Comparing Call Graphs

Ondrej Lhotak

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, ON, Canada

olhotak@uwaterloo.ca

Abstract

Comparing program analysis results from different statid ey-
namic analysis tools is difficult and therefore too rare eeggly
when it comes to qualitative comparison. Analysis residts e
strongly affected by specific details of programs being yared,
SO quantitative evaluation should be supplemented by tqtiaé
identification of those details. Our general aim is to depetmls
to reduce the difficulty of qualitative comparison. In thaper, we
focus on comparison of call graphs in particular.

We present two complementary tools for comparing call gsaph
Our main contribution is a call graph difference search tbak
ranks call graph edges by their likelihood of causing larifierd
ences in the call graphs. This is complemented by a simpedot
tive call graph viewer that highlights specific differendestween
call graphs, and allows a user to browse through them. Inratsea
for the causes of call graph differences, a user first usesehieh
tool to identify which of the thousands of spurious edge®tklat
more closely, and then uses the interactive viewer to déerm
detail the root cause of a difference.

We present the ranking algorithm used in the differenceckear
tool. We also report on a case study using the comparisos tool
determine the most important sources of imprecision in &cap
static call graph by comparing it to a dynamic call graph & th
same benchmark.

Categories and Subject Descriptors D.3.3 [Programming Lan-

actual runtime behaviour. In this paper, we focus specifiaath
comparing call graphs, a key prerequisite of many intergdacal
analyses.

Although the need for comparisons of program analysis re-
sults is a recurring suggestion [10, 22], the results okdiiit pro-
gram analysis tools are usually not easily comparable. Inyma
cases, a tool is not publicly available to researchers, ang p
lished results about it lack the detail necessary for dedatgiom-
parison. Even when a tool is publicly available for testidd;
ferences in the program representation and abstractiomsoof
gram behaviour make the results produced by different tools
comparable. To make such comparison feasible, we have define
common data formats for describing program analysis resaitd
made available a library to make it easy for existing analysols
to read and write the formats. We call the projectdBE, be-
cause we intend it to be the beginning of a collection of data
formats for describingorogram behaviour. The ROBE frame-
work is freely available fronhtt p: // pl g. uwat er | oo. ca/
~ol hot ak/ pr obe/ . Of the program analysis result formats cur-
rently defined in ROBE, the format for describing call graphs is
most fully developed, so this paper focuses specifically aih c
graphs. In addition to the file format, we have developedstool
help analysis designers compare call graphs and searcbufiares
of imprecision; we present these tools in this paper.

Because the comparison tools understand theBE call graph
format, they can be used with any analysis, static or dynamic

guages]: Language Constructs and Features—Procedures, func-that uses the ROBE to output call graphs. We have implemented

tions, and subroutines

General Terms Algorithms, Design, Languages, Measurement

PROBE call graph output for Soot [3], a static analysis framework,
and *J [2, 7], a dynamic analysis framework.
The call graph comparison tools presented in this paper were

Keywords call graph, comparison tools, static analysis, dynamic used extensively in our earlier evaluation of the effectsmftext

analysis, interpreting analysis results

1. Introduction

Program analysis researchers have developed a wide raagalef
ysis tools, both static and dynamic. Naturally, we woulck lto
compare the results of these analyses for several reasmnsx-f
ample, to determine which analyses to select for specifiticpp
tions, to compare the effectiveness of different analysets deter-
mine whether the result of an analysis conservatively apprates

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesairmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’'07 June 13-14, 2007, San Diego, California, USA.
Copyright© 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00

sensitivity on analysis precision [15].
In this paper,

¢ we identify key difficulties in comparing call graphs,

e we present an algorithm for finding the root causes of differ-
ences in call graphs, which is implemented in one of the com-
parison tools, and

e we report on a case study using the tools to compare static and
dynamic call graphs of the Jess benchmark from the SPEC JVM
98 suite [26].

The rest of this paper is organized as follows. In Section&, w
provide background information and definitions about cedipdps,
motivate call graph comparison with several applicatiamsl dis-
cuss some of the reasons why it is difficult to meaningfulljnpare
call graphs without appropriate tools. In Section 3, we @néshe
algorithm for finding causes of call graph differences, aesktibe
the call graph comparison tools developed as part of theBe
library. In Section 4, we show how the tools are used to determ

the causes of differences between static and dynamic egdhgrof
an example program. In Section 5, we survey related workjrand
Section 6, we conclude.

2. Background
2.1 Call graph terminology

A call graph is typically defined as a set of directed edgeshea
connecting aall site(i.e. a function invocation statement) tdaa-
get function invoked from the call site. In languages with fuant
pointers (e.g. C) or dynamic dispatch (e.g. Java), the tafjea
call site is selected at run time depending on a run-timeevada a
single call site may have multiple call targets. Dependinghe ap-
plication, a call graph often also specifies the programyguaimt.
From a given execution of the prograntyaamic call graph is con-
structed by recording which call sites are executed anti@liarget
functions that are called from each of them. A theoreiided! call
graph can be defined as the union of the dynamic call graphrs ove
all possible executions of the program. A conservativeicstl|
graph is a superset of the ideal call graph; it over-apprek@s the
dynamic call graph of every possible execution. Converssigry
dynamic call graph is a subset of the ideal call graph.

2.2 Why compare call graphs?
The following are some of the key reasons to compare callgrap

e Interprocedural static analyses rely on conservativécstai|
graphs. Because call graphs for realistic programs are kg
complicated, it is difficult to check that a static call graish
conservative. A good way to detect missing edges in a static
call graph is by comparing it to dynamic call graphs.

The precision of client analyses often depends on the poecis
of a static call graph. To select the best call graph constmic
algorithm for a particular client analysis, we need to corapa
the precision of call graphs produced by different constonc
algorithms.

Specific programming idioms can cause quantitatively large
imprecisions in static call graphs. Qualitative comparsof
static call graphs to actual run-time behaviour can be used
to identify these idioms, so that static call graph congioac
algorithms can be improved to model them more precisely.

¢ Although the ideal call graph for a program is generally uneo
putable, it is bounded from below by dynamic and from above

call graph. To uncover the source of the discrepancy, a cosgra
technique must identify the specific spurious call edgéerathan
just give summary statistics about the overall graph.

In our experience, the differences between call graphssbame
plications are still more complicated. Often, a module ©uded
due to multiple spurious call edges. In a static call graph-co
structed using an approximation of run-time values to resdly-
namic call site targets, many spurious edges are causeditipsp
run-time values, which may in turn be caused by (other) spigri
call edges. Thus, identifying the root cause of a call grapbrep-
ancy is generally difficult, and a given discrepancy oftenseveral
root causes. Our goal is to devise tools to ease this task.

3. Call Graph Comparison Tools

Call graphs are usually much too large to be explored by hand.
For example, a statically constructed call graph (congéliasing
the default configuration of BARK [12, 14], an interprocedural
analysis framework included in&T [3]) for the trivial “Hello,
World!” program mentioned above contains 3204 methodsr& he
is a significant research community devoted to graph drawing
presenting graphs in a way that exhibits their structured-tais
research has resulted in ready-to-use tools such as Gmaphlyi
yEd [4], and many others. When comparing call graphs, howeve
we are interested less in the structure of the graph, and more
finding, out of the many functions and call edges, the few dnat
important.

We have developed two complementary tools to help compare
call graphs. The first tool, our main contribution, searcagsair
of large call graphs for differences, and produces a ranistaf
call graph edges most likely to be the root cause of a diffszen
We present the difference search tool in Section 3.1. Theclsea
tool is complemented by a simple interactive call graph eew
which allows the user to closely examine specific areas of the
call graph identified by the search tool. We briefly presemt th
interactive viewer in Section 3.2. Other graph explorationls
could be substituted for the interactive viewer. Typicalyuser
first uses the search tool to find candidate edges to examine mo
closely, and then browses the surroundings of those edgesthe
interactive viewer.

3.1 Call Graph Difference Search Tool

We have developed inAFDBE a call graph comparison tool to aid
in finding the root causes of call graph differences. Likelwd X
di f f utility, the call graph comparison tool compares two call

by static call graphs. Comparison of these bounds provides a graphs and reports their differences. Unlikef f , which does a

bound on the level of imprecision in these approximations.

2.3 Issuesin comparing call graphs

Although quantitative comparison of call graphs is strfigtwvard

if they are produced by the same tool, it is difficult to deter@the
qualitative causes of the differences. For example, it ieroon to
count the total number of call edges or the number of funstion
reachable through the graph from the program entry point. Fo
qualitative analysis, real call graphs are too large to éxarby
hand: even a dynamic call graph of a Java “Hello, World!” pesg
contains 498 functions.

Many programs contain call sites that are never executeth, su
as those in an unused portion of a library. There may be aesingl
function that, if executed, would call (transitively) adarunused
module of the program, but no actual execution ever readies t
function. In a conservative call graph, a single spuriolisetige to
the function forces the entire unused module to be includetieé

1Al analysis results reported in this paper were collectadh® Sun JDK
1.3.112 running on Linux.

symmetric comparison, the call graph comparison tool islivet-
tional: it reports only methods and edges present in thediegth
and absent in the second graph. When comparing call gragghs, w
are usually looking for imprecisions in one “imprecise”|lgaph
not present in a second, “precise” call graph. It is posdibind

all differences between the two graphs by running the toadew
and switching the order of the input graphs between the twe.ru
In the rest of this presentation, we will call the two graph&g as
input to the tool thesubgraph and thesupergraph. The call graph
comparison tool reports methods and edges present in thes-sup
graph but absent from the subgraph. Despite the names gt i
quired that the subgraph actually be a subgraph of the stgmrg
although it often will be.

When we compare the static and dynamic call graphs of the
“Hello, World!” program, the tool finds 2706 spurious metkahd
15993 spurious call edges in the static graph that are neepte
in the dynamic graph — much too many to examine manually.
A spurious call edge that originates from a spuriously raht
method is not very useful in finding root causes of imprecisio
(because if the originating method were actually called,ébge

Figure 1. Sketch of example call graph

might also be traversed, and would no longer be spuriougreFh
fore, in its default configuration, our call graph companisaol re-
ports only spurious edges originating at a method reachalbleth
graphs. Using this configuration, the number of spurioussdg
our “Hello, World!” is reduced to 2370. Although this is an-m
provement over 15993, it is still too many to easily find thetro
causes of imprecision.

To better help find causes of imprecision, we experimentéi wi
ways to automatically rank the spurious call edges in somg wa
that would identify the edges most likely to be causing a fot o
imprecision.

Ideally, we would like to find edges like the one labeled A in
Figure 1. In this sketch of a fictional call graph, black nodes
dicate truly reachable methods, and white nodes indicate-sp
ously reachable methods. The call edges labelled with ther$eA
through H are spurious edges each originating at a trulyhedae
method; therefore, these would be the edges reported irefaeald
configuration of our call graph comparison tool. In searghior
root causes of imprecision and seeking to improve the inigeec
analysis that constructed this call graph, it would appe&etmost
fruitful to first look at the edge labelled A, for two reasoRdrst,
it connects a large number of spurious methods to the cgtihgra
(all of the white nodes in the upper right of the figure). Seton
because it is thenly edge that connects them, its removal would
immediately eliminate the many spurious methods from tlaplgr

double level(method)
if mreachable in subgraph
return O
else
return I[m]
endif

for each methodn in supergraph
setlm =1.0
endfor
loop
for each call edge = m— n7 in supergraph
diff = a-(level() - level(m))

if diff >0
totalfe] + = diff
I[m] — = diff
I[m] + = diff
endif
endfor

until (maxy I[m]) < €
output edges in order of decreasing tcghl[

Figure2. Call graph flow algorithm

method is modelled as a lake, and each call edge as a cornectin
river. Initially, all spuriously reachable methods areigised a
uniform level of fluid. Truly reachable methods are sinkotlgh
which the fluid drains (i.e. their fluid level is always keptzato).
The algorithm simulates the draining of the fluid from therspus
methods, along call edges in the direction opposite to taga
direction, eventually reaching the sinks. As the fluid dsaithe
amount that has flowed through each edge is recorded. Once all
of the fluid has drained, the call edges are ranked accordihgw
much has flowed through each of them. An edge (such as A in
Figure 1) connecting many spurious methods to the graphasé
the fluid from those many methods flowing through it, giving it
high rank. However, if a region of spurious methods is cotettto
the graph by many independently spurious edges, the fluttbsft
methods will be divided among these edges, so each edgeank! r
lower.

The quality of the simulation is affected by two configurable

Notice that an edge such as B also leads to a large numberparameters in the algorithra,ande. The parametesr controls the

of spurious methods, but removing B would not eliminate them
since they are also reachable by other call edges. Yet, gapp
more fruitful to pursue the removal of B than H, for example,

granularity of each simulation step. In each iteration,efach call
edge from methodn to n7, if the level atn' is higher than am,
the difference in levels is multiplied by, and the levels o and

because B is more closely connected to more spurious methodsn are raised and lowered, respectively, by the resulting amou

than H. Therefore, informally, our ranking should put edijes A
near the top, and it should put edges like B before edges like H

To produce such a ranking, we first experimented with graph-
theoretic algorithms such as min-cut and max-flow and relate
algorithms, but did not find them to work well for this problem
While these algorithms look fasptimal solutions, we need to find
solutions that are merefyood. For example, min-cut would find the
smallest set of edges whose removal would disconnect thghgra
into multiple connected components. In actual call graphsin-
cut was often a single edge, and it usually disconnectedargyor
very few spurious methods from the graph. Instead ofntivémal
cut, we are interested in a merelys@all cut, but one which cuts
off a large component of spurious methods.

The algorithm that we have implemented iREBE is shown in
Figure 2. Intuitively, the algorithm is similar to simulag the flow
of water through a system of lakes and rivers; the fast-flgwiwers
indicate large watersheds with few alternative drainagkp&ach

Thus, smaller values ofr result in a more faithful simulation

of fluid flow, while larger values result in fewer iterationaca
therefore faster computation. The parameteontrols how much

of the fluid must drain before the algorithm terminates. Bsea
the flow in each iteration is proportional to the differenaekevels
between methods, and these are in turn proportional to tloeiaim

of fluid left, the amount left asymptotically approaches bever
reaches zero. A larger allows the algorithm to terminate sooner
than a smallee. After some tuning, we settled on valuesaf=
0.125 ande = 0.001 for these parameters. With these values, when
comparing a static and dynamic call graph for the SPEC JVM 98
benchmarks [26], the algorithm completed within®liferations
(each processing on the order of*Hiiges), thus completing within
30 seconds on a 2GHz AMD Athlon 64. This is in line with the time
required to generate the call graphs being compared. Wheg us
smaller values of these parameters, we did not observecablie
differences in the ranking of call edges.

P = ™ 1=
@S- 2-500C
[a
Search for: hello static. gl A hello. static gl -
| hello. dynamic. gzl hello, dynamic, gzl
.Hello
Ay [Liavalang/String:)

[ncoming edges: Outgoing edges:

ROCT java.io PrintStream

printlLijavallang/String)
java.lang.Object
<elinit=(

java.lang.System
<clinit=()

=

] &)],=-l'J 0:172 | Aclblock

Done

Figure 3. Screenshot of call graph viewer

32

Once the difference search tool has pinpointed differetikely

to be important, the relevant code must be inspected by hand t
determine the exact cause of the difference. We complenhent t
difference search tool with a simple interactive call grajghwer, to
help a person manually explore the functions and call edgasan
important difference. Because it is intended for local exgtion,

the interactive call graph viewer implemented iR@BE presents
only a single method at a time.

Interactive Call Graph Viewer

running a trivial “Hello, World!” program, 498 distinct medds

are actually executed, but a conservative static call gcapitains
over six times as many: 3204. Using the Jess benchmark from
the SPEC JVM 98 suite [26] as an example, we used the call
graph comparison tools to determine the main causes ofeliftes
between the static and dynamic call graphs.

In any evaluation of a static analysis result, the first stequkl
be to check that it is a conservative approximation of dyuane:
haviour. We ran the difference search tool with the dynamait c
graph (generated using *J) as the supergraph and a stdtirayaih
(generated using the default settings @fA8K) as the subgraph,
expecting to see no dynamic edges or methods missing from the
static graph. However, the tool found 143 methods in the thjoa
call graph but not the static call graph. The Jess languagéeim
mented by the benchmark allows external functions to beterrit
as Java classes, which the benchmark loads using reflegti®n;
had not told $ARK about these classes. In the top ten missing call
edges reported by the difference search tool, five weretcallese
external functions, and three were calls fromtteav nst ance0
method off ava. | ang. O ass instantiating classes using reflec-
tion. By searching for all call edges fromewl nst ance0, we
composed a list of classes loaded using reflection to givears,
so it could construct a conservative call graph.

At this point, the static call graph contained 3427 reaahabl
methods, compared to only 986 in the dynamic call graph [reca
that the true ideal call graph is somewhere between thesajwo
proximations). We ran the difference search tool, this timith
the static call graph as supergraph and the dynamic callhgrap
as subgraph. The most important spurious edge identifiedhdy t
comparison algorithm was from trepensSt r ean() method in
spec.io. FilelnputStreamto getlnputStrean() in
sun. net . ww. protocol . file. Fil eURLConnecti on.

The SPEC harness includes code to download benchmark in-
put data directly from the SPEC website, instead of reading i
from disk; this forces a conservative static call graph tcude

The viewer acts as an HTTP server to which the user connectsthe Java networking and HTTP library classes. Since we do not

with a web browser. Each web page generated by the viewes-repr
sents one method, and contains clickable links to all metivadi-

ing and called by the current method. A search box allows siee u
to search for methods or classes by name. A sample screafshot
themai n method of the “Hello, World!” program is shown in Fig-
ure 3. The method has an incoming edge from the sp&wait
node (indicating that it is an entry point), and three outgaidges,

to thepri nt| n method inj ava. i o. Print Stream and to
two static initializers.

The viewer uses colour to allow two call graphs to be browsed
simultaneously and compared. The example screenshotume=gy
shows the static and dynamic call graphs of the “Hello, World
program being compared. Although it is not apparent in akblac
and white version of this paper, the targets of call edgesairrir-

use this feature in any of our test runs, we commented out the
part of theopenSt r ean() method that accesses the network,
leaving only the part that reads input from a local file. Alibh
this reduced the static call graph by only 10 methods, the dif
ference search tool showed why: the top-ranked spuriouds cal
edge was to thget | nput St r eam() method insun. m sc. -
URLCl assPat h$3, and other highly-ranked spurious edges also
represented calls from class loading code to networking cdte
networking code is used not only by the SPEC harness, but also
by the JVM to load Java classes from the network. After adgisi
the static call graph analysis to ignore these spurious athich
are not used when the JVM is running only class files found en th
local filesystem, the static call graph shrank to 3186 method

After we removed networking code from the static call graph,

coded to show whether they appear in both call graphs or only eight of the top ten spurious call edges reported by the campa

in the static one. The call to theri nt1 n method is pink, to
show that it appears in both call graphs. However, the calthe
static initializers are blue, meaning that they appear amlyhe
conservative static call graph. That is, they were not digtaalled
from mai n in the run of the program from which the dynamic call
graph was produced, but the static analysis conservatgtimmates
that they could have been, h&ihj ect and Syst emnot been
initialized earlier. Thus, these two call edges are a patkesburce
of imprecision in the static call graph.

4. Case Study: the Jessbenchmark

Conservative static call graphs for Java are imprecisejlyndie to
the large standard library provided with Java, whose useaaty
be statically ruled out even in very small programs. Evenmwhe

son algorithm were evidently related to either Jar file logdand
verification, or were calls into cryptography code in ten. -
security package. We used the interactive browser to explore
around the spurious edges, and inspected bytecode of brslera

2The purpose of the case study is to use the tools to determeobt

causes of differences between the static and dynamic catihgr rather
than to improve the static analysis while maintaining soesd. We do
not claim that it is sound to allow the analysis to ignore cdiole only

executes when classes are loaded from the network — the sessdf
this optimization depends on the environment in which thmd¥run (i.e.

whether the classpath points to network classes), and weerfadefined a
specific environment. We remove the code from the analydistorshow

that no other code contributes to these differences betweestatic and
dynamic call graph.

vant methods. When the JVM loads classes from a signed Jar file
the Jar\Verifier class checks the signature. Although nonleeodar
files in our environment were signed, the static call grapal-an
ysis had no way to know that, so it conservatively assumetl tha
the Jar\Verifier (and all the cryptography code on which itede}s)
could be called. Advising the static analysis to ignoresctil the
Jar\Verifier reduced the number of reachable methods in #ii st
call graph by more than 30%, to 2194.

We again ran the difference search tool, and found that the
highest-ranked spurious call edge was to then() method of
sun. security. provider.PolicyFile$l. This class in-
terprets thesecuri ty. pol i cy file that can be provided to the
JVM to restrict the external operations that the JVM will foem,
such as accessing disks or the network. Since we do not use thi
feature, we removed it from the static analysis, reducimgstiatic
call graph to 2070 methods.

So far, we have determined that 1357 of the 2441 spurious
methods appearing in the static but not the dynamic callrgvasre
caused solely by several unused features of the SPEC haméss
of the JVM. We could continue in this way, using the call graph
difference search tool and the interactive call graph vigwdind
the root causes of the remaining differences.

5. Related Work

The need for the program analysis community to agree on bench
marks and generate reproducible analysis results thateaor-
pared has been identified before, for example by Hind [10]and
Ryder [24]. We echo this call, and provide the®BE infrastruc-
ture in the hope that it will help the program analysis comityun
to address this need.

Rountev [22] discussed how static and dynamic analysis re-
sults can be evaluated together to identify sources of ioigian
(in the static results) and incomplete coverage (in the ohjoae-
sults). The two approaches to analysis over- and undeeaippate
the true program behaviour, and by considering them togettie
amount of imprecision can be measured. A similar argumest wa
made by Ernst [8]. Rountegt al. [23] applied the proposed ap-
proach to quantify the imprecision in an analysis of callioba
Researchers can use the qualitative call graph compagsiswe
have presented to point to specific areas in a program whese th
approximations can be improved to converge closer to treedall
graph. Qualitative differences indicate opportunitiesdiher in-
creasing the coverage of test inputs used to construct thencig
call graph (making it bigger), or improving precision of tnealysis
used to construct the static call graph (making it smaller).

In the area of call graph construction, Murphy, Notkin, and
Lan [21] compared the call graphs produced by five staticstoal
three C programs both quantitatively, and by qualitativeneixa-
tion of a sample of differences. They found that the call gsagll
had important differences: no tool produced a call graphwvlas a
supergraph of any other. Tip and Palsberg [28] quantitigtivem-
pared several low-cost call graph construction algoritfongdava.
Grove and Chambers [9] defined a unified framework for express
ing call graph construction algorithms, and performed antjta
tive study comparing different instantiations of the fravek. Our
comparison tools could be used to repeat these experimedts a
provide additional insight into the specific program featuinehind
the primarily quantitative differences observed in thaselies.

Another area with existing empirical comparisons is peints
to analysis. Hind and Pioli [11] studied a collection of peHio
analyses for C, and compared their efficiency and precisitim w
respect to several client analyses. Matlal. [20] used dynamic
points-to sets to measure the precision of static analgsislts.
Like call graphs, points-to analysis results are typicaéyy large;

qualitative comparison tools for points-to information wa be
very helpful for developing and tuning future points-to lysas.
The past several years have seen a strong interest in efficien
implementation of context-sensitive program analysest isofit-
ting to ask how context sensitivity contributes to analysisci-
sion. Stockset al. [27] studied the effects of flow sensitivity and
context sensitivity on side-effect analysis of C progralnang et
al. [16] evaluated the effect of object sensitivity [17—19Hazall
site string context sensitivity on the size of pointed-yoskts com-
puted by subset-based points-to analyses an Java. L huodaken-
dren [13, 15] compared object sensitivity, call site stromptext
sensitivity, and the Zhu/Calman/Whaley/Lam algorithm, 29 in
terms of the precision of call graph construction, call denwil-
ization, points-to analysis, and cast safety analysisiharan and
Bodik [25] evaluated a demand-driven adaptively-corgextsitive
points-to analysis using a cast safety client analysis.oAthese
studies reported mainly quantitative results, with qatilie obser-
vations playing a secondary role. To continue to improveigren
of static analyses, researchers will increasingly havensicler the
specific program constructs behind these numbers, and ¢aifd-
yses to these constructs. Identifying these constructsreglire
qualitative comparison tools not only for call graphs, bisbdor
other program analysis results, such as points-to infoaomat

6. Conclusionsand Future Work

We have motivated the need for qualitative comparison afjiaim
analysis results, and of call graphs in particular, and gl
tools to help make such comparison practical. Design, tyrand
evaluation of future program analyses can benefit from taiade
examination of analysis results.

The comparison tools we presented are part ROPE, a col-
lection of data formats for program analysis results, aalipifor
generating output in those formats from different analysis,
and tools for evaluating and comparing analysis results heve
already used ROBE for both qualitative and quantitative evalua-
tions [13, 15] of static analyses implemented within tra 8k [12,
14] and RDDLE [13] frameworks in ®0T[3], and compared their
results with dynamic information collected using *J [5, 6].

In our comparison of static and dynamic call graphs of the Jes
benchmark, we observed that most of the difference was ddyse
JVM features that were not enabled in our runtime envirorirrian
a solely quantitative study, it would have been temptingltorte
the difference on imprecision of the static analysis, andaes
senselessly attempt to improve its precision. The qusgatom-
parison that we performed using the tools showed the trusesaaf
the difference; only by removing these specific fragmentsoafe
from consideration by the static analysis could we quarttifir
effect on call graph size.

Because call graphs are a key prerequisite for nearly alipno-
cedural analysis, we have focused first on comparing cgbhgran
languages such as Java in which objects are always accested i
rectly through references, points-to information is alsdrapor-
tant prerequisite for many analyses, and points-to arslgsften
interdependent with call graph construction. Thus, toofscbm-
paring points-to analysis results should also be develgpathaps
combined with the call graph comparison tools.

More generally, qualitative comparison and appropriatasto
to support it can be applied to arbitrary program analyseg- S
cific, localized program constructs often have consideraffiects
on quantitative measurements of program analysis resaltsym-
mary numbers reported on a handful of benchmarks, as is se com
mon, may be strongly biased by specific coding styles. Qtaivg
evaluations should by no means be suppressed, but theydsheul
augmented with more qualitative insight identifying sfiecpro-
gram features behind the numbers.

7. Acknowledgements

This work, and the ROBE framework in particular, was motivated

by discussions by the participants at the PASTE 2004 workslimo

particular, Atanas Rountev and David J. Pearce providedesig

tions both at the workshop, and in subsequent e-mail digmss

We are also grateful for suggestions from Gordon Cormaciks Th
work was partly funded by NSERC and an IBM PhD Fellowship.
Part of this work was done in the Sable lab at McGill Univegsit

led by Laurie Hendren.

References

[1] Graphviz - graph visualization software.
http://ww. graphvi z.org/.

[2] *J: A tool for dynamic analysis of java programs.
http://ww. sabl e.ntgill.cal/starj/.

[3] Soot: a Java optimization framework.
http://ww. sabl e.ntgill.cal/soot/.

[4] yEd - Java graph editor.
http://ww. ywor ks. conl en/ product s yed_about .
ht m

[5] B. Dufour. Objective quantification of program behaviaising
dynamic metrics. Master’s thesis, McGill University, JW@@94.

[6] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dyna
metrics for Java. IfProceedings of the 18th Annual ACM SSGPLAN
Conference on Object-Oriented Programing, Systems, Languages,
and Applications, pages 149-168. ACM Press, 2003.

B. Dufour, L. Hendren, and C. Verbrugge. *J: a tool for dymic
analysis of Java programs. @OPS.A '03: Companion of
the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 306—
307, New York, NY, USA, 2003. ACM Press.

M. D. Ernst. Static and dynamic analysis: synergy anditjualn
Proceedings of the ACM-S GPLAN-S GSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 35-35. ACM
Press, 2004.

D. Grove and C. Chambers. A framework for call graph carion
algorithms. ACM Transactions on Programming Languages and
Systems, 23(6):685—-746, Nov. 2001.

[10] M. Hind. Pointer analysis: haven't we solved this peshlyet? In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages 54—61.
ACM Press, 2001.

[11] M. Hind and A. Pioli. Which pointer analysis should | @sen
Proceedings of the 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 113-123. ACM Press, 2000.

[12] O. Lhotak. Spark: A flexible points-to analysis franeew for Java.
Master’s thesis, McGill University, Dec. 2002.

[13] O. Lhotak.Program Analysis using Binary Decision Diagrams. PhD
thesis, McGill University, Jan. 2006.

[14] O. Lhotak and L. Hendren. Scaling Java points-to asialyising
Spark. In G. Hedin, editoCompiler Construction, 12th International

[7

—

8

-

[9

—

Conference, volume 2622 of NCS, pages 153-169, Warsaw, Poland,

Apr. 2003. Springer.

[15] O. Lhotak and L. Hendren. Context-sensitive poimtshalysis: is it
worth it? In A. Mycroft and A. Zeller, editorCompiler Construction,
15th International Conference, volume 3923 of.NCS, pages 47-64,
Vienna, Mar. 2006. Springer.

[16] D. Liang, M. Pennings, and M. J. Harrold. Evaluating tirpact
of context-sensitivity on Andersen’s algorithm for Javagnams. In
PASTE ' 05: The 6th ACM SIGPLAN-S GSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 6—12, New York,
NY, USA, 2005. ACM Press.

[17] A. Milanova. Precise and Practical Flow Analysis of Object-Oriented
Software. PhD thesis, Rutgers University, Aug. 2003.

[18] A. Milanova, A. Rountev, and B. G. Ryder. Parameterindgject
sensitivity for points-to and side-effect analyses foralavin
Proceedings of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 1-11. ACM Press, 2002.

[19] A. Milanova, A. Rountev, and B. G. Ryder. Parameterindgject
sensitivity for points-to analysis for Jav&CM Trans. Softw. Eng.
Methodol., 14(1):1-41, 2005.

[20] M. Mock, M. Das, C. Chambers, and S. J. Eggers. Dynamiictpdo
sets: a comparison with static analyses and potential catigins
in program understanding and optimization. Rroceedings of the
2001 ACM SIGPLAN-S GSOFT Workshop on Program Analysis for
Software Tools and Engineering, pages 66—72. ACM Press, 2001.

[21] G. C. Murphy, D. Notkin, and E. S.-C. Lan. An empiricaligy of
static call graph extractors. WCSE '96: Proceedings of the 18th
International Conference on Software Engineering, pages 90-99,
Washington, DC, USA, 1996. IEEE Computer Society.

[22] A. Rountev, S. Kagan, and M. Gibas. Evaluating the irjsien
of static analysis. IfProceedings of the ACM-S GPLAN-S GSOFT
Wobrkshop on Program Analysis for Software Tools and Engineering,
pages 14-16. ACM Press, 2004.

[23] A. Rountev, S. Kagan, and M. Gibas. Static and dynamalyasis
of call chains in Java. I®Proceedings of the 2004 ACM S GSOFT
International Symposium on Software Testing and Analysis, pages
1-11. ACM Press, 2004.

[24] B. G. Ryder. Dimensions of precision in reference asialpf object-
oriented programming languages. In G. Hedin, edi@onpiler
Construction, 12th International Conference, CC 2003, volume 2622
of Lecture Notes in Computer Science, pages 126-137. Springer,
2003.

[25] M. Sridharan and R. Bodik. Refinement-based contersisive
points-to analysis for Java. IBLDI '06: Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 387-400, New York, NY, USA, 2006. ACM
Press.

[26] Standard Performance Evaluation Corporation. SPE®I9B/
benchmarks.
http://ww. spec. org/ osg/jvnd8/.

[27] P. A. Stocks, B. G. Ryder, W. A. Landi, and S. Zhang. Corimugflow
and context sensitivity on the modification-side-effeatshfem. In
Proceedings of ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 21-31. ACM Press, 1998.

[28] F. Tip and J. Palsberg. Scalable propagation-basddgcabh
construction algorithms. IRroceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
281-293. ACM Press, 2000.

[29] J. Whaley and M. S. Lam. Cloning-based context-semsitiointer
alias analysis using binary decision diagramsPitaceedings of the
ACM S GPLAN 2004 Conference on Programming Language Design
and Implementation, pages 131-144. ACM Press, 2004.

[30] J. Zhu and S. Calman. Symbolic pointer analysis rexdsit In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, pages 145-157. ACM Press,
2004.

