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Abstract
Multiple modern programming languages, including Kotlin, Scala, Swift, and C#, have type systems
where nullability is explicitly specified in the types. All of the above also need to interoperate with
languages where types remain implicitly nullable, like Java. This leads to runtime errors that can
manifest in subtle ways. In this paper, we show how to reason about the presence and provenance
of such nullability errors using the concept of blame from gradual typing. Specifically, we introduce
a calculus, λnull, where some terms are typed as implicitly nullable and others as explicitly nullable.
Just like in the original blame calculus of Wadler and Findler, interactions between both kinds of
terms are mediated by casts with attached blame labels, which indicate the origin of errors. On top
of λnull, we then create a second calculus, λs

null, which closely models the interoperability between
languages with implicit nullability and languages with explicit nullability, such as Java and Scala.
Our main result is a theorem that states that nullability errors in λs

null can always be blamed
on terms with less-precise typing; that is, terms typed as implicitly nullable. By analogy, this
would mean that NullPointerExceptions in combined Java/Scala programs are always the result
of unsoundness in the Java type system. We summarize our result with the slogan explicitly nullable
programs can’t be blamed. All our results are formalized in the Coq proof assistant.
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1 Introduction

The problem of null pointers has plagued programming languages since 1965 [28]. In
languages with null pointers, references may be to valid values, or may be null, which
cannot be dereferenced. Attempting to dereference a null reference typically raises a runtime
exception in modern, garbage-collected programming languages. This presents a problem for

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Abel Nieto, Marianna Rapoport, Gregor Richards, and Ondřej Lhoták;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 3; pp. 3:1–3:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2741-8119
mailto:anietoro@uwaterloo.ca
mailto:mrapoport@uwaterloo.ca
https://orcid.org/0000-0001-5058-2174
mailto:gregor.richards@uwaterloo.ca
https://orcid.org/0000-0001-9066-1889
mailto:olhotak@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/DARTS.6.2.10
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Blame for Null

type soundness and for program maintainability: null is considered a subtype of all reference
types, and yet has the interface of none. A number of solutions have been created to address
this problem, ranging from type-based solutions [4, 7, 9, 10, 20] to static analyses [24, 30],
and from statically sound [10] to heuristic [3].

One type-based solution is to liberate null from its special status as subtype of all reference
types. In a language with a null isolated as such, references which are nullable must be
explicitly specified as such: the type T cannot reference null, but a type such as T? (“nullable
T”, in Kotlin) or T|Null (“T or Null”, in Scala) can. These explicitly nullable types must be
explicitly verified not to be null before being dereferenced. This adds an extra burden on
the programmer to perform such checks, but eliminates all null dereference errors if used
consistently1.

Unfortunately, modern programming languages with null often inherit it from connected
languages, and this inheritance restricts the scope of nullability. Kotlin, C#, and Swift, for
example, all have explicitly nullable types, but due to their interactions with Java, other
.NET languages, and Objective-C respectively, may still encounter null dereference errors.
For instance, Kotlin [15] has explicitly nullable types, but is designed to be fully compatible
with Java. But, Java has implicitly nullable types – that is, variables and fields of all reference
types may refer to null, unsoundly. As a consequence, even if Kotlin’s own type system
perfectly prevents all null dereferences, its interactions with Java will lead to problems.

Luckily, the interaction between languages with differing levels of type soundness has been
studied, in the field of gradual typing [22]. In this paper, we apply the principles of gradual
typing – and, in particular, the core result that unsoundness can always be correctly blamed
on the unsound language – to the problem of interfacing languages with explicit nullability
and languages with implicit nullability. We use the context of Scala, which has implemented
explicitly nullable types as an optional feature of its in-development next compiler2, and
Java, which has implicitly nullable reference types.

A sophisticated infrastructure, such as gradual typing’s blame, is needed, because there
are several ways that nulls can cause problems. Consider the following snippets of Scala and
Java code:

1 // Scala
2 class ScalaStringOps {
3 def len(s : String ): Int = s.length
4 }
5
6 def main() = {
7 val jso = new JavaStringOps()
8 jso . len(null)
9 jso .nlen()

10 }

1 // Java
2 class JavaStringOps {
3 int len(String s) {
4 return s.length;
5 }
6
7 int nlen() {
8 return new ScalaStringOps().len(null);
9 }
10 }

Scala’s line 8 calls the len method of Java’s JavaStringOps. When importing Java code
into Scala, Scala must choose how to represent Java’s implicitly nullable types. Naturally,
the Java code might – and in this context, will – fail: Java’s line 4 is unsafe. It’s reasonable
to instead try to guarantee that the execution of Scala code will never dereference null. A

1 Care must be taken to handle the related problem of uninitialized or partially-initialized objects, which
can lead to subtle nullability errors [24, 30].

2 https://dotty.epfl.ch/

https://dotty.epfl.ch/
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natural assumption is that Scala can assure this by importing all reference types as nullable
types. For instance, Java’s String is reinterpreted as String|Null. This option could be
cumbersome for users, but may prevent Scala from raising null errors, as all values from Java
must be checked. For practical reasons, most implementations choose instead to unsoundly
import String as String, allowing null dereferences in the “safe” language, but as we will
see in the next paragraph, plugging this hole is insufficient to solve the soundness problem
anyway. A further problem arises because the interaction between these languages is not
one-directional.

Consider Java’s line 8. In this context, Scala’s ScalaStringOps is imported into Java,
and we have no choice: Its String can only reasonably be a String, even though Scala
Strings are not nullable, and Java Strings are. With this forced unsound type conversion,
Java is free to call len with null, causing Scala to raise a null dereference error on line 3.
But, while the error was raised in Scala code, the cause for the problem is Java: Java put a
null where it was not suitable. We aim to prove that even when errors occur in Scala code,
it is the Java code’s fault.

In gradual typing, “well-typed programs can’t be blamed” [27]. In this work, explicitly
nullable programs can’t be blamed.

This paper’s contributions are:
A core calculus, λnull (“lambda null”), that formalizes the essence of type systems with
implicit and explicit nullability, like those of Kotlin and Scala. λnull is based on the
blame calculus of Wadler and Findler [27].
A higher-level calculus, λs

null (“stratified lambda null”), that models the interoperability
between languages with implicit nullability and languages with explicit nullability. We
can think of λs

null as a stratified version of λnull, where the implicit and explicit terms
are kept separate, but can depend on each other, much like Scala code, which can depend
on Java code.
A metatheory for λnull, consisting of the standard progress and preservation lemmas
(Lemmas 5 and 8), as well as well as blame theorems that characterize how nullability
errors can occur in λnull (Theorems 15 and 16).
A metatheory for λs

null with two main components. First, a semantics of λs
null that

desugars λs
null terms as λnull terms. Second, our main result, Theorem 22, which states

that nullability errors can always be blamed on terms with less-precise typing; that is, terms
typed as implicitly nullable. By analogy, this would mean that NullPointerExceptions
in combined Java/Scala programs are always the result of unsoundness in the Java type
system, which treats reference types as implicitly nullable. In the style of Wadler and
Findler [27], we summarize our result with the slogan explicitly nullable programs can’t be
blamed.
A Coq mechanization of all our results.

2 Blame Calculus

The blame calculus of Wadler and Findler [27] models the interactions between less-precisely
and more-precisely typed code. For example, the less-precisely typed code could come
from a dynamically-typed language, and the more-precisely typed code could come from a
statically-typed language like Scala. The goal of the calculus is twofold:

To characterize situations where errors can or cannot occur as a result of the interaction
between both languages: e.g. “there will not be runtime errors, unless the typed code
calls the untyped code”.
If runtime errors do occur, to assign blame (responsibility) for the error to some term
present in the evaluation.

ECOOP 2020



3:4 Blame for Null

To do the above, the blame calculus extends the simply-typed lambda calculus with casts
that contain blame labels3. The notation 4 for casting a term s from a type S to another
type T with blame label p is s : S =⇒p T .

During evaluation, a cast might succeed, fail, or be be broken up into further casts. For
example, suppose that we cast the value 4 from an integer into a natural number. Such
a cast would naturally succeed, and one step of evaluation then makes the cast disappear:
4 : Int =⇒p Nat 7−→ 4. A cast can also fail. This is when we use the blame label. For
example, if we try to turn an integer into a string using a cast with blame label p, then we
fail and blame p: 4 : Int =⇒p String 7−→⇑ p.

If the cast is higher-order, however, things get tricky. How are we to determine whether
a function of type Int→ Int also has type Nat→ Nat?

(λ(x : Int).x− 2) : Int→ Int =⇒p Nat→ Nat

Informally, the cast above is saying: “if you provide as input a Nat that is also an Int,
the function will return an Int that is also a Nat”. Intuitively, the cast is incorrect, because
the function can return negative numbers. In general, however, we cannot hope to statically
ascertain the validity of a higher-order cast. The insight about what to do here comes from
work on higher-order contracts [11]. The key idea is to delay the evaluation of the cast until
the function is applied. That is, we consider the entire term above, the lambda plus its cast,
a value. Then, if we need to apply the lambda wrapped in a cast, we use the following rule:

((v : (A→ B) =⇒p (A′ → B′)) w) 7−→ (v (w : A′ =⇒p A)) : B′ =⇒p B

Notice how the original cast was decomposed into two separate casts on subterms. This
rule says that applying a lambda wrapped in a cast involves three steps:

First, we cast the argument w, which is expected to have type A′, to type A.
Then we apply the function v to its argument, as usual.
Finally, we cast the result of the application from B′ back to the expected type B.

Also notice how the blame label in the cast w : A′ =⇒p A′ changed from p to its complement p.
We can think of blame labels as opaque identifiers. We assume the existence of a complement
function on blame labels, and write p for the label that is the complement of blame label p.
The complement operation is involutive, meaning that it is its own inverse: p = p.

When a runtime error happens, complementing blame labels leads to two kinds of blame:
positive and negative:

Positive blame. Given a cast with blame label p, positive blame happens when the term
inside the cast is responsible for the failure. In this case, the (failed) term will evaluate to
⇑ p. For example, recall our example with the faulty function that subtracts two from its
argument:

((λ(x : Int).x− 2) : Int→ Int =⇒p Nat→ Nat) 1
7−→ ((λ(x : Int).x− 2) (1 : Nat =⇒p Int)) : Int =⇒p Nat

7−→ ((λ(x : Int).x− 2) 1) : Int =⇒p Nat

7−→ (1− 2) : Int =⇒p Nat

7−→ − 1 : Int =⇒p Nat

7−→ ⇑ p

3 The original presentation in Wadler and Findler [27] also adds refinement types, but we will not need
them here.

4 The notation for casts we use comes from Ahmed et al. [1].
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The term being cast (the lambda) is responsible for the failure, because it promised to
return a Nat, which −1 is not.

Negative blame. If the cast fails because it is provided an argument of an incorrect type
by its context (surrounding code), then we will say the failure has negative blame. In this
case, the term will evaluate to ⇑ p. For example, suppose our example function is used in an
untyped context, where the only type is ?. Without help from its type system, the context
might try to pass in a String as argument:

((λ(x : Int).x− 2) : Int→ Int =⇒p ?→ ?) "one"

7−→ ((λ(x : Int).x− 2) ("one" : ? =⇒p Int)) : Int =⇒p ?

7−→ ⇑ p

Because the context tried to pass an argument that is not an Int, we blame the failure
on the context.

2.1 Well-typed Programs Can’t Be Blamed
The central result in Wadler and Findler [27] is a blame theorem that provides two guarantees:

Casts from less-precise5 to more-precise types, like v : Int→ Int =⇒p Nat→ Nat, only
fail with positive blame.
Casts from more-precise to less-precise types, like v : Int → Int =⇒p ? → ?, only fail
with negative blame.

In both cases, the less precisely typed code is assigned responsibility for the failure. The
authors summarize this result with the slogan “well-typed programs can’t be blamed”, itself
a riff on an earlier catchphrase, “well-typed programs cannot go wrong”, by Milner [18]. In
the next section, we will show how we can adapt ideas from the blame calculus to reason
about nullability errors.

3 Main Ideas

This section offers a bird’s-eye view of the rest of the paper. The main idea is to cast (no pun
intended) the null interoperability problem as a gradual typing problem. Then, using casts
with blame, we show that the implicit language can always be blamed for interoperability
errors. That is, explicitly nullable programs can’t be blamed.

3.1 λnull

The first step is to formalize null pointer exceptions. We start with a calculus λnull (“lambda
null”), based on the blame calculus of Wadler and Findler [27], to which we add a null literal
with type Null. We keep the casts with blame: s : S =⇒p T . Additionally, we distinguish
between three kinds of function types:

#(S → T ) is a presumed non-nullable function, meaning that values of this type are
expected to be non-null, but could be null if a downcast was involved (see Section 4).
That these functions should be non-null is relevant to how we assign blame.
?(S → T ) is a safe nullable function, meaning that values of this type can be null, but
the type system makes sure that they are safely used.
!(S → T ) is an unsafe nullable function, meaning that values of this type can be null,
but the type system does not protect against unsafe uses of them.

5 The formal definition of “less-precise” is given by a naive subtyping relation in Wadler and Findler [27].
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3:6 Blame for Null

The table below shows the three function types in λnull and the kinds of Java and Scala
types they model6:

λs
null Scala Java

#(S → T ) StringScala

?(S → T ) String|Null
!(S → T ) StringJava

Nullability errors happen when we have a function application u v, but the value u in the
function position is in fact null. This corresponds closely to what happens in real languages,
where null pointer exceptions occur when we select a field or method on a null receiver:
e.g. we evaluate s.length() and s is null. In fact, u will be “disguised” inside one or more
casts, so the type system is fooled into thinking u is a function. For example, taking one
step of evaluation on the following term leads to an error ⇑ p, where the label in the error
comes from the cast: (null : Null =⇒p?(Null→ Null)) null 7−→⇑ p.

If one wants to be safe from nullability errors, then instead of a regular application s t,
we can use a safe application app(s, t, r), which conceptually desugars into if (s != null)
then (s t) else r.

3.2 Blame Assignment
In the example above, (null : Null =⇒p?(Null→ Null)) null 7−→⇑ p, how did we decide
to blame p? The basic rules for assigning blame are as follows:

If the cast that causes the failure casts to a presumed non-nullable function, e.g. v :?(S →
T ) =⇒p #(S → T ), then we blame the cast: i.e. ⇑ p. This is because the context (the
surrounding code) was promised a value that should not be null, yet the cast delivered
null.
On the other hand, if the cast is to an unsafe nullable function, e.g. v : #(S →
T ) =⇒p!(S → T ), then we blame the context, because the context should know that the
presumptive function value could in fact be null, but nevertheless chose to use a regular
application, instead of a safe application.
Casts to a safe nullable function, e.g. v : #(S → T ) =⇒p?(S → T ), will never fail,
because the type system ensures that such functions are always applied through safe
applications.

In addition to the rules above, our blame assignment needs to support nested casts. For
example, suppose we have a null value that passes through the following casts, Null⇒p

? ⇒q # ⇒r !7. If the resulting cast is used in the function position of an application,
it will lead to a failure, but which cast should we blame? We could blame r, as per the
second blame assignment rule above. However, something feels off, because intuitively a
cast #⇒r ! should never be blamed for a failure. Indeed, the cast was promised a non-null
value, which it should be safe to consider as a !. Instead, we identify ?⇒q # as the problem,
and blame q, as per the first rule above.

To summarize, blame assignment is a two-part process: we first identify the cast responsible
for the error using a blame assignment relation ↑ (this might involve skipping over one or
more nested casts), and then we blame the relevant label, or its complement, depending on
whether the destination type is # or !.

6 Since λnull is a core calculus, it does not have objects or classes, but only functions. In λnull it is
function types that are nullable or non-nullable.

7 Here we are using a shorthand syntax for casts, where we only show the top-level function type. For
example, we abbreviate a cast s : #(S → T ) =⇒p!(S → T ) as #⇒p !
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3.3 λsnull

With λnull sketched, we then define a second, higher-level calculus λs
null (“stratified lambda

null”). Whereas in λnull the three function types can be mixed freely, λs
null stratifies terms

into implicit and explicit sublanguages. Within the implicit sublanguage, we can only use
unsafe nullable functions (e.g. !(S → T )), while in the explicit sublanguage we can use both
non-nullable (#(S → T )) and safe nullable functions (?(S → T )). The implicit sublanguage
models languages where null is a subtype of any other (reference) type, like Java. The
explicit sublanguage models languages where the user can choose whether a type is nullable
or not, like Kotlin and Scala.

The last step is to model the interoperability between the implicit and explicit worlds. To
do that, we add to λs

null an import term that makes an implicit term available to the explicit
world and vice versa. Imports look very similar to let-bindings: importe x : Te = (ti : Ti) in te.
This says that we evaluate the implicit term ti and assign it to x, which is then available in
the body te (implicit and explicit terms and types are written in red and blue, respectively).
Additionally, the implicit type of ti is Ti, but to the explicit world the type is translated as
Te. This kind of view shift in the type closely models what happens in real-world languages
that support explicit nulls, but need to operate with another language where null is implicit.
For example, the Java type String is translated as String|Null in Scala.

3.3.1 Semantics

We give type systems for λnull and λs
null, and an operational semantics for λnull. The

semantics of λs
null are given via a desugaring to λnull. The desugaring is straightforward,

but it allows us to identify the three kinds of casts that can make a program fail:
Internal casts within the implicit world.
Internal casts within the explicit world.
Interoperability casts that result from desugaring imports. For example, the import
term above generates the cast ti : Ti =⇒I Te. Similarly, an import of an explicit term
into the implicit world would generate a cast te : Te =⇒E Ti. Here, I and E are labels
that interoperability casts based on the cast’s “direction”.

3.3.2 Metatheory

We show that if we start with a well-typed term from λs
null, desugar it, and evaluate it using

the λnull operational semantics, then the term’s normal form (if it exists) is either a value,
or an error with blame. In fact, we are able to characterize this behaviour more precisely.
By reasoning about which casts are safe using positive and negative subtyping, which are
standard tools from gradual typing, we are able to show our main result:

Internal casts within the explicit world can never be blamed for failures.
Interoperatibility casts can be blamed, but we always blame the implicit world in such
cases. That is, the blame always goes to I or E .

This main result formalizes our intuition that explicitly nullable programs can’t be blamed.
It is also evidence that gradual typing can accurately model the null interoperability problem.
All our results have been verified in Coq.

ECOOP 2020



3:8 Blame for Null

x, y, z Variables

p, q Blame labels
p Label complement

f, s, t ::= Terms
x variable
null null literal
λ(x : T ).s abstraction
s t application
app(f, s, t) safe application
s : S =⇒p T cast

u, v ::= Values
λ(x : T ).s abstraction
null null literal
v : S =⇒p T cast

r ::= Results
t term
⇑ p blame

S, T, U ::= Types
Null null type
α (S → T ) function type with modality

α, β ::= Function Type Modality
# presumed non-nullable
? safe nullable
! unsafe nullable

Figure 1 Terms and types of λnull.

4 A Calculus with Implicit and Explicit Nulls

In this section, we describe the λnull calculus in full. λnull is based on the blame calculus
of Wadler et al. [27, 26]. λnull contains the two key ingredients we need to model language
interoperability with respect to null:

Types that are implicitly nullable and types that are explicitly nullable.
Casts that mediate the interaction between the types above, along with blame labels to
track responsibility for failures, should they occur.

The terms and types of λnull are shown in Figure 1, and are explained below. Section 5 shows
how to use λnull to model the interaction between two languages, each treating nullability
differently (like Java and Scala). This section focuses on λnull and its metatheory.

4.1 Values of λnull

A value in λnull can be any of the following: an abstraction λ(x : T ).s, the null literal, or
another value v wrapped in a cast, v : S =⇒p T .

The motivation for classifying certain casts as values is as follows. Consider the cast
null : Null =⇒p!(S → T ). As we will see later, !(S → T ) is an unsafe nullable function type,
so the cast can fail. However, the cast does not fail immediately; instead, the cast only fails
if we try to apply the (null) function to an argument, like so (null : Null =⇒p!(S → T )) w.
This matches e.g. Java’s behaviour, where passing a null when an object is expected only
triggers an exception if we try to select a field or method from the null object:

String s = null ; // no exception is raised here
s . length() // an exception is raised only when we try to select a method or field
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4.2 Terms of λnull

A term of λnull is either a variable x, the literal null, an abstraction λ(x : T ).s, an application
s t, a safe application app(s, t, u), or a cast s : S =⇒p T . The meaning of most terms is
standard; the interesting ones are explained below:

The null literal is useful for modelling null pointer exceptions. Specifically, an application
s t, where s reduces to null, results in a failure.
A safe application app(s, t, u) is a regular application that can also handle the case where
s is null. If s is non-null, then the safe application behaves like the regular application
s t. However, if s is null then the entire safe application reduces to u. Safe applications
could be desugared into a combination of if-expressions and flow typing [12]:

app(s, t, u) ≡ if (s != null) then s t else u

In particular, this means safe applications are “lazy”: they do not initially evaluate either
the argument t or sentinel value u. Instead, we only evaluate the expression s in function
position, and then proceed depending on whether s is null or not.
For the desugaring above to work we would need flow typing, because within the then
branch we need to be able to assume that s is non-null. Safe applications allow us to
work with nullable values without introducing flow typing.
Safe applications closely model Kotlin’s “Elvis” operator [16], written ?:. In Kotlin, the
expression a ?: b evaluates to a, unless the left-hand side is null, in which case the
entire expression evaluates to b.
The cast s : S =⇒p T is used to change the type of s from S to T . The blame label p
will be used to assign blame should the cast cause a failure.

Finally, the result of evaluating a λnull term is either a value v or an error with blame p,
denoted by ⇑ p.

4.3 Types of λnull

The types of λnull are also shown in Figure 1. There are four kinds of types:
The Null type contains a single element: null.
The presumed non-nullable function type #(S → T ), as the name indicates, contains
values that should not be null. However, the value might still end up being null, through
casts. This corresponds to non-nullable types like StringScala. For conciseness, we will
refer to these types simply as non-nullable function types.
A value with safe nullable function type ?(S → T ) is allowed to be null. The type system
will ensure that any such functions are applied using safe applications. This corresponds
to nullable union types like StringScala|Null.
By contrast, a value with unsafe nullable function type !(S → T ) is also allowed to be
null, but the type system does not enforce a null check before an application. That is, if
s has type !(S → T ), the type system will allow both s t and app(s, t, u), even though
the former might fail. This corresponds to types in Java, which are implicitly nullable.

As we will see below, some typing rules apply to more than one function type. For
example, when typing an application s t, we will require that s have a type of the form
#(S → T ) or !(S → T ). Instead of duplicating the relevant inference rule, the syntax for
function types α (S → T ) includes a modality α. In the application case, we can then say
that s must have type α (S → T ) with α ∈ {#, !}.

ECOOP 2020



3:10 Blame for Null

Γ ` t : T

Γ(x) = T

Γ ` x : T
(T-Var)

Γ ` null : Null (T-Null)

Γ, x : S ` s : T
Γ ` λ(x : S).s : #(S → T )

(T-Abs)

Γ ` s : α (S → T )
α ∈ {#, !} Γ ` t : S

Γ ` s t : T
(T-App)

Γ ` f : α (S → T ) α ∈ {?, !}
Γ ` s : S Γ ` t : T

Γ ` app(f, s, t) : T
(T-SafeApp)

Γ ` s : S S  T

Γ ` (s : S =⇒p T ) : T
(T-Cast)

S  T

Null  Null (C-NullRefl)

α ∈ {?, !}
Null  α (S → T )

(C-Null)

S′  S T  T ′

α, β ∈ {#, ?, !}
α (S → T )  β (S′ → T ′)

(C-Arrow)

Figure 2 Typing and compatibility rules of λnull.

Keeping λnull simple. We could reduce the number of function types and avoid the
need for safe applications through a combination of sum types and case analysis. For example,
in Scala nullable values are represented with sum types (e.g. a nullable string has type
String | Null). The case analysis in turn requires support for flow-typing:

val s : String | Null = ...
// s inferred to have type String in the ‘then‘ branch, so s . length is type−correct
val len : Int = if (s != null) s . length else 0

Since λnull is a core calculus, we focus on modelling the assignment of blame for nullability
errors, which revolves around blaming casts or their client code, at function application time.
This is why λnull eschews sum types and flow typing in favour of primitives for nullable
function types and safe applications. Additionally, both of these primitives appear in modern
programming languages (e.g. in Kotlin).

4.4 Typing λnull

The typing rules for λnull are shown in Figure 2. The three interesting rules are T-App,
T-SafeApp, and T-Cast:

(T-App) The rule for a type application s t is almost standard, except that s can not
only have type #(S → T ), but also the unsafe nullable function type !(S → T ). This
models languages with implicit nullability (like Java), where the type system allows
operations that can lead to null-related errors.
(T-SafeApp) To type a safe application app(f, s, t), we check that f is a nullable function
type; that is, it must have type ?(S → T ) or !(S → T ) (if f had type #(S → T ) we
would use T-App). Notice that the type of s must be S (the argument type), but t must
have type T (the return type). This is because t is the “default” value that we return if
f is null.
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null(v)

null(null) (N-Null)

null(v)
null(v : S =⇒p T )

(N-Cast)

abs(v)

abs(λ(x : T ).s) (A-Abs)

abs(v)
abs(v : S =⇒p T )

(A-Cast)

Figure 3 abs and null predicates.

(T-Cast) To type a cast s : S =⇒p T we check that s indeed has the source type S. The
entire cast then has type T . Additionally, we make sure that S and T are compatible,
written S  T . Type compatibility is described below.

Notice that the type of null is always Null, so in order to get a nullable function we
need to use casts. For instance,

T-Null
` null : Null Null  ?(Null→ Null)

C-Null

` null : Null =⇒p?(Null→ Null) : ?(Null→ Null)
T-Cast

4.4.1 Compatibility
Compatibility is a binary relation on types that is used to limit (albeit only slightly) which
casts are valid. Given types S and T , we can cast S to T only if S  T . The compatibility
rules are shown in Figure 2.

I Lemma 1. Compatibility is reflexive, but is neither symmetric nor transitive.

A counter-example to symmetry is that Null  ?(Null → Null), but the latter
is not compatible with the former. A counter-example to transitivity is that Null  
?(Null → Null) and ?(Null → Null)  #(Null → Null), but Null is not compatible
with #(Null→ Null).

4.5 Semantics of λnull

We give a small-step operational semantics for λnull, using evaluation contexts. The rules
are shown in Figure 5. Notice that the result r of an evaluation step can be a term or an
error, denoted by ⇑ p.

4.5.1 Auxiliary Predicates
The unary predicates on types null and abs, shown in Figure 3, test whether a value v is
equal to null or to a lambda abstraction, respectively. These predicates are able to “see
through” casts.

I Example 2. The following hold:
null(null), null(null : Null =⇒p #(Null→ Null))
abs(λ(x : Null).x), abs(λ(x : Null).x : #(Null→ Null) =⇒p?(Null→ Null))
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R-SafeAppNorm

R-SafeAppNull

R-App/R-AppNorm

R-AppCast

R-AppFail

t =
app(v1, v2, v3)

abs(v1)

null(v1)

t = v1 v2

abs(v1)

otherwise

v1 is a cast to
#(S → T )

null(v1)

t

Figure 4 Simplified decision tree for λnull reduction rules.

4.5.2 Reduction Relation
The decision tree in Figure 4 shows a simplified view of the reduction rules. The rules are
described in detail below.

R-App is standard beta reduction.
R-AppFail handles the case where we have a function application and the value in the
function position is in fact null. This last fact is checked via the auxiliary predicate
null(v). In this case, the entire term (and not just the subterm within the evaluation
context) evaluates to an error. What remains is to determine the blame label that we
will use. This we do using the blame assignment relation (also shown in Figure 5): we
write v ↑ p to indicate that the blame should go to a label p. As we will see in Section
4.5.3, v will contain one or more casts, and the label p is obtained from one of the casts.
Here is a sample application of R-AppFail, where v = null : Null =⇒p!(Null→ Null):

(null : Null =⇒p!(Null→ Null)) null 7−→⇑ p

In this case, the only cast in v is selected as the source of the blame (in general, v could
contain multiple casts). We blame p because the surrounding code (the code doing the
application v null), should have used a safe application, based on v’s nullable type.
R-AppCast handles the case where the value v′ in the function position is a cast
involving only non-nullable function types; i.e. v′ = v : #(S1 → S2) =⇒p #(T1 → T2).
In this case, the application v′ u reduces to

(v (u : T1 =⇒p S1)) : S2 =⇒p T2

This is the classic behaviour of blame in a function application, and comes from [11]. The
type system guarantees that the argument u is typed as a T1, but the function v expects
it to have type S1. We then need the cast u : T1 =⇒p S1 before passing the argument
to function. Notice that the blame label has been complemented (p), because it is the
context (the code calling the function v) who is responsible for passing an argument of the
right type. Conversely, when the function v returns, its return value will have type S2,
but the surrounding code is expecting a value of type T2. We then need to cast the entire
application from S2 to T2; this time, the blame label is p. As Findler and Felleisen [11]
remark, the handling of the blame label matches the rule for function subtyping present
in other system, where the argument and return type must be contra- and covariant,
respectively.
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R-AppNorm handles the case where we have an application v u, and v is a cast to
a nullable function type (either a ? function or a ! function). Additionally, we know
that abs(v) holds. In this case, what we would want to do is “translate” the nullable
function type into a non-nullable function type. This is fine because abs(v) implies that
the underlying function is non-null. The normalization relation v � v′ (also shown in
Figure 5) achieves this translation of casts.
I Example 3. Let t = λ(x : Null).x. Suppose we are evaluating the application

(t : #(Null→ Null) =⇒p?(Null→ Null)) null

We proceed by first noticing that abs(t : #(Null→ Null) =⇒p?(Null→ Null)). Then
we normalize the value in the function position

t� t
Norm-Abs

t : #(Null→ Null) =⇒p?(Null→ Null)�
Norm-Cast
t : #(Null→ Null) =⇒p #(Null→ Null)

Now we can use R-AppNorm to turn the origin application into

(t : #(Null→ Null) =⇒p #(Null→ Null)) null

We can then proceed the evaluation using R-AppCast.
R-SafeAppNull is simple: if we are evaluating a safe application app(v, u, u′) and the
underlying function v is null, then the entire term reduces to u′ (the default value).
Finally, R-SafeAppNorm handles the remaining case. We have a safe application
app(v, u, u′) like before, but this time we know that v is an abstraction (via abs(v)). What
we would like to do is to turn the safe application into a regular one: app(v, u, u′) 7−→ v u.
However, this can lead to the term getting stuck, if v is a cast to a safe nullable function
(a ? function). The problem is that safe nullable functions are not supposed to appear in
regular applications. The solution is to normalize v to v′. Since v′ is guaranteed to have
a regular function type after normalization, we can take the step app(v, u, u′) 7−→ v′ u,
and then follow up with R-AppCast or R-App.

4.5.3 Blame Assignment
The blame assignment relation is responsible for determining which cast in a value is
responsible for a nullability error. Once the responsible cast has been identified, blame
assignment also determines whether the blame is positive (blame the cast) or negative (blame
the context). The notation for blame assignment is v ↑ p, and indicates that if the value v,
containing one or more casts, leads to a failure (because null(v) holds and v was used in the
function position of an application), then we will blame label p.

The rules for blame assignment are shown in Figure 5. There are two kinds of rules,
based on what they do with the outermost cast: those that discard the outermost cast, and
those that use the outermost cast to assign blame. Both kinds are described below.

Rules that discard the outermost cast:
B-NonNullable handles the cast where the outermost cast has the form v′ : #(S →
T ) =⇒p U ; that is, the source type is a non-nullable function type. Intuitively, we do
not want to assign blame to either p or p, because the source type in the cast promised
that the underlying value is non-null, but the value being cast is in fact null. That is,
there must be another “risky” cast that is part of v′ that should be blamed. For example,
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Reduction
s 7−→ r

E[(λ(x : T ).s) v] 7−→ E[[v/x]s] (R-App)

null(v) v ↑ p
E[v u] 7−→⇑ p

(R-AppFail)

abs(v) v � v′

E[v u] 7−→ E[v′ u]
(R-AppNorm)

null(v)
E[app(v, s, t)] 7−→ E[t]

(R-SafeAppNull)

abs(v) v � v′

E[app(v, s, t)] 7−→ E[v′ s]
(R-SafeAppNorm)

abs(v)
E[(v : #(S1 → S2) =⇒p #(T1 → T2)) u] 7−→ E[(v (u : T1 =⇒p S1)) : S2 =⇒p T2]

(R-AppCast)

Evaluation contexts
E ::=

[]
E s

v E

app(E, s, t)
E : S =⇒p T

Blame assignment
v ↑ p

(v : Null =⇒p!(S → T )) ↑ p (B-Null)

v ↑ p′

(v : #(S → T ) =⇒p U) ↑ p′
(B-NonNullable)

v ↑ p′

(v :!(S → T ) =⇒p!(S′ → T ′)) ↑ p′
(B-Unsafe!)

(v :?(S → T ) =⇒p!(S′ → T ′)) ↑ p (B-Safe!)

α ∈ {?, !}
(v : α (S → T ) =⇒p #(S′ → T ′)) ↑ p

(B-Nullable#)

Normalization
v � u

λ(x : T ).s� λ(x : T ).s (Norm-Abs)

v � u α, β ∈ {#, ?, !}
v : α (S1 → S2) =⇒p β (T1 → T2)� u : #(S1 → S2) =⇒p #(T1 → T2)

(Norm-Cast)

Figure 5 Reduction rules of λnull, along with blame assignment and normalization relations.
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consider the cast ((Null⇒r ?)⇒q #)⇒p !, where we have written only the top level
“modalities” of the function types. In this cast, a null value that starts as having type
Null is cast first to a safe nullable function, then to a non-nullable function, and finally
to an unsafe nullable function. Blame assignment models the intuition that the second
cast (from ? to #) is the unsafe one, and so should be blamed. Because the destination
type in that second cast is a #, we blame the term (i.e. blame q).
B-Unsafe! is similar to the previous case: when confronted with a cast v′ : S =⇒p T

where both S and T are ! types, then we “recurse” on v′ to find the guilty cast. The
reason is that the last cast did not change the kind of function type, so whatever
went wrong must have happened earlier. For example, suppose the outermost cast is
!(Null→ Null)⇒p !(Null→ Null). This cast leaves the type unchanged, so it should
never be blamed for a failure.
Notice that the equivalent rule for # types is subsumed by B-NonNullable. ? types do
not need an equivalent rule, because a cast of the form v : S =⇒p? cannot fail.

Rules that assign blame based on the outermost cast:
B-Null handles the case where we cast Null to an unsafe function type. In this case, we
blame the context, because the target type is a !.
B-Nullable# casts some kind of nullable function (either a ? or a !) to a non-nullable
function. In this case, we want to blame the term, because the context was promised a
non-nullable value that nevertheless ended up being null.
B-Unsafe! handles casts of the form ? ⇒p !. In this case, we blame p, because the
context should know that the value is potentially null.

4.6 Metatheory of λnull

In developing the metatheory, we closely followed the syntactic approach taken in Wadler and
Findler [27]. All the results in this section have been verified using the Coq proof assistant.

4.6.1 Safety Lemmas
The first step is establishing that evaluation of well-typed λnull terms does not get stuck.
We do this by proving the classic progress and preservation lemmas due to Wright and
Felleisen [29]. First, we need an auxiliary lemma that says that normalization preserves
well-typedness.

I Lemma 4 (Soundness of normalization). Let α ∈ {#, ?, !}, Γ ` v : α (S → T ) and v � v′.
Then Γ ` v′ : #(S → T ).

Then we can prove preservation.

I Lemma 5 (Preservation). Let Γ ` t : T and suppose that t 7−→ r. Then either
r =⇑ p, for some blame label p, or
r = t′ for some term t′, and Γ ` t′ : T

Notice that, because of unsafe casts like null : Null =⇒p!(S → T ), taking an evaluation
step might lead to an error ⇑ p.

Before showing progress, we need a lemma that says that non-nullable values typed with
a function type can be normalized.

I Lemma 6 (Completeness of normalization). Let α ∈ {#, ?, !}, Γ ` v : α (S → T ) and
suppose that abs(v) holds. Then there exists a value v′ such that v � v′.
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S <:+ T

Null <:+ Null (PS-NullRefl)

α ∈ {?, !}
Null <:+ α (S → T )

(PS-Null)

S′ <:− S T <:+ T ′

α ∈ {#, ?, !}
#(S → T ) <:+ α (S′ → T ′)

(PS-Arrow#)

S′ <:− S T <:+ T ′

α, β ∈ {?, !}
α (S → T ) <:+ β (S′ → T ′)

(PS-ArrowNullable)

S <:− T

Null <:− Null (NS-NullRefl)

Null <:− ?(S → T ) (NS-Null)

S′ <:+ S T <:− T ′

α ∈ {#, ?, !}
#(S → T ) <:− α (S′ → T ′)

(NS-Arrow#)

S′ <:+ S T <:− T ′

α ∈ {#, ?, !}
!(S → T ) <:− α (S′ → T ′)

(NS-Arrow!)

S′ <:+ S T <:− T ′

α ∈ {#, ?}
?(S → T ) <:− α (S′ → T ′)

(NS-Arrow?)

Figure 6 Positive and negative subtyping.

This lemma is necessary because if we are ever evaluating a well-typed safe application (e.g.
app(v, u, u′)) where the function value (v) is known to be non-nullable, then we need to be
able to turn the safe application into a regular application (v u) using R-SafeAppNorm.

We also need a weakening lemma.

I Lemma 7 (Weakening). Let Γ ` t : T and x 6∈ dom(Γ). Then Γ, x : U ` t : T for any
type U .

We can then show progress.

I Lemma 8 (Progress). Let ` t : T . Then either
t is a value
t 7−→⇑ p, for some blame label p
t 7−→ t′, for some term t′

4.6.2 Blame Lemmas
The progress and preservation lemmas do not tell us as much as they usually do, because of
the possibility of errors. It would then be nice to rule out errors in some cases. Examining
the evaluation rules, we can notice that errors occur due to casts: specifically, because we
sometimes cast a null value to a function type, which we later try to apply.

Inspecting the rules for blame assignment shows that casts to !(T → U) can lead to
negative blame, and casts to #(T → U) can lead to positive blame. We can then define two
relations: positive subtyping (T <:+ U) and negative subtyping (T <:− U), that identify
which casts cannot lead to positive and negative blame, respectively. The subtyping rules,
adapted from Wadler and Findler [27], are shown in Figure 6.

I Example 9. Since the type system ensures that ?(S → T ) functions are only ever applied
through safe casts, we would hope that the cast null : Null =⇒p?(S → T ) will not
fail with either blame ⇑ p or ⇑ p. Therefore we have both Null <:+ ?(S → T ) and
Null <:− ?(S → T ).
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t safe for p

x safe for p (SF-Var)

null safe for p (SF-Null)

s safe for p
λ(x : T ).s safe for p

(SF-Abs)

s safe for p t safe for p
s t safe for p

(SF-App)

f safe for p s safe for p
t safe for p

app(f, s, t) safe for p
(SF-SafeApp)

S <:+ T s safe for p
s : S =⇒p T safe for p

(SF-CastPos)

S <:− T s safe for p
s : S =⇒p T safe for p

(SF-CastNeg)

s safe for p
q 6= p q 6= p

s : S =⇒q T safe for p
(SF-CastDiff)

Figure 7 Safe for relation.

I Example 10. Since a cast null : Null =⇒p!(S → T ) can fail with blame p, we have
Null <:+ !(S → T ), but not Null <:− !(S → T ).

I Lemma 11 (Positive and negative subtyping are reflexive). Let T be an arbitrary type. Then
T <:+ T and T <:− T .

I Lemma 12 (Subtyping implies compatibility). Let S and T be types. Then
S <:+ T =⇒ S  T

S <:− T =⇒ S  T

Lemma 12 implies that if S is a (positive or negative) subtype of T , then we can cast S
to T (which requires compatibility).

The next step is to lift positive and negative subtyping to work on terms. The safe for
relation, again adapted from Wadler and Findler [27] and shown in Figure 7, accomplishes
this. We say that a term t is safe for a blame label p, written t safe for p, if evaluating t
cannot lead to an error with blame p. That is, evaluating t either diverges, results in a value,
or results in an error with blame different from p. We formalize this fact as a theorem below.

Most of the rules in the safe for relation just involve structural recursion on the subterms
of a term. The connection with subtyping appears in SF-CastPos and SF-CastNeg. For
example, to conclude that (s : S =⇒p T ) safe for p, we require that s safe for p and
S <:+ T .

The following lemmas say that safe for is preserved by normalization and substitution.

I Lemma 13 (Normalization preserves safe for). Let v be a value such that v safe for p

and suppose that v � v′. Then v′ safe for p.

I Lemma 14 (Substitution preserves safe for). Let t and t′ be terms such that t safe for p

and t′ safe for p. Then [t′/x]t safe for p.

We now arrive at the main results in this section, the progress and preservation theorems
for safe terms.

I Theorem 15 (Preservation of safe terms). Let Γ ` t : T and t safe for p. Now suppose
that t steps to a term t′ (that is, taking an evaluation step from t is possible and does not
result in an error). Then t′ safe for p.
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I Theorem 16 (Progress of safe terms). Let ` t : T and t safe for p. Then either
t is a value
t 7−→⇑ p′, for some blame label p′ 6= p.
t 7−→ t′, for some term t′

Notice that this theorem does not preclude the term from stepping to an error, but it
does say that the error will not have blame label p. This is a stronger guarantee than what
we get from Lemma 8 (Progress), which placed no restrictions on the blame label p′ when
t 7−→⇑ p′.

Here are a few implications of the theorems above:
A term without casts cannot fail. This is because a term can only fail with some blame
label p, and a term without casts is necessarily safe for p.
Casts that turn a “Java” type like !(!(Null → Null) → Null) into the corresponding
“Scala” type ?(?(Null → Null) → Null) via “nullification” can only fail with positive
blame, because of negative subtyping.
Conversely, casts that turn a “Scala” type like #(#(Null → Null) → Null) into the
corresponding “Java” type !(!(Null → Null) → Null) via erasure can only fail with
negative blame, because of positive subtyping.

The last two claims form the bases for our model of language interoperability, described in
the next section.

5 A Calculus for Null Interoperability

The λnull calculus is very flexible in that it allows us to freely mix in implicitly nullable
terms with explicitly nullable terms. On the other hand, it is perhaps too flexible. In the
real world, when a language where null is explicit interoperates with a language where null
is implicit, the separation between terms from both languages is very clear (it is usually
enforced at a file or module boundary). For example, in the Java and Scala case, the Scala
typechecker will only allow explicit nulls, while the Java typechecker only allows implicit
nulls. To more faithfully model this kind of language interoperability, this section introduces
a slight modification of λnull called λs

null (“stratified lambda null”).

5.1 Terms and Types of λsnull

The terms and types of λs
null are shown in Figure 8. The main difference with respect

to λnull is that terms and types are stratified into the world of explicit nulls (subscript
e) and the world of implicit nulls (subscript i). Notice that the grammar for types in the
“explicit sublanguage” only allows for non-nullable functions (#(S → T )) and safe nullable
functions (?(S → T )). Similarly, the implicit sublanguage only has unsafe nullable functions
(!(S → T )). The only new terms are imports, which in the explicit sublanguage have syntax

importe x : Te = (ti : Ti) in te

Informally, an import term is similar to a let-binding: it binds x as having type Te in
the body te. However, the term that x is bound to, ti, comes from the implicit sublanguage:
it is a ti and not a te. Furthermore, ti is expected to have type Ti. Dually, the implicit
sublanguage has an import term that binds x to an element of te, as opposed to a ti:

importi x : Ti = (te : Te) in ti
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t ::= Terms
te terms with explicit nulls
ti terms with implicit nulls

fe, se, te ::= Explicit terms
x variable
null null literal
λ(x : Te).se abstraction
se te application
app(fe, se, te) safe application
se : Se =⇒ Te cast
importe x : Te = (ti : Ti) in te import

fi, si, ti ::= Implicit terms
x variable
null null literal
λ(x : Ti).(si : Si ) abstraction
si ti application
app(fi, si, ti) safe application
si : Si =⇒p Ti cast
importi x : Ti = (te : Te) in ti import

Se, Te ::= Explicit types
Null null
#(Se → Te) presumed non-nullable function
?(Se → Te) safe nullable function

Si, Ti ::= Implicit types
Null null
!(Si → Ti) unsafe nullable function

Figure 8 Terms and types of λs
null. Differences with λnull are highlighted.

Imports allow us to link the world of explicit nulls with the world of implicit nulls, in
much the same way as Scala’s import statements allow us to use Java libraries from Scala
code (similarly, Java’s import statements allow us to use Scala libraries from Java code).

Casts in the explicit sublanguage do not have blame labels. This is because the type
system will force all such casts to be upcasts: i.e. casts that respect subtyping. We will see
that this means that “internal” casts within the explicit sublanguage will never be blamed
for failures. Relatedly, notice that λs

null, unlike e.g. Scala, has no subsumption rule. We
opted for casts instead of subsumption to keep λs

null close to λnull. Subsumptions and casts
are similarly expressive: one can think of subsumption as casts automatically introduced by
the type checker.

Finally, abstractions in the implicit sublanguage, written λ(x : Ti).(s : Si), are annotated
with their return type Si. This is not strictly necessary, but it simplifies the presentation of
desugaring in Section 5.3.

5.2 Typing λsnull

The typing rules for λs
null are shown in Figure 9. These rules are almost verbatim copies of

the typing rules for λnull (and the compatibility relation is reused from Figure 2). The two
new rules handle imports:

TE-Import handles the case where an implicitly nullable term is used from the world
of explicit nulls. To type importe x : Te = (ti : Ti) in te, we first type te in the context
Γ, x : Te, obtaining a type Se. This will be the type of the entire term. The interesting
twist comes next: the term ti is typed with the `i relation in an empty context, so that
∅ `i ti : Ti. Finally, we need to somehow check that the type Ti determined by the `i

relation and the type Te expected by the `e relation are “in agreement”. This is done by
the nullification relation, whose judgment is written Ti ↪→N Te, and is shown in Figure
10.
TI-Import handles the opposite case, where a term from the world of explicit nulls is
used in an implicitly nullable term. Here we use the “dual” of nullification: the erasure
relation, written Te ↪→E Ti. Erasure is also shown in Figure 10.
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I Remark 17. In designing TE-Import and TI-import, we have to decide under which context
we will type the “embedded” term that comes from the foreign sublanguage. For simplicity,
we have chosen to do the typechecking under the empty context. This prevents λs

null from
modelling circular dependencies between terms of different languages, but otherwise seems
not unduly restrictive.

Nullification and erasure, shown in Figure 10, are binary relations on types. They are
inspired by how Java and Scala interoperate; specifically, the types of Java terms are “nullified”
before being used by Scala code, and the types of Scala terms are “erased” before being used
by Java code. Of course, the real-world nullification and erasure are more complicated than
the simple relations presented here, but we believe the formalization in this section does
capture the essence of how these relations affect nullability of types; namely, nullification
conservatively assumes that every component of a Java type is nullable, while erasure
eliminates the distinction between nullable and non-nullable types in the `e type system.

Notice that the typing rules for casts are now different in the explicit and implicit
sublanguages. In the implicit sublanguage, like in λnull, to type the cast si : Si =⇒p Ti, we
require that Si be compatible with Ti (Si  Ti). By contrast, when typing casts in the
explicit sublanguage, e.g. se : Se =⇒ Te, we check that Se can be upcasted to Te, written
Se <:e Te. The upcasting is defined by the explicit subtyping relation, given in Figure 11.
Explicit subtyping is defined just like we would define a regular subtyping relation, that is, it
implies substitutability [17]. For example, we have the judgment #(S → T ) <:e ?(S → T ),
which is akin to the Scala judgment String <: String|Null.

Crucially, we can show that explicit subtyping implies both positive and negative subtyping.

I Lemma 18. S <:e T implies S <:+ T and S <:− T .

This is useful, because it hints that casts that rely on explicit subtyping will never be
blamed for failures.

5.3 Desugaring λsnull to λnull

The last step is to give meaning to λs
null terms. We could repeat the approach followed

for λnull using operational semantics, but instead we will do something different. We will
desugar λs

null terms and types to λnull terms and types, respectively. This is useful, because
in Section 4.6 we proved many results about λnull terms, and we would like to re-use these
results to reason about λs

null as well.
We will do the desugaring using a pair of functions (De,Di). De is a function that sends

λs
null terms from the explicit sublanguage to λnull terms. Similarly, Di is a function that

maps λs
null terms from the implicit sublanguage to λnull terms. Both functions are shown in

Figure 12.
The first thing to notice is that we do not actually need to desugar types. This is because

λs
null types (from both sublanguages) are also λnull types.
When it comes to terms, most cases in Figure 12 are handled by straightforward structural

recursion on the term. There are only four interesting cases:
(DE-Cast) Casts in the explicit sublanguage do not have blame labels, but casts in λnull

must always have labels. When we desugar explicit casts, we tag them with the same
(“compiler-generated”) label Eint. Later, we show that these casts are never blamed for
failures (neither positively nor negatively).
(DI-Abs) An abstraction λ(x : Si).(si : Ti) from the implicit sublanguage is typed as
!(Si → Ti) (Figure 9). However, the corresponding lambda in λnull, λ(x : Si).Di(si),
will have type #(Si → Ti). So that the metatheory in Section 5.4 works out, we need
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Γ `e te : Te

Γ(x) = Te

Γ `e x : Te

(TE-Var)

Γ `e null : Null (TE-Null)

Γ, x : Se `e se : Te

Γ `e λ(x : Se).se : #(Se → Te)
(TE-Abs)

Γ `e se : #(Se → Te) Γ `e te : Se

Γ `e se te : Te

(TE-App)

Γ `e fe :?(Se → Te) Γ `e se : S
Γ `e te : Te

Γ `e app(fe, se, te) : Te

(TE-SafeApp)

Γ `e se : Se Se <:e Te

Γ `e (se : Se =⇒ Te) : Te

(TE-Cast)

Γ, x : Te `e te : Se

∅ `i ti : Ti

Ti ↪→N Te

Γ `e importe x : Te = (ti : Ti) in te : Se

(TE-Import)

Γ `i ti : Ti

Γ(x) = Ti

Γ `i x : Ti

(TI-Var)

Γ ` null : Null (TI-Null)

Γ, x : Si `i si : Ti

Γ `i λ(x : Si).(si : Ti) :!(Si → Ti)
(TI-Abs)

Γ `i si :!(Si → Ti) Γ `i ti : Si

Γ `i si ti : Ti

(TI-App)

Γ `i fi :!(Si → Ti) Γ `i si : Si

Γ `i ti : Ti

Γ `i app(fi, si, ti) : Ti

(TI-SafeApp)

Γ `i s : Si Si  Ti

Γ `i (si : Si =⇒p Ti) : Ti

(TI-Cast)

Γ, x : Ti `i ti : Si

∅ `e te : Te

Te ↪→E Ti

Γ `i importi x : Ti = (te : Te) in ti : Si

(TI-Import)

Figure 9 Typing rules of λs
null.
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Ti ↪→N Te

Null ↪→N Null (N-Null)

Si ↪→N Se

Ti ↪→N Te

!(Si → Ti) ↪→N ?(Se → Te)
(N-Arrow!)

Te ↪→E Ti

Null ↪→E Null (E-Null)

Se ↪→E Si

Te ↪→E Ti

?(Se → Te) ↪→E !(Si → Ti)
(E-Arrow?)

Se ↪→E Si

Te ↪→E Ti

#(Se → Te) ↪→E !(Si → Ti)
(E-Arrow#)

Figure 10 Nullification and erasure relations.

Null <:e Null (ES-NullRefl)
Null <:e ?(S → T ) (ES-Null?)

S′ <:e S T <:e T ′

#(S → T ) <:e #(S′ → T ′)
(ES-Arrow#)

S′ <:e S T <:e T ′

#(S → T ) <:e ?(S′ → T ′)
(ES-Arrow?)

S′ <:e S T <:e T ′

?(S → T ) <:e ?(S′ → T ′)
(ES-Safe)

Figure 11 Explicit subtyping (upcast) relation.

the types to match; hence the cast. This is another instance of a blame label being
automatically inserted by desugaring. We will use the blame label Iint: the I stands for
implicit, indicating that the term being cast is from the implicit sublanguage. The int
subscript indicates that it is an internal cast; that is, it does not occur at the boundary
between the implicit and explicit sublanguages. To do the cast, we need the return type
Ti of the function: this is why abstractions in the implicit sublanguage contain type
annotations for the return type.

(DE-Import) This handles the case where we import a term from the implicit world
into the explicit world. There are two desugarings that happen in this rule. The first is
a standard desugaring that turns the import (effectively, a let binding) into a lambda
abstraction that is immediately applied. In this way, we do not need to add let bindings to
λnull. The second desugaring is the insertion of a cast that “guards” the transformation
of the original implicit type Ti into the explicit type Te. The cast has blame label I to
indicate that the term being cast is from the implicit world (conversely, we could say that
the context using the term is from the explicit world).

(DI-Import) We also need a dual rule for importing a term from the explicit world
into the implicit world. This rule does the same as (DE-Import), except that the cast
now goes in the opposite direction: from Te to Ti. The cast is labelled with blame E ,
indicating that the term being cast comes from the explicit sublanguage.
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De : se −→ s

De(x) = x (DE-Var)
De(null) = null (DE-Null)

De(λ(x : Te).se) = λ(x : Te).De(se) (DE-Abs)
De(se te) = De(se) De(te) (DE-App)

De(app(fe, se, te)) = app(De(fe),De(se),De(te)) (DE-SafeApp)
De(se : Se =⇒ Te) = De(se) : Se =⇒Eint Te (DE-Cast)

De(importe xe : Te = (ti : Ti) in te) = (λ(x : Te).De(te)) (Di(ti) : Ti =⇒I Te)
(DE-Import)

Di : si −→ s

Di(x) = x (DI-Var)
Di(null) = null (DI-Null)

Di(λ(x : Si).(si : Ti)) = (λ(x : Si).Di(si)) : #(Si → Ti) =⇒Iint !(Si → Ti)
(DI-Abs)

Di(si ti) = Di(si) Di(ti) (DI-App)
Di(app(fi, si, ti)) = app(Di(fi),Di(si),Di(ti)) (DI-SafeApp)
Di(si : Si =⇒p Ti) = Di(si) : Si =⇒p Ti (DI-Cast)

Di(importi xi : Ti = (te : Te) in ti) = (λ(x : Ti).Di(ti)) (De(te) : Te =⇒E Ti)
(DI-Import)

Figure 12 Desugaring λs
null terms to λnull terms.

5.4 Metatheory of λsnull

The following lemma shows that nullification implies negative subtyping, and erasure implies
positive subtyping.

I Lemma 19. Let S and T be types. Then S ↪→N T implies S <:− T and T <:+ S, and
S ↪→E T implies S <:+ T and T <:− S.

This is important because nullification is used to import implicit terms into the explicit
world. The lemma shows that nullification implies negative subtyping, and casts where
the arguments are negative subtypes never fail with negative blame. This means that if
nullification-related casts fail, they do so by blaming the term being cast (which belongs to
the implicit world), and never the context (which belongs to the explicit world). That is, the
code with implicit nulls is at fault!

Dually, erasure is used to import explicit terms into the implicit world. Since erasure
implies positive subtyping, then erasure-related casts can only fail with negative blame. That
is, the context (which belongs to the implicit world) is at fault for erasure-related failures.
Again, implicit nulls are to blame!
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I Theorem 20 (Desugaring preserves typing). Let te and ti be explicit and implicit terms
from λs

null, respectively. Then
Γ `e te : Te =⇒ Γ ` De(te) : Te, and
Γ `i ti : Ti =⇒ Γ ` Di(ti) : Ti

I Definition 21 (Set of user-written blame labels in a term). We will denote the set of
user-written blame labels in a term t of λs

null by labels(t). We do not give an explicit
definition here, but labels(t) can be defined inductively on the structure of terms. Notice that
user-written blame labels can only come from implicit casts si : Si =⇒p Ti.

The next theorem is our main result: it characterizes the failures that can occur while
evaluating a (desugared) λs

null term. Specifically, it says that:
Upcasts within the explicit world, which have blame Eint, are never blamed for failures,
neither positively nor negatively.
Interop casts that result from importing an implicit term into an explicit term can only
fail with positive blame, that is, they blame I. This means the term being cast, which
originated in the implicit sublanguage, is at fault.
Interop casts that result from importing an explicit term into an implicit term can only
fail with negative blame, that is, they blame E . If the blame is E , then the context
surrounding the term being cast is at fault; in this case, the term being cast comes from
the explicit sublanguage, so the context is in the implicit sublanguage.
Internal casts tagged with Iint, which result from desugaring λ(x : Si).(si : Ti) expressions,
are never blamed for failures, neither positively nor negatively. That is, the desugaring
does not introduce faulty casts.
User-written casts (si : Si =⇒p Ti) within the implicit sublanguage can still be blamed,
but that is expected because some of those casts are indeed unsafe.

I Theorem 22 (Explicitly nullable programs can’t be blamed). Let t be a term of λs
null. Suppose

that {I, I, Iint, Iint, E , E , Eint, Eint}∩labels(t) = ∅. Further, suppose that t is well-typed under
`e or `i and a context Γ. Then

If t = te, then De(te) safe for {Eint, Eint, I, E , Iint, Iint}.8
If t = ti, then Di(ti) safe for {Eint, Eint, I, E , Iint, Iint}.

Just like a central result in gradual typing is that “well-typed programs can’t be blamed”
[27], we can summarize our main result as explicitly nullable programs can’t be blamed.

6 Coq Mechanization

All our results have been verified using the Coq theorem prover. The two main differences
between the presentation of λnull in this paper and in the Coq proofs are:

The definition of evaluation in the Coq code does not use evaluation contexts, unlike
Figure 5. Instead, we have explicit rules for propagating errors.
The definition of terms in the Coq code uses a locally-nameless representation of terms [5].

In the mechanization of the proofs, we used the Ott [21] and LNgen [2] tools, which
automate the generation of some useful auxiliary lemmas from a description of the language
grammar. In total, the Coq code has 4657 lines of code, of which 1423 are manually-written
proofs, while the rest are either library code or automatically-generated by Ott and LNgen.

8 The notation t safe for L, where L is a set of blame labels, indicates that t safe for l for every l ∈ L.
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7 Related Work

The concept of blame comes from work on higher-order contracts by Findler and Felleisen
[11]. The application of blame to gradual typing was pioneered by Tobin-Hochstadt and
Felleisen [25], and Wadler and Findler [27]. We followed the latter closely when developing
the operational semantics and safety proofs for λnull. Our syntax for casts comes from
Ahmed et al. [1]. Wadler [26] provides additional context on the use of blame for gradual
typing.

The gradual guarantee, introduced by Siek et al. [23], is a property of gradually-typed
languages that characterizes the behaviour of terms as type annotations are added or removed
from a program. Roughly speaking, removing type annotations preserves program behaviour,
while adding type annotations can lead only to certain classes of errors. In this way, languages
that satisfy the gradual guarantee allow well-behaved migrations of untyped code into the
typed world. Determining whether λs

null satisfies a property analogous to the gradual
guarantee remains future work.

Linking types [19] solve the related (and more general) problem of ensuring that typing
guarantees that hold in one or more source languages (e.g. Java and Scala) continue to hold,
after compilation, in a target language (e.g. JVM bytecode), even in the presence of linking.
However, linking types require that the source languages be augmented with additional types
(the linking types), and that the target language be sufficiently expressive. In the case of null
interoperability for Java and Scala, for example, this would mean adding a notion of nullable
types both to Java (the source language) and JVM bytecode (the target language). This
makes the null interoperability problem trivial, but would require considerable additional
effort, when compared to our approach.

Multiple modern programming languages have types that are non-nullable by default.
Examples include Kotlin [16], Swift [13], C# [6], and (recently) Scala [8]. In all of these, it is
possible to recover nullability at the type level. For example, in Kotlin the type String is
non-nullable, but String? is nullable. In Scala, nullability is expressed as a special case of
type unions: String|Null represents nullable strings. Additionally, all of these languages
also need to support some form of interoperability with a “less-precisely typed” language,
where nullability remains implicit and is not tracked in the types. In the Kotlin and Scala
case, the less-precisely typed language is Java; for Swift, it is Objective-C; and for C#, it is
any language that compiles to the .NET runtime.

All of the languages above make pragmatic design decisions in their null interoperability.
Specifically, their versions of type nullification trade off soundness for usability. For example,
in Kotlin, a String type flowing from Java is translated as the platform type [14] String!,
as opposed to String?. Platform types allow different kinds of unsound, yet convenient,
behaviour. For example, we can select fields and methods on a platform type, or assign a
platform type to the corresponding non-nullable type (e.g. assign a String! to a String).
Naturally, these unsafe operations might fail at runtime. Similarly to platform types in Kotlin,
Swift has implicitly unwrapped optionals and Scala has an UncheckedNull type (which has
fewer soundness holes, but does not help as much with usability).

The design of λs
null was inspired by null interoperability in Scala and Kotlin. The main

difference is that type nullification is “sound” in λs
null: that is, the unsafe nullable type

!(S → T ) is translated into the safe nullable type ?(S → T ). However, as we have seen,
nullability errors remain, which motivates the use of blame to assign responsibility.
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8 Conclusions

In this paper, we looked at the problem of characterizing the nullability errors that occur
from two interoperating languages: one with explicit nulls, the other with implicit nulls.
We showed how the concept of blame from gradual typing can be co-opted to provide such a
characterization. Specifically, by making type casts explicit and labelling casts with blame
labels, we are able to assign responsibility for runtime failures. To formally study the use
of blame for tracking nullability errors, we introduced λnull, a calculus where terms can
be explicitly nullable or implicitly nullable. We showed that even though evaluation of
λnull terms can fail, such failures can be constrained if we restrict casts using positive and
negative subtyping. Finally, we used λnull as the basis for a higher-level calculus, λs

null,
which more closely models language interoperability. Our main result is a theorem that says
that explicitly nullable programs can’t be blamed for null interoperability errors in λs

null.
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