
abc : An extensible AspectJ compiler∗

Pavel Avgustinov1, Aske Simon Christensen2, Laurie Hendren3, Sascha Kuzins1,
Jennifer Lhoták3, Ondřej Lhoták3, Oege de Moor1, Damien Sereni1,

Ganesh Sittampalam1, Julian Tibble1

1 Programming Tools Group 2 BRICS 3 Sable Research Group
Oxford University University of Aarhus McGill University
United Kingdom Denmark Montreal, Canada

ABSTRACT
Research in the design of aspect-oriented programming languages
requires a workbench that facilitates easy experimentation with new
language features and implementation techniques. In particular,
new features for AspectJ have been proposed that require exten-
sions in many dimensions: syntax, type checking and code genera-
tion, as well as data flow and control flow analyses.

The AspectBench Compiler (abc) is an implementation of such
a workbench. The base version ofabc implements the full AspectJ
language. Its frontend is built, using the Polyglot framework, as a
modular extension of the Java language. The use of Polyglot gives
flexibility of syntax and type checking. The backend is builtusing
the Soot framework, to give modular code generation and analyses.

In this paper, we outline the design ofabc, focusing mostly on
how the design supports extensibility. We then provide a general
overview of how to useabc to implement an extension. Finally,
we illustrate the extension mechanisms ofabcthrough a number of
small, but non-trivial, examples.abc is freely available under the
GNU LGPL.

1. INTRODUCTION AND MOTIVATION
The design and implementation of aspect-oriented programming

languages is a buoyant field, with many new language featuresbe-
ing developed. In the first instance, such features can be prototyped
in a system like the Aspect Sand Box [11] via a definitional inter-
preter. Such interpreters are useful in defining the semantics and in
explaining the compilation strategy of new language features [22].
The acid test for new language features is, however, their integra-
tion into a full, industrial-strength language like AspectJ. That re-
quires a highly flexible implementation of AspectJ, to serveas a
workbench for aspect-oriented programming language research.

The purpose of this paper is to presentabc, the AspectBench
Compiler for AspectJ, which supports the whole of the AspectJ
language implemented byajc 1.2, and which has been specifically
designed to be an extensible framework for implementing AspectJ

∗This work was supported, in part, by NSERC in Canada and EP-
SRC in the United Kingdom. Our thanks to Chris Allan for his
comments on a draft of this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’05, March 14-18, 2005,Chicago, USA
Copyright 2005 ACM ...$5.00.

extensions.abc is freely available under the GNU LGPL and can
be downloaded from [1].

Challenges.An AspectJ compiler is already a complex piece
of software, which, in addition to the normal frontend and back-
end components of a compiler, must also support a matcher (for
name patterns) and a weaver (both for intertype declarations and
for advice). Furthermore, the kinds of extensions that havebeen
suggested for AspectJ vary from fairly simple pointcut language
extensions to more complex concepts which require modifications
in the type system, matcher and weaver. To make the challenges
explicit, we briefly review some previous work by others thathas
motivated our design.

At one end of the spectrum, there are fairly small extensionsthat
require changes primarily to the syntax. An example of this kind
is thename pattern scopesproposed by Colyer and Clement [8],
which provide an abstraction mechanism for name patterns. To
support this type of extension, our workbench needs an easy way
of extending the syntax, as well as introducing named patterns into
the environment.

A more involved extension is theparameteric introductionsof
Hanenberg and Unland [15]. These are intertype declarations that
depend on parameters evaluated at weave-time. Their integration
into AspectJ requires substantial changes to the type system as well
as the intertype weaver. This kind of extension thus motivates a
highly flexible implementation of types.

Most proposals for new features in AspectJ are, however, con-
cerned with the dynamic join point model. In [24], Sakuraiet al.
proposeassociation aspects. These provide a generalisation of per-
object instantiation, where aspect instances are tied to a group of
objects to express behavioural relationships more directly. This re-
quires not only changes to the frontend, but also substantial changes
to code generation. Making such code generation painless isan-
other design goal of our workbench.

The community as a whole is concerned with finding ways of
singling out join points based on semantic properties rather than
naming. For instance, Kiczales has proposed a new type of point-
cut, calledpredicted cflow[19]. pcflow(p) matches at a join point
if there may exist a path to another join point wherep matches. It
is correct to letpcflow(p) match everywhere, but that would lead
to inefficient programs. An efficient implementation ofpcflow(p)
needs substantial, interprocedural program analysis. Ourwork-
bench needs to provide a framework for building such analyses.

In fact, examples where efficient implementation necessitates an
analysis framework abound. Particular instances include the data
flow pointcutsof Masuhara and Kawauchi [21], and thetrace-based
aspectsof Douenceet al.[10], as well as thecommunication history

1

aspectsof Walker and Viggers [28].
All of the above are additions to the AspectJ language, but, of

course, restrictions can be equally important in language design.
One promising example is the proposal of Aldrich to restrictthe
visibility of join points to those that are explicit in the interface of
a class [2]. We aim to support the implementation of such restric-
tions, and this requires a flexible implementation of the type system
and the pointcut matcher.

Finally, we note that the implementation of advanced staticcheck-
ing tools for aspect-oriented programs, such as those investigated
by Krishnamurthiet al. [20], require all types of extension dis-
cussed above, ranging from simple variations in syntax to making
advanced analyses such as escape analysis take into accountthe
effects of advice.

In summary, we can see that an extensible AspectJ compiler must
be able to handle a wide variety of extensions, possibly touching on
many components of the compiler, including the frontend scanner
and parser, the type checker, the matcher and weaver, and poten-
tially requiring relatively sophisticated program analysis to ensure
correctness and efficiency.

Design Goals.One approach to implementing a language ex-
tension is to modify an existing compiler. However, this is not
always the best approach, since existing compilers may not have
been designed with extensiblity as one of the main goals. Further-
more, they may be constrained to work with infrastructures which
themselves are not easily extensible. In the case of AspectJ, the
only pre-existing implementation isajc, which is designed to sup-
port fast and incremental compilation and also to interact closely
with the Eclipse toolset.

Our approach was to design and implementabc, the Aspect-
Bench Compiler, with extensibility as its primary design goal (we
also aimed for an optimising implementation of AspectJ, butthat is
outside the scope of this paper). To support extensibility,we dis-
tilled the following requirements from the above discussion of the
challenges involved.

simplicity: It must be relatively simple to develop new extensions.
Users of the framework should not need to understand com-
plicated new concepts or a complex software design in order
to implement their extensions.

modularity: We require two kinds of modularity. First, the com-
piler workbench itself should be very modular, so that the dif-
ferent facets of each extension can be easily identified with
the correct module of the workbench.

Second, the extension should be modular (separate from the
workbench code). Users of the workbench should not need
to touch existing code; rather, they should be able to describe
the extensions as specifications or code that is separate from
the main code base.

proportionality: Small extensions should require a small amount
of work and code. There should not be a large overhead re-
quired to specify an extension.

analysis capability: The compiler workbench infrastructure should
provide both an intermediate representation and a program
analysis framework. This is necessary for two reasons. First,
some extensions may require relatively sophisticated analy-
ses to correctly implement their semantic checks and weav-
ing. Second, some extensions may lead to a lot of runtime
overhead unless compiler optimisation techniques are used
to minimise that overhead.

The abc approach.To meet these objectives, we decided to
build on existing, proven tools, namely the Polyglot extensible com-
piler framework for the frontend [23], and the Soot analysisand
transformation framework for the backend [26]. Indeed, Polyglot
has been shown to meet the criteria of simplicity, modularity and
proportionality on a wide variety of extensions to the syntax and
type system of Java. By the same token, Soot has been shown to
meet all the above criteria for code generation, analysis and opti-
misation.

Given the success of these building blocks, we felt it extremely
important to designabc so that both are usedas is, without any
changes that are specific toabc. As explained in Section 2 below,
this has dictated an architecture where the frontend separates the
AspectJ program into a pure Java part and a part containing in-
structions for the weaver.

Contributions.The contributions of this paper are the follow-
ing:

• We have identified the requirements for a workbench for re-
search in aspect-oriented programming languages by analysing
previous research in this area.

• We presentabc, an instance of such a workbench with a
clean, extensible architecture.

• We have validated our architecture against these requirements
with a number of small but non-trivial examples.

• The extensibility of Polyglot can be seen as a form of aspect-
orientation, and thusabc is itself a substantial exercise in
aspect-oriented software development, with the primary goal
of disentangling new, experimental features from the existing
base compiler.

Paper Structure.The structure of this paper is as follows. In
Section 2, we first give an overview of the main building blocks of
abc, namely Polyglot and Soot, and show their role in the overall
architecture ofabc. Next, in Section 3 we sketch the main points
of extensibility inabc. We then turn to describe some modest but
representative examples of AspectJ extensions in Section 4, and
their implementation in Section 5. The approach ofabc is con-
trasted with existing work in Section 6. Finally, in Section7 we
draw some conclusions from our experience in buildingabc, and
we explore possible directions for future research.

2. ARCHITECTURE
As stated in the introduction,abc is based on the Polyglot ex-

tensible compiler framework [23] and the Soot bytecode analysis
and transformation framework [26]. Using Polyglot as an exten-
sible frontend enables customisation of the grammar and semantic
analysis; in the backend, Soot provides a convenient intermediate
representation on which to implement the weaving of extensions,
as well as tools for writing any program analyses that extensions
may require. Polyglot can read class files to process librarycode;
Soot can also read in class files, and indeedabccan weave into jar
files in the same way as theajc compiler for AspectJ.

Becauseabc works with an unmodified Soot and Polyglot, it is
easy for us, as the developers ofabc itself, to update to the latest
versions of Soot and Polyglot as they are released. By the same to-
ken, authors of AspectJ extensions can upgrade to new versions of
abcwithout difficulty. This independence was achieved mainly by
separating the AspectJ-specific features in the code being processed

2

AspectJ
AST

.java

Java
AST

Aspect
Info

.class

Jimple
skeleton

Jimple
IR

Woven
Jimple

.java.class

Soot decompilationSoot bytecode generation

Polyglot AST transformations

Polyglot parser

Skeleton weaving

Woven
skeleton

Advice weaving

Soot skeleton generation

Soot jimple body generation

Analyses and optimisations

Final
Jimple

Figure 1: abc overall design

from standard Java code. In the frontend,abcgenerates a plain Java
abstract syntax tree (AST) and a separate aspect information struc-
ture containing the aspect specific information. We call theaspect
information structure theAspectInfo. The unmodified backend can
read in the AST (because it is plain Java), andabc then uses the
AspectInfoto perform all required weaving. A simplified diagram
of the architecture ofabc is shown in Figure 1.

In the following subsections, we describe Polyglot and Sootin
the context ofabc, with a focus on how they contribute to extensi-

bility. Finally we discuss in some more detail how the two parts are
connected.

2.1 Polyglot
Polyglot [23] is a frontend for Java intended for implementing

extensions to the base language. In its original configuration, Poly-
glot first parses Java source code into an abstract syntax tree (AST),
then performs all the static checks required by the Java language in
a number of passes which rewrite the tree. The output of Polyglot is
a Java AST annotated with type information, which is writtenback
to a Java source file. Polyglot is intended to perform all compile-
time checks; when a class has passed through all of the passesin
Polyglot, the resulting Java file should be compilable without errors
by any standard Java compiler. When Polyglot is used as a frontend
for Soot, theJava to Jimplemodule inside Soot compiles the final
AST into the Jimple intermediate representation instead ofwriting
it out to a Java file. Therefore, inabc, the final Polyglot passes
separate the AspectJ program into pure Java (which is passedto the
Java to Jimple module in Soot) and instructions for the weaver.

Several features of Polyglot make it well-suited for writing ex-
tensions, and also help to make those extensions themselvesexten-
sible. Polyglot allows a new grammar to be specified as a collection
of modifications to an existing grammar, where these modifications
are given in a separate specification file, not in the originalgram-
mar file. The AspectJ grammar we developed forabcis specified as
an extension of the Java grammar, and the grammars for extensions
are in turn specified as modifications to the AspectJ grammar.

Polyglot makes heavy use of interfaces and factories, making it
easy to extend or replace most of its parts, such as the type sys-
tem or the symbol table, as well as the list of rewrite passes that
are performed on the AST. Each pass in Polyglot non-destructively
rewrites the input tree. As a result, it is easy to insert new passes
in between existing ones, and each pass typically performs only a
small amount of work compared to traditional compiler passes. In
abc, we have added many AspectJ-specific passes, and it is easy for
extensions to add further passes of their own.

Each AST node in Polyglot uses a mechanism ofextensionsand
delegatesto allow methods to be replaced or added in the middle of
the existing class hierarchy, achieving an effect similar to what can
be done in AspectJ using intertype declarations, but in plain Java.
This mechanism is commonly used by extensions ofabc to modify
existing AST nodes.

2.2 Soot
Soot [26], which is used as the back-end ofabc, is a framework

for analysing and transforming Java bytecode. The most impor-
tant advantage of using Soot as the backend, both for developing
abc itself and for extending the language, is Jimple, Soot’s inter-
mediate representation. Soot provides modules to convert between
Jimple, Java bytecode, and Java source code. It furthermorein-
cludes implementations of standard compiler optimisations, which
abc applies after weaving. We have already observed significant
speedups from these optimisations alone (preliminary results are
accessible from [1]). In addition to already implemented analy-
ses and transformations, Soot has tools for writing new ones, such
as control flow graph builders, definition/use chains, a fixed-point
flow analysis framework, and a method inliner. These features are
useful for implementing extensions that need to be aware of the
intra-procedural behaviour of the program, such as pointcuts de-
scribing specific points in the control flow graph.

The Jimple intermediate representation is a typed, stack-less,
three-address code. Rather than representing computations with
an implicit stack, each Jimple instruction explicitly manipulates

3

specified local variables. This representation simplifies weaving
of advice, both for standard AspectJ features and for extensions.
If it were weaving into bytecode directly, the weaver would need
to consider the effect of the woven code on the implicit execution
stack, and generate additional code to fix up the stack contents.
None of this is necessary when weaving into Jimple. Moreover,
when values from the shadow point are needed as parameters to
the advice, they are readily available in local variables; the weaver
does not have to sift through the computation stack to find them.

As input, Soot can handle both class files and Java source files.
To convert bytecode to Jimple, Soot introduces a local variable to
explicitly represent each stack location, splits the variables to sep-
arate independent uses of the same location, and infers a type [13]
for each variable. To convert source code to Jimple, Soot first uses
Polyglot to construct an AST with type information, and thengen-
erates Jimple code from the AST. This process does not need tobe
modified inabc, becauseabcpasses Soot a plain Java AST, keep-
ing all the aspect-specific information in the separate aspect infor-
mation structure. Normally, after all processing, Soot converts the
Jimple code into bytecode and writes it to class files, but it also in-
cludes a decompiler which is very useful for viewing the effects of
aspects and AspectJ extensions on the generated code.

2.3 Connecting Polyglot and Soot
We conclude the discussion ofabc’s architecture by examining

in closer detail how Polyglot and Soot interact. A key component
of this interaction is the separation of the AspectJ AST intoa pure
Java AST and the auxilliaryAspectInfostructure. This transforma-
tion enablesabc to use the existing facility in Soot for translating a
Polyglot AST into the Jimple IR.

The Java AST is basically the AspectJ program with all AspectJ-
specific language constructs removed. TheAspectInfostructure
contains complete information about these constructs. In cases
where these contain actual Java code (advice bodies,if pointcut
conditions, intertype method/constructor bodies, intertype field ini-
tialisers), the code is placed in placeholder methods in theJava
AST.

The Java AST only contains Java constructs, but it is incomplete
in the sense that it may refer to class members which do not exist or
are not accessible in the unwoven Java program. More specifically,
the Java AST will in general not be compilable until alldeclare
parentsand intertype declarations have been woven into the pro-
gram. The first of these can alter the inheritance hierarchy,and the
second can introduce new members that the pure Java parts may
refer to. Since both of these features may be applied to classfiles
(for which we do not have an AST representation), it is not pos-
sible to perform this part of the weaving process on the Polyglot
representation before passing the AST to Soot.

Fortunately, Soot allows us to conduct the conversion from Java
to Jimple in two stages, and the application ofdeclare parentsand
intertype weaving can happen in between. In the first stage, Soot
builds a class hierarchy with mere stubs for the methods: it is a
skeleton of a full program in Jimple, without method bodies.In
the second stage, Soot fills in method bodies, either by converting
bytecode from class files, or by compiling AST nodes.

This setup permits both static weaving and advice weaving to
work on the Jimple IR, largely independent of whether the Jimple
code was generated from source code or bytecode. And since the
skeleton that is filled out in the second stage has the updatedhierar-
chy and contains all intertype declarations, all member references
in the code are resolved correctly in the translation into Jimple.

3. DEFINING AN EXTENSION
We now outline the basic steps needed to create an extension,in

a general manner. This description is intended to give the reader an
impression of the extension mechanisms available inabc, without
delving into excessive detail. After this generic description, we
shall introduce some concrete examples in Section 4, and show how
the basic steps are instantiated in Section 5.

This section serves two purposes. First, to outline how we build
on the existing extension mechanisms of Polyglot and Soot toachieve
extensibility inabc (Sections 3.2, 3.3, 3.4, and 3.8). Second, we
wish to present some design decisions that are unique toabc, which
address specific issues regarding the extension of AspectJ (Sections
3.1, 3.5, 3.6, 3.7 and 3.9).

3.1 Syntax
The first step in implementing a new extension is usually defin-

ing what additional syntax it will introduce to the language. Mak-
ing abc recognise the extended language involves changing the
lexer and the parser that it uses. Polyglot already handles extending
grammars in a very clean and modular fashion, however the stan-
dard Polyglot lexer is not extensible — extensions are expected to
create their own lexer by copying it and making appropriate modifi-
cations. Thus, in this subsection we describe our approach to mak-
ing an extensible lexer in some detail, and then briefly summarise
the Polyglot mechanism for extending grammars.

Lexer. We have designed the lexer forabc to support a limited
form of extensibility that has been sufficient for the extensions we
have written so far. Specifically, the set of keywords recognised by
the lexer can be modified by an extension, and the actions taken by
the lexer when encountering one of these keywords are customis-
able. More complex extensions can still be achieved by reverting to
Polyglot’s approach of copying and modifying the lexer definition.
This is in agreement with the principle of proportionality which
was stated as a design goal — small extensions are easy, and com-
plex ones are possible. It is a topic of future work to improvethe
extensibility, perhaps by specifying the lexer as a parser in itself.

The lexical analysis of AspectJ is complicated by the fact that
there are really several different languages being parsed:ordinary
Java code, aspect definitions, and pointcut definitions. Consequently,
theabclexer is stateful — it recognises different tokens in different
contexts. The following example illustrates one kind of problem
that is dealt with by the introduction of lexer states:

if*.*1.Foo+.new(..)

The expected interpretation of such a string as Java code and
as part of a pointcut will be very different; for example, in Java,
we would expect “1.” to become a floating point literal, whereas
in the pointcut language the decimal point would be viewed asa
dot separating elements of a name pattern. Similarly, “*” inJava
should be scanned as an operator, while in pointcuts, it is part of a
name pattern. Note also the use of what would be keywords in Java
mode (if andnew) as part of a pattern.

An important part of designing a stateful lexer is specifying when
the lexer should switch to a different state without adding too much
complexity. The general pattern we use is to maintain a stackof
states, and recognise the end of a state when we reach an appro-
priate closing bracket character for that state. For example, normal
Java code is terminated by the ‘}’ character. Of course, braces can
be nested, so we need to recognise opening braces and also count
the nesting level. For more details regarding the lexer states inabc,
see section 5.1.

4

File X File Y

S ::= a includeX
| b extend S ::= d
| c | e

File Z Result

includeY S ::= a
drop S ::= b | c

| d | e

Figure 2: Grammar extension mechanism

Parser. Theabcparser is generated by PPG [5], the LALR parser
generator for extensible grammars which is included in Polyglot [23].
PPG allows changes to an existing grammar to be entered in a sepa-
rate file, overriding, inheriting and extending productions from the
base grammar. This results in modular extensions, which caneasily
be maintained should the base grammar change.

The example in Figure 2 (using simplified non-PPG syntax) demon-
strates the basic principles. An existing grammar can be imported
with the “include” keyword. New production rules can then be
specified, and one can change existing rules using the keywords
“extend” and “drop” to add and remove parts of the rule. More ad-
vanced changes, such as modifying the precedence of operators, are
also possible. For further details on the specification of grammar,
see [5].

3.2 Type system
Polyglot provides convenient facilities for extending thetype

system. As a minimum, this involves introducing a new kind of
type object and lookup functions for these new entitities inthe envi-
ronment. The new type of environment is then invoked by overrid-
ing the environment factory method in a subclass ofAJTypeSystem,
which describes the type system of AspectJ itself.

To illustrate, consider the introduction of named class pattern
expressions [8]. We would need to introduce a new type objectto
represent such names, sayNamedCPEInstance(in Polyglot, it is
convention that identifiers for type classes end with. . . Instance).
The environment then maps (possibly qualified) names to objects
of typeNamedCPEInstance.

The semantic checks for named patterns must enforce the re-
quirement that there be no cycles in definitions, since recursively
defined named patterns do not make sense. A similar check has al-
ready been implemented for named pointcuts, and it involvesbuild-
ing a dependency graph. Such data structures necessary for seman-
tic checks are typically stored in the type objects (hereNamedCPE-
Instance): because Polyglot operates by rewriting the original tree,
it is not possible to store references to AST nodes.

Examples such as the parametric introductions of Hanenbergand
Unland [15] would require more invasive changes in the type sys-
tem, for example by subclassingInterTypeMethodInstance(the sig-
nature of a method introduced via an intertype declaration)to take
account of the parameters that are to be evaluated at compile-time.

3.3 Semantic checks
New semantic checks are usually implemented by overriding the

appropriate method on the relevant AST nodes. The most obvious
place for simple checks is in theTypeCheckerpass; every AST node
implements atypeCheck(TypeChecker) method. The type checker
is run after all variable references are resolved; all checks that do

not require further data structures are typically put in thetypeCheck
method.

Later passes use data flow information to check initialisation of
local variables and the existence ofreturn statements. Again, each
AST node implements methods to build the control flow graph for
these purposes. In the base AspectJ implementation, these are, for
example, overridden to take into account the initialisation of the re-
sult parameter inafter returning advice, and extensions can make
variations of their own.

AspectJ is somewhat unusual in that some semantic checks have
to be deferred to the weaver. For example, it is necessary to type
check the results ofaround advice at each point where it is woven
in. Becauseabcmaintains precise position information throughout
the compilation process, such errors can still be pinpointed to the
appropriate locations in the source.

3.4 Rewriting
The normal use of Polyglot is as a source-to-source compilerfor

extensions to Java, where the final rewriting passes transform new
features into an equivalent pure Java AST.abc is different in that
most of the transformation happens at a later stage, when weaving
into Jimple. It is, however, often useful to employ Polyglot’s orig-
inal paradigm when implementing extensions to AspectJ thathave
an obvious counterpart in AspectJ itself.

For example, consider again the feature of named class pattern
expressions. A simple implementation would be to just inline these
after appropriate semantic checks have been done, so that noth-
ing else needs to change in the compiler. Such inlining wouldbe
implemented as two separate passes, one to collect the namedpat-
tern definitions and the other to inline them — the two would then
communicate via an explicit data structure that is common toboth
passes. As said, it is not recommended to store pieces of AST ex-
plicitly unless they are immediately transformed away.

abc does extensive rewriting of the tree prior to conversion to
Jimple. This consists of introducting new placeholder methods (for
instance for advice bodies), and storing instructions for the weaver
in the AspectInfo. Extensions can participate in this process by
implementing methods that are called by the relevant passes.

3.5 Join points
Introducing new pointcuts will often involve extending theset

of possible join points. For example, implementation of a point-
cut that matches when a cast instruction occurs would require the
addition of a join point at such instructions.

Many new join points will follow the pattern of most existing
AspectJ join points and apply at a single Jimple statement. These
can be added by defining a new factory class that can recognisethe
relevant statements, and registering it with the global list of join
point types.

For more complicated join points, it will be necessary to over-
ride the code that iterates through an entire method body looking
for join point shadows. The overriding code can do any required
analysis of the method body to find instances of the new join points
(for example, one might want to inspect all control flow edgesto
find the back edges of loops [17]), and then call the original code
to find all the “normal” join point shadows.

3.6 Pointcuts
As pointed out in the introduction, there are many proposalsfor

new forms of pointcuts in AspectJ. To meet our objective of propor-
tionality (small extensions require little work), we have designed an
intermediate representation of pointcuts that is more regular than
the existing pointcut language of AspectJ. This makes it easier to

5

compile new pointcut primitives to existing ones.
Specifically, the backend pointcut language partitions pointcuts

into the four categories listed below. Some of the standard AspectJ
pointcuts fit directly into one of these categories and are simply
duplicated in the backend, while others are must be transformed
from AspectJ into the representation used inabc.

• Lexical pointcuts are restrictions on the lexical positionof
where a pointcut can match. For examplewithin andwith-
incodefall into this category.

• Shadow pointcuts pick out a specific join point shadow within
a method body. Thesetpointcut is an example.

• Dynamic pointcuts match based on the type or value of some
runtime value. Pointcuts such asif , cflow andthis are of this
kind.

• Compound pointcuts represent logical connectives such as
&&.

The motivation for this categorisation is that it allows theimple-
mentation of each backend pointcut to be simpler and more under-
standable, which in particular makes it easier for extension authors
to define new pointcuts.

An example of an AspectJ pointcut that does not fit into this
model directly is theexecution(〈MethodPattern〉) pointcut, which
specifies both that we are inside a method or constructor matching
MethodPatternand that we are at the execution join point. The
backend pointcut language therefore views this as the conjunction
of a lexical pointcut and a shadow pointcut.

To add a new pointcut, one or more classes should be added to
the backend, and the frontend AST nodes should construct theap-
propriate backend objects during the generation of theAspectInfo
structure.

The backend classes are responsible for deciding whether ornot
the pointcut matches at a specific location. If this cannot bestati-
cally determined, then the pointcut should produce adynamic residue
which can generate the required runtime code.

3.7 Advice
It appears that there are few proposals for truly novel typesof

advice: most new proposals can be easily rewritten to the exist-
ing idioms of before, after and around. For example, the proposal
for “tracecuts” in [10] reduces to a normal aspect, where a state
variable tracks the current matching state, and each pattern/advice
pair translates into after advice. Such new types of advice are thus
implemented via rewriting, in the standard paradigm of Polyglot.

Nonetheless, adding a new kind of advice that follows the As-
pectJ model of advice is straightforward: simply implementa new
class and define how code should be generated to call that piece of
advice and where in the join point shadow this code should go.For
example, the bookkeeping required forcflow is implemented as a
special kind of advice that weaves instructions both at the begin-
ning and end of a shadow.

3.8 Optimisations
The straightforward implementation of a new extension may re-

sult in inefficient runtime code. Even in the basic AspectJ lan-
guage, there are a number of features that incur significant run-
time penalties by default, but in many cases can be optimised. abc
aims to make it as easy as possible to implement new optimisations,
whether for the base language or for extensions. In particular, it is
straightforward to transform the AST in the frontend and theJimple
intermediate code in the backend.

Taking an example from the base AspectJ language, construction
of thethisJoinPoint is expensive because it must be done each time
a join point is encountered at runtime.abc (like ajc) employs two
strategies for mitigating this overhead. Firstly, some advice bod-
ies only ever make use of theStaticPartmember ofthisJoinPoint,
which only needs to be constructed once. A Polyglot pass in the
frontend is used to identify advice bodies where this is the case and
transform the uses tothisJoinPointStaticPart instead.

Secondly, the runtime code generated delays construction until
as late as possible in case it turns out not to be needed at all;this
is complicated by the fact thatif pointcuts as well as advice bod-
ies may make use of it, so construction cannot simply be delayed
until the advice body runs.abcgenerates code that instantiates the
thisJoinPoint variable where neededif it has not already been in-
stantiated, usingnull as a placeholder until that point. The Jimple
code is then transformed to remove unnecessary checks and initial-
isations, using a variation of Soot’s intraprocedural nullness anal-
ysis which has special knowledge that thethisJoinPoint factory
method cannot returnnull.

3.9 Runtime library
The runtime library for AspectJ serves two purposes. Firstly,

it contains bookkeeping classes necessary for the implementation
of language constructs such ascflow. Extensions such as data flow
pointcuts [21] would require a similar runtime class in order to store
dynamic data about the source of the value in a particular variable.

Secondly, the runtime provides the objects accessible through
the thisJoinPointfamily of special variables; these make informa-
tion about the current join point available to the programmer via
reflection. Any new pointcut introduced is likely to have unique
signature information which would be accessible to the uservia an
extension of theSignatureinterface. For example, the standard As-
pectJ runtime contains, amongst others,AdviceSignature, FieldSig-
nature, andMethodSignature.

4. EAJ — AN ASPECTJ EXTENSION
This section describes a few particular extensions to the AspectJ

language that we have implemented. These extensions have been
chosen to illustrate the most salient of the mechanisms thatwere
described in the previous section. The full source code for these
examples is included with the standard distribution ofabc [1]. For
ease of reference, the extended language is namedeaj; one com-
piles eaj programs with the command ‘abc -ext abc.eaj’. This is
the usual way of invoking extensions withabc.

4.1 Private pointcut variables
In AspectJ, the only way to introduce new variables into a point-

cut is to make them explicit parameters to a named pointcut def-
inition or advice. It is sometimes convenient, however, to simply
declare new variables whose scope is only part of a pointcut expres-
sion, without polluting the interface of the pointcut. For example,
it might be desired to check that the value of an argument being
passed has certain properties, without actually using thatvalue in
the advice body. The new keywordprivate introduces a locally
scoped pointcut variable. For instance, the following pointcut could
be used to check that the argument is either a negativeint or a neg-
ativedouble:

pointcut negativefirstarg() :
private (int x) (args(x) && if (x < 0))

|| private (double x) (args(x) && if (x < 0));

6

4.2 Global pointcuts
It is very common for many pieces of advice to share a common

conjunct in their pointcut. The idea of aglobal pointcut is to write
these common conjuncts only once. An example use is to restrict
the applicability of every piece of advice within a certain set of
aspects. For example, we might write:

global : * : ! within (Hidden);

This would ensure that no advice within any aspect could apply
within theHiddenclass.

As another example, it is often useful to prevent advice froman
aspect applying within that aspect itself. The following declaration
(for aspectAspect) can achieve this more concisely than putting the
restriction on each piece of advice:

global : Aspect: !within (Aspect);

In general, a global pointcut declaration can be put anywhere a
named pointcut declaration can be (i.e. directly within a class or
aspect body). The location of such a declaration has no effect on its
applicability, except that name patterns within such a declaration
will only match classes and aspects visible from the scope ofthat
declaration.

The general form of a global pointcut declaration is as follows:
global : 〈ClassPattern〉 : 〈Pointcut〉 ;

It has the effect of replacing the pointcut of each advice declaration
in each aspect whose name matchesClassPatternwith the conjunc-
tion of the original pointcut and the globalPointcut.

4.3 Cast pointcuts
The purpose of thecastpointcut is to match whenever a value

is cast to another type. A corresponding new type of join point
shadow is added which occurs at every cast instruction, whether
for reference or primitive types, in the bytecode of a program.

To illustrate, the following piece of advice can be used to detect
runtime loss of precision caused by casts from anint to ashort:

before(int i):
cast(short) && args(i)

&& if (i < Short.MIN VALUE
|| i > Short.MAX VALUE)

{
System.err.println(“Warning: loss of ” +

“ precision casting ” +
i + “ to a short.”);

}

In general the syntax of acast pointcut iscast(〈TypePattern〉);
this will match at any join point where the static result typeof the
cast is matched byTypePattern. In keeping with the pattern of other
primitive pointcuts, the value being cast from can be matched by
theargs pointcut, and the result of the cast can be matched by the
optional parameter toafter returning advice (and is returned by
theproceedcall in around advice).

4.4 Throw pointcuts
The throw pointcut is introduced in the developer documenta-

tion for ajc [18], and we have implemented it ineaj to compare the
ease-of-extension of both compilers. It matches a new join point
shadow which occurs at each throw instruction.

The following example demonstrates how extended debugging
information can be produced in the event of a runtime exception,
using a piece of advice:

before(Debuggable d):
this(d) && throw () && args(RuntimeException)

{
d.dumpState();

}

5. IMPLEMENTING EAJ USING ABC
We have given a broad outline of how extensions are constructed

and discussed some specific extensions that we have implemented.
We now show in detail how this was done, both to provide a guide
for others and to enable a realistic assessment of the work involved.

The starting point to extendingabcis theAbcExtensionclass. An
extension can be specified at runtime by passing its core package
name toabc with the -ext flag; theAbcExtensionclass from this
package is then loaded by reflection; all the extensibility hooks in
abc are passed through this class. There is a default implementa-
tion of this class in theabc.mainpackage, which extensions must
subclass.

Another key class isExtensionInfo. This is part of the extensi-
bility mechanism of Polyglot; all frontend extensions (except for
the lexer) are registered by subclassing this class. New instances of
this class are returned by the subclassedAbcExtension.

5.1 Extending the lexer
As described in Section 3.1,abc’s lexer is stateful. There are

four main lexer states for dealing with the different sub-languages
of AspectJ: JAVA , ASPECTJ, POINTCUT and POINTCUTIFEXPR.
The first three are used in the obvious contexts. The POINTCU-
TIFEXPR state must be separate from the normal JAVA state be-
cause theif pointcut allows a Java expression to be nested inside a
POINTCUT, but whereas the JAVA state is terminated by a ‘}’, we
need to return to the POINTCUT state when reaching a matching
closing ‘)’ character.

Keywords for each state are stored in state-specificHashMaps
which map each keyword to an object implementing theLexerAc-
tion interface. This interface declares a method

public int getToken(AbcLexer lexer)

which is called when the corresponding keyword is recognised. Its
return value is turned into a parser token and passed to the parser
for further analysis. A reference to the lexer instance is passed
as a parameter togetToken(...), so that side effects that affect the
lexer (like changing the lexer state) are possible. A default imple-
mentation of this interface is supplied, which offers sufficient func-
tionality to associate keywords with parser tokens and (optionally)
change the lexer state; custom implementations ofLexerActioncan
provide more flexibility. Note that the default implementation pro-
vides functionality sufficient for all but 5 (out of more than90) Java
and AspectJ keywords.

Implementing theeaj extensions required adding several new
keywords. In particular, “cast” was introduced as a keyword in
the POINTCUT state, and “global” as a keyword in all four lexer
states. Note that “private” and “throw” are already keywords in all
states, and so do not need to be introduced specifically for the pri-
vate pointcut variables and throw pointcut extensions. Here is the
code that adds the keywords to the respective states:

public void initLexerKeywords(AbcLexer lexer)
{

// keyword for the “cast” pointcut extension
lexer.addPointcutKeyword(“cast”,

newLexerAction c(new Integer
(abc.eaj.parse.sym.PCCAST)));

// keyword for the “global pointcut” extension
lexer.addGlobalKeyword(“global”,

newLexerAction c(new Integer
(abc.eaj.parse.sym.GLOBAL),

new Integer(lexer.pointcut state())));

// Add the base keywords
super.initLexerKeywords(lexer);

}

7

Note that both keywords use the default implementation ofLex-
erAction, i.e. theLexerAction c class. We see the one-argument
and two-argument constructors for that class. The first argument
is always the parser token that should be returned for the keyword,
the second argument (if present) is the lexer state that should be
selected after the keyword. As stated above, further logic can be
implemented by subclassingLexerAction c.

5.2 Extending the parser
The grammar fragment below shows how two new productions

are added for private pointcut variables and the cast pointcut, which
can appear anywhere a normal pointcut could:

extendbasic pointcut expr ::=
PRIVATE:x LPAREN formal parameter list opt:a RPAREN
LPAREN pointcut expr:bRPAREN:y
{:

RESULT=
parser.nf.PCLocalVars(parser.pos(x,y), a, b);

:}
| PC CAST:x LPAREN type pattern expr:aRPAREN:y

{:
RESULT=

parser.nf.PCCast(parser.pos(x,y), a);
:}

;

The fragment closely resembles code one would use with the
popular CUP parser generator, apart from theextend keyword,
which signifies that these two productions are to be added to the
rules that already exist forbasic pointcut expr. PPG also allows
you to drop productions, transfer productions from one non-terminal
to another, and override the productions of a particular non-terminal;
it is described in detail in [5].

5.3 Adding new AST nodes
As mentioned above,abc’s frontend is built on the Polyglot ex-

tensible compiler framework [23]. In fact, from Polyglot’spoint of
view, abc is just another extension. This means thatabc “inherits”
all the extensibility mechanisms provided by Polyglot.

In particular, adding new AST nodes is common when writing
compiler extensions, and thus it is important to provide an easy and
robust mechanism for doing so.

All four extensions discussed above required new AST nodes.
For the sake of brevity we will only present the node introduced by
the global pointcut extension here — the other cases are handled
very similarly.

In order to write a clean Polyglot extension, one has to adhere
to the rigorous use of factories and interfaces to create nodes and
invoke their members, respectively. The first step is therefore to de-
fine an interface for the new AST node, declaring any functionality
it wants to present to the outside world:

public interface GlobalPointcutDeclextendsPointcutDecl
{

public void registerGlobalPointcut(GlobalPointcuts visitor,
Context context,
EAJNodeFactory nf);

}

We provide a method to insert the pointcut into a static data struc-
ture keeping track of the global pointcuts defined in the program
(cf. Section 5.4). Note that the interface extendsabc’s Pointcut-
Decl interface, so it provides all the functions relevant to a pointcut
declaration.

The next step is to write the class implementing that interface.
Some boilerplate code is required (a constructor and methods to
allow visitors to visit the node), and, of course, the methodregis-
terGlobalPointcut() is given a concrete implementation.

In order to make sure we can instantiate this new node type, we
subclassabc’s default node factory (which, in turn, is derived from
Polyglot’s node factory) and create a method for obtaining an in-
stance ofGlobalPointcutDecl:

public GlobalPointcutDecl
GlobalPointcutDecl (

Position pos,
ClassnamePatternExpr aspectpattern,
Pointcut pc, String name,
TypeNode voidn)

{
return new GlobalPointcutDecl c(pos, aspectpattern,

pc, name, voidn);
}

Now the extended parser can produceGlobalPointcutDeclob-
jects when it encounters the appropriate tokens (cf. listing in Sec-
tion 5.2).

Note that all changes are local to new classes we created (in fact,
these classes are in a completely separate package). The fact that
abc itself didn’t have to be changed at all makes the extension ro-
bust with respect toabcupgrades. Also, since the new AST node
extends an existing node, very little functionality needs to be re-
implemented. The associated interfaces only have to declare the
methods specific to the new node’s particular functionality.

In the same way, interfacesPCLocalVarsandPCCastwere de-
fined, along with implementing classes, for the private pointcut
variables andcast pointcut extensions. Corresponding production
methods were added to the extended AspectJ node factory.

5.4 Adding new frontend passes
Implementing the “global pointcuts” extension described in Sec-

tion 4.2 requires somewhat more extensive additions to the com-
piler — first, all global pointcuts need to be collected, and then
each pointcut must be replaced with the conjunction of the original
pointcut and all applicable global pointcuts.

Polyglot’s visitor-based architecture makes implementing that
very easy. We add two new passes. The first stores all global point-
cuts in a static variable, and the second applies that pointcut to the
relevant code. For reasons of code brevity, these two passesare
implemented by the same class,GlobalAspects; it uses a member
variable calledpassto distinguish which of the two functions it is
performing.

The traversal of the AST is performed by theContextVisitorPoly-
glot class. The new pass extendsContextVisitorwith a method that
performs the required action when it encounters a relevant AST
node.

The following code fragment illustrates the behaviour of the new
visitor upon entering an AST node:

public NodeVisitor enter(Node parent, Node n) {
if (pass == COLLECT
&& n instanceofGlobalPointcutDecl) {

((GlobalPointcutDecl) n).
registerGlobalPointcut(this, context(), nodeFactory);

}
return super.enter(parent, n);

}

As mentioned above, both new passes are implemented by the
same class, and hence the check thatpass==COLLECTmakes
sure we do the right thing. If the current node is aGlobalPoint-
cutDecl(one of the new AST nodes defined in section 5.3), we call
its special method so it registers itself with the data structure stor-
ing global pointcuts. Then we delegate the rest of the work (the
actual traversal) to the superclass.

The implementation of theleave() method, which is called when
the visitor leaves an AST node and has the option of rewritingthe

8

public static CastShadowMatch
matchesAt(MethodPosition pos)

{
if (!(posinstanceofStmtMethodPosition))

return null;

Stmt stmt= ((StmtMethodPosition) pos).getStmt();

if (!(stmtinstanceofAssignStmt))
return null;

Value rhs= ((AssignStmt) stmt).getRightOp();

if (!(rhs instanceofCastExpr))
return null;

Type cast to = ((CastExpr) rhs).getCastType();

return new CastShadowMatch(
pos.getContainer(), stmt, cast to);

}

Figure 3: The CastShadowMatch.matchesAt(...) method

node if necessary, is very similar. Ifpass==CONJOINand we are
at an appropriate node, we return the conjunction of the nodeand
the global pointcut.

The sequence of passes that the compiler goes through is speci-
fied in the special singletonExtensionInfoclass. By subclassing it
and inserting our new passes in an overridden method which then
calls the original method, we make sure the original sequence of
passes is undisturbed. Note that this mechanism makes the exten-
sion robust with respect to changes in the baseabc passes — we
can add and rearrange passes without breaking the extension.

5.5 Adding new join points
To implement the cast and throw pointcuts, we first need to ex-

tend the list of join point types. This is done by adding to a list of
factory objects which the pointcut matcher iterates over tofind all
join point shadows. ThelistShadowTypesmethod is defined in the
AbcExtensionclass and is overridden foreaj:

protectedList /*<ShadowType>*/ listShadowTypes()
{

List /*<ShadowType>*/ shadowTypes=
super.listShadowTypes();

shadowTypes.add(CastShadowMatch.shadowType());
shadowTypes.add(ThrowShadowMatch.shadowType());
return shadowTypes;

}

The definitions ofCastShadowMatchand ThrowShadowMatch
are very similar and we therefore limit ourselves to discussing the
former.

TheCastShadowMatch.shadowType() method just returns an anony-
mous factory object which delegates the work of finding a joinpoint
to a static method in theCastShadowMatchclass. This method,
matchesAt(...), takes a structure describing a position in the pro-
gram being woven into and returns either a new object representing
a join point shadow ornull; the code for it is given in Figure 3.

The purpose of theMethodPositionparameter is to allowabc to
iterate through all the parts of a method where a join point shadow
can occur, and ask each factory object whether one actually does.
There are four types ofMethodPositionfor normal AspectJ shad-
ows:

• Whole body shadows: execution, initialization, preinitializa-
tion

• Single statement shadows: method call, field set, field get

• Statement pair shadows: constructor call

• Exception handler shadows: handler

Most shadows either fall into the category of “whole body” or“sin-
gle statement”. Two are special; a constructor call join point en-
compasses both thenewinstruction that creates the object as well as
the invokespecialthat initialises it, and handler join points can only
be found by looking at the exception handler table for a method,
rather than its statements.

If a new join point requires an entirely new kind of method posi-
tion, then the code that iterates over them can be overridden.

The first job of thematchesAt(...) method is to check that we are
at the appropriate position for acast pointcut, namely one with a
single statement. Next, we need to check whether there is actually a
cast taking place at this position; the grammar of Jimple makes this
straightforward, as a cast operation can only take place on the right-
hand side of an assigment statement. If no such operation is found,
we returnnull; otherwise we construct an appropriate object.

Defining theCastShadowMatchclass also requires a few other
methods, connected with defining the correct values to be bound
by an associatedargs pointcut, reporting the information required
to construct aJoinPoint.StaticPartobject at runtime, and recording
the information that a pointcut matches at this shadow in an appro-
priate place for the weaver itself to use. The details are straightfor-
ward, and we omit them for reasons of space.

5.6 Extending the pointcut matcher
Again, we describe the implementation of thecastpointcut and

omit discussion of the almost identical throw pointcut. Once the
corresponding join point shadow has been defined, writing the ap-
propriate backend class is straightforward. The pointcut matcher
tries every pointcut at every join point shadow found, so allthe
cast pointcut has to do is to check whether the current shadow is
a CastShadowMatch, and if so verify that the type being cast to
matches theTypePatterngiven as argument to thecastpointcut:

protectedResidue matchesAt(ShadowMatch sm)
{

if (!(sminstanceofCastShadowMatch))
return null;

Type cast to = ((CastShadowMatch) sm).getCastType();

if (!getPattern().matchesType(cast to))
return null;

return AlwaysMatch.v();
}

The AlwaysMatch.v() value is adynamic residuethat indicates
that the pointcut matches unconditionally at this join point. For
those pointcuts where matching cannot be statically determined,
this is replaced by one which inserts some code at the shadow to
check the condition at runtime.

5.7 Extending the runtime library
AspectJ provides dynamic and static information about the cur-

rent join point throughthisJoinPointand associated special vari-
ables.

For thecast pointcut extension, this runtime interface was ex-
tended to reveal the signature of the matching cast. For example,
the following aspect picks out all casts (except for the one in the
body of the advice) and uses runtime reflection to display thetype
that is being cast to at each join point:

import org.aspectbench.eaj.lang.reflect.CastSignature;

aspectFindCasts
{

before():

9

cast(*) && ! within (FindCasts)
{

CastSignature s= (CastSignature)
thisJoinPointStaticPart.getSignature();

System.out.println(“Cast to: ” +
s.getCastType().getName());

}
}

Implementing this requires changes both in the backend of the
compiler (where the static join point information is encoded for
the runtime library to read later), and the addition of new runtime
classes and an interface.

Static join point information is encoded in a string which isparsed
at runtime by a factory class to construct the objects accessible
from thisJoinPointStaticPart. This happens just once, namely in
the static initialiser of the class where the join point shadow is lo-
cated. The alternative, which is to directly generate code to con-
struct these objects, would be expensive in terms of the sizeof the
bytecode produced; using strings provides a compact representa-
tion without too much runtime overhead.

The static information for acastpointcut is encoded as follows.
To allow us to easily reuse the existing parser for such strings, a
fair amount of dummy information is generated, corresponding to
properties that cast join points do not have. For example, modifiers
such aspublic are important for join points that have a method or
field signature associated with them, but make no sense for the cast
join point. The string for thecastpointcut is constructed from four
parts:

• Modifiers (encoded as an integer — 0 for a cast)

• Name (usually a method or field name, but for a cast it is just
“cast”)

• Declaring type — class in which the join point occurs

• Type of the cast

For example, a cast join point within a method in the classIntHashTable
which casts the value retrieved from aHashMapto anIntegerwould
produce the following encoded string:

"0-cast-IntHashTable-Integer"
The runtime factory is subclassed to add a method that creates

an object implementing the newCastSignatureinterface for appro-
priate join points. The aforementionedAbcExtensionclass has a
method which specifies which runtime class should be used as a
factory for thisJoinPointStaticPart objects, which is overriden so
that runtime objects are created with the new factory:

public String runtimeSJPFactoryClass()
{

return
“org.aspectbench.eaj.runtime.reflect.EajFactory”;

}

5.8 Code measurements
To enable the reader to assess the amount of effort involved in

implementing each of these new features, we have summarised
some statistics in Figure 4. The table shows the size of the whole
parser, and of the boilerplate for factories in the top and penulti-
mate row, respectively. The most interesting part is the breakdown
by construct in the middle. For private pointcut variables,all the
work goes into defining new AST nodes, and there is no need to
define new passes or to touch the weaver in any way. By contrast,
global pointcuts require the introduction of new Polyglot passes,

eaj measurements Files Lines of code

Parsing 1 74
Private AST nodes 2 130
pointcut Passes 0 0
variables Weaver 0 0

Runtime 0 0
Global AST nodes 4 64
pointcut Passes 1 77
declarations Weaver 0 0

Runtime 0 0
Cast AST nodes 2 46
poincuts Passes 0 0

Weaver 2 94
Runtime 2 27

Throw AST nodes 2 46
pointcuts Passes 0 0

Weaver 2 91
Runtime 2 16

Extension information
and shared classes

7 205

Total 27 870

Figure 4: Code measurements foreaj

Throw-pointcut statistics ajc abc
Core compiler/runtime files modified 8 0
throw -specific files created 2 6
Extension-specific factories modified - 5
Total files touched 10 11
Lines of code written1 103 187

Figure 5: The throw pointcut in ajc and abc.

which reduce the new construct to existing AspectJ constructs. Fi-
nally, for cast and throw pointcuts, there is substantial work in the
weaver, because these introduce a new type of join point.

It is pleasing to us that the distinction between the examples is so
sharp, as it gives good evidence that the aim of modularity has been
achieved. We believe that the amount of code that needs to be writ-
ten also meets the criterion of proportionality that was introduced
at the beginning of this paper. The criterion of simplicity is more
difficult to measure, but we hope that the sample code in this sec-
tion suffices to convince the reader that we have succeeded inthis
respect as well. The examples presented here do not demonstrate
analysis capability: assessment of that criterion is ongoing work.

6. RELATED WORK
Others before us have identified the need for a workbench to

support the rapid developments in aspect-oriented programming
language research. In this section, we review a number of such
proposals, and contrast them with the approach taken inabc.

ajc. Thede factostandard workbench for research into variations
and extensions of AspectJ is theajc compiler. It has served this
purpose admirably well, and for example [21,24] report on the suc-
cessful integration of substantial new features intoajc.

We believe that, in view of the explosion of research into new
features and analyses, the time has now come to disentangle the

1Note that the numbers in Figure 5 forabc take into account the
relevant lines of files which are listed under “Extension information
and shared classes” in Figure 4.

10

code of the base compiler from that of the extensions. The benefits
are illustrated by the table in Figure 5. It compares the implemen-
tation of thethrow pointcut inabcandajc. In the case ofajc, we
have to modify a large number of existing files, thus tanglingthe
new extension with the existing compiler base. At the cost ofsome
factory classes (and thus some more lines of code),abc disentan-
gles the two completely.

A more detailed comparison of the characteristics ofajc andabc
can be found in a companion paper [3]; in particular, that paper
explores the fact thatabc’s compile times are typically a factor 3-4
slower than those ofajc.

Javassist.Javassist is a reflection-based toolkit for developing
Java bytecode translators [7]. Compared to other librariessuch as
BCEL, it has the distinguishing feature that transformations can
be described using a source-level vocabulary. Compared toabc, it
provides some of the combined functionality of the Java-to-Jimple
translator plus the advice weaver, but its intended applications are
different: in particular, it is intended for use at load-time. Conse-
quently, Javassist does not provide an analysis framework like Soot
does inabc. In principle, such a framework could be added, but it
would require the design of a suitable intermediate representation
akin to Jimple.

Josh. Josh is an open implementation of an AspectJ-like language
based on Javassist [6], and as such it is much closer in spiritto
abc. Indeed, the primary purpose of Josh is to experiment with
new pointcut designators, although it can also be used for features
such as parametric introductions. Because of the implementation
technology, there is no special support for the usual staticchecks
in the frontend, which is provided inabc by the infrastructure of
Polyglot. Josh does not cover the whole of AspectJ, which limits
its utility in realistic experiments.

Logic meta-programming.A more radical departure from tra-
ditional compiler technology is presented bylogic meta-program-
ming, as proposed by [9, 14]. Here, program statements where ex-
tra code should be woven in are selected by means of full-fledged
Prolog programs. This adds significant expressive power, and like
Josh, the design makes it easy to experiment with new kinds of
pointcuts. The system operates on abstract syntax trees, which are
not a convenient representation for transformation and analysis —
many years of research in the compilers community have amply
demonstrated the merits of a good intermediate representation. A
further disadvantage, in our view, is the lack of static checks due to
the increased expressive power. The success of AspectJ can partly
be explained by the fact that it provides ahighly disciplinedform
of meta-programming; some of that discipline is lost in logic meta-
programming, because the full power of Prolog precludes certain
static checks. Nevertheless, a system based on these ideas is pub-
licly available [27], and it is used as a common platform by a num-
ber of researchers.

Pointcuts as functional queries.Eichberg, Mezini and Os-
termann have very recently suggested an open implementation of
pointcuts, to enable easy experimentation with new forms ofpoint-
cuts [12]. Their idea is closely related to that of logic meta-program-
ming, namely to use a declarative query language to identifyjoin
point shadows of interest. A difference is that they opt for the use of
the XML query language XQuery instead of a logic language. Fur-
thermore, [12] only deals with static join points. As arguedin the
introduction, several recent proposals for new pointcut primitives

require data flow analyses. We believe that it is not convenient to
express such analyses via queries on syntax trees. It is however
quite easy to transfer some of the ideas of [12] toabc, by letting the
queries range over Polyglot ASTs. A challenge, then, is to define
appropriate type rules to implement as part of the frontend.

7. CONCLUSIONS AND FUTURE WORK
We have presentedabc, and its use as a workbench for exper-

imentation with extensions of AspectJ. Our primary design goal
was to completely disentangle new features from the existing code-
base, and this goal has been met. We hope that such disentangling
will enable yet more rapid developments in the design of aspect-
oriented programming languages, and the integration of ideas from
multiple research teams into a single system, where the basecan
evolve independently of the extensions.

This project has also been an evaluation of the extensibility of
Polyglot and Soot, from the perspective of aspect-orientedsoftware
development. We now summarise their role in the extensibility of
our design, and identify possible improvements.

Polyglot. Polyglot turned out to be highly suited to our purposes.
Its extension mechanisms are exactly what is needed to implement
AspectJ itself as an extension of Java, with only minimal code du-
plication. This in turn makes the development ofabc relatively
independent of further improvements to Polyglot.

As we have remarked earlier, the Polyglot mechanism ofdel-
egatesmimicks that of ordinary intertype declarations, whereas
extension nodesroughly correspond to what an AspectJ program-
mer would naturally do viadeclare parentsand interface intertype
declarations. Polyglot achieves this effect by cunningly creating a
replica of the inheritance hierarchy in code, which then provides
the hooks for appropriate changes. Arguably that mechanismis
somewhat brittle, and it is certainly verbose, replicatingthe same
information in multiple places of the code.

We thus face the question whether it would be possible to extend
abcusing AspectJ, or indeed any other dialect of Java that features
open classes. The answer is in the positive, asabcis written in pure
Java. It follows that users who prefer to use AspectJ to extend abc
can do so without further ado.

Would the result be more compact and understandable code?
Unfortunately, a significant proportion of Polyglot’s extensions is
taken up by boilerplate code for generic visitors in each newAST
node. To generate that automatically, one would need reflection or
a feature akin to parametric introductions [15]. The reflection route
has been used with much success, in a framework by Hanson and
Proebsting [16] that is very similar to Polyglot.

Soot. The choice of Soot as the basis for our code generation and
weaver has had a fundamental impact not only on the quality ofthe
code that is generated, but also on the ease by which the transforma-
tions are implemented. The Jimple intermediate representation of
Soot has been honed on a great variety of optimisations and anal-
yses before we applied it toabc, and we reap the benefits of this
large body of previous work.

Equally important has been the use of the Dava decompiler that
is part of the Soot framework. This makes it much easier to pin-
point potential problems, and to communicate the ideas about code
generation to others. It also opens the way to exciting new visu-
alisations, for example to indicate at source level exactlywhat dy-
namic residue was inserted at a join point shadow.

In this paper, we have not yet fully exploited the analysis ca-
pabilities of Soot. In particular, for the optimised implementation

11

of advanced features such as predicted control flow [19], data flow
pointcuts [21] and trace cuts [10, 28], the interproceduralanaly-
ses of Soot will be very important. In such cases, one needs to
first weave naively, in order to get an approximation of the relevant
analysis structures. These are then used to weave again, butnow
more precisely, removing redundant residues. We report on the de-
tails of this process (which also applies to the implementation of
cflow [25]) in a companion paper [4].

The ultimate test ofabc’s extensibility will be its use by others.
We are encouraged that at the time of writing, at least 10 academic
groups have started to useabc for their own research, including the
projects described in [17,20].

8. REFERENCES
[1] abc. The AspectBench Compiler. Home page with

downloads, FAQ, documentation, support mailing lists, and
bug database.http://aspectbench.org .

[2] Jonathan Aldrich. Open modules: A proposal for modular
reasoning in aspect-oriented programming. Technical Report
CMU-ISRI-04-108, Institute for Software Research,
Carnegie Mellon University, 2004.

[3] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhoták, Ondrej Lhoták, Oege
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. Building the abc AspectJ compiler with Polyglot and
Soot. Technical Report abc-2004-4, aspectbench.org, 2004.

[4] Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhoták, Ondrej Lhoták, Oege
de Moor, Damien Sereni, Ganesh Sittampalam, and Julian
Tibble. Optimising AspectJ. Technical Report abc-2004-3,
aspectbench.org, 2004.

[5] Michael Brukman and Andrew C. Myers. PPG: a parser
generator for extensible grammars, 2003. Available at
www.cs.cornell.edu/Projects/polyglot/
ppg.html .

[6] Shigeru Chiba and Kiyoshi Nakagawa. Josh: an open
AspectJ-like language. In K. Lieberherr, editor,3rd
International Conference on AOSD, pages 102–111, 2004.

[7] Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit
for efficient Java bytecode translators. In2nd International
coference on Generative Programming and Component
Engineering (GPCE ’03), volume 2830 ofLNCS, pages
364–376, 2003.

[8] Adrian Colyer and Andrew Clement. Large-scale AOSD for
middleware. In3rd International Conference on AOSD,
pages 56–65. Association for Computing Machinery, 2004.

[9] Kris de Volder. Aspect-oriented logic meta-programming. In
Pierre Cointe, editor,2nd International Conference on
Meta-level Architectures and Reflection, volume 1616 of
LNCS, pages 250–272, 1999.

[10] Rémi Douence, Pascal Fradet, and Mario Südholt.
Composition, reuse and interaction analysis of stateful
aspects. In Karl Lieberherr, editor,3rd International
Conference on AOSD, pages 141–150, 2004.

[11] Chris Dutchyn, Gregor Kiczales, and Hidehiko Masuhara.
Tutorial: AOP language exploration using the Aspect Sand
Box. In 1st International Conference on AOSD, 2002.

[12] Michael Eichberg, Mira Mezini, and Klaus Ostermann.
Pointcuts as functional queries. InSecond ASIAN Symposium
on Programming Languages and Systems (APLAS 2004),
Springer Lecture Notes in Computer Science, 2004.

[13] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau.

Efficient inference of static types for Java bytecode. InStatic
Analysis Symposium, pages 199–219, 2000.

[14] Kris Gybels and Johan Brichau. Arranging language features
for more robust pattern-based crosscuts. In2nd International
Conference on AOSD, pages 60–69. ACM Press, 2003.

[15] Stefan Hanenberg and Rainer Unland. Parametric
introductions. In Mehmet Aksit, editor,2nd International
Conference on AOSD, pages 80–89, 2003.

[16] David Hanson and Todd Proebsting. A research C# compiler.
Software — Practice and Experience, to appear, 2004.

[17] Bruno Harbulot and John R. Gurd. Using AspectJ to separate
concerns in parallel scientific Java code. InProceedings of
the 3rd international conference on AOSD, pages 122–131.
ACM Press, 2004.

[18] Jim Hugunin. Guide for developers of the AspectJ compiler
and weaver, 2004. Available at
http://dev.eclipse.org/viewcvs/index.
cgi/˜checkout˜/org.aspectj/modules/docs/
developer/compiler-weaver/index.html?
rev=1.1&content-type=text/html&cvsroot=
Technology_Project .

[19] Gregor Kiczales. The fun has just begun. Keynote address at
AOSD. Available ataosd.net/archive/2003/
kiczales-aosd-2003.ppt , 2003.

[20] Shriram Krishnamurthi, Kathi Fisler, and Michael
Greenberg. Verifying aspect advice modularly. InACM
SIGSOFT International Symposium on the Foundations of
Software Engineering, 2004.

[21] Hidehiko Masuhara and Kazunori Kawauchi. Dataflow
pointcut in aspect-oriented programming. In1st Asian
Symposium on Programming Languages and Systems,
volume 2895 ofLNCS, pages 105–121, 2003.

[22] Hidehiko Masuhara, Gregor Kiczales, and Chris Dutchyn. A
compilation and optimization model for aspect-oriented
programs. InCompiler Construction, volume 2622 ofLNCS,
pages 46–60, 2003.

[23] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C.
Myers. Polyglot: An extensible compiler framework for
Java. In12th International Conference on Compiler
Construction, volume 2622 ofLNCS, pages 138–152, 2003.

[24] Kouhei Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi,
Saeko Matsuura, and Seiichi Komiya. Association aspects. In
Karl Lieberherr, editor,3rd International Conference on
AOSD, pages 16–25, 2004.

[25] Damien Sereni and Oege de Moor. Static analysis of aspects.
In Proceedings of the 2nd International Conference on
AOSD, pages 30–39, 2003.

[26] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick
Lam, Patrice Pominville, and Vijay Sundaresan. Optimizing
Java bytecode using the Soot framework: Is it feasible? In
Compiler Construction, 9th International Conference (CC
2000), pages 18–34, 2000.

[27] Kris De Volder. The TyRuBa metaprogramming system.
Available athttp://tyruba.sourceforge.net/ .

[28] Robert Walker and Kevin Viggers. Implementing protocols
via declarative event patterns. InACM Sigsoft International
Symposium on Foundations of Software Engineering
(FSE-12), 2004.

12

