abc : An extensible AspectJ compiler:

Pavel Avgustinov?, Aske Simon Christensen?, Laurie Hendrens, Sascha Kuzins?,
Jennifer Lhotak3, Ondrej Lhotak3, Oege de Moor?, Damien Sereni?,

Ganesh Sittampalam?, Julian Tibble!

1 Programming Tools Group 2BRICS 3 Sable Research Group
Oxford University University of Aarhus McGill University
United Kingdom Denmark Montreal, Canada

ABSTRACT

Research in the design of aspect-oriented programmingiéayes
requires a workbench that facilitates easy experimemtatith new
language features and implementation techniques. Incpéatj
new features for AspectJ have been proposed that requiea-ext
sions in many dimensions: syntax, type checking and codergen
tion, as well as data flow and control flow analyses.

The AspectBench Compilealfg) is an implementation of such
a workbench. The base versionatfcimplements the full AspectJ
language. lIts frontend is built, using the Polyglot framewas a
modular extension of the Java language. The use of Polyiyles g
flexibility of syntax and type checking. The backend is buding
the Soot framework, to give modular code generation and/aesl

In this paper, we outline the design albc focusing mostly on
how the design supports extensibility. We then provide aegan
overview of how to usebc to implement an extension. Finally,
we illustrate the extension mechanismsab€through a number of
small, but non-trivial, examplesabcis freely available under the
GNU LGPL.

1. INTRODUCTION AND MOTIVATION

The design and implementation of aspect-oriented progiagm
languages is a buoyant field, with many new language feabgres
ing developed. In the first instance, such features can bietpped
in a system like the Aspect Sand Box [11] via a definitionagiint
preter. Such interpreters are useful in defining the secgatid in
explaining the compilation strategy of new language fezt|22].
The acid test for new language features is, however, th&gia-
tion into a full, industrial-strength language like AspkcThat re-
quires a highly flexible implementation of AspectJ, to semgea
workbench for aspect-oriented programming language relsea

The purpose of this paper is to presaiic, the AspectBench
Compiler for AspectJ, which supports the whole of the Aspect
language implemented kajc 1.2, and which has been specifically
designed to be an extensible framework for implementinge&sh

*This work was supported, in part, by NSERC in Canada and EP-
SRC in the United Kingdom. Our thanks to Chris Allan for his
comments on a draft of this paper.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AOSD’05, March 14-18, 200%;hicago, USA

Copyright 2005 ACM .$5.00.

extensions.abcis freely available under the GNU LGPL and can
be downloaded from [1].

Challenges.An Aspectd compiler is already a complex piece
of software, which, in addition to the normal frontend andlea
end components of a compiler, must also support a matcher (fo
name patterns) and a weaver (both for intertype declasa@onl

for advice). Furthermore, the kinds of extensions that Hzaen
suggested for AspectJ vary from fairly simple pointcut laage
extensions to more complex concepts which require modificst

in the type system, matcher and weaver. To make the chalienge
explicit, we briefly review some previous work by others thas
motivated our design.

At one end of the spectrum, there are fairly small extensibas
require changes primarily to the syntax. An example of tli k
is thename pattern scopgzoposed by Colyer and Clement [8],
which provide an abstraction mechanism for name patterrss. T
support this type of extension, our workbench needs an eagy w
of extending the syntax, as well as introducing named patteto
the environment.

A more involved extension is thgarameteric introductionsf
Hanenberg and Unland [15]. These are intertype declasatioat
depend on parameters evaluated at weave-time. Their atteqr
into AspectJ requires substantial changes to the typemyasavell
as the intertype weaver. This kind of extension thus mativat
highly flexible implementation of types.

Most proposals for new features in AspectJ are, however, con
cerned with the dynamic join point model. In [24], Sakuedial.
proposeassociation aspect§ hese provide a generalisation of per-
object instantiation, where aspect instances are tied tow@pgof
objects to express behavioural relationships more dyrettis re-
quires not only changes to the frontend, but also substahiéages
to code generation. Making such code generation painleas-is
other design goal of our workbench.

The community as a whole is concerned with finding ways of
singling out join points based on semantic properties ratthen
naming. For instance, Kiczales has proposed a new type of-poi
cut, calledpredicted cflowf19]. pcflow(p) matches at a join point
if there may exist a path to another join point wh@renatches. It
is correct to lefpcflow(p) match everywhere, but that would lead
to inefficient programs. An efficient implementationpfflow(p)
needs substantial, interprocedural program analysis. v@uk-
bench needs to provide a framework for building such analyse

In fact, examples where efficient implementation necetesitan
analysis framework abound. Particular instances inclhdelata
flow pointcutoof Masuhara and Kawauchi [21], and tinace-based
aspect®f Douenceet al.[10], as well as theommunication history

aspectof Walker and Viggers [28].

All of the above are additions to the AspectJ language, Hut, o
course, restrictions can be equally important in languagggah.
One promising example is the proposal of Aldrich to restitet
visibility of join points to those that are explicit in theterface of
a class [2]. We aim to support the implementation of suchricest
tions, and this requires a flexible implementation of thestgpstem
and the pointcut matcher.

Finally, we note that the implementation of advanced statexrk-
ing tools for aspect-oriented programs, such as thosetige¢sd
by Krishnamurthiet al. [20], require all types of extension dis-
cussed above, ranging from simple variations in syntax tkimga
advanced analyses such as escape analysis take into aticeunt
effects of advice.

In summary, we can see that an extensible AspectJ compilgr mu
be able to handle a wide variety of extensions, possiblyttimgron
many components of the compiler, including the frontendheea
and parser, the type checker, the matcher and weaver, aed-pot
tially requiring relatively sophisticated program anayt® ensure
correctness and efficiency.

Design Goals.One approach to implementing a language ex-
tension is to modify an existing compiler. However, this @& n
always the best approach, since existing compilers may a h
been designed with extensiblity as one of the main goalghBur
more, they may be constrained to work with infrastructurésctv
themselves are not easily extensible. In the case of Aspibet)
only pre-existing implementation &c, which is designed to sup-
port fast and incremental compilation and also to interéasety
with the Eclipse toolset.

Our approach was to design and implemabt, the Aspect-
Bench Compiler, with extensibility as its primary desigrabfwe
also aimed for an optimising implementation of AspectJthat is
outside the scope of this paper). To support extensibilty,dis-
tilled the following requirements from the above discuasid the
challenges involved.

simplicity: It must be relatively simple to develop new extensions.

The abc approach.To meet these objectives, we decided to

build on existing, proven tools, namely the Polyglot exielescom-
piler framework for the frontend [23], and the Soot analyesisl

transformation framework for the backend [26]. Indeed yBloit

has been shown to meet the criteria of simplicity, modufeaitd
proportionality on a wide variety of extensions to the syraad

type system of Java. By the same token, Soot has been shown to

meet all the above criteria for code generation, analysisoguti-
misation.

Given the success of these building blocks, we felt it exalgm
important to desigrabc so that both are useas is without any
changes that are specificabc As explained in Section 2 below,
this has dictated an architecture where the frontend segsatiae

Aspect] program into a pure Java part and a part containing in

structions for the weaver.

Contributions. The contributions of this paper are the follow-
ing:

e We have identified the requirements for a workbench for re-
search in aspect-oriented programming languages by amglys
previous research in this area.

e We presentabg an instance of such a workbench with a
clean, extensible architecture.

e \We have validated our architecture against these requirtesme
with a number of small but non-trivial examples.

e The extensibility of Polyglot can be seen as a form of aspect-
orientation, and thugbc is itself a substantial exercise in
aspect-oriented software development, with the primaga} go
of disentangling new, experimental features from the &dst
base compiler.

Paper StructureThe structure of this paper is as follows. In
Section 2, we first give an overview of the main building bleck
abg namely Polyglot and Soot, and show their role in the overall

Users of the framework should not need to understand com- architecture olbc Next, in Section 3 we sketch the main points
plicated new concepts or a complex software design in order of extensibility inabc We then turn to describe some modest but

to implement their extensions.

modularity: We require two kinds of modularity. First, the com-
piler workbench itself should be very modular, so that tiie di

ferent facets of each extension can be easily identified with

the correct module of the workbench.

Second, the extension should be modular (separate from the
workbench code). Users of the workbench should not need

to touch existing code; rather, they should be able to descri

representative examples of AspectJ extensions in Secti@meat
their implementation in Section 5. The approachabt is con-
trasted with existing work in Section 6. Finally, in Sectidrwe
draw some conclusions from our experience in buildahg, and
we explore possible directions for future research.

2. ARCHITECTURE

As stated in the introductiorgbc is based on the Polyglot ex-

the extensions as specifications or code that is separate fro tensible compiler framework [23] and the Soot bytecode yaisl

the main code base.

and transformation framework [26]. Using Polyglot as areaxt
sible frontend enables customisation of the grammar andusem

proportionality: Small extensions should require a small amount analysis; in the backend, Soot provides a convenient irgeiae
of work and code. There should not be a large overhead re- representation on which to implement the weaving of exterssi

quired to specify an extension.

as well as tools for writing any program analyses that exteiss

analysis capability: The compiler workbench infrastructure should MaY require. Polyglot can read class files to process liorade;

provide both an intermediate representation and a program

analysis framework. This is necessary for two reasonst, Firs
some extensions may require relatively sophisticatedyanal

ses to correctly implement their semantic checks and weav-
ing. Second, some extensions may lead to a lot of runtime
overhead unless compiler optimisation techniques are use

to minimise that overhead.

Soot can also read in class files, and indakdcan weave into jar
files in the same way as ttagc compiler for AspectJ.

Becausebc works with an unmodified Soot and Polyglot, it is
easy for us, as the developersatfc itself, to update to the latest
versions of Soot and Polyglot as they are released. By the sam

gken, authors of AspectJ extensions can upgrade to new wsrsfo

abcwithout difficulty. This independence was achieved mainty b
separating the AspectJ-specific features in the code beinggsed

.class Jjava

v

Polyglot parser

Aspect]
AST

v
Polyglot AST transformations
v]
Java Aspect
AST Info

vl—l

Soot skeleton generatior)

Jimple
skeleton
|

Skeleton weaving

i

Woven

—l skeleton
|

Soot jimple body generation

i

Jimple
IR

Advice weaving

v
Woven
Jimple

Analyses and optimisations|

v
Final
Jimple
I]
Soot bytecode generation Soot decompilation
v]

.Cclassg Jjava

Figure 1: abc overall design

from standard Java code. In the fronteald¢generates a plain Java
abstract syntax tree (AST) and a separate aspect infonmsttioc-
ture containing the aspect specific information. We callabgect
information structure thAspectinfo The unmodified backend can
read in the AST (because it is plain Java), atxt then uses the
Aspectinfao perform all required weaving. A simplified diagram
of the architecture odbcis shown in Figure 1.

In the following subsections, we describe Polyglot and Soot
the context ofabg with a focus on how they contribute to extensi-

bility. Finally we discuss in some more detail how the twotpairre
connected.

2.1 Polyglot

Polyglot [23] is a frontend for Java intended for implemagti
extensions to the base language. In its original configumagoly-
glot first parses Java source code into an abstract syn&¢&&T),
then performs all the static checks required by the Javaikzgegin
a number of passes which rewrite the tree. The output of Railigy
a Java AST annotated with type information, which is writbeick
to a Java source file. Polyglot is intended to perform all céenp
time checks; when a class has passed through all of the passes
Polyglot, the resulting Java file should be compilable witterrors
by any standard Java compiler. When Polyglot is used as tefrdn
for Soot, theJava to Jimplanodule inside Soot compiles the final
AST into the Jimple intermediate representation insteadriiing
it out to a Java file. Therefore, iabg the final Polyglot passes
separate the AspectJ program into pure Java (which is pas#eel
Java to Jimple module in Soot) and instructions for the weave

Several features of Polyglot make it well-suited for wiitiex-
tensions, and also help to make those extensions themsasiess
sible. Polyglot allows a new grammar to be specified as actaie
of modifications to an existing grammar, where these modifina
are given in a separate specification file, not in the origgmam-
mar file. The AspectJ grammar we developeddiocis specified as
an extension of the Java grammar, and the grammars for éxens
are in turn specified as modifications to the AspectJ grammar.

Polyglot makes heavy use of interfaces and factories, rgakin
easy to extend or replace most of its parts, such as the type sy
tem or the symbol table, as well as the list of rewrite pashas t
are performed on the AST. Each pass in Polyglot non-destalgt
rewrites the input tree. As a result, it is easy to insert nessps
in between existing ones, and each pass typically perforfysa
small amount of work compared to traditional compiler pasée
abg we have added many AspectJ-specific passes, and it is easy fo
extensions to add further passes of their own.

Each AST node in Polyglot uses a mechanismdénsiongnd
delegatego allow methods to be replaced or added in the middle of
the existing class hierarchy, achieving an effect simdawhat can
be done in AspectJ using intertype declarations, but implava.
This mechanism is commonly used by extensionahmfto modify
existing AST nodes.

2.2 Soot

Soot [26], which is used as the back-endabf; is a framework
for analysing and transforming Java bytecode. The most iimpo
tant advantage of using Soot as the backend, both for dewuglop
abcitself and for extending the language, is Jimple, Soot'srint
mediate representation. Soot provides modules to coneéntden
Jimple, Java bytecode, and Java source code. It furthermore
cludes implementations of standard compiler optimisatiovhich
abc applies after weaving. We have already observed significant
speedups from these optimisations alone (preliminaryltsesie
accessible from [1]). In addition to already implementedlgn
ses and transformations, Soot has tools for writing new ,cezh
as control flow graph builders, definition/use chains, a figeuht
flow analysis framework, and a method inliner. These featare
useful for implementing extensions that need to be awaréef t
intra-procedural behaviour of the program, such as poistde-
scribing specific points in the control flow graph.

The Jimple intermediate representation is a typed, stesk-|
three-address code. Rather than representing compstatiith
an implicit stack, each Jimple instruction explicitly mpmniates

specified local variables. This representation simplifieaving
of advice, both for standard Aspect] features and for eiirgs
If it were weaving into bytecode directly, the weaver woukkd
to consider the effect of the woven code on the implicit execu
stack, and generate additional code to fix up the stack ctmnten
None of this is necessary when weaving into Jimple. Moreover

3. DEFINING AN EXTENSION

We now outline the basic steps needed to create an exteirsion,
a general manner. This description is intended to give theéeean
impression of the extension mechanisms availablgbig without
delving into excessive detail. After this generic desaipt we
shall introduce some concrete examples in Section 4, adistvy

when values from the shadow point are needed as parameters tqne pasic steps are instantiated in Section 5.

the advice, they are readily available in local variablas; weaver
does not have to sift through the computation stack to finchthe

This section serves two purposes. First, to outline how vile bu
on the existing extension mechanisms of Polyglot and Sauth@ve

As input, Soot can handle both class files and Java source files extensibility inabc (Sections 3.2, 3.3, 3.4, and 3.8). Second, we

To convert bytecode to Jimple, Soot introduces a local éeito
explicitly represent each stack location, splits the \@dés to sep-
arate independent uses of the same location, and infered18p
for each variable. To convert source code to Jimple, Soatfass
Polyglot to construct an AST with type information, and tlgem-
erates Jimple code from the AST. This process does not ndzal to
modified inabg becausabc passes Soot a plain Java AST, keep-
ing all the aspect-specific information in the separate @spéor-
mation structure. Normally, after all processing, Sootveots the
Jimple code into bytecode and writes it to class files, busi &-
cludes a decompiler which is very useful for viewing the etffeof
aspects and AspectJ extensions on the generated code.

2.3 Connecting Polyglot and Soot

We conclude the discussion abcs architecture by examining
in closer detail how Polyglot and Soot interact. A key comgrun
of this interaction is the separation of the Aspect] AST afuure
Java AST and the auxilliarfspectinfcstructure. This transforma-
tion enablesbcto use the existing facility in Soot for translating a
Polyglot AST into the Jimple IR.

The Java AST is basically the AspectJ program with all Aspect
specific language constructs removed. Wspectinfostructure
contains complete information about these constructs. abes
where these contain actual Java code (advice bodigmintcut
conditions, intertype method/constructor bodies, igfetfield ini-
tialisers), the code is placed in placeholder methods inJtha
AST.

The Java AST only contains Java constructs, but it is incetapl
in the sense that it may refer to class members which do nsit @xi
are not accessible in the unwoven Java program. More spaific
the Java AST will in general not be compilable until déclare
parentsand intertype declarations have been woven into the pro-
gram. The first of these can alter the inheritance hieraahy,the

wish to present some design decisions that are unigalkedavhich
address specific issues regarding the extension of Asfgetiidns
3.1, 3.5, 3.6, 3.7 and 3.9).

3.1 Syntax

The first step in implementing a new extension is usually defin
ing what additional syntax it will introduce to the languad#éak-
ing abc recognise the extended language involves changing the
lexer and the parser that it uses. Polyglot already handtesding
grammars in a very clean and modular fashion, however thme sta
dard Polyglot lexer is not extensible — extensions are expio
create their own lexer by copying it and making appropriatelifi-
cations. Thus, in this subsection we describe our appraactak-
ing an extensible lexer in some detail, and then briefly surizma
the Polyglot mechanism for extending grammars.

Lexer. We have designed the lexer fabcto support a limited
form of extensibility that has been sufficient for the extens we
have written so far. Specifically, the set of keywords reéseph by
the lexer can be modified by an extension, and the actions take
the lexer when encountering one of these keywords are cistom
able. More complex extensions can still be achieved by tiexgto
Polyglot's approach of copying and modifying the lexer diéfn.
This is in agreement with the principle of proportionalityhiash
was stated as a design goal — small extensions are easy, @Ad co
plex ones are possible. It is a topic of future work to imprtve
extensibility, perhaps by specifying the lexer as a parséself.

The lexical analysis of AspectJ is complicated by the faat th
there are really several different languages being pamsetinary
Java code, aspect definitions, and pointcut definitions s€qurently,
theabclexer is stateful — it recognises different tokens in diéietr
contexts. The following example illustrates one kind of kpem
that is dealt with by the introduction of lexer states:

second can introduce new members that the pure Java parts may if*-*1.Foot.new(..)

refer to. Since both of these features may be applied to filass
(for which we do not have an AST representation), it is notpos
sible to perform this part of the weaving process on the Rotyg
representation before passing the AST to Soot.

Fortunately, Soot allows us to conduct the conversion fravaJ
to Jimple in two stages, and the applicatiordetlare parentand
intertype weaving can happen in between. In the first staget S
builds a class hierarchy with mere stubs for the methodss & i
skeleton of a full program in Jimple, without method bodiés.
the second stage, Soot fills in method bodies, either by ctinge
bytecode from class files, or by compiling AST nodes.

This setup permits both static weaving and advice weaving to
work on the Jimple IR, largely independent of whether theplém

The expected interpretation of such a string as Java code and
as part of a pointcut will be very different; for example, &g,
we would expect “I' to become a floating point literal, whereas
in the pointcut language the decimal point would be viewed as
dot separating elements of a name pattern. Similarly, “*Java
should be scanned as an operator, while in pointcuts, itrisoba
name pattern. Note also the use of what would be keywords/an Ja
mode (f andnew) as part of a pattern.

An important part of designing a stateful lexer is specifyivhen
the lexer should switch to a different state without addogruch
complexity. The general pattern we use is to maintain a stack
states, and recognise the end of a state when we reach anr appro

code was generated from source code or bytecode. And siace th priate closing bracket character for that state. For exanmurmal

skeleton that is filled out in the second stage has the uptiéteat-
chy and contains all intertype declarations, all membegregfces
in the code are resolved correctly in the translation intopé.

Java code is terminated by thg tharacter. Of course, braces can
be nested, so we need to recognise opening braces and algo cou
the nesting level. For more details regarding the lexeestiaiabg

see section 5.1.

File X FileY
S == a | includeX
| blextendS = d
| ¢ | e
FileZ Result
includeY S = a
dropS = b | ¢
| d | e

Figure 2: Grammar extension mechanism

Parser. Theabcparser is generated by PPG [5], the LALR parser
generator for extensible grammars which is included in §lohf23].
PPG allows changes to an existing grammar to be entered paa se
rate file, overriding, inheriting and extending productidrom the
base grammar. This results in modular extensions, whicleasity

be maintained should the base grammar change.

The example in Figure 2 (using simplified non-PPG syntax)atem
strates the basic principles. An existing grammar can beitag
with the “includ€’ keyword. New production rules can then be
specified, and one can change existing rules using the kelgwor
“extend and “drop’ to add and remove parts of the rule. More ad-
vanced changes, such as modifying the precedence of o rate
also possible. For further details on the specification ahgnar,
see [5].

3.2 Type system

Polyglot provides convenient facilities for extending ttype
system. As a minimum, this involves introducing a new kind of
type object and lookup functions for these new entititiehaenvi-
ronment. The new type of environment is then invoked by dderr
ing the environment factory method in a subclas8&fypeSystem
which describes the type system of Aspect] itself.

To illustrate, consider the introduction of named classepat
expressions [8]. We would need to introduce a new type olgect
represent such names, sdgmedCPEInstancén Polyglot, it is
convention that identifiers for type classes end witHnstancg.
The environment then maps (possibly qualified) names toctbje
of type NamedCPEInstance

not require further data structures are typically put intsipeCheck
method.

Later passes use data flow information to check initialisedf
local variables and the existencerefurn statements. Again, each
AST node implements methods to build the control flow graph fo
these purposes. In the base AspectJ implementation, thesera
example, overridden to take into account the initialigatibthe re-
sult parameter imfter returning advice, and extensions can make
variations of their own.

AspectJ is somewhat unusual in that some semantic checks hav
to be deferred to the weaver. For example, it is necessagpto t
check the results afround advice at each point where it is woven
in. Becausebcmaintains precise position information throughout
the compilation process, such errors can still be pinpditbethe
appropriate locations in the source.

3.4 Rewriting

The normal use of Polyglot is as a source-to-source confpiter
extensions to Java, where the final rewriting passes transiew
features into an equivalent pure Java Aghcis different in that
most of the transformation happens at a later stage, whevingea
into Jimple. It is, however, often useful to employ Polyairig-
inal paradigm when implementing extensions to AspectJhhat
an obvious counterpart in Aspect] itself.

For example, consider again the feature of named classpatte
expressions. A simple implementation would be to just etimese
after appropriate semantic checks have been done, so ttiat no
ing else needs to change in the compiler. Such inlining wbeld
implemented as two separate passes, one to collect the ratied
tern definitions and the other to inline them — the two woulerth
communicate via an explicit data structure that is commduooth
passes. As said, it is not recommended to store pieces of AST e
plicitly unless they are immediately transformed away.

abc does extensive rewriting of the tree prior to conversion to
Jimple. This consists of introducting new placeholder radth(for
instance for advice bodies), and storing instructionstierweaver
in the Aspectinfo Extensions can participate in this process by
implementing methods that are called by the relevant passes

3.5 Join points

Introducing new pointcuts will often involve extending thet
of possible join points. For example, implementation of &po
cut that matches when a cast instruction occurs would redhé&

The semantic checks for named patterns must enforce the re-addition of a join point at such instructions.

quirement that there be no cycles in definitions, since saeely

Many new join points will follow the pattern of most existing

defined named patterns do not make sense. A similar check-has a AspectJ join points and apply at a single Jimple statemehés&

ready been implemented for named pointcuts, and it invdivéd-

ing a dependency graph. Such data structures necessagnfans
tic checks are typically stored in the type objects (léaenedCPE-
Instancg: because Polyglot operates by rewriting the original,tree
it is not possible to store references to AST nodes.

Examples such as the parametric introductions of Haneraretg
Unland [15] would require more invasive changes in the tyse s
tem, for example by subclassihgerTypeMethodInstangghe sig-
nature of a method introduced via an intertype declaratiotke
account of the parameters that are to be evaluated at cotipie

3.3 Semantic checks

New semantic checks are usually implemented by overridiag t
appropriate method on the relevant AST nodes. The most obvio
place for simple checks is in tiggpeCheckepass; every AST node
implements aypeChecklypeCheckgrmethod. The type checker
is run after all variable references are resolved; all chahkt do

can be added by defining a new factory class that can recoipgise
relevant statements, and registering it with the globaldfsjoin
point types.

For more complicated join points, it will be necessary toreve
ride the code that iterates through an entire method bodsirigo
for join point shadows. The overriding code can do any reglir
analysis of the method body to find instances of the new jointpo
(for example, one might want to inspect all control flow edges
find the back edges of loops [17]), and then call the originalec
to find all the “normal” join point shadows.

3.6 Pointcuts

As pointed out in the introduction, there are many propofals
new forms of pointcuts in AspectJ. To meet our objective oppr-
tionality (small extensions require little work), we havesegned an
intermediate representation of pointcuts that is morelaeghan
the existing pointcut language of AspectJ. This makes iee&s

compile new pointcut primitives to existing ones.

Specifically, the backend pointcut language partitionsifooits
into the four categories listed below. Some of the standamkAt]
pointcuts fit directly into one of these categories and amgpki
duplicated in the backend, while others are must be tramefdr
from AspectJ into the representation usedlfi

e Lexical pointcuts are restrictions on the lexical positimn
where a pointcut can match. For examplighin andwith-
incodefall into this category.

e Shadow pointcuts pick out a specific join point shadow within
a method body. Theetpointcut is an example.

Taking an example from the base AspectJ language, coristruct
of thethisJoinPointis expensive because it must be done each time
a join point is encountered at runtimabc (like ajc) employs two
strategies for mitigating this overhead. Firstly, someieghbod-
ies only ever make use of ti&taticPartmember ofthisJoinPoint,
which only needs to be constructed once. A Polyglot passen th
frontend is used to identify advice bodies where this is tseand
transform the uses thisJoinPointStaticPart instead.

Secondly, the runtime code generated delays constructibh u
as late as possible in case it turns out not to be needed ahiall;
is complicated by the fact thét pointcuts as well as advice bod-
ies may make use of it, so construction cannot simply be ddlay
until the advice body runsabc generates code that instantiates the

o Dynamic pointcuts match based on the type or value of some thisJoinPoint variable where needslit has not already been in-

runtime value. Pointcuts such iiscflow andthis are of this
kind.

stantiated usingnull as a placeholder until that point. The Jimple
code is then transformed to remove unnecessary checksiéiatd in
isations, using a variation of Soot’s intraprocedural megis anal-

» Compound pointcuts represent logical connectives such asysjs which has special knowledge that tiésJoinPoint factory

&&.

The motivation for this categorisation is that it allows thgple-
mentation of each backend pointcut to be simpler and morerund
standable, which in particular makes it easier for extenaigthors
to define new pointcuts.

An example of an AspectJ pointcut that does not fit into this
model directly is theexecutior((MethodPatter) pointcut, which
specifies both that we are inside a method or constructorhimatc
MethodPatternand that we are at the execution join point. The
backend pointcut language therefore views this as the notign
of a lexical pointcut and a shadow pointcut.

method cannot retumull.

3.9 Runtime library

The runtime library for Aspect] serves two purposes. Firstl
it contains bookkeeping classes necessary for the implitiem
of language constructs suchefw. Extensions such as data flow
pointcuts [21] would require a similar runtime class in arestore
dynamic data about the source of the value in a particulaalia:

Secondly, the runtime provides the objects accessiblaigfiro
the thisJoinPointfamily of special variables; these make informa-
tion about the current join point available to the programwia

To add a new pointcut, one or more classes should be added to€fléction. Any new pointcut introduced is likely to have que

the backend, and the frontend AST nodes should construetgthe
propriate backend objects during the generation ofAkpectinfo
structure.

The backend classes are responsible for deciding whethnat or
the pointcut matches at a specific location. If this cannostaé-
cally determined, then the pointcut should produdgr@amic residue
which can generate the required runtime code.

3.7 Advice

It appears that there are few proposals for truly novel tygfes
advice: most new proposals can be easily rewritten to thet-exi
ing idioms of before, after and around. For example, the gsap
for “tracecuts” in [10] reduces to a normal aspect, whereasest
variable tracks the current matching state, and each pAttbrice
pair translates into after advice. Such new types of advieahas
implemented via rewriting, in the standard paradigm of Blaly

Nonetheless, adding a new kind of advice that follows the As-
pectd model of advice is straightforward: simply implemamew
class and define how code should be generated to call that piec
advice and where in the join point shadow this code shouldrgo.
example, the bookkeeping required fitow is implemented as a
special kind of advice that weaves instructions both at #girb
ning and end of a shadow.

3.8 Optimisations

The straightforward implementation of a new extension neay r
sult in inefficient runtime code. Even in the basic Aspectd la
guage, there are a number of features that incur significant r
time penalties by default, but in many cases can be optimedgcl
aims to make it as easy as possible to implement new optilrisat
whether for the base language or for extensions. In paaticitlis
straightforward to transform the AST in the frontend andlineple
intermediate code in the backend.

signature information which would be accessible to the ugean
extension of th&ignatureinterface. For example, the standard As-
pectJ runtime contains, amongst othéwdyiceSignatureFieldSig-
nature andMethodSignature

4. EAJ — AN ASPECTJ EXTENSION

This section describes a few particular extensions to thpeétd
language that we have implemented. These extensions hawe be
chosen to illustrate the most salient of the mechanismsvikat
described in the previous section. The full source codeHesd
examples is included with the standard distributiormb€ [1]. For
ease of reference, the extended language is naag®dne com-
piles eaj programs with the commandébc -ext abc.edj This is
the usual way of invoking extensions withc

4.1 Private pointcut variables

In AspectJ, the only way to introduce new variables into apoi
cut is to make them explicit parameters to a named pointciit de
inition or advice. It is sometimes convenient, however, itopdy
declare new variables whose scope is only part of a poinkgues-
sion, without polluting the interface of the pointcut. Femeple,
it might be desired to check that the value of an argumentgbein
passed has certain properties, without actually usingvdlat in
the advice body. The new keywomptivate introduces a locally
scoped pointcut variable. For instance, the following pmihcould
be used to check that the argument is either a negaitiver a neg-
ativedouble

pointcut negativefirstarg) :
private (int x) (args(x) && if(x < 0))
|| private (double ¥ (args(x) && if(x < 0));

4.2 Global pointcuts

Itis very common for many pieces of advice to share a common
conjunct in their pointcut. The idea ofghobal pointcut is to write
these common conjuncts only once. An example use is tocestri
the applicability of every piece of advice within a certait of
aspects. For example, we might write:

global: * : !within (Hidden;

This would ensure that no advice within any aspect couldyappl
within theHiddenclass.

As another example, it is often useful to prevent advice feom
aspect applying within that aspect itself. The followingldeation
(for aspectAspec} can achieve this more concisely than putting the
restriction on each piece of advice:

global: Aspect !within (Aspec);

In general, a global pointcut declaration can be put anyaitzer
named pointcut declaration can kiee(directly within a class or
aspect body). The location of such a declaration has noteffeits
applicability, except that name patterns within such a atation
will only match classes and aspects visible from the scopbaif
declaration.

The general form of a global pointcut declaration is as fetip

global : (ClassPatterh : (Pointcu} ;

It has the effect of replacing the pointcut of each advicdatation
in each aspect whose name matcGsssPatteriwith the conjunc-
tion of the original pointcut and the globBbintcut

4.3 Cast pointcuts

The purpose of theastpointcut is to match whenever a value
is cast to another type. A corresponding new type of join poin
shadow is added which occurs at every cast instruction, henet
for reference or primitive types, in the bytecode of a pragra

To illustrate, the following piece of advice can be used tede
runtime loss of precision caused by casts froniramo ashort

before(int i):

casf(shor) && args(i)
&& if(i < Short.MIN VALUE
||i > Short. MAX VALUE)

System.err.printlfWarning: loss of " +
“ precision casting " +
i +“to ashort.”);

}

In general the syntax of east pointcut iscast (TypePatterh);
this will match at any join point where the static result tygfehe
cast is matched bjypePatternIn keeping with the pattern of other
primitive pointcuts, the value being cast from can be matdne
the args pointcut, and the result of the cast can be matched by the
optional parameter tafter returning advice (and is returned by
theproceedcall in around advice).

4.4 Throw pointcuts

The throw pointcut is introduced in the developer documenta-
tion for ajc [18], and we have implemented it @ajto compare the
ease-of-extension of both compilers. It matches a new jointp
shadow which occurs at each throw instruction.

The following example demonstrates how extended debugging
information can be produced in the event of a runtime exoapti
using a piece of advice:

before(Debuggable it
this(d) && throw () && args(RuntimeException

d.dumpsStatg;

5. IMPLEMENTING EAJ USING ABC

We have given a broad outline of how extensions are constluct
and discussed some specific extensions that we have impietnen
We now show in detail how this was done, both to provide a guide
for others and to enable a realistic assessment of the weokvied.

The starting point to extendirapcis theAbcExtensiomlass. An
extension can be specified at runtime by passing its coreagack
name toabc with the -extflag; the AbcExtensiorclass from this
package is then loaded by reflection; all the extensibildgks in
abc are passed through this class. There is a default implementa
tion of this class in th@bc.mainpackage, which extensions must
subclass.

Another key class ig€xtensioninfo This is part of the extensi-
bility mechanism of Polyglot; all frontend extensions (et for
the lexer) are registered by subclassing this class. Newarinss of
this class are returned by the subclasabdExtension

5.1 Extending the lexer

As described in Section 3.Bbcs lexer is stateful. There are
four main lexer states for dealing with the different subgaages
of AspectJ: Ava, AspecCT, POINTCUT and ROINTCUTIFEXPR.
The first three are used in the obvious contexts. ThenPCu-
TIFEXPR state must be separate from the normaialstate be-
cause théf pointcut allows a Java expression to be nested inside a
PoINTCUT, but whereas thealA state is terminated by g" we
need to return to the ®NTCUT state when reaching a matching
closing)’ character.

Keywords for each state are stored in state-spetifishMays
which map each keyword to an object implementing ltegerAc-
tion interface. This interface declares a method

public int getToken(AbcLexer lexer)

which is called when the corresponding keyword is recoghitis
return value is turned into a parser token and passed to tiserpa
for further analysis. A reference to the lexer instance isspd
as a parameter tgetTokef1..), so that side effects that affect the
lexer (like changing the lexer state) are possible. A défayble-
mentation of this interface is supplied, which offers siifint func-
tionality to associate keywords with parser tokens andi¢optly)
change the lexer state; custom implementatiorisearActioncan
provide more flexibility. Note that the default implemeimatpro-
vides functionality sufficient for all but 5 (out of more th@f) Java
and AspectJ keywords.

Implementing theeaj extensions required adding several new
keywords. In particular, ¢ast was introduced as a keyword in
the POINTCUT state, and §lobal’ as a keyword in all four lexer
states. Note thatdrivate’ and “throw” are already keywords in all
states, and so do not need to be introduced specifically éopitia
vate pointcut variables and throw pointcut extensions.eHethe
code that adds the keywords to the respective states:

public void initLexerKeywords(AbcLexer lexer)

I/l keyword for the “cast” pointcut extension
lexer.addPointcutKeywo(ttast”,
new LexerAction c(new Integer
(abc.eaj.parse.sym.PCAST));

/I keyword for the “global pointcut” extension
lexer.addGlobalKeywoitglobal”,
new LexerAction c(new Integer
(abc.eaj.parse.sym.GLOBRAL
new Integellexer.pointcut state))));

// Add the base keywords
super.initLexerKeywords(lexer);

Note that both keywords use the default implementatiobeof
erAction i.e. theLexerAction c class. We see the one-argument
and two-argument constructors for that class. The firstrasgi
is always the parser token that should be returned for therde;
the second argument (if present) is the lexer state thatlchmsu
selected after the keyword. As stated above, further logit e
implemented by subclassirgxerAction c.

5.2 Extending the parser

The grammar fragment below shows how two new productions
are added for private pointcut variables and the cast paintcich
can appear anywhere a normal pointcut could:

extendbasic pointcut expr::=)
PRIVATE:X LPAREN formal_parameter list_opt:a RPAREN
LPAREN pointcut expr:bRPARENY

RESULT=
parser.nf.PCLocalVars(parser.pos(x,y), a, b);

| PC_CAST:XLPARENtype pattern expr:arRPARENY

RESULT=
parser.nf.PCCast(parser.pos(x,y), a);

3

In order to make sure we can instantiate this new node type, we
subclas@bcs default node factory (which, in turn, is derived from
Polyglot's node factory) and create a method for obtainingna
stance ofGlobalPointcutDecl

public GlobalPointcutDecl

GlobalPointcutDecl (
Position pos,
ClassnamePatternExpr aspegattern,
Pointcut pc, String name,
TypeNode voidn)

return new GlobalPointcutDecl c(pos, aspectpattern,

y pc, name, voidn);

Now the extended parser can produgmbalPointcutDeclob-
jects when it encounters the appropriate tokerfslisting in Sec-
tion 5.2).

Note that all changes are local to new classes we createalcfin
these classes are in a completely separate package). Thadac
abcitself didn’'t have to be changed at all makes the extensien ro
bust with respect tabcupgrades. Also, since the new AST node
extends an existing node, very little functionality needdé re-
implemented. The associated interfaces only have to aetther
methods specific to the new node’s particular functionality

In the same way, interfacd¥CLocalVarsand PCCastwere de-

The fragment closely resembles code one would use with the fined, along with implementing classes, for the private fmit

popular CUP parser generator, apart from ¢hxend keyword,
which signifies that these two productions are to be addedeo t
rules that already exist fdyasic pointcut expr. PPG also allows
you to drop productions, transfer productions from one tesminal
to another, and override the productions of a particularteominal;

it is described in detail in [5].

5.3 Adding new AST nodes

As mentioned aboveghcs frontend is built on the Polyglot ex-
tensible compiler framework [23]. In fact, from Polyglopsint of
view, abcis just another extension. This means thlat “inherits”
all the extensibility mechanisms provided by Polyglot.

In particular, adding new AST nodes is common when writing
compiler extensions, and thus it is important to provideasyend
robust mechanism for doing so.

All four extensions discussed above required new AST nodes.
For the sake of brevity we will only present the node intraetiby
the global pointcut extension here — the other cases arddwnd
very similarly.

In order to write a clean Polyglot extension, one has to alher
to the rigorous use of factories and interfaces to createsiadd
invoke their members, respectively. The first step is thueeeto de-
fine an interface for the new AST node, declaring any funetiion
it wants to present to the outside world:

public interface GlobalPointcutDeckxtendsPointcutDecl

public void registerGlobalPointcut(GlobalPointcuts visitor,
Context context,
EAJNodeFactory nf);

}

We provide a method to insert the pointcut into a static dates
ture keeping track of the global pointcuts defined in the moy
(cf. Section 5.4). Note that the interface exterdig's Pointcut-
Declinterface, so it provides all the functions relevant to anpmit
declaration.

The next step is to write the class implementing that interfa
Some hoilerplate code is required (a constructor and method
allow visitors to visit the node), and, of course, the metremis-
terGlobalPointcuf) is given a concrete implementation.

variables anatast pointcut extensions. Corresponding production
methods were added to the extended AspectJ node factory.

5.4 Adding new frontend passes

Implementing the “global pointcuts” extension describe&eéec-
tion 4.2 requires somewhat more extensive additions to ¢ine-c
piler — first, all global pointcuts need to be collected, ahdrt
each pointcut must be replaced with the conjunction of tiggrl
pointcut and all applicable global pointcuts.

Polyglot's visitor-based architecture makes implementihat
very easy. We add two new passes. The first stores all globatpo
cuts in a static variable, and the second applies that pgitche
relevant code. For reasons of code brevity, these two passes
implemented by the same clagalobalAspectsit uses a member
variable calledpassto distinguish which of the two functions it is
performing.

The traversal of the AST is performed by t@entextVisitoiPoly-
glot class. The new pass exter@gntextVisitowith a method that
performs the required action when it encounters a releva@it A
node.

The following code fragment illustrates the behaviour &f tiew
visitor upon entering an AST node:

public NodeVisitor entgiNode parent, Node)r{

if (pass == COLLECT
&& n instanceofGlobalPointcutDegl {
((GlobalPointcutDedl n).
registerGlobalPointcythis, contex(), nodeFactory;,

) return super.entefparent n);

As mentioned above, both new passes are implemented by the
same class, and hence the check thass==COLLECTmakes
sure we do the right thing. If the current node i&ibalPoint-
cutDecl(one of the new AST nodes defined in section 5.3), we call
its special method so it registers itself with the data stmecstor-
ing global pointcuts. Then we delegate the rest of the wdrk (t
actual traversal) to the superclass.

The implementation of thieave) method, which is called when
the visitor leaves an AST node and has the option of rewritireg

public static CastShadowMatch

matchesAMethodPosition pds o Exception handler shadows: handler
if ({(posinstanceofStmtMethodPositiog Most shadows either fall into the category of “whole b.()(.jy"‘sir?-
return null; gle statement”. Two are special; a constructor call joimpen-
- compasses both tmewinstruction that creates the object as well as
Stmt stmt= ((StmtMethodPositigrpos.getStmg); theinvokespeciathat initialises it, and handler join points can only

be found by looking at the exception handler table for a netho

if ({(stmtinstanceofAssignStm) rather than its statements.

Vaméert#;g (?xgéignStn)tstmb.getRightOp); If a new join point requires an entirely new kind of methodipos
tion, then the code that iterates over them can be overridden
if (!(rhsinstanceofCastExp}) The first job of thematchesAt..) method is to check that we are
return null; at the appropriate position for@ast pointcut, namely one with a
Type castto = ((CastExp) rhs).getCastTyp; single statement. Next, we need to check whether theretialhca
return new CastShadowMatch cast taking place at this position; the grammar of Jimpleendhkis
pos.getContaing, stmt cast to); straightforward, as a cast operation can only take plack®right-
1 hand side of an assigment statement. If no such operatiooimsif

we returnnull; otherwise we construct an appropriate object.
. . Defining theCastShadowMatchlass also requires a few other
Figure 3: The CastShadowMatch.matchesA(...) method methods, connected with defining the correct values to badou
node if necessary, is very similar. phss==CONJOINand we are by an associatedrgs pointcut, reporting the information required
at an appropriate node, we return the conjunction of the raode to construct @oinPoint.StaticParbbject at runtime, and recording
the global pointcut. the information that a pointcut matches at this shadow inpgmaa
The sequence of passes that the compiler goes through is spec priate place for the weaver itself to use. The details aeegsitfor-
fied in the special singletoBxtensioninfcclass. By subclassing it ward, and we omit them for reasons of space.
and inserting our new passes in an overridden method whéah th . .
calls the original method, we make sure the original secgieric 5.6 EXtendmg the pointcut matcher
passes is undisturbed. Note that this mechanism makes tie- ex Again, we describe the implementation of #est pointcut and
sion robust with respect to changes in the balsepasses — we omit discussion of the almost identical throw pointcut. ©rlee
can add and rearrange passes without breaking the extension corresponding join point shadow has been defined, writiegah
. .. . propriate backend class is straightforward. The pointcatcirer
5.5 Adding new join points tries every pointcut at every join point shadow found, sotfadi
To implement the cast and throw pointcuts, we first need to ex- castpointcut has to do is to check whether the current shadow is
tend the list of join point types. This is done by adding tosa dif a CastShadowMatchand if so verify that the type being cast to

factory objects which the pointcut matcher iterates ovdira all matches th@ypePatterrgiven as argument to theastpointcut:
join point shadows. ThistShadowTypemethod is defined in the protected Residue matchesAt(ShadowMatch sm)
AbcExtensiortlass and is overridden feaj: {

if (!(sminstanceofCastShadowMatqh
return null;
Type castto = ((CastShadowMatqtsm).getCastTypg;

protected List /*<ShadowType*/ listShadowTypes()

List /*<ShadowType*/ shadowTypes
super.listShadowTypes();

shadowTypes.add(CastShadowMatch.shadowType());

shadowTypes.add(ThrowShadowMatch.shadowType());

) retum shadowTypes; return AlwaysMatch.{);

if ('getPatterrf).matchesTypeast to))
return null;

The definitions ofCastShadowMatcland ThrowShadowMatch

- - L The AlwaysMatch.{) value is adynamic residuehat indicates
are very similar and we therefore limit ourselves to disigshe

former that the pointcut matches unconditionally at this join poifror
.) those pointcuts where matching cannot be statically débeahn
TheCastShadowMatch.shadowTypmethod just returmns an anony- s s replaced by one which inserts some code at the shaglow t
mous factory object which delegates the work of finding a jaimt check the condition at runtime
to a static method in th€astShadowMatcklass. This method, '
matchesAt..), takes a structure describing a position in the pro- 5.7 Extending the runtime library
gram being woven into and returns either a new object reptiese AspectJ provides dynamic and static information about tie ¢

ajoin point shadow onull; the code for itis given in Figure 3. rent join point throughthisJoinPointand associated special vari-
The purpose of th&lethodPositiorparameter is to allovabcto ables.

iterate through all the parts of a method where a join poiatistv For thecast pointcut extension, this runtime interface was ex-
can occur, and ask each factory object whether one actuatly.d yonqeq o reveal the signature of the matching cast. For gheam
There are four types dflethodPositiorfor normal AspectJ shad- the following aspect picks out all casts (except for the onéhe
ows: body of the advice) and uses runtime reflection to displayythe

o Whole body shadows: execution, initialization, preirita- that is being cast to at each join point:

tion import org.aspectbench.eaj.lang.reflect.CastSignature
¢ Single statement shadows: method call, field set, field get aspectFindCasts
e Statement pair shadows: constructor call before():

casi(*) && ! within (FindCast$

{
CastSignature s (CastSignature
thisJoinPointStaticPart.getSignaturg);
System.out.printlfiCast to: " +
s.getCastTydgggetName);
}

}

Implementing this requires changes both in the backendeof th
compiler (where the static join point information is encdder
the runtime library to read later), and the addition of newtime
classes and an interface.

Static join point information is encoded in a string whicpissed
at runtime by a factory class to construct the objects aidess
from thisJoinPointStaticPart This happens just once, namely in
the static initialiser of the class where the join point shads |o-
cated. The alternative, which is to directly generate cadeon-
struct these objects, would be expensive in terms of theddittee
bytecode produced; using strings provides a compact repies
tion without too much runtime overhead.

The static information for aastpointcut is encoded as follows.
To allow us to easily reuse the existing parser for such gsria
fair amount of dummy information is generated, correspogdo
properties that cast join points do not have. For exampldlifieos
such agublic are important for join points that have a method or
field sighature associated with them, but make no sensedara$t
join point. The string for theastpointcut is constructed from four
parts:

e Modifiers (encoded as an integer — 0O for a cast)

e Name (usually a method or field name, but for a cast it is just
“CaSt”)

e Declaring type — class in which the join point occurs

e Type of the cast

For example, a cast join point within a method in the clagidashTable

which casts the value retrieved frontlashMapto anintegerwould
produce the following encoded string:
"0-cast-IntHashTable-Integer”
The runtime factory is subclassed to add a method that ereate
an object implementing the ne@astSignaturénterface for appro-
priate join points. The aforementionédbcExtensiorclass has a

[eaj measurements | Files | Lines of code|

Parsing 1 74
Private AST nodes 2 130
pointcut Passes 0 0
variables Weaver 0 0
Runtime 0 0
Global AST nodes 4 64
pointcut Passes 1 77
declarations| Weaver 0 0
Runtime 0 0
Cast AST nodes 2 46
poincuts Passes 0 0
Weaver 2 94
Runtime 2 27
Throw AST nodes 2 46
pointcuts Passes 0 0
Weaver 2 91
Runtime 2 16
Extension information 7 205
and shared classes
Total 27 870
Figure 4: Code measurements foeg
Throw-pointcut statistics ajc abc
Core compiler/runtime files modified 8 0
throw -specific files created 2 6
Extension-specific factories modifigd - 5
Total files touched 100 11
Lines of code writtef 103 187

Figure 5: The throw pointcut in ajc and abc.

which reduce the new construct to existing AspectJ conistri-
nally, for cast and throw pointcuts, there is substantialkwn the
weaver, because these introduce a new type of join point.

Itis pleasing to us that the distinction between the exasigleo
sharp, as it gives good evidence that the aim of modulargybean
achieved. We believe that the amount of code that needs teoibe w
ten also meets the criterion of proportionality that wasddticed
at the beginning of this paper. The criterion of simplicisymore
difficult to measure, but we hope that the sample code in s s
tion suffices to convince the reader that we have succeediisin

method which specifies which runtime class should be used as a"®SPect as well. The examples presented here do not demtenstr

factory forthisJoinPointStaticPart objects, which is overriden so
that runtime objects are created with the new factory:

public String runtimeSJPFactoryClags

return
“org.aspectbench.eaj.runtime.reflect.EajFactory”;

5.8 Code measurements
To enable the reader to assess the amount of effort involved i

implementing each of these new features, we have summarised

some statistics in Figure 4. The table shows the size of tt@enh
parser, and of the boilerplate for factories in the top andufie
mate row, respectively. The most interesting part is thakadewn
by construct in the middle. For private pointcut variabla the

analysis capability: assessment of that criterion is amgy@iork.

6. RELATED WORK

Others before us have identified the need for a workbench to
support the rapid developments in aspect-oriented prapiag
language research. In this section, we review a number df suc
proposals, and contrast them with the approach takabdn

ajc. Thede factostandard workbench for research into variations
and extensions of AspectJ is tag compiler. It has served this
purpose admirably well, and for example [21,24] report andhc-
cessful integration of substantial new features &jto

We believe that, in view of the explosion of research into new
features and analyses, the time has now come to disentdrgle t

work goes into defining new AST nodes, and there is no need to 1ote that the numbers in Figure 5 fabc take into account the
define new passes or to touch the weaver in any way. By contrast relevant lines of files which are listed under “Extensiomimifation

global pointcuts require the introduction of new Polyglaispes,

10

and shared classes” in Figure 4.

code of the base compiler from that of the extensions. Thefiien
are illustrated by the table in Figure 5. It compares the @nan-

tation of thethrow pointcut inabcandajc. In the case ofjc, we

have to modify a large number of existing files, thus tangting

new extension with the existing compiler base. At the cosbofie

factory classes (and thus some more lines of coale}disentan-
gles the two completely.

A more detailed comparison of the characteristicajofandabc
can be found in a companion paper [3]; in particular, thatepap
explores the fact thabcs compile times are typically a factor 3-4
slower than those ddjc.

Javassist.Javassist is a reflection-based toolkit for developing
Java bytecode translators [7]. Compared to other libraued as
BCEL, it has the distinguishing feature that transformagi@an
be described using a source-level vocabulary. Comparatdat
provides some of the combined functionality of the Javditople
translator plus the advice weaver, but its intended apjiics are
different: in particular, it is intended for use at load-6mConse-
quently, Javassist does not provide an analysis framewa@ISbot
does inabc In principle, such a framework could be added, but it
would require the design of a suitable intermediate reptasen
akin to Jimple.

require data flow analyses. We believe that it is not converiie
express such analyses via queries on syntax trees. It isveowe
quite easy to transfer some of the ideas of [1lbg by letting the
queries range over Polyglot ASTs. A challenge, then, is fmde
appropriate type rules to implement as part of the frontend.

7. CONCLUSIONS AND FUTURE WORK

We have presentedbc, and its use as a workbench for exper-
imentation with extensions of AspectJ. Our primary desigalg
was to completely disentangle new features from the exjistirle-
base, and this goal has been met. We hope that such diséntgangl
will enable yet more rapid developments in the design of espe
oriented programming languages, and the integration afsifi®m
multiple research teams into a single system, where the ¢zse
evolve independently of the extensions.

This project has also been an evaluation of the extengilufit
Polyglot and Soot, from the perspective of aspect-oriestévare
development. We now summarise their role in the extensjtolfi
our design, and identify possible improvements.

Polyglot. Polyglot turned out to be highly suited to our purposes.
Its extension mechanisms are exactly what is needed to ingpie
Aspect] itself as an extension of Java, with only minimalecdd-

Josh. Josh is an open implementation of an AspectJ-like language plication. This in turn makes the developmentatc relatively

based on Javassist [6], and as such it is much closer in $pirit
abc Indeed, the primary purpose of Josh is to experiment with
new pointcut designators, although it can also be used &urfes
such as parametric introductions. Because of the impleatient
technology, there is no special support for the usual strks

in the frontend, which is provided iabc by the infrastructure of
Polyglot. Josh does not cover the whole of AspectJ, whiclitdim
its utility in realistic experiments.

Logic meta-programmingA more radical departure from tra-
ditional compiler technology is presented logic meta-program-

independent of further improvements to Polyglot.

As we have remarked earlier, the Polyglot mechanisndled
egatesmimicks that of ordinary intertype declarations, whereas
extension nodesoughly correspond to what an AspectJ program-
mer would naturally do viaeclare parentsand interface intertype
declarations. Polyglot achieves this effect by cunningbating a
replica of the inheritance hierarchy in code, which thenvijates
the hooks for appropriate changes. Arguably that mechaigsm
somewhat brittle, and it is certainly verbose, replicating same
information in multiple places of the code.

We thus face the question whether it would be possible taexte

ming as proposed by [9, 14]. Here, program statements where ex-abcusing AspectJ, or indeed any other dialect of Java that festu

tra code should be woven in are selected by means of full-dédg
Prolog programs. This adds significant expressive powet Jika

open classes. The answer is in the positivatads written in pure
Java. It follows that users who prefer to use AspectJ to ebdbic

Josh, the design makes it easy to experiment with new kinds of can do so without further ado.

pointcuts. The system operates on abstract syntax treésh ate
not a convenient representation for transformation antysisa—

Would the result be more compact and understandable code?
Unfortunately, a significant proportion of Polyglot's emsgons is

many years of research in the compilers community have amply taken up by boilerplate code for generic visitors in each AGT

demonstrated the merits of a good intermediate represamtah
further disadvantage, in our view, is the lack of static ¢isedue to
the increased expressive power. The success of Aspecthdin p
be explained by the fact that it providesihly disciplinedform
of meta-programming; some of that discipline is lost in togieta-
programming, because the full power of Prolog precludetairer
static checks. Nevertheless, a system based on these sdeals-i
licly available [27], and it is used as a common platform byen
ber of researchers.

Pointcuts as functional queriegichberg, Mezini and Os-
termann have very recently suggested an open implememtatio
pointcuts, to enable easy experimentation with new fornpaft-
cuts [12]. Theiridea is closely related to that of logic mptagram-
ming, namely to use a declarative query language to idejdify
point shadows of interest. A difference is that they opt fertise of
the XML query language XQuery instead of a logic language- Fu
thermore, [12] only deals with static join points. As arguedhe
introduction, several recent proposals for new pointcunjives

11

node. To generate that automatically, one would need rifieot
a feature akin to parametric introductions [15]. The reftectoute
has been used with much success, in a framework by Hanson and
Proebsting [16] that is very similar to Polyglot.

So00t. The choice of Soot as the basis for our code generation and
weaver has had a fundamental impact not only on the qualityeof
code that is generated, but also on the ease by which thédrarzs
tions are implemented. The Jimple intermediate representaf
Soot has been honed on a great variety of optimisations aald an
yses before we applied it @mbc and we reap the benefits of this
large body of previous work.

Equally important has been the use of the Dava decompilér tha
is part of the Soot framework. This makes it much easier te pin
point potential problems, and to communicate the ideastaimule
generation to others. It also opens the way to exciting newu-vi
alisations, for example to indicate at source level exastiat dy-
namic residue was inserted at a join point shadow.

In this paper, we have not yet fully exploited the analysis ca
pabilities of Soot. In particular, for the optimised implentation

of advanced features such as predicted control flow [19% fiatv Efficient inference of static types for Java bytecodeStatic

pointcuts [21] and trace cuts [10, 28], the interprocedarzly- Analysis Symposiymages 199-219, 2000.
ses of Soot will be very important. In such cases, one needs to[14] Kris Gybels and Johan Brichau. Arranging languageuesst
first weave naively, in order to get an approximation of tHewant for more robust pattern-based crosscut2nd International
analysis structures. These are then used to weave againput Conference on AOSIpages 60-69. ACM Press, 2003.
more precisely, removing redundant residues. We repotti@dé- [15] Stefan Hanenberg and Rainer Unland. Parametric
tails of this process (which also applies to the impleménrtabf introductions. In Mehmet Aksit, edito2nd International
cflow [25]) in a companion paper [4]. Conference on AOS[pages 80—89, 2003.

The ultimate test ofibcs extensibility will be its use by others. [16] David Hanson and Todd Proebsting. A research C# compile
We are encouraged that at the time of writing, at least 10exnan Software — Practice and Experiente appear, 2004.

groups have started to uabc for their own research, including the [17]

) X - Bruno Harbulot and John R. Gurd. Using AspectJ to sépara
projects described in [17, 20].

concerns in parallel scientific Java codePlimceedings of
the 3rd international conference on AOSiages 122-131.

8. REFERENCES ACM Press, 2004.

[1] abc. The AspectBench Compiler. Home page with [18] Jim Hugunin. Guide for developers of the AspectJ coepil
downloads, FAQ, documentation, support mailing lists, and and weaver, 2004. Available at
bug databaséttp://aspectbench.org - http://dev.eclipse.org/viewcvs/index.

[2] Jonathan Aldrich. Open modules: A proposal for modular cgi/"checkout™/org.aspectj/modules/docs/
reasoning in aspect-oriented programming. Technical Repo developer/compiler-weaver/index.html?
CMU-ISRI-04-108, Institute for Software Research, rev=1.1&content-type=text/html&cvsroot=
Carnegie Mellon University, 2004. Technology_Project

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendr [19] Gregor Kiczales. The fun has just begun. Keynote addaes
Sascha Kuzins, Jennifer Lhotak, Ondrej Lhotak, Oege AOSD. Available ataosd.net/archive/2003/
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian kiczales-aosd-2003.ppt , 2003.
Tibble. Building the abc AspectJ compiler with Polyglotand [20] Shriram Krishnamurthi, Kathi Fisler, and Michael
Soot. Technical Report abc-2004-4, aspectbench.org,. 2004 Greenberg. Verifying aspect advice modularlyAGM

[4] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendr SIGSOFT International Symposium on the Foundations of
Sascha Kuzins, Jennifer Lhotak, Ondrej Lhotak, Oege Software Engineering2004.
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian [21] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow
Tibble. Optimising AspectJ. Technical Report abc-2004-3, pointcut in aspect-oriented programming.list Asian
aspectbench.org, 2004. Symposium on Programming Languages and Systems

[5] Michael Brukman and Andrew C. Myers. PPG: a parser volume 2895 oLNCS pages 105-121, 2003.
generator for extensible grammars, 2003. Available at [22] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchiyn
www.cs.cornell.edu/Projects/polyglot/ compilation and optimization model for aspect-oriented
ppg.html . programs. InfCompiler Constructionvolume 2622 oLNCS

[6] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open pages 46-60, 2003.
AspectJ-like language. In K. Lieberherr, edit8il [23] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C.
International Conference on AOSPpages 102-111, 2004. Myers. Polyglot: An extensible compiler framework for

[7] Shigeru Chiba and Muga Nishizawa. An easy-to-use toolki Java. In12th International Conference on Compiler
for efficient Java bytecode translators 2md International Construction volume 2622 oL NCS pages 138-152, 2003.
coference on Generative Programming and Component [24] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi,
Engineering (GPCE '03)volume 2830 oL NCS pages Saeko Matsuura, and Seiichi Komiya. Association aspetts. |
364-376, 2003. Karl Lieberherr, editor3rd International Conference on

[8] Adrian Colyer and Andrew Clement. Large-scale AOSD for AOSD pages 16-25, 2004.
middleware. Ir8rd International Conference on AOSD [25] Damien Sereni and Oege de Moor. Static analysis of aspec
pages 56-65. Association for Computing Machinery, 2004. In Proceedings of the 2nd International Conference on

[9] Kris de Volder. Aspect-oriented logic meta-programmiin AOSD pages 30-39, 2003.
Pierre Cointe, edito2nd International Conference on [26] Raja Vallee-Rai, Etienne Gagnon, Laurie J. Hendrexriék
Meta-level Architectures and Reflectjamlume 1616 of Lam, Patrice Pominville, and Vijay Sundaresan. Optimizing
LNCS pages 250-272, 1999. Java bytecode using the Soot framework: Is it feasible? In

[10] Rémi Douence, Pascal Fradet, and Mario Sudholt. Compiler Construction, 9th International Conference (CC
Composition, reuse and interaction analysis of stateful 2000) pages 18-34, 2000.
aspects. In Karl Lieberherr, edit@rd International [27] Kris De Volder. The TyRuBa metaprogramming system.
Conference on AOS[pages 141-150, 2004. Available athttp://tyruba.sourceforge.net/)

[11] Chris Dutchyn, Gregor Kiczales, and Hidehiko Masuhara [28] Robert Walker and Kevin Viggers. Implementing protisc
Tutorial: AOP language exploration using the Aspect Sand via declarative event patterns. ACM Sigsoft International
Box. In 1st International Conference on AOSPD02. Symposium on Foundations of Software Engineering

[12] Michael Eichberg, Mira Mezini, and Klaus Ostermann. (FSE-12) 2004.

Pointcuts as functional queries. 8econd ASIAN Symposium
on Programming Languages and Systems (APLAS 2004)
Springer Lecture Notes in Computer Science, 2004.

[13] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marce

12

