
Appli
ation of Ma
hine Learning to Inlining De
isions

308-761A

Ond�rej Lhot�ak

De
ember 13, 2001

1 Introdu
tion

Obje
t-oriented languages su
h as Java en
ourage programmers to separate their programs into very

short fun
tions, in
urring a high run-time overhead due to the frequent fun
tion
alls. This overhead

an be redu
ed by inlining appropriate fun
tion
all sites. However, inlining
an also in
rease
ode

size, so inlining sites must be
arefully sele
ted.

Inlining has se
ondary e�e
ts, whi
h are poorly understood but sometimes signi�
ant to per-

forman
e. For example, an inlined
all site may provide opportunities for an optimizing
ompiler

to perform optimizations whi
h it would otherwise not be able to perform. Also, inlined fun
tions

may open up opportunities for further inlining. On the other hand, even a modest in
rease in
ode

size may have hard-to-predi
t e�e
ts on performan
e
aused by in
reased pressure on the instru
-

tion
a
he of the pro
essor. Also, inlining may have unpredi
table e�e
ts on register utilization.

An algorithm
onsidering these e�e
ts
ould potentially provide better inlining de
isions than the

heuristi
s
urrently in use. Be
ause the e�e
ts are poorly understood, ma
hine learning appears

to be a promising approa
h. Also, be
ause the pro�tability of inlining depends on the other opti-

mizations that a
ompiler supports, a generi
 ma
hine learning approa
h
ould be used to
reate

heuristi
s spe
i�
 to parti
ular
ompilers.

2 Existing Work

I am not aware of any published appli
ations of ma
hine learning to inlining de
isions. Ma
hine

learning has been applied to stati
 bran
h predi
tion [2℄. A summary of the possible bene�ts and

drawba
ks of inlining, as well as
ommonly used heuristi
s, is given in [5℄. Several papers on heuristi
s

for inlining de
isions, some of them quite sophisti
ated, have been published. A good summary of

the short
omings of
ommon inlining de
ision heuristi
s appears in [6℄. An experimental study of

various heuristi
s applied to Java is given in [1℄. The inlining de
ision algorithm presented in [3℄ takes

into a

ount estimates of the potential for
ompiler optimization opportunities
reated by inlining.

The Soot byte
ode optimization framework is des
ribed and experimentally evaluated in [7℄. This

in
ludes a des
ription and evaluation of the inlining heuristi
s implemented in Soot.

3 The Learner

The goal of the learner is to
onstru
t an ora
le whi
h, for ea
h inlinable
all site in a program being

ompiled, de
ides whether or not that site should be inlined.

The information about ea
h
all site is summarized in ten real-valued attributes of the site, whi
h

are believed to be relevant to inlining de
isions:

Size of fun
tion to be inlined (hen
eforth
allee)

Many inlining heuristi
s only allow short
allees to be inlined. For example, the standard

heuristi
 used by Soot inlines only
allees
onsisting of at most twenty statements of Jimple,

the intermediate representation used in Soot. In this proje
t, the size of the
allee is measured

as the logarithm of the number of Jimple statements.

Size of fun
tion
ontaining the
all site (hen
eforth
aller)

Some inlining heuristi
s only allow inlining into
allers smaller than a
ertain threshold. The

1

standard heuristi
 used by Soot inlines only into
allers
onsisting of at most 5000 statements

of Jimple. In this proje
t, the size of the
aller is measured as the logarithm of the number of

Jimple statements.

Expansion fa
tor of
aller and
allee due to inlining

Many inlining heuristi
s
onsider the amount of
ode growth
aused by inlining a site,
ompared

to the original size of the uninlined
ode for the
aller and
allee. The standard Soot heuristi

inlines
all sites where the expansion fa
tor is at most three. The expansion fa
tor is de�ned

as

e+r

r

, where e is the number of Jimple statements in the
allee, and r is the number of Jimple

statements in the
aller.

Number of arguments to
allee

The arguments to a method
all must be passed when
alling it, so their number a�e
ts the

overhead of the
all whi
h is eliminated by inlining.

Number of
onstants passed as arguments

When
ompile-time
onstants are passed as arguments to a method, the method
an be spe-

ialized to those arguments when it is inlined, possibly
reating additional optimization op-

portunities. Intra-pro
edural
onstant propagation is done before
ounting the number of

ompile-time
onstants whi
h are passed in the
all.

Number of pla
es in the program where
allee is
alled

If a method is
alled in only a small number of pla
es in the program, it
an be inlined at all

the
all sites with little
ode growth. Be
ause this number has su
h a wide range, its logarithm

rather than the a
tual number is used as input to the learner.

Number of
all sites in
allee

This is another measure of the size of the
allee. The learner uses the logarithm of the number

of
all sites in the
allee.

Number of
all sites in
aller

This is another measure of the size of the
aller. The learner uses the logarithm of the number

of
all sites in the
aller.

Number of live lo
al variables before
all site

Inlining a
all site gives the JIT
ompiler in the virtual ma
hine more
exibility in allo
ating

registers to the values used in the
aller and
allee. The number of lo
al variables whi
h are

live before the
all site a�e
ts the number of values whi
h need to be allo
ated to the limited

number of registers. Be
ause this number has su
h a wide range, its logarithm rather than the

a
tual number is used as input to the learner.

Loop nesting level of
all site

Call sites within loops are likely to be
alled more times than
all sites whi
h are not in loops,

so their
umulative method
all overhead is likely to be higher. As Mu
hni
k [5℄ points out, it

is not always possible to determine the loop nesting level in the sour
e
ode from the byte
ode

(whi
h is the input to Soot). Therefore, the loop nesting level is approximated by the number

of targets of ba
k edges
rossing the
all site, whi
h in most typi
al Java methods is equal to

the loop nesting level [4℄.

2

The fun
tion to be learned, is represented by f : R

10

! R, mapping the attributes of ea
h
all

site to a real number representing the logarithm of the speedup expe
ted from inlining the
all site.

The learner approximates the fun
tion as:

^

f(x) = w

+

X

a2attributes

(w

a

1

x

a

+ w

a

2

x

2

a

)

where x

a

is the value of attribute a for this
all site, and the w's are the twenty-one weights whi
h

the learner is to learn. A site is
onsidered pro�table to inline if the speedup from inlining it as at

least one (its logarithm is non-negative).

The algorithm used for learning is based on the gradient des
ent update rule

w w � �rE[w℄(x)

where � is the learning rate, andrE[w℄(x) is the gradient of the error fun
tion at the attribute ve
tor

x. The error is measured by measuring the logarithm of the speedup of the program being optimized

from inlining the
all site, and subtra
ting it from the logarithm of the speedup as estimated by

the fun
tion being learned,

^

f(x). To minimize the e�e
t of other pro
esses running on the ma
hine,

the median of three measurements is used ea
h time the runtime of the program is measured. This

should eliminate most spurious speedups or slowdowns
aused by external fa
tors.

In order to measure the speedup from inlining a
all site in a realisti
 environment, we must

inline not only that one
all site, but also the other
all sites in the program, using an inlining

heuristi
 similar to the fun
tion being learned. For this reason, the learning algorithm uses an

�-greedy strategy to de
ide whi
h
all sites to inline. For ea
h trial, the
urrent estimate of the

inlining fun
tion is used to inline the sites for whi
h inlining is deemed to be pro�table, but with

a probability of � for ea
h site, the estimate is
ipped, and the site is inlined if and only if it is

not pro�table to inline it. In all experiments done for this proje
t, the value of � used was 0:125.

Using this strategy, we get a program inlined approximately a

ording to the
urrent estimate of

pro�tability, but with enough variation in the sites that are inlined to allow the learner to explore

the e�e
t of inlining sites that may not seem pro�table to inline.

The running time of ea
h trial is
ompared to the running time of the pre
eding trial to measure

the speedup from inlining and uninlining the sites whi
h were inlined and uninlined between the two

trials. The expe
ted speedup from the sites that were
hanged must be estimated using the fun
tion

being learned so that the weights
an be updated. This fun
tion, however, only provides the speedup

for a single
all site, so the values from the multiple
all sites whi
h were
hanged must somehow be

ombined. It may seem logi
al at �rst to simply add all the values, sin
e they represent logarithms

of speedup ratios. However, this would overestimate the
ombined speedup. If ea
h of two
all sites

speeds the program up by a fa
tor of two when inlined individually, inlining both of them is likely

to speed up the program by mu
h less than four-fold, due to Amdahl's Law. Unfortunately, the

hosen representation of the program as attributes of individual
all sites gives us no information

about the relationships between
all sites, and therefore the
ombined e�e
t of inlining a number

of them. We
an use the average of the estimates instead of the sum to get an underestimate of

the speedup, rather than an overestimate. An underestimate is more desirable, be
ause it avoids

the exponential explosion of the weights toward in�nite values that the overestimate
auses. The

ombined e�e
t is therefore estimated by the average of the estimated speedups from all the sites

that
hanged between two su

essive trials.

3

Additional measures need to be taken to prevent exponential explosion of weights. Spe
i�
ally,

the learning rate, �, needs to be kept low (at 0:01), and even lower (at 0:001), for updating the

weights
orresponding to squares of the attributes, as these
an have larger values.

4 Other Learner Designs

In this se
tion, I des
ribe other learners whi
h I tried before
hoosing the learner des
ribed in the

pre
eding se
tion.

The �rst learner modelled the problem as a Markov de
ision pro
ess. Its state was the program

being inlined, with some subset of its inlinable
all sites inlined. Possible a
tions were inlining any

parti
ular
all site, and a stop a
tion, indi
ating that all the sites that the learner had wanted to

inline were already inlined. The state was des
ribed to the learner as the
ode size growth ratio

ompared to the original program with no sites inlined. A
tions were des
ribed by the ten attributes

presented in the previous se
tion. The a
tion value Q fun
tion was approximated by a CMAC, in

whi
h ea
h attribute was dis
retized into ten possible tiles, and a sum of the trained weights of

the relevant tiles, added to the state (growth) multiplied by a trained weight, was taken as an

approximation to Q. At ea
h step, exa
tly one
all site was
hosen �-greedily to be inlined, and the

Q value updated a

ording to the Sarsa learning algorithm based on the speedup from that
all site.

The main problem with this approa
h was its slowness: be
ause only one site was inlined at a time,

the learner was not even able to observe all the
all sites. Also, representing the state as the growth

of the program violated the Markov assumption, sin
e it is the spe
i�
 set of sites that were inlined

that in
uen
es running time, rather than the total amount of growth of the program. Additionally,

the dis
retization of the attributes made it diÆ
ult for the learner to generalize from the limited

number of observed
all sites.

My other attempt at a learner was motivated by the exponentially exploding weights in the

gradient des
ent learner. Believing that too many unobserved fa
tors in
uen
e the speedup due to

inlining any spe
i�

all site, I de
ided to not try to estimate the a
tual speedup from the
all site,

but simply to learn some fun
tion whi
h would be positive if the
all site was pro�table to inline,

and negative otherwise. Instead of updating the weights based on the error between the predi
ted

speedup and the a
tual speedup, I updated them based only on the a
tual speedup. This avoided

the exponential explosion in the weights, and seemed to perform
omparably to the gradient des
ent

learner in preliminary tests. However, this learner had no theoreti
al basis to suggest
onvergen
e,

be
ause it had no spe
i�
 de�nition of a fun
tion to
onverge to. I therefore abandoned it in

favour of the gradient des
ent learner on
e I tuned the latter to prevent its weights from exploding

exponentially.

5 Experiment Design

The learning algorithm was tested on three ben
hmark programs, matrix and illness from the Ashes

ben
hmark suite, and
ompress from the Spe
JVM ben
hmark suite. These ben
hmarks were se-

le
ted for their moderate number of inlinable
all sites, be
ause they were small enough to qui
kly

analyze using Soot, and be
ause they were known to bene�t from inlining using existing heuristi
s.

Ben
hmarks with too few inlinable
all sites would provide little information to learn from, while

ben
hmarks with too many inlinable
all sites would make it diÆ
ult for the learner to �nd the

4

signi�
ant ones in the limited time that the experiment runs. The following table summarizes the

ben
hmarks:

Ben
hmark Number of inlinable sites Speedup using Soot inlining heuristi

matrix 37 1.43

illness 109 1.18

ompress 60 1.23

A three-fold
ross-validation study was performed, in whi
h the learner was evaluated on ea
h

ben
hmark after learning for 500 trials on ea
h of the other two ben
hmarks. For
omparison,

the learner was also evaluated on ea
h ben
hmark after having learned for 500 trials on that same

ben
hmark.

The experiment was
ondu
ted on shadow, a Spar
-based ma
hine with 1GB of memory, using

the Java virtual ma
hine from the Sun JDK 1.2 with inlining by the JIT
ompiler disabled. It ran

for approximately 48 hours.

6 Results

The results of the experiment are given in the following table, and in the plots at the end of this

paper.

Ben
hmark Original Soot

Optimized

Soot

Inlined

Fully

Inlined

Ma
hine

Learning

(Cross)

Ma
hine

Learning

(Same)

Best

En
ountered

Matrix 3.34 3.44 2.33 2.22 2.21 1.6 1.56

Illness 1.41 1.39 1.2 1.38 1.22 1.2 1.08

Compress 19.1 18.63 15.64 16.56 16.2 17.92 15.07

The table gives the running times in se
onds of ea
h ben
hmark after inlining using various

inlining de
ision makers. The �rst
olumn is the name of the ben
hmark. The se
ond
olumn is

the running time of the original ben
hmark, with no optimization. The third
olumn is the running

time of the ben
hmark after it has been optimized using the whole-program optimizations of Soot,

but with inlining turned o�. The fourth
olumn is the running time after the ben
hmark has been

inlined using the heuristi
 in Soot, and optimized with Soot. The �fth
olumn is the running time

after all
all sites that
ould be inlined have been inlined, and optimized with Soot. The sixth

olumn is the running time after the ben
hmark has been inlined using a learner trained on the

other two ben
hmarks, and optimized with Soot. The seventh
olumn is the running time after the

ben
hmark has been inlined using a learner trained on that same ben
hmark, and optimized with

Soot. Finally, the eighth
olumn is the shortest running time ever en
ountered on that ben
hmark

during training. Be
ause training is done on many randomly sele
ted sets of sites to be inlined, this

is likely to be a reasonable approximation to the performan
e of the best possible inlining strategy.

The numbers in this table are presented in a bar graph at the end of this paper.

Also presented at the end of this paper are plots of the weights that were learned from training on

the various
ombinations of the ben
hmarks, along with histograms of the distribution of attribute

values in the ben
hmarks of the Ashes and Spe
JVM ben
hmark suites. For ea
h attribute a, the

value w

+ w

a

1

x

a

+ w

a

2

x

2

a

(the
ontribution of the attribute to the estimated speedup) is plotted

5

against x

a

, the value of the attribute. The weights are plotted after training on ea
h ben
hmark

and ea
h pair of ben
hmarks.

Finally, there are plots showing the error during training.

7 Interpretation of Results

The runtime measurements
on�rm that the optimizations performed by Soot bene�t greatly from

inlining. They also
on�rm that inlining is not always bene�
ial, sin
e the fully inlined version is

not the fastest for any of the three ben
hmarks. When it
omes to the ma
hine learning approa
h,

the results are mixed.

On the matrix ben
hmark, both ma
hine learning results are better than the heuristi
 used by

Soot. The learner that learned on the matrix ben
hmark itself shows an overwhelming speedup over

the Soot heuristi
, and even the speedup for the
ross-validation learner is signi�
ant. I am guessing

that the learning algorithm found some small number of
all sites whi
h lead to a large improvement

when inlined, and that the Soot heuristi
 was not able to �nd them for some reason. I have tried

adjusting the parameters of the heuristi
 in Soot to try to mat
h the performan
e of the learner, so

far without su

ess. I will take a
loser look at the sites that the learner and Soot inlined to try to

explain the large performan
e improvement, and hopefully improve the heuristi
 used by Soot.

On the illness ben
hmark, the learner mat
hed the performan
e of Soot, with the
ross-validation

learner marginally slower. Slightly better running times o

urred during training of the learner in a

non-negligible number of the training runs. This seems to indi
ate that the learner was not able to

express the set of
all sites whi
h would have to be inlined for this slight additional improvement.

On the
ompress ben
hmark, the learner was unable to mat
h the performan
e of Soot, whi
h

was
lose to the best observed performan
e during training. Surprisingly, the
ross-validation learner

did signi�
antly better than the learner trained on the
ompress ben
hmark itself. This
ould be

aused by a number of reasons. Unlike the other two ben
hmarks, the
ompress ben
hmark has a

large test harness, whi
h probably has little e�e
t on the running time, but
ontains a large number

of
all sites whi
h may
onfuse the learner. The learner probably learned better on the other two

ben
hmarks whi
h did not have these
onfusing sites. Sadly, most real-world programs have large

numbers of
all sites, many of them having little e�e
t on their running time, so the
ompress

ben
hmark re
e
ts real-world programs better than the other two.

The plots of the weights suggest that the learner was not able to express the
orrelation that

there may be between the attributes that were measured and the e�e
t of inlining the
all sites.

First, the
onstant weight w

was in all
ases very
lose to zero. If a good linear approximation to

the fun
tion being learned exists, it is unlikely that its value should be zero pre
isely at the point

where all the attribute values are zero, espe
ially sin
e many of the attributes are never zero for any

all site. This suggests that the
onstant weight w

was not suÆ
iently trained. Se
ond, the slopes

of the approximation are very di�erent depending on the ben
hmark or ben
hmarks on whi
h the

learner was trained. In the arguments plot, for example, two of the
urves suggest that sites with

higher numbers of arguments provide a speedup, one suggests a slowdown, and three suggest no

e�e
t.

All of the plots are very linear, suggesting that perhaps the x

2

a

terms in the approximation were

unne
essary. However, another plausible explanation is that the weights on the x

2

a

terms were not

suÆ
iently trained, probably be
ause the learning rate used for them was so low.

Finally, the plots of the error over time are very noisy, and show no sign of settling down. This

6

ould be due to the randomness introdu
ed by the �-greedy approa
h used to
hoose the training

data, but it
ould also
on�rm the suspi
ion that the learner was not able to settle on a good

approximation to the fun
tion.

8 Con
lusion

The signi�
ant speedup on one of the ben
hmarks shows that a ma
hine learning approa
h to

inlining has a hope of improving on existing heuristi
s. However, the experiment also shows that the

approa
h used in this study needs improvement before it will be useful on real-world programs. This

is only a preliminary study; any study that
ould be
onsidered signi�
ant would have to in
lude a

larger number of ben
hmarks bearing more similarity to real-world programs.

9 Future Work

The simplest way to extend this work would be to perform the same experiment on a wider range

of ben
hmarks. However, I fear that this would only
on�rm the
aws in the
urrent learner. The

learner should be improved before a more signi�
ant study is done.

The disappointing results on the
ompress ben
hmark (and, to some extent, the illness ben
h-

mark)
ould be
aused by any of many reasons, in
luding:

1. The
all site attributes observed may not
orrelate in general with the speedup due to inlining,

and a ma
hine learning approa
h based on these attributes therefore may have no hope of

working.

2. The linear-quadrati
 approximation to the fun
tion may not be expressive enough to represent

the true relationship between the
all site attributes and the speedup.

3. The use of the average speedup may be an inappropriate way of
ombining the predi
ted

speedup from inlining a number of
all sites.

4. The gradient des
ent learner may not have had enough training to approximate the fun
tion

well.

Little
an be done to alleviate the �rst problem, short of exploring a
ompletely di�erent approa
h

to inlining de
ision making. It is even diÆ
ult to determine whether the �rst problem was one of

the a
tual
auses of the poor performan
e.

The se
ond problem
ould be explored by repeating the experiment using more expressive ap-

proximations. However, a more expressive approximation would be diÆ
ult to train with the small

number of
all sites available for training, and there would be a risk of over�tting.

The third problem
ould be explored by trying other ways to
ombine predi
ted speedup from

multiple
all sites. A more systemati
 approa
h would be to modify the algorithm to only inline

one
all site at a time. Unfortunately, this would require very long training times in order for the

learner to be observe the e�e
ts of inlining all the sites.

The fourth problem seems to be the most likely
ause of the poor performan
e, and it is also the

easiest to explore further. The
urrent algorithm performs a single gradient des
ent update step for

ea
h time the ben
hmark is inlined and run. This is a huge waste of the pre
ious data
olle
ted from

7

running the ben
hmark (pre
ious be
ause its
olle
tion represents the overwhelming majority of the

time used by the system). A gradient des
ent learner does not use all the information present in the

training data in just a single pass over it. The learner
ould easily be improved by iterating over the

olle
ted data many times. Be
ause the data would only be
olle
ted on
e, this would not take mu
h

longer than the learner
urrently takes. Unfortunately, if the learner learned from data only after it

was
olle
ted, it would not be able to in
uen
e the sets of
all sites inlined during the
olle
tion of

data. A se
ond modi�
ation would therefore be for the learner to iterate over the
olle
ted data as

it is being
olle
ted. For example, the learner
ould keep tra
k of the running time of the last 100

inlinings, and before measuring the running time of the next inlining, it
ould make many training

passes over this previously observed data.

Referen
es

[1℄ Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F. Sweeney. A
omparative study of

stati
 and pro�le-based heuristi
s for inlining. In Pro
eedings of the ACM Sigplan Workshop

on Dynami
 and Adaptive Compilation and Optimization (DYNAMO-00), volume 35.7 of ACM

SIGPLAN NOTICES, pages 52{64, 2000.

[2℄ Brad Calder, Dirk Grunwald, Mi
hael Jones, Donald Lindsay, James Martin, Mi
hael Mozer,

and Benjamin Zoren. Eviden
e-based stati
 bran
h predi
tion using ma
hine learning. ACM

Transa
tions on Programming Languages and Systems, 19(1):188{222, January 1997.

[3℄ Je�rey Dean and Craig Chambers. Towards better inlining de
isions using inlining trials. In

Conferen
e on Lisp and Fun
tional Programming, pages 273{282, 1994.

[4℄ Jerome Mie
znikowski. Personal
ommuni
ation, 2001.

[5℄ Steven S. Mu
hni
k. Advan
ed Compiler Design and Implementation. Morgan Kaufmann, San

Fran
is
o, 2000.

[6℄ Manuel Serrano. Inline expansion: When and How. In Programming Languages, Implementation

and Logi
 Programming (PLILP), volume 1292 of LNCS, pages 143{157. Springer, 1997.

[7℄ Raja Vallee-Rai, Etienne Gagnon, Laurie J. Hendren, Patri
k Lam, Patri
e Pominville, and Vijay

Sundaresan. Optimizing java byte
ode using the soot framework: Is it feasible? In Compiler

Constru
tion, volume 1781 of LNCS, pages 18{34. Springer, 2000.

8

