
Incremental Pointer and Escape
Analysis

October 22, 2001
308−762

References
� J. Whaley and M. Rinard. Compositional

Pointer and Escape Analysis for Java
Programs. OOPSLA 1999

� F. Vivien and M. Rinard. Incrementalized
Pointer and Escape Analysis. PLDI 2001

Outline
� Overview
� Definitions
� Intraprocedural Analysis
� Interprocedural Analysis
� Incrementalization
� "Analysis Policy"
� Experimental Results
� Conclusion

Overview
� Analysis to generate points−to graph and

escape information
� Goal: Remove synchronization and stack−

allocate objects (possibly inlining first)
� Flow sensitive
� Context sensitive
� Compositional/Incremental
� Cost−based/Demand−driven

Object Representation (Graph
Ver tices)

� Node

Inside Node x = new Foo();
� Thread Node x = new Thread();

Outside Node
� Parameter Node foo(bar p){} return p;
� Load Node x = y.f;

� Variable

Local variable foo x;

Parameter variable foo(p){}

Points−To Edges

Intraprocedural Analysis
� Each method analyzed under assumption that

parameters not aliased
� Edge sets initialized to

Intraprocedural Analysis

Intraprocedural Analysis

Intraprocedural Analysis
� Assignments to a local variable kill existing

edges from the variable.
� Assignments to a field leave existing edges in

place.
� At control flow merge points, union of all

edges is taken.
� At end of method, all captured nodes, local,

and parameter variables discarded

Interprocedural Analysis

Interprocedural Analysis

Interprocedural Analysis
� Map actual nodes of caller to parameter nodes

of callee

Interprocedural Analysis
� Match outside nodes and edges from callee to

nodes and edges from caller

Interprocedural Analysis
� Map aliases from caller into callee

Interprocedural Analysis
� Map nodes escaping from callee into caller

Interprocedural Analysis
� Use map to convert inside and outside edges

from callee to caller

Interprocedural Analysis
� Because of dynamic dispatch, a call site may

invoke multiple target methods.
� Solution is to merge the analyses of all

potential targets by taking the union of edges
sets, as with an intraprocedural control flow
merge.

Incrementalization
� Goal: Delay analysis of call sites

Produce conservative result if callee is never
analyzed

Re−integrate result of analysis of callee into a
completed analysis of caller

Incrementalization
� If the callee is never analyzed, simply

consider all nodes escaping into it as
permanently escaped.

� If the callee is later analyzed, the key obstacle
to re−integration is flow−sensitivity.

Incrementalization

Incrementalization
� When computing map to merge callee graph

into caller, only use edges generated before
call site.

Incrementalization
� Callee may introduce new edges into the call

graph, which may in turn cause more edges to
be generated.

� BUT, all such edges come from nodes
escaping into callee, and therefore will be
represented in caller by outside edges. We
can therefore reconstruct them.

Incrementalization
� Idea: treat the part of the caller after the call

site as a callee

CodeA;
CallB();
CodeC;

CodeA;
CallB();
CallC();

A
ω,ι

B
� �

C
τ,ν

Incrementalization
� The analysis of a call site may add nodes to

the formal parameter node mappings at a
subsequent site.

� When integrating analysis result from
previously skipped call site, parameter maps
of all subsequent call sites must be composed
with the map from the integration.

Incrementalization
� Similarly, parameter maps for skipped call

sites within the callee must be composed with
the map from before the original call site.

Incrementalization
� Orders must be recomputed.

Incrementalization
� Problem: What if a call site is executed

multiple times?
� Solution: Keep track of this, and if it is

possible for a call site to be executed multiple
times, iterate the integration of the analysis
until a fixed point is reached.

Incrementalization
� Problem: Recursion.
� Solution:

Base analysis iterates to fixed point.

Incrementalized version could also.

Implementation does not iterate, leaving it to the
"Analysis Policy"

Analysis Policy
� Idea: Pick an allocation site, and analyze only

those methods needed to prove that it is
captured.

� Trade off predicted analysis time against
predicted payoff from stack−allocation

Analysis Policy
� a: candidate allocation site for analysis
� Op: method containing a
� G: current points−to escape graph for a
� p: estimated payoff (from profiling data)
� c: # of skipped call sites where a escapes
� d: call depths of analyzed region
� m: mean cost of analyses for a so far

Analysis Policy

Exper imental Results

Whole: 34.3 s Whole: 38.2 s

Exper imental Results

Whole: 222.8 s Whole: 126.6

Exper imental Results

Whole: 102.2 sWhole: 645.1 s

Conclusion
� Cost−directed incrementalized analysis

produces results almost as accurate as a
whole−program flow−sensitive analysis in
significantly less time.

