differ-
ent problems. Such components are largely applica-
tion independent. A framework, on the other hand, is
an abstract design for a particular kind of application,
and usually consists of a number of classes. These
classes can be taken from a class library, or can be
application-specific. Frameworks can be built on top
of other frameworks by sharing abstract classes.

. . .

Frameworks provide a way of reusing code that is re-
sistant to more conventional reuse attempts. Appli-
cation independent components can be reused rather
easily, but reusing the edifice that ties the components
together is usually possible only by copying and edit-
ing it. Unlike skeleton programs, which is the conven-
tional approach to reusing this kind of code, frame-
works make it easy to ensure the consistency of all
components under changing requirements. Since frame-
works provide for reuse at the largest granularity, it is
no surprise that a good framework is more difficult to
design than a good abstract class. Frameworks tend to
be application specific, to interlock with other frame-
works by sharing abstract classes, and to contain some
abstract classes that are specialized for the framework.
Designing a framework requires a great deal of experi-
ence and experimentation, just like designing its com-
ponent abstract classes.

— Ralph E. Johnson and Brian Foote,Designing reusable
classes[14]

247

Figure 12: Door Story — Most components are presented in
categories so as to enable the user to locate desired compo-
nents quickly. The common categories are firstly usage, and
then style.

14. COMPOSED SOFTWARE

“One thing can be stated with certainty: components
are for composition.”

— Clemens Szyperski, Introduction toComponent Soft-
ware — Beyond Object-Oriented Programming[32]

This is true: components are certainly for composition; they may
even be the best things to compose; but they are not the only things
that can be composed; and they are not the only things to consider
when thinking about software reuse.

Components themselves are not the most important considera-
tion for reuse; nor is the process of composing things together the
most important consideration: rather, it is that the end product is a
composition, that is, something that is made up of many things, not
just one thing.

But ‘Components’ are not the only things that are composed. By
‘Components’ (with the capital ‘C’ and the inverted commas) we
mean modern, object-oriented/component-oriented units of soft-
ware that have been specially designed to be composed, that ideally
are specified, abstracted, reliable, trustable, binary, marketable, and
above all, substitutable,fungible.

Focusing on software compositions — on theComposed Soft-
ware that is the end product of a composition process — shows
that it is made up of more than just these idealised ’Components’.
Some of the software will be old software made new, born again,
changed and broken to become part of a new creation. Some of the
software will be freshly written to provide important new behaviour
or meet critical quality requirements. Some of the software will be
mundane, egoless, glue code, written or stolen or grown to tie other
pieces together but providing no behaviour or qualities of its own.
And, yes, some of the software will be shiny, new, modern, en-
capsulated components, purchased from a perfect-bound web page
catalogue, printed on glossy paper decorated with happy pictures
of imaginary programmers from central casting, cavorting on their
days off.

In the traditions of Saussure, structural linguistics, semiology,
semiotics, we can consider artifacts to be constructed along two
dimensions or axes: the axis of combination (technically the syn-
tagm), and the axis of selection or substitution (technically the
paradigm). The axis of selection gives a menu of choices — com-
ponents that can be made visible in catalogues — that can be con-
sulted during the composition process. The axis of combination
gives the structure of the end product — the composed software
in this case — but is visible only when the composition process is
complete.

Traditional software componentry falls on the paradigmatic axis:
programmers select components to compose into their programs. In
Visual Basic, for example, the VBX market included many small
vendors selling slightly different versions of scrolling table con-
trols: a programmer could choose one, incorporate it into the pro-
gram, and substitute a different component should the first prove
inappropriate.

On the other hand, less traditional (but more successful) forms
of software components, such as software frameworks, program-
ming languages, and middleware infrastructures, fall on the syntag-
matic axis. Considering Visual Basic itself, the Microsoft Founda-
tion Classes, J2EE, each of these frameworks establishes the form
of a single syntagm — all the programs built using these frame-
works have the same underlying structure. This kind of reuse has
been classified ascontext reuse, to distinguish it from the tradi-
tionalcomponent reusetechnologies [3]. Within such a framework,
developers can paradigmatically substitute their own components,

248

Figure 13: Door Story — Some components are distinguished
because they are superior in quality and distinctive in design.
These are presented separately, firstly to display their quality,
and secondly because their design often features unique sub-
components which are best kept assembled together. Note that
the special display assists users to locate distinctive compo-
nents, and assists the repository to encourage adoption of the
high value components.

choose components supplied free with the frameworks, or obtain
from outside suppliers — but, the framework itself sets the overall
shape and tone of the software.

In software, successful syntagmatic composition — context reuse
resulting in Composed Software — provides much more value than
paradigmatic selection – component reuse of software ‘Compo-
nents’. Does this mean ‘Components’ are worthless? Of course
not! You cannot compose software without anything to compose:
you must have some assets before you can leverage them to produce
something new. But Composed Software is composed from many
things more than just ‘Components’. The surplus value of a compo-
sition lies in the end product — the value of the whole composition
must surpass the cost of the parts — or there is no economic benefit
to composition or reuse. The focus on ‘Components’, then, from
McIlroy [21] via [10] to Szyperski [32], is fundamentally mistaken.
What we are interested in, where the money is, is Composed Soft-
ware, not software components.

Personality: So why don’t all songs sound the same? Why are
some artists great, write dozens of classics that move you
to tears, say it like it’s never been said before, make you
laugh, dance, blow your mind, fall in love, take to the streets
and riot? Well, it’s because although the chords, notes, har-
monies, beats and words have all been used before their own
soul shines through; their personality demands attention.
— Jimmy Caulty and Bill Drummond,The Manual[5]

15. DEVELOPMENT
In traditional software development, the customer is absent after

initial determination of requirements. Accordingly, the developers
as suppliers are left having to make many decisions for themselves.
The customer waits for the result.

This can create all kinds of problems, as the developers may mis-
interpret the customer intentions and supply functionality that is not
needed, or not supply functionality that is needed.

Beck’s ideas for Extreme Programming (XP) [2] address issues
in software development, and in particular concentrates on the re-
lationship between a software development team and the customer.
As part of the process in XP, Beck emphasises an “on-site cus-
tomer”, where a customer representative is directly available for
consultation and negotiation with the development team.

In software reuse, the issues involve the relationship between two
software developers: one acting as supplier and the other acting as
customer. In reuse, it is the supplier who is typically absent. Ac-
cordingly, it is the customer developer who is left having to make
many decisions for themselves. This also can create problems, as
the customer developer may misinterpret the supplier intentions,
and may decide functionality is present when it is not, or may de-
cide functionality is not present when it is.

The problem is the inverse of the one addressed in XP: the prob-
lem is the off-site supplier, and there has been much consideration
of what to do. It turns out there are many reasons for failure. And
as our technology has improved, we have succeeded in some mea-
sure, but then defined the problem in an ever narrower way. As we
have succeeded in software reuse, so the phrase “software reuse”
has come to refer to those even smaller ways in which we fail.

Many of the issues that remain are economic and organisational.
Wider economic practice regards bringing together suppliers and
customers as a serious concern, and offers us a variety of strategies
to consider. For example, we might adopt centralised planning and
management. Alternatively, we might facilitate a marketplace. For
suppliers and customers, the issues still involve value, investment,
and return.

249

Figure 14: Door Story — Standard components are displayed
to facilitate quick selection of candidate components. The key
to this process is the indexing information that is displayed
prominently on each component. Some components have spe-
cial features indicated with diagrams.

16. SCHMIDT

Why Software Reuse has Failed Historically

. . .

In theory, organizations recognize the value of system-
atic reuse and reward internal reuse efforts. In prac-
tice, many factors conspire to make systematic soft-
ware reuse hard, particularly in companies with a large
installed base of legacy software and developers. In
my experience, non-technical impediments to success-
ful reuse commonly include the following:

• Organizational impediments – e.g., developing,
deploying, and supporting systematically reusable
software assets requires a deep understanding of
application developer needs and business require-
ments. As the number of developers and projects
employing reusable assets increases, it becomes
hard to structure an organization to provide ef-
fective feedback loops between these constituen-
cies.

• Economic impediments – e.g., supporting corporate-
wide reusable assets requires an economic invest-
ment, particularly if reuse groups operate as cost-
centers. Many organizations find it hard to insti-
tute appropriate taxation or charge-back schemes
to fund their reuse groups.

• Administrative impediments – e.g., it’s hard to
catalog, archive, and retrieve reusable assests across

multiple business units within large organizations.
Although it’s common to scavenge small classes
or functions opportunistically from existing pro-
grams, developers often find it hard to locate suit-
able reusable assets outside of their immediate
workgroups.

• Political impediments – e.g., groups that develop
reusable middleware platforms are often viewed
with suspicion by application developers, who
resent the fact that they may no longer be em-
powered to make key architectural decisions. Like-
wise, internecine rivalries among business units
may stifle reuse of assests developed by other in-
ternal product groups, which are perceived as a
threat to job security or corporate influence.

• Psychological impediments – e.g., application de-
velopers may also perceive “top down” reuse ef-
forts as an indication that management lacks con-
fidence in their technical abilities. In addition,
the “not invented here” syndrome is ubiquitous
in many organizations, particularly among highly
talented programmers.

— Douglas C. Schmidt,Why Software Reuse has Failed
and How to Make It Work for You[31]

17. POULIN

What to Measure As Reuse

We will now look at various categories of software,
discuss why or why not each might count as reuse, and
then give a recommend solution. Most of the conclu-
sions hinge on whether or not we expect someone to
write that software.

As we discuss these issues and reach our conclusions,
we will define what it means when we refer to a Reused
Source Instruction (RSI). Some of the choices may
seem clear, but none have gone without controversy.
For each code category,someone has published a re-
port claiming the category represents reuse!

Product Maintenance: New Versions
. . . We do notcount product maintenance as reuse.

Use of Operating System Services
. . . We do notcount the use of the operating system as
reuse.

Use of High-Level Languages
. . . We do notcount use of high-level languages as reuse.

Use of Tools
. . . We do notcount the use of tools as reuse.

Use Versus Reuse of Components
. . . Weonly count the first use of a component as reuse.

Use of Commercial Off-The-Shelf Software
. . . We do notcount COTS products as reuse.

Ported Software
. . . We do notcount porting as reuse.

Application Generators
. . . We do notcount generated code as reuse.

Code Libraries
Use of utility libraries

250

. . . We do notcount software from utility libraries as
reuse.

Use of local utility libraries
. . . We maycount software from utility libraries as re-
sue.

Project and domain specific libraries
. . . We count software from project and domain spe-
cific libraries as reuse.

Corporate resue libraries
. . . Wecount software from reuse libraries as reuse.

Use of Modified Software
. . . We do notcount modified components as reuse.1

Applying the Counting Rules to Object-Oriented Soft-
ware

Recent articles and publications cite reuse as a prin-
ciple benefit of object-oriented technology; however,
object-oriented projects face the same issues as any
other development project when it comes to defining
what to count as “reused” software. Experience reports
from OO projects routinely state impressive reuse lev-
els and benefits due to reuse. However, we cannot trust
these reports without understanding what the reports
counted, e.g., inheritance or polymorphism. As with
most experience reports, recent work in OO metrics
fails to address this issue. Part of the problem comes
from counting “internal” reuse in OO reuse metrics: in
other words, using your own code. . . . This common
and unfortunate misconception within the OO commu-
nity really confuses many unwary practitioners.

— Jeffrey S. Poulin,Measuring Software Reuse: prin-
ciples, practices, and economics models[29]

OPINION PARALYSIS: The tendency, when given unlimited choices,
to make none.
— Douglas Coupland,Generation X[9]

18. JACOBSON, GRISS, JONSSON

For example, the transition fromno reuseto informal
code reuse(sometimes called leverage or cloning), in
which chunks of code are copied, adapted slightly, and
then incorporated into the new system, occurs when
developers:

• are familiar with each other’s code, and trust each
other

• feel the need to reduce time to market, even though
they would prefer to rewrite the software

This strategy works – for a while. Development time
is reduced, and testing is often less tedious than with
totally new code. But as more products are developed
using this approach, maintenance problems increase.
Multiple copies of the software, each slightly differ-
ent, have to managed. Defects found in one copy have

1Throughout this paper we use ellipses to mark where we have left
out words or passages to improve clarity: in this case we wish to
note that Poulin does present arguments for each of these points,
but it is the points themselves that we wish to highlight.

Figure 15: Door Story — Surprisingly, the repository also in-
cludes unused components. In this case, the components had
been obtained for a new system but later found to be surplus
to requirements. Rather than being discarded, they are of-
fered to other users. In fact, the repository also offers custom-
built components if users find no already-assembled compo-
nents that meet their requirements.

251

to be found and fixed multiple times. This often leads
to a black box code reusestrategy, in which a care-
fully chosen instance of code is reengineered, tested,
and documented for reuse. All projects are then en-
couraged or required to reuse just this copy without
modification.

This works well for a while, and then the issue of deal-
ing with changes to satisfy an increasing number of
reusers arises. Should everyone be “forced” to use
only the standard version? Should multiple versions
be maintained? Should adaptation be allowed? Who
decides? Should test files and designs also be reused?
Who will train and educate component reusers? All of
these issues lead to the creation of amanaged workprod-
uct reuse process, in which the creation and reuse of
components is explicitly managed and supported by a
distinct organization.

Beyond this point, to get higher levels of reuse and
more coverage of the lifecycle, it is important to move
to architected reuse, to explicitly architect the com-
ponents and the systems that will use them. This is
the only way to insure that components fit together.
The development and use of a common architecture in-
volves even more organizational commitment and struc-
ture.

— Ivar Jacobson, Martin Griss, and Patrik Jonsson,
Software Reuse: Architecture, Process and Organiza-
tion for Business Success, [13](p. 22)

19. MCCLURE

Selecting Reusable Components

Rationale

The system development and maintenance processes
can be speeded up and aided by reusing various types
of reusable components. Other reasons for using reusable
components are: improved system quality, reduced sys-
tem development and maintenance costs, and reduced
risk of project failure. This technique ensures that sys-
tem builders will search for all types of reusable com-
ponents in all the likely sources.

Critical Issues

Buidling application systems from reusable components
is based on the assumptions that reusable components
exisit somewhere, they are reasonably easy to find and
understand, and they are of good quality. If the time to
search for candidate reusable components is too long
in the system builder’s eyes, the system builder will opt
for building the component from scratch rather than
reusing an existing ocomponent regardless of how well
the reusable component fits the current need. A Reuse
Library and a Reuse Catalog that are well organized
with a classification scheme and supported by search
and retrieval tools are essential to ensuring that reusable
components are actually used in application system de-
velopment.

— Carma McClure,Software Reuse Techniques: Adding
Reuse to the System Development Process[20](pp.201–
202)

Professional: The professionals of the city are like chess players
who lost to computers. A perverse automatic pilot constantly
outwits all attempts at capturing the city, exhausts all ambi-
tions of its definition, ridicules the most passionate assertions
of its present failure and future impossibility, steers it impla-
cably further on its flight foward. Each disaster foretold is
somehow absorbed under the infinite blanketing for the ur-
ban.
— Rem Koolhaas and Bruce Mau,S, M, L, XL[17]

20. TRACZ

Have you every tripped down the primrose path of least
resistance, commending yourself for building a new
program by salvaging someone else’s software, only
to be startled by the harsh reality that things were not
as great as you planned?

True, you thought you were building on someone else’s
successes, but you had not counted on inheriting their
mistakes or finding out, too late, that what you thought
you could reuse “as is” required a lot more effort that
you had planned. The software you were trying to sal-
vage might be good, but for what? You budgeted time
and staff to salvage or carry over code from the last
project, only to find that it didn’t work as advertised, if
the fact that it worked was advertised at all.

Ignoring blatant errors of commission, the subtle er-
rors of omission are the ones that really require the
most effort to overcome (e.g., failure to document im-
plementation decisions or failure to test for certain patho-
logical conditions). The software might work well in
the narrow context for which it was designed, but taken
out of its specific domain the software suddenly be-
comes brittle — in other words reuseless.

. . .

Sometimes, programmers should let old code die a nat-
ural death rather than spend any effort trying to revive
it. As many of us have learned from experience, plenty
of reuseless code is lying around (one might argue that
a lot of it was useless code in the first place). Not that
most code is reuseless (or more important, needs to
be created as reuseless), but software not specifically
designed for reuse is simply more difficult and costly
to reuse. Similarly code designed for reuse (reuseful
code) might cost 30% to 200% more to develop, docu-
ment, and test, but subsequent reuse costs 20% to 40%
less than rewriting.

Making software reusable exacts a cost in experience
and effort. Creating reusable interfaces requires in-
sight in seeing how software has been used in the past
and envisioning how it might be used in the future.
Further-more, because the most important quality of
reusable software, is that it be quality software, em-
phasis should be placed on thoroughly specifying, test-
ing, and certifying that the software has achieved a
certain level of operational and documentation qual-
ity. Only then will programmers be willing to invest
their time to consider its reuse.

— Will Tracz, Confessions of a Used Program Sales-
man: Institutionalizing Software Reuse[33](pp. 73–
74)

252

21. FOWLER

This tension between builders and designers happens
in building too, but it’s more intense in software. It’s
intense because there is a key difference. In building
there is a clearer division in skills between those who
design and those who build, but in software that’s less
the case. Any programmer working in high design en-
vironments needs to be very skilled. Skilled enough
to question the designer’s designs, especially when the
designer is less knowledgeable about the day-to-day
realities of the development platform.

. . .

One way to deal with changing requirements is to build
flexibility into the design so that you can easily change
it as the requirements change. However, this requires
insight into what kind of changes you expect. A de-
sign can be planned to deal with areas of volatility, but
while that will help for foreseen requirements changes,
it won’t help (and can hurt) for unforeseen changes. So
you have to understand the requirements well enough
to separate the volatile areas, and my observation is
that this is very hard.

Now some of these requirements problems are due to
not understanding requirements clearly enough. So a
lot of people focus on requirements engineering pro-
cesses to get better requirements in the hope that this
will prevent the need to change the design later on.
But even this direction is one that may not lead to a
cure. Many unforeseen requirements changes occur
due to changes in the business. Those can’t be pre-
vented, however careful your requirements engineer-
ing process.

So all this makes planned design sound impossible.
Certainly they are big challenges.

. . .

Two of the greatest rallying cries in XP are the slogans
“Do the Simplest Thing That Could Possibly Work”
and “You Aren’t Going to Need It” (known as YAGNI).
Both are manifestations of the XP practice of simple
design.

The way YAGNI is usually described, it says that you
shouldn’t add any code that will only be used by a fea-
ture that is needed tomorrow. On the face of it this
sounds simple. The issue comes up with such things
are frameworks, reusable components, and flexible de-
sign. Such things are complicated to build. You pay
an extra up-front cost to build them, in the expecta-
tion that you will gain back that cost later. This idea
of flexibility up-front is seen as a key part of effective
software design.

However, XP’s advice is that you not build flexible
components and frameworks for the first case that needs
that functionality. Let these structures grow as they are
needed. If I want a money class today that handles ad-
dition but not multiplication, then I build only addition
into the Money class. Even if I’m sure I’ll need mul-
tiplication in the next iteration, and understand how to
do it easily, and think it’ll be really quick to do, I’ll
still leave it till that next iteration.

Figure 16: Door Story — Sometimes components are offered
still assembled with related components from a previous con-
text. The repository prefers to present the entire composition,
instead of disassembling the unit, where such larger structures
may be valuable to users.

One reason for this is economic. If I have to do any
work that’s only used for a feature that’s needed to-
morrow, that means I lose effort on features that need
to be done for this iteration. The release plan says what
needs to be worked on now. Working on other things
for the future is contrary to the developers’ agreement
with the customer. There is a risk that this iteration’s
stories might not get done. Even if this iteration’s sto-
ries are not at risk, it’s up to the customer to decide
what extra work should be done — and that might still
not involve multiplication.

— Martin Fowler,Is Design Dead?[12](pp.5–9)

253

22. BROOKS

The development of the mass market is, I believe, the
most profound long-run trend in software engineer-
ing. The cost of software has always been develop-
ment cost, not replication cost. Sharing that cost among
even a few users radically cuts the per-user cost. An-
other way of looking at it is that the use of n copies of a
software system effectively multiplies the productivity
of its developers by n. That is an enhancement of the
productivity of the discipline and of the nation.

The key issue, of course, is applicability. Can I use an
available off-the-shelf package to perform my task? A
surprising thing has happened here. During the 1950’s
and 1960’s, study after study showed that users would
not use off-the shelf packages for payroll, inventory
control, accounts receivable, etc. The requirements
were too specialized, the case-to-case variation too high.
During the 1980’s, we find such packages in high de-
mand and widespread use. What has changed?

Not really the packages. They may be somewhat more
generalized and somewhat more customizable than for-
merly, but not much. Not really the applications, ei-
ther. If anything, the business and scientific needs of
today are more diverse and complicated than those of
20 years ago.

The big change has been in the hardware/software cost
ratio. The buyer of a $2-million machine in 1960 felt
that he could afford $250,000 more for a customized
payroll program, one that slipped easily and nondis-
ruptively into the computer-hostile social environment.
Buyers of $50,000 office machines today cannot con-
ceivably afford customized payroll programs; so they
adapt their payroll procedures to the packages avail-
able. Computers are now so commonplace, if not yet
so beloved, that the adaptations are accepted as a mat-
ter of course.

. . .

I still remember the jolt I felt in 1958 when I first heard
a friend talk about building a program, as opposed to
writing one. In a flash he broadened my whole view of
the software process. The metaphor shift was power-
ful, and accurate. Today we understand how like other
building processes the construction of software is, and
we freely use other elements of the metaphor, such as
specifications, assembly of components, and scaffold-
ing.

The building metaphor has outlived its usefulness. It
is time to change again. If, as I believe, the conceptual
structures we construct today are too complicated to be
specified accurately in advance, and too complex to be
built faultlessly, then we must take a radically different
approach.

Let us turn nature and study complexity in living things,
instead of just the dead works of man. Here we find
constructs whose complexities thrill us with awe. The
brain alone is intricate beyond mapping, powerful be-
yond imitation, rich in diversity, and self-renewing.
The secret is that it is grown, not built.

— Frederick P. Brooks Jr.,No Silver Bullet[15](pp.197–
198)

23. ENVIRONMENT
On the consequences of composing modules into systems: Given

a program to be “written”; to be “built”; to be “grown”; how should
this be undertaken when much bespoke software is too expensive?
Equally as important: what will the final program look like?

The process of composing modules into systems is qualitatively
different from the structured approach of decomposing systems into
modules. In a step-wise decomposition process, we begin with an
idea of what the system should do, a problem to be decomposed;
and we then make our decomposition, proceeding in a rational man-
ner, isolating the important design decisions in their own modules,
removing upward dependencies, following the grain of the domain.
This is best described as proceeding top-down: from a problem
to a program, in contrast to the bottom-up method of just coding a
program without thinking first [27]. All this is well understood, and
underlies many modern software development methods, from Dijk-
stra and Wirth, through Constantine and Mills, Dahl and Nygaard,
Wirfs-Brock and Booch.

The process of composing modules into systems is also qualita-
tively different from that of building systems step by step. In the
extreme, agile, or lean approaches we begin with a Person, (rather
than a Problem) and mututally explore the domain until that Per-
son’s patience or prosperity runs out, building a program along the
way. Agile aproaches build programs a small slice (or experimen-
tal spike) at a time: the first story, task, use case is implemented
running vertically all the way from the top to the bottom of the sys-
tem, iterating to widen this slice out to the whole system. Rather
than trusting in a “Big Design Up Front”, we write code but then
revise the program’s design, refactoring the program to achieve ex-
actly the same kind of design qualities (compression, consiseness,
clarity, lack of dependency, resonance with the domain) promoted
by the structured approaches to programming, design, and analy-
sis. All this is also well understood, as practiced and promoted by
Beck [2], Fowler [12], and other advocates of the “agile” approach.
Reuse is not one of the Twelve Practices of Extreme Programming,
nor one of the Values from the Glowing Whiteboard of Agile Soft-
ware Development [1].

The process of composing modules into systems, then, is quite
different from either of these approaches. We care about Assets —
Components, Software, Libraries, Modules, Frameworks, Configu-
ration, Media, Images, Quotations, Music, Stuff — rather than Per-
sons or Problems [4]. We proceed by aglomerating these Assets,
remembering for you wholesale, justaposing, hammering, chuck-
ing them in, filling the spaces with smaller things, with glue, with
strings and sealing wax, and other fancy stuff. We can take exist-
ing “programs” as “components”, or perhaps begin our program by
copying one or more existing programs and then adding more com-
ponents, adjusting their configurations, or modifying them only
where absolutely necessary (or where it looks like fun). There can
be a complete absense of any traditionally-recognised forms of cod-
ing, design, or analysis, no refactoring, no stories, not top down,
not bottom up, not horizontal or vertical, but random splodges of
function based only upon whatever comes to hand.

One irony of object-oriented programming, extreme program-
ming, agile development, lean coding, aspect-oriented separation
of advanced meta-concerns,et cetera, is that the qualities and kinds
of programs they aim to create are all exactly the same — disre-
garding minor differences of fashion in underlying programming
languages. High cohesion, low coupling, low redundancy, high
functionality. The topology and structure of great modern programs
is remarkably similar — the THE Operating System, Sketchpad,
Emacs, Unix, Smalltalk, the Wiki, TEX.

254

What we now think of as a program — E¨a: the program that
is, all-the-program-there-was, what we have put together and cho-
sen to take as program, what we separate from all that is arbitrarily
not-program — is this agglomeration, this collage, this text. Some
components are bigger than others; some components are more im-
portant than others; and yet — there is no big story, there is no
“main component”, there is no main routine — or if there is some-
thing claiming to be a main component, there will be many staking
that claim.

Early programs were written by one programmer. All kinds of
software engineering — whether the standards and documentation
of heavyweight processes, or the panopticon of agile development
— attempt to keep up this fiction, the program should look as if it
was written by one programmer. What we now think of as a pro-
gram looks as if it was written by many people, at many different
times, in many different languages, as if these people were com-
petitors, as if they hated each other, as if they are didn’t care, and
were not unashamed.

In other words: pervasive reuse promotes a change in the method
of construction of the program, and in the program itself.

After all, the etymology of “Hacker” is: “someone who makes
furniture with an axe” [11].

OBSCURISM: The practice of peppering daily life with obscure
references (forgotten films, dead TV stars, unpopular books,
defunct countries, etc.) as a subliminal means of showcasing
both one’s education and one’s wish to disassociate from the
world of mass culture.
— Douglas Coupland,Generation X[9]

24. MCILROY

The Market

Coming from one of the larger sophisticated users of
machines, I have ample opportunity to see the tragic
waste of current software writing techniques. At Bell
Telephone Laboratories we have about 100 general pur-
pose machines from a dozen manufacturers. Even though
many are dedicated to special applications, a tremen-
dous amount of similar software must be written for
each. All need input-output conversion, sometimes
only single alphabetic characters and octal numbers,
some full-blown Fortran style I/O. All need assemblers
and could use macro-processors, though not necessar-
ily compiling on the same hardware. Many need basic
numerical routines or sequence generators. Most want
speed at all costs, a few want considerable robustness.

Needless to say much of this support programming is
done sub-optimally, and at a severe scientific penalty
of diverting the machine’s owners from their central
investigations. To construct these systems of high-
class componentry we would have to surround each
of some 50 machines with a permanent coterie of soft-
ware specialists. Were it possible quickly and confi-
dently to avail ourselves of the best there is in support
algorithms, a team of software consultants would be
able to guide scientists towards rapid and improved so-
lutions to the more mundane support problems of their
personal systems.

In describing the way Bell Laboratories might use soft-
ware components, I have intended to described the mar-
ket in microcosm. Bell Laboratories is not typical of

Figure 17: Balustrade Story — Alternatively, sometimes com-
ponents must be disassembled. In this case, the larger compo-
nent no longer complied with current legal requirements, and
so the repository is forbidden to make the composite compo-
nent available to users. The component was dismantled, and
the smaller sub-components offered for reuse.

computer users. As a research and development es-
tablishment, it must perforce spend more of its time
sharpening its tools, and less using them than does a
production computing shop. But it is exactly such a
systems-oriented market toward which a components
industry would be directed.

The market would consist of specialists in system build-
ing, who would be able to use tried parts for all the
more commonplace parts of their systems. The biggest
customers of all would be the manufacturers. (Were
they not it would be a sure sign that the offered prod-
ucts weren’t good enough.) The ultimate consumer of
systems based on components ought to see consider-
ably improved reliability and performance, as it would
become possible to expend proportionally more effort
on critical parts of systems, and also to avoid the now
prevalent failings of the more mundane parts of sys-
tems, which have been specified by experts, and have
then been written by hacks.

— M. Douglas McIlroy,Mass Produced Software Com-
ponents[21]

25. COX

Software crisis

The gunsmith shop in colonial Williamsburg, Va., is
a fascinating place to watch gunsmiths build guns as
we build software: by fabricating each part from raw
materials and hand-fitting each part to each assembly.

255

When I was last there, the gunsmith was filing a beau-
tifully proportioned wood screw from a wrought iron
rod that he’d forged on the anvil behind his shop, cut-
ting its threads entirely by hand and by eye. I was fas-
cinated by how he tested a newly forged gun barrel —
charging it with four times the normal load, strapping
it to a log, and letting ‘er rip from behind a sturdy shel-
ter — not the least hindered by academia’s paralyzing
obsession that such testing ‘only’ reveals the presence
of defects, not their absence.

The cottage-industry approach to gunsmithing was in
harmony with the economic, technological, and cul-
tural realities of colonial America. It made sense to ex-
pend cheap labor as long as steel was imported at great
cost from Europe. But as industrialization drove mate-
rials costs down and demand exceeded what the gun-
smiths could produce, they began to experience pres-
sure to replace the cottage-industry gunsmith’s process-
centered approach with a product-centered approach;
high-precision interchangeable parts to address the con-
sumer’s demand for less costly, easily repairable prod-
ucts.

The same inexorable pressure is happening today as
the cost of hardware plummets and demand for soft-
ware exceeds our ability to supply it. As irresistible
force meets immovable object, we experience the pres-
sure as the software crisis: the awareness that software
is too costly and of insufficient quality, and its devel-
opment nearly impossible to manage.

Insofar as this pressure is truly inexorable, nothing we
think or do will stand in its path. The software in-
dustrial revolution will occur, sometime, somewhere,
whether our value system is for it or against it, because
it is our consumers’ values that govern the outcome. It
is only a question of how quickly, and of whether we
or our competitors will service the inexorable pressure
for change.

— Brad J. Cox,Planning the Software Industrial Rev-
olution [10]

26. NORMAN

Two Kinds of Market Economies: Substitutable and
Nonsubstitutable

The importance of a proper infrastructure goes beyond
its impact upon usefulness and intrusiveness. It can
determine the entire success and failure of a technol-
ogy. The lesson of Thomas Edison and his choice of
an incompatible infrastructure, both for electricity and
the phonograph, leads to a more general lesson about
the marketplace.

There are two kinds of economic markets: substitutable
and nonsubstitutable. Substitutable goods are prod-
ucts like groceries, clothes, and furniture. Nonsubsti-
tutable goods are invariably infrastructures. The two
have very different properties. Most recent books about
the business and marketing side of technology miss
this distinction, but a company that provides a substi-
tutable good must function very differently than one
that provides a nonsubstitutable one.

In a substitutable marketplace, goods of one manufac-
turer can be substituted for goods of another. This is
the classic market-driven economy, where competition
prevails. This applies to food and newspapers, to auto-
mobiles and television sets. In this marketplace, stan-
dard market forces are at work and the market can be
shared among competitors. Usually, one company has
a substantial lead, but the others can coexist in relative
stability. This is a classic case of free market com-
petition. The choice of one substitutable good makes
no commitment for the future. The consumer can buy
a Pepsi today and a Coke tomorrow: the first choice
does not constrain the second.

In a nonsubstitutable market, the required infrastruc-
ture means that goods from one manufacturer cannot
be substituted for goods of another. This is the market-
place that Edison found himself in with his use of DC
electricity over the competition’s use of AC. It was the
same story with his use of vertically cut cylinders and
discs when the competition used laterally cut discs. It
is what happened with Beta videocassette recorders.

Once there is a nonsubstitutable market is doesn’t mat-
ter how good the product is.

— Donald A. Norman,The Invisible Computer[24])(pp.116–
117)

27. ROBINSON, HOVENDEN,
HALL, AND RACHEL

Fordism and postFordism

When Brad Cox [1990] wrote his riposte to Fred Brooks,
he proposed as a silver bullet a technical solution based
on components, taking a manufacturing viewpoint lean-
ing heavily on the experience of mass-production. This
approach is known as Fordism, or Taylorism, and much
of software development has been grounded in this
view of human industrial activity.

Robin Murray [1989] has given a very readable ac-
count of Fordism and post-Fordism. Fordism began
at the start of the twentieth century, and has dominated
industrial processes since. It has four basic principles:

• standardised products

• repeated tasks having potential for automation

• unautomated tasks analysed using work study meth-
ods, to enable the easy training of workers and
their easy replacement — this is the scientific
management of Fred Taylor, also known as Tay-
lorism.

• production lines with the work moving to the work-
ers.

This method of production had high initial costs and
relied upon large volumes of sales, and thus heavy
marketing and even the manipulation of the market.
Managements were very hierarchical. Labour relations
were poor, and turnover of employees was large due
to the mechanical nature of the employment. Fordist
ideas were not restricted to Europe and America, and
were also keenly adopted within the industrialisation
programs of the former Communist block.

256

We see Fordism and Taylorism in the software lifecy-
cle and software development methodologies. While
we do not have production lines in computing with de-
tailed specialisation, we do identify different skills of
analysis and programming, testing and management,
and decompose the work into discrete steps where spe-
cialists are applied using their specific skills. The spe-
cialisation may further breakdown into programmers
skilled with particular programming languages, design-
ers specialised in particular types of systems like com-
munications, database and interfaces, and analysts spe-
cialised in particular application areas, from command
and control to banking to flight control. The Fordist
view is further seen in the preoccupation with met-
rics and process improvement, the emphasis on control
(‘you cannot control what you cannot measure’).

Alternatives to Fordism arose within retailing and from
there moved into manufacturing. Information technol-
ogy is seen as critically important in these develop-
ments, enabling retailers like Sainsburys to track the
stocks in their stores and the sales during the day to ar-
range delivery of just the correct quantities from their
warehouses overnight. From there it was a small step
to by-pass the warehouses and order directly from the
suppliers, so that the suppliers tuned their production
to the retailing needs on a daily cycle. The need for
the holding of large stocks was removed, this is just-
in-time manufacturing.

At the manufacturing end, flexibility was also achieved
through information technology, with the lead coming
from Japan, from Toyota, reputedly following a visit
to the US by Toyota who saw the post-Fordist retailing
there. The move was to reskill workers, using methods
like quality circles to tap the knowledge of the work-
ers. “In post-Fordism, the worker is designed to act as
a computer as well as a machine” (Murray 1989 p272)
And the specialist machinery itself was also flexible,
being general purpose and capable of being set up for
some other job very quickly indeed.

From there the next step was to subcontract wherever
possible. The retailing equivalent has been franchis-
ing. The practices of Benetton in the textiles and cloth-
ing industry is used as an example of this trend, di-
rectly employing a few thousand people but indirectly
employing tens of thousands through subcontracting
of manufacture, and franchising sales. Information
technology has been critical in monitoirng sales world-
wide, noticing trends, and switching production to meet
the orders from shops.

— Hugh Robinson, Fiona Hovenden, Pat Hall and Janet
Rachel,Postmodern Software Development, [30], also
citing Cox [10] and Murray [22].

Modernism: Modernism’s alchemistic promise — to transform
quantity into quality through abstraction and repetition —
has been a failure, a hoax: magic that didn’t work. Its ideas,
aesthetics, strategies are finished. Together all attempts to
make a new beginning have only discredited theidea of a
new beginning. A collective shame in the wake of this fiasco
has left a massive crater in our understanding of modernity
and modernization.
— Rem Koolhaas and Bruce Mau,S, M, L, XL[17]

28. NAUR AND RANDELL

There was a considerable amount of debate on what
some members chose to call the ’software crisis’ or
the ’software gap’. As will be seen from the quotations
below, the conference members had widely differing
views on the seriousness, or otherwise, of the situation,
and on the extent of the problem areas.

David and Fraser:(from theirPosition paper) “There
is a widening gap between ambitions and achievements
in software engineering. This gap appears in several
dimensions: between promises to users and perfor-
mance achieved by software, between what seems to
be ultimately possible and what is achievable now and
between estimates of software costs and expenditures.
The gap is arising at a time when the consequences of
software failure in all its aspects are becoming increas-
ingly serious. Particularly alarming is the seemingly
unavoidable fallibility of large software, since a mal-
function in an advanced hardware-software system can
be a matter of life and death, not only for individuals,
but also for vehicles carrying hundreds of people and
ultimately for nations as well.”

Hastings: I am very disturbed that an aura of gloom
has fallen over this assembly. I work in an environ-
ment of many large installations using OS/360. These
are complex systems, being used for many very so-
phisticated applications. People are doing what they
need to do, at a much lower cost than ever before; and
they seem to be reasonably satisfied. Perhaps their sys-
tems do not meet everybody’s need, they don’t meet
the time sharing people’s demands for example, but I
don’t think software engineering should be confused
with time sharing system engineering. Areas like traf-
fic control, hospital patient monitoring, etc. are very
explosive, but are very distinct from general purpose
computing.

Gillette: We are in many ways in an analogous posi-
tion to the aircraft industry, which also has problems
producing systems on schedule and to specification.
We perhaps have more examples of bad large systems
than good, but we are a young industry and are learn-
ing how to do better.

Randell: There are of course many good systems, but
are any of these good enough to have human life tied
online to them, in the sense that if they fail for more
than a few seconds, there is a fair chance of one or
more people being killed?

Graham: I do not believe that the problems are related
solely to online systems. It is my understanding that an

257

uncritical belief in the validity of computer-produced
results (from a batch-processing computer) was at least
a contributory cause of a faulty aircraft design that lead
to several serious air crashes.

Perlis: Many of us would agree that Multics and TSS/360
have taken a lot longer to develop than we would have
wished, and that OS/360 is disappointing. However,
perhaps we are exaggerating the importance of these
facts. Is bad software that important to society? Are
we too worried that society will lose its confidence in
us?

Randell: Most of my concern stems from a perhaps
over-pessimistic view of what might happen directly
as a result of failure in an automated air traffic control
system, for example. I am worried that our abilities as
software designers and producers have been oversold.

Opler: As someone who flies in airplanes and banks in
a bank I’m concerned personally about the possibility
of a calamity, but I’m more concerned about the effects
of software fiascos on the overall health of the industry.

Kolence:I do not like the use of the word crisis. It’s a
very emotional word. The basic problem is that certain
classes of systems are placing demands on us which
are beyond our capabilities and our theories and meth-
ods of design and production at this time. There are
many areas where there is no such thing as a crisis —
sort routines, payroll applications, for example. It is
large systems that are encountering great difficulties.
We should not expect the production of such systems
to be easy.

Ross: It makes no difference if my legs, arms, brain
and digestive tract are in fine working condition if I
am at the moment suffering from a heart attack. I am
still very much in a crisis.

Fraser: We are making great progress, but neverthe-
less the demands in the industry as a whole seem to
be going ahead a good deal faster than our progress.
We must admit this, even though such an admission is
difficult.

Dijkstra: The general admission of the existence of the
software failure in this group of responsible people is
the most refreshing experience I have had in a number
of years, because the admission of shortcomings is the
primary condition for improvement.

— P. Naur and B. Randell,Software Engineering: Re-
port of a conference sponsored by the NATO Science
Committee[23]

Figure 18: Brick Story — Even the most basic of components
have a place in the repository. While these components are ba-
sic, they are made using using a process that is no longer com-
mon. Accordingly, a significant effort was necessary to locate
and obtain these basic components.

1968: Sous le pav´e, la plage(under the pavement, beach): initially.
May ’68 launched the idea of a new beginning for the city.
Since then, we have been engaged in two parallel operations:
documenting our overwhelming awe for the existing city, de-
veloping philosophies, projects, prototypes for a preserved
and reconstituted city and, at the same time, laughing the
professional field of urbanism out of existence, dismantling it
in our contempt for those who planned (and made huge mis-
takes in planning) airports, New Towns, satellite cities, high-
ways, high-rise buildings, infrastructures, and all the other
fallout from modernization. After sabotaging urbanism, we
have ridiculed it to the point where entire university depart-
ments are closed, offices bankrupted, bureaucracies fired or
privatized.
— Rem Koolhaas and Bruce Mau,S, M, L, XL[17]

258

29. THE END
Is Software Engineering, as a discipline, a fraud founded upon a

lie?

The Lie: There is a ‘software crisis’ — in truth there never was.

The Fraud: You must to spend lots of money to bridge a ‘software
gap’ — in truth there is no gap.

The Consolation: There is no silver bullet — but there are no
werewolves.

So there have been minor problems — from time to time the
phone network crashes, a rocket explodes, every desktop computer
in the world succumbs to a virus — but we ignore them the way we
ignore flat batteries, the inevitably of traffic accidents as we walk
across a roadway, or difficulties we have in opening plastic bottles
of ketchup.

The dot-com bubble didn’t end because of a ‘software gap’, be-
cause programmers couldn’t write proper software fast enough.
Rather the reverse: programmers were able to write software so
easily that businesses began to pay for software that was pointless,
and therefore worthless.

Software engineering has failed, but software is a success.
What is now becoming clear is that software — irrespective of

how it is written, built, or grown — has a structure more like a
natural system than a mathematical construction. The relationships
between the objects in a program is more like that of the words in a
novel, the cells in an organism, or the leaves on a tree, than a series
of propositions linked bymodus ponens[35, 28]. Programs will
more easily yield their secrets to critical theory, biology, or botany,
than to modal logic or complexity theory.

No program is an island: every program contains a trace of every
program that has ever been written, or that will ever be. So where
does this leave us, at the end of Software Engineering? We are im-
measurably richer due to all the software in the world. We draw
upon this software whenever we need to create something ‘new’:
programming is — and always has been — re-use, re-programming.
We have the makings of a new discipline: the natural science of
composed software; the normal science of the study of all the soft-
ware in the world.

Crisis: What if we simply declare that there is no crisis — redefine
our relationship with the city not as its makers but as its mere
subjects, as its supporters?

More than ever, the city is all we have . . .
— Rem Koolhaas and Bruce Mau,S, M, L, XL[17]

Figure 19: Fountain Story — Marcel Duchamp showed the im-
portance of context in art. Even recycled ready-made compo-
nents have beauty and value. The component repository helps
to bring the beauty and value of components to new users in
new contexts.

259

30. REFERENCES
[1] Agile Alliance. Manifesto for agile software development.

Available athttp://agilemanifesto.org, 2003.
[2] Kent Beck.Extreme Programming Explained: Embrace

Change. Addison-Wesley, 1999.
[3] Robert Biddle and Ewan Tempero. Understanding the impact

of language features on reusability. In Murali Sitaraman,
editor,Proceedings of the Fourth International Conference
on Software Reuse, pages 52–61, Orlando, USA, April 1996.
IEEE Computer Society.

[4] Robert Biddle and Ewan Tempero. Towards asset based
software engineering. InNinth Workshop on
Institutionalizing Software Reuse (WISR9), 1999.

[5] Jimmy Caulty and Bill Drummond.The manual: How to
Have a Number One the Easy Way. KLF Publications, 1988.

[6] Larry L. Constantine.The Peopleware Papers: Notes on the
Human Side of Software. Prentice-Hall Inc., 2001.

[7] Alan Cooper.The Inmates are Running the Asylum. Sams
Publishing, 1999.

[8] Augusta Ada King Countess of Lovelace. Annotated
translation of sketch of the Analytical Engine invented by
Charles Babbage, by L. F. Menabrea, of Turin, Officer of the
Military Engineers. (Available athttp:
//www.fourmilab.ch/babbage/sketch.html),
1843.

[9] Douglas Coupland.Generation X: Tales for an Accelerated
Culture. St. Martins Press, 1992.

[10] Brad J. Cox. Planning the software industrial revolution.
IEEE Software, November 1990.

[11] Eric S. Raymond (Editor). The jargon file. Available at
http://www.jargon.org, 2003.

[12] Martin Fowler. Is design dead? InExtreme Programming
Examined, Giancarlo Succi and Michele Marchesi, Editors,
pages 3–18. Addison-Wesley, 2001.

[13] Ivar Jacobson, Martin Griss, and Patrik Jonsson.Software
Reuse: Architecture, Process and Organization for Business
Success. Addison-Wesley, 1997.

[14] Ralph E. Johnson and Brian Foote. Designing reusable
classes.Journal of Object-Oriented Programming, June/July
1988.

[15] Frederick P. Brooks Jr.The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, anniversary edition
edition, 1995.

[16] Donald E. Knuth.Selected Papers on Computer Science.
Cambridge University Press, 1996.

[17] Rem Koolhaas and Bruce Mau.S,M,L,XL, O.M.A., Small,
Medium, Large, Extra-Large, Office of Metropolitan
Architecture. The Monacelli Press, second edition, 1998.

[18] Susan Lammers.Programmers at Work. Microsoft Press,
1986.

[19] Barbara Liskov and Stephen Zilles. Programming with
abstract data types. InProceedings of the ACM SIGPLAN
symposium on very high level languages, pages 50–59, 1974.

[20] Carma McClure.Software Reuse Techniques: Adding Reuse
to the System Development Process. Prenctice-Hall Inc.,
1997.

[21] M. Douglas McIlroy. Mass produced software components.
In P. Naur and B. Randell, editors,Report on a conference
sponsored by the NATO Science Committee on Software
Engineering, pages 138–155. Scientific Affairs Division,
NATO, Brussels, 1969.

[22] Robin Murray.Fordism and Post-Fordism, pages 167–276.
Academy Editions, 1992.

[23] P. Naur and B. Randell, editors.Software Engineering:
Report of a conference sponsored by the NATO Science
Committee. NATO Scientific Affairs Division, Brussels,
1969.

[24] Donald A. Norman.The Invisible Computer: Why Good
Products Fail, The Personal Computer is so Complex, and
Information Appliances are the Solution. MIT Press, 1999.

[25] Kristen Nygaard and Ole-Johan Dahl. The development of
the simula languages. InThe first ACM SIGPLAN conference
on History of programming languages, pages 245–272, 1978.

[26] David Lorge Parnas. On the criteria to be used in
decomposing systems into modules.Communications of the
ACM, 15:1053–1058, December 1972.

[27] D.L. Parnas and P.C. Clements. A rational design process:
How and why to fake it.IEEE Transactions on Software
Engineering, 12:251–257, 1986.

[28] Alex Potanin, James Noble, Marcus Frean, and Robert
Biddle. Scale-free geometry of object-oriented programs.
Communications of the ACM, 2004. To appear, draft
available at:http://www.mcs.vuw.ac.nz/comp/
Publications/CS-TR-02-30.abs.html.

[29] Jeffrey S. Poulin.Measuring Software Reuse: principles,
practices, and economic models. Addison-Wesley Longman
Inc., 1997.

[30] Hugh Robinson, Fiona Hovenden, Pat Hall, and Janet
Rachel. Postmodern software development.Computer
Journal, 41(6), 1998.

[31] Douglas C. Schmidt. Why software reuse has failed and how
to make it work for you.The C++ Report, 1999.

[32] Clemens Szyperski.Component Software: Beyond
Object-Oriented Programming. Addison-Wesley Longman
Inc., 1997.

[33] Will Tracz. Confessions of a Used Program Salesman:
Institutionalizing Software Reuse. Addison-Wesley
Publishing Inc., 1995.

[34] Alan Turing. Proposed electronic calculator. (Available at
http://www.alanturing.net/turing_
archive/archive/index/aceindex.html), 1946.

[35] S. Valverde, R. Ferrer Cancho, and R. V. Sole. Scale-free
networks from optimal design. Available at
http://www.santafe.edu/sfi/publications/
wpabstract/200204019.

[36] Maurice V. Wilkes.Memoirs of a Computer Pioneer. MIT
Press, 1985.

[37] Maurice V. Wilkes, David J. Wheeler, and Stanley Gill.The
Preparations of Programs for An Electronic Computer: With
special reference to the EDSAC and the use of a library of
subroutines. Addison-Wesley Press, 1951.

PARASITE What happens when a critical essay extracts a “pas-
sage” and “cites” it? Is this different from a citation, echo, or
allusion within a poem? Is a citation an alien parasite within
the body of its host, the main text, or is it the other way
around, the interpretative text the parasite which surrounds
and strangles the citation which is its host?
— J. Hillis Miller, as quoted in Gregory L. Ulmer, “The Ob-
ject of Post-Criticism”, inThe Anti-Aesthetic: essays of Post-
modern Culture, ed. Hal Foster (Seattle: Bay Press, 1989), as
quoted in Rem Koolhaas and Bruce Mau,S,M,L,XL[17]

260

