
Comparing Call Graphs

Ondřej Lhoták
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

olhotak@uwaterloo.ca

Abstract
Comparing program analysis results from different static and dy-
namic analysis tools is difficult and therefore too rare, especially
when it comes to qualitative comparison. Analysis results can be
strongly affected by specific details of programs being analyzed,
so quantitative evaluation should be supplemented by qualitative
identification of those details. Our general aim is to develop tools
to reduce the difficulty of qualitative comparison. In this paper, we
focus on comparison of call graphs in particular.

We present two complementary tools for comparing call graphs.
Our main contribution is a call graph difference search toolthat
ranks call graph edges by their likelihood of causing large differ-
ences in the call graphs. This is complemented by a simple interac-
tive call graph viewer that highlights specific differencesbetween
call graphs, and allows a user to browse through them. In a search
for the causes of call graph differences, a user first uses thesearch
tool to identify which of the thousands of spurious edges to look at
more closely, and then uses the interactive viewer to determine in
detail the root cause of a difference.

We present the ranking algorithm used in the difference search
tool. We also report on a case study using the comparison tools to
determine the most important sources of imprecision in a typical
static call graph by comparing it to a dynamic call graph of the
same benchmark.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Procedures, func-
tions, and subroutines

General Terms Algorithms, Design, Languages, Measurement

Keywords call graph, comparison tools, static analysis, dynamic
analysis, interpreting analysis results

1. Introduction
Program analysis researchers have developed a wide range ofanal-
ysis tools, both static and dynamic. Naturally, we would like to
compare the results of these analyses for several reasons: for ex-
ample, to determine which analyses to select for specific applica-
tions, to compare the effectiveness of different analyses,or to deter-
mine whether the result of an analysis conservatively approximates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PASTE’07 June 13–14, 2007, San Diego, California, USA.
Copyright c© 2007 ACM 978-1-59593-595-3/07/0006. . . $5.00

actual runtime behaviour. In this paper, we focus specifically on
comparing call graphs, a key prerequisite of many interprocedural
analyses.

Although the need for comparisons of program analysis re-
sults is a recurring suggestion [10, 22], the results of different pro-
gram analysis tools are usually not easily comparable. In many
cases, a tool is not publicly available to researchers, and pub-
lished results about it lack the detail necessary for detailed com-
parison. Even when a tool is publicly available for testing,dif-
ferences in the program representation and abstractions ofpro-
gram behaviour make the results produced by different toolsin-
comparable. To make such comparison feasible, we have defined
common data formats for describing program analysis results, and
made available a library to make it easy for existing analysis tools
to read and write the formats. We call the project PROBE, be-
cause we intend it to be the beginning of a collection of data
formats for describingprogram behaviour. The PROBE frame-
work is freely available fromhttp://plg.uwaterloo.ca/
∼olhotak/probe/. Of the program analysis result formats cur-
rently defined in PROBE, the format for describing call graphs is
most fully developed, so this paper focuses specifically on call
graphs. In addition to the file format, we have developed tools to
help analysis designers compare call graphs and search for sources
of imprecision; we present these tools in this paper.

Because the comparison tools understand the PROBE call graph
format, they can be used with any analysis, static or dynamic,
that uses the PROBE to output call graphs. We have implemented
PROBE call graph output for Soot [3], a static analysis framework,
and *J [2,7], a dynamic analysis framework.

The call graph comparison tools presented in this paper were
used extensively in our earlier evaluation of the effects ofcontext
sensitivity on analysis precision [15].

In this paper,

• we identify key difficulties in comparing call graphs,

• we present an algorithm for finding the root causes of differ-
ences in call graphs, which is implemented in one of the com-
parison tools, and

• we report on a case study using the tools to compare static and
dynamic call graphs of the Jess benchmark from the SPEC JVM
98 suite [26].

The rest of this paper is organized as follows. In Section 2, we
provide background information and definitions about call graphs,
motivate call graph comparison with several applications,and dis-
cuss some of the reasons why it is difficult to meaningfully compare
call graphs without appropriate tools. In Section 3, we present the
algorithm for finding causes of call graph differences, and describe
the call graph comparison tools developed as part of the PROBE
library. In Section 4, we show how the tools are used to determine

the causes of differences between static and dynamic call graphs of
an example program. In Section 5, we survey related work, andin
Section 6, we conclude.

2. Background
2.1 Call graph terminology

A call graph is typically defined as a set of directed edges, each
connecting acall site (i.e. a function invocation statement) to atar-
get function invoked from the call site. In languages with function
pointers (e.g. C) or dynamic dispatch (e.g. Java), the target of a
call site is selected at run time depending on a run-time value, so a
single call site may have multiple call targets. Depending on the ap-
plication, a call graph often also specifies the program entry point.
From a given execution of the program, adynamic call graph is con-
structed by recording which call sites are executed and all the target
functions that are called from each of them. A theoreticalideal call
graph can be defined as the union of the dynamic call graphs over
all possible executions of the program. A conservative static call
graph is a superset of the ideal call graph; it over-approximates the
dynamic call graph of every possible execution. Conversely, every
dynamic call graph is a subset of the ideal call graph.

2.2 Why compare call graphs?

The following are some of the key reasons to compare call graphs.

• Interprocedural static analyses rely on conservative static call
graphs. Because call graphs for realistic programs are large and
complicated, it is difficult to check that a static call graphis
conservative. A good way to detect missing edges in a static
call graph is by comparing it to dynamic call graphs.

• The precision of client analyses often depends on the precision
of a static call graph. To select the best call graph construction
algorithm for a particular client analysis, we need to compare
the precision of call graphs produced by different construction
algorithms.

• Specific programming idioms can cause quantitatively large
imprecisions in static call graphs. Qualitative comparisons of
static call graphs to actual run-time behaviour can be used
to identify these idioms, so that static call graph construction
algorithms can be improved to model them more precisely.

• Although the ideal call graph for a program is generally uncom-
putable, it is bounded from below by dynamic and from above
by static call graphs. Comparison of these bounds provides a
bound on the level of imprecision in these approximations.

2.3 Issues in comparing call graphs

Although quantitative comparison of call graphs is straightforward
if they are produced by the same tool, it is difficult to determine the
qualitative causes of the differences. For example, it is common to
count the total number of call edges or the number of functions
reachable through the graph from the program entry point. For
qualitative analysis, real call graphs are too large to examine by
hand: even a dynamic call graph of a Java “Hello, World!” program
contains 498 functions.1

Many programs contain call sites that are never executed, such
as those in an unused portion of a library. There may be a single
function that, if executed, would call (transitively) a large unused
module of the program, but no actual execution ever reaches the
function. In a conservative call graph, a single spurious call edge to
the function forces the entire unused module to be included in the

1 All analysis results reported in this paper were collected on the Sun JDK
1.3.112 running on Linux.

call graph. To uncover the source of the discrepancy, a comparison
technique must identify the specific spurious call edge, rather than
just give summary statistics about the overall graph.

In our experience, the differences between call graphs of real ap-
plications are still more complicated. Often, a module is included
due to multiple spurious call edges. In a static call graph con-
structed using an approximation of run-time values to resolve dy-
namic call site targets, many spurious edges are caused by spurious
run-time values, which may in turn be caused by (other) spurious
call edges. Thus, identifying the root cause of a call graph discrep-
ancy is generally difficult, and a given discrepancy often has several
root causes. Our goal is to devise tools to ease this task.

3. Call Graph Comparison Tools
Call graphs are usually much too large to be explored by hand.
For example, a statically constructed call graph (constructed using
the default configuration of SPARK [12, 14], an interprocedural
analysis framework included in SOOT [3]) for the trivial “Hello,
World!” program mentioned above contains 3204 methods. There
is a significant research community devoted to graph drawing–
presenting graphs in a way that exhibits their structure – and this
research has resulted in ready-to-use tools such as GraphViz [1],
yEd [4], and many others. When comparing call graphs, however,
we are interested less in the structure of the graph, and morein
finding, out of the many functions and call edges, the few thatare
important.

We have developed two complementary tools to help compare
call graphs. The first tool, our main contribution, searchesa pair
of large call graphs for differences, and produces a ranked list of
call graph edges most likely to be the root cause of a difference.
We present the difference search tool in Section 3.1. The search
tool is complemented by a simple interactive call graph viewer,
which allows the user to closely examine specific areas of the
call graph identified by the search tool. We briefly present the
interactive viewer in Section 3.2. Other graph explorationtools
could be substituted for the interactive viewer. Typically, a user
first uses the search tool to find candidate edges to examine more
closely, and then browses the surroundings of those edges using the
interactive viewer.

3.1 Call Graph Difference Search Tool

We have developed in PROBE a call graph comparison tool to aid
in finding the root causes of call graph differences. Like theUNIX
diff utility, the call graph comparison tool compares two call
graphs and reports their differences. Unlikediff, which does a
symmetric comparison, the call graph comparison tool is unidirec-
tional: it reports only methods and edges present in the firstgraph
and absent in the second graph. When comparing call graphs, we
are usually looking for imprecisions in one “imprecise” call graph
not present in a second, “precise” call graph. It is possibleto find
all differences between the two graphs by running the tool twice
and switching the order of the input graphs between the two runs.
In the rest of this presentation, we will call the two graphs given as
input to the tool thesubgraph and thesupergraph. The call graph
comparison tool reports methods and edges present in the super-
graph but absent from the subgraph. Despite the names, it is not re-
quired that the subgraph actually be a subgraph of the supergraph,
although it often will be.

When we compare the static and dynamic call graphs of the
“Hello, World!” program, the tool finds 2706 spurious methods and
15993 spurious call edges in the static graph that are not present
in the dynamic graph — much too many to examine manually.
A spurious call edge that originates from a spuriously reachable
method is not very useful in finding root causes of imprecision
(because if the originating method were actually called, the edge

B

C

A

D

E
F

G
H

Figure 1. Sketch of example call graph

might also be traversed, and would no longer be spurious). There-
fore, in its default configuration, our call graph comparison tool re-
ports only spurious edges originating at a method reachablein both
graphs. Using this configuration, the number of spurious edges in
our “Hello, World!” is reduced to 2370. Although this is an im-
provement over 15993, it is still too many to easily find the root
causes of imprecision.

To better help find causes of imprecision, we experimented with
ways to automatically rank the spurious call edges in some way
that would identify the edges most likely to be causing a lot of
imprecision.

Ideally, we would like to find edges like the one labeled A in
Figure 1. In this sketch of a fictional call graph, black nodesin-
dicate truly reachable methods, and white nodes indicate spuri-
ously reachable methods. The call edges labelled with the letters A
through H are spurious edges each originating at a truly reachable
method; therefore, these would be the edges reported in the default
configuration of our call graph comparison tool. In searching for
root causes of imprecision and seeking to improve the imprecise
analysis that constructed this call graph, it would appear to be most
fruitful to first look at the edge labelled A, for two reasons.First,
it connects a large number of spurious methods to the call graph
(all of the white nodes in the upper right of the figure). Second,
because it is theonly edge that connects them, its removal would
immediately eliminate the many spurious methods from the graph.

Notice that an edge such as B also leads to a large number
of spurious methods, but removing B would not eliminate them,
since they are also reachable by other call edges. Yet, it appears
more fruitful to pursue the removal of B than H, for example,
because B is more closely connected to more spurious methods
than H. Therefore, informally, our ranking should put edgeslike A
near the top, and it should put edges like B before edges like H.

To produce such a ranking, we first experimented with graph-
theoretic algorithms such as min-cut and max-flow and related
algorithms, but did not find them to work well for this problem.
While these algorithms look foroptimal solutions, we need to find
solutions that are merelygood. For example, min-cut would find the
smallest set of edges whose removal would disconnect the graph
into multiple connected components. In actual call graphs,a min-
cut was often a single edge, and it usually disconnected onlyone or
very few spurious methods from the graph. Instead of theminimal
cut, we are interested in a merely asmall cut, but one which cuts
off a large component of spurious methods.

The algorithm that we have implemented in PROBE is shown in
Figure 2. Intuitively, the algorithm is similar to simulating the flow
of water through a system of lakes and rivers; the fast-flowing rivers
indicate large watersheds with few alternative drainage paths. Each

double level(methodm)
if m reachable in subgraph

return 0
else

return l[m]
endif

for each methodm in supergraph
set l[m] = 1.0

endfor
loop

for each call edgee = m → m′ in supergraph
diff = α·(level(m′) - level(m))
if diff > 0

total[e] + = diff
l[m′] − = diff
l[m] + = diff

endif
endfor

until (maxm l[m]) < ε
output edges in order of decreasing total[e]

Figure 2. Call graph flow algorithm

method is modelled as a lake, and each call edge as a connecting
river. Initially, all spuriously reachable methods are assigned a
uniform level of fluid. Truly reachable methods are sinks through
which the fluid drains (i.e. their fluid level is always kept atzero).
The algorithm simulates the draining of the fluid from the spurious
methods, along call edges in the direction opposite to the calling
direction, eventually reaching the sinks. As the fluid drains, the
amount that has flowed through each edge is recorded. Once all
of the fluid has drained, the call edges are ranked according to how
much has flowed through each of them. An edge (such as A in
Figure 1) connecting many spurious methods to the graph willhave
the fluid from those many methods flowing through it, giving ita
high rank. However, if a region of spurious methods is connected to
the graph by many independently spurious edges, the fluid of those
methods will be divided among these edges, so each edge will rank
lower.

The quality of the simulation is affected by two configurable
parameters in the algorithm,α andε. The parameterα controls the
granularity of each simulation step. In each iteration, foreach call
edge from methodm to m′, if the level atm′ is higher than atm,
the difference in levels is multiplied byα, and the levels ofm and
m′ are raised and lowered, respectively, by the resulting amount.
Thus, smaller values ofα result in a more faithful simulation
of fluid flow, while larger values result in fewer iterations and
therefore faster computation. The parameterε controls how much
of the fluid must drain before the algorithm terminates. Because
the flow in each iteration is proportional to the differencesin levels
between methods, and these are in turn proportional to the amount
of fluid left, the amount left asymptotically approaches butnever
reaches zero. A largerε allows the algorithm to terminate sooner
than a smallerε. After some tuning, we settled on values ofα =

0.125 andε = 0.001 for these parameters. With these values, when
comparing a static and dynamic call graph for the SPEC JVM 98
benchmarks [26], the algorithm completed within 105 iterations
(each processing on the order of 104 edges), thus completing within
30 seconds on a 2GHz AMD Athlon 64. This is in line with the time
required to generate the call graphs being compared. When using
smaller values of these parameters, we did not observe noticeable
differences in the ranking of call edges.

Figure 3. Screenshot of call graph viewer

3.2 Interactive Call Graph Viewer

Once the difference search tool has pinpointed differenceslikely
to be important, the relevant code must be inspected by hand to
determine the exact cause of the difference. We complement the
difference search tool with a simple interactive call graphviewer, to
help a person manually explore the functions and call edges near an
important difference. Because it is intended for local exploration,
the interactive call graph viewer implemented in PROBE presents
only a single method at a time.

The viewer acts as an HTTP server to which the user connects
with a web browser. Each web page generated by the viewer repre-
sents one method, and contains clickable links to all methods call-
ing and called by the current method. A search box allows the user
to search for methods or classes by name. A sample screenshotof
themain method of the “Hello, World!” program is shown in Fig-
ure 3. The method has an incoming edge from the specialRoot
node (indicating that it is an entry point), and three outgoing edges,
to the println method injava.io.PrintStream, and to
two static initializers.

The viewer uses colour to allow two call graphs to be browsed
simultaneously and compared. The example screenshot in Figure 3
shows the static and dynamic call graphs of the “Hello, World!”
program being compared. Although it is not apparent in a black
and white version of this paper, the targets of call edges arecolour-
coded to show whether they appear in both call graphs or only
in the static one. The call to theprintln method is pink, to
show that it appears in both call graphs. However, the calls to the
static initializers are blue, meaning that they appear onlyin the
conservative static call graph. That is, they were not actually called
from main in the run of the program from which the dynamic call
graph was produced, but the static analysis conservativelyestimates
that they could have been, hadObject andSystem not been
initialized earlier. Thus, these two call edges are a potential source
of imprecision in the static call graph.

4. Case Study: the Jess benchmark
Conservative static call graphs for Java are imprecise, mainly due to
the large standard library provided with Java, whose use canrarely
be statically ruled out even in very small programs. Even when

running a trivial “Hello, World!” program, 498 distinct methods
are actually executed, but a conservative static call graphcontains
over six times as many: 3204. Using the Jess benchmark from
the SPEC JVM 98 suite [26] as an example, we used the call
graph comparison tools to determine the main causes of differences
between the static and dynamic call graphs.

In any evaluation of a static analysis result, the first step should
be to check that it is a conservative approximation of dynamic be-
haviour. We ran the difference search tool with the dynamic call
graph (generated using *J) as the supergraph and a static call graph
(generated using the default settings of SPARK) as the subgraph,
expecting to see no dynamic edges or methods missing from the
static graph. However, the tool found 143 methods in the dynamic
call graph but not the static call graph. The Jess language imple-
mented by the benchmark allows external functions to be written
as Java classes, which the benchmark loads using reflection;we
had not told SPARK about these classes. In the top ten missing call
edges reported by the difference search tool, five were callsto these
external functions, and three were calls from thenewInstance0
method ofjava.lang.Class instantiating classes using reflec-
tion. By searching for all call edges fromnewInstance0, we
composed a list of classes loaded using reflection to give to SPARK,
so it could construct a conservative call graph.

At this point, the static call graph contained 3427 reachable
methods, compared to only 986 in the dynamic call graph (recall
that the true ideal call graph is somewhere between these twoap-
proximations). We ran the difference search tool, this timewith
the static call graph as supergraph and the dynamic call graph
as subgraph. The most important spurious edge identified by the
comparison algorithm was from theopenStream() method in
spec.io.FileInputStream to getInputStream() in
sun.net.www.protocol.file.FileURLConnection.
The SPEC harness includes code to download benchmark in-
put data directly from the SPEC website, instead of reading it
from disk; this forces a conservative static call graph to include
the Java networking and HTTP library classes. Since we do not
use this feature in any of our test runs, we commented out the
part of theopenStream() method that accesses the network,
leaving only the part that reads input from a local file. Although
this reduced the static call graph by only 10 methods, the dif-
ference search tool showed why: the top-ranked spurious call
edge was to thegetInputStream() method insun.misc.-
URLClassPath$3, and other highly-ranked spurious edges also
represented calls from class loading code to networking code. The
networking code is used not only by the SPEC harness, but also
by the JVM to load Java classes from the network. After advising
the static call graph analysis to ignore these spurious calls,2 which
are not used when the JVM is running only class files found on the
local filesystem, the static call graph shrank to 3186 methods.

After we removed networking code from the static call graph,
eight of the top ten spurious call edges reported by the compari-
son algorithm were evidently related to either Jar file loading and
verification, or were calls into cryptography code in thesun.-
security package. We used the interactive browser to explore
around the spurious edges, and inspected bytecode of several rele-

2 The purpose of the case study is to use the tools to determine the root
causes of differences between the static and dynamic call graphs, rather
than to improve the static analysis while maintaining soundness. We do
not claim that it is sound to allow the analysis to ignore codethat only
executes when classes are loaded from the network — the soundness of
this optimization depends on the environment in which the JVM is run (i.e.
whether the classpath points to network classes), and we have not defined a
specific environment. We remove the code from the analysis only to show
that no other code contributes to these differences betweenthe static and
dynamic call graph.

vant methods. When the JVM loads classes from a signed Jar file,
the JarVerifier class checks the signature. Although none ofthe Jar
files in our environment were signed, the static call graph anal-
ysis had no way to know that, so it conservatively assumed that
the JarVerifier (and all the cryptography code on which it depends)
could be called. Advising the static analysis to ignore calls to the
JarVerifier reduced the number of reachable methods in the static
call graph by more than 30%, to 2194.

We again ran the difference search tool, and found that the
highest-ranked spurious call edge was to therun() method of
sun.security.provider.PolicyFile$1. This class in-
terprets thesecurity.policy file that can be provided to the
JVM to restrict the external operations that the JVM will perform,
such as accessing disks or the network. Since we do not use this
feature, we removed it from the static analysis, reducing the static
call graph to 2070 methods.

So far, we have determined that 1357 of the 2441 spurious
methods appearing in the static but not the dynamic call graph were
caused solely by several unused features of the SPEC harnessand
of the JVM. We could continue in this way, using the call graph
difference search tool and the interactive call graph viewer to find
the root causes of the remaining differences.

5. Related Work
The need for the program analysis community to agree on bench-
marks and generate reproducible analysis results that can be com-
pared has been identified before, for example by Hind [10] andby
Ryder [24]. We echo this call, and provide the PROBE infrastruc-
ture in the hope that it will help the program analysis community
to address this need.

Rountev [22] discussed how static and dynamic analysis re-
sults can be evaluated together to identify sources of imprecision
(in the static results) and incomplete coverage (in the dynamic re-
sults). The two approaches to analysis over- and under-approximate
the true program behaviour, and by considering them together, the
amount of imprecision can be measured. A similar argument was
made by Ernst [8]. Rountevet al. [23] applied the proposed ap-
proach to quantify the imprecision in an analysis of call chains.
Researchers can use the qualitative call graph comparison tools we
have presented to point to specific areas in a program where these
approximations can be improved to converge closer to the true call
graph. Qualitative differences indicate opportunities for either in-
creasing the coverage of test inputs used to construct the dynamic
call graph (making it bigger), or improving precision of theanalysis
used to construct the static call graph (making it smaller).

In the area of call graph construction, Murphy, Notkin, and
Lan [21] compared the call graphs produced by five static tools on
three C programs both quantitatively, and by qualitative examina-
tion of a sample of differences. They found that the call graphs all
had important differences: no tool produced a call graph that was a
supergraph of any other. Tip and Palsberg [28] quantitatively com-
pared several low-cost call graph construction algorithmsfor Java.
Grove and Chambers [9] defined a unified framework for express-
ing call graph construction algorithms, and performed a quantita-
tive study comparing different instantiations of the framework. Our
comparison tools could be used to repeat these experiments and
provide additional insight into the specific program features behind
the primarily quantitative differences observed in these studies.

Another area with existing empirical comparisons is points-
to analysis. Hind and Pioli [11] studied a collection of points-to
analyses for C, and compared their efficiency and precision with
respect to several client analyses. Mocket al. [20] used dynamic
points-to sets to measure the precision of static analysis results.
Like call graphs, points-to analysis results are typicallyvery large;

qualitative comparison tools for points-to information would be
very helpful for developing and tuning future points-to analyses.

The past several years have seen a strong interest in efficient
implementation of context-sensitive program analyses, soit is fit-
ting to ask how context sensitivity contributes to analysispreci-
sion. Stockset al. [27] studied the effects of flow sensitivity and
context sensitivity on side-effect analysis of C programs.Liang et
al. [16] evaluated the effect of object sensitivity [17–19] and call
site string context sensitivity on the size of pointed-to-by sets com-
puted by subset-based points-to analyses an Java. Lhoták and Hen-
dren [13, 15] compared object sensitivity, call site stringcontext
sensitivity, and the Zhu/Calman/Whaley/Lam algorithm [29,30] in
terms of the precision of call graph construction, call devirtual-
ization, points-to analysis, and cast safety analysis. Sridharan and
Bodı́k [25] evaluated a demand-driven adaptively-context-sensitive
points-to analysis using a cast safety client analysis. Allof these
studies reported mainly quantitative results, with qualitative obser-
vations playing a secondary role. To continue to improve precision
of static analyses, researchers will increasingly have to consider the
specific program constructs behind these numbers, and tailor anal-
yses to these constructs. Identifying these constructs will require
qualitative comparison tools not only for call graphs, but also for
other program analysis results, such as points-to information.

6. Conclusions and Future Work
We have motivated the need for qualitative comparison of program
analysis results, and of call graphs in particular, and presented
tools to help make such comparison practical. Design, tuning, and
evaluation of future program analyses can benefit from qualitative
examination of analysis results.

The comparison tools we presented are part of PROBE, a col-
lection of data formats for program analysis results, a library for
generating output in those formats from different analysistools,
and tools for evaluating and comparing analysis results. Wehave
already used PROBE for both qualitative and quantitative evalua-
tions [13,15] of static analyses implemented within the SPARK [12,
14] and PADDLE [13] frameworks in SOOT [3], and compared their
results with dynamic information collected using *J [5,6].

In our comparison of static and dynamic call graphs of the Jess
benchmark, we observed that most of the difference was caused by
JVM features that were not enabled in our runtime environment. In
a solely quantitative study, it would have been tempting to blame
the difference on imprecision of the static analysis, and perhaps
senselessly attempt to improve its precision. The qualitative com-
parison that we performed using the tools showed the true causes of
the difference; only by removing these specific fragments ofcode
from consideration by the static analysis could we quantifytheir
effect on call graph size.

Because call graphs are a key prerequisite for nearly all interpro-
cedural analysis, we have focused first on comparing call graphs. In
languages such as Java in which objects are always accessed indi-
rectly through references, points-to information is also an impor-
tant prerequisite for many analyses, and points-to analysis is often
interdependent with call graph construction. Thus, tools for com-
paring points-to analysis results should also be developed, perhaps
combined with the call graph comparison tools.

More generally, qualitative comparison and appropriate tools
to support it can be applied to arbitrary program analyses. Spe-
cific, localized program constructs often have considerable effects
on quantitative measurements of program analysis results,so sum-
mary numbers reported on a handful of benchmarks, as is so com-
mon, may be strongly biased by specific coding styles. Quantitative
evaluations should by no means be suppressed, but they should be
augmented with more qualitative insight identifying specific pro-
gram features behind the numbers.

7. Acknowledgements
This work, and the PROBE framework in particular, was motivated
by discussions by the participants at the PASTE 2004 workshop. In
particular, Atanas Rountev and David J. Pearce provided sugges-
tions both at the workshop, and in subsequent e-mail discussions.
We are also grateful for suggestions from Gordon Cormack. This
work was partly funded by NSERC and an IBM PhD Fellowship.
Part of this work was done in the Sable lab at McGill University,
led by Laurie Hendren.

References
[1] Graphviz - graph visualization software.

http://www.graphviz.org/.

[2] *J: A tool for dynamic analysis of java programs.
http://www.sable.mcgill.ca/starj/.

[3] Soot: a Java optimization framework.
http://www.sable.mcgill.ca/soot/.

[4] yEd - Java graph editor.
http://www.yworks.com/en/products yed about.
htm.

[5] B. Dufour. Objective quantification of program behaviour using
dynamic metrics. Master’s thesis, McGill University, June2004.

[6] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic
metrics for Java. InProceedings of the 18th Annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages,
and Applications, pages 149–168. ACM Press, 2003.

[7] B. Dufour, L. Hendren, and C. Verbrugge. *J: a tool for dynamic
analysis of Java programs. InOOPSLA ’03: Companion of
the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 306–
307, New York, NY, USA, 2003. ACM Press.

[8] M. D. Ernst. Static and dynamic analysis: synergy and duality. In
Proceedings of the ACM-SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 35–35. ACM
Press, 2004.

[9] D. Grove and C. Chambers. A framework for call graph construction
algorithms. ACM Transactions on Programming Languages and
Systems, 23(6):685–746, Nov. 2001.

[10] M. Hind. Pointer analysis: haven’t we solved this problem yet? In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, pages 54–61.
ACM Press, 2001.

[11] M. Hind and A. Pioli. Which pointer analysis should I use? In
Proceedings of the 2000 ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 113–123. ACM Press, 2000.

[12] O. Lhoták. Spark: A flexible points-to analysis framework for Java.
Master’s thesis, McGill University, Dec. 2002.

[13] O. Lhoták.Program Analysis using Binary Decision Diagrams. PhD
thesis, McGill University, Jan. 2006.

[14] O. Lhoták and L. Hendren. Scaling Java points-to analysis using
Spark. In G. Hedin, editor,Compiler Construction, 12th International
Conference, volume 2622 ofLNCS, pages 153–169, Warsaw, Poland,
Apr. 2003. Springer.

[15] O. Lhoták and L. Hendren. Context-sensitive points-to analysis: is it
worth it? In A. Mycroft and A. Zeller, editors,Compiler Construction,
15th International Conference, volume 3923 ofLNCS, pages 47–64,
Vienna, Mar. 2006. Springer.

[16] D. Liang, M. Pennings, and M. J. Harrold. Evaluating theimpact
of context-sensitivity on Andersen’s algorithm for Java programs. In
PASTE ’05: The 6th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, pages 6–12, New York,
NY, USA, 2005. ACM Press.

[17] A. Milanova. Precise and Practical Flow Analysis of Object-Oriented
Software. PhD thesis, Rutgers University, Aug. 2003.

[18] A. Milanova, A. Rountev, and B. G. Ryder. Parameterizedobject
sensitivity for points-to and side-effect analyses for Java. In
Proceedings of the 2002 ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 1–11. ACM Press, 2002.

[19] A. Milanova, A. Rountev, and B. G. Ryder. Parameterizedobject
sensitivity for points-to analysis for Java.ACM Trans. Softw. Eng.
Methodol., 14(1):1–41, 2005.

[20] M. Mock, M. Das, C. Chambers, and S. J. Eggers. Dynamic points-to
sets: a comparison with static analyses and potential applications
in program understanding and optimization. InProceedings of the
2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pages 66–72. ACM Press, 2001.

[21] G. C. Murphy, D. Notkin, and E. S.-C. Lan. An empirical study of
static call graph extractors. InICSE ’96: Proceedings of the 18th
International Conference on Software Engineering, pages 90–99,
Washington, DC, USA, 1996. IEEE Computer Society.

[22] A. Rountev, S. Kagan, and M. Gibas. Evaluating the imprecision
of static analysis. InProceedings of the ACM-SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering,
pages 14–16. ACM Press, 2004.

[23] A. Rountev, S. Kagan, and M. Gibas. Static and dynamic analysis
of call chains in Java. InProceedings of the 2004 ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages
1–11. ACM Press, 2004.

[24] B. G. Ryder. Dimensions of precision in reference analysis of object-
oriented programming languages. In G. Hedin, editor,Compiler
Construction, 12th International Conference, CC 2003, volume 2622
of Lecture Notes in Computer Science, pages 126–137. Springer,
2003.

[25] M. Sridharan and R. Bodı́k. Refinement-based context-sensitive
points-to analysis for Java. InPLDI ’06: Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 387–400, New York, NY, USA, 2006. ACM
Press.

[26] Standard Performance Evaluation Corporation. SPEC JVM98
benchmarks.
http://www.spec.org/osg/jvm98/.

[27] P. A. Stocks, B. G. Ryder, W. A. Landi, and S. Zhang. Comparing flow
and context sensitivity on the modification-side-effects problem. In
Proceedings of ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 21–31. ACM Press, 1998.

[28] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. InProceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications, pages
281–293. ACM Press, 2000.

[29] J. Whaley and M. S. Lam. Cloning-based context-sensitive pointer
alias analysis using binary decision diagrams. InProceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, pages 131–144. ACM Press, 2004.

[30] J. Zhu and S. Calman. Symbolic pointer analysis revisited. In
Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, pages 145–157. ACM Press,
2004.

