| ncremental Pointer and Escape

Analysis

Ondrej Lhotak
October 22, 2001
308-762

Refer ences

* J Whaley and M. Rinard. Compositional
Pointer and Escape Analysis for Java
Programs. OOPSLA 1999

. Vivien and M. Rinard. Incrementalized
Pointer and Escape Analysis. PLDI 2001

QOutline

Overview
Definitions
Intraprocedural Analysis
Interprocedural Analysis
Incrementalization
"Anaysis Policy"
Experimental Results
Conclusion

Overview

* Analysisto generate points—to graph and
escape Information

* Goal: Remove synchronization and stack—
allocate objects (possibly inlining first)

* Flow sengitive

» Context sensitive

» Compositional/Incremental
o Cost—based/Demand—driven

ODbject Representation (Graph

Vertices)

e Node

- InsideNodex = new Foo();
« Thread Nodex = new Thread();

— Qutside Node

o Parameter Nodef oo(bar p){} return p;
« Load Nodex = vy. f;

e Variable
— Local variablef oo X;
- Parameter variablef oo(p) {}

Points—To Edges

A points-to escape graph is a pair (O, I), where

o O C (N xF)x N is aset of outside edges. We write
an edge ((n1,£), n2) as ny — na.

o I C((NxF)x N)U(VxN) is a set of inside edges. We
write an edge (v,n) as v = n and an edge ({(ni,f), n2)

£
as ni — na.

eo,1(n) = {n' € Nr U Np.n is reachable from n' in O U I}

e escaped({O, I),n) if eo,1(n) # 0
o captured((O,I),n) if eo,1(n) =0

| ntraprocedural Analysis

» Each method analyzed under assumption that
parameters not aliased

* Edge setsinitialized to
(@, {(Viwn?i}'l << n}}

where ny; is the parameter node for parameter v;.

| ntraprocedural Analysis

1 1
1= 0 e
A v

1 1
11 =15.F
12_"‘() x lo—> £
1 1;

| ntraprocedural Analysis

1; 1;

.y g

12—P® 12_}@"f

@ 15 the load node

where (2) escaped for 17 = Dyt

1,—) 1,—>
L= 0
1z 19
1 =newcl 1 1 —r@

i3 the inside node

where for 1 = new cl

| ntraprocedural Analysis

» Assignmentsto alocal variable kill existing
edges from the variable.

* Assignmentsto afield leave existing edgesin
place.

At control flow merge points, union of all
edges is taken.

» At end of method, all captured nodes, local,
and parameter variables discarded

|nter procedural Analysis

We assume a
call site of the form 1p.0p(11,... ,1;), a potentially invoked
method op with formal parameters vo,...,vs, a points-to
escape graph (Oi,I;) at the program point before the call
site, and a graph (O2, I») from the end of op.

A map p € N X N combines the callee graph into the
caller graph.

|nter procedural Analysis

f(n) C p(n) (1)
T iy ns € Oz, ng et ng € Oy U L,m e 9
- (2)

o — T4

T L} nz, N L} Tty, Ny ;" T,
£ £ .
Ty — s E {:)2,'1’!.2 — Tis E (JQ U I-z (5}
p(ng) C p(ns)

£ i
ny — ne € lo,mp — n,m2 € Ny
|U.
no — Mo

£ Ty
ni — ns € 0o, ny —— n, escaped({O, I}, n)
Ny ——% 119

m s €l
(p(m1) x {£}) x p(n2) C I (6)

i & n2 € Oz, na £y s (7)
(pp(n1) x {£}) x {n=2} C O

|nter procedural Analysis
* Map actual nodes of caller to parameter nodes
of callee

ﬁ(ﬂr) _ { Il(li) if {n} e Ig(vi)

] otherwise

f1(n) C p(n) (1)

|nter procedural Analysis

» Match outside nodes and edges from callee to
nodes and edges from caller

£ £ p
n1—)H2€OQ,n3—}n4€O1UIl,H1 — N3 (2)
no —M—) N4
f
ns » T4 i3 » 114

|nter procedural Analysis

 Map allases from caller into callee

n _p_}n-?unﬂ _p_}n-?r&nl % na,
n1—f)n4602,n2—f>n5602U12 (3)
p(na) C p(ns)

|nter procedural Analysis

* Map nodes escaping from callee into caller

f
ni —ng € In,ny —”—)n,ngeN; (4)
ng—”—)ng

n = ng € 02, n1 — n, escaped({(O,I),n)
(1) —P'—} 1o

()

T Tio

{0

» 110

|nter procedural Analysis

» Use map to convert inside and outside edges
from calleeto caller

n1 5 ng € Iy (6)
(p(n1) x {£}) x p(n2) C I

n = ny € Oz, n2 - no 7)
(p(n1) x {£}) x {n2} C O

T f

|nter procedural Analysis

» Because of dynamic dispatch, acall site may
Invoke multiple target methods.

» Solution isto merge the analyses of all
potential targets by taking the union of edges
sets, as with an intraprocedural control flow
merge.

| ncr ementalization

» Goal: Delay analysis of call sites

— Produce conservative result if calleeis never
analyzed

— Re—-integrate result of analysis of calleeinto a
completed analysis of caller

| ncr ementalization

* |f the calleeisnever analyzed, smply
consider all nodes escaping into it as
permanently escaped.

 |f the calleeislater analyzed, the key obstacle
to re—-integration is flow—sensitivity.

| ncr ementalization

wC S x((Nx{f})x Nr). For each call site s, w(s) =

{n1 5 na2.(s,n1 = na) € w} is the set of outside edges
that the analysis generates before it skips s.

¢t €S x ((N x {f}) x N). For each call site s, ¢(s) =

{ni S na.(s,n; = n2) € ¢} is the set of inside edges
that the analysis generates before it skips s.

T C S x((N x{f}) x Nr). For each call site s, 7(s) =

{n1 = n2.(s,m1 = na) € 7} is the set of outside edges
that the analysis generates after it skips s.

v C S x ((N x {f}) x N). For each call site s, v(s) =

{m > na.(s, n1 N n2) € v} is the set of inside edges
that the analysis generates after it skips s.

B C S x S. For each call site s, 3(s) = {s'.(s,s') € 8}
is the set of call sites that the analysis skips before
skipping s.

a C S x S. For each call site s, a(s) = {s'.(s,s') €
a} is the set of call sites that the analysis skips after
skipping s.

| ncr ementalization

* WWhen computing map to merge callee graph
into caller, only use edges generated before
call site.

(Oa I:)u‘) = ma,p({wl(s), L1 (3)): <02: ‘-r?):ﬁ‘s)

| ncr ementalization

» Callee may introduce new edges into the call
graph, which may in turn cause more edges to
be generated.

 BUT, all such edges come from nodes
escaping into callee, and therefore will be
represented in caller by outside edges. We
can therefore reconstruct them.

| ncr ementalization

 |dea treat the part of the caller after the call

Siteasacadlee A B C
W, 02,12 T,V
CodeA: CodeA; S
CallB(); mmmmpp- CallB(); 0,1
CodeC: calC(): C—
O',I'

(Oa I:)u‘) = ma,p({w1 (3): L1 (3)): <02: ‘-r?):ﬁ‘s)
(O, I', i) = map((O, I),(11(8), v1(5)), {(n, n).n € N})

| ncr ementalization

 The analysis of acall site may add nodes to
the formal parameter node mappings at a
subseguent site.

* When integrating analysis result from
previoudly skipped call site, parameter maps
of al subseguent call sites must be composed
with the map from the integration.

| ncr ementalization

o Similarly, parameter maps for skipped call
sites within the callee must be composed with
the map from before the original call site.

| ncr ementalization

» Orders must be recomputed.

w'=w1 U wa[p] U (S2 x wi(s)) U (ai1(s) x O)
V=11 U ta[p] U (S2 X ¢1(8)) U (a1(s) x I)
T'=r Un[u] U (S2 x 11(s)) U (B1(s) x O)
V’=L’1 U Ifg[p,] U (Sz X Vl(S)) U (181(8) X I)
B'=B1 U B2 U (82 x Bi(s)) U (ai(s) x S2)
a'=a1 Uaz U (S2 x a1(s)) U (B1(s) x S2)

Here w(u] is the order w under the map pu, ie., wlp] =

£ f I I
{{s,n1 = n3).(s,n1 = n2) € w,n1 — ny, and n2 — ns},
and similarly for ¢, 7, and v.

| ncr ementalization

 Problem: What If acall site 1s executed
multiple times?

» Solution: Keep track of this, and if it is
possible for acall site to be executed multiple
times, iterate the integration of the analysis
until afixed point is reached.

| ncr ementalization

 Problem: Recursion.

e Solution:

— Base analysis iterates to fixed point.
— Incrementalized version could al so.

— Implementation does not iterate, leaving it to the
"Analysis Policy"

Analysis Policy

» |dea: Pick an allocation site, and analyze only
those methods needed to provethat it is
captured.

* Trade off predicted analysis time against
predicted payoff from stack—allocation

a Candidatpﬁl{ g[%nssi:fdﬂrcyalysis

Op: method containing a

G: current points—to escape graph for a
p: estimated payoff (from profiling data)
c. # of skipped call sites where a escapes
d: call depths of analyzed region

m: mean cost of analyses for aso far

Analysis Policy

» Abandoned

Escapes Below
Enclosing Method

N

Escapes Below Caller of
Enclosing Method

Percentage of Objects

Experimental Results

----- Stack Allocation Percentage, Whole-Program Analysis
- - - Decided Percentage, Incrementalized Analysis
—— Stack Allocation Percentage, Incrementalized Analysis

LOO foveeeeeeenee s -
75 |
50 |

25 t L as
oI~

0) 14 21
Analysis Time (seconds)

Water

100 oo
75 | e

50 ./

25 /

0 - - - -
00 03 06 09

Analysis Time (seconds)

Percentage of Objects

Barnes

Whole: 34.3 s Whole: 38.2 s

Experimental Results

----- Stack Allocation Percentage, Whole-Program Analysis
- - - Decided Percentage, Incrementalized Analysis
—— Stack Allocation Percentage, Incrementalized Analysis

100 ¢ VO 0 e
75+ Dy

50 | 50 ¢

25 =l

oL ==

00 15 30 45
Analysis Time (seconds)

Db

00 03 06 09
Analysis Time (seconds)

Percentage of Objects
Percentage of Objects

Jlex

Whole: 222.8 s Whole: 126.6

Experimental Results

----- Stack Allocation Percentage, Whole-Program Analysis

- - - Decided Percentage, Incrementalized Analysis
—— Stack Allocation Percentage, Incrementalized Analysis

« 100y » 100 r
8, 571 8 75t ---
g 50 i ; __.."- g 50 EEERRRE ._.r.;“.r
LS 25 '_.‘.;._. Trragp i, L'a 25 | '_l'

L 0 — [F] 0 _]r

=T H ' ! | Y4 ! I |
g 0 25 50 75 E 0 25 50 75
% Analysis Time (seconds) % Analysis Time (seconds)
&= Compress = Raytrace

Whole: 645.1 s Whole: 102.2 s

Conclusion

» Cost—directed incrementalized analysis
produces results almost as accurate as a
whole—program flow—sensitive analysis in
significantly lesstime.

