
κDOT: Scaling DOT with Mutation and Constructors
Ifaz Kabir

University of Waterloo

Canada

ikabir@uwaterloo.ca

Ondřej Lhoták

University of Waterloo

Canada

olhotak@uwaterloo.ca

Abstract
Scala unifies concepts from object and module systems by

allowing for objects with typemembers which are referenced

via path-dependent types. TheDependent Object Types (DOT)

calculus of Amin et al. models only this core part of Scala,

but does not have many fundamental features of Scala such

as strict and mutable fields. Since the most commonly used

field types in Scala are strict, the correspondence between

DOT and Scala is too weak for us to meaningfully prove

static analyses safe for Scala by proving them safe for DOT.

A DOT calculus that can support strict and mutable fields

together with constructors that do field initialization would

be more suitable for analysis of Scala. Toward this goal, we

present κDOT, an extension of DOT that supports construc-

tors and field mutation and can emulate the different types of

fields in Scala. We have proven κDOT sound through a mech-

anized proof in Coq. We present the key features of κDOT
and its operational semantics and discuss work-in-progress

toward making κDOT fully strict.

CCS Concepts • Software and its engineering → For-
mal language definitions;

Keywords dependent object types, type safety, mutation

ACM Reference Format:
Ifaz Kabir and Ondřej Lhoták. 2018. κDOT: Scaling DOT with

Mutation and Constructors. In Proceedings of the 9th ACM SIG-
PLAN International Scala Symposium (Scala ’18), September 28, 2018,
St. Louis, MO, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3241653.3241659

1 Introduction
Scala aims to be a scalable language where one can easily

express ideas both large and small. Toward this goal, Scala

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

Scala ’18, September 28, 2018, St. Louis, MO, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-5836-1/18/09. . . $15.00

https://doi.org/10.1145/3241653.3241659

unifies concepts from object and module systems by allow-

ing objects to carry type members which are referenced by

path dependent types. After a long and elusive search for a

sound calculus that could model path-dependent types, the

Dependent Object Types (DOT) family of calculi were pro-

posed by Amin et al. [2012], and variants were later proven

sound [Amin et al. 2016, 2014; Rompf and Amin 2016b].

While the DOT calculi of Rompf and Amin [2016b] and

Amin et al. [2016] have notions of path-dependent types, they

eschew many features of Scala to simplify their calculi and

type soundness proofs. In particular, objects in the calculus

of Rompf and Amin [2016b] only have methods and type

members. Field reads are emulated by method calls, which

roughly correspond to lazy semantics for field reads. The

DOT calculus of Amin et al. [2016], which we call WadlerFest

DOT, supports first class functions instead of methods. In

this calculus, fields store termswhich are evaluated each time

the field is read, which again corresponds to lazy semantics.

Both of these calculi evaluate function applications in a strict

manner, but neither supports any form of field mutation. For

this paper, we focus on extending WadlerFest DOT.

The choice of lazy fields simplifies type soundness proofs.

By carefully defining the operational semantics, they allow

objects to have recursive types without having to worry

about field initialization. Scala however, provides many dif-

ferent types of fields:

val strict immutable

var strict mutable

lazy val memoized lazy immutable

The strict field types are much more commonly used than

lazy vals. Since DOT uses lazy fields, for many different kinds

of static analyses, the correspondence between DOT and

Scala is too weak for us to meaningfully prove the analysis

safe for Scala by proving it safe for DOT. Furthermore, lazy

fields and the lack of field mutation limit the expressiveness

of the calculus (see Section 6).

In this paper we present κDOT, an extension of Wadler-

Fest DOT with constructors and field mutation. κDOT adds

few typing rules to WadlerFest DOT while substantially im-

proving its expressive power. In particular, our typing rules

for mutation are significantly simpler than existing mutation

extensions to DOT [Rapoport and Lhoták 2017; Rompf and

Amin 2016a] which add syntax and typing rules for ML-style

references. The operational semantics of κDOT is defined

using an abstract machine with a stack and a heap, which

corresponds more closely to the semantics of Scala.

40

https://doi.org/10.1145/3241653.3241659
https://doi.org/10.1145/3241653.3241659
https://doi.org/10.1145/3241653.3241659

Scala ’18, September 28, 2018, St. Louis, MO, USA Ifaz Kabir and Ondřej Lhoták

trait Fruit [T] { type A = T }

trait Tree { tree =>
type TreeFruit

val fruit : Fruit [tree . TreeFruit] =
new Fruit[tree . TreeFruit] {}

}

val mangoTree = new Tree{}
(a) Initializing a dependently typed object

trait FruityTree extends Tree { tree =>
val fruits : List [Fruit [tree . TreeFruit]] =
new Fruit[tree . TreeFruit] {} :: tree . fruits

}

val fruityError = new FruityTree {}
(b) An initialization error

Figure 1. A Motivating Example

1.1 A Motivating Example
Our main motivation for designing κDOT was to have a type

safe calculus where we could explore initialization systems

for Scala. In object-oriented programming languages like

Scala, we care about initialization because we want our pro-

grams to be free from null-reference exceptions. In Scala, we

create objects by first allocating them with fields containing

nulls, then filling up the fields with locations of other objects.

For instance, the code in Fig. 1b contains an initialization er-

ror. If we run this code, the field fruits will be accessed before
being initialized, resulting in a null-reference exception. We

developed κDOT as an extension of WadlerFest DOT where

these problems could be studied.

A secondary motivation is that we wanted to explore the

design space of a fully strict DOT calculus without adding

sum types, null types, or exceptions to the calculus. Consider

the program in Fig. 1a. As wewill see in Section 5,WadlerFest

DOT is not able to express the heap structure of this program

— in WadlerFest DOT the field fruit must be lazy. We wanted

to design a DOT calculus which did not have this limitation

and we plan to evolve κDOT into a fully strict DOT calculus

using initialization systems.

1.2 Contributions
In this paper we make the following contributions:

• We show howmutation and constructors can be added

to WadlerFest DOT with minimal new constructs.

• We provide a mechanized proof of type safety for

κDOT1
as an extension to the type safety proof for

WadlerFest DOT of Rapoport et al. [2017].

• We discuss the usefulness of such a calculus in relation

to initialization.

• We discuss the design choices we made in κDOT.

The rest of the paper is organized as follows. In Section 2,

we introduce the syntax and semantics of κDOT. Next, in

1
Coq proof available at https://git.uwaterloo.ca/ikabir/dot-public

Section 3, we outline the type safety proof and the changes

we made to the type safety proof of WadlerFest DOT. In

Section 4, we explore initialization problems in κDOT and

discuss possible benefits of tracking initialization in DOT

calculi. In Section 5, we compare the expressive power of

κDOT toWadlerFest DOT. In Section 6, we discuss the design

choices we made in κDOT and compare κDOT to other DOT

calculi that have notions of mutation. We discuss related

work in Section 7 before concluding in Section 8.

2 WadlerFest DOT with Constructors
In this section we explain the syntax and semantics of κDOT.

2.1 Syntax
The syntax for κDOT is given in Fig. 2 where we highlighted

the parts that are different from Amin et al. [2016].

In κDOT, type labels are used for type members and term

labels are used for fields. κDOT uses two different types of

variables. Locations are variables that represent items in the

heap and abstract variables are used for let bindings and for

function and constructor parameters. κDOT has types for

recursive objects and their fields, functions, and constructors

as well as intersection types, a top type, and a bottom type.

Function and constructor definitions are literals in κDOT
which, together with objects, can be bound in the heap.

Objects in κDOT consist of a list of definitions. Note that

the grammar for field definitions allows fields to contain

arbitrary terms. As we will see in Section 2.2, field reads in

this calculus can reduce to arbitrary terms. Field assignment,

field reads, constructor calls, and function calls are all written

in ANF in κDOT.
The following are some additional differences from Amin

et al. [2016] which are not highlighted in Fig. 2.

• We removed objects from the grammar for literals.

Objects in κDOT are created by calling a constructor.

• We removed literals from the grammar for terms. Lit-

erals in κDOT must be let bound; we cannot directly

write a term which represents a literal.

• In WadlerFest DOT, the scope of z in ν (z : T) d is both

T and d . In κDOT, the scope of z is only T .
• Frames, stacks, heaps, and configurations were not

used in WadlerFest DOT.

• We define answers to be a location together with a

heap and an empty stack. In particular literals are not

answers since they must be let bound in κDOT.

2.1.1 New Constructs and Terminology
For a field declaration {a : S ..T }, we call S the setter type of a
andT the getter type ofa. For a constructorκ

(
„
z : T , z1 : U

)
{d } t

we call d the set of default definitions and t the body of the

constructor. The variable z1 can be thought of as the this or
self variable of traditional object oriented languages. d and t
may both refer to z1.

41

https://git.uwaterloo.ca/ikabir/dot-public

κDOT: Scaling DOT with Mutation and Constructors Scala ’18, September 28, 2018, St. Louis, MO, USA

Labels and Variables

a,b, c Term Labels

A,B,C Type Labels

y Locations

z Abstract Variables

x ,k F y | z Variables

Types

S,T ,U F ⊤ | ⊥ Top and Bottom types

| ∀ (z : S)T Dependent Function

| µ (z : T) Recursive Type

|
{
a : S .. T

}
Field Declaration

| {A : S ..T } Type Declaration

| x .A Type Projection

| S ∧T Type Intersection

| K
(

„
z : T , z1 : T

)
Constructor Type

Terms

t ,u F x Variable

| new k (#„x) Constructor Call

| x .a | x .a B x1 Field Read, Field Write

| x x1 Application

| let z = l in u Literal Binding

| let z = t in u Let Binding

Literals and Heap Items

l F λ (z : T) .t Lambda

| κ
(

„
z : T , z1 : U

)
{d } t Constructor

h F l Literal

| ν (z : T) d Object

Definitions

d F {a = t } Field Definition

| {A = T } Type Definition

| d ∧ d ′ Aggregate Definition

Frames, Stacks, Heaps, and Configurations

F F let z = □ in t Let Frame

| return y Return Frame

s F ε | F :: s Stacks

Σ F · | Σ, y = h Heap

c F ⟨t ; s; Σ⟩ Configuration

n F
〈
y; ε ; Σ

〉
Answer

Figure 2. Syntax of κDOT

y = ν (z : T) . . . {a = t } . . . ∈ Σ〈
y.a; s; Σ

〉
7−→ ⟨t ; s; Σ⟩

(Project)

y = ν (z : T) . . . {a = t } . . . ∈ Σ
Σ′ = Σ [y = ν (z : T) . . .

{
a = y1

}
. . .]〈

y.a B y1; s; Σ
〉
7−→

〈
y1; s; Σ

′
〉 (Assignment)

y = λ (z : T) .t ∈ Σ〈
y y1; s; Σ

〉
7−→ ⟨[y1/z] t ; s; Σ⟩

(Application)

#„y2 =
„y,y1

#„z2 =
„z, z1

k = κ
(

„
z : T , z1 : U

)
{d } t ∈ Σ〈

new k (#„y) ; s; Σ
〉
7−→〈 # „

[y2/z2]t ; return y1 :: s; Σ, y1 = ν
(
z1 :

„

[y/z]U
) # „

[y2/z2]d
〉

(New)〈
y1; return y :: s; Σ

〉
7−→
〈
y; s; Σ

〉
(Return)〈

y; let z = □ in t :: s; Σ
〉
7−→ ⟨[y/z] t ; s; Σ⟩ (Let-Loc)

⟨let z = l in u; s; Σ⟩ 7−→
〈
[y/z] t ; s; Σ, y = l

〉
(Let-Lit)

⟨let z = t in u; s; Σ⟩ 7−→ ⟨t ; let z = □ in u :: s; Σ⟩
(Let-Push)

Figure 3. Operational Semantics for κDOT

2.1.2 Abbreviations
To simplify our discussion, we will use some abbreviations

for declarations. For field declarations of the form {a : T ..T }
we will write {a : T }, and for type declarations of the form

{A : T ..T } we will write {A : T }.

2.2 Operational Semantics
We give the κDOT calculus an operational semantics via an

abstract machine (Fig. 3). A configuration of the machine

consists of a term t , a stack s , and a heap Σ; where t is the
current focus of execution, s is a list of frames representing

the current evaluation context, and Σ binds locations to lit-

erals and objects. To execute a κDOT term t we initialize
the machine with ⟨t ; ε ; ·⟩ and then start the machine. The

machine then either runs indefinitely, finishes executing and

returns an answer in the form of a location pointing to a

heap item together with an empty stack, or gets stuck.

We note that the operational semantics is deterministic up

to renaming of variables. This is because for each possible

shape of the term t and stack s in a configuration, there is

exactly one possible rule that can apply.

2.2.1 Frames and the Stack
Frames are of two kinds: let frames and return frames. Let

frames represent the continuation of executing let terms and

return frames represent the continuation of constructor calls.

Frames are pushed onto the stack by either executing a

let binding, or by calling a constructor. Executing a let z =

42

Scala ’18, September 28, 2018, St. Louis, MO, USA Ifaz Kabir and Ondřej Lhoták

t in u pushes the frame let z = □ in u onto the stack via

the (Let-Push) rule and starts executing the term t . The □
represents the hole of the let binding’s evaluation context. If

t executes down to a location y, the (Let-Loc) rule pops the
frame from the stack and executes u.
If a constructor k = κ

(
„
z : T ,y : U

)
{d } t is bound in the

heap Σ, a constructor call new k (#„x) does three different

things via the (new) rule. Firstly, it allocates a new object y
with the default definitions d as its fields in the heap. Sec-

ondly, it pushes a return frame return y returning the loca-

tion of the newly allocated object onto the stack. Lastly, it

runs the body of the constructor t . After the body of the

constructor finishes executing, the (Return) rule pops the

return frame and returns the location of the object.

We note that a return frame can be represented by a let

frame of the form let z = □ in y, but we made return frames

explicit since we were interested in initialization systems.

2.2.2 Field Reads and Writes
The (Project) rule causes a field read y.a to evaluate to

the term t that is bound at y.a. Note that if the field is not

mutated between subsequent reads, t is reevaluated at each

read. Thus field reads are lazy without memoization.

A fieldwritey.a B y1 is evaluated using the (Assignment)
rule. This mutates the heap so that y.a contains the location

y1 after execution and returns y1.

2.2.3 Literals and Applications
A let bound literal is evaluated with the (Let-Lit) rule, which

binds the literal to a new location in the store and substitutes

references to the location with the new location.

The (Application) rule evaluates Function applications

y y1. An application evaluates to the body of the function at

location y with an appropriate substitution.

3 Type Safety
Fig. 4, Fig. 5, Fig. 6, and Fig. 7 show the typing rules forκDOT.
Rules that are new or different from WadlerFest DOT [Amin

et al. 2016] are highlighted. Given our operational semantics,

type safety says that if we start our abstract machine with a

well-typed term then the machine either runs indefinitely or

successfully returns an answer.

3.1 Type Safety for κDOT
Theorem 3.1 (Type Safety). If ⊢ t : T , then either the ini-
tial configuration of the abstract machine ⟨t ; ε ; ·⟩ diverges or
⟨t ; ε ; ·⟩ 7−→∗ ⟨x ; ε ; Σ⟩ for some answer ⟨x ; ε ; Σ⟩.

We prove type safety of κDOT by proving Wright and

Felleisen [1994] style progress and preservation lemmas. To

express progress and preservation we needed to extend typ-

ing to heaps, stacks, and configurations.

Definition 3.2 (Heap Correspondence). For a context Γ and
an environment Σ, we say that Γ corresponds to Σ, written

Γ (x) = T

Γ ⊢ x : T
(Var)

Γ ⊢ x : {a : T ..U }

Γ ⊢ x .a : U
({}-E)

Γ ⊢ x1 : T
Γ ⊢ x : {a : T ..U }

Γ ⊢ x .a B x1 : U
(B-I)

Γ ⊢ x : T

Γ ⊢ x : µ (x : T)
(Rec-I)

Γ ⊢ x : µ (z : T)

Γ ⊢ x : [x/z]T
(Rec-E)

Γ ⊢ l : T x < fv (U)
Γ, x : T ⊢ u : U

Γ ⊢ let x = l in u : U
(Lit-I)

Γ ⊢ x : ∀ (z : T)U Γ ⊢ x1 : T

Γ ⊢ x x1 : [x1/z]U
(All-E)

Γ ⊢ k : K
(

„
z : T , z1 : U

)
Γ ⊢

„
x : T

Γ ⊢ new k (#„x) : µ (z1 : U)
(K-E)

Γ ⊢ t : T x < fv (U)
Γ, x : T ⊢ u : U

Γ ⊢ let x = t in u : U
(Let)

Γ ⊢ x : T Γ ⊢ x : U

Γ ⊢ x : T ∧U
(And-I)

Γ ⊢ t : T Γ ⊢ T <: U

Γ ⊢ t : U
(Sub)

Figure 4. Typing in κDOT

Γ, x : T ⊢ t : U x < fv (T)

Γ ⊢ λ (x : T) .t : ∀ (x : T)U
(All-I)

Γ,
„
x : T , x1 : U ⊢ d : U

#„x < fv
(

#„
T
)

Γ,
„
x : T , x1 : U ⊢ t : T

′

Γ ⊢ κ
(

„
x : T ,x1 : U

)
{d } t : K

(
„
x : T ,x1 : U

) (K-I)

Figure 5. Literal Typing in κDOT

Γ ⊢ {A = T } : {A : T ..T } (Def-Typ)

Γ ⊢ t : T

Γ ⊢ {a = t } :
{
a : T .. T

} (Def-Trm)

Γ ⊢ d1 : T1 Γ ⊢ d2 : T2
dom (d1) , dom (d2) disjoint

Γ ⊢ d1 ∧ d2 : T ∧U
(And-Def)

Figure 6. Definition Typing in κDOT

43

κDOT: Scaling DOT with Mutation and Constructors Scala ’18, September 28, 2018, St. Louis, MO, USA

Γ ⊢ T <: ⊤ (Top)

Γ ⊢ ⊥ <: T (Bot)

Γ ⊢ T <: T (Refl)

Γ ⊢ T ∧U <: T (And1-<:)

Γ ⊢ T ∧U <: U (And2-<:)

Γ ⊢ S <: T Γ ⊢ S <: U

Γ ⊢ S <: T ∧U
(<:-And)

Γ ⊢ x : {A : S ..T }

Γ ⊢ S <: x .A
(<:-Sel)

Γ ⊢ x : {A : S ..T }

Γ ⊢ x .A <: T
(Sel-<:)

Γ ⊢ T2 <: T1 Γ ⊢ U1 <: U2

Γ ⊢ {a : T1..U1} <: {a : T2..U2}
(Fld-<:-Fld)

Γ ⊢ S2 <: S1 Γ ⊢ T1 <: T2

Γ ⊢ {A : S1..T1} <: {A : S2..T2}
(Typ-<:-Typ)

Γ ⊢ S2 <: S1 Γ, x : S2 ⊢ T1 <: T2

Γ ⊢ ∀ (x : S1)T1 <: ∀ (x : S2)T2
(All-<:-All)

Γ ⊢ S <: T Γ ⊢ T <: U

Γ ⊢ S <: U
(Trans)

Figure 7. Subtyping in κDOT

Γ ⊢ S <: U

Γ ⊢ ε : S,U
(Stack Empty)

Γ ⊢ s : T ,U x < fv (T)
Γ, x : S ⊢ u : T

Γ ⊢ let x = □ in u :: s : S,U
(Stack Let)

Γ ⊢ s : T ,U Γ ⊢ x : T

Γ ⊢ return x :: s : S,U
(Stack Return)

Figure 8. Stack Typing in K-DOT

Γ ∼ Σ, if Γ and Σ have the same domain, and for all x : T ∈ Γ
and x = h ∈ Σ

• if h = λ (z : S) .t , then Γ ⊢ h : T using the (All-I) rule.

• if h = κ
(

„
z : S, z1 : U

)
{d } t , then Γ ⊢ h : T using the

(K-I) rule.

• if h = ν (z : U) d for some object ν (z : U) d , then T =
µ (z : U) and Γ ⊢ d : [x/z]U

Fig. 8 shows the typing rules for stacks. Stacks represent

evaluation contexts and are given two types Γ ⊢ s : S,U .

Here S is the type that the focus of execution must have

for the overall evaluation context to have type U . The use

of subtyping in the (Stack Empty) rule allows us to avoid

defining subtyping between stacks and configurations. The

(Stack Let) rule closely mirrors the (Let) typing rule. The

(Stack Return) rule ensures that, after a constructor call,

the stack is typed with the type of the allocated object.

Given heap correspondence and stack typing, we define

configuration typing as follows.

Definition 3.3 (Configuration Typing). Γ ⊢ ⟨t ; s; Σ⟩ : U if

Γ ∼ Σ and for some type T , Γ ⊢ t : T and Γ ⊢ s : T ,U .

Configuration Typing is defined for proving preservation

for a small step operational semantics. In the above definition,

U is the type of the term that the machine is started with, T
is the type of the current focus of execution, and stack typing

ensures thatU is preserved when pushing and popping stack

frames.

Our proof of progress and preservation extends the Rapoport

et al. [2017] proof of progress and preservation for Wadler-

Fest DOT. Following Rapoport et al., we define inert types,

inert contexts and then prove progress and preservation.

Definition 3.4 (Record Type). A typeT is a record type ifT
is the intersection of tight field declarations {a : S ..S }, and
tight type {A : S ..S } declarations of distinct labels. A field

(type) declaration {a : S ..U } ({A : S ..U }) is tight if its bounds
S andU are the same.

Definition 3.5 (Inert Type). A typeU is inert if

• U is a dependent function type ∀ (x : S)T , or

• U is a constructor typeK
(

„
x : S,y : T

)
for a record type

T , or
• U is a recursive type µ (x : T) for a record type T .

Definition 3.6 (Inert Context). Γ is an inert context if the
type Γ (x) that it binds to each variable x is inert.

Lemma 3.7 (Progress). If Γ is inert and Γ ⊢ c : U , then either
c is an answer or there exists c ′ such that c 7−→ c ′.

Lemma 3.8 (Preservation). If Γ is inert, Γ ⊢ c : U , and c 7−→
c ′ then there exists Γ′ such that the concatenation Γ++Γ′ is
inert and Γ++Γ′ ⊢ c ′ : U .

An interesting feature of the Rapoport et al. preservation

lemma is that it adds an inertness condition to the conclusion.

We will explore runtime consequences of this in Section 4.3.

We get type safety from the above progress and preserva-

tion lemmas by noting that for ⊢ t : T the empty context is

inert and types the initial configuration as ⊢ ⟨t ; ε ; ·⟩ : T .

3.2 Cofinite Quantification and Field Mutation
In WadlerFest DOT there are no constructors and objects

are literals. In the mechanized proof of Amin et al. [2016],

objects are typed using the following rule (cofinite quantifi-

cation [Aydemir et al. 2008] is made explicit).

∀x < L Γ, x : [x/z]U ⊢ [x/z]d : [x/z]U

Γ ⊢ ν (z : T) d : µ (z : T)
({}-I)

To prove safety, Amin et al. [2016] used an idea similar to

heap correspondence which they called store correspondence.

44

Scala ’18, September 28, 2018, St. Louis, MO, USA Ifaz Kabir and Ondřej Lhoták

Definition 3.9 (Store Correspondence). For a context Γ and
an environment Σ, we say that Γ corresponds to Σ as a store,

if Γ and Σ have the same domain, and for all x : T ∈ Γ and

x = l ∈ Σ, either

• l = ν (z : U) d and Γ ⊢ l : T using the ({}-I) rule, or

• l = λ (z : S) .t and Γ ⊢ l : T using the (All-I) rule.

If we allow mutation in WadlerFest DOT, the main prob-

lem that we run into is that store correspondence may not

be preserved by executing an assignment. We illustrate this

through the following example (some types elided).

Suppose Γ corresponds to Σ as a store, and Σ only contains

the following elements.

y = ν (y :
{
a :
{
C : y.A

}}
) (
{
A = y.A

}
∧ {a = t })

y1 = ν (y1 : _)
{
C = y.A

}
After executing y.a B y1, our heap contains

y = ν (y : _) (
{
A = y.A

}
∧
{
a = y1

}
)

Now, for store correspondence the following needs to hold.

∀x < L Γ, x : _ ⊢
{
a = y1

}
: {a : {C = x .A}}

But Γ ⊢ y1 :
{
C = y.A

}
for onlyy, not cofinitely many x ’s and

hence the above does not hold. The requirement that objects

be typeable with cofinitely many variables for store corre-

spondence is too strict and we defined heap correspondence

to relax this requirement for our preservation lemma.

The cofinite quantification in the ({}-I) rule essentially

types an object by typing its definitions with all possible

bindings for the object. WadlerFest DOT reuses object typ-

ing for store correspondence. The key insight that allows us

to prove preservation for mutation in κDOT is that once an

object has already been bound to the heap, we only need to

type definitions with the current binding of the object, not all

other possible bindings. Thus, unlike store correspondence

which uses object typing via the ({}-I) to establish correspon-

dence between objects and the context, heap correspondence

only uses definition typing. For the above example, heap cor-

respondence only requires the following.

Γ ⊢
{
a = y1

}
:

{
a :
{
C = y.A

}}
The Rapoport et al. proof uses a similar idea to store cor-

respondence which they call well-typed evaluation contexts
where similar issues appear.

4 Exploring Initialization in κDOT
We started working on κDOT to design systems that could

warn programmers about null-reference errors in Scala.While

Scala has null-references, they are absent from κDOT and

other WadlerFest DOT variants. This may lead us to think

that if we are happy with lazy field reads, we may not have

to care about initialization in these calculi. In this section

we define a notion of initialization in κDOT and discuss the

bad bounds problem for DOT calculi to further motivate

initialization in κDOT.

4.1 Initialized Locations
In object-oriented languages with null-references, we con-

sider an object to be fully initialized if we cannot reach null-

references by transitively reading fields of the object. We

define a slightly different concept, but argue that this concept

is analogous (Section 4.2).

Definition 4.1 (Locally Initialized). In a heap Σ, we say that
a location x is locally initialized if

• x is bound to a literal in Σ, or
• x is bound to an object ν (x : T) d in Σ and every term

declaration in x is bound to a location.

Definition 4.2 (Fully Initialized). In a heap Σ, we say that

a location x is fully initialized if we cannot reach any term

that is not a locally initialized location by following a path

of field reads starting from x .

4.2 Emulating Nulls in κDOT
We define a bottom typed infinite loop as the notion of null
in κDOT.

Ω = let k = κ (x : {null : ⊥}) {{null = x .null }} x in

let nPkд = new k () in

nPkд.null

Ω has type⊥, and executing it causes the abstract machine

to bind nPkд = ν (nPkд : {null : ⊥})
{
null = nPkд.null

}
on

the heap and then loop indefinitely reading nPkд.null . Since
Ω has type ⊥, it also has all other types via subtyping.

Now we can emulate Scala-like constructors in κDOT by

always using Ω for the default definitions in κDOT construc-

tors. In this setting, the problem of initialization becomes

that fields must be written to before any of the default Ω are

read and executed. Here the notion of null pointer exception

is executing a default Ω.

4.3 Bad Bounds and Divergent Programs
The bad bounds problem for DOT calculi [Amin et al. 2012]

is that for any pair of arbitrary typesT andU there exists an

environment Γ such that Γ ⊢ T <: U . All that is required for

this is Γ ⊢ y : {A : T ..U }, and subtyping follows from the (<:-
Sel), (Sel-<:), and (Trans) subtyping rules. The requirement of

Γ ⊢ T <: U is easily satisfied if y : {A : T ..U } ∈ Γ or y : ⊥ ∈ Γ.
This allows us to type crazy terms. For example, the fol-

lowing is a well-typed κDOT term, even though it seems we

are reading an arbitrary field of a function. f .a is typed in a

context with Γ (x) = ⊥ and subtyping allows us to use the

bad bounds (∀ (x : ⊤)⊤..{a : ⊤}) on the left.

let f = λ (x : ⊤) .x in Γ ⊢ x : {A : ∀ (x : ⊤)⊤.. {a : ⊤}}

let x = Ω in Γ ⊢ f : {a : ⊤}

f .a Γ ⊢ f .a : ⊤

Rapoport et al. [2017] noticed that the above kind of bad

bounds do not occur in inert contexts. Our preservation

45

κDOT: Scaling DOT with Mutation and Constructors Scala ’18, September 28, 2018, St. Louis, MO, USA

theorem says that if we started our machine with a well-

typed term, the heap corresponds to some inert context. This

means we will never have a machine state

〈
f .a; s; Σ

〉
, where

f is a function in Σ. If f is a function and f .a is the body

of a let frame on the stack, the machine diverges without

executing f .a. For the above term, the machine diverges

while trying to execute Ω and never executes f .a.

4.4 Path-Dependent Subtyping via Initialization
Bad bounds are one of the reasons why κDOT currently

offers only a weak form of path-dependent types: types of

the form x .A instead of x .a.b . . . c .A. To illustrate why κDOT
disallows full-paths, consider µ (x : {a : {A : T ..U }}). Even if

we have a location x of this type in our context, κDOT does

not have T <: x .a.A <: U . To use T <: U , we must let bind

x .a to a variable in κDOT: let y = x .a.
But the above type is inert for any T and U , and we can

create objects of this type using Ω.

let k = κ (x : {a : {A : T ..U }}) {{a = Ω}} x in

let x = new k ()

The program only diverges when we execute x .a (without

assigning to x .a). However, consider what happens if we are
able to (at least locally) initialize x by assigning a location

y to x .a. When we assign to x .a, we provide evidence that
indeed T <: U since we would have y : {A : S } with T <:
S , and S <: U . Thus we conjecture that if we are able to

track initialization, κDOT will be able to support a richer

form of subtyping using the following rules. Thus there are

metatheoretic reasons to care about initialization even if we

are happy with lazy semantics.

x locally initialized

Γ ⊢ x .a : {A : S ..T }

Γ ⊢ S <: x .a.A

x locally initialized

Γ ⊢ x .a : {A : S ..T }

Γ ⊢ x .a.A <: T

x fully initialized

Γ ⊢ x . . . a : {A : S ..T }

Γ ⊢ S <: x . . . a.A

x fully initialized

Γ ⊢ x . . . a : {A : S ..T }

Γ ⊢ x . . . a.A <: T

5 Expressive Power of κDOT
In this section, we compare κDOT to WadlerFest DOT and

argue that κDOT is more expressive than WadlerFest DOT.

We start by showing how κDOT is at least as expressive as

WadlerFest DOT by mapping WadlerFest DOT constructs to

κDOT and then show that the use of mutation allows κDOT
to express ideas that cannot be expressed inWadlerFest DOT.

We end the section by discussing how the different kinds of

fields in Scala may be expressed in κDOT.

5.1 Mapping WadlerFest DOT to κDOT
κDOT makes the following changes to WadlerFest DOT.

1. Literals must be let bound in κDOT.

2. κDOT replaces object literals with constructors.

3. κDOT adds contravariant setter types and mutation.

Literals l in WadlerFest DOT map to κDOT as

let x = l in x

Object literals can always be emulated by let binding a

constructor for the object and then calling it. TheWadlerFest

DOT object literal ν (x : T) d maps to κDOT as

let k = κ (x : T) {d } x in new k ()

Mutation is a strict addition to WadlerFest DOT, in the

sense that it adds its own syntax and typing rule without

changing the rest of the language. Furthermore, a field dec-

laration {a : S ..T } has {a : ⊥..T } as a super type. These two
types are equally as expressive in the absence of mutation,

since field reads only depend on getter types.

5.2 κDOT Improves upon WadlerFest DOT
Amin et al. [2016] comment that compared to simply typed

strict records in other calculi, the records (objects) being lazy

in WadlerFest DOT “does not limit expressiveness, as a fully

evaluated record can always be obtained by using let bind-

ings to pre-evaluate field values before they are combined

in a record”. But we cannot always pre-evaluate records

with path-dependent types. For example, for the program

in Fig. 1a, the type of mangoTree.fruit is path-dependent on
mangoTree. In both WadlerFest DOT and κDOT we cannot

let bind terms whose types depend on objects that are cre-

ated at a later stage of evaluation, so we cannot express the

program in Fig. 1a by pre-evaluating mangoTree.fruit through
a let binding.

In WadlerFest DOT, dependent fields must always be lazy.

In κDOT however, fields can start off being lazy as the de-

fault definitions allocated by a constructor but later be fully

evaluated through assignment. For example, we can express

the program in Fig. 1a in κDOT as shown in Fig. 9. In this

sense, κDOT is more expressive than WadlerFest DOT since

κDOT can express fully evaluated dependent fields.

In Fig. 9, calling kTree allocates an object containing the

definition

{
f ruit = Ω

}
and then runs the body of the con-

structor.When the body ofkTree is executed, thekFruit con-
structor is called to create a fully evaluated path-dependent

object to assign to the f ruit field.

5.3 var and lazy val in κDOT
We now discuss how to emulate the different kinds of fields

in Scala in κDOT. The immutability of val is an orthogonal

consideration, so we only consider var for strict fields.
In Scala, var fields are fully evaluated. Similar to the Scala

program in Fig. 10a, in κDOT we can create fully evaluated

recursive objects by assigning to them in constructors.

The lazy val fields in Scala are lazily evaluated, but once

evaluated the result is memoized. So in Fig. 10b, fruits.mangoes
is only evaluated in the first read of fruits.mangoes; in the

46

Scala ’18, September 28, 2018, St. Louis, MO, USA Ifaz Kabir and Ondřej Lhoták

let

kTree = κ (y :

{
TreeFruit : y.TreeFruit

}
∧
{
f ruit :

{
A : y.TreeFruit

}}
){{

TreeFruit = y.TreeFruit
}
∧
{
f ruit = Ω

}}
let kFruit = κ (y :

{
A : y.TreeFruit

}
){{

A = y.TreeFruit
}}
y

in

let x = new kFruit () in

y. f ruit B x

in

let

manдoTree = new kTree ()

Figure 9. Fully Evaluated Fields in κDOT

trait Mangoes { x =>
val mango = mangoTree.fruit

var moreMangoes : Mangoes = x

}

class RecursiveMangoes extends Mangoes { x =>
override var moreMangoes : Mangoes = newMangoes {}

moreMangoes.moreMangoes = x

}

val mangoes = new RecursiveMangoes {}

(a) var fields are fully evaluated

class Fruits { x =>
lazy val mangoes = new Mangoes {}

}

val fruits = new Fruits {}

val mangoes2 = fruits .mangoes

val mangoes2Again = fruits .mangoes

(b) lazy val fields are lazily evaluated and memoized

Figure 10. Scala Examples

letmanдoes2 = f ruits .manдoes in

let _ = f ruits .manдoes B manдoes2 in

letmanдoes2Aдain = f ruits .manдoes in

let _ = f ruits .manдoes B manдoes2

Figure 11.Manual memoization in κDOT

second read the cached value is read. In κDOT, one possible
way of emulating this is by adding an immediate write back

to every field read. Fig. 11 shows how the field reads in

Fig. 10b can be emulated in κDOT.
Since getter and setter types can be different, the above

may not be typeable in the context in which the field read

occurs. However, we can completely replace lazy semantics

in our calculus with a memoized lazy semantics by having

the abstract machine push update frames on field reads.

6 Discussion
In this section, we compare some of our design choices for

κDOT to other DOT calculi and discuss our experience work-

ing with type safety proofs for WadlerFest DOT.

6.1 First-Class Constructors
In κDOT, we replaced the object literals of WadlerFest DOT

with constructors since they form a natural place for initial-

ization restrictions and initialization related static analysis.

Constructors are first-class in κDOT; constructors can be

created at runtime and references to them passed around

to functions and even other constructors. This allows us to

preserve all the features of WadlerFest DOT’s object literals.

6.2 The Abstract Machine
Standard small-step operational semantics for lambda calculi

define a stepping relation between terms and the standard

preservation theorem shows that after a term takes a step, its

type is preserved. Amin et al. [2016] express the operational

semantics for WadlerFest DOT as evaluating terms inside

evaluation contexts where an evaluation context is defined

as follows.

e F □ | let x = □ in t | let x = h in e

In WadlerFest DOT, after a subterm steps inside an evalua-

tion context, the overall term is still typeable. This allows

Amin et al. to prove the standard preservation theorem.

In κDOT, field mutation allows objects to refer to objects

that were created at a later stage of evaluation. If we try

to convert the heap in κDOT back to a set of let bindings,

the forward pointers are not typeable. We express the op-

erational semantics for κDOT using an abstract machine

instead of evaluation contexts because in κDOT, stepping
may cause the overall term to become untypeable. In κDOT,
the stepping relation and preservation are expressed between

machine states and this is unavoidable.

6.3 Operational Differences Between κDOT and
WadlerFest DOT

In WadlerFest DOT, answers are defined to be evaluation

contexts containing a variable, a function literal, or an object

literal. WadlerFest DOT requires the following as one of its

rules for reduction inside evaluation contexts.

let x = (let y = t in t ′) in u

7−→ let y = t in (let x = t ′ in u) (Let-Let)

This changes the focus of execution to t and allows Wadler-

Fest DOT to execute nested let bindings.

During the design process of κDOT, before we added con-

structors and a stack to our abstract machine, we also had

a similar rule and considered literals together with a heap

as answers. When we added constructors and constructor

frames to distinguish computations happening inside differ-

ent constructors, we realized that we could use the stack for

47

κDOT: Scaling DOT with Mutation and Constructors Scala ’18, September 28, 2018, St. Louis, MO, USA

evaluating nested let bindings as well, making the (Let-Let)

rule unnecessary.We further simplified the calculus by ensur-

ing literals are always let bound so that only variables were

answers. This simplifies both the statements and the proofs

of progress and preservation. We note however that the two

sides of the (Let-Let) rules are observationally equivalent

and the κDOT abstract machine can optionally reduce the

number of frames used by using the (Let-Let) rule.

The use of evaluation contexts in WadlerFest DOT re-

quired object literals to be typeable without referring to any

variables used to let bind them. In the following Wadler-

Fest DOT code, {a = t } is in the scope of z and evaluation

performs a substitution. In the equivalent κDOT reduction,

the substitution is performed during allocation and does not

need to be performed during field reads. Hence, {a = [x/z] t }
does not need to be in the scope of z in the κDOT heap.

let x = ν (z : _) {a = t } in x .a

7−→
WadlerFest

let x = ν (z : _) {a = t } in [x/z] t

⟨x .a; s; x = ν (z : _) {a = [x/z] t }⟩

7−→
κDOT

⟨[x/z] t ; s; x = ν (z : _) {a = [x/z] t }⟩

6.4 ML-style References in κDOT
We now compare κDOT to other DOT calculi that use ML-

style references. We firstly note that κDOT can emulate ML-

style references by creating objects which contain locations

in their fields. Then dereferencing and reference mutation

can be emulated by field reads and field assignments.

Rapoport and Lhoták [2017] provide a variant of Wadler-

Fest DOT with ML-style references. They firstly extend the

calculus with a separate store of references which point to

locations and secondly extend typing judgments with a store

typing context. This calculus does not have separate set-

ter and getter types for references and subtyping between

references is defined by the following invariance rule.

T <: U U <: T

Ref T <: Ref U
(Ref-Sub)

In their type safety proof, they use a separate correspon-

dence between the mutable store and the store typing con-

text, which allows them to keep the Amin et al. store corre-

spondence relation. We originally intended to base κDOT on

this calculus, but the combination of reference reads and call

by name field reads interacted in counterintuitive ways when

we tried to express ideas of initialization in this calculus.

Rompf and Amin [2016a] discuss adding ML-style refer-

ences to DOT-like calculi, and also add a separate mutable

store and store typing context. However, their mutable store

binds locations to objects and mutation replaces an object

in the store with a different object. κDOT only allows writ-

ing locations to fields, not values. However since locations

can point to objects, replacing one location with another is

equivalent to updating one object with another.

One of the distinguishing features of κDOT compared to

the above calculi is that κDOT has a single heap and a single

typing context. We wanted this simplification because we

eventually want to extend the calculus with initialization

tracking by adding more contexts to typing relations.

6.5 Working with DOT Type Safety Proofs
Amin et al. [2014] comment that DOT type safety proofs are

easier to evolve by adding features in a bottom-up fashion

and checking where the type safety proof breaks. We now

briefly discuss the bottom-up approach we took for κDOT.
Amin et al. [2016] define an operational semantics based

on evaluation contexts and Rapoport et al. prove soundness

for this calculus. However, in this calculus, both values and

variables were treated as answers. Starting from this calcu-

lus, we arrived at the current κDOT in the following steps,

producing a proof of type safety at the end of each step.

1. Adapt the notion of evaluation contexts to heaps.

2. Change the operational semantics to reduce literals to

a let binding and redefine answers to only be variables.

3. Replace well-typed evaluation contexts with heap cor-

respondence.

4. Add setter types and field mutation.

5. Remove objects from the literal grammar, ensure liter-

als are let bound, and add constructors and frames.

Unlike functions, we designed constructors to take multi-

ple arguments because we eventually want to add an initial-

ization system toκDOTwhere we differentiate between fully

initialized inputs to the constructor and partially initialized

inputs to the constructor. This made the last step tedious

because the type safety proof and the Coq libraries used had

little support for dealing with multiple arguments and many

lemmas had to be lifted manually to multiple arguments.

7 Related Work
The κDOT calculus is an extension to the DOT calculus of

Amin et al. [2016]. The type safety proof of κDOT is an

extension of the proof of Rapoport et al. [2017].

Mackay et al. [2012] developed a Coq formalization for

a version of Featherweight Java [Igarashi et al. 2001] with

mutable and immutable objects. Field assignment in this

calculus is very similar to κDOT; assignment in this calculus

also assigns locations to fields. Their heap and typing context

design is also very similar, but one difference is that they

have separate typing contexts for variables and locations.

For their preservation theorem, their variable typing context

stays fixedwhile the location typing context grows. However,

Featherweight Java does not have path-dependent types, i.e.

types do not depend on variables or locations. One of our

main contributions is that field mutation is possible in a

setting with path-dependent types. In fact, to the best of our

knowledge, no existing approach to a mechanized proof of

type safety for DOT supports field assignment.

48

Scala ’18, September 28, 2018, St. Louis, MO, USA Ifaz Kabir and Ondřej Lhoták

There have been several calculi that have tried to model

the path-dependent types of Scala before Amin et al. [2012]

introduced DOT. Odersky et al. [2003] introduced the νObj
calculus and proved it type safe. In Scala, type members

have both upper and lower bounds, but the type members in

νObj are less expressive and only have upper bounds. Feath-

erweight Scala [Cremet et al. 2006] (FSalд) was developed
with a focus on algorithmic type checking and to correspond

closely to Scala. Scalina [Moors et al. 2008] was developed to

explore higher-kinded types in Scala. They were not proven

to be type safe, but had type members with both bounds.

FSalд and Scalina were large calculi and it was unclear

how their features interacted with path-dependent types for

type safety. The DOT family of calculi were first introduced

by Amin et al. [2012] as a calculus containing only the fea-

tures of Scala that were needed for path-dependent types.

In their paper, they define a DOT calculus with intersection

types, union types, type selection, and type refinement and

explore the difficulties in proving preservation for a small

step semantics. Since its introduction, there have been sev-

eral mechanized type safety proofs for calculi in the DOT

family for either small step or big step operational semantics.

Amin et al. [2014] introduce µDOT. µDOT is a very simple

calculus with methods, path dependent types, subtyping,

and a big step operational semantics. µDOT does not have a

bottom type, union types, or intersection types.

Rompf and Amin [2016b] present a DOT calculus with

top and bottom types, intersection and union types, and a

small step operational semantics. Amin and Rompf [2017]

and their earlier technical report [Rompf and Amin 2016a]

discuss proving type safety for DOT-like calculi under a big

step operational semantics using definitional interpreters.

Their paper discusses proving type safety for these calculi

by starting with a proof of type safety for System F<: and
then slowly generalizing or adding features such as ML-style

references while keeping most of the type safety proof intact.

Amin et al. [2016] present the WadlerFest DOT calculus,

which is a DOT calculus with top and bottom types, intersec-

tion types, and a small step operational semantics. Rapoport

and Lhoták [2017] extend WadlerFest DOT with a mutable

store and ML-style references. Rapoport et al. [2017] present

a more extendable proof of the WadlerFest DOT calculus. In

their paper, they introduce a syntactic condition on contexts

where bad bounds do not occur, called inertness, and provide

a general technique (a “proof recipe”) for proving canonical

forms for WadlerFest DOT-like calculi in inert contexts.

Without field assignment, path-dependent types make it

difficult to reason about initialization in DOT calculi. With-

out constructors, there is no clear distinction between code

that ismeant to initialize an object and code that assumes that

an object is initialized and no longer contains null-references.

None of the above calculi supported constructors or field

assignment. This is why we developed κDOT, which ex-

tends the WadlerFest DOT calculus with constructors and

field assignment. For our type safety proof, we extended the

WadlerFest DOT type safety proof of Rapoport et al. [2017].

8 Future Work and Conclusion
We now discuss the planned steps for the future of κDOT.
Much of the following is guided by a need to slowly build

proof infrastructure to support the changes we want to make

to our mechanized type safety proof. We are currently in

the process of adding initialization types to κDOT. Once
we have initialization types, we plan to restrict field reads

to only locations which have been initialized. As the very

last step, we will restrict fields to only contain variables,

achieving a DOT calculus which is completely strict.

Recursive functions in WadlerFest DOT are written by

binding them to a field and dereferencing the field inside the

body of the function. Restricting field reads of uninitialized

values will restrict writing recursive functions in this way.

We plan to remove this restriction by adding an operator

and reduction rule of the following form.

x = ν (x : T) . . . {a = t } . . . ∈ Σ
Σ′ = Σ [x = ν (x : T) . . .

{
a = y

}
. . .], y = l

⟨x .a B l ; s; Σ⟩ 7−→
〈
y; s; Σ′

〉 (Lit-Assn)

A literal is directly assigned to a field by pushing the literal

to the heap and mutating the field with the location of the

literal. For typing, l will be typed assuming x is initialized,

allowing it to read fields of x , in particular x .a.
We added mutation and constructors to DOT because we

believed them necessary to “scale DOT to Scala” [Odersky

2016]. DOT was developed to be a simple calculus, a calculus

containing only the essential parts for path-dependent types

and a foundation on which features of Scala could be slowly

added in a bottom up approach till all the fundamental fea-

tures could be proven safe. DOT also acts as a safe space

for experimentation where features can be experimented

with before being added to Scala. In that spirit, we developed

κDOT to guide the design of initialization systems for Scala.

There is an existing body of work on initialization [Fahn-

drich and Xia 2007; Qi andMyers 2009; Summers andMueller

2011] to take inspiration from. However, these systems are

often complicated and deal with large languages with all

their features and quirks. For example, to adapt to the nulls

in their language, many of these systems add nullable types

on top of their existing type systems and awkward types

such as Nullable Option types emerge in these settings. DOT

gives us the luxury to design a system without nulls from the

ground up rather than having to adapt to a system where we

already have null-references. If we evolve DOT without ever

introducing null-references or exceptions, we can achieve a

Scala which stands on a strong null-free foundation.

Acknowledgments
This research was supported by the Natural Sciences and

Engineering Research Council of Canada.

49

κDOT: Scaling DOT with Mutation and Constructors Scala ’18, September 28, 2018, St. Louis, MO, USA

References
Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro

Stucki. 2016. The Essence of Dependent Object Types. In A List of Suc-
cesses That Can Change the World - Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday (Lecture Notes in Computer Science), Sam
Lindley, Conor McBride, Philip W. Trinder, and Donald Sannella (Eds.),

Vol. 9600. Springer, 249–272. https://doi.org/10.1007/978-3-319-30936-1_
14

Nada Amin, Adriaan Moors, and Martin Odersky. 2012. Dependent Object

Types. In 19th International Workshop on Foundations of Object-Oriented
Languages.

Nada Amin and Tiark Rompf. 2017. Type soundness proofs with definitional

interpreters. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,

666–679. https://doi.org/10.1145/3009837
Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of path-

dependent types. In Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA 2014, part of SPLASH 2014, Portland, OR, USA, October
20-24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 233–249.

https://doi.org/10.1145/2660193.2660216
Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and

Stephanie Weirich. 2008. Engineering Formal Metatheory. In Proceedings
of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’08). ACM, New York, NY, USA, 3–15.

https://doi.org/10.1145/1328438.1328443
Vincent Cremet, François Garillot, Sergueï Lenglet, and Martin Odersky.

2006. A Core Calculus for Scala Type Checking. In Mathematical Foun-
dations of Computer Science 2006, Rastislav Královič and Paweł Urzyczyn

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–23.

Manuel Fahndrich and Songtao Xia. 2007. Establishing Object Invariants

with Delayed Types. In Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications
(OOPSLA ’07). ACM, New York, NY, USA, 337–350. https://doi.org/10.
1145/1297027.1297052

Atsushi Igarashi, Benjamin C. Pierce, and PhilipWadler. 2001. Featherweight

Java: A Minimal Core Calculus for Java and GJ. ACM Trans. Program.
Lang. Syst. 23, 3 (May 2001), 396–450. https://doi.org/10.1145/503502.
503505

Julian Mackay, Hannes Mehnert, Alex Potanin, Lindsay Groves, and

Nicholas Cameron. 2012. Encoding Featherweight Java with Assignment

and Immutability Using the Coq Proof Assistant. In Proceedings of the 14th
Workshop on Formal Techniques for Java-like Programs (FTfJP ’12). ACM,

New York, NY, USA, 11–19. https://doi.org/10.1145/2318202.2318206
Adriaan Moors, Frank Piessens, and Martin Odersky. 2008. Safe type-level

abstraction in Scala. In International Workshop on Foundations of Object-
Oriented Languages (FOOL 2008).

Martin Odersky. 2016. Scaling DOT to Scala — Soundness. http://www.
scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html.

Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger.

2003. A Nominal Theory of Objects with Dependent Types. In ECOOP
2003 – Object-Oriented Programming, Luca Cardelli (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 201–224.

Xin Qi and Andrew C. Myers. 2009. Masked Types for Sound Object Ini-

tialization. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’09). ACM,

New York, NY, USA, 53–65. https://doi.org/10.1145/1480881.1480890
Marianna Rapoport, Ifaz Kabir, Paul He, and Ondřej Lhoták. 2017. A Simple

Soundness Proof for Dependent Object Types. Proc. ACM Program. Lang.
1, OOPSLA, Article 46 (Oct. 2017), 27 pages. https://doi.org/10.1145/
3133870

Marianna Rapoport and Ondřej Lhoták. 2017. Mutable WadlerFest DOT.

In Proceedings of the 19th Workshop on Formal Techniques for Java-like
Programs (FTFJP’17). ACM, New York, NY, USA, Article 7, 6 pages. https:
//doi.org/10.1145/3103111.3104036

Tiark Rompf and Nada Amin. 2016a. From F to DOT: Type Soundness

Proofs with Definitional Interpreters. CoRR abs/1510.05216v2 (2016).

http://arxiv.org/abs/1510.05216v2
Tiark Rompf and Nada Amin. 2016b. Type soundness for dependent ob-

ject types (DOT). In Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Nether-
lands, October 30 - November 4, 2016, Eelco Visser and Yannis Smaragdakis

(Eds.). ACM, 624–641. https://doi.org/10.1145/2983990.2984008
Alexander J. Summers and Peter Mueller. 2011. Freedom Before Commit-

ment: A Lightweight Type System for Object Initialisation. In Proceedings
of the 2011 ACM International Conference on Object Oriented Programming
Systems Languages and Applications (OOPSLA ’11). ACM, New York, NY,

USA, 1013–1032. https://doi.org/10.1145/2048066.2048142
Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach to

Type Soundness. Inf. Comput. 115, 1 (1994), 38–94.

50

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/3009837
https://doi.org/10.1145/2660193.2660216
https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/1297027.1297052
https://doi.org/10.1145/1297027.1297052
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/2318202.2318206
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html
http://www.scala-lang.org/blog/2016/02/17/scaling-dot-soundness.html
https://doi.org/10.1145/1480881.1480890
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3133870
https://doi.org/10.1145/3103111.3104036
https://doi.org/10.1145/3103111.3104036
http://arxiv.org/abs/1510.05216v2
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1145/2048066.2048142

	Abstract
	1 Introduction
	1.1 A Motivating Example
	1.2 Contributions

	2 WadlerFest DOT with Constructors
	2.1 Syntax
	2.2 Operational Semantics

	3 Type Safety
	3.1 Type Safety for DOT
	3.2 Cofinite Quantification and Field Mutation

	4 Exploring Initialization in DOT
	4.1 Initialized Locations
	4.2 Emulating Nulls in DOT
	4.3 Bad Bounds and Divergent Programs
	4.4 Path-Dependent Subtyping via Initialization

	5 Expressive Power of DOT
	5.1 Mapping WadlerFest DOT to DOT
	5.2 DOT Improves upon WadlerFest DOT
	5.3 var and lazy val in DOT

	6 Discussion
	6.1 First-Class Constructors
	6.2 The Abstract Machine
	6.3 Operational Differences Between DOT and WadlerFest DOT
	6.4 ML-style References in DOT
	6.5 Working with DOT Type Safety Proofs

	7 Related Work
	8 Future Work and Conclusion
	Acknowledgments
	References

