
125

Fixpoints for the Masses:

Programming with First-Class Datalog Constraints

MAGNUS MADSEN, Aarhus University, Denmark

ONDŘEJ LHOTÁK, University of Waterloo, Canada

Datalog is a declarative logic programming language that has been used in a variety of applications, including
big-data analytics, language processing, networking and distributed systems, and program analysis.

In this paper, we propose first-class Datalog constraints as a mechanism to construct, compose, and solve
Datalog programs at run time. The benefits are twofold: We gain the full power of a functional programming
language to operate on Datalog constraints-as-values, while simultaneously we can use Datalog where it
really shines: to declaratively express and solve fixpoint problems.

We present an extension of the lambda calculus with first-class Datalog constraints, including its semantics
and a type system with row polymorphism based on Hindley-Milner. We prove soundness of the type system
and implement it as an extension of the Flix programming language.

CCS Concepts: · Software and its engineering → Functional languages; Constraint and logic lan-

guages.

Additional Key Words and Phrases: functional programming, logic programming, first-class datalog

ACM Reference Format:

Magnus Madsen and Ondřej Lhoták. 2020. Fixpoints for the Masses: Programming with First-Class Datalog
Constraints. Proc. ACM Program. Lang. 4, OOPSLA, Article 125 (November 2020), 28 pages. https://doi.org/10.
1145/3428193

1 INTRODUCTION

Datalog is a simple, yet surprisingly powerful, declarative logic programming language. A Datalog
program is a collection of constraints. Each constraint is a fact or a rule. Together, the facts and
rules imply a minimal model, a unique solution to any Datalog program [Ceri et al. 1989].
Datalog has roots in the database community [Ullman 1984] and has been used in a wide

variety of applications [de Moor et al. 2011; Huang et al. 2011], including in bioinformatics [King
2004], big-data analytics [Halperin et al. 2014; Seo et al. 2013; Shkapsky et al. 2016], natural
language processing [Mooney 1996], networking and distributed systems [Alvaro et al. 2010;
Conway et al. 2012; Loo et al. 2009], program understanding [Hajiyev et al. 2006], and program
analysis [Bravenboer and Smaragdakis 2009; Lam et al. 2005; Smaragdakis and Bravenboer 2011].
Datalog has several properties of theoretical and practical interest: (i) every Datalog program

eventually terminates, (ii) every Datalog program has a unique solution, (iii) efficient and parallel
evaluation strategies exist, and (iv) any polynomial time algorithm can be expressed in Datalog [Pa-
padimitriou 1985]. For practical purposes, (i)ś(iii) are very useful as they enable easy reasoning
and debugging of Datalog programs.

Authors’ addresses: Magnus Madsen, Department of Computer Science, Aarhus University, Åbogade 34, Aarhus, 8210,
Denmark, magnusm@cs.au.dk; Ondřej Lhoták, Cheriton School of Computer Science, University of Waterloo, 200 University
Avenue West, Waterloo, N2L 3G1, Canada, olhotak@uwaterloo.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART125
https://doi.org/10.1145/3428193

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428193

125:2 Magnus Madsen and Ondřej Lhoták

Datalog programs are truly declarative: Unlike Prolog, the order of constraints and the order of
predicates within a constraint is immaterial in Datalog; we may freely reorder the program without
changing its semantics. The solution to a Datalog program, its minimal model, is defined without
reference to any specific evaluation order or strategy. Thus, Datalog cleanly separates the what
from the how, i.e. the specification is separate from its implementation.
Modern Datalog solvers are increasingly efficient [Jordan et al. 2016, 2018; Scholz et al. 2016;

Subotic et al. 2018; Veldhuizen 2012], implementing many important optimizations, such as index
selection, query planning, join-ordering, and parallel execution [Bancilhon et al. 1985; Graefe 1993;
Gregory 1987; Ullman 1984]. In hand-crafted fixpoint computations, such optimizations must be
re-discovered and re-implemented, a waste of programmer effort.

Despite these advantages, use of Datalog is not widespread. We speculate that there are at least
two barriers to a broader adoption of Datalog: (i) the poor integration of Datalog into general-
purpose programming languages, and (ii) the lack of mechanisms to construct modular Datalog
programs. To expand on the former, use of Datalog today often involves generating constraints,
storing them into a file, invoking the Datalog engine on the file, and reading the results back
into memory for further processing. To expand on the latter, we are rarely interested in a specific
Datalog program, but rather in a family of related Datalog programs. Since Datalog lacks a module
system, programmers often resort to program generation. Such approaches, whether based on
textual generation or template programming, are often inflexible and error-prone.
To overcome these issues, we propose Datalog programs as first-class values that can be con-

structed, composed, and solved within a functional programming language. We can leverage the
features of functional programming to build modular and parametric families of Datalog programs.
We can build pipelines of Datalog programs where the output facts of one program are passed as
input facts to another program. We can define functions and refer to them from inside Datalog
constraints. And finally, we can use parametric polymorphism to express Datalog constraints that
are polymorphic in the types of their terms. In this paper, we show how to integrate first-class
constraints into a statically-typed eager functional language. We describe the static and dynamic
semantics, interaction with lexical scoping, and how to support stratified negation.
We identify and overcome two technical challenges in the presence of first-class constraints:

(i) how can we design a modular type system in which reusable fragments of Datalog programs
can be typed independently such that when they are composed, at run-time, the composition is
type-safe? Specifically, the type system should support abstraction such that each module can be
provided by multiple different implementations, and (ii) in the presence of negation, how can we
ensure, at compile-time, that every such composition that could occur at run-time is stratified?
In summary, the contributions of this paper are:

• (Calculus) We show how to extend the lambda calculus with first-class Datalog constraints.
• (Type System) We show how a Hindley-Milner style type system for a functional program-
ming language can be seamlessly extended to type Datalog program fragments as first-class
values. Inspired by record calculi, the type system uses row polymorphism to precisely track
the predicate symbols that occur in each Datalog fragment. The type system supports full
type inference and we prove type safety of the system.
• (Stratification)We observe that there are trade-offs betweenmodularity and type complexity
in solutions for ensuring stratified negation. As a starting point, we propose one sound
technique to compute stratification at compile-time.
• (Implementation) We implement our system in the Flix programming language.
• (Evaluation)We present case studies that illustrate the usefulness of our system.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:3

2 MOTIVATION

We motivate the need for first-class Datalog constraints with several toy examples. In Section 6, we
present real-world applications implemented in our system. All programs shown in this paper are
valid and executable programs in our system.

2.1 Example I

As a student of history might know, Pompey the Great was the son of the wealthy equestrian
Gnaeus Pompeius Strabo. Pompey had five wives with whom he had two sons and one daughter.
We can capture these familial relations with the Datalog program:

ParentOf("Pompey", "Strabo").

ParentOf("Gnaeus", "Pompey").

ParentOf("Pompeia", "Pompey").

ParentOf("Sextus", "Pompey").

In ancient Rome, the lineage of a statesman was an important part of his stature. We can use Datalog
to elegantly compute the ancestors of every person, i.e. the transitive closure of the ancestor relation:

AncestorOf(x, y) :- ParentOf(x, y).

AncestorOf(x, z) :- AncestorOf(x, y), AncestorOf(y, z).

The solution to this program, its minimalmodel, contains the factAncestorOf("Sextus", "Strabo"),
because Strabo was the grandfather of Sextus. We are now able to reason about family relations in
ancient Rome. However, familial ties where not only by blood, as adoption was equally recognized.
With this in mind, we can extend the Datalog program with the facts:

AdoptedBy("Augustus", "Caesar").

AdoptedBy("Tiberius", "Augustus").

to record that Caesar adopted Augustus who himself later adopted Tiberius. We can easily include
adoptions in the ancestor relation with the addition of a single rule:

AncestorOf(x, y) :- AdoptedBy(x, y).

This example demonstrates the power of Datalog: We can extend the semantics of a program by
simply adding new facts and rules! But what if we had wanted to keep the original program? We
would have to maintain two versions of our program: one with ancestry based on biological parents
and one extended to include adoptions. We could store these two programs as copies in separate
files, but what happens when we discover a bug in one program? Or when we want to extend
the other? We quickly run into the multiple maintenance problem. What we want is the ability to
construct, compose, and solve Datalog programs at run-time. What we need are first-class constraints.
Here is a reformulation of both programs as a single program in our extension of Flix:

def getParents[r](): #{ ParentOf(String , String) | r} = #{

ParentOf("Pompey", "Strabo").

ParentOf("Gnaeus", "Pompey").

ParentOf("Pompeia", "Pompey").

ParentOf("Sextus", "Pompey").

}

def getAdoptions[r]() #{ AdoptedBy(String , String) | r} = #{

AdoptedBy("Augustus", "Caesar").

AdoptedBy("Tiberius", "Augustus").

}

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:4 Magnus Madsen and Ondřej Lhoták

def heritage[r](withAdoptions: Bool): #{ ParentOf(String , String),

AncestorOf(String , String), AdoptedBy(String , String) | r} =

let p1 = #{

AncestorOf(x, y) :- ParentOf(x, y).

AncestorOf(x, z) :- AncestorOf(x, y), AncestorOf(y, z).

};

let p2 = #{

AncestorOf(x, y) :- AdoptedBy(x, y).

};

if (withAdoptions) p1 else (p1 <+> p2)

def ancestors(withAdoptions: Bool): #{ AncestorOf(String , String) | r} =

let facts = getParents () <+> getAdoptions ();

let model = solve (facts <+> heritage(withAdoptions));

project AncestorOf model

This program illustrates the key idea of our work: Datalog constraints are first-class values. We can
pass them around, compose them with other Datalog values, and solve them.
The functions getParents and getAdoptions return sets of facts about biological parents and

adoptions. The heritage function encapsulates the two variants of the Datalog program. The
function constructs the two Datalog program values p1 and p2, and returns either p1, corresponding
to the program solely with biological parents, or the composition (i.e. union) of p1 and p2, corre-
sponding to the program with biological and adoptive parents. The ancestor function assembles
the facts and rules, computes their minimal model (with solve), and returns the AncestorOf facts.
The getParents, getAdoptions, and ancestor functions have a row type parameter r . If the
parameter were removed, each function would return a closed row which could not be combined
with Datalog constraints sets containing other predicate symbols.

The program illustrates the following important principles of our design:

Principle I: Datalog constraints are first-class values that can be passed around.

Principle II: Datalog constraints can be composed with other Datalog constraints to
form larger Datalog programs.

Principle III: The design preserves the essence of Datalog: the constraints are declarative,
they look like ordinary Datalog clauses, and they are solvable by standard techniques.

2.2 Example II

We now consider a simple reachability problem: Given a road network with speed limits on each
road, we want to determine if it is possible to drive from one city to another city going at least a
certain speed. We can write a function r that uses Datalog to compute if this is possible:

def r(g: #{Road(City , Int , City)}, src: City , dst: City , speed: Int): Bool =

let p = #{

Path(x, y) :- Road(x, speedLimit , y), if speedLimit > speed.

Path(x, z) :- Path(x, y), Road(y, speedLimit , z), if speedLimit > speed.

};

(solve g <+> p) |= #{ Path(src , dst). }

The function r takes a road network in the form of a set of road facts g, a source city src, a destination
city dst, and a minimum speed we want to go on each road. Each rule is equipped with a boolean-
valued filter expression that must be true in the minimal model. The expression e1 |= e2 returns
true if e2 is a subset of e1. In other words, if there is a path with the desired speed.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:5

If we want a leisurely drive, we may wish to avoid roads which have a high speed limit. Instead
of changing the r function, we can generalize it by equipping it with a predicate q that determines
whether the speed limit on a road is acceptable:

def r(g: #{Road(City , Int , City)}, src: City , dst: City , q: Int -> Bool): Bool =

let p = #{

Path(x, y) :- Road(x, speedLimit , y), if q(speedLimit).

Path(x, z) :- Path(x, y), Road(y, speedLimit , z), if q(speedLimit).

};

(solve g <+> p) |= #{ Path(src , dst). }

We can imagine that roads carry not only speed limits, but also other meta-data such as the
presence of construction work, the current weather conditions, etc. We can further generalize r to
be polymorphic in the type of the information associated with a road:

def r[a](g: #{Road(City , a, City)}, src: City , dst: City , q: a -> Bool): Bool =

let p = #{

Path(x, y) :- Road(x, metaData , y), if q(metaData).

Path(x, z) :- Path(x, y), Road(y, metaData , z), if q(metaData).

};

(solve g <+> p) |= #{ Path(src , dst). }

These programs illustrate the following important principles of our design:

Principle IV: Datalog constraints may refer to expressions in the functional language.

Principle V: The types of the predicates of a Datalog constraint may be polymorphic.

2.3 Benefits of Type Safety

We can imagine a programmer accidentally writing a program like:

let g = #{

Edge(Paris , 120, Lyon).

Edge(Lyon , 110, Rome).

};

let q = #{

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

};

solve (g <+> q)

where the arity of the predicate symbol Edge is inconsistent. In the facts of g, the Edge relation
is ternary, whereas in the rules of q, the Edge relation is binary. The composition of g and q is
meaningless: In a Datalog program every predicate symbol must have a fixed arity. In the presence
of first-class Datalog constraints, evaluation of such a program would get stuck at run-time. In this
paper, we propose a static type system, based on row polymorphism, to reject such programs.
As a continuation of Example II, we can also imagine a programmer accidentally writing:

let g = #{ Road(Paris , true , Lyon). ... };

solve r(g, Paris , Rome , speed -> speed > 60)

This program would get stuck inside the Datalog engine, since when the function speed -> speed

> 60 is applied to the value true, we get the stuck term: true > 60. The proposed type system
also rejects such programs.

Principle VI: Type safety: Well-typed programs do not get stuck.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:6 Magnus Madsen and Ondřej Lhoták

P ∈ Programs = C1, · · · ,Cn

C ∈ Constraints = A0 ⇐ B1, · · · ,Bn

A ∈ Head Atoms = p(t1, · · · , tn)

B ∈ Body Atoms = p(t1, · · · , tn) | notp(t1, · · · , tn)

t ∈ Terms = x | c

c ∈ Literals = is a set of literal constants.

x,y ∈ VarSym = is a set of variable symbols.

p,q ∈ PredSym = is a set of predicate symbols.

Fig. 1. Datalog Syntax.

These examples demonstrate the benefit of a type system. A library based approach would suffer
from such run-time errors. In addition, from a practical point of view, a language-based approach
has several advantages: (i) we can determine whether a Datalog program is stratified (and compute
its stratification) at compile-time (see Section 4.7), (ii) we can have proper syntax and integration
with lexical scoping (as shown in the examples), and (iii) we can provide understandable type and
stratification error messages.

3 THE λDat CALCULUS

We now present λDat, a minimal lambda calculus with first-class Datalog constraints, which is the
formal foundation of our implementation. We begin with a brief recap of Datalog, then discuss the
syntax, semantics, and type system of λDat.

3.1 A Brief Recap of Datalog

We briefly discuss the syntax and semantics of Datalog. Readers who are already familiar with
Datalog may wish to skip this subsection. A comprehensive introduction to Datalog is available in
Ceri et al. [1989, 2012]. In this paper, we focus on stratified Datalog, a variant of Datalog with a
restricted form of negation [Minker 1988].

Syntax. A Datalog program P is a collection of constraints C1, · · · ,Cn . A constraint, also called
a Horn clause, is of the form A0 ⇐ B1, · · · ,Bn where A0 is the head atom and each Bi is a body
atom. A head atom p(t1, · · · , tn) consists of a predicate symbol p and a sequence of terms t1, · · · , tn .
A body atom is similar to a head atom, except it can be negated, which is written with the not
keyword in front of the predicate symbol. A constraint without a body is called a fact. Conversely,
a constraint with a body is called a rule. A term is either a variable x or a literal constant c . An atom
without variables is said to be ground. A fact or rule with only ground atoms is said to be ground.
Figure 1 shows the grammar of Datalog. As an example, the constraint:

Path(x, z) ⇐ Path(x,y), Edge(y, z).

is a rule with predicate symbols Path and Edge and variables x , y and z. Datalog rules are implicitly
universally quantified by their variables, hence the rule is formally written as:

∀x,∀y,∀z. Path(x, z) ⇐ Path(x,y), Edge(y, z).

In the calculus, we will write constraints with universal quantifiers. In the implementation, as
shown in the previous section, the compiler will automatically determine which variables are
implicitly quantified and which are bound by the lexical scope. Thus, like in traditional Datalog
programs, the programmer never has to explicitly introduce variables.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:7

v ∈ Val = c | λx . e | #{C1, · · · ,Cn }

e ∈ Exp = x | v | e e | letx = e in e
| e <+> e | solve e | subset e e | projectp e
| S(e) | H(A, e, e)

C ∈ Constraints = ∀(x1 : τ1 · · · xn : τn).A0

e
⇐ B1, · · · ,Bn

A ∈ Head Atoms = p(th
1
, · · · , thn)

B ∈ Body Atoms = p(tb
1
, · · · , tbn) | notp(t

b
1
, · · · , tbn)

th ∈ Head Terms = x | c | e

tb ∈ Body Terms = x | c

c ∈ Literals = is a set of literal constants.
x,y ∈ VarSym = is a set of variable symbols.
p,q ∈ PredSym = is a set of predicate symbols.

Fig. 2. Syntax of λDat.

Semantics. The model-theoretic semantics of Datalog describes the solution, i.e. minimal model,
of any Datalog program independent of the mechanism used to compute it [Ceri et al. 1989, 2012;
Fitting 2002; Gelfond and Lifschitz 1988, 1991; Kunen 1987]. Intuitively, a Datalog model is simply
a set of facts. The minimal model is the smallest set of facts that satisfies all constraints. The
model-theoretic semantics is what makes Datalog declarative: we can write a Datalog program,
and someone else can write a Datalog solver, and we can independently agree on what the result
ought to be. In this paper, we shall not be particularly concerned with how the minimal model
is computed. Rather, we will model a generic Datalog solver with very mild assumptions about
its behavior. Consequently, the calculus will work with any Datalog solver independent of its
specific implementation details. We will model the solver as a black box that, when given a set of
Datalog constraints, is permitted to repeatedly select any constraint, pick a type-safe valuation of its
quantified variables, instantiate the constraint with the valuation, evaluate its terms (expressions),
and add the head atom to the current constraint set.

3.2 Syntax of λDat

We now turn to the syntax of λDat which extends the lambda calculus with first-class constraints.
The grammar of λDat is shown in Figure 2. The language includes the usual expressions from the
lambda calculus: constants, variables, lambda abstraction, function application, and let-bindings.

Values. The values of λDat include literal constants c , lambda abstractions λx . e , and constraint

sets #{C1, · · · ,Cn}. A constraint set is a set of enriched Datalog constraints. In our extension of
Flix, a single fact or rule can be written without #{}. We will use this in subsequent examples
when there is no risk of confusion. The grammar of constraints mirrors that of Figure 1, but with
three important differences: (i) the implicit universally quantified variables are made explicit along
with their types, (ii) every constraint is extended with a filter expression on the implication arrow,
and (iii) the terms of a head atom may now be expressions. The last two extensions enrich the
expressive power of the constraints.
A constraint set #{C1, · · · ,Cn} is a set of the constraints C1, · · · ,Cn . We define two Datalog

constraints C1 and C2 to be equal when they are syntactically identical.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:8 Magnus Madsen and Ondřej Lhoták

(λx . e)v → e[x 7→ v]
(E-App)

letx = v in e → e[x 7→ v]
(E-Let)

v1 = #{C1

1
· · ·C1

n } v2 = #{C2

1
· · ·C2

m }

v1 <+> v2 → #{C1

1
· · ·C1

n,C
2

1
· · ·C2

m }

(E-Compose)

solve#{C1 · · ·Cn } → S(#{C1 · · ·Cn })
(E-Solve)

v1 = #{C1

1
· · ·C1

n } v2 = #{C2

1
· · ·C2

m }

v1 ⊆ v2

subsetv1v2 → true

(E-Subset-T)

v1 = #{C1

1
· · ·C1

n } v2 = #{C2

1
· · ·C2

m }

v1 ⊈ v2

subsetv1v2 → false

(E-Subset-F)

v = {p(v1 · · ·vm) | p(v1 · · ·vm) ∈ #{C1 · · ·Cn }}

projectp#{C1 · · ·Cn } → v

(E-Project)

Ci = ∀(x1 : τ1 · · · xn : τn).A
e
⇐ B1 · · ·Bn′

ν is a prim. valuation of xi s.t. typeOf(ν (xi)) = τi

S(#{C1 · · ·Cn′′}) → H(ν (A),ν (e),#{C1 · · ·Cn′′})

(S-Rule)

v = {p(v1 · · ·vn) | p(v1 · · ·vn) ∈ #{C1 · · ·Cn′}}

S(#{C1 · · ·Cn′}) → v

(S-Finish)

A = p(v1 · · ·vn)

H(A, true,#{C1 · · ·Cn }) → S(#{A,C1 · · ·Cn })

(H-True)

A = p(v1 · · ·vn)

H(A, false,#{C1 · · ·Cn }) → S(#{C1 · · ·Cn })

(H-False)

Fig. 3. Semantics of λDat.

Expressions. The expressions of λDat include variables x , values v , function application e e , and
let-bindings letx = e in e . The calculus has four expressions for working with first-class constraints:
(i) a composition expression e1 <+> e2 to compute the union of two constraint sets, (ii) a subset

expression subset e1 e2 to determine if one constraint set is a subset of another constraint set, (iii) a
project expression projectp e to extract all facts of a given predicate symbol from a constraint set,
and (iv) a solve expression solve e to compute the minimal model of a constraint set. Finally, the
calculus has two internal constructs: S(e) and H(A, e, e) to model the execution of the Datalog
solver. The two expressions are not considered part of the surface syntax of the language. Figure 2
shows the grammar of the expressions in λDat.

Composing Constraints. We can compute the union of two constraints sets with the composition

expression e <+> e . Unlike in Prolog, the order of constraints in Datalog is immaterial. Hence,
composition is both commutative and associative1:

e1 <+> e2 = e2 <+> e1 (||-Commutative)

(e1 <+> e2) <+> e3 = e1 <+> (e2 <+> e3) (||-Associative)

Furthermore, repeating a Datalog constraint has no effect, so composition is idempotent:

e <+> e = e (||-Idempotent)

A key insight is that these properties enable a design of first-class constraints which supports
modular and local reasoning. A similar design for Prolog falls apart because the order of clauses is
significant and simply changing the order of two clauses may cause non-termination.

1Under the assumption that e1, e2, and e3 are pure (i.e. have no side-effects) and total (i.e. always terminate).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:9

Computing the Minimal Model. We can compute the minimal model of a constraint set with the
solve e expression. The expression evaluates to a new constraint set that consists of all the facts in
the minimal model of e . The constraint set does not contain any rules.
The solve expression is idempotent since the minimal model of a set of facts is the set itself:

solve (solve e) = solve e (Solve-Idempotent)

Why is Solve Explicit? The solve operationmust be explicit because in the presence of composition
of constraint sets, we cannot identify a constraint set with its minimal model. If we compute
the minimal model eagerly, immediately when two constraints are composed, then the order of
composition determines the minimal model. For example, if we have the program:

let a = A(1).;

let b = B(1).;

let q = R(x) :- A(x), not B(x).

Then the eager computation of (a <+> b) <+> q is not equivalent to the eager computation of
(a <+> q) <+> b. The minimal model of the former does not contain an R fact, but the latter does.
We view such order dependence as completely antithetical to the declarative nature of Datalog.
Consequently, our design requires explicit solve expressions.

Comparing Constraint Sets. We can compute whether one constraint set is a subset of another
with the subset expression subset e1 e2. The expression evaluates to true if all constraints in e1
appear in e2. The expression does not compute the minimal model of e1 nor e2. By lifting a fact
into the singleton set, the subset expression can be used to determine if the minimal model of a
program contains that fact.

Projecting Constraint Sets. We can use the project expression projectp e to select the facts in e

which share the predicate symbol p. The project expression is useful when we have computed the
minimal model of a program, and we want to select a certain type of facts for further computation.

Enriched Datalog Constraints. We enrich Datalog constraints in two ways: (i) we introduce a
filter expression as a guard on a constraint, and (ii) we allow arbitrary expressions as head terms.

For (i), a constraint with a filter expression e is written as: ∀(x1 : τ1, · · · , xn : τn).A0

e
⇐

B1, · · · ,Bn . The expression e may refer to any of the quantified variables x1, · · · xn of the constraint.
Filter expressions enrich the semantics of a Datalog constraint by allowing an arbitrary expression
to determine when a ground instance of the constraint holds. But the cost is decidability: the
programmer must take adequate measures to ensure that the expression e always terminates.

For (ii), a constraint may now have arbitrary expressions as terms in its head atom. This increases
the expressiveness at the cost of decidability. For example, we can now perform addition from
within constraints:

Var(r, v1 + v2) :- Add(r, x, y), Var(x, v1), Var(y, v2).

But the consequence is that the Herbrand Base is no longer finite, and as such we have lost most of
the important properties of Datalog. For example, we can now write a program with a constraint
that never terminates:

P(0). P(x + 1) :- P(x).

With great power comes great responsibility: If the programmer chooses to use the enriched Datalog
constraints, then he or she must ensure termination and that the Herbrand base remains finite.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:10 Magnus Madsen and Ondřej Lhoták

E ∈ Ctx = □

| E e | v E | E <+> e | v <+> E | letx = E in e
| solveE | subsetE e | subsetv E | projectp E
| S(E) | H(A, e, E) | H(A, E,v)

| H(p(v, · · · , Ei , · · · , e),v,v)

Fig. 4. Evaluation Contexts of λDat.

Internal Solver Expressions. We model the semantics of the Datalog solver with two internal solver
expressions. The two internal expressions are not part of the surface syntax of the language, but
they are expressions that appear during evaluation.
The select expression S(#{C1, · · · ,Cn}) represents an internal state where the Datalog solver

is in the process of computing the fixed point of the constraint set #{C1, · · · ,Cn} and needs to
select and instantiate a constraint. The extend expression:H(A, e,#{C1, · · · ,Cn}) represents an
internal state where the Datalog solver is in the process of evaluating the head terms of an atom
and its filter expression. If the filter expression evaluates to true, then the evaluated head atom is
added to the constraint set, and the solver continues. If the filter expression evaluates to false,
then the solver continues with the original constraint set. The purpose of the two internal solver
expressions is to mimic the most fundamental operations of a Datalog solver: rule selection, rule
instantiation, and evaluation of head terms. The idea is that these two expression can be substituted
for an actual implementation while preserving the type safety of the calculus.

3.3 Evaluation of λDat

We define evaluation of λDat as a small-step operational semantics. The evaluation relation e → e ′

describeswhen the expression e can reduce to the expression e ′ in a single step.We define an intrinsic
(or Church-style) semantics where the evaluation rules depend on the type of the expressions: in
other words, we assign no meaning to untyped programs. This is required, since for the Datalog
solver to correctly instantiate a Datalog constraint, it must know the types of its quantified variables.
The evaluation rules of λDat are shown in Figure 3. We now discuss the most important rules:

The evaluation rule for constraint composition:

v1 = #{C1

1
, · · · ,C1

n} v2 = #{C2

1
, · · · ,C2

m}

v1 <+> v2 → #{C1

1
, · · · ,C1

n,C
2

1
, · · · ,C2

m}
(E-Compose)

states that to combine two constraint sets, we compute their union. The evaluation rule for solve:

solve#{C1, · · · ,Cn} → S(#{C1, · · · ,Cn}) (E-Solve)

states that a solve expression reduces to the internal select expression.
The first evaluation rule for the subset expression:

v1 = #{C1

1
, · · · ,C1

n} v2 = #{C2

1
, · · · ,C2

m} v1 ⊆ v2

subsetv1v2 → true
(E-Subset-T)

states that a constraint setv1 is a subset ofv2 if all constraints inv1 also occur inv2. The (E-Subset-
F) rule is similar.
The evaluation rule for projection:

v = {p(v1, · · · ,vm) | p(v1, · · · ,vm) ∈ #{C1, · · · ,Cn}}

projectp#{C1, · · · ,Cn} → v
(E-Project)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:11

states that given the predicate symbol p and the constraint set #{C1, · · · ,Cn}, the expression
reduces to those ground facts in#{C1, · · · ,Cn} that share the same predicate symbol. Note that
the project expression returns ground facts, and implicitly strips out non-ground facts and rules.
The first evaluation rule for the internal select expression:

Ci = ∀(x1 : τ1, · · · , xn : τn).A
e
⇐ B1, · · · ,Bn′

ν is a primitive valuation of xi s.t. typeOf(ν (xi)) = τi

S(#{C1, · · · ,Cn′′}) → H(ν (A),ν (e),#{C1, · · · ,Cn′′})
(S-Rule)

states that given a constraint set #{C1, · · · ,Cn}, the Datalog solver may non-deterministically
select any constraintCi and any primitive valuation ν of the quantified variables x1 : τ1, · · · , xm : τm .
The valuation must assign a value of type τi to each quantified variable xi and the value must be a
primitive value. We do not allow complex types, such as functions and constraint sets, as terms.
The evaluation rule is in Church-style since evaluation depends on the types of the quantified
variables x1, · · · , xn . Given a primitive valuation ν , the expression applies it to the head atom A

and the filter expression e , and reduces to the extend expression with these components together
with the original constraint set. Intuitively, the (S-Rule)models the Datalog solver when it selects a
Datalog rule for evaluation, binds its quantified variables, and proceeds to evaluate the head atom.
The second evaluation rule for the internal select expression:

v = {p(v1, · · · ,vn) | p(v1, · · · ,vn) ∈ #{C1, · · · ,Cn′}}

S(#{C1, · · · ,Cn′}) → v
(S-Finish)

states that the select expression S(#{C1, · · · ,Cn}) may immediately evaluate to the facts of
#{C1, · · · ,Cn}. Together, the (S-Rule) and (S-Finish) evaluation rules model a non-deterministic
execution where constraints are repeatedly instantiated, their head atoms become part of the
constraint set (if the filter expression reduces to true), and at some point the facts of the constraint
set are returned. This over-approximates the concrete evaluation steps of any reasonable Datalog
engine without modeling its exact semantics.
The extend expression has two evaluation rules, (H-True) and (H-False), depending on the

value of the filter expression. The first rule:

A = p(v1, · · · ,vn)

H(A, true,#{C1, · · · ,Cn}) → S(#{A,C1, · · · ,Cn})
(H-True)

states that the expressionH(A, true,#{C1, · · · ,Cn}) reduces to the select expression where the
constraint set has been extended with the fact A. Note that the side-condition requires that all
terms of A are values, i.e. that A is a ground fact.

Substitution. As is standard, we use capture avoiding substitution to implement beta reduction
for λDat. The substitution rules are available in the technical report [Madsen and Lhoták 2020].

Evaluation Contexts. As is also standard, we use evaluation contexts to allow reduction of sub-
expressions [Felleisen et al. 2009]. Figure 4 shows the evaluation contexts of λDat. We use □ to
represent the hole in the expression tree. If E is an evaluation context, then E[e] is an expression
in which the hole □ has been replaced by the expression e . We assume that the semantics are
extended with the rule:

e → e ′

E[e] → E[e ′]
(E-Context)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:12 Magnus Madsen and Ondřej Lhoták

τ ∈ Type = α | ι | τ1 → τ2 | (τ1, · · · , τn) | r

r , s ∈ Row = ρ | { } | {p = (τ1, · · · , τn) | r }

α ∈ TypeVar = is a set of type variables.
ρ ∈ RowVar = is a set of row variables.

(a) Mono Types of λDat.

σ ∈ Scheme = ∀α ∀ρ. τ poly type

α ∈ TypeVar = is a set of type variables.
ρ ∈ RowVar = is a set of row variables.

(b) Type Schemes of λDat.

Fig. 5. Mono Types and Type Schemes of λDat.

In the proofs, we will sometimes refer to a specific instantiation of this meta-rule in combination
with a specific evaluation context. For example, we might refer to the context rule in reference to
the first evaluation context for function application, i.e. the context rule with E = E ′ e for some E ′.
The evaluation contexts for λDat are straightforward. In the case of the extend expression, the

context enforces that we evaluate the constraint set first, then the filter expression, and finally the
terms (expressions) of the head atom itself.

4 TYPING OF λDat

We now discuss the type system for λDat. The type system is based on Hindley-Milner [Damas and
Milner 1982; Wright and Felleisen 1994] extended with row types. We use row types to precisely
track the types of predicate symbols in constraint sets. In this way, the type system is reminiscent
of type systems for extensible records [Leijen 2005]. We have proved soundness of the type system.
The detailed proofs are available in the technical report [Madsen and Lhoták 2020].

4.1 Mono and Poly Types

The type system, as is standard for Hindley-Milner style type systems, splits types into mono- and
poly types. Figure 5a shows the mono types of λDat. The mono types consist of type variables
α , a set of base types denoted by ι (e.g. Bool), function types τ1 → τ2, tuple types (τ1, · · · , τn),
and row types r . A row type is either a row type variable ρ, an empty row {}, or a row extension
{p = (τ1, · · · , τn) | r }. A row type describes the types of the predicate symbols of a constraint set.
For example, the constraint set:

#{A(123).,B("Hello World").}

may be assigned the row type:

{A = (Int) | {B = (Str) | {}}}

For brevity, we will write such types as: {A = (Int),B = (Str)}. In our extension of Flix both
constraint sets and row types are written using#{}. In the calculus, for clarity, we write constraint
sets as #{· · ·} and row types as {· · · } without the hash #.

Figure 5b shows the poly types (or type schemes) of λDat. A poly type is of the form:

∀α1, · · · ,αn ∀ρ1, · · · , ρm . τ

As can be seen, we separate regular type variables α from row type variables ρ. We use poly types
to type polymorphic constraint sets. For example, the constraint set:

#{Path(x, z) ⇐ Path(x,y), Edge(y, z).}

is given the polymorphic type:

∀α1,α2 ∀ρ . {Path = (α1,α2), Edge = (α2,α2) | ρ}

The type is polymorphic in the terms of the Edge and Path atoms. Specifically, the variable x must
have type α1 whereas the variables y and z must have type α2, because the two occurrences of the

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:13

τ � τ (Eq-Refl)

τ1 � τ2 τ2 � τ3

τ1 � τ3
(Eq-Trans)

τ1 � τ ′
1

τ2 � τ ′
2

τ1 → τ2 � τ ′
1
→ τ ′

2

(Eq-Arrow)

∀i . τi � τ ′i

(τ1, · · · , τn) � (τ
′
1
, · · · , τ ′n)

(Eq-Tuple)

p , p′

{p : τ , p′ : τ ′ | r } � {p′ : τ ′, p : τ | r }

(Eq-Swap)

τ � τ ′ r � s

{p : τ | r } � {p : τ ′ | s }

(Eq-Head)

Fig. 6. Type Equivalence in λDat.

Path atom force the variables y and z to have the same type. But, the type is also polymorphic
in the rest of the row ρ, since the constraint set can be composed with other constraint sets that
(potentially) contain additional predicate symbols.

As is standard, we introduce a partial order on types [Damas and Milner 1982; Wright and
Felleisen 1994]. Given two poly types σ1 and σ2, we say that σ1 is more general than σ2, written as
σ1 ⊑ σ2, if there is a substitution s of quantified variables of σ1 such that s(σ1) = σ2. For example:

∀α .α → α ⊑ Int→ Int

∀ρ .{A = (Int) | ρ} ⊑ {A = (Int),B = (Int)}

∀α, ρ .{A = α,B = (Int) | ρ} ⊑ {A = (Int),B = (Int),C = (Bool)}

The least element of the partial order is ∀α .α .

4.2 Type Equality

Consider the two constraint sets:

#{A(123). B(456).} and #{B(456).A(123).}

We can assign them the two types:

{A = (Int),B = (Int)} and {B = (Int),A = (Int)}

These two types are not equivalent, since the order of the predicate symbols is different! But clearly,
from a Datalog perspective, the two constraints sets are equivalent.
To fix this, we introduce an equivalence relation on types. Specifically, we consider two row

types to be equivalent up to permutation of distinct labels following Leijen [2005]. Figure 6 specifies
this equivalence relation � on types. The [Eq-Refl] and [Eq-Trans] rules specify that the relation
is reflexive and transitive. In the technical report [Madsen and Lhoták 2020], we prove that the
relation is symmetric, hence it is an equivalence relation. The [Eq-Arrow] and [Eq-Tuple] rules
specify that function and tuple types are equivalent if their constituents are. The [Eq-Head] rule
specifies that two row types are equivalent if their first predicate symbols are the same, they have
equivalent types, and the rest of the two rows are equivalent. The [Eq-Swap] rule specifies that
two row types are equivalent if they are equivalent when the first two predicates of one of them
are swapped, provided that the predicate symbols are distinct. With this in place, we have that:

{A = (Int), B = (Int)} � {B = (Int), A = (Int)}

The type system permits rows with duplicate predicate symbols. In the context of extensible records
with scoped labels such types make sense and can be useful, but in the context of our work they are
more of an artifact. We tolerate them because they simplify the formalism and the implementation
of type inference. We refer the reader to Leijen [2005] for more details.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:14 Magnus Madsen and Ondřej Lhoták

4.3 Examples

Before we present the type system in detail, we give some examples of how it works.

Example I. Consider the program fragment:

let p1 = Edge("a", "b").;

let p2 = Path("a", "b").;

let p3 = p1 <+> p2;

The type system will assign the two local variables p1 and p2 the row polymorphic types:

p1 : ∀r1.{Edge = (Str, Str) | r1}

p2 : ∀r2.{Path = (Str, Str) | r2}

The type rule for composition:

Γ ⊢ e1 : r Γ ⊢ e2 : r ′ r � r ′

Γ ⊢ e1 <+> e2 : r
(T-Compose)

requires that the types of p1 and p2 are equivalent. We can instantiate the two polymorphic types
using the type rule for variables:

(x,σ) ∈ Γ σ ⊑ τ

Γ ⊢ x : τ
(T-Var)

which allow us to replace r1 by {Path = (Str, Str) | r3} and r2 by {Edge = (Str, Str) | r3}. We
pick the same type variable r3 for both instantiations; otherwise the composition rule would be
inapplicable. The type rule for composition now allows us to conclude that p1 <+> p2 has type:

{Edge = (Str, Str), Path = (Str, Str) | r3}

Using the type rule for let:

Γ ⊢ e1 : τ1 Γ, x : gen(Γ, τ1) ⊢ e2 : τ2

Γ ⊢ letx = e1 in e2 : τ2
(T-Let)

We obtain the polymorphic type:

∀r3.{Edge = (Str, Str), Path = (Str, Str) | r3}

for the local variable p3.

Example II. Consider the program fragment for some labelled graph:

let p1 = Edge("a", 123, "b").;

let p2 = Path(x, l, z) :- Path(x, l, y), Edge(y, l, z).;

let p3 = p1 <+> p2;

The types of the three local variables are:

p1 : ∀r1.{Edge = (Str, Int, Str) | r1}

p2 : ∀α1,α2,α3,∀r2.{Edge = (α1,α2,α3), Path = (α1,α2,α3) | r2}

p3 : ∀r3.{Edge = (Str, Int, Str), Path = (Str, Int, Str) | r3}

Note how the type ofp2 is polymorphic in terms of Edge and Path, but oncep1 andp2 are composed
in p3, the types of both Edge and Path become (Str, Int, Str).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:15

Example III. If we modify the previous program to the following:

let p1 = Edge("a", 123, "b").;

let p2 = Path(x, l1, z) :- Path(x, l1, y), Edge(y, l2, z).;

let p3 = p1 <+> p2;

We get the more interesting types:

p1 : ∀r1. {Edge = (Str, Int, Str) | r1}

p2 : ∀α1,α2,α
′
2
,α3,∀r2. {Edge = (α1,α2,α3), Path = (α1,α

′
2
,α3) | r2}

p3 : ∀α ′
2
,∀r3. {Edge = (Str, Int, Str), Path = (Str,α ′

2
, Str) | r3}

Note how the type of p2 is now polymorphic in both labels l1 (with type α ′
2
) and l2 (with type α2).

Consequently, p3 becomes polymorphic in the label l1 (α ′2).

Ill-typed Example I. The program fragment:

let p1 = Edge("a", "b").;

let p2 = Edge("a", 42, "b").;

let p3 = p1 <+> p2;

cannot be typed since the types of p1 and p2:

∀r1.{Edge = (Str, Str) | r1} and ∀r2.{Edge = (Str, Int, Str) | r2}

cannot be unified.

Ill-typed Example II. The program fragment:

let p1 = Edge("a", 12345, "b").;

let p2 = Edge("a", "abc", "b").;

let p3 = p1 <+> p2;

cannot be typed since the types of p1 and p2:

∀r1.{Edge = (Str, Int, Str) | r1} and ∀r2.{Edge = (Str, Str, Str) | r2}

cannot be unified.

Ill-typed Example III. Similarly, the single constraint:

Path(x, 42, z) :- Path(x, "foo", y), Edge(y, z).

cannot be typed since the types of the Path atom in the head and body cannot be unified.

4.4 Type Rules

We now present the type rules of λDat. The type rules are a syntax-directed formulation of the
Hindley-Milner type system where instantiation occurs in the type rule for variables [T-Var] and
generalization occurs in the type rule for let-bindings [T-Let] [Damas and Milner 1982; Wright and
Felleisen 1994]. Figure 7 shows the type rules of λDat. The type system has three type judgements:
Γ ⊢ e : τ for expressions, Γ ⊢c C : r for constraints, and Γ ⊢p A : r for atoms. We assume that there
is a function typeOf : Literal→ Type that assigns a primitive type to every constant literal.
We now discuss the most important type rules:
The type rule for composition was shown in Example I. It states that e1 and e2 must have row

types r and r ′, and they must be equivalent r � r ′:

Γ ⊢ e1 : r Γ ⊢ e2 : r ′ r � r ′

Γ ⊢ e1 <+> e2 : r
(T-Compose)

The type rule for project states that e must have a row type where the predicate p has some type
(τ1, · · · , τn), and then the result is a new row type with the same type for the predicate p:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:16 Magnus Madsen and Ondřej Lhoták

typeOf(c) = ι

Γ ⊢ c : ι
(T-Cst)

(x,σ) ∈ Γ σ ⊑ τ

Γ ⊢ x : τ
(T-Var)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx . e : τ1 → τ2
(T-Abs)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ ′
1

τ1 � τ ′
1

Γ ⊢ e1 e2 : τ2
(T-App)

Γ ⊢ e1 : τ1 Γ, x : gen(Γ, τ1) ⊢ e2 : τ2

Γ ⊢ letx = e1 in e2 : τ2
(T-Let)

Γ ⊢ e1 : r Γ ⊢ e2 : r ′ r � r ′

Γ ⊢ e1 <+> e2 : r
(T-Compose)

Γ ⊢ e : r

Γ ⊢ solve e : r
(T-Solve)

Γ ⊢ e1 : r Γ ⊢ e2 : r ′ r � r ′

Γ ⊢ subset e1 e2 : Bool
(T-Subset)

Γ ⊢ e : r r � {p = (τ1, · · · , τn) | r
′}

Γ ⊢ projectp e : {p = (τ1, · · · , τn) | r ′′}
(T-Project)

Γ ⊢ e : r

Γ ⊢ S(e) : r
(T-Select)

Γ ⊢p A : r Γ ⊢ e1 : Bool Γ ⊢ e2 : r ′ r � r ′

Γ ⊢ H(A, e1, e2) : r

(T-Extend)

∀i . (Γ ⊢c Ci : ri ∧ ri � r)

Γ ⊢ #{C1, · · · ,Cn } : r
(T-Constraint-Set)

Γ, x1 : τ1, · · · , xm : τm ⊢p A0 : r

∀i . Γ, x1 : τ1, · · · , xm : τm ⊢p Bi : ri
∀i . r � ri Γ, x1 : τ1, · · · , xm : τm ⊢ e : Bool

Γ ⊢c ∀(x1 : τ1, · · · , xm : τm).A0

e
⇐ B1, · · · ,Bn : r

(T-Constraint)

∀i . Γ ⊢ thi : τi

Γ ⊢p p(th
1
, · · · , thn) : {p = (τ1, · · · , τn) | r }

(T-Head-Atom)

∀i . Γ ⊢ tbi : τi

Γ ⊢p p(tb
1
, · · · , tbn) : {p = (τ1, · · · , τn) | r }

(T-Body-Atom-1)

∀i . Γ ⊢ tbi : τi

Γ ⊢p notp(tb
1
, · · · , tbn) : {p = (τ1, · · · , τn) | r }

(T-Body-Atom-2)

gen(Γ, τ) = ∀α1, · · · ,αn,∀ρ1, · · · , ρn .τ

where {α1, · · · ,αn, ρ1, · · · , ρn } = ftv(τ) \ ftv(Γ)

Fig. 7. Type Rules of λDat.

Γ ⊢ e : r r � {p = (τ1, · · · , τn) | r
′}

Γ ⊢ projectp e : {p = (τ1, · · · , τn) | r ′′}
(T-Project)

The type rule for the internal select expression states that e must have a row type r and the
result has type r :

Γ ⊢ e : r

Γ ⊢ S(e) : r
(T-Select)

The type rule for the internal extend expression states that the atom Amust have row type r under
the typing judgement for atoms ⊢p , the filter expression e1 must have type Bool, and the constraint
set e2 must have row type r ′. Finally, r and r ′ must be equivalent, i.e. r � r ′:

Γ ⊢p A : r Γ ⊢ e1 : Bool Γ ⊢ e2 : r ′ r � r ′

Γ ⊢ H(A, e1, e2) : r
(T-Extend)

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:17

The type rule for a constraint set states that the type of a constraint set #{C1, · · · ,Cn} is a row
type r if each of the constraintsCi are typeable under the ⊢c typing judgement with some row type
ri and all of the row types are equivalent to r :

∀i . (Γ ⊢c Ci : ri ∧ ri � r)

Γ ⊢ #{C1, · · · ,Cn} : r
(T-Constraint-Set)

Intuitively, the rule ensures that the types of the predicates within multiple constraints have
consistent types.
The type rule for a single constraint is:

Γ, x1 : τ1, · · · , xm : τm ⊢p A0 : r

∀i . Γ, x1 : τ1, · · · , xm : τm ⊢p Bi : ri
∀i . r � ri Γ, x1 : τ1, · · · , xm : τm ⊢ e : Bool

Γ ⊢c ∀(x1 : τ1, · · · , xm : τm).A0

e
⇐ B1, · · · ,Bn : r

(T-Constraint)

It states that a constraint ∀(x1 : τ1, · · · , xm : τm).A0

e
⇐ A1, · · · ,An has row type r under a type

environment Γ if we can type its constituents as follows: (i) the head atom A0 must have type r
under the extended environment Γ, x1 : τ1, · · · , xm : τm , (ii) each body atom Ai must have type ri
under the extended environment Γ, x1 : τ1, · · · , xm : τm , (iii) all the row types, r and each ri must
be equivalent, and (iv) the filter expression e must have type Bool under the extended environment
Γ, x1 : τ1, · · · , xm : τm . Intuitively, the rule ensures that the types of the atoms within a single
constraint have consistent types.
The type rule for a head atom is:

∀i . Γ ⊢ thi : τi

Γ ⊢p p(t
h
1
, · · · , thn) : {p = (τ1, · · · , τn) | r }

(T-Head-Atom)

It states that the type of an atom A = p(th
1
, · · · , thn) is a row type of the form {p(τ1, · · · , τn) | r } for

some row type r provided that each expression term thi has type τi according to the expression
typing judgement ⊢. The type rules [T-Body-Atom-1] and [T-Body-Atom-2] are similar.

4.5 Type Safety

We have established type soundness for λDat. We state the most important theorems here:

Theorem 4.1 (Progress). Suppose e is a closed, well-typed expression (that is, ⊢ e : τ for some τ).

Then either e is a value or else there is some expression e ′ such that e → e ′.

Theorem 4.2 (Preservation). If Γ ⊢ e : τ and e → e ′, then Γ ⊢ e ′ : τ ′ where τ = τ ′.

The detailed proofs are available in the technical report [Madsen and Lhoták 2020].

4.6 Type Inference

The type system, as an instance of Hindley-Milner, supports full type reconstruction. The type
system for λDat is based on that for polymorphic extensible records [Leijen 2005]. We leave it as
future work to prove its correctness, but we believe that the proofs should be easily adaptable. The
relationship between records and first-class constraints is as follows: Given the Datalog constraint:

p0(t
0

1
, · · · , t0l) ⇐ p1(t

1

1
, · · · , t1l ′), · · · ,pn(t

n
1
, · · · , tnl ′′)

we can view it as a record in which the fields are the predicate symbols p0, · · · ,pn and the types of
the fields are the types of the terms, i.e. the łfieldž p0 would have the tuple type (τ1, · · · , τl), where
τi is the type of the term t0i .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:18 Magnus Madsen and Ondřej Lhoták

4.7 Stratification

Unrestricted use of negation poses problems for Datalog. Consider the following program:

P(x) :- not Q(x). Q(x) :- not P(x).

If we assume that the program contains the constant c , then the program has two minimal models:

m1 = {P(c)} and m2 = {Q(c)}

This is undesirable because the minimal model is no longer unique. We can ensure a consistent
semantics by restricting ourselves to stratified Datalog [Minker 1988]. Stratification requires that
the predicate symbols of a Datalog program can be partitioned into a sequence of strata such that a
positive predicate symbol in a stratum only depends on predicate symbols in the same or lower
strata and a negative predicate symbol only depends on predicate symbols in strictly lower strata.
Stratification splits a Datalog program P into a sequence of sub-programs P1, · · · , Pn such that the
output of Pi becomes the input of Pi+1.

Definition 4.3. (Precedence Graph) The precedence graph of a program P is a graph that contains:

• a positive edge a ← b if P contains a rule where a is the head predicate and b is a positive
body predicate, and similarly
• a negative edge a ↚ b if P contains a rule where a is the head predicate and b is a negative
body predicate.

We can use the precedence graph to determine whether a Datalog program is stratified:

Definition 4.4. (Stratified) A program P is stratified if its precedence graph contains no cycles
with a negative edge.

Given a complete Datalog program, we can determine if it is stratified and compute its stratifica-
tion using Ullman’s Algorithm [Ullman 1988]. For a language like λDat, we can identify three levels
of modularity of a type system or static analysis. At the least modular level, we require the complete
Datalog program for analysis of stratification. At the second level, we require the complete λDat
program, which contains Datalog constraint sets that will be composed at run time. Finally, at the
most modular level, we may be given fragments of λDat programs, and be required to construct a
summary of each fragment such that stratification of a complete λDat program can be computed
using the summaries alone.

For the first level, stratification of the complete Datalog program can be computed using Ullman’s
Algorithm [Ullman 1988]. In the context of λDat, however, such an approach would only be
applicable at runtime when the complete Datalog programs are known, so stratification errors
would be detected only at runtime. The strategy that we will describe in the rest of this section
supports the second level of modularity, which allows analyzing Datalog constraint sets at compile
time. The analysis can therefore detect stratification errors at compile time. The analysis in this
section does not support the third level of modularity. At this level, there is a range of design
choices in how detailed and complex the summaries of the λDat fragments should be. An analysis
is deemed modular if it reads the summaries instead of the code. At the extreme, if the full details
contained in the code are recorded in the summaries, then any analysis can be made modular
in name, but then analyzing the summaries will be equivalent to analyzing the original code. At
this level, there is a rich design space with trade offs between precision and complexity of the
summaries which we leave for exploration in future work.

Definition 4.5 (Stratification for λDat). Given a complete λDat program e , determine at compile-
time whether all Datalog constraint sets that e may construct at run-time are stratified.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:19

We propose a simple and sound algorithm that computes stratification at compile time using
information from the type system. We view this as an important first step towards stratification of
Flix programs, but there is still a rich design space to be explored.

Definition 4.6. (First-Class Constraint Stratification) For a whole λDat or Flix program:

(1) Collect all constraints into a set G, regardless of where they occur in the program.
(2) Compute the global dependency graph D = dg(G) of the constraint set G.
(3) For each expression e with a row type r = {p1 = (· · ·), · · · ,pn = (· · ·)}, compute a subgraph
R of the dependency graph with only those edges a ← b or a ↚ b where both predicates a
and b occur in the row type. Finally, use Ullman’s Algorithm to determine if the dependency
graph R is stratified, and to compute its stratification.

We do not need to consider row type variables because stratification occurs after monomorphization.
For example, consider the following program fragment:

let r1 = B(x) :- A(x).;

let r2 = C(x) :- B(x).;

let r3 = K(x) :- A(x).;

let r4 = A(x) :- not C(x), R(x).;

The dependency graph G of this program fragment is:

{B ← A,C ← B,K ← A,A ↚ C,A← R}

The dependency graph is not stratified, since there is a cycle with a negative edge:

C ← B ← A ↚ C

However, if we consider the expression: r3 <+> r4 which has the row type:

{A = (· · ·),C = (· · ·),K = (· · ·),R = (· · ·)}

we see that its restricted dependency graph R does not have any edges for B:

{K ← A,A ↚ C,A← R}

and hence the constraint sets that the expression r3 <+> r4 may evaluate to must be stratified and
we can compute the stratification at compile-time. We now prove correctness of the algorithm.

Lemma 4.7. Given any subset of constraintsU ⊆ G, the dependency graph ofU is a subgraph of

the dependency graph of G, i.e. dg(U) ⊆ dg(G) by the definition of the dependency graph.

Theorem 4.8 (Correctness). If algorithm 4.6 reports that an expression e is stratified, then all

constraint sets that e may evaluate to must be stratified.

Proof. An expression with row type {p1 = (· · ·), · · · ,pn = (· · ·)} may evaluate to some con-
straint set Q which can be partitioned into facts F and rules C such that Q = F ∪ C and we
have that C ⊆ G. By inversion of the typing derivation of e , the constraint set C can only contain
constraints with predicate symbols drawn from p1, · · · ,pn . By definition, the precedence graph
dg(C) can then only contain edges with predicates drawn from p1, · · · ,pn . By the previous lemma,
the dependency graph dg(C) must be a subgraph of dg(G), but the largest subgraph of dg(G) with
edges where the predicates are drawn from p1, · · · ,pn is R. Hence we must have that dg(C) ⊆ R.
Now, if R is stratified, then dg(C) must also be stratified, since if a graph has no negative cycles
then a subgraph cannot have any negative cycles. □

The algorithm is an over-approximation, and it will sometimes unfairly reject programs that can
never fail at run-time. For example, the program:

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:20 Magnus Madsen and Ondřej Lhoták

def f(b: Bool): #{...} =

let r1 = P(x) :- A(x), not Q(x).;

let r2 = Q(x) :- A(x), not P(x).;

solve (if (b) r1 else r2)

is unfairly rejected, even though it is always stratified.

5 IMPLEMENTATION

We have implemented λDat as an extension of the Flix programming language. Flix is a functional,
imperative, and logic programming language. Flix supports algebraic data types, pattern matching,
currying, higher-order functions, extensible records, channel and process-based concurrency, and
now first-class Datalog constraints.

The extension required 5,000 lines of code in addition to the 55,000 lines of code already present
in the compiler. The implementation effort was significant, but not difficult, as the constructs of
λDat integrate seamlessly with an ML-style language. Most changes were to the frontend of the
compiler and to the intricate details of the type inference algorithm. We reuse the Datalog engine
that already comes with Flix to solve Datalog constraints at run-time.
Flix is open source, ready for use, and freely available at: flix.dev

6 EVALUATION: CASE STUDIES

To demonstrate the practical value of the λDat calculus and its implementation in Flix, we present
a series of case studies. We report on programs that have already been implemented in Flix and on
one program that could benefit from being implemented in Flix (or in a system based on λDat).

6.1 Case Study: Koans

We have implemented eleven łkoansž which are small programs that demonstrate how to program
with first-class constraints. The koans solve practical computational problems such as: (i) Given
a Git commit graph, find the pair of commits where a bug was introduced and where the bug
was merged into the master branch. (ii) Given a social network graph, compute a set of friend
suggestions based on the friends of my friends. (iii) Given a train and bus network, compute if there
is a route from one city to another with a preference for the train. (iv) Given a list of graphs, find all
pairs of graphs whose union is acyclic. The koans illustrate the interplay between functional and
logic programming: the overall program is constructed from smaller functions that use first-class
constraints. The koans are available in the technical report [Madsen and Lhoták 2020].

6.2 Case Study: PuppetMaster an Actor Library with Declarative Actor Supervision

PuppetMaster is an actor library for Flix. An actor is a light-weight process that executes concur-
rently withÐand in isolation fromÐother processes. Every actor has its own unique mailbox, an
unbounded queue of incoming messages. Actors communicate by sending immutable messages to
each other’s mailboxes. An actor system is a collection of actors together with policies that govern
how actors are started, how actors are stopped, and how to respond when an actor crashes. In
PuppetMaster, startup, shutdown, and supervision policies are expressed as first-class Datalog
constraints. The łinputž (i.e. ground facts) of a policy is the state of every actor in the system and
the łoutputž (i.e. minimal model) of a policy is a set of actions to be executed by the actor system.
For example, the very simple policy (where ActorPolicy is a type alias omitted for brevity):

def immediatelyStartAllPolicy (): ActorPolicy = #{

Start(actor) :- Actor(actor).

}

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

flix.dev

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:21

specifies that every actor should be started immediately. A more sophisticated policy is:

def defaultStartPolicy (): ActorPolicy = #{

Waiting(x) :- DependsOn(x, y), not ActorState(y, Running).

Start(x) :- Actor(x), not Waiting(x).

}

which allows an actor to start once all its dependencies have entered the Running state. An even
more sophisticated policy is:

def defaultSupervisionPolicy (): ActorPolicy = #{

Path(x, y) :- DependsOn(x, y).

Path(x, z) :- Path(x, y), DependsOn(y, z).

Waiting(x) :- Path(x, w), ActorState(w, NonResumablyCrashed).

Resume(x) :- ActorState(x, ResumablyCrashed), not Waiting(x).

}

which allows a resumably crashed actor x to continue execution unless one of its transitive
dependencies have non-resumably crashed. The PuppetMaster library ships with a collection of
such startup, shutdown, and supervision policies, but the programmer may also define his or her
own policies using first-class constraints.

6.3 Case Study: A Prototype Points-To Analysis for Python

We have implemented a prototype points-to analysis for Python with a special focus on precise
object initialization. The points-to analysis is parameterized by the choice of context- and heap-
sensitivity in the form of two functions, merge and record, following Smaragdakis et al. [2011]:

def analysis(merge: (String , octx , String , ctx) -> ctx ,

record: (String , ctx) -> octx , empty_ctx : ctx): #{...}

where the analysis function is polymorphic in the type of the call context ctx and the type of the
heap context octx. The merge and record functions are used within the analysis rules:

Reachable(attrObject , merge(baseObject , baseOCtx , invo, callerCtx)) :-

VCall(base, attr, invo, inMeth),

VarPointsTo(base, callerCtx , baseObject , baseOCtx),

AttrPointsTo(baseObject , baseOCtx , attr, attrObject , octx),

ObjectIsFunction(attrObject),

Reachable(inMeth , callerCtx).

This design allows us to easily change and experiment with different types of context- and heap
sensitivity. We can instantiate the analysis with no context or heap sensitivity by simply using
the Unit type and passing in two constant functions. We can also instantiate the analysis with
2-call-1-heap sensitivity by defining appropriate algebraic data types and passing in appropriate
record and merge functions.

Case Study: The IFDS & IDE Program Analyses. The Interprocedural Finite Distributive Subset
(IFDS) algorithm [Reps et al. 1995] solves context-sensitive interprocedural dataflow analysis
problems by computing reachability in a graph. The input to the algorithm is a graph called the
exploded supergraph, and the algorithm works by constructing two sets of additional edges, called
path edges and summary edges, according to rules about existing edges. For example, whenever
there is a path edge from node n1 to node n2 and a supergraph edge from node n2 to node n3, the
algorithm adds a new path edge from n1 to n3. There are additional rules, some of them more
complicated, but they all have a similar form. Thus, it appears natural to express the rules of the
IFDS algorithm as Datalog rules and to use a Datalog solver to compute the solution.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:22 Magnus Madsen and Ondřej Lhoták

However, the exploded supergraph is generally very large and the IFDS algorithm explores only a
subgraph that is reachable from the entry point of the program. It would be expensive to realize the
whole exploded supergraph as a data structure, including unreachable parts of the graph. Instead,
the graph is usually specified implicitly as a successor function that can compute, for each node
n that is found to be reachable, the set of edges leading out from n to its successor nodes. The
exploded supergraph would be too large to realize as a Datalog relation, so it is impractical to
implement the IFDS algorithm in pure Datalog. In our hybrid language, the exploded supergraph
can be expressed using functions in the functional fragment of the language, which can be called
on demand by the rules of the IFDS algorithm expressed declaratively in the relational fragment
of the language. Since the functions can be first-class this allows us to implement a generic IFDS
framework once, with parameters that can later be instantiated to specific program analyses.

The Interprocedural Distributive Environment (IDE) algorithm [Sagiv et al. 1996] extends IFDS by
adding representations of functions on a lattice to the edges of the exploded supergraph. Whenever
a rule of the algorithm creates a new path edge or summary edge, it decorates the new edge with
a new function created by composing functions on the edges that triggered the rule. When the
sets of edges are represented as Datalog relations, it is easy to decorate each edge with a function
by adding a new attribute to the relation to store the function. However, the rules for creating
new edges no longer map to pure Datalog: each rule needs to perform a general computation to
determine the function for the new edge from the functions of the existing edges. Our language
makes it possible to express this by allowing a Datalog rule to call into the functional fragment
of the language, which can express the general computations needed to determine the function
for the new edge. As with IFDS, we can implement a single parametric IDE framework and later
instantiate it with multiple IDE analyses.

6.4 Case Study: The Doop Program Analysis Framework

Doop2 is a fast, scalable, context-sensitive, subset-based points-to analysis for Java implemented in
Datalog [Kastrinis and Smaragdakis 2013; Smaragdakis et al. 2013, 2014]. Doopmodelsmany features
of the Java programming language, including reflection and exceptions. The Doop Framework
comes with a wide variety of configuration options for tuning the precision and performance of
the points-to analysis, e.g. the choice of context sensitivity, heap sensitivity, reflection support,
exception support, and a multitude of other options. The implementation uses the C preprocessor
to selectively include (or exclude) rules based on the configuration options.
For example, if the FEATHERWEIGHT_ANALYSIS option is disabled, the C preprocessor excludes

the following rule that models static field accesses:

#ifndef FEATHERWEIGHT_ANALYSIS

StaticFieldPointsTo (?hctx , ?value , ?signature) <-

ReachableStoreStaticFieldFrom (?from),

OptStoreStaticField (?signature , ?from),

VarPointsTo (?hctx , ?value , _, ?from).

#endif

As another example, if the REFLECTION option is enabled, the C preprocessor includes the following
rule that models reflective calls:

#ifdef REFLECTION

AnyCallGraphEdge (?from , ?to) :- ReflectiveCallGraphEdge(_, ?from , _, ?to).

#endif

2https://bitbucket.org/yanniss/doop/src/master/

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:23

Similarly, the REFLECTION_DYNAMIC_PROXIES option controls the modelling of reflective calls
through proxy objects:

#ifdef REFLECTION_DYNAMIC_PROXIES

AnyCallGraphEdge (?from , ?to) :- ProxyCallGraphEdge(_, ?from , _, ?to).

#endif

These examples demonstrate that it is common to selectively include or exclude rules in Doop.
In fact, a search across the Doop repository reveals 268 uses of ifdef and 189 uses of ifndef.

An interesting flag is EXCEPTIONS_CS, which controls whether context sensitivity is used when
modelling the data flow of exceptions:

#ifdef EXCEPTIONS_CS

ThrowPointsTo (?hctx , ?heap , ?ctx , ?method) <-

Throw(?ref , ?var),

VarPointsTo (?hctx , ?heap , ?ctx , ?var),

#else

ThrowPointsTo (?hctx , ?heap , ?method) <-

Throw(?ref , ?var),

VarPointsTo (?hctx , ?heap , _, ?var),

#endif

Note that in the first rule, the ThrowPointsTo predicate symbol takes four arguments whereas
in the second rule it takes only three arguments. Thus it is critical, whether ThrowPointsTo is
enabled or not, that any use of ThrowPointsTo is also guarded by EXCEPTIONS_CS to ensure that
the arities always match up. Another example of the same pattern is:

#ifdef EXCEPTIONS_CS

ThrowPointsTo (?hctx , ?heap , ?callerCtx , ?callerMethod) <-

CallGraphEdge (?callerCtx , ?invocation , ?calleeCtx , ?tomethod),

ThrowPointsTo (?hctx , ?heap , ?calleeCtx , ?tomethod),

#else

ThrowPointsTo (?hctx , ?heap , ?callerMethod) <-

CallGraphEdge(_, ?invocation , _, ?tomethod),

ThrowPointsTo (?hctx , ?heap , ?tomethod),

#endif

These examples illustrate that there is a need to selectively include or exclude certain rules where
even the arity of the predicate symbols might differ. The Flix type system ensures that for any
first-class constraint set constructed at run-time the arities of predicate symbols always match.
Doop uses macros to parameterize the choice of context- and heap sensitivity:

#define MergeMacro(callerCtx , invocation , hctx , value , calleeCtx) \

Context(calleeCtx), \

CtxFromRealCtx[RealContext2FromContext[callerCtx], invocation] = calleeCtx

#define MergeMacro(callerCtx , invocation , hctx , heap , calleeCtx) \

Context(calleeCtx), \

CtxFromRealCtx[RealHContext1FromHContext[hctx], \

DeclaringClass:Allocation[RealHContext2FromHContext[hctx]], \

heap] = calleeCtx

// .. and many more ...

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:24 Magnus Madsen and Ondřej Lhoták

Here the syntax A[x] = y can be understood as a function call that is true if A(x) evaluates to y.
The two macro definitions above are examples of different context sensitivity policies. Similarly,
there are different definitions of the MergeStartupMacro macro:

#define MergeStartupMacro(hctx , heap , calleeCtx) \

Context(calleeCtx), \

ContextFromRealContext[RealHContextFromHContext[hctx], heap] = calleeCtx

#define MergeStartupMacro(hctx , heap , calleeCtx) \

Context(calleeCtx), \

ContextFromRealContext[heap , heap] = calleeCtx

// .. and many more ...

and of the MergeThreadStartMacro macro:

#define MergeThreadStartMacro(hctx , heap , callerCtx , newCtx) \

Context(newCtx), \

ContextFromRealContext[RealHContextFromHContext[hctx], heap] = newCtx

#define MergeThreadStartMacro(hctx , heap , callerCtx , newCtx) \

Context(newCtx), \

ContextFromRealContext[heap] = newCtx

// .. and many more ...

In Flix, we can express such macros as arguments to higher-order functions that return constraint
sets parameterized by these functions, as seen in Example II. The commonMacros file contains 11
such macros and the repository has over 800 uses of #define.

The Doop Framework demonstrates that there is a need for parametricity of Datalog programs.
However, there are at least three problems with a meta-programming approach based on textual
generation: (i) we cannot be sure that all of the programs output by the C preprocessor system
are valid Datalog programs, (ii) we cannot change any option at runtime; we have to recompile
the entire program from scratch, and (iii) we cannot determine if the program is stratified without
actually constructing a specific program for a specific configuration. The λDat calculus (and its
implementation in Flix) overcomes these issues. We can use first-class Datalog constraints to model
the selective inclusion of rules. We can model macro functions, such as MergeMacro, using ordinary
functions. And finally, the type system of λDat ensures that any Datalog program constructed at
run-time is well-formed and stratified.

7 RELATED WORK

Datalog Integration. Arntzenius and Krishnaswami [2016] present Datafun, a typed functional
programming language with constructs for fixpoint computations. The key feature of Datafun is
to track monotonicity with types. If a function f is deemed monotone by the type system, this
guarantees that the fixpoint of f exists and can be computed by the fix operator. Datafun is closer
to a functional language than λDat. In Datafun, the programmer writes functions and computes
with these, whereas in λDat the programmer writes constraints, composes them, and solves them.
The integration in Datafun is tight: functions such as map and filter are given monotonicity
types. It is also expressive: the cross product and transitive closure can be expressed as generic
functions. However, Datafun programs are not solvable by standard techniques, such as semi-naive
evaluation. Consequently, the extra power of Datafun comes at a cost. Most recently Arntzenius
and Krishnaswami [2019] have studied semi-naive evaluation in the context of Datafun.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:25

Madsen et al. [2016] present Flix, a programming language that extends the Datalog semantics
from constraints on relations to constraint on lattices. Unlike Datalog relations, which are always
finite, lattices may have an infinite number of elements. Termination is still ensured, provided
that the lattices have finite height. To define the components of the lattices, e.g. the least upper
bound and greatest lower bound, Flix allows Datalog predicates to refer to functions defined in a
functional language. While this allows the logic part of Flix to refer to the functional part of Flix,
the opposite direction is not possible. In the current work, λDat allows integration in both ways:
Datalog constraints can refer to expressions and expressions can evaluate to constraints.

Template Programming. Programmatic generation of Datalog programs is commonplace, whether
based on simple string concatenation or with the use of a macro pre-processors. Recently, several
macro-based meta programming languages for Datalog have appeared.

Souffle is an efficient and scalable Datalog engine that comes with its own template programming
language [Scholz et al. 2016; Souffle Authors 2018]. In Souffle, a Datalog program can be organized as
a set of components which are collections of Datalog constraints. A component can be instantiated,
which copies all constraints and predicates within it, giving fresh names to all its predicate symbols.
The fresh predicate symbols are then accessible through a handle to the instance. Components
also support a simple form of inheritance that allows reuse of constraints and gives the ability to
override (i.e. remove) constraints from a super-component. In λDat, the combination of first-class
constraints and predicate symbols allows us to emulate components, if so desired.
Template programming is a powerful technique, but it has at least two downsides: (i) program-

ming with templates is difficult and error-prone, and (ii) template expansion can only depend on
information that is available at compile time.

Logic Programming. Mercury is a strongly typed functional and logic programming language [Hen-
derson et al. 1996; Somogyi et al. 1996, 1995]. In Mercury, a predicate has a mode that determines
which arguments must explicitly be passed to it and how many times the predicate can succeed,
i.e. whether it is deterministic or non-deterministic. This enables a mix of functional and logic
programming: A function requires all its parameters and returns a deterministic result, whereas a
Prolog-style goal requires only some of its arguments and may return a non-deterministic result.
In λDat, the integration between functions and predicates is less tight: We are free to call functions
inside Datalog constraints, but we cannot call a Datalog predicate as an expression. Instead, we
must put that predicate into a Datalog program and explicitly solve it. In comparison to Mercury,
λDat is closer to a meta-language for Datalog.

Constraint Logic Programming. Constraint Logic Programming (CLP) extends logic programming
with a decidable background theory, such as lists, trees, or linear arithmetic [Cohen 1990; Jaffar and
Lassez 1987; Jaffar and Maher 1994; Li and Mitchell 2003]. A CLP(X) program is a set of Horn clauses
with formulae over the background theory X. During evaluation, term unification is augmented
with a decision procedure for the underlying theory, e.g. an SMT solver or other specialized solver.

Datalog Extensions. Many Datalog extensions have been proposed. We detail some of them below.
Alvaro et al. [2010] present Dedalus, an extension of Datalog with time. In Dedalus, every fact is

equipped with a timestamp T and said to hold at that instant. Dedalus rules come in two types.
A deductive rule derives a new fact at timestamp T from facts already established at timestamp T .
An inductive rule, on the other hand, derives a new fact at timestamp T + 1 from facts already
established at timestamp T . An important use case for Dedalus is to describe distributed systems.
Alvaro et al. [2011] present the Bloom programming language, a distributed programming

language based on Datalog and built on the ideas of Dedalus. A Bloom program is a collection
of rules that operate on facts with timestamps. Bloom programs are re-evaluated whenever new

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

125:26 Magnus Madsen and Ondřej Lhoták

messages arrive, i.e. over the network or due to some local event (such as a timeout). In later work,
Conway et al. [2012] extend Bloom with predicate symbols that are given a lattice interpretation,
similar to the first work on Flix [Madsen et al. 2016].

Avgustinov et al. [2016] present QL, a programming language that combines logic programming
with elements of object-oriented programming. QL supports classes and methods, but recast in
logical terms. For example, a class is simply a set of values described by a collection of logic formulae.
Sub-typing between classes is then logical implication between sets. While the QL language is rich
in features, it still compiles to plain Datalog and is solvable using standard Datalog techniques.

Bembenek and Chong [2018] present FormuLog, an extension of Datalog with logical formulae.
FormuLog permits terms to be constructed from boolean connectives and using functions from
some underlying theory. Using FormuLog, it becomes possible to express program analyses such as
symbolic execution and model checking. To solve FormuLog programs, an SMT solver is used to
reason about the specific logical formulae.

While all of these extensions increase the power of Datalog, the primary contribution of the
current work is an embedding of Datalog as first-class values within a functional programming
language. The extension of the expressive power of Datalog by allowing expressions as head terms
is a secondary contribution. In addition, we can imagine situations where one would want the
expressive power of Dedalus or FormuLog combined with first-class constraints.

Type Systems for Datalog. Zook et al. [2009] present a type system for LogicBlox, a Datalog-based
platform for enterprise planning. The type system is based on the notion of integrity constraints.
An integrity constraint is a special form of rule that if ever instantiated indicates an error. For
example, an integrity constraint might demand that every Child(x) is also a Person(x): if there
is a child that is not a person then there is a violation. Such integrity constraints can be viewed as
specifying a type system. It is straightforward to check such constraints at run-time, i.e. during the
fixpoint computation, and to raise an error, corresponding to a form of dynamic type checking.
The authors present a static type system that can eliminate many of these run-time checks.

Schäfer and de Moor [2010] propose a type system for statically checking integrity constraints
in the style of Zook et al., but for a richer language of type constraints, and with a type inference
algorithm that is sound and optimal.
The work of Zook et al. [2009] and Schäfer and de Moor [2010] is orthogonal to our work: We

embed Datalog programs inside a functional programming language and we want to ensure that
composition of such programs is well-typed w.r.t. the arity and type of the terms. We can imagine
an extension of our type system that also takes integrity constraints into account. We leave it as
interesting future work to explore this direction.

8 CONCLUSION

We have proposed the idea of first-class Datalog constraints to enable the construction, composition,
and evaluation of Datalog programs within a functional language.

We have proposed a modular type system, based on Hindley-Milner, in which reusable fragments
of Datalog programs can be typed independently while guaranteeing that their composition is type-
safe. The type system allows reuse and abstraction via polymorphism. We have proven safety of the
system. We have also proposed a sound technique for computing stratification of λDat programs
at compile-time. The technique ensures that every Datalog program constructed at run-time is
stratified. Our implementation is freely available as as part of the Flix programming language.

ACKNOWLEDGMENTS

This research was supported by the Natural Sciences and Engineering Research Council of Canada.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

Fixpoints for the Masses: Programming with First-Class Datalog Constraints 125:27

REFERENCES

Peter Alvaro, Neil Conway, Joseph M Hellerstein, and William R Marczak. 2011. Consistency Analysis in Bloom: a CALM
and Collected Approach. In Proc. Conference on Innovative Data Systems (CIDR).

Peter Alvaro, William R Marczak, Neil Conway, Joseph M Hellerstein, David Maier, and Russell Sears. 2010. Dedalus: Datalog
in time and space. In International Datalog 2.0 Workshop.

Michael Arntzenius and Neel Krishnaswami. 2019. Seminaïve evaluation for a higher-order functional language. Proc. of
ACM on Programming Languages Principles of Programming Languages (POPL) (2019).

Michael Arntzenius and Neelakantan R Krishnaswami. 2016. Datafun: a functional Datalog. In Proc. International Conference

on Functional Programming.
Pavel Avgustinov, Oege De Moor, Michael Peyton Jones, and Max Schäfer. 2016. QL: Object-oriented queries on relational

data. In Proc. European Conference on Object-Oriented Programming (ECOOP 2016).
Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985. Magic Sets and Other Strange Ways to

Implement Logic Programs. In Proc. Principles of Database Systems (PODS). https://doi.org/10.1145/6012.15399
Aaron Bembenek and Stephen Chong. 2018. FormuLog: Datalog for static analysis involving logical formulae. arXiv preprint

arXiv:1809.06274 (2018).
Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-To Analyses. In

Proc. Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). https://doi.org/10.1145/1640089.
1640108

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What You Always Wanted to Know About Datalog (and Never Dared
to Ask). IEEE Transactions on Knowledge and Data Engineering (TKDE) (1989). https://doi.org/10.1109/69.43410

Stefano Ceri, Georg Gottlob, and Letizia Tanca. 2012. Logic programming and databases. Springer Science & Business Media.
Jacques Cohen. 1990. Constraint Logic Programming Languages. Commun. ACM (1990). https://doi.org/10.1145/79204.79209
Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and David Maier. 2012. Logic and Lattices for

Distributed Programming. In Proc. Symposium on Cloud Computing (SoCC). https://doi.org/10.1145/2391229.2391230
Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In Proc. Symposium on Principles of

Programming Languages (POPL).
O de Moor, G Gottlob, T Furche, and AJ Sellers (Eds.). 2011. Datalog Reloaded ś First International Workshop, Datalog 2010.

https://doi.org/10.1007/978-3-642-24206-9
Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex.
Melvin Fitting. 2002. Fixpoint Semantics for Logic Programming a Survey. Theoretical Computer Science (TCS) (2002).

https://doi.org/10.1016/S0304-3975(00)00330-3
Michael Gelfond and Vladimir Lifschitz. 1988. The Stable Model Semantics for Logic Programming. In Proc. International

Conference on Logic Programming (ICLP/SLP).
Michael Gelfond and Vladimir Lifschitz. 1991. Classical Negation in Logic Programs and Disjunctive Databases. New

Generation Computing (1991). https://doi.org/10.1007/BF03037169
Goetz Graefe. 1993. Query Evaluation Techniques for Large Databases. ACM Computing Surveys (CSUR) (1993). https:

//doi.org/10.1145/152610.152611
Steve Gregory. 1987. Parallel Logic Programming in PARLOG: The Language and its Implementation. Addison-Wesley.
Elnar Hajiyev, Mathieu Verbaere, and Oege De Moor. 2006. codeQuest: Scalable Source Code Queries with Datalog. In Proc.

European Conference on Object-Oriented Programming (ECOOP). https://doi.org/10.1007/11785477_2
Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos Koutris, Dominik Moritz, Jennifer Ortiz,

Vaspol Ruamviboonsuk, Jingjing Wang, Andrew Whitaker, et al. 2014. Demonstration of the Myria big data management
service. In Proc. International Conference on Management of Data.

Fergus Henderson, Thomas Conway, Zoltan Somogyi, David Jeffery, Peter Schachte, Simon Taylor, Chris Speirs, Tyson
Dowd, Ralph Becket, and Mark Brown. 1996. The Mercury language reference manual. (1996).

Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. 2011. Datalog and Emerging Applications: An Interactive
Tutorial. In Proc. Management of Data (SIGMOD). https://doi.org/10.1145/1989323.1989456

Joxan Jaffar and Jean-Louis Lassez. 1987. Constraint Logic Programming. In Proc. Principles of Programming Languages

(POPL). https://doi.org/10.1145/41625.41635
Joxan Jaffar and Michael J Maher. 1994. Constraint Logic Programming: A Survey. Journal of Logic Programming (1994).

https://doi.org/10.1016/0743-1066(94)90033-7
Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On Synthesis of Program Analyzers. In International

Conference on Computer Aided Verification.
Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2018. Two concurrent data structures for efficient datalog query

processing. In Proc. Symposium on Principles and Practice of Parallel Programming.
George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. Proc. International

Conference on Programming Language Design and Implementation (PLDI) (2013).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

https://doi.org/10.1145/6012.15399
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1109/69.43410
https://doi.org/10.1145/79204.79209
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1007/978-3-642-24206-9
https://doi.org/10.1016/S0304-3975(00)00330-3
https://doi.org/10.1007/BF03037169
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/152610.152611
https://doi.org/10.1007/11785477_2
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1145/41625.41635
https://doi.org/10.1016/0743-1066(94)90033-7

125:28 Magnus Madsen and Ondřej Lhoták

Ross D King. 2004. Applying Inductive Logic Programming to Predicting Gene Function. AI Magazine (2004).
Kenneth Kunen. 1987. Negation in Logic Programming. Journal of Logic Programming (1987). https://doi.org/10.1016/0743-

1066(87)90007-0
Monica S Lam, John Whaley, V Benjamin Livshits, Michael C Martin, Dzintars Avots, Michael Carbin, and Christopher

Unkel. 2005. Context-sensitive Program Analysis as Database Queries. In Proc. Principles of Database Systems (PODS).
https://doi.org/10.1145/1065167.1065169

Daan Leijen. 2005. Extensible records with scoped labels. Trends in Functional Programming (2005).
Ninghui Li and John C Mitchell. 2003. Datalog with Constraints: A Foundation for Trust Management Languages. In Proc.

Practical Aspects of Declarative Languages (PADL). https://doi.org/10.1007/3-540-36388-2_6
Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E Gay, Joseph MHellerstein, Petros Maniatis, Raghu Ramakrishnan,

Timothy Roscoe, and Ion Stoica. 2009. Declarative networking. Commun. ACM (2009).
Magnus Madsen and Ondřej Lhoták. 2020. Fixpoints for the Masses: Programming with First-class Datalog Constraints.

Technical Report CS-2020-05. University of Waterloo. https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/
files/cs-2020-05.pdf

Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From Datalog to Flix: A Declarative Language for Fixed Points on
Lattices. In Programming Language Design and Implementation (PLDI).

Jack Minker. 1988. Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann.
Raymond J Mooney. 1996. Inductive Logic Programming for Natural Language Processing. In International Conference on

Inductive Logic Programming.
Christos H. Papadimitriou. 1985. A note the expressive power of Prolog. Bulletin of the European Association for Theoretical

Computer Science (EATCS) (1985).
Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reachability. In

Proc. Principles of Programming Languages (POPL). https://doi.org/10.1145/199448.199462
Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise Interprocedural Dataflow Analysis with Applications to

Constant Propagation. Theoretical Computer Science (TCS) (1996). https://doi.org/10.1016/0304-3975(96)00072-2
Max Schäfer and Oege de Moor. 2010. Type inference for datalog with complex type hierarchies. In Proc. Symposium on

Principles of Programming Languages (POPL).
Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. 2016. On fast large-scale program analysis in datalog.

In Proc. International Conference on Compiler Construction (CC).
Jiwon Seo, Stephen Guo, and Monica S Lam. 2013. SociaLite: Datalog extensions for efficient social network analysis. In

International Conference Data Engineering (ICDE).
Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo Zaniolo. 2016. Big Data

Analytics with Datalog Queries on Spark. In Proc. International Conference on Management of Data.
Yannis Smaragdakis, George Balatsouras, and George Kastrinis. 2013. Set-based pre-processing for points-to analysis. In

Proc. International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA).
Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for Fast and Easy Program Analysis. In Datalog Reloaded.

https://doi.org/10.1145/1926385.1926390
Yannis Smaragdakis, Martin Bravenboer, andOndrej Lhoták. 2011. Pick Your ContextsWell: Understanding Object-Sensitivity.

In Proc. Principles of Programming Languages (POPL). https://doi.org/10.1145/1925844.1926390
Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across the

board. Proc. International Conference on Programming Language Design and Implementation (PLDI).
Zoltan Somogyi, Fergus Henderson, and Thomas Conway. 1996. The Execution Algorithm of Mercury, an Efficient Purely

Declarative Logic Programming Language. The Journal of Logic Programming (1996).
Zoltan Somogyi, Fergus J Henderson, and Thomas Charles Conway. 1995. Mercury, an efficient purely declarative logic

programming language. Australian Computer Science Communications (1995).
Souffle Authors. 2018. Souffle. https://souffle-lang.github.io/ [Online; accessed 18-October-2018].
Pavle Subotic, Herbert Jordan, Lijun Chang, Alan Fekete, and Bernhard Scholz. 2018. Automatic Index Selection for

Large-Scale Datalog Computation. (2018).
Jeffrey D Ullman. 1984. Principles of Database Systems. Galgotia publications.
Jeffrey D. Ullman. 1988. Principles of Database and Knowledge-Base Systems.
Todd L Veldhuizen. 2012. Leapfrog Triejoin: a worst-case optimal join algorithm. arXiv preprint arXiv:1210.0481 (2012).
Andrew K Wright and Matthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and computation

(1994).
David Zook, Emir Pasalic, and Beata Sarna-Starosta. 2009. Typed datalog. In International Symposium on Practical Aspects of

Declarative Languages (PADL).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 125. Publication date: November 2020.

https://doi.org/10.1016/0743-1066(87)90007-0
https://doi.org/10.1016/0743-1066(87)90007-0
https://doi.org/10.1145/1065167.1065169
https://doi.org/10.1007/3-540-36388-2_6
https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2020-05.pdf
https://cs.uwaterloo.ca/sites/ca.computer-science/files/uploads/files/cs-2020-05.pdf
https://doi.org/10.1145/199448.199462
https://doi.org/10.1016/0304-3975(96)00072-2
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/1925844.1926390
https://souffle-lang.github.io/

	Abstract
	1 Introduction
	2 Motivation
	2.1 Example I
	2.2 Example II
	2.3 Benefits of Type Safety

	3 The Dat Calculus
	3.1 A Brief Recap of Datalog
	3.2 Syntax of Dat
	3.3 Evaluation of Dat

	4 Typing of Dat
	4.1 Mono and Poly Types
	4.2 Type Equality
	4.3 Examples
	4.4 Type Rules
	4.5 Type Safety
	4.6 Type Inference
	4.7 Stratification

	5 Implementation
	6 Evaluation: Case Studies
	6.1 Case Study: Koans
	6.2 Case Study: PuppetMaster an Actor Library with Declarative Actor Supervision
	6.3 Case Study: A Prototype Points-To Analysis for Python
	6.4 Case Study: The Doop Program Analysis Framework

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

