
OOMatch: Pattern Matching as Dispatch in Java

Adam Richard
University of Waterloo
a5richard@uwaterloo.ca

Ondřej Lhoták
University of Waterloo
olhotak@uwaterloo.ca

Abstract
We present an extension to Java, dubbed OOMatch. It al-
lows method parameters to be specified as patterns, which
are matched against the arguments to the method call. When
matches occur, the method applies; if multiple methods ap-
ply, the method with the more specific pattern overrides the
others.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Classes
and objects, Patterns, Polymorphism, Procedures, functions,
and subroutines

General Terms Design, Languages

Keywords predicate dispatch, dynamic dispatch, pattern
matching, multimethods, Java

1. Introduction
OOMatch provides a new form of dispatch (determining
which method to call, given a call site). It includes and
subsumes multimethods (see for example [1]), but is not as
powerful as general predicate dispatch [2].

The pattern matching is very similar to that found in the
“case” constructs of many functional languages (ML [3],
for example), with an important difference: functional lan-
guages normally allow pattern matching over variant types
(and other primitives such as tuples), while OOMatch allows
pattern matching on Java objects.

A formal semantics for OOMatch, as well as more details
on the language and its implementation, can be found in our
technical report [5].

2. Pattern Matching
We introduce OOMatch using a simple example. Suppose
one is writing the optimizer component of a compiler, and

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-865-7/07/0010.

wants to write code to simplify arithmetic expressions. Sup-
pose the Abstract Syntax Tree (AST) is represented as a class
hierarchy (a natural way to represent an AST), as follows.

abstract class Expr { ... }

class Binop extends Expr { ... }

class Plus extends Binop { ... }

class NumConst extends Expr { ... }

Then part of the functionality to simplify expressions
could be implemented using OOMatch as the following set
of methods:

//do nothing by default

Expr optimize(Expr e) { return e; }

//Anything + 0 is itself

Expr optimize(Plus(Expr e, NumConst(0)))

{ return e; }

//Constant folding

Expr optimize(Binop(NumConst c1,

NumConst c2) op)

{ return op.eval(c1, c2); }

These methods are matching appropriate types of ex-
pressions and applying optimizations when possible. Each
method specifies an optimization rule. The latter two meth-
ods, which also have one parameter each, specify patterns
to break down or “deconstruct” that parameter into its com-
ponents, which are matched against the argument passed to
optimize. The second method, for example, takes a pa-
rameter of type Plus and breaks it into two parts (the two
operands of the “+” operator), Expr e and NumConst(0).
That method only applies, then, when the parameter is of
type Plus, and the operands match these two patterns.
We assume that all operands are of type Expr, so the first
operand always matches, while the second one apparently
matches when the other operand is a numeric constant with
the value 0.

The key point to notice in the above example is that the
second method overrides the first, since its pattern is more
specific than the original’s (because Plus extends Expr),
and the third also overrides the first since Binop extends

771



Expr. Note that the order in which the methods appear does
not affect these override relationships.

The 0 in the second method means that the pattern is only
matched when the numeric constant’s value is 0. The named
variables in the patterns are given the value that is matched,
so that this value can be used by referring to the declared
name in the method body. Note that the patterns themselves
can be named or unnamed; the Plus match is unnamed, while
the Binop is given the name “op” so that the matched object
can be referred to in the method.

Patterns can of course themselves contain patterns (as
is shown in the second method above), and can indeed be
nested to any arbitrary depth. The most specific match is
always chosen first.

3. Deconstructors
To allow the specification of patterns on objects, as in the
previous section, their classes must provide a means of de-
constructing said objects:

class Binop {

deconstructor Binop(Expr e1, Expr e2) {

e1 = this.e1;

e2 = this.e2;

return true;

}

...

}

A deconstructor breaks down this into components, and
returns them to be matched against. But rather than return-
ing said components in the return value, its parameters are
“out” parameters, each one representing a component. The
deconstructor must assign each of them a value on each pos-
sible path through its body; they have no defined values at
the beginning of the body. Aside from these restrictions, any
arbitrary code may appear in a deconstructor, and any values
of type Expr can be returned in the parameters e1 and e2 in
the example above.

A deconstructor must always return a boolean value,
which indicates whether the match was successful. This al-
lows even patterns that would otherwise match to fail (by re-
turning false) under certain arbitrary conditions, such as the
state of the object. For example, perhaps one wants to pre-
vent matching a file object when the file hasn’t been opened
yet.

Note also that a deconstructor can be given any name, not
just the name of the class. If given a name other than the
name of the class, any references to the deconstructor must
be prefixed with the class name, as in:

Expr optimize(Expr.my_deconstructor(

NumConst c1, NumConst c2))

{ ... }

4. Error Handling
Note that OOMatch introduces the potential for new kinds
of errors. In fact, the above code contains such an instance.
If optimize is passed an expression like 1 + 0, the second
and third methods will both apply, because this expression
is both adding 0 to an expression and performing an opera-
tion on two constants. However, it cannot be said that either
of these methods overrides the other, because there are cases
where the second applies and the third does not, and vice
versa. This is called an ambiguity error — it is possible for
more than one method to apply, but neither is necessarily
more specific than the other. Normally, this results in a com-
pile error, though there are cases where the compiler can-
not detect ambiguity errors. These situations are discussed
in [5], and a proof that there are no other situations that can
cause a run-time ambiguity error is given there as well.

In this case, the problem could be resolved by adding a
fourth method which handles the intersecting case:

Expr optimize(Plus(NumConst e, NumConst(0)))

{ return e; }

The other new kind of error that can be present in an
OOMatch program is when no method can be found for a
call site: this is called a no-such-method error. Normally, the
compiler prevents these by requiring that all methods with
patterns override a method with only regular Java formals,
either in the same class or a superclass. This way, the regular
Java method can always be called as a last resort.

5. Implementation
The implementation of OOMatch has been done in the Poly-
glot Extensible Compiler Framework [4]. Polyglot translates
to Java, but contains all the functionality of compiling the
base Java language, which prevents implementers from hav-
ing to write a compiler from scratch. It is therefore useful for
writing prototype compilers for new Java-like languages.

References
[1] Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd

Millstein. Multijava: Modular Open Classes and Symmetric
Multiple Dispatch for Java. SIGPLAN Not., 35(10):130–145,
2000.

[2] Michael Ernst, Craig Kaplan, and Craig Chambers. Predicate
Dispatch: A Unified Theory of Dispatch. In ECOOP ’98, the
12th European Conference on Object-Oriented Programming,
pages 186–211, 1998.

[3] Robin Milner, Mads Tofte, Robert Harper, and David Mac-
Queen. The Definition of Standard ML. MIT Press, 1997.

[4] Polyglot Extensible Compiler Framework. Available at
http://www.cs.cornell.edu/projects/polyglot/ on 16 May 2007.

[5] Adam Richard and Ondřej Lhot ák. OOMatch: Pattern
Matching as Dispatch in Java. Technical Report CS-
2007-05, University of Waterloo, 2007. Available at
http://www.cs.uwaterloo.ca/research/tr/2007/CS-2007-05.pdf.

772


