
Context Transformations for Pointer Analysis

Rei Thiessen Ondřej Lhoták

University of Waterloo

{rthiesse,olhotak}@uwaterloo.ca

Abstract

Points-to analysis for Java benefits greatly from context

sensitivity. CFL-reachability and k-limited context strings

are two approaches to obtaining context sensitivity with

different advantages: CFL-reachability allows local reasoning

about data-value flow and thus is suitable for demand-driven

analyses, whereas k-limited analyses allow object sensitivity

which is a superior calling context abstraction for object-

oriented languages. We combine the advantages of both

approaches to obtain a context-sensitive analysis that is as

precise as k-limited context strings, but is more efficient to

compute. Our key insight is based on a novel abstraction

of contexts adapted from CFL-reachability that represents

a relation between two calling contexts as a composition of

transformations over contexts.

We formulate pointer analysis in an algebraic structure of

context transformations, which is a set of functions over

calling contexts closed under function composition. We

show that the context representation of context-string-based

analyses is an explicit enumeration of all input and output

values of context transformations. CFL-reachability-based

pointer analysis is formulated to use call-strings as contexts,

but the context transformations concept can be applied to

any context abstraction used in k-limited analyses, including

object- and type-sensitive analysis. The result is a more

efficient algorithm for computing context-sensitive results

for a wide variety of context configurations.

CCS Concepts •Theory of computation → Program

analysis

Keywords Pointer analysis, context-sensitive analysis, static

analysis

1. Introduction

Pointer analysis is a fundamental static analysis that deter-

mines the objects that pointers may point to. Precise pointer

information is essential for program verification, refactoring

tools, and other downstream static analyses. In order to com-

pute precise pointer information, an analysis must account

for different calling contexts of methods.

A method may have different run-time behaviour in each

invocation. A context-insensitive analysis produces a single

conservative result that models all invocations. A more pre-

cise analysis result can be obtained if methods are analyzed

multiple times to model different calling contexts. A method

context represents a set of run-time invocations of a method

in some static and finite partitioning of all invocations of the

method during an execution of a program.

Although context-insensitive pointer analysis scales to the

largest of Java programs, context-sensitive pointer analyses

fare less well. Various techniques have been proposed to

improve the scalability of context-sensitive pointer analysis,

including but not limited to using Binary Decision Diagrams

to compress analysis data [8, 21, 25], merging of redundant

pointer information [22], combining different flavours of con-

text sensitivity [6], demand driven algorithms that progres-

sively refine the precision of the analysis based on the needs

of a client [17], and methods of varying the level of context

sensitivity of program elements [9, 10, 16, 23].

We have developed a new context abstraction based on

insights from the context-free language reachability (CFL-

reachability) formulation of pointer analysis [13, 17, 18, 24].

In the CFL-reachability formulation of pointer analysis,

points-to relationships are identified by paths in a graph rep-

resentation of Java programs. The paths are filtered by strings

formed by labels of traversed edges, which are required to be

in the intersection of two context-free languages that model

data flow across heap accesses and method calls. We identify

these paths as transformations over contexts, and show that

the traditional representation of context information is the

explicit enumeration of input-output mapping pairs of these

transformations. We introduce an alternative representation

of context transformations that more efficiently represents

data. Unlike the CFL-reachability approach which is formu-

lated only for call-site sensitivity, our abstraction works under

call-site [14], object [11], and type sensitivity [15].

The traditional representation of context information as

context strings explicitly enumerates the method contexts

under which points-to and call-graph relationships hold. For

example, given the statement “p = new T();” labelled h,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’17, June 18–23, 2017, Barcelona, Spain
ACM. 978-1-4503-4988-8/17/06...$15.00
http://dx.doi.org/10.1145/3062341.3062359

263

a traditional context-string-based pointer analysis concludes

that variable p points-to (an object allocated at) h, and this

fact is enumerated for every method context of the method

that contains the statement. Our new abstraction represents

this information by a single fact: p points-to h under the

identity transformation over method contexts, meaning that p

points to an object allocated at h in the same method context

in which the object was allocated. Context-sensitive call-

graph edges, which express a relationship between caller and

callee method contexts, can also be expressed as transfor-

mations over method contexts. Points-to facts arising from

interprocedural data flow are computed through function com-

position of context transformations of points-to facts with that

of call-graph edges. Thus, the new representation of context

information is an algebraic structure of transformations over

method contexts, closed under function composition.

We present a parameterized set of deduction rules for

pointer analysis that can be instantiated with either the tra-

ditional representation of contexts as pairs of fixed-length

strings (context string abstraction), or with our new abstrac-

tion. Our new abstraction is strictly more precise than con-

text strings in theory, but obtains exactly the same precision

in practice under call-site and object sensitivity. When the

parameterized rules are instantiated to a particular context

sensitivity and representation, they become plain Datalog [4]

rules, and analysis results can be computed by fast Datalog

engines.

Contributions. This paper makes the following contribu-

tions:

• We formulate a pointer analysis using a new algebraic

structure of context transformations. We show that one

representation of context transformations is in the form

of k-limited context strings. We propose an alternative

representation of context transformations as a composition

of elemental transformations called transformer strings.

• We present a parameterized set of deduction rules for

pointer analysis which can be instantiated to use either

the traditional context string representation or our new

representation. Similar to the DOOP framework [3], the

rules can be instantiated as a call-site-, object-, or type-

sensitive analysis.

• We present a systematic method of transforming the pa-

rameterized deduction rules into plain Datalog. We evalu-

ate the efficiency and performance of our representation

and technique on large programs in the DaCapo bench-

mark suite. The most precise context sensitivity configu-

ration evaluated is 2-limited object-sensitive analysis with

1-limited heap abstraction, and our new transformer string

abstraction obtains a geometric mean 29% reduction in

the number of facts and 27% reduction in analysis time

compared to the traditional context string representation.

class T {

Object f;

Object id(Object p) { return p; }

Object id2(Object q) {

Object t = id(q); // c1

return t;

}

Object m() { return new T(); // m1 }

public static void main(String[] args) {

Object x = new Object(); // h1

Object y = new Object(); // h2

Object r = new T(); // h3

Object x1 = r.id(x); // c2

Object y1 = r.id(y); // c3

Object s = new T(); // h4

Object t = new T(); // h5

Object x2 = s.id2(x); // c4

Object y2 = t.id2(y); // c5

T a = s.m(); // c6

T b = t.m(); // c7

a.f = x;

Object z = b.f;

}

}

Figure 1. Context sensitivity code example.

2. Background

There are two primary variations on context sensitivity for

an object-oriented language: A call-site-sensitive analysis

defines contexts by static call sites of invocations, while an

object-sensitive analysis uses the heap allocation site of a

receiver object to differentiate contexts [11, 14, 15]. Type

sensitivity can be considered a subclass of object sensitivity,

where heap allocation sites are replaced by class types that

contain the methods containing the allocation sites [15].

The example Java code in Figure 1 illustrates the differ-

ences between the two types of context sensitivity. The ex-

ample contains two identity methods id and id2, where id

returns its parameter directly, and id2 indirectly by calling

id. Heap objects are abstracted by their allocation sites: we

say that variable x points to h1 to mean that the value of x, at

run-time, may be the address of an object allocated at h1.

In a context-insensitive analysis, only one points-to set is

maintained for the parameter p of the method id, and thus

the analysis concludes that p points to objects allocated at h1

and h2. Therefore, x1 and y1 also point to h1 and h2. In a

1-call-site-sensitive analysis, method id is analyzed in three

different method contexts: the call sites corresponding to ex-

pressions id(x), id(y), and id(q). The analysis precisely

deduces that x1 only points to h1 and y1 only points to h2.

However, the call site of id(q) merges information from two

different call sites of id2, and thus a 1-call-site analysis has

imprecise points-to sets for x2 and y2. A 2-call-site analysis

is required to obtain the most precise result for x2 and y2.

In a 1-object-sensitive analysis, invocations of id using

a receiver object allocated at h3 are analyzed in a single

264

context: that of heap allocation site h3. Thus, the points-to

sets of x1 and y1 are imprecise: the analysis concludes that

both variables could point to either h1 or h2. However, the

invocations of id2 and id2’s nested invocation of id are

analyzed in two independent contexts: that of allocation sites

h4 and h5. Thus, the points-to sets of x2 and y2 are precise:

x2 points only to h1 and y2 points only to h2.

Heap contexts are required to differentiate objects returned

by calls to m. Without heap contexts, an analysis concludes

that a and b may point to heap objects allocated at m1 in any

context of m. Thus, the analysis would imprecisely conclude

that the heap accesses a.f and b.f are aliased, and that z

may point to h1. Using one level of heap context, heap objects

allocated at m1 are differentiated by the method contexts of m,

which are c6 and c7 under call-site sensitivity and h1 and h2

under object sensitivity. Either flavour concludes that a and b

do not point to a common object at run-time.

2.1 CFL-Reachability Formulation of Pointer Analysis

A Pointer Assignment Graph (PAG) is a graph representa-

tion of a program where nodes represent variables and heap

allocation sites, and edges represent data flow through assign-

ments. Figure 2 presents a simplified representation of a Java

program containing only assignments, stores to and loads

from fields of objects, heap allocations, and static invocations

of methods. The PAG contains a node for each variable and

for each heap allocation site in a program. Each statement in

the program induces an edge in the PAG labelled as shown

in the right column in the table. Interprocedural assignments

are additionally labelled below the arrow by the call sites

where the assignments occur. The label ĉ denotes that the

assignment occurs at the start of an invocation from call site

c, and

̂
c denotes that the assignment occurs when returning

from an invocation from c. Edges corresponding to a store

or a load of a field have a label that includes the field that

is accessed. Every edge and every label has a correspond-

ing backwards equivalent: For every edge from x to y in the

graph labelled l, let there be an edge from y to x in the graph

labelled l. Call site labels ĉ become

̂
c, and vice-versa. For

example, in a program with edge a1
assign−−−→

ĉ
f1, an implicit

edge f1
assign−−−→̂

c
a1 is present.

The realized string of a path is formed by concatenating

the labels of traversed edges. Given a context-free language

Statement Edge

x = y; y assign−−−→ x

x.f = y; y store[f]−−−−→ x

x = y.f; y load[f]−−−−→ x

x = new T(); // h h new−−→ x

x = T.m(a1, . . . , an); // c

static U m(f1, . . . , fn)

{... return u; }

ak
assign−−−→

ĉ
fk

u assign−−−→̂

c
x

Figure 2. Statements and their graph representations.

L, a path P is an L-path iff the realized string of P is in

L. We use two distinct alphabets in our formulation, one for

the labels above edges, and one for the call site labels below

them. When we say P is an L-path, edge labels not in the

alphabet of L are ignored when forming the string realized by

P . An all-pairs L-path problem asks whether there exists an

L-path from u to v for each pair of vertices u, v in a graph.

2.1.1 Intraprocedural Field-Sensitive Analysis

If a program consisted only of assignments, then pointer anal-

ysis would be a simple problem of computing the transitive

closure over assign edges to establish data-flow paths from

a heap allocation site to variables that may point to objects

allocated at the site. Handling of heap accesses has been

formulated as a CFL-reachability problem over a balanced

parentheses language [17, 18]. An indirect data flow occurs

between two variables y and z when the value of y is stored

to a field of an object (e.g. “w.f = y;”), and the value of z

is the result of loading the same field of the same object (e.g.

“z = x.f”, where w and x point to a common object). Thus,

the store and the load form a conceptual pair of balanced

parentheses. Variables w and x must point to the same object,

which means there must be value-flow paths from a common

allocation site to w and x. These paths in turn may involve

indirect data flows, and thus a CFL is required to precisely

handle heap accesses.

Let ΣF be an alphabet used to define a language that

models field loads and stores:

ΣF ≡ {new, new, assign, assign, store[f], store[f],
load[f], load[f] | f ∈ Field}.

Field is the set of all field signatures in a program. Let LF

be a language over ΣF generated by the non-terminal flowsto

defined by the following productions:

flowsto → new flows∗.

flowsto → flows
∗
new.

alias → flowsto flowsto.

flows → assign | store[f] alias load[f].
flows → assign | load[f] alias store[f].

The flowsto non-terminal models the flow of values from

heap allocation sites to variables.

In a context-insensitive points-to analysis, x points-to h

iff there exists a LF -path from h to x [18]. An exhaustive

computation of context-insensitive points-to information is

an all-pairs LF -path problem from all heap allocation sites

to all variables.

2.1.2 Context-Sensitive Analysis

Let ΣC be an alphabet consisting of letters ĉ and

̂
c, where c

ranges over Inv, the set of all call sites of a program. Let LC

265

be a language over ΣC generated by the non-terminal feasible

defined by the following productions.

balanced → ĉ balanced

̂
c.

balanced → balanced balanced | ǫ.
unbal exits →

̂
c unbal exits | ǫ.

unbal entries → ĉ unbal exits | ǫ.
feasible → unbal exits balanced unbal entries.

A path P is said to be feasible iff it is an LC-path. An

infeasible path characterizes data flow which cannot occur

in practice: for example, data flow that enters a method from

one call site and exits the method from a different call site.

In a precise context-sensitive points-to analysis, x points-to

h iff there exists a path from h to x that is both an LF -path

and an LC-path. Computing this relation is an undecidable

problem [13]. A computable analysis can be obtained by

approximating one of the languages. One approach is to

collapse all methods in a recursive call cycle into a single

method [17]. Then LC becomes a regular language, and thus

LF ∩ LC is a context-free language.

2.2 Context-String-Based Analysis

Non-demand-driven algorithms for context-sensitive pointer

analysis predominantly use a k-limited representation of

method contexts, which are method contexts truncated to

a finite length. Although the CFL-reachability approach uses

only call sites as elemental pieces of context, context string

formulations exist for a wide variety of contexts, such as

call sites, heap allocation sites, class types, and combinations

thereof [6].

We use the name Ctxt for the set of elemental contexts

of a particular flavour of context sensitivity. For call-site-

sensitive analysis, Ctxt is the set of call sites. For object-

sensitive analysis, Ctxt is the set of heap allocation sites.

For a type sensitivity analysis, Ctxt is the set of class types.

Context strings are representations of contexts as strings

over Ctxt, truncated to a finite length. The “top-most”

context appears first: for example, in Figure 1, method id

is invoked from call site c1 in id2, and id2 is in turn

invoked from site c4. The context for id in a call-site-

sensitive analysis for this sequence of invocations is the string

[c1, c4, entry], where entry is a special context for entry

points in a program.

In an object-sensitive analysis, the method context for

a non-static invocation is the heap context of the receiver

object of the invocation prefixed with the allocation site of

the object [11]. The heap context of an object is the method

context in which the heap allocation occurred. For example,

the receiver object of the invocation of id2 at c4 is a heap

object allocated at h4 in method context [entry] (the special

method context for entry points), and thus [h4, entry] is

the method context for the invocation of id2. The receiver

object for the subsequent invocation of id inside id2 stays

the same, and thus id is invoked with the same method

context of [h4, entry]. This is a variant of object sensitivity

called full object sensitivity which contrasts with plain object

sensitivity [15]. Under plain object sensitivity, the heap

allocation site of a receiver object is prefixed to the method

context of the invocation: in this example, id is invoked with

the method context of [h4, h4, entry] under plain object

sensitivity. Full object sensitivity is the variant of object

sensitivity used throughout this paper, because full object

sensitivity has superior precision and analysis performance

compared to plain object sensitivity [3, 15]. The method

context of a static invocation is the same context as the

method context in which the invocation occurred.

2.3 Notation

Function symbols are italicized and predicate symbols are in

sans-serif font. The following string manipulation functions

are used throughout this document: Let prefix i(s) be the

prefix of string s of length min(‖s‖, i). Let dropi(s) be the

suffix of s of length ‖s‖ −min(‖s‖, i).

3. Context Transformations

An interpretation of elements of ΣC is that they are transfor-

mations over contexts. For a given path, its realized string

relates the context at the source of the path to the context at

its target. For example, let P be an LF ∩LC -path from h4 in

main to p in id in Figure 1:

P ≡ h1 new−−→ x assign−−−→
ĉ4

q assign−−−→
ĉ1

p.

The realized string of P over ΣC is [ĉ4, ĉ1]. The string

can be interpreted as a function over method contexts that

prefixes c4, then prefixes c1 to its input. When the function

is applied to context [entry] of main, we obtain a context

[c1, c4, entry] for id.

Let P ′ be an LF ∩ LC-path from p in id to x2 in main:

P ′ ≡ p assign−−−→̂

c1
t assign−−−→̂

c4
x2.

Its realized string over ΣC is [

̂
c1,

̂
c4]. The string can be

interpreted as a function over contexts that drops c1 then

drops c4 from the front of its input. Applying it to context

[c1, c4, entry] of id yields [entry] for main. We conclude

that the path P ·P ′ can be interpreted as an identity function.

We can deduce that if an object is allocated at site h4

in a method context M , then x2 will point to that object in

M , and that this is true for all contexts M of main. In a

traditional context-string-based analysis, the fact that x2 in

context M points-to h4 allocated in context M is enumerated

for all reachable contexts M of main. By representing context

information as functions over contexts, this fact is compactly

represented: that the context in which x2 points to an object,

and the context in which the object was allocated at h4, are

related by the identity function over contexts.

We interpret any LF -path as a transformation over method

contexts, which may include feasible paths (LC-paths) and

infeasible paths (non LC -paths). The following is an example

of an infeasible LF -path:

P ′′ ≡ h1 new−−→ x assign−−−→
ĉ4

q assign−−−→
ĉ1

p assign−−−→̂

c1
t assign−−−→̂

c5
y2.

266

We interpret P ′′ as a transformation that maps any method

context to a special “error context” (denoted err) that indi-

cates an infeasible path.

We will define a set of transformations over contexts as

an algebraic structure. Let T ≡ {â,
̂
a | a ∈ Ctxt} be the

set of primitive context transformations. Let the domain of

method contexts be Ctxts ≡ Ctxt∗ ∪ {err}. The primitive

transformations over Ctxts are defined as follows:

â(M) ≡

{
a ·M if M 6= err

err otherwise.
̂
a(M) ≡

{
M ′ if M = a ·M ′

err otherwise.

Let the set of context transformations, denoted CtxtT,

be formed by the closure of T under function composition.

Let ǫ be the identity transformation. We use a postfix notation

for function composition: f ; g ≡ g ◦ f means first apply f

then g.

The set of context transformations is an inverse semigroup,

which is a semigroup with unique inverses. Given a context

transformation f , f−1 is its inverse in the semigroup sense,

meaning that f−1 ; f ; f−1 = f−1 and f ; f−1 ; f = f .

3.1 Pointer Analysis using Context Transformations

CFL-reachability problems correspond to chain programs,

which are a restricted class of Datalog programs [12]. In this

section, derivations of LF -paths from heap allocation sites to

variables are encoded as Datalog rules. This section assumes

familiarity with basic logic programming and terminology.

Each deduction rule models a particular language con-

struct, such as a field load or a method invocation, and de-

rives points-to facts arising from the construct. Rules are

motivated by exemplary dynamic executions of program con-

structs described by untruncated method contexts in which

the executions occur. From the example executions, deduc-

tion rules are inferred that express context transformations

appearing in the conclusion of rules as a function composi-

tion of context transformations that appear in the premises of

rules.

We use the following notation to specify a set comprising

transformations that map an untruncated method context to

another:

[A → B] ≡ {T ∈ CtxtT | T (A) = B}.

Heap allocation sites and assignments. The following rule

models heap allocations:

assign new(H,Y, P), reach(P,)

pts(Y,H, ǫ)

Predicate assign new is an input predicate, which is a pred-

icate that describes a program under analysis. The literal

assign new(H,Y, P) indicates that in the program under

analysis, the addresses of objects allocated at heap allocation

site H are assigned to variable Y inside method P . reach

is a derived predicate, which is a predicate representing a

relation defined by rules. The literal reach(P,N) indicates

that method P is reachable under some method context that

has prefix N . (An anonymous variable “ ” is used in place

of N .) The literal pts(Y,H,A) indicates that Y points to H

under the context transformation A, meaning if an object is

allocated in method context M , then Y points to the object in

context A(M). Each predicate with a context transformation

argument denotes flow from some source method to some des-

tination method. The context transformation is interpreted as

transforming the context of the source method to the context

of the destination method. For the pts predicate, its context

transformation’s source method is the method containing allo-

cation site H (denoted parent(H)), and its destination is the

method declaring local variable Y (parent(Y)). The derived

fact pts(Y,H, ǫ) indicates that Y points to an object allocated

at H in the same context as the context in which the object

was allocated.

Intraprocedural assignments do not alter the contexts under

which the points-to relationships hold:

pts(Z,H,A)
assign(Z, Y) // Y = Z;

pts(Y,H,A)

Field accesses of heap objects. Points-to relationships aris-

ing from loads of fields can be described as a sequence of

events during an execution of a program: a pointee object

is allocated at an allocation site H in context CH ; a base

object is allocated at allocation site G in context CG; vari-

able W points to the pointee object in context CWX, and

variable X points to the base object in the same context

CWX; through W and X , the pointee object is stored to

field F of the base object; variable Y points to the base

object in context CYZ; through Y , field F of the base ob-

ject is loaded into a variable Z. Then, variable Z in con-

text CYZ points to the pointee object that was allocated

at H in context CH . Expressed in terms of pts facts, we

must have pts(W,H,B), pts(X,G,C), and pts(Y,G,D)
such that B ∈ [CH → CWX], C ∈ [CG → CWX], and

D ∈ [CG → CYZ]. Thus, B;C−1 ∈ [CH → CG], and

thus B;C−1;D ∈ [CH → CYZ]. Thus, we derive the fact

pts(Z,H,B;C−1;D). From the above deductions, we infer

the following rule:

pts(W,H,B), pts(X,G,C)
store(W,F,X) // X.F = W;

pts(Y,G,D)
load(Y, F, Z) // Z = Y .F;

pts(Z,H,B ; C−1 ;D)

Parameter passing and return values. Constructing a PAG

representation with interprocedural assign edges, as in Fig-

ure 2, requires a call-graph constructed ahead of time. On-

the-fly construction of call-graphs is essential for precise

points-to analysis in a language with predominantly dynamic

dispatch of function calls [8]. Thus, parameter passing is

performed with a derived predicate call, and rules that derive

267

it will be presented in following paragraphs. Let call(I, P,B)
indicate that the (static or virtual) invocation I calls method

P under context transformation B. The source and destina-

tion of B is parent(I) and P , respectively. B transforms the

context of a caller to the context of the callee. Points-to rela-

tionships arising from parameter passing and return values

are handled by the following rules:

pts(Z,H,B)
actual(Z, I,O)
call(I, P, C)
formal(Y, P,O)

pts(Y,H,B ; C)

pts(Z,H,B)
return(Z,P)
call(I, P, C)
assign return(I, Y)

pts(Y,H,B ; C−1)

Literal actual(Z, I,O) indicates that Z is the Oth actual

of invocation I , and formal(Y, P,O) indicates that Y is

the Oth formal of method P . Literal return(Z,P) indi-

cates that variable Z is the return value of method P and

assign return(I, Y) indicates that the return value of invoca-

tion I is assigned to Y .

Call-edge derivation under call-site sensitivity. Under call-

site sensitivity, context transformations for static invocations

are easily inferred: for each reachable method context M of

a method P that contains a static invocation I of a method Q,

the invocation invokes Q with context I ·M . Thus, we derive

call(I,Q, Î):

static invoke(I,Q, P), reach(P,)

call(I,Q, Î)

Handling virtual invocations is more difficult because the

methods that they invoke depend on the receiver points-

to relationship, and the points-to relationship is context-

dependent. Suppose that a receiver object is allocated at site

H in context CH , and variable Z in method P points to

the object in context CZ . Then, we have pts(Z,H,B) such

that B ∈ [CH → CZ]. Suppose that a virtual invocation

I invokes method Q using Z as its receiver variable. If we

derive call(I,Q, Î), then an actual variable of I pointing to

an object in a context outside the image of B would result in

a formal of Q pointing to the object: an imprecise derivation

because pts(Z,H,B) only indicates that Z points-to H in

some method context in the image of B. Using the insight

that B−1(X) = err if X is not in the image of B, we derive

call(I,Q,B−1 ;B ; Î), which has the desired effect of passing

actuals of I to formals of Q from the context CZ , but not from

method contexts outside the image of B. Thus, the following

rule is inferred for deriving call-graph edges and their context

transformations for virtual invocations:

virtual invoke(I, Z, S)
pts(Z,H,B)
heap type(H,T), implements(Q, T, S)
this var(Y,Q)

call(I,Q,B−1 ;B ; Î)

Literal heap type(H,T) indicates that T is the type of the

objects allocated at H , and implements(Q, T, S) indicates

that an invocation of a method signature S on a receiver

object of type T dispatches to method Q.

Call-edge derivation under object sensitivity. The deriva-

tion of context transformations for call-graph edges under

object-sensitive analysis is less intuitive than under call-site-

sensitive analysis. In an object-sensitive analysis, if a static

invocation I in method P invokes Q in some context, then Q

is invoked with the same context [11]. Deriving call(I,Q, ǫ)
in this scenario is tempting, but is imprecise. Although I in

context M invokes Q with context M for each reachable con-

text M of P , the reverse is not true: reachable contexts of Q

are not necessarily reachable contexts of P . The rule for han-

dling return values would then derive points-to relationships

through infeasible paths. If M is a reachable method context

of P , then reach(P,N) must be true for some prefix N of

M . Given a string N ≡ n1 · . . . ·nk, let

̂
N ≡

̂
n1 ; . . . ;

̂
nk

and N̂ ≡ n̂k ; . . . ; n̂1. The context transformation

̂
N ·N̂

has the property that (

̂
N ·N̂)(M) = M if N is a prefix of

M and (

̂
N ·N̂)(M) = err otherwise. Thus, the following

rule is inferred for handling static invocations under object

sensitivity:

static invoke(I,Q, P), reach(P,N)

call(I,Q,

̂
N ·N̂)

Suppose that a receiver object is allocated at site H in

context CH , and variable Z in method P points to the

object in context CZ . Then, we have pts(Z,H,B) such that

B ∈ [CH → CZ]. Suppose that a virtual invocation I invokes

method Q using Z as its receiver variable. Then the context

of the invoked method is H ·CH under object sensitivity. A

context transformation A is desired such that A(CZ) = H ·
CH and A(X) = err for all X not in the image of B, but

expressed in terms of B. The transformation A = B−1 ; Ĥ
satisfies these requirements. Thus, we infer the following rule

for handling virtual invocations under object sensitivity:

virtual invoke(I, Z, S)
pts(Z,H,B)
heap type(H,T), implements(Q, T, S)
this var(Y,Q)

call(I,Q,B−1 ; Ĥ)

4. Abstraction

Recursive call cycles in a program result in method contexts

of unbounded length. A finite abstraction of context trans-

formations requires some form of approximation. Due to

approximation, abstractions of context transformations may

map a single method context to multiple contexts, and thus

the abstractions are defined as transformations over sets of

method contexts.

4.1 Context Strings

Pairs of context strings used in traditional points-to analysis

can be interpreted as representing context transformations.

The input and output are truncated method contexts that

268

abstract all method contexts that have the truncated strings as

prefixes. That is, a truncated string A abstracts all strings in

{A ·A′ | A′ ∈ Ctxt∗}.

Let CtxtTc

i,j ≡ {(A,B) | A,B ∈ Ctxt∗, ‖A‖ ≤
i ∧ ‖B‖ ≤ j} be the domain of the context-string-based

abstraction of context transformations, given integers i and

j. Given a pair (A,B) in CtxtTc

i,j , let the notation (A,B)
be a transformation over P(Ctxt∗). The transformation is

defined in the following way:

(A,B)(X)≡

B′ if A′∩X 6=∅,

where A′≡{A ·C|C∈Ctxt∗}

and B′≡{B ·C|C∈Ctxt∗}

∅ otherwise

Relations used in pointer analysis use different truncation

lengths for context strings. Parameters i and j of a domain

CtxtTc

i,j define the truncation lengths of method contexts

at the source and destination of context transformations. For

example, pts relates the context in which an object allocation

occurs to the context in which a variable points to the object,

and thus, the context string abstraction domain for pts is

CtxtTc

h,m, where h is the truncation length of strings that

qualify heap allocation sites, and m is the truncation length

of method contexts and strings that qualify local variables.

The call-graph relation call relates a caller method context to

a callee method context, and thus uses the domain Ctxtm,m

to represent context information.

The context string representation necessitates explicit enu-

meration of the domain and range of context transformations

in the deduction rule for points-to relationships arising from

heap allocation sites:

assign new(H,Y, P)
reach(P,M)

pts(Y,H, (prefixh(M),M))

When compared to the original rule defined in terms of

context transformations in Section 3, the redundancy present

in the context string representation is apparent. In the next

subsection, we present our representation of context transfor-

mations as a composition of primitive transformations.

4.2 Transformer Strings

This section introduces abstractions of context transforma-

tions as transformer strings.

Let TW be an alphabet that consists of elements of T and

and a “wildcard” letter “∗” that maps any non-empty set of

contexts to a set consisting of all contexts. Given a letter a in

TW , let the notation a be a transformation over P(Ctxt∗).
The transformations are defined in the following way:

â(X) ≡ {a ·M | M ∈ X}.̂
a(X) ≡ {M | a ·M ∈ X}.

∗(X) ≡

{
Ctxt∗ if X 6= ∅.

∅ otherwise.

Transformer strings are strings in Ts ≡ T∗
W

∪ {⊥}. The

special element ⊥ maps any set of contexts to an empty set of

contexts: ⊥(X) ≡ ∅. The conversion of transformer strings

to transformations is defined as

a1 · . . . ·an ≡ a1 ; . . . ; an.

An important notation is the conversion of strings over

Ctxt to strings in Ts. Given M ≡ m1 · . . . ·mn ∈ Ctxt∗

let M̂ and

̂
M be defined as follows:

M̂ ≡ m̂n · . . . ·m̂1

̂
M ≡

̂
m1 · . . . ·

̂
mn

A source of confusion may be the reversal of letters when a

string in Ctxt∗ is converted into an entry context transfor-

mation. The advantage of this notation is that given a context

transformation defined as a sequence of concatenations of

strings (e.g.

̂
AB̂), its function inverse can be obtained by

reversing the sequence of concatenations and flipping entries

into exits and vice-versa (e.g.

̂
BÂ), without reversing the

strings A and B.

A match : Ts → Ts function is defined that reduces

the length of a transformer string without modifying its

interpretation as a transformation:

match(A · â ·
̂
a ·B) = match(A ·B)

match(A · â ·

̂
b ·B) ≡ ⊥ (a 6= b)

match(A · â ·∗·B) = match(A ·∗·B)
match(A ·∗·

̂
a ·B) = match(A ·∗·B)

match(A ·∗·∗·B) = match(A ·∗·B)

match(

̂
A ·∗·B̂) =

̂
A ·∗·B̂

match(

̂
A ·B̂) =

̂
A ·B̂

match(⊥) = ⊥

There is a degree of freedom in how match is applied to

strings, but it is evident that all orderings of applications

result in the same string. The following lemma establishes

that the three non-recursive outputs of match , strings of the

form

̂
A ·∗·B̂,

̂
A ·B̂, and ⊥, are canonical representations of

their inputs:

Lemma 4.1. For all A,B ∈ Ts, the following statements

are true:

1. A = match(A).

2. A = B =⇒ match(A) = match(B).

Let CtxtTt ≡ {

̂
A ·w ·B̂ | A,B ∈ Ctxt∗,w ∈ {∗, ǫ}}

be the domain of untruncated canonical transformer strings.

Let CtxtTt

i,j be a subset of Ctxtt that consists of strings

with at most i exits and at most j entries:

CtxtTt

i,j ≡ {

̂
A ·w ·B̂ | A,B ∈ Ctxt∗,w ∈ {∗, ǫ},

‖A‖ ≤ i ∧ ‖B‖ ≤ j}

Let trunci,j be a truncation function that maps strings

from CtxtTt to CtxtTt

i,j .

trunci,j(

̂
A ·w ·B̂) ≡

̂
A ·w ·B̂ if ‖A‖ ≤ i ∧ ‖B‖ ≤ ĵ
Ai ·∗·B̂j otherwise, where

Ai ≡ prefix i(A) and

Bj ≡ prefix j(B)

Note that

̂
Ai = prefix i(

̂
A) and B̂j = dropj(B̂).

269

The following lemma states that truncation is conservative

in that feasible paths are not discarded by truncation:

Lemma 4.2. For all A in CtxtTt, for all X in P(Ctxt∗),

A(X) ⊆ trunci,j(A)(X).

5. Pointer Analysis Deduction Rules

Figure 3 presents the base deduction rules for a simpli-

fied context-sensitive pointer analysis. Rules for static fields,

class initialization, reflection, exceptions, and other language

features are excluded from this presentation due to space

constraints, but are present in the evaluated implementation.

The rules are parameterized by definitions of the context ab-

straction domain CtxtTi,j , predicate comp, and functions

inv , target , record , merge, and merge s . The base deduc-

tion rules are instantiated with the definitions in Figure 4.

There are three dimensions that characterize an instanti-

ation: context transformation abstraction, flavour of context

sensitivity, and levels of context sensitivity.

The abstraction of context transformations can be either

context strings or transformer strings. The choice defines the

domain CtxtTi,j of abstractions of context transformations.

Predicate comp and function inv are implementations of

function composition and inverse in the abstraction domain.

comp is a function-style predicate instead of a function

to prevent the derivation of facts containing a ⊥ context

transformation. Specifically, comp(A,B,C) is false for all

C if A ; B ≡ ⊥. Function target converts abstractions of

context transformations of call-graph edges to prefixes of

reachable method contexts of callee methods.

Predicate comp and function inv are polymorphic with

respect to their arguments: for example, the relation comp

in the STORE rule in Figure 3 is a subset of CtxtTh,m ×
CtxtTm,h ×CtxtTh,h, while in the PARAM rule, the rela-

tion is a subset of CtxtTh,m ×CtxtTm,m ×CtxtTh,m.

Functions record , merge , and merge s allow the base de-

duction rules to be instantiated as either a call-site-, object-,

or type-sensitive analysis. Their purpose is the same as in the

DOOP framework [6]. record converts method contexts to

abstractions of context transformations for points-to relation-

ships arising from a heap allocation site. merge computes

abstractions of context-transformations for call-graph edges

of virtual invocation sites. merge s computes abstractions

of context-transformations for call-graph edges of static in-

vocation sites. Let classOf (H) of a heap allocation site H

be the class type in which the method that contains H is

implemented.

Parameters m and h define the levels of method contexts

and heap contexts, respectively. Under the context string ab-

straction, strings are truncated to these lengths. For example,

the pts predicate relates a heap allocation site to a variable,

and thus its context representation is a pair consisting of a

string truncated to length h and a string truncated to length

m. This definition of levels of context sensitivity is consistent

with context-string-based analyses in literature [6, 8, 15]. Un-

der the transformer string abstraction, a transformer string for

the pts predicate has at most h exits and m entries. The next

section relates the precision of the two abstractions under

the same levels of context sensitivity, and also contains an

example of a bottom-up derivation of facts using both context

string and transformer string abstractions.

6. Soundness and Precision

The context-insensitive projections of pts, hpts, and call, are

relations with the context attribute projected out: for exam-

ple, given a context-sensitive points-to relation pts, its cor-

responding context-insensitive relation ptsci is defined as

ptsci(Y,H) ⇐⇒ ∃A : pts(Y,H,A). Note that in a trans-

former string instantiation, facts containing a transformer

string “⊥” are never derived, and thus the presence of a pts,

hpts, and call fact indicates the existence of a feasible data-

flow path.

Theorem 6.1. Transformer string instantiations are sound:

that is, the context-insensitive projection of a transformer

string instantiation is a superset of the context-insensitive

projection of a context string analysis of unbounded length,

for all levels and flavours of context sensitivity.

Theorem 6.2. Call-site- and object-sensitive transformer

string instantiations are strictly more precise than context

string instantiations at the same levels of method and heap

contexts.

Figure 5 illustrates a scenario where transformer strings

are more precise than context strings using one level of

heap and method contexts under call-site sensitivity. The

first and second columns contain derived facts using the

context string abstraction and the transformer string abstrac-

tion, respectively. The third column states the deduction rule

used in the derivation. With context strings, the heap ob-

jects returned from call sites m1 and m2 are not differen-

tiated. The difference in precision arises from the differ-

ent implementations of the composition operation: compos-

ing transformer string ǫ with îd1, and then with

̂
id2 re-

sults in ǫ (variable points to an object allocated in the same

method context as the variable), but pair-wise composing con-

text strings {(m1, m1), (m2, m2)} with {(m1, id1), (m2, id1)},

and then with {(id1, m1), (id1, m2)} results in {(m1, m1),
(m1, m2), (m2, m1), (m2, m2)}.

The reason the precision theorem does not hold for type-

sensitive analysis can be described informally by comparing

the implied context information of transformer strings. A fact

pts(Y,H, â) implies that Y in method context a ·M points

to an object allocated at H in method context M , for all

reachable method contexts M of the method that contains the

invocation site a (under call-site sensitivity), or the method

that contains the allocation site a (under object sensitivity).

Under call-site and object sensitivities, the implied context

information of transformer strings is no larger than that of

the explicit enumeration of context information of context

strings. However, under type sensitivity, the implied context

270

assign new(H,Y, P)
reach(P,M)
A ≡ record(M)

pts(Y,H,A)

[NEW]

pts(Z,H,A)
assign(Z, Y)

pts(Y,H,A)

[ASSIGN]

hpts(G,F,H,B)
hload(G,F, Y, C)
comp(B,C,A)

pts(Y,H,A)

[IND]

pts(Z,H,B)
actual(Z, I,O)
call(I, P, C)
formal(Y, P,O)
comp(B,C,A)

pts(Y,H,A)

[PARAM]

pts(Z,H,B)
return(Z,P)
call(I, P, C)
assign return(I, Y)
comp(B, inv(C), A)

pts(Y,H,A)

[RET]

pts(X,H,B)
store(X,F,Z)
pts(Z,G,C)
comp(B, inv(C), A)

hpts(G,F,H,A)

[STORE]

pts(Y,G,A)
load(Y, F, Z)

hload(G,F, Z,A)

[LOAD]

virtual invoke(I, Z, S)
pts(Z,H,B)
heap type(H,T)
implements(Q, T, S)
this var(Y,Q)
C ≡ merge(H, I,B)
comp(B,C,A)

pts(Y,H,A)
call(I,Q,C)

[VIRT]

static invoke(I,Q, P)
reach(P,B)
A ≡ merge s(I, B)

call(I,Q,A)

[STATIC]

call(I, P,A)
M ≡ target(A)

reach(P,M)

[REACH]

Method context abstraction:

CtxtM ≡ {M ∈ Ctxt∗ | ‖M‖ ≤ m}.

Input predicates:

actual ⊆ Var× Inv ×Nat
assign ⊆ Var×Var
assign new ⊆ Heap×Var×Method
assign return ⊆ Inv ×Var
formal ⊆ Var×Method×Nat
heap type ⊆ Heap×Type
implements ⊆ Method×Type×MSig
load ⊆ Var× FSig ×Var
return ⊆ Var×Method
static invoke ⊆ Inv ×Method×Method
store ⊆ Var× FSig ×Var
this var ⊆ Var×Method
virtual invoke ⊆ Inv ×Var×MSig

Derived predicates:

pts ⊆ Var×Heap×CtxtTh,m

hpts ⊆ Heap× FSig ×Heap×CtxtTh,h

hload ⊆ Heap× FSig ×Var×CtxtTh,m

call ⊆ Inv ×Method×CtxtTm,m

reach ⊆ Method×CtxtM

Macros:
comp ⊆ CtxtTi,j ×CtxtTj,k ×CtxtTi,k

inv : CtxtTi,j → CtxtTj,i

target : CtxtTm,m → CtxtM

record : CtxtM → CtxtTh,m

merge :Heap×Inv×CtxtTh,m→CtxtTm,m

merge s : Inv ×CtxtM → CtxtTm,m

reach(main, [entry]) [ENTRY]

Figure 3. Deduction rules for pointer-analysis. h and m specify levels of heap and method context sensitivity, respectively.

0 ≤ h ≤ m is assumed for call-site sensitivity and 0 ≤ h = m− 1 is assumed for object sensitivity.

Context string

CtxtTc

i,j ≡ {(A,B) | A,B ∈ Ctxt∗,

‖A‖ ≤ i ∧ ‖B‖ ≤ j}.
compc((U, V), (V,W), (U,W)).
invc((U, V)) ≡ (V, U).
targetc((U, V)) ≡ V.

Call-site sensitivity:

recordc(M) ≡ (prefixh(M),M).
mergec(H, I, (,M)) ≡ (M, I ·prefixm−1(M)).
merge sc(I,M) ≡ (M, I ·prefixm−1(M)).

Object sensitivity:

recordc(M) ≡ (prefixh(M),M).
mergec(H, I, (H ′,M)) ≡ (M,H ·H ′).
merge sc(I,M) ≡ (M,M).

Type sensitivity:

recordc(M) ≡ (prefixh(M),M).
mergec(H, I, (H ′,M)) ≡ (M, classOf (H) ·H ′).
merge sc(I,M) ≡ (M,M).

Transformer string

CtxtTt

i,j ≡ {

̂
A ·w ·B̂ | A,B ∈ Ctxt∗,w ∈ {∗, ǫ},

‖A‖ ≤ i ∧ ‖B‖ ≤ j}.
compt(X,Y, trunci,k(match(X ·Y))) ⇐⇒ match(X ·Y) 6= ⊥.

inv t(

̂
A ·w ·B̂) ≡

̂
B ·w ·Â.

targett(

̂
A ·w ·B̂) ≡ B.

Call-site sensitivity:

recordt() ≡ ǫ.

merget(H, I,

̂
A ·w ·B̂) ≡ truncm,m(

̂
B ·B̂ · Î).

merge st(I,M) ≡ Î .

Object sensitivity:

recordt() ≡ ǫ.

merget(H, I,

̂
A ·w ·B̂) ≡

̂
B ·w ·Â ·Ĥ.

merge st(I,M) ≡

̂
M ·M̂.

Type sensitivity:

recordt() ≡ ǫ.

merget(H, I,

̂
A ·w ·B̂) ≡

̂
B ·w ·Â · ̂classOf (H).

merge st(I,M) ≡

̂
M ·M̂.

Figure 4. Definitions of non-logical symbols in Figure 3 under different abstractions and flavours of context sensitivity.

271

class T {

static T id(T p) { return p; }

static T m() {

T h = new T(); // h1

T r = id(h); // id1

return r;

}

public static void main(String[] args) {

T x = m(); // m1

T y = m(); // m2

}

}
Context string Transformer string Rule

reach(main, entry) reach(main, entry) ENTRY

call(main, m, (entry, m1)) call(main, m, m̂1) STATIC

call(main, m, (entry, m2)) call(main, m, m̂2) STATIC

reach(m, m1) reach(m, m1) REACH

reach(m, m2) reach(m, m2) REACH

pts(h, h1, (m1, m1)) pts(h, h1, ǫ) NEW

pts(h, h1, (m2, m2)) NEW

call(m, id, (m1, id1)) call(m, id, îd1) STATIC

call(m, id, (m2, id1)) STATIC

reach(id, id1) reach(id, id1) REACH

pts(p, h1, (m1, id1)) pts(p, h1, îd1) PARAM

pts(p, h1, (m2, id1)) PARAM

pts(r, h1, (m1, m1)) pts(r, h1, ǫ) RETURN

pts(r, h1, (m2, m1)) RETURN

pts(r, h1, (m1, m2)) RETURN

pts(r, h1, (m2, m2)) RETURN

pts(x, h1, (m1, entry)) pts(x, h1,

̂

m1) RETURN

pts(x, h1, (m2, entry)) RETURN

pts(y, h1, (m1, entry)) RETURN

pts(y, h1, (m2, entry)) pts(y, h1,

̂

m2) RETURN

Figure 5. Example illustrating precision difference using

m = 1 and h = 1 levels of contexts.

information of a fact pts(Y,H, t̂) is that Y in method context

t ·M points to an object allocated at H in method context M ,

for all reachable method contexts M of any method imple-

mented in type t: method reachability information is merged

by the implied interpretation. Thus, the implied context infor-

mation diverges from the context string abstraction where the

method contexts of the source of a context transformation (in

this case, the method containing H) and the destination (the

method containing Y) are explicitly enumerated, and thus are

not affected by the merging of implied method reachability

information that occurs under type-sensitive analysis. Conse-

quently, the transformer string abstraction is less precise than

the context string abstraction under type sensitivity.

7. Implementation

This section describes the transformation of the deduction

rules presented in Figure 3 into Datalog rules. Datalog

evaluates rules bottom-up, meaning that the derived relations

pts, hpts, hload, call, and reach are initially empty sets. New

facts are derived by evaluating the literals that appear in

premises of rules as relational joins. Evaluation of a Datalog

program is complete when no new facts can be derived [4].

Derived relations are replaced by relations that are spe-

cialized to a particular representation. Specialized predicates

of a context string instantiation have a c superscript, and

a t superscript is used for transformer string instantiations.

Under a context string instantiation, context transformation

attributes represented by a pair of strings are simply flattened

into two attributes: for example, pts(Y,H, (U, V)) becomes

ptsc(Y,H,U, V). The resulting rules are equivalent to the

rules found in the DOOP framework, and employ the same

efficient indexing scheme. For example, when the definitions

of compc and invc are inlined into the rule STORE and vari-

ables are unified, the result is the familiar rule for inferring

heap-points-to facts:

ptsc(X,H,U, V), store(X,F,Z), ptsc(Z,G,W, V)

hptsc(G,F,H,U,W)

The order of attributes may be confusing because points-to

relates a pointer to a pointee, while context transformations

relate a pointee context to a pointer context. For example, in

ptsc(X,H,U, V), V is a method context of X , and U is a

heap context for H .

A naive method of implementing a transformer string

instantiation is to implement the two formulas “match(A ·
B) 6= ⊥” and “trunci,k(match(A ·B))” of compt as a

procedural function that takes two values A and B as input,

checks if match(A ·B) 6= ⊥, and returns trunci,k(match(A ·
B)). The performance of such an implementation is signifi-

cantly slower than a context string instantiation. The reason

for the lower performance can be understood by inspecting

the relational joins performed by a bottom-up evaluation.

Consider the context string instantiation of the INDIRECT

rule in Figure 3:

hptsc(G,F , H, U,V), hloadc(G,F , Y,V ,W)

ptsc(Y,H,U, V)

Evaluation of the above rule requires a join of relations

hptsc and hloadc. The join is performed over three variables

highlighted in bold: the abstract heap object G and its heap

context V being loaded, and the field signature F of the

field being loaded. A standard optimization performed by a

Datalog engine is to build indices for the first, second, and

fifth attributes of hptsc, the first, second, and fourth attributes

of hloadc, and to use these indices in the join.

A naive implementation of a transformer string instantia-

tion is to leave the derived relations as is and have the Datalog

engine evaluate the following rule:

hptst(G,F , H,B), hloadt(G,F , X,C)
match(B ·C) 6= ⊥

ptst(Y,H, trunch,m(match(B ·C)))

Variables B and C need to be bound to evaluate the formula

“match(B ·C) 6= ⊥”. The join of hptst and hloadt is per-

formed over two variables, G and F , instead of three variables

272

in the context string instantiation, and consequently indices

over only two attributes are employed during evaluation. The

less restrictive indexing scheme drastically increases the cost

of the join, and thus the analysis time.

Our technique for obtaining a more efficient indexing

scheme for transformer string instantiations is to decompose

transformer strings into every possible configuration. A con-

figuration of a transformer string specifies its number of

exits, entries, and whether it has a wildcard letter. For ex-

ample, the domain of transformer strings for the pts relation,

CtxtTt

h,m, in a 2-method-1-heap (that is, m = 2 and h = 1)

call-site-sensitive instantiation, has 12 configurations arising

from the following combinatorial choices: two choices for the

number of exits, three choices for the number of entries, and

two choices of whether the string contains a wildcard letter.

Each relation with a context-transformer attribute (i.e. pts,

hpts, call) is replaced by multiple specialized relations, one

for each configuration. Specialized relations are tagged with

subscripts that characterize a configuration: strings generated

by the regular expression “x∗w?e∗”, where the number of

“x” letters determines the number of exits, the appearance

of a “w” letter specifies that the transformer string contains

a wildcard, and the number of “e” letters determines the

number of entries. The arity of a specialized predicate for

a transformer string configuration is dependent on the num-

ber of entries and exits present in the transformer string. For

example, ptst
xxwe

is a subset of Var × Heap × Ctxt ×
Ctxt×Ctxt, and a fact pts(Y,H,

̂
X1 ·

̂
X2 ·∗·Ê1), becomes

ptst
xxwe

(Y,H,X1, X2, E1).
Each rule is duplicated for every possible replacement

of derived predicates with specialized predicates. For exam-

ple, in a 1-method-1-heap instantiation that has 8 configura-

tions of transformer strings, the IND. rule is instantiated 64

times for each configuration of variables B and C in literals

hpts(G,F,H,B) and hload(G,F, Y, C). One such instanti-

ation for the xe configuration of B and C is as follows:

hptst
xe
(G,F , H,X1, E1)

hloadt
xe
(G,F , X2, E2)

compt(

̂
X1 ·Ê1,

̂
X2 ·Ê2, A)

pts(Y,H,A)

(1)

The compt predicate has a declarative specification: the

third attribute can be computed for every possible transformer

string configuration of the first two attributes of the predicate.

For example, the following are a subset of compt clauses of

a 1-method 1-heap instantiation, where the first two attributes

do not contain wildcards (there are 64 clauses in total):

compt(ǫ, ǫ, ǫ). compt(

̂
X, ǫ,

̂
X).

compt(ǫ, Ê, Ê). compt(

̂
X, Ê,

̂
X ·Ê).

compt(ǫ,

̂
X,

̂
X). compt(

̂
X,

̂
Z,

̂
X ·∗).

compt(ǫ,

̂
X ·Ê,

̂
X ·Ê). compt(

̂
X,

̂
Z ·Ê,

̂
X ·∗·Ê).

compt(Ê, ǫ, Ê). compt(

̂
X ·Ê, ǫ,

̂
X ·Ê).

compt(Ẑ, Ê, ∗·Ê). compt(

̂
X ·Ẑ, Ê,

̂
X ·∗·Ê).

compt(M̂,

̂
M, ǫ). compt(

̂
X ·M̂,

̂
M,

̂
X).

compt(M̂,

̂
MÊ, Ê). compt(

̂
X ·M̂,

̂
M ·Ê,

̂
X ·Ê).

Literal compt(

̂
X1 ·Ê1,

̂
X2 ·Ê2, A) in equation (1) unifies

only with compt(

̂
X ·M̂,

̂
M ·Ê,

̂
X ·Ê), using unifier [X1 →

X,E1 → M,X2 → M,E2 → E]. The following is the

resulting rule after unification:

hptst
xe
(G,F , H,X,M)

hloadt
xe
(G,F ,M , E)

ptst
xe
(Y,H,X,E)

The join of hptst
xe

and hloadt
xe

can now be performed

over three common attributes, attaining the same indexing

efficiency as the context string instantiation.

Functions inv , target , record , merge, and merge s are

inlined into rules using the same method as the inlining of

predicate comp.

8. Evaluation

The Datalog engine used for the evaluation of our method is

a research prototype that consists of two components: The

front-end performs the instantiation of the base deduction

rules in Figure 3 by inlining the functions and predicates

in Figure 4. The output of the front-end is a plain Datalog

program. The back-end compiles Datalog to native code using

the LLVM Compiler Infrastructure [7].

The experiments were performed on a Intel i7-2600 pro-

cessor with 16GiB of RAM. The Datalog engine is single-

threaded. The analyzed programs are from the DaCapo

benchmark suite (v.2006-10-MR2) under JDK 1.6.0 43 [2].

jython and hsqldb are not evaluated because context-

sensitive analyses of the two programs do not scale due

to overly conservative handling of Java reflection. lusearch

is not evaluated because it is too similar to luindex. We use

the same fact generator as DOOP, which transforms Java

bytecode to a set of relations using the SOOT [20] framework.

We evaluate five different flavours of context sensitivity:

1-call, 1-call+H, 1-object, 2-object+H, and 2-type+H. The

first number indicates the level of method contexts m, and

“+H” indicates that h = 1 (h = 0 otherwise).

Figure 6 presents our experimental results. The first num-

bers in each column state the sizes of the context-sensitive

pts, hpts, and call relations, the sum of the sizes of the three

relations, and the analysis time using the context string ab-

straction. The time measurements do not include the time

to perform the preprocessing steps of pointer analysis, such

as reading the input relations from disk and constructing the

virtual dispatch table, because the work performed is invari-

ant with respect to different instantiations of our analysis.

The preprocessing steps take less than 10 seconds for all

benchmarks. The percentage number that follows is the de-

crease in relation size and analysis time using the transformer

string abstraction. No reduction in the size of the hpts rela-

tion is present under 1-call and 1-object because the relation

is context-insensitive (i.e. no heap contexts). Although trans-

former strings are theoretically more precise than context

273

1-call 1-call+H 1-object 2-object+H 2-type+H
an

tl
r

pts 13.3M 6.4% 41.5M 14.1% 11.6M 11.3% 17.6M 29.2% 4.1M 20.1% 1031k(+3660)

hpts 279k — 2349k 32.0% 170k — 368k 18.9% 206k 5.4% 87k(+1350)

call 377k 15.6% 377k 15.5% 1885k 9.2% 4402k 25.4% 542k 27.8% 47k(+0)

Total 13.9M 6.5% 44.2M 15.1% 13.6M 10.8% 22.4M 28.3% 4.8M 20.4%

Time 7.7s 6.2% 33.5s 1.3% 11.2s 0.9% 15.1s 18.6% 4.0s 17.5%

b
lo

at

pts 34.0M 3.1% 149.6M 8.4% 23.4M 5.9% 152.7M 4.0% 10.7M -12.5% 1426k(+3740)

hpts 475k — 11802k 13.4% 429k — 4028k 1.8% 526k -43.9% 261k(+2121)

call 559k 16.5% 559k 16.5% 2791k 6.0% 39212k 3.7% 1078k 7.4% 61k(+0)

Total 35.1M 3.3% 161.9M 8.8% 26.6M 5.8% 195.9M 3.9% 12.3M -12.1%

Time 20.8s 9.3% 149.7s -36.3% 42.5s 10.9% 878.8s -7.2% 11.1s -53.6%

ch
ar

t

pts 50.0M 6.2% 115.1M 23.8% 65.9M 16.1% 56.1M 41.9% 11.5M 32.7% 882k(+3880)

hpts 419k — 4235k 44.4% 345k — 721k 42.3% 431k 4.0% 143k(+3576)

call 541k 17.4% 541k 17.4% 5094k 7.9% 15520k 49.5% 1379k 35.5% 63k(+13)

Total 50.9M 6.3% 119.9M 24.5% 71.3M 15.4% 72.4M 43.6% 13.3M 32.1%

Time 27.2s 7.2% 87.9s 8.0% 157.6s 9.7% 92.9s 64.3% 11.4s 29.8%

ec
li

p
se

pts 13.0M 7.9% 60.1M 17.5% 11.0M 9.3% 44.3M 30.1% 18.7M 17.9% 625k(+7476)

hpts 205k — 3722k 38.3% 136k — 806k 28.3% 731k 5.3% 99k(+2421)

call 433k 16.7% 433k 16.7% 1579k 9.2% 9757k 27.0% 2564k 14.3% 44k(+0)

Total 13.6M 8.0% 64.2M 18.7% 12.7M 9.2% 54.9M 29.5% 22.0M 17.0%

Time 7.8s 11.6% 50.9s -0.8% 14.0s 12.2% 58.1s 40.3% 21.2s 16.1%

lu
in

d
ex

pts 8.3M 7.3% 25.7M 19.2% 6.2M 10.7% 10.5M 29.2% 3.3M 26.2% 353k(+3286)

hpts 125k — 1219k 34.8% 86k — 248k 26.0% 179k 8.0% 64k(+1349)

call 330k 14.4% 330k 14.4% 880k 10.7% 2711k 26.1% 527k 29.2% 36k(+0)

Total 8.7M 7.4% 27.3M 19.9% 7.2M 10.6% 13.5M 28.5% 4.0M 25.8%

Time 4.9s 8.3% 19.6s 9.9% 6.8s 10.6% 9.8s 23.7% 3.9s 26.6%

p
m

d

pts 11.9M 5.8% 35.4M 16.8% 8.8M 8.9% 13.6M 26.4% 3.9M 24.8% 460k(+3371)

hpts 151k — 1499k 33.5% 108k — 443k 15.9% 298k 5.1% 80k(+1402)

call 363k 14.4% 363k 14.4% 1117k 8.7% 3309k 23.6% 580k 27.5% 43k(+0)

Total 12.4M 6.0% 37.3M 17.5% 10.1M 8.8% 17.3M 25.6% 4.8M 23.9%

Time 6.4s 8.0% 24.0s 5.3% 11.5s 9.0% 12.1s 21.1% 4.3s 23.3%

x
al

an

pts 12.7M 6.2% 35.1M 16.3% 15.1M 7.5% 173.8M 40.0% 5.2M 27.9% 530k(+3159)

hpts 243k — 2176k 36.2% 183k — 6053k 4.7% 336k 5.9% 156k(+1809)

call 364k 14.3% 364k 14.3% 1866k 8.1% 49297k 30.4% 816k 30.3% 42k(+0)

Total 13.3M 6.3% 37.7M 17.4% 17.2M 7.5% 229.2M 37.0% 6.3M 27.1%

Time 7.0s 10.3% 30.7s 1.3% 16.2s 7.5% 897.0s 2.3% 5.5s 22.9%

M
ea

n Total 6.3% 17.5% 9.8% 28.9% 20.1%

Time 8.7% -0.7% 8.8% 27.1% 14.9%

Figure 6. Number of context-sensitive facts and percentage decrease from using the transformer string abstraction.

strings under call-site- and object-sensitive analysis, the two

abstractions have exactly the same precision (compute the

same sets of context-insensitive facts) when evaluated on

this set of benchmark programs. Under type-sensitive anal-

ysis (column 2-type+H), the transformer string abstraction

is less precise, and a third sub-column contains the number

of context-insensitive pts, hpts, and call facts using the con-

text string abstraction. The number in parentheses states the

increase in the number of facts using the transformer string

abstraction. The last two rows contain the geometric mean

reduction in total relation sizes and analysis times.

In the instantiations where transformer strings are as

precise as context strings (call-site and object sensitivity),

the numbers of facts decrease across all benchmarks. The

chart benchmark under 2-object+H analysis has the greatest

decrease in the number of facts and analysis time.

In general, the decrease in analysis time is less than the de-

crease in the number of facts. This is due to the occurrence of

subsuming facts: two facts are derived where the concretiza-

tion (the implied context information of transformer strings

as context strings) of one is a superset of the other. An exam-

ple are facts pts(X,H, ∗), pts(X,H,

̂
M1 ·∗), pts(X,H, ∗·̂

M2), and pts(X,H,

̂
M1 ·∗·M̂2). Fact pts(X,H, ∗) sub-

sumes facts pts(X,H,A) for all A. Facts pts(X,H,

̂
M1 ·

∗) and pts(X,H, ∗·M̂2) subsume pts(X,H,

̂
M1 ·∗·M̂2).

274

class T {

Object f;

void m() {

Object v = new Object(); // h1

if(...) {

f = v;

v = f;

}

}

public static void main(String[] args) {

Object t = new T(); // h2

t.m(); // c1

}

}

Transformer string Rule

reach(main, entry) ENTRY

pts(t, h2, ǫ) NEW

call(c1, m, ĉ1) VIRT

pts(thism, h2, ĉ1) VIRT

reach(m, c1) REACH

pts(v, h1, ǫ) NEW

hpts(h2, f, h1,

̂

c1) STORE

hload(h2, f, v, ĉ1) LOAD

pts(v, h1,

̂

c1 · ĉ1) IND

Figure 7. Points-to relationships from multiple data-flow

paths.

Figure 7 illustrates how subsuming facts may arise in a 1-

call+H analysis. The variable v points to an object allocated at

allocation site h1 through two data-flow paths, one local and

one context-dependent: the first path is a direct assignment

from the allocation site, resulting in an ǫ transformer string.

The second path is through an instance field of the receiver

object of the invocation of m, resulting in a

̂
c1 · ĉ1 transformer

string. Since all invocations of m have a receiver object,

pts(v, h1,

̂
C ·Ĉ) will be inferred for all method contexts C of

m, resulting in the same explicit enumeration of contexts as the

context string representation. Although pts(t, h2, ǫ) is just

one additional fact in the transformer string representation

compared to the context string representation, all facts that

can be derived using pts(v, h1,

̂
C ·Ĉ) for some C can also

be derived using pts(t, h2, ǫ) as well, doubling the amount

of work performed by our Datalog engine.

The benchmark bloat suffers the most from subsuming

facts that arise from multiple data-flow paths. A significant

number of points-to facts in bloat belong to code that

manipulates objects of an abstract syntax tree. Whenever

a node n is allocated (the tree is constructed bottom-up), the

children of n have their “parent” field set to n inside a method

invoked from n’s constructor, which results in heap-points-to

facts with transformer strings of a “we” configuration under

1-call+H analysis (because n was passed as a parameter

through multiple invocations). Thus, loading n from the

“parent” field results in points-to facts with transformer strings

of a “we” configuration. n is also passed as a parameter to a

push call of a stack data structure. The receiver variable for

the push call points to an object with transformer strings of a

“xwe” configuration. Thus, loading n from the data structure

also results in points-to facts with transformer strings of a

“xwe” configuration. Variables pointing to n do so through

data-flow paths (arising partly due to imprecision inherent

to a 1-call+H analysis) through both the “parent” field and

through the stack data structure, resulting in a large number of

subsuming facts between the two configurations, which leads

to an increase in the analysis time in the 1-call+H analysis of

bloat.

One method of reducing the performance penalty of

subsuming facts may be to customize the Datalog engine

to delete subsumed facts from its database. For example,

whenever a fact pts(y, h, ∗· ĉ) is derived, facts pts(y, h,

̂
X ·∗·

ĉ) for all strings X may be deleted from the database without

affecting the derivation of facts through feasible data-flow

paths. We did not purse this direction due to the technical

complexity of implementing such a feature in our Datalog

engine.

The decrease in precision when type-sensitive analysis

is performed using the transformer string abstraction is

marginal: a geometric mean increase of 0.7% and 1.8% in the

number of context-insensitive pts and hpts facts, respectively.

Only the chart benchmark has an increase in the number

of context-insensitive call-edges. In bloat, the precision

loss inherent in the transformer string abstraction under type

sensitivity results in a large increase in the context-sensitive

heap-points-to relation, with a resulting increase in analysis

time.

9. Related Work

Our deduction rules are adapted from the rules in the DOOP

Framework for Java Pointer Analysis [3]. DOOP supports

various flavours of context sensitivity, including call-site,

object, type sensitivity, and combinations thereof [6]. DOOP

uses the proprietary Datalog engine LogicBlox [5]. Our

exception analysis, reflection analysis, and handling of native

methods are straight translations of DOOP’s rules written in

LogicBlox’s dialect of Datalog to the dialect of our Datalog

engine.

Sridharan and Bodı́k proposed a CFL-reachability-based

demand-driven context-sensitive analysis for Java [17]. Their

analysis incorporates two approximations: recursive methods

are handled context-insensitively and field accesses are ini-

tially assumed to alias without checking whether they access

a common object. Their refinement technique attempts to

increase precision by gradually removing the second assump-

tion until a client of the analysis is satisfied by answers to a

given alias query. They build a context-sensitive call-graph

and their analysis is call-site-sensitive.

Xu and Rountev presented an analysis that reduces the

complexity of context-sensitive pointer analysis through

a technique similar to the one used in our analysis [22].

They identify a flowing point of a points-to fact, which is

275

a method where cloning points-to facts into the callers of

the method results in redundant context information. In our

analysis, given a points-to fact pts(Y,H,

̂
A ·B̂) of a call-site-

sensitive instantiation, the parent method of the last element

of A is the flowing point as defined by Xu and Rountev.

Their analysis is implemented as a procedural algorithm

that inlines the points-to graphs of callee methods into their

callers. Allocation sites are merged when the last-k-substring

of their context strings match. The theoretical precision

difference of their context abstraction and k-limited context

strings is difficult to characterize. Our contribution is that we

formally define an algebraic structure of transformer strings

which does not enumerate redundant context information,

and show that a common set of base deduction rules can be

instantiated with either the context string or transformer string

abstractions, into efficient Datalog programs. Furthermore,

we establish the theoretical precision difference between the

two abstractions.

Tan et al.’s analysis uses the result of a pre-analysis to con-

struct an object allocation graph [19]. Similar to how paths in

a call-graph form the reachable method contexts of a call-site-

sensitive analysis, paths in an object allocation graph form

the reachable method contexts of an object-sensitive analysis.

Using this graph, redundant context elements are identified:

nodes in the graph that can be merged without merging dis-

tinct paths. Thus their analysis attains a higher precision for

a given truncation length of strings of contexts. Their use

of the word “redundant” to describe context elements differ

from how we describe the explicit enumeration of method

contexts as redundant. The elimination of redundant context

elements in Tan et al.’s analysis improves precision while the

elimination of explicit enumeration in our analysis primarily

improves performance.

Binary decision diagrams (BDDs) have been extensively

studied as a technique for improving the scalability of context-

sensitive pointer analysis. The ability of BDDs to merge

redundant context information is heavily dependent on a

chosen variable ordering. A variable ordering that minimizes

the number of BDD nodes used to represent the points-to

relation has been experimentally determined to yield the best

performance. A consequence of this choice is that although

the facts-to-BDD-nodes ratio for the points-to relation can be

as low as 100:1 (indicating a very high level of compression),

the ratio for other relations, such as the call-graph edge

relation, can be as high as 1:8 [3]. The choice to optimize

variable ordering for the points-to relation is based on the

observation that for call-site-sensitive analyses, and for object-

sensitive analyses with less than two method contexts, points-

to facts greatly outnumber other inferred facts. For example,

in a 1-object-1-heap analysis of the luindex benchmark,

non-points-to facts constitute less than 15% of all inferred

facts. The highest level of object sensitivity in which BDD-

based algorithms have scaled is 1-object-1-heap analysis.

There is a peculiar change in relation sizes between 1-

object-1-heap and 2-object-1-heap analysis. The size of

the context-sensitive points-to relation decreases in size

by approximately a third, which is surprising because an

exponential increase is typically expected when increasing

the level of context sensitivity. Moreover, the size of the

context-sensitive call-graph relation increases three-fold. The

proportion of non-points-to facts to all inferred facts doubles

to approximately 30%. Thus, the choice of relation to use

to optimize the variable ordering becomes less clear-cut. In

contrast, the transformer string abstraction decreases the sizes

of all relations, and the reduction is most pronounced in

the 2-object-1-heap analysis, which is presently the cutting-

edge analysis for Java in terms of precision that scales to

moderately sized programs.

10. Conclusion and Future Work

We have presented a formulation of pointer analysis based on

an algebraic structure of context transformations, where the

predominant abstraction of contexts, that of context strings,

is shown to be one representation of transformations. The

transformer string abstraction is proposed as an alternative

representation that empirically has less redundancy than the

context string abstraction. Less redundancies allow precise

context-sensitive analysis to take less time and memory.

A direction of future work is to evaluate the efficiency

difference between the context string and transformer string

abstractions under demand-driven workloads. Datalog pro-

grams that exhaustively compute information can be con-

verted to a demand-driven program through the magic sets

transformation [1]. There may be synergy between demand-

driven workloads and the transformer string abstraction’s

ability to represent local pointer information of a method

without enumerating all reachable contexts of the method.

Acknowledgments

This research was supported by the Natural Sciences and

Engineering Research Council of Canada.

References

[1] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jef-

frey D Ullman. Magic sets and other strange ways to implement

logic programs (extended abstract). In Proceedings of the Fifth

ACM SIGACT-SIGMOD Symposium on Principles of Database

Systems, PODS ’86, pages 1–15, New York, NY, USA, 1986.

ACM.

[2] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, As-

jad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Di-

wan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Mar-

tin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.

Moss, Aashish Phansalkar, Darko Stefanović, Thomas Van-

Drunen, Daniel von Dincklage, and Ben Wiedermann. The

DaCapo benchmarks: Java benchmarking development and

analysis. In Proceedings of the 21st Annual ACM SIGPLAN

Conference on Object-oriented Programming Systems, Lan-

276

guages, and Applications, OOPSLA ’06, pages 169–190, New

York, NY, USA, 2006. ACM.

[3] Martin Bravenboer and Yannis Smaragdakis. Strictly declara-

tive specification of sophisticated points-to analyses. In Pro-

ceedings of the 24th ACM SIGPLAN Conference on Object

Oriented Programming Systems Languages and Applications,

OOPSLA ’09, pages 243–262, New York, NY, USA, 2009.

ACM.

[4] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted

to know about Datalog (and never dared to ask). IEEE

Transactions on Knowledge and Data Engineering, 1(1):146–

166, March 1989.

[5] Todd J. Green, Molham Aref, and Grigoris Karvounarakis.

LogicBlox, platform and language: A tutorial. In Proceed-

ings of the Second International Conference on Datalog in

Academia and Industry, Datalog 2.0’12, pages 1–8, Berlin,

Heidelberg, 2012. Springer-Verlag.

[6] George Kastrinis and Yannis Smaragdakis. Hybrid context-

sensitivity for points-to analysis. In Proceedings of the 34th

ACM SIGPLAN Conference on Programming Language Design

and Implementation, PLDI ’13, pages 423–434, New York, NY,

USA, 2013. ACM.

[7] Chris Lattner and Vikram Adve. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In Pro-

ceedings of the International Symposium on Code Generation

and Optimization: Feedback-directed and Runtime Optimiza-

tion, CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE

Computer Society.

[8] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits

of context-sensitive points-to analysis using a BDD-based

implementation. ACM Transactions on Software Engineering

and Methodology, 18(1):3:1–3:53, October 2008.

[9] Percy Liang and Mayur Naik. Scaling abstraction refinement

via pruning. In Proceedings of the 32Nd ACM SIGPLAN

Conference on Programming Language Design and Implemen-

tation, PLDI ’11, pages 590–601, New York, NY, USA, 2011.

ACM.

[10] Percy Liang, Omer Tripp, and Mayur Naik. Learning min-

imal abstractions. In Proceedings of the 38th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’11, pages 31–42, New York, NY, USA,

2011. ACM.

[11] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Pa-

rameterized object sensitivity for points-to analysis for Java.

ACM Transactions on Software Engineering and Methodology,

14(1):1–41, January 2005.

[12] Thomas Reps. Program analysis via graph reachability. Infor-

mation and Software Technology, 40(11-–12):701–726, 1998.

[13] Thomas Reps. Undecidability of context-sensitive data-

dependence analysis. ACM Transactions on Programming

Languages and Systems, 22(1):162–186, January 2000.

[14] Olin Shivers. Control-flow analysis of higher-order languages.

PhD thesis, Citeseer, 1991.

[15] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták.

Pick your contexts well: Understanding object-sensitivity. In

Proceedings of the 38th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL

’11, pages 17–30, New York, NY, USA, 2011. ACM.

[16] Yannis Smaragdakis, George Kastrinis, and George Balat-

souras. Introspective analysis: Context-sensitivity, across the

board. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI

’14, pages 485–495, New York, NY, USA, 2014. ACM.

[17] Manu Sridharan and Rastislav Bodı́k. Refinement-based

context-sensitive points-to analysis for Java. In Proceedings

of the 27th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’06, pages 387–

400, New York, NY, USA, 2006. ACM.

[18] Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav

Bodı́k. Demand-driven points-to analysis for Java. In Pro-

ceedings of the 20th Annual ACM SIGPLAN Conference on

Object-oriented Programming, Systems, Languages, and Ap-

plications, OOPSLA ’05, pages 59–76, New York, NY, USA,

2005. ACM.

[19] Tian Tan, Yue Li, and Jingling Xue. Making k-object-sensitive

pointer analysis more precise with still k-limiting. In Interna-

tional Static Analysis Symposium, pages 489–510. Springer,

2016.

[20] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren,

Patrick Lam, and Vijay Sundaresan. Soot - a Java bytecode op-

timization framework. In Proceedings of the 1999 Conference

of the Centre for Advanced Studies on Collaborative Research,

CASCON ’99, pages 13–. IBM Press, 1999.

[21] John Whaley and Monica S. Lam. Cloning-based context-

sensitive pointer alias analysis using binary decision diagrams.

In Proceedings of the ACM SIGPLAN 2004 Conference on

Programming Language Design and Implementation, PLDI

’04, pages 131–144, New York, NY, USA, 2004. ACM.

[22] Guoqing Xu and Atanas Rountev. Merging equivalent contexts

for scalable heap-cloning-based context-sensitive points-to

analysis. In Proceedings of the 2008 International Symposium

on Software Testing and Analysis, ISSTA ’08, pages 225–236,

New York, NY, USA, 2008. ACM.

[23] Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and

Hongseok Yang. On abstraction refinement for program anal-

yses in Datalog. In Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implemen-

tation, PLDI ’14, pages 239–248, New York, NY, USA, 2014.

ACM.

[24] Xin Zheng and Radu Rugina. Demand-driven alias analysis for

C. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL

’08, pages 197–208, New York, NY, USA, 2008. ACM.

[25] Jianwen Zhu and Silvian Calman. Symbolic pointer analysis

revisited. In Proceedings of the ACM SIGPLAN 2004 Confer-

ence on Programming Language Design and Implementation,

PLDI ’04, pages 145–157, New York, NY, USA, 2004. ACM.

277

