
252

Simple Reference Immutability for System F<:

EDWARD LEE, University of Waterloo, Canada

ONDŘEJ LHOTÁK, University of Waterloo, Canada

Reference immutability is a type based technique for taming mutation that has long been studied in the

context of object-oriented languages, like Java. Recently, though, languages like Scala have blurred the lines

between functional programming languages and object oriented programming languages. We explore how

reference immutability interacts with features commonly found in these hybrid languages, in particular with

higher-order functions – polymorphism – and subtyping. We construct a calculus System F<:M which encodes

a reference immutability system as a simple extension of System F<: and prove that it satis�es the standard

soundness and immutability safety properties.

CCS Concepts: • Software and its engineering→ General programming languages; Compilers.

Additional Key Words and Phrases: System F<:, Reference Immutability, Type Systems

ACM Reference Format:

Edward Lee and Ondřej Lhoták. 2023. Simple Reference Immutability for System F<:. Proc. ACM Program.

Lang. 7, OOPSLA2, Article 252 (October 2023), 25 pages. https://doi.org/10.1145/3622828

1 INTRODUCTION

Code written in a pure, functional language is referentially transparent – it has no side e�ects
and hence can be run multiple times to produce the same result. Reasoning about referentially
transparent code is easier for both humans and computers. However, purely functional code can be
hard to write and ine�cient, so many functional languages contain impure language features.
One important side e�ect that is di�cult to reason about is mutation of state. Mutation arises

naturally, but can cause bugs which can be hard to untangle; for example, two modules which at
�rst glance are completely unrelated may interact through some shared mutable variable. Taming –
or controlling – where and how mutation can occur can reduce these issues.

One method of taming mutation is reference immutability [Huang et al. 2012; Tschantz and Ernst
2005]. In this setting, the type of each reference to a value can be either mutable or immutable. An
immutable reference cannot be used to mutate the value or any other values transitively reached
from it.
Mutable and immutable references can coexist for the same value, so an immutable reference

does not guarantee that the value will not change through some other, mutable reference. This is
in contrast to the stronger guarantee of object immutability, which applies to values, and ensures
that a particular value does not change through any of the references to it.

Reference immutability has long been studied in existing object-oriented programming languages
such as Java [Huang et al. 2012; Tschantz and Ernst 2005; Zibin et al. 2007] and C# [Gordon et al.
2012]. Recently work has been done to study reference immutability in the context of functional

Authors’ addresses: Edward Lee, e45lee@uwaterloo.ca, School of Computer Science, University of Waterloo, 200 University

Ave W., Waterloo, ON, N2L 3G1, Canada; Ondřej Lhoták, olhotak@uwaterloo.ca, School of Computer Science, University of

Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1, Canada.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and

the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/10-ART252

https://doi.org/10.1145/3622828

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-7057-0912
HTTPS://ORCID.ORG/0000-0001-9066-1889
https://doi.org/10.1145/3622828
https://orcid.org/0000-0001-7057-0912
https://orcid.org/0000-0001-9066-1889
https://doi.org/10.1145/3622828

252:2 Edward Lee and Ondřej Lhoták

languages with impure fragments, in particular by Dort and Lhoták [2020], as many programs in
impure functional languages tend not to mutate their data structures anyways [Haller and Axelsson
2017]. However, their work builds on a complex calculus, DOT, Amin et al. [2016], and their work
is itself complex as well.
A simple system that formally enforces speci�ed patterns of immutability in a functional base

calculus would help programmers and compilers better reason about immutability in such programs.
However, such a system can be hard to come by. Parametric polymorphism, a key feature in any
language, is especially so in functional languages, and as we see later in Section 4.1 the interaction
between immutability quali�ers and polymorphism raises issues that are not so easy to solve. What
should the type @readonly X mean if the variable X is instantiated with @mutable String?

Our contribution to this area is a simple and sound treatment of reference immutability in System
F<: [Cardelli et al. 1991]. Speci�cally, we formulate a simple extension System F<:M of System F<:
with the following properties:

• Immutability safety:When dealing with reference immutability, one important property
to show is immutability safety: showing that when a reference is given a read-only type, then
the underlying value is not modi�ed through that reference. In System F<:M we introduce a
dynamic form of immutability, a term-level seal construct, which makes precise the runtime
guarantees that we expect from a reference that is statically designated as immutable by the
type system. We do this by formalizing System _M, an untyped calculus with references and
seals. Dynamic seals are transitive in that they seal any new references that are read from a
�eld of an object through a sealed reference.

• System F<:-style polymorphism: System F<:M preserves the same bounded-quanti�cation
structure of System F<:. At the same time, it allows type variables to be further modi�ed by
immutability modi�ers.

• Immutable types are types: To allow for System F<:-style polymorphism, we need to treat
immutable types as types themselves. To do so, instead of type quali�ers, we introduce a type
operator readonly that can be freely applied to existing types (including type variables).
The readonly operator turns a type into an immutable version of the same type. While this
complicates the de�nition of subtyping and proofs of canonical forms lemmas, we resolve
these issues by reducing types to a normal form.

Our hope is to enable reference immutability systems in functional languages by giving simple,
sound foundations in System F<:, a calculus that underpins many practical functional programming
languages.
The rest of this paper is organized as follows. In Section 2 we give an overview of reference

immutability. In Section 3 we introduce an un-typed core calculus, System _M, to describe sealing
and how it relates to reference immutability safety at run time. In Section 4 we present System F<:M,
which enriches System _M with types, and show that it satis�es the standard soundness theorems.
In Section 5 we use the soundness results from System F<:M and the dynamic safety results from
System _M to show that our desired immutability safety properties hold in System F<:M. We survey
related and possible future work in Section 7 and we conclude in Section 8.
Our development is mechanized in the Coq artifact that accompanies this paper.

2 REFERENCE IMMUTABILITY

Reference immutability at its core is concerned with two key ideas:

• Immutable references: References to values can be made immutable, so that the underlying
value cannot be modi�ed through that reference.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:3

• Transitive immutability: An immutable reference to a compound value that contains other
references cannot be used to obtain a mutable reference to another value. For example, if x is
a read-only reference to a pair, the result of evaluating x.first should be viewpoint adapted
[Dietl et al. 2007] to be a read-only reference, even if the pair contains references that are
otherwise mutable.

For example, consider the following snippet of Scala-like code that deals with polymorphic
mutable pairs.

case class Pair[X](var first: X, var second: X)

def good(x : Pair[Int]) = { x.first = 5 }

def bad1(y : @readonly Pair[Int]) = { y.first = 7 }

def bad2(y : @readonly Pair[Pair[Int]]) = { y.first.first = 5 }

def access(z: @readonly Pair[Pair[Int]]): @readonly Pair[Int] = { z.first }

A reference immutability system would deem the function good to be well-typed because it
mutates the pair through a mutable reference x. However, it would disallow bad1 because it mutates
the pair through a read-only reference y. Moreover, it would also disallow bad2 because it mutates
the pair referenced indirectly through the read-only reference y. This can also be seen by looking
at the access function, which returns a read-only reference of type @readonly Pair[Int] to the
�rst component of the pair referenced by z.
Now, immutable values are crucial even in impure functional programming languages because

pure code is often easier to reason about. This bene�ts both the programmer writing the code,
making debugging easier, and the compiler when applying optimizations.

Although most values, even in impure languages, are immutable by default [Haller and Axelsson
2017], mutable values are sometimes necessary for various reasons. For example, consider a compiler
for a pure, functional, language. Such a compiler might be split into multiple passes, one that �rst
builds and generates a symbol table of procedures during semantic analysis, and one that then uses
that symbol table during code generation. For e�ciency, we may wish to build both the table and
the procedures in that table with an impure loop.

object analysis {

class Procedure(name : String) {

val locals : mutable.Map[String , Procedure] = mutable.Map.empty

def addLocalProcedure(name: String , proc: Procedure) = {

locals += (name -> proc)

}

}

val table : mutable.Map[String , Procedure] = mutable.Map.empty

def analyze(ast: AST) = {

ast.forEach ((node) => { table.add(node.name , new Procedure (...)) })

}

}

The symbol table and the properties of the procedure should not be mutable everywhere, though;
during code generation, our compiler should be able to use the information in the table to generate
code, but it shouldn’t be able to change the table nor the information in it! How do we enforce this,
though?

One solution is to create an immutable copy of the symbol table for the code generator, but this
can be fragile. A naive solution that merely clones the table itself will not su�ce, for example:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:4 Edward Lee and Ondřej Lhoták

object analysis {

private val table[analysis] = ...

def symbolTable : Map[String , Procedure] = table.toMap // create immutable

copy of table.

}

object codegen {

def go() = {

analysis.symbolTable["main"]. locals += ("bad" -> ...) // whoops ...

}

}

While this does create an immutable copy of the symbol table for the code generator, it does not
create immutable copies of the procedures held in the table itself! We would need to recursively
rebuild a new, immutable symbol table with new, immutable procedures to guarantee immutability,
which can be expensive, both in terms of code size and in terms of running time.

Moreover, creating an immutable copy might not even work in all cases. Consider an interpreter
for a pure, functional language with support for letrec x := e in f. The environment in which
4 is interpreted contains a cyclic reference to G , which necessitates mutation in the interpreter.
Without special tricks like lazyness, this sort of structure cannot be constructed, let alone copied,
without mutation.

abstract class Value { }

type Env = Map[String , Value]

case class Closure(var env: Env , params: List[String], body: Exp) extends Value

def interpret_letrec(env: Env , x: String , e: Exp , f: Exp) : Value = {

val v = interpret(env + (x -> Nothing), e)

case v of {

Closure(env , params , body) => v.env = v.env + (x -> v) // Update binding

}

interpret (env + (x -> v), f)

}

Here, the closure that v refers to needs to be mutable while it is being constructed, but since the
underlying language is pure, it should be immutable afterwards. In particular, we should not be
able to mutate the closure through the self-referential reference v.env = env + (x -> v), nor
should we be able to mutate the closure while interpreting f.
We would like a system that prevents writes to v from the self-referential binding in its envi-

ronment and from the reference that we pass to interpret (env + (x -> v), f). This is what
reference immutability provides.

abstract class Value { }

type Env = Map[String , @readonly Value]

case class Closure(env: var Env , params: List[String], body: Exp)

def interpret_letrec(env: Env , x: String , e: Exp , f: Exp) : Value = {

val v = interpret(env + (x -> Nothing), e)

case v of {

Closure(env , params , body) => v.env = env + (x -> @readonly v) // update

binding

}

interpret (env + (x -> @readonly v), f)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:5

}

3 DYNAMIC IMMUTABILITY SAFETY

Now, to formalize reference immutability, we need to formalize exactly when references are used
to update the values they refer to. For example, how do we check that the access function de�ned
earlier does what it claims to do?

def access(z: @readonly Pair[Pair[Int]]): @readonly Pair[Int] = { z.first }

How do we check that access returns a reference to z.first that, at runtime, is never used to
write to z.first or any other values transitively reachable from it through other references? How
do we even express this guarantee precisely?

If we consider a reference as a collection of getter and setter methods for the �elds of the object
it refers to, we could ensure that a reference is immutable by dropping all the setter methods. To
ensure that immutability is transitive, we would also need to ensure that the result of applying a
getter method is also immutable, i.e. by also dropping its setter methods and recursively applying
the same modi�cation to its getter methods. We will make this precise by introducing the System
_M calculus with a notion of sealed references.

System _M is adapted from the CS-machine of Felleisen and Friedman [1987] and extended with
rules for dealing with sealed references.

Sealed references: To address the question about dynamic, runtime safety – can we ensure that
read-only references are never used to mutate values – references can be explicitly sealed so that
any operation that will mutate the cell referenced will fail to evaluate; see Figure 1.

The seal form protects its result from writes. A term under a seal form reduces until it becomes
a value. At that point, values that are not records, like functions and type abstractions, are just
transparently passed through the seal construct. However, values that are – records – remain
protected by the seal form, and do not reduce further. For example:

seal ({~ : 0x0001})

is an irreducible value – a sealed record where the �rst �eld is stored at location 1 in the store.
Intuitively, this can be viewed as removing the setter methods from an object reference. A sealed
reference seal E behaves exactly like its unsealed variant E except that writes to seal E are forbidden
and reads from seal E return sealed results.

Rules that mutate the cells corresponding to a record explicitly require an unsealed open record;
see (write-field). This ensures that any ill-behaved program that mutates a store cell through a
sealed record will get stuck, while an unsealed record can have its �elds updated:

〈{G : 10}.G = 5, []〉 −→ 〈{G : 0x0001}.G = 5, [0x0001 : 10]〉
−→ 〈10, [0x0001 : 5]〉

A sealed record cannot have its �elds written to. Unlike record �eld reads, for which there is a
sealed (sealed-field) counterpart to the standard record read rule (field), there is no corresponding
rule for writing to a sealed record for (write-field). Recall that (write-field) requires an open,

unsealed record as input:

; : E ∈ f

〈{. . . G : ; . . .}.G = E ′, f〉 −→ 〈E, f [; ↦→ E ′]〉

The calculus does not contain any rule like the following, which would reduce writes on a sealed
record:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:6 Edward Lee and Ondřej Lhoták

B, C ::= Terms

| _G .C term abstraction
| G term variable
| B (C) application
| {51 : B1, 52 : B2, . . .} records
| B .5 �eld read
| B .5 = C �eld write

| seal B sealing

; Location

B, C ::= Runtime Terms

| {58 : ;8 , . . .} runtime record

E ::= Runtime Values

| _G .C

| {58 : ;8 }

| seal {58 : ;8 , . . .}

〈(_G .C) (E), f〉 −→ 〈C [G ↦→ E], f〉 (beta-v)

;8 ∉ f

〈{G8 : E8 }, f〉 −→ 〈{G8 : ;8 }, (f, ;1 : E1, ;2 : E2, . . .)〉
(record-store)

; : E ∈ f

〈{. . . G : ; . . .}.G, f〉 −→ 〈E, f〉
(field)

; : E ∈ f

〈{. . . G : ; . . .}.G = E ′, f〉 −→ 〈E, f [; ↦→ E ′]〉

(write-field)

; : E ∈ f

〈 (seal {. . . G : ; . . .}) .G, f〉 −→ 〈 seal E , f〉

(sealed-field)

〈 seal (_G .C) , f〉 −→ 〈_G .C, f〉

(seal-elim-abs)

〈 seal seal E , f〉 −→ 〈seal E, f〉

(seal-elim-multiple)

〈B, f〉 −→ 〈C, f′〉

〈� [B], f〉 −→ 〈� [C], f′〉
(context)

� ::= [] | � (C) | E (�) Evaluation Context

| {G0 : E0, . . . , G8 : �, G8+1 : C8+1, . . .}
| �.G

| �.G = C | E .G = �

| seal �

Fig. 1. The syntax and semantics of _< .

; : E ∈ f

〈 (seal {. . . G : ; . . .}) .G = E ′, f〉 −→ 〈E, f [; ↦→ E ′]〉

So a term like:

〈(seal {G : 10}).G = 5, []〉 −→ 〈seal ({G : 0x0001}).G = 5, [0x0001 : 10]〉
−→ gets stuck.

Dynamic viewpoint adaptation: After reading a �eld from a sealed record, the semantics seals
that value, ensuring transitive safety – see (sealed-field).

; : E ∈ f

〈 (seal {. . . G : ; . . .}) .G, f〉 −→ 〈 seal E , f〉

For example:

〈(seal {~ : {G : 10}}) .~, []〉 −→ 〈seal ({~ : {G : 0x001}}).~, [0x001 : 10]〉
−→ 〈seal ({~ : 0x002}) .~, [0x001 : 10, 0x002 : {G : 0x001}]〉
−→ 〈seal ({G : 0x001}), [0x001 : 10, 0x002 : {G : 0x001}]〉

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:7

Sealed references and dynamic viewpoint adaptation allow for a succinct guarantee of dynamic

transitive immutability safety – that no value is ever mutated through a read-only reference or any
other references transitively derived from it.
Aside from preventing writes through sealed references, we should show that sealing does

not otherwise a�ect reduction. For this we need a de�nition that relates pairs of terms that are
essentially equivalent except that one has more seals than the other.

De�nition 3.1. Let B and C be two terms. We say B ≤ C if C can be obtained from B by repeatedly
replacing sub-terms B′ of B with sealed subterms seal B′.

This implies a similar de�nition for stores:

De�nition 3.2. Let f and f ′ be two stores. We say f ≤ f ′ if and only if they have the same
locations and for every location ; ∈ f , we have f (;) ≤ f ′ (;).

The following three lemmas formalize how reduction behaves for terms that are equivalent
modulo seals. The �rst one is for a term C that is equivalent to a value – it states that if C reduces,
the resulting term is still equivalent to the same value. It also shows that the resulting term has
fewer seals than C , which we’ll need later for an inductive argument.

De�nition 3.3. Let B be a term. Then |B | is the number of seals in s.

Lemma 3.4. Let E be a value, fE be a store, C be a term such that E ≤ C , and fC be a store such that

fE ≤ fC .

If 〈C, fC 〉 −→ 〈C ′, f ′
C
〉 then E ≤ C ′, fE ≤ f ′

C
, and |C ′ | < |C |.

The next lemma is an analogue of Lemma 3.4 for terms. Given two equivalent terms B and C , if B
steps to B′ and C steps to C ′, then either B and C ′ are equivalent or B′ and C ′ are equivalent. Moreover,
again, to show that reduction in C is equivalent to reduction in B , we have that |C ′ | < C if B ≤ C ′.

Lemma 3.5. Let B, C be terms such that B ≤ C and let fB , fC be stores such that fB ≤ fC . If 〈B, fB〉 −→

〈B′, f ′
B
〉 and 〈C, fC 〉 −→ 〈C ′, f ′

C
〉 then:

(1) Either B ≤ C ′, fB ≤ f ′
C
, and |C ′ | < |C |, or

(2) B′ ≤ C ′ and f ′
B
≤ f ′

C
.

Together, Lemmas 3.4 and 3.5 relate how terms B and C reduce when they are equivalent modulo
seals. Assuming that both B and C reduce, every step of B corresponds to �nitely many steps of C ,
and they reduce to equivalent results as well. This shows that sealing is transparent when added
onto references that are never written to, allowing for a succinct guarantee of immutability safety.
Finally, the last lemma states that erasing seals will never cause a term to get stuck. Seals can

be safely erased without a�ecting reduction.

Lemma 3.6. Let B, C be terms such that B ≤ C and let fB , fC be stores such that fB ≤ fC . If 〈C, fC 〉 −→

〈C ′, f ′
C
〉 then:

(1) Either B ≤ C ′, fB ≤ f ′
C
, and |C ′ | < |C |, or

(2) There exists B′ and f ′
B
such that 〈B, fB〉 −→ 〈B′, f ′

B
〉, B′ ≤ C ′ and f ′

B
≤ f ′

C
.

From this we can derive the following multi-step analogue, after observing the following lemma:

Lemma 3.7. If B is a term and E is a value such that B ≤ E , then B is also a value.

Hence:

Lemma 3.8. Suppose B and C are terms such that B ≤ C . If 〈C, fC 〉 −→∗ 〈EC , f
′
C
〉 for some value EC ,

then for any fB ≤ fC we have 〈B, fB〉 −→∗ 〈EB , f
′
B
〉 such that E ′

B
≤ E ′

B
and f ′

B
≤ f ′

C
.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:8 Edward Lee and Ondřej Lhoták

Finally, it can be shown that the seals are to blame when two equivalent terms B and C reduce
di�erently – in particular, when one reduces but the other gets stuck.

Lemma 3.9. Let B, C be terms such that B ≤ C , and let fB , fC be stores such that fB ≤ fC . If 〈B, fB〉 −→

〈B′, f ′
B
〉 and C gets stuck, then the reduction performed on B was a write to a record using rule (write-

field).

Proof. (Sketch) As B cannot further reduce, the evaluation context of B and C must match; there
are no extraneous seals that need to be discharged. As such, from inspection of the reduction
rules, we see that in all cases except for (write-field), for every possible reduction that B could
have taken, there is a possible reduction that C could have taken as well, as desired. �

4 TYPING AND STATIC SAFETY

System _M provides a dynamic guarantee that a given programwill never modify its sealed references,
but it does not provide any static guarantees about the dynamic behavior of a given program.
To do that, we need a type system for System _M that will reject programs like access(seal

Pair(3,5)).first = 10, which we know will crash.
To ensure that well-typed programs do not get stuck, a type system for System _M needs a static

analogue of sealing – a way to turn an existing type into a read-only type. Read-only types denote
references that are immutable and that (transitively) adapt any other references read through them
to be immutable as well.
Issues arise, however, when we introduce polymorphism. Polymorphism is important in all

languages but especially so in functional languages. The interaction of polymorphism and reference
immutability raises interesting questions. Should type variables abstract over annotated types
including their immutability annotations (such as @readonly String), or only over the base
types without immutability annotations (such as String)? Should uses of type variables admit an
immutability annotation like other types do? For example, should @readonly X be allowed, where
X is a type variable rather than a concrete type? If yes, then how should one interpret an annotated
variable itself instantiated with an annotated type? For example, what should the type @readonly
X mean if the variable X is instantiated with @mutable String?

4.1 Polymorphism

Recall our earlier example – a polymorphic Pair object.

case class Pair[X](var first: X, var second: X)

In a functional language, it is only natural to write higher-order functions that are polymorphic
over the elements stored in the pair. Consider an in-place map function over pairs, which applies a
function to each element in the pair, storing the result in the original pair. This naturally requires
mutable access to a pair.

def inplace_map[X](pair: Pair[X], f: X => X): Unit = {

pair.first = f(pair.first);

pair.second = f(pair.second);

}

This is all well and good, but we may wish to restrict the behaviour of f over the elements of the
pair. It may be safer to restrict the behaviour of f so that it could not mutate the elements passed
to it. Note that we cannot restrict access to the pair, however, as we still need to mutate it.

// Is this well founded?

def inplace_map[X](pair: Pair[X], f: @readonly X => X): Unit = {

pair.first = f(pair.first);

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:9

pair.second = f(pair.second);

}

Now, such a de�nition requires the ability to further modify type variables with immutability
quali�ers. This raises important questions – for example, is this operation even well founded? This
depends on what X ranges over.

X ranges over an unquali�ed type: If type variables range over types that have not been quali�ed
by @readonly, then this operation is clearly well founded – it is simply qualifying the unquali�ed
type that X will eventually be substituted by with the @readonly quali�er. This approach has been
used by ReIm for Java and for an immutability system for C# – [Gordon et al. 2012; Huang et al.
2012].
However, this raises the problem of polymorphism over immutability quali�ers as well – for

example, a Pair should be able to store both immutable and mutable object references. The only
natural solution is to then introduce a mutablity quali�er binder to allow for polymorphism over
immutability quali�ers, as thus:

case class Pair[M, X](var first: M X, var second: M X)

def inplace_map[M, X](pair: Pair[M, X], f: @readonly X => M X): Unit = {

pair.first = f(pair.first);

pair.second = f(pair.second);

}

Mutability quali�er binders have been used previously, most notably by [Gordon et al. 2012]. For
one, updating the binding structure of a language is not an easy task – ReIm notably omits this sort
of parametric mutability polymorphism [Huang et al. 2012]. However, this sort of solution has its
downsides; in particular, existing higher-order functions need to be updated with immutability
annotations or variables, as type variables no longer stand for a full type. For example, an existing
de�nition of List map which appears as thus originally:

def map[X](l: List[X], f: X => X): List[X]

needs to be updated to read as the following instead:

def map[M, X](l: List[M X], f: M X => M X): List[M X]

Instead, we would like to have X range over fully quali�ed types as well, but as we will see that
poses some issues as well.

X ranges over fully-quali�ed types: If type variables can range over types that have already been
quali�ed by @readonly, then we can avoid introducing mutability binders in the de�nitions for
Pair, inplace_map, and map above. A Pair can be polymorphic over its contents X without caring
about the underlying mutability of X. However, this raises the question – how do we interpret
repeated applications of the @readonly quali�er? For example, what if we applied inplace_map

on a Pair[@readonly Pair[Int]]? Then inplace_map would expect a function f with type
@readonly (@readonly Pair[Int]) => @readonly Pair[Int]. While our intuition would tell
us that @readonly (@readonly Pair[Int]) is really just a @readonly Pair[Int], discharging
this equivalence in a proof is not so easy.

One response is to explicitly prevent type variables from being further quali�ed. Calculi which
take this approach include [Tschantz and Ernst 2005; Zibin et al. 2007]. However, this restriction
prevents this version of inplace_map from being expressed. How can we address this?

Our approach, which we explain below, is to treat @readonly as a type operator that works over
all types. Following the intuition that sealing removes setters from references, @readonly should
be a type operator which removes setters from types. While this does cause complications, we

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:10 Edward Lee and Ondřej Lhoták

B, C ::= Terms

| _G .C term abstraction
| Λ(- <: () .C type abstraction
| G term variable
| B (C) application
| B [)] type application
| {51 : B1, 52 : B2, . . .} records
| B .G �eld read
| B .G = C �eld write

| seal B sealing

(,) ::= Types

| - type variable
| (→) function type
| ∀(-<:().) for-all type
| (∧) intersection type
| {5 :) } record type

| readonly) readonly type

Γ ::= Environment

| · empty
| Γ, G :) term binding
| Γ, - <:) type binding

; Location

B, C ::= Runtime Terms

| {G1 : ;1, G2 : ;2, . . .} runtime record

E ::= Runtime Values

| _G .C

| Λ(- <: ().C

| {51 : ;1, 52 : ;2, . . .}

| seal {51, ;1, 52 : ;2, . . .}

f ::= Store

| · empty
| f, ; : E cell ; with value E

Σ ::= Store Environment

| · empty
| f, ; :) cell binding

Fig. 2. The syntax of System F<:M.

show below how types like @readonly @readonly Pair[Int] can be dealt with, using subtyping

and type normalization.

4.2 System F<:M

To address these issues, we introduce System F<:M, which adds a type system in the style of System
F<: to System _M. The syntax of System F<:M is given in Figure 2; changes from System F<: are noted
in grey.

System F<:M is a straightforward extension of System F<: with collections of mutable references –
namely, records – and with two new extensions: read-only types and sealed references. To be close
to existing functional languages with subtyping and records, records in System F<:M are modelled
as intersections of single-element record types, to support record subsumption, as in [Amin et al.
2016] and [Reynolds 1997]. See Figures 4 and 5 for full subtyping and typing rules respectively.

Read-only types: The readonly type operator transforms an existing type to a read-only version
of itself. Unlike the read-only mutability quali�er in Javari and ReIm, which is paired with a type to
form a pair of a quali�er and a type, a read-only type in System F<:M is itself a type. The readonly
operator can be seen as the static counterpart of sealing or of deleting setter methods from an
object-oriented class type.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:11

Normal Forms

(,) ::= Types in normal form

|
∧

8 ('8) Intersection of components
' ::= Normal form type components

| > Top type
| (→) Normal function type
| ∀(- <: ().) Normal for-all type
| {5 : (} Normal record type
| - Type variable
| readonly {5 : (} Read-only normal record type
| readonly - Read-only type variable

Fig. 3. Normal forms for System F<:M.

Subtyping Γ ` (<:)

Γ `) <:) (refl)

Γ ` ' <: (Γ ` (<:)

Γ ` ' <:)
(trans)

- <:) ∈ Γ

Γ ` - <:)
(tvar)

Γ ` * <: > (top)

Γ `)1 <: (1 Γ ` (2 <:)2

Γ ` (1 → (2 <:)1 →)2
(arrow)

Γ `)1 <: (1 Γ, - <:)1 ` (2 <:)2

Γ ` ∀(- <: (1) .(2 <: ∀(- <:)1) .)2
(all)

Γ ` (<:) Γ `) <: (

Γ ` {G : (} <: {G :) }
(record)

Γ ` (<:)

Γ ` readonly {G : (} <: readonly {G :) }

(readonly-record)

Γ ` (∧) <: ((inter-left)

Γ ` (∧) <:) (inter-right)

Γ ` (<:)1 Γ ` (<:)2

Γ ` (<:)1 ∧)2
(inter)

Γ ` (<:)

Γ ` readonly (<: readonly)
(readonly)

Γ ` (<:)

Γ ` (<: readonly)
(mutable)

Γ ` =5 (() <: =5 ())

Γ ` (<:)
(denormalize)

Fig. 4. Subtyping rules of System F<:M.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:12 Edward Lee and Ondřej Lhoták

Typing and Runtime Typing Γ | Σ ` C :) and Γ | Σ ` f

G :) ∈ Γ

Γ | Σ ` G :)
(var)

Γ, G : (` C :)

Γ | Σ ` _G.C : (→)
(abs)

Γ, - <: (` C :)

Γ | Σ ` Λ(- <: ().C : ∀(- <: ().)
(t-abs)

Γ | Σ ` C : (→) Γ | Σ ` B : (

Γ | Σ ` C (B) :)
(app)

Γ | Σ ` C : ∀(- <: () .) Γ | Σ ` (′ <: (

Γ | Σ ` C [(′] :) [- ↦→ (′]
(t-app)

Γ | Σ ` C8 :)8

Γ | Σ ` {G8 : C8 . . .} :
∧

8 {G8 :)8 }
(record-intro)

Γ | Σ ` C : {G :) }

Γ | Σ ` C .G :)
(record-elim)

Γ | Σ ` B : {G :) } Γ ` C :)

Γ | Σ ` B .G = C :)
(record-update)

Γ | Σ ` B : (Γ ` (<:)

Γ | Σ ` B :)
(sub)

Γ | Σ ` B : (

Γ | Σ ` seal B : readonly (
(seal)

Γ | Σ ` B : readonly {G : (}

Γ | Σ ` B .G : readonly (

(readonly-record-elim)

;8 :)8 ∈ Σ

Γ | Σ ` {G8 : ;8 } :
∧

8

{G8 :)8 }

(runtime-record)

3><(f) = 3><(Σ) ∀; ∈ 3><(Σ), Γ | Σ ` f (;) : Σ(;)

Γ | Σ ` f
(store)

Fig. 5. Typing rules for System F<:M

Any type T is naturally a subtype of its readonly counterpart readonly T, which motivates the
choice of System F<: as a base calculus. This subtyping relationship is re�ected in the subtyping
rule (mutable). The (seal) typing rule gives a read-only type to sealed references.

Static viewpoint adaptation: The (readonly-record-elim) rule is a static counterpart of
the (sealed-field) reduction rule. Given a reference B to a record with read-only type, it gives a
read-only type to the result of a read B .G of a �eld G from that reference. If (is the type of �eld G in
the record type given to B , the rule viewpoint-adapts the type, giving B .G the type readonly (.

4.2.1 Normal Forms for Types. In System F<:M, readonly is a type operator that can be applied to
any type, which enables us to express types such as readonly - , where - is some type variable
of unknown mutability. However, if - is itself instantiated with some readonly type readonly) ,
the type readonly - becomes readonly readonly) , with two occurrences of the type operator.
Intuitively, such a type should have the same meaning as readonly) .

Additionally, certain types should be equivalent under subtyping. For example, for both backwards
compatibility and simplicity, arrow (→) and for-all types ∀(- <: ().) should be equivalent under

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:13

Normalization =5 ()) and<4A64 ())

=5 ()) ::= Normalization

| > => >

| - => -

| (→) => =5 (() → =5 ())

| ∀(- <: ().) => ∀(- <: =5 (()).=5 ())

| (∧) => =5 (() ∧ =5 ())

| {5 :) } => {5 : =5 ())}
| readonly) => <4A64 ())

<4A64 ()) ::= Merging

| - => readonly -

| {5 :) } => readonly {5 :) }
| (∧) => <4A64 (() ∧<4A64 ())

| _ =>)

Fig. 6. Normalizing Types for System F<:M.

subtyping to their read-only forms readonly ((→)) and readonly (∀(- <: ().)), respectively,
as well.

Having multiple representations for the same type, even in�nitely many, complicates reasoning
about the meanings of types and proofs of soundness. Therefore, we de�ne a canonical representa-
tion for types as follows:

De�nition 4.1. A type) is in normal form if:

(1)) is the top type >.
(2)) is a function type (1 → (2, where (1 and (2 are in normal form.
(3)) is an abstraction type ∀(- <: (1).(2, where (1 and (2 are in normal form.
(4)) is an intersection type (1 ∧ (2, where (1 and (2 are in normal form.
(5)) is a record type {G : (}, where (is in normal form.
(6)) is a read-only record type readonly {G : (}, where (is in normal form.
(7) Type variables - and read-only type variables readonly - are in normal form.

A type in normal form is simple – it is an intersection of function, abstraction, and record types,
each possibly modi�ed by a single readonly operator. For example, {G : - } ∧ readonly {~ : . }
is in normal form. The type readonly ({G : - } ∧ {~ : . }) is not. A grammar for types in normal
form can be found in Figure 3.

This allows us to reason about both the shape of the underlying value being typed, and whether
or not it has been modi�ed by a readonly operator. Naturally we need a theorem which states that
every type has a normal form and a function =5 to compute that normal form. Such a function =5
is shown in Figure 6. Normalization both computes a normal form and is idempotent – a type in
normal form normalizes to itself.

Lemma 4.2. For any type) , =5 ()) is in normal form. Moreover, if) is in normal form, =5 ()) =) .

Moreover, types are equivalent to their normalized forms under the subtyping relationship.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:14 Edward Lee and Ondřej Lhoták

Lemma 4.3. Γ ` =5 ()) <:) and Γ `) <: =5 ()).

Proof. For one direction, note that =5 (=5 ())) = =5 ()), and hence =5 (=5 ())) <: =5 ()). Ap-
plying (denormalize) allows us to show that =5 ()) <:) , as desired. The other case follows by a
symmetric argument. �

Not only does this allow us to simplify types to a normal form, this also allows us to state and
prove canonical form lemmas and inversion lemmas, necessary for preservation and progress:
Theorems 4.9 and 4.11. Below we give examples for record types. Similar lemmas exist and are
mechanized for function types and type-abstraction types as well.

Lemma 4.4 (Inversion of Record Subtyping). If (is a subtype of {5 :) ′}, and (is in normal

form, then at least one of its components is a type variable - or a record type {5 : (′}, where
Γ `) ′ <: (′ <:) ′.

Lemma 4.5 (Canonical Forms for Records). If E is a value and ∅ | Σ ` E : {5 :) }, then E is a
record and 5 is a �eld of E that maps to some location ; .

Lemma 4.6 (Inversion of Read-Only Record Subtyping). If (is a subtype of readonly {5 :) ′},

and (is in normal form, then at least one of its components is a type variable - , read-only type

variable readonly - , a record type {5 : (′} where Γ `) ′ <: (′ <:) ′, or a read-only record type

readonly {5 : (′} where Γ `) ′ <: (′ <:) ′.

Lemma 4.7 (Canonical Forms for Read-Only Records). If E is a value and ∅ | Σ ` E :
readonly {5 :) }, then E is a record or a sealed record and 5 is a �eld of E that maps to some

location ; .

Note that normalization is necessary to state the inversion lemmas for read-only records, as
readonly {5 :) ′}, readonly readonly {5 :) ′}, etc, give an in�nite series of syntactically in-
equivalent but semantically equivalent types describing the same object – a read-only record where
�eld 5 has type) ′.

4.2.2 Operational Safety. Operationally, we give small-step reduction semantics coupled with a
store to System F<:M in Figure 7.

Again, these rules are a straightforward extension of System F<: with mutable boxes and records,
with additional rules for reducing sealed records. To prove progress and preservation theorems, we
additionally need to ensure that the store f itself is well typed in the context of some store typing
environment Σ – see rule (store).
The crux of preservation for System F<:M is to show that sealed records are never given a

non-read-only type, so that the typing rule for reading from a mutable record – (record-elim) –
cannot be applied to sealed record values.

Lemma 4.8. Suppose Γ | Σ ` seal A :) for some record A . If) is in normal form, then the components

of) are:

• The top type >, or

• a read-only record type readonly {5 :) ′}.

From this key result we can show that preservation holds for System F<:M.

Theorem 4.9 (Preservation of System F<:M). Suppose 〈B, f〉 −→ 〈C, f ′〉. If Γ | Σ ` f and

Γ | Σ ` B :) for some type) , then there is some environment extension Σ
′ of Σ such that Γ | Σ′ ` f ′

and Γ | Σ′ ` C :) .

Conversely, values given a non-read-only record typemust be an unsealed collection of references.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:15

Evaluation 〈B, f〉 −→ 〈C, f ′〉

〈(_G .C) (E), f〉 −→ 〈C [G ↦→ E], f〉 (beta-v)

;8 ∉ f

〈{G8 : E8 }, f〉 −→ 〈{G8 : ;8 }, (f, ;1 : E1, ;2 : E2, . . .)〉
(record-store)

; : E ∈ f

〈{. . . G : ; . . .}.G, f〉 −→ 〈E, f〉
(field)

; : E ∈ f

〈{. . . G : ; . . .}.G = E ′, f〉 −→ 〈E, f [; ↦→ E ′]〉

(write-field)

〈(Λ(- <: () .C) [)], f〉 −→ 〈C [- ↦→)], f〉

(beta-T)

; : E ∈ f

〈 (seal {. . . G : ; . . .}) .G, f〉 −→ 〈 seal E , f〉

(sealed-field)

〈 seal (_G .C) , f〉 −→ 〈_G .C, f〉

(seal-elim-abs)

〈 seal (Λ(- <: ().C) , f〉 −→ 〈Λ(- <: () .C, f〉

(seal-elim-tabs)

〈 seal seal E , f〉 −→ 〈seal E, f〉

(seal-elim-multiple)

〈B, f〉 −→ 〈C, f′〉

〈� [B], f〉 −→ 〈� [C], f′〉
(context)

� ::= [] | � (C) | E (�) | � [)] Evaluation Context

| {G0 : E0, . . . , G8 : �, G8+1 : C8+1, . . .}
| �.G

| �.G = C | E .G = �

| seal �

Fig. 7. Reduction rules for System F<:M

Lemma 4.10. Suppose ∅ | Σ ` E : {5 :) } for runtime value E . Then E is an unsealed runtime record

where �eld 5 maps to some location ; .

This lemma is needed to prove progress.

Theorem 4.11 (Progress for System F<:M). Suppose ∅ | Σ ` f and ∅, Σ ` B :) . Then either B is a

value or there is some C and f ′ such that 〈B, f〉 −→ 〈C, f ′〉.

5 STATIC IMMUTABILITY SAFETY

Armed with Progress and Preservation, we can state immutability safety for full System F<:M. System
_M allows us to show that sealed records are never used to mutate their underlying referenced values.
System F<:M shows that well-typed programs using seals do not get stuck. To prove immutability
safety for System F<:M, one problem still remains – System F<:M allows records that are not sealed
to be given a read-only type. We still need to show that records with such a type are not used to
mutate their values. In other words, we need to show that records with a read-only type could be
sealed, and that the resulting program would execute in the same way.

We will do this by showing that, given an original, well-typed System F<:M program B , we can add
seals to its read-only subterms to obtain a new, well-typed System F<:M program C , and furthermore
that C behaves the same way as B , up to having additional seals in the resulting state.
The �rst step is to show that sealing does not disturb the typing judgment for terms.

Lemma 5.1. Suppose Γ | Σ ` C : readonly) . Then Γ | Σ ` seal C : readonly) .

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:16 Edward Lee and Ondřej Lhoták

Proof. By (seal), Γ | Σ ` seal C : readonly readonly) . Then since readonly readonly) <:
readonly) , by (sub), Γ | Σ ` seal C : readonly) , as desired. �

From this, given a term B and a typing derivation for B , � = Γ | Σ ` B :) , we can seal those
subterms of B that are given a read-only type in � .

Lemma 5.2. Let � be a term context with = holes, and let B = � [B1, B2, B3, . . . , B=] be a term. Suppose

� is a typing derivation showing that Γ | Σ ` B :) . Suppose also that � gives each subterm B8 of B a

type readonly)8 . Then B
′
= B [seal B1, seal B2, . . . , seal B=] has the following properties:

(1) B ≤ B′, and

(2) There exists a typing derivation � ′ showing that Γ | Σ ` B′ :) as well.

Proof. (1) is by de�nition. As for (2), to construct � ′, walk through the typing derivation �

showing that Γ | Σ ` B :) . When we reach the point in the typing derivation that shows that B8
is given the type readonly)8 , note that seal B8 can also be given the type readonly)8 by the
derivation given by Lemma 5.1. Replace the sub-derivation in � with the derivation given by
Lemma 5.1 to give a derivation in � ′ for seal B8 , as desired. �

This motivates the following de�nition.

De�nition 5.3. Let B be a term and let � = Γ | Σ ` B :) be a typing derivation for B . De�ne
crest(B, �) to be the term constructed from B by replacing all subterms B8 of B given a read-only
type in � by seal B8 .

A crested term essentially seals any sub-term of the original term that is given a read-only type
in a particular typing derivation. By de�nition, for any term B and typing derivation � for B , we
have B ≤ crest(B, �). Moreover, a crested term can be given the same type as its original term as
well.

Lemma 5.4. Let B be a term and let � = Γ | Σ ` B :) be a typing derivation for B . Then B ≤

crest(B, �), and there exists a typing derivation showing that Γ | Σ ` crest(B, �) :) as well.

Now by progress – Theorem 4.11 – we have that for any well typed term B with typing derivation
� = ∅ | Σ ` B :) , its protected – crested – version crest(B, �) will also step. By preservation –
Theorem 4.9 – we have that crest(B, �) either eventually steps to a value or runs forever, but never
gets stuck. It remains to relate the reduction steps of crest(B, �) to those of B , and speci�cally
to show that if one reduces to some speci�c value and store, then the other also reduces to an
equivalent pair of value and store.

We will do so by using the dynamic immutability safety properties proven in Section 3. System
F<:M satis�es the same sealing-equivalence properties as System _M – seals do not a�ect reduction,
except perhaps by introducing other seals. The following are analogues of Lemmas 3.4, 3.5, and 3.6
for System F<:M.

Lemma 5.5. Let E be a value, fE be a store, C be a term such that E ≤ C , and fC be a store such that

fE ≤ fC .

If 〈C, fC 〉 −→ 〈C ′, f ′
C
〉 then E ≤ C ′, fE ≤ f ′

C
, and |C ′ | < |C |.

Lemma 5.6. Let B, C be terms such that B ≤ C and let fB , fC be stores such that fB ≤ fC . If 〈B, fB〉 −→

〈B′, f ′
B
〉 and 〈C, fC 〉 −→ 〈C ′, f ′

C
〉 then:

(1) Either B ≤ C ′, fB ≤ f ′
C
, and |C ′ | < |C |, or

(2) B′ ≤ C ′ and f ′
B
≤ f ′

C
.

Lemma 5.7. Let B, C be terms such that B ≤ C and let fB , fC be stores such that fB ≤ fC . If 〈C, fC 〉 −→

〈C ′, f ′
C
〉 then:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:17

(1) Either B ≤ C ′, fB ≤ f ′
C
, and |C ′ | < |C |, or

(2) There exists B′ and f ′
B
such that 〈B, fB〉 −→ 〈B′, f ′

B
〉, B′ ≤ C ′ and f ′

B
≤ f ′

C
.

Stepping back, we can see using Lemma 5.6 that one step of B to a term B′ corresponds to �nitely

many steps of crest(B, �); every step that crest(B, �) takes either removes a seal or corresponds
to a reduction step that B originally took. Hence crest(B, �) eventually steps to a term C ′ such that
B′ ≤ C ′, preserving the desired equivalence of reduction between B and crest(B, �). The following
is a generalization of the previous statement to two arbitrarily chosen well-typed terms B and C
satisfying B ≤ C .

Lemma 5.8. Suppose ∅, Σ ` fB and ∅, Σ ` B :) . Suppose 〈B, fB〉 −→ 〈B′, f ′
B
〉. For fB ≤ fC , and

B ≤ C , such that Γ, Σ ` fB and Γ, Σ ` C :) , we have that 〈C, fC 〉 −→∗ 〈C ′, f ′
C
〉 where B′ ≤ C ′ and

f ′
B
≤ f ′

C
.

Proof. From Theorem 4.11 we have that there exists a C ′ and f ′
C
such that 〈C, fC 〉 −→ 〈C ′, f ′

C
〉.

By Lemma 5.6 we have that either B ≤ C ′, fB ≤ f ′
C
, and |C ′ | < |C |, or that B′ ≤ C ′ and f ′

B
≤ f ′

C
. If B′ ≤ C ′

and f ′
B
≤ f ′

C
we are done. Otherwise, observe that since |C ′ | < |C |, a seal was removed. This can only

occur a �nite number of times, as C and C ′ have at most a �nite number of seals, so we can simply
loop until we obtain a C ′ and f ′

C
such that B′ ≤ C ′ and f ′

B
≤ f ′

C
. Note that Preservation – Theorem

4.9 allows us to do so as each intermediate step C ′ can be given the same type Γ | Σ ` C ′ :) . �

Finally, when B eventually reduces to a value E , we can use Lemma 5.5 to show that crest(B, �)
reduces to a similar value E ′ as well. Again, the following is a generalization of the previous
statement to two arbitrarily chosen well-typed terms B and C satisfying B ≤ C .

Lemma 5.9. Suppose∅, Σ ` fB and∅, Σ ` B :) such that B eventually reduces to a value EB – namely,

that 〈B, f4〉 −→∗ 〈EB , f
′
B
〉 for some f ′

B
.

Then for any C such that B ≤ C and ∅, Σ ` C :) , we have that C eventually reduces to some value EC ,

– namely 〈C, f4〉 −→∗ 〈EC , f
′
C
〉, such that EB ≤ EC and f

′
B
≤ f ′

C
.

Proof. For each step in the multi-step reduction from 〈B, f4〉 −→∗ 〈EB , f
′
B
〉 we can apply Lemma

5.8 to show that 〈C, fC 〉 eventually reduces to 〈C ′, f ′
C
〉 where EB ≤ C ′ and f ′

B
≤ f ′

C
. Now by Theorem

4.11 and Lemma 5.5 we have that either C ′ is a value, in which case we are done, or that 〈C ′, f ′
C
〉

steps to 〈C ′′, f ′
B
〉 where EB ≤ C ′′. Again, we can only take a �nite number of steps of this fashion as

the rule which reduces C ′ −→ C ′′ can only be one that removed a seal, so eventually we obtain
a value EB such that 〈C, fB〉 −→∗ 〈EC , f

′
C
〉 with EB ≤ EC , and f ′

B
≤ f ′

C
, as desired. Again, note that

Preservation – Theorem 4.9 allows us to do so as each intermediate step C ′ can be given the same
type Γ | Σ ` C ′ :) . �

Now from Lemma 5.9 we obtain our desired immutability safety results as a consequence –
namely, given a well-typed term B that reduces to a value EB , any references in B with a readonly
type are never actually mutated, since they can be transparently sealed (which does not change the
typing) to no ill e�ect. Formally, our main result is:

Theorem 5.10. Suppose B is a term, � = ∅ | Σ ` B :) is a typing derivation for B , and let fB be

some initial store such that ∅ | Σ ` fB . Then:

• crest(B, �) can be given the same type as B – ∅ | Σ ` 2A4BC (B, �) :) .

Moreover, if 〈B, fB〉 −→∗ 〈EB , f
′
B
〉, for some value EB , then:

• crest(B, �) will reduce to a value EC – 〈2A4BC (B, �), f4〉 −→∗ 〈EC , f
′
C
〉, such that

• EC and f ′
C
are equivalent to EB and f ′

B
, modulo additional seals – namely, that EB ≤ EC and

f ′
B
≤ f ′

C
.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:18 Edward Lee and Ondřej Lhoták

Finally, it is useful to show that the converse result is also true; seals can be safely removed

without a�ecting reduction. First note that seals themselves can be transparently removed without
a�ecting the types assigned to the term.

Lemma 5.11. Suppose Γ | Σ ` seal B :) . Then Γ | Σ ` B :) .

Moreover, the following analogue of Lemma 3.8 holds in System F<:M.

Lemma 5.12. Suppose B and C are terms such that B ≤ C . If 〈C, fC 〉 −→∗ 〈EC , f
′
C
〉 for some value EC ,

then for any fB ≤ fC we have 〈B, fB〉 −→∗ 〈EB , f
′
B
〉 such that EB ≤ EC and f

′
B
≤ f ′

C
.

While Lemma 5.12 is enough to show that when B ≤ C , if C reduces to a value then so does B , we
need Lemma 5.13 to reason about the types of B and EB .

Lemma 5.13. Suppose B and C are terms such that B ≤ C . If 〈C, fC 〉 −→∗ 〈EC , f
′
C
〉 for some value EC ,

then for any fB ≤ fC we have 〈B, fB〉 −→∗ 〈EB , f
′
B
〉 for some value EB such that E ′

B
≤ E ′

B
and f ′

B
≤ f ′

C
.

Moreover, Γ | Σ ` B :) and Γ | (Σ′, Σ) ` EB :) for some Σ′ as well.

Proof. By Lemma 5.11 we can show that Γ | Σ ` B :) . By Lemma 5.12 we have that E reduces to
some value EB . By preservation – Theorem 4.9 we have that EB has type) , as desired. �

6 MECHANIZATION

Our mechanization of System F<:M is based on the mechanization of System F<: by Aydemir et al.
[2008]. Our mechanization is a faithful model of System F<:M as described in this paper except for one
case. To facilitate mechanization, reduction in our mechanization is done via explicit congruence
rules in each reduction rule instead of an implicit rule for reducing inside an evaluation context,
similar to how Aydemir et al. [2008] originally mechanize System F<: as well.

Proofs for all lemmas except for Theorem 5.10 and Lemmas 3.9, 5.2, and 5.4 have been mechanized
using Coq 8.15 in the attached artifact. Theorem 5.10 and Lemmas 5.2, 5.4, and 5.13 have not been
mechanized as they require computation on typing derivations which is hard to encode in Coq
as computation on Prop cannot be re�ected into Set. Lemma 3.9 has been omitted from our
mechanization as it is hard to formally state, let alone prove, in a setting where reduction is done
by congruence, though it almost follows intuitively from how the reduction rules are set up.

7 RELATED AND FUTURE WORK

7.1 Limitations – Parametric Mutability Polymorphism

Unlike other systems, System F<:M does not support directly encoding mutability polymorphism,
neither through a restricted @polyreadmodi�er as seen in Huang et al. [2012], nor through explicit
mutability variables as seen in Gordon et al. [2012].

This is a true limitation of System F<:M, however, we note that it is possible to desugar parametric
mutability polymorphism from a surface language into a core calculus like System F<:M. As Huang
et al. [2012] point out in their work, parametric mutability polymorphism can be desugared via
overloading, noting that overloading itself can be dealt with in a surface language before desugaring
into a base calculus, as seen before with Featherweight Java [Igarashi et al. 2001].

For example, consider the following top-level parametric function, access, which is parametric
on mutability variable M:

def access[M](z: [M] Pair[Pair[Int]]): M Pair[Int] = { z.first }

This function can be rewritten instead as two functions with the same name access, one taking in
a regular, mutable pair, and one taking in a readonly pair:

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:19

def access(z: Pair[Pair[Int]]): Pair[Int] = { z.first }

def access(@readonly z: Pair[Pair[Int]]): @readonly Pair[Int] = { z.first }

Nested and �rst-class functions are a little trickier but one can view a polymorphic, �rst-class
function value as a read-only record packaging up both overloads.

{

access: (z: Pair[Pair[Int]]) => { z.first },

access: (@readonly z: Pair[Pair[Int]]) => { z.first }

}

It would be interesting future work to see how one could add parametric mutability polymorphism
to System F<:M.

7.2 Future Work – Algorithmic Subtyping

The subtyping rules of System F<:M are fairly involved and it is di�cult to see if an algorithmic
subtyping system could be devised.Wewould conjecture that one could do so, using techniques from
Muehlboeck and Tate [2018]’s integrated subtyping work, but nonetheless algorithmic subtyping
for System F<:M remains an interesting and open problem.

7.3 Viewpoint Adaptation

Viewpoint adaptation has been used in reference immutability systems to denote the type-level
adaptation which is enforced to guarantee transitive immutability safety. When a �eld A .5 is read
from some record A , the mutability of the resulting reference needs to be adapted from both the
mutability of A and from the type of 5 in the record itself. While this notion of adaptation was
known as early as Javari [Tschantz and Ernst 2005], the term “viewpoint adaptation” was �rst
coined by Dietl et al. [2007]. They realized that this notion of adaptation could be generalized
to arbitrary quali�ers – whether or not the type of a �eld read A .5 should be quali�ed by some
quali�er @@ should depend on whether or not 5 ’s type is quali�ed and whether or not A ’s type is
quali�ed as well – and used it to implement an ownership system for Java references in order to
tame aliasing in Java programs.

7.4 Reference Immutability

Reference immutability has long been studied in the context of existing object-oriented languages
such as Java and C#, and more recently has been studied in impure, functional languages like Scala.

roDOT [Dort and Lhoták 2020]: roDOT extends the calculus of Dependent Object Types [Amin
et al. 2016] with support for reference immutability. In their system, immutability constraints are
expressed through a type member �eld G ." of each object, where G is mutable if and only if" ≤ ⊥,
and G is read-only if and only if" ≥ >. Polymorphism in roDOT is out of all reference immutability
systems closest to how polymorphism is done in System F<:M. Type variables quantify over full
types, and type variables can be further restricted to be read-only as in System F<:M. Constructing a
read-only version of a type, like how we use readonly in System F<:M, is done in roDOT by taking
an intersection with a bound on the type member" . For example, inplace_map from before could
be expressed in roDOT using an intersection type to modify immutability on the type variable X:

def inplace_map[X](Pair[X]: pair , f: (X & {M :> Any}) => X): Unit

Dort et. al. also prove that roDOT respects immutability safety, but with di�erent techniques than
how we show immutability safety in System F<:M. Instead of giving operational semantics with
special forms that guard references from being mutated, and relying on progress and preservation
to imply static safety, they take a di�erent approach and show instead that values on the heap

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:20 Edward Lee and Ondřej Lhoták

that change during reduction must be reachable by some statically-typed mutable reference in the
initial program. roDOT is a stronger system than System F<:M, as in particular mutabilities can be
combined. For example, one could write a generic getF function which reads a �eld f out of any
record that has f as a �eld polymorphic over both the mutabilities of the record x and the �eld f:

def getF[T](x: {M: *, f : T}) : T & {M :> x.M} = x.f

Here, the return type of getF will give the proper, tightest, viewpoint-adapted type for reading x.f
depending on both the mutabilities of x and f. This is not directly expressible in System F<:M and
can only be expressed using overloading:

def getF[T](x: @readonly {f : T}): @readonly T = x.f

def getF[T](x: {f : T}) : T = x.f

However, in contrast, roDOT is signi�cantly more complicated than System F<:M.

Immutability for C# [Gordon et al. 2012]: Of all the object calculi with reference immutability,
the calculus of Gordon et al. [2012] is closest to that of roDOT in terms of �exibility. Polymorphism
is possible over both mutabilities and types in Gordon’s system, but must be done separately; type
variables instead quantify over base types that have not been quali�ed with some immutability
annotation, whether that be read-only or mutable. The inplace_map function that we discussed
earlier would be expressed with both a base-type variable as well as a mutability variable:

def inplace_map[M, X](Pair[M X]: pair , f: @readonly X => M X): Unit

Like roDOT, Gordon’s system also allows for mutability annotations to be combined in types, in
e�ect allowing viewpoint adaptation to be expressed at the type level using the mutability operator
~>. For example, getF could be written as the following in Gordon’s system:

def getF[MS, MT, T, S <: {f : MT T}](x: MS S) : (MS ~> MT) T = x.f

Unlike roDOT however, which allows for inferences to be drawn about the mutability of the type
(T & {M :> x.M}).M depending on the bounds on) and (, the only allowable judgment we can
draw about MS ~> MT is that it can be widened to @readonly. We cannot conclude, for example,
that MS ~> MT <: M in the following, even though both MS <: M and MT <: M:

def getF[M, MS <: M, MT <: M, T, S <: {f : MT T}](x: MS S) : (MS ~> MT) T = x.

f

Gordon et. al. also demonstrate the soundness and immutability safety of their system but through
an embedding into a program logic [Dinsdale-Young et al. 2013].

Javari [Tschantz and Ernst 2005]: Reference immutability was �rst modelled in the context
of Java; Javari is the earliest such extension. In Javari’s formalization, Lightweight Javari, type
variables X stand in for either other type variables, class types, and readonly-quali�ed class types.
Unlike roDOT and System F<:M, in Lightweight Javari, type variables cannot be further quali�ed
by the readonly type quali�er. Lightweight Javari, however, does support parametric mutability
polymorphism for class types, but does not support parametric mutability polymorphism directly
on methods. Instead, limited parametric mutability method polymorphism in Javari, denoted with
the keyword romaybe, is desugared using overloading into the two underlying methods handling
the read-only case and the mutable case replacing romaybe in the source. Our earlier example,
getF, can be written using romaybe as follows:

class HasF <T> {

T f;

romaybe T getF() romaybe { return f; }

}

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:21

However, this example is inexpressible in the core calculus Lightweight Javari, as @readonly T is
ill-formed. As for safety, immutability safety is done in Lightweight Javari through a case analysis
on how typed Lightweight Javari program terms can reduce. [Tschantz and Ernst 2005] claim that
the soundness of Lightweight Javari reduces to showing the soundness of Lightweight Java, but no
formal proof is given.

ReIm: [Huang et al. 2012]: ReIm simpli�es Javari to enable fast, scalable mutability inference
and analysis. Like Javari, ReIm supports two type quali�ers – readonly and polyread, where
readonly marks a read-only type and polyread is an analogue of romaybe from Javari. Like
Lightweight Javari, and unlike roDOT and System F<:M, ReIm restricts how quali�ers interact with
generics. ReIm’s polymorphism model is similar to that of Gordon et al. [2012] – type variables
range over unquali�ed types. However, ReIm has no mechanism for mutability polymorphism, and
therefore getF cannot be written in ReIm at all. Unlike other related work, neither soundness nor
immutability safety is proven to hold for ReIm.

Immutability Generic Java: [Zibin et al. 2007]: Immutability Generic Java is a scheme for
expressing immutability using Java’s existing generics system. The type List<Mutable> denotes
a mutable reference to a List, whereas the type List<Readonly> denotes a read-only reference
to a list. Viewpoint adaptation is not supported, and transitive immutability must be explicitly
opted into. For example, in the following snippet, the �eld value of C is always mutable. Transitive
immutability must be explicitly opted into by instantiating List with the immutability parameter
ImmutOfC.

class C<ImmutOfC > {

List <Mutable /* ImmutOfC for transitivity */, Int > value;

}

Moreover, transitive immutability cannot be expressed at all over �elds given a generic type. Type
variables by the nature of how immutability is expressed in IGJ range over fully quali�ed types,
and there is no mechanism for re-qualifying a type variable with a new immutability quali�er. For
example, the mutability of value in any Box below depends solely on whether or not T is mutable.
Hence the value �eld of a Box is mutable even if it was read through a read-only Box reference –
that is, a reference of type Box<ReadOnly>.

class Box <ImmutOfBox , T> {

T value;

}

Box <Readonly , List <Mutable ,Int >> b = new Box (...)

b.value.add (10); // OK -- even though it mutates the underlying List.

7.5 Languages with Immutability Systems

Finally, some languages have been explicitly designed with immutability in mind.

C++: const-quali�ed methods and values provide limited viewpoint adaptation. Reading a
�eld from a const-quali�ed object returns a const-quali�ed �eld, and C++ supports function
and method dispatching based on the constness of its arguments [Stroustrup 2007]. Mutability
polymorphism is not explicitly supported but can be done with a combination of templates and
overloading.

struct BoxedInt {

int v{0};

};

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:22 Edward Lee and Ondřej Lhoták

template <typename T> struct HasF <T> {

T f;

T& getF() { return f; }

const T& getF() const { return f; }

}

const HasF <BoxedInt > x;

x.getF() // Calls const qualified getF()

const BoxedInt& OK = x.f; // OK, as x.f is of type const BoxedInt.

BoxedInt& Bad = x.f; // Bad , discards const -qualifier.

In this example, a C++ compiler would disallow Bad because the type of x.f has been adapted to a
l-value of const BoxedInt. However, viewpoint adaptation does not lift to reference or pointer
types in C++. For example, if instead we had a pointer-to-T in HasF:

template <typename T> struct HasF <T> {

T* f;

}

BoxedInt b{5};

const HasF <BoxedInt > x{&b};

BoxedInt* NotGreat = x.f; // OK, as x stores a constant pointer to a mutable

BoxedInt

NotGreat ->v = 10; // Modifies b!

C++’s limited viewpoint adaptation gives x.f the type BoxedInt * const, which is a constant
pointer to a mutable BoxedInt, not the type BoxedInt const * const, which would be a constant
pointer to a constant BoxedInt. This allows the underlying �eld to be mutated.

D:. In contrast to C++, where const becomes useless for pointer and reference �elds, D supports
full reference immutability and viewpoint adaptation with a transitive const extended to work for
pointer and reference types [Bright et al. 2020]. Again, mutability polymorphism is not directly
supported but can be encoded with D’s compile-time meta-programming system.

Rust: In Rust, references are either mutable or read-only, and only one mutable reference can
exist for any given value. Read-only references are transitive, like they are in System F<:M, roDOT,
and other reference immutability systems, and unlike C++. Here, in this example, we cannot write
to s3.f as s3 is a read-only reference to s2, even though s2.f has type &mut String.

struct HasF <T> {

f: T

}

fn main() {

let mut s1 = String ::from("hello");

let s2 = HasF { f: &mut s1 };

s2.f.push_str("OK");

let s3 = &s2;

s3.f.push_str("BAD");

}

Unlike other languages, though, the mutability of a reference is an intrinsic property of the
reference type itself. Instead of having a type operator readonly that, given a reference type T,
creates a read-only version of that reference type, Rust instead de�nes & and &mut, type operators

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

Simple Reference Immutability for System F<: 252:23

that, given a type T, produce the type of a read-only reference to a T and the type of a mutable
reference to a T, respectively. Here, in the following example, s1 is a String, s2 is a mutable
reference to a s1 – &mut String, and s3 is a read-only reference to s2 – & (&mut String), where
all three of s1, s2, and s3 are stored at distinct locations in memory.

let s1 = String ::from("hello");

let mut s2 = &s1;

let s3 = &s2;

As such, in Rust, one cannot create a read-only version of an existing reference type. This makes
higher-order functions over references that are polymorphic over mutability, like inplace_map
from above, inexpressible in Rust. However, if we instead had a Pair that owned its elements, we
could write the following version of inplace_map:

struct Pair <T> {

fst: T,

snd: T

}

fn inplace_map <T>(p: &mut Pair <T>, f: fn (&T) -> T) {

p.fst = f(&p.fst);

p.snd = f(&p.snd);

}

Note, though, that in this setting, the elements p.fst and p.snd are embedded in the pair p and
owned by it.

7.6 Type�alifiers and Polymorphism

Foster et al. [1999] formalize a system for enriching types with quali�ers with support for polymor-
phism over both ground, unquali�ed types and quali�ers themselves. In this setting, readonly can
be viewed as a type quali�er, similar to how C++’s const can be viewed as a quali�er in [Foster
et al. 1999]. The resulting calculus is similar to the calculus of [Gordon et al. 2012] restricted only
to reference immutability quali�ers.

7.7 Contracts

Our approach to sealing references is similar to and was inspired by practical programming
experience with Racket contracts – [Strickland et al. 2012]. Sealing, in particular, can be viewed as
attaching a chaperone contract which raises an exception whenever the underlying chaperoned
value is written to, and attaches a similar chaperone to every value read out of the value. For
example, a dynamic reference immutability scheme for Racket vectors could be implemented with
the following chaperone contract:

(define (chaperone-read vec idx v)

(seal v))

(define (chaperone-write vec idx v)

(error 'seal "Tried to write through an immutable reference."))

(define (seal v)

(cond

[(vector? v) (chaperone-vector vec chaperone-read chaperone-write))

[else v]))

Strickland et. al. prove that chaperones can be safely erased without changing the behaviour of the
underlying program when it reduces to a value. Our results on dynamic safety, Lemmas 3.4, 3.5,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

252:24 Edward Lee and Ondřej Lhoták

and 3.6 can be viewed as an analogue of [Strickland et al. 2012, Theorem 1] specialized to reference
immutability. In this setting, our static immutability safety results show that a well-typed program
will never raise an error by writing to a chaperoned vector.

8 CONCLUSION

We contributed a simple and sound treatment of reference immutability in System F<:. We show
how a simple idea, sealing references, can provide dynamic immutability safety guarantees in an
untyped context – System _M – and how soundness and System F<:-style polymorphism can be
recovered in a typed calculus System F<:M which builds on both System _M and System F<:. Our
hope is to enable reference immutability systems in functional languages via this work, by giving
simple soundness foundations in a calculus (System F<:) which underpins many impure functional
languages today.

DATA-AVAILABILITY STATEMENT

The artifact that supports this paper is available on Software Heritage [Lee and Lhoták 2023a] and
on the ACM Digital Library [Lee and Lhoták 2023b].

ACKNOWLEDGMENTS

We thank Yaoyu Zhao for his interesting discussions on reference immutability, and we thank
Alexis Hunt and Hermann (Jianlin) Li for their useful feedback on early drafts of this work. We
also thank our anonymous reviewers for their helpful comments which have improved the �nal
draft of this work.

This work was partially supported by the Natural Sciences and Engineering Research Council of
Canada and by an Ontario Graduate Scholarship.

REFERENCES

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. 2016. The essence of dependent object types.

A List of Successes That Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday

(2016), 249–272.

Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. 2008. Engineering

Formal Metatheory. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (San Francisco, California, USA) (POPL ’08). Association for Computing Machinery, New York, NY, USA, 3–15.

https://doi.org/10.1145/1328438.1328443

Walter Bright, Andrei Alexandrescu, and Michael Parker. 2020. Origins of the D Programming Language. Proc. ACM

Program. Lang. 4, HOPL, Article 73 (jun 2020), 38 pages. https://doi.org/10.1145/3386323

Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. 1991. An Extension of System F with Subtyping.

In Theoretical Aspects of Computer Software, International Conference TACS ’91, Sendai, Japan, September 24-27, 1991,

Proceedings (Lecture Notes in Computer Science, Vol. 526), Takayasu Ito and Albert R. Meyer (Eds.). Springer, 750–770.

https://doi.org/10.1007/3-540-54415-1_73

Werner Dietl, Sophia Drossopoulou, and Peter Müller. 2007. Generic Universe Types. In ECOOP 2007 – Object-Oriented

Programming, Erik Ernst (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 28–53.

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views:

compositional reasoning for concurrent programs. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, Roberto Giacobazzi and Radhia Cousot (Eds.).

ACM, 287–300. https://doi.org/10.1145/2429069.2429104

Vlastimil Dort and Ondřej Lhoták. 2020. Reference Mutability for DOT. In 34th European Conference on Object-Oriented

Programming (ECOOP 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 166), Robert Hirschfeld and

Tobias Pape (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 18:1–18:28. https://doi.org/

10.4230/LIPIcs.ECOOP.2020.18

Mattias Felleisen and D. P. Friedman. 1987. A Calculus for Assignments in Higher-Order Languages. In Proceedings of the

14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (Munich, West Germany) (POPL ’87).

Association for Computing Machinery, New York, NY, USA, 314. https://doi.org/10.1145/41625.41654

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/3386323
https://doi.org/10.1007/3-540-54415-1_73
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.4230/LIPIcs.ECOOP.2020.18
https://doi.org/10.1145/41625.41654

Simple Reference Immutability for System F<: 252:25

Je�rey S. Foster, Manuel Fähndrich, and Alexander Aiken. 1999. A Theory of Type Quali�ers. In Proceedings of the ACM

SIGPLAN 1999 Conference on Programming Language Design and Implementation (Atlanta, Georgia, USA) (PLDI ’99).

Association for Computing Machinery, New York, NY, USA, 192–203. https://doi.org/10.1145/301618.301665

Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks Brom�eld, and Joe Du�y. 2012. Uniqueness and Reference

Immutability for Safe Parallelism. In Proceedings of the ACM International Conference on Object Oriented Programming

Systems Languages and Applications (Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing Machinery, New

York, NY, USA, 21–40. https://doi.org/10.1145/2384616.2384619

Philipp Haller and Ludvig Axelsson. 2017. Quantifying and Explaining Immutability in Scala. Electronic Proceedings in

Theoretical Computer Science 246 (apr 2017), 21–27. https://doi.org/10.4204/eptcs.246.5

Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. 2012. ReIm and ReImInfer: Checking and Inference

of Reference Immutability and Method Purity. In Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications (Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing

Machinery, New York, NY, USA, 879–896. https://doi.org/10.1145/2384616.2384680

Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. 2001. Featherweight Java: A Minimal Core Calculus for Java and

GJ. ACM Trans. Program. Lang. Syst. 23, 3 (may 2001), 396–450. https://doi.org/10.1145/503502.503505

Edward Lee and Ondřej Lhoták. 2023a. Artifact for the OOPSLA 2023 paper ’Simple Reference Immutability for System F-

sub’. https://archive.softwareheritage.org/swh:1:rev:709bb054f0eb4a891c9c54065a255d�0a360800;origin=https://github.

com/e45lee/simple-fsub-mutability-proofs;visit=swh:1:snp:04d537961ccf54bc85606d60b180c2e8083b14ba

Edward Lee and Ondřej Lhoták. 2023b. Artifact for the OOPSLA 2023 paper ’Simple Reference Immutability for System F-sub’.

https://doi.org/10.1145/3580414

Fabian Muehlboeck and Ross Tate. 2018. Empowering Union and Intersection Types with Integrated Subtyping. Proc. ACM

Program. Lang. 2, OOPSLA, Article 112 (oct 2018), 29 pages. https://doi.org/10.1145/3276482

John C. Reynolds. 1997. Design of the Programming Language Forsythe. Birkhäuser Boston, Boston, MA, 173–233. https:

//doi.org/10.1007/978-1-4612-4118-8_9

T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. 2012. Chaperones and Impersonators:

Run-Time Support for Reasonable Interposition. In Proceedings of the ACM International Conference on Object Oriented

Programming Systems Languages and Applications (Tucson, Arizona, USA) (OOPSLA ’12). Association for Computing

Machinery, New York, NY, USA, 943–962. https://doi.org/10.1145/2384616.2384685

Bjarne Stroustrup. 2007. The C++ programming language - special edition (3. ed.). Addison-Wesley.

Matthew S. Tschantz and Michael D. Ernst. 2005. Javari: adding reference immutability to Java. In Proceedings of the 20th

Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2005, October 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and Richard P. Gabriel (Eds.). ACM, 211–230. https:

//doi.org/10.1145/1094811.1094828

Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kiezun, and Michael D. Ernst. 2007. Object and Reference

Immutability Using Java Generics. In Proceedings of the the 6th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering (Dubrovnik, Croatia) (ESEC-FSE

’07). Association for Computing Machinery, New York, NY, USA, 75–84. https://doi.org/10.1145/1287624.1287637

Received 2023-04-14; accepted 2023-08-27

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA2, Article 252. Publication date: October 2023.

https://doi.org/10.1145/301618.301665
https://doi.org/10.1145/2384616.2384619
https://doi.org/10.4204/eptcs.246.5
https://doi.org/10.1145/2384616.2384680
https://doi.org/10.1145/503502.503505
https://archive.softwareheritage.org/swh:1:rev:709bb054f0eb4a891c9c54065a255dff0a360800;origin=https://github.com/e45lee/simple-fsub-mutability-proofs;visit=swh:1:snp:04d537961ccf54bc85606d60b180c2e8083b14ba
https://archive.softwareheritage.org/swh:1:rev:709bb054f0eb4a891c9c54065a255dff0a360800;origin=https://github.com/e45lee/simple-fsub-mutability-proofs;visit=swh:1:snp:04d537961ccf54bc85606d60b180c2e8083b14ba
https://doi.org/10.1145/3580414
https://doi.org/10.1145/3276482
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1007/978-1-4612-4118-8_9
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1094811.1094828
https://doi.org/10.1145/1287624.1287637

	Abstract
	1 Introduction
	2 Reference Immutability
	3 Dynamic Immutability Safety
	4 Typing and Static Safety
	4.1 Polymorphism
	4.2 System F<:M

	5 Static Immutability Safety
	6 Mechanization
	7 Related and Future Work
	7.1 Limitations – Parametric Mutability Polymorphism
	7.2 Future Work – Algorithmic Subtyping
	7.3 Viewpoint Adaptation
	7.4 Reference Immutability
	7.5 Languages with Immutability Systems
	7.6 Type Qualifiers and Polymorphism
	7.7 Contracts

	8 Conclusion
	Acknowledgments
	References

