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1 Introdution

Objet-oriented languages suh as Java enourage programmers to separate their programs into very

short funtions, inurring a high run-time overhead due to the frequent funtion alls. This overhead

an be redued by inlining appropriate funtion all sites. However, inlining an also inrease ode

size, so inlining sites must be arefully seleted.

Inlining has seondary e�ets, whih are poorly understood but sometimes signi�ant to per-

formane. For example, an inlined all site may provide opportunities for an optimizing ompiler

to perform optimizations whih it would otherwise not be able to perform. Also, inlined funtions

may open up opportunities for further inlining. On the other hand, even a modest inrease in ode

size may have hard-to-predit e�ets on performane aused by inreased pressure on the instru-

tion ahe of the proessor. Also, inlining may have unpreditable e�ets on register utilization.

An algorithm onsidering these e�ets ould potentially provide better inlining deisions than the

heuristis urrently in use. Beause the e�ets are poorly understood, mahine learning appears

to be a promising approah. Also, beause the pro�tability of inlining depends on the other opti-

mizations that a ompiler supports, a generi mahine learning approah ould be used to reate

heuristis spei� to partiular ompilers.

2 Existing Work

I am not aware of any published appliations of mahine learning to inlining deisions. Mahine

learning has been applied to stati branh predition [2℄. A summary of the possible bene�ts and

drawbaks of inlining, as well as ommonly used heuristis, is given in [5℄. Several papers on heuristis

for inlining deisions, some of them quite sophistiated, have been published. A good summary of

the shortomings of ommon inlining deision heuristis appears in [6℄. An experimental study of

various heuristis applied to Java is given in [1℄. The inlining deision algorithm presented in [3℄ takes

into aount estimates of the potential for ompiler optimization opportunities reated by inlining.

The Soot byteode optimization framework is desribed and experimentally evaluated in [7℄. This

inludes a desription and evaluation of the inlining heuristis implemented in Soot.

3 The Learner

The goal of the learner is to onstrut an orale whih, for eah inlinable all site in a program being

ompiled, deides whether or not that site should be inlined.

The information about eah all site is summarized in ten real-valued attributes of the site, whih

are believed to be relevant to inlining deisions:

Size of funtion to be inlined (heneforth allee)

Many inlining heuristis only allow short allees to be inlined. For example, the standard

heuristi used by Soot inlines only allees onsisting of at most twenty statements of Jimple,

the intermediate representation used in Soot. In this projet, the size of the allee is measured

as the logarithm of the number of Jimple statements.

Size of funtion ontaining the all site (heneforth aller)

Some inlining heuristis only allow inlining into allers smaller than a ertain threshold. The

1



standard heuristi used by Soot inlines only into allers onsisting of at most 5000 statements

of Jimple. In this projet, the size of the aller is measured as the logarithm of the number of

Jimple statements.

Expansion fator of aller and allee due to inlining

Many inlining heuristis onsider the amount of ode growth aused by inlining a site, ompared

to the original size of the uninlined ode for the aller and allee. The standard Soot heuristi

inlines all sites where the expansion fator is at most three. The expansion fator is de�ned

as

e+r

r

, where e is the number of Jimple statements in the allee, and r is the number of Jimple

statements in the aller.

Number of arguments to allee

The arguments to a method all must be passed when alling it, so their number a�ets the

overhead of the all whih is eliminated by inlining.

Number of onstants passed as arguments

When ompile-time onstants are passed as arguments to a method, the method an be spe-

ialized to those arguments when it is inlined, possibly reating additional optimization op-

portunities. Intra-proedural onstant propagation is done before ounting the number of

ompile-time onstants whih are passed in the all.

Number of plaes in the program where allee is alled

If a method is alled in only a small number of plaes in the program, it an be inlined at all

the all sites with little ode growth. Beause this number has suh a wide range, its logarithm

rather than the atual number is used as input to the learner.

Number of all sites in allee

This is another measure of the size of the allee. The learner uses the logarithm of the number

of all sites in the allee.

Number of all sites in aller

This is another measure of the size of the aller. The learner uses the logarithm of the number

of all sites in the aller.

Number of live loal variables before all site

Inlining a all site gives the JIT ompiler in the virtual mahine more exibility in alloating

registers to the values used in the aller and allee. The number of loal variables whih are

live before the all site a�ets the number of values whih need to be alloated to the limited

number of registers. Beause this number has suh a wide range, its logarithm rather than the

atual number is used as input to the learner.

Loop nesting level of all site

Call sites within loops are likely to be alled more times than all sites whih are not in loops,

so their umulative method all overhead is likely to be higher. As Muhnik [5℄ points out, it

is not always possible to determine the loop nesting level in the soure ode from the byteode

(whih is the input to Soot). Therefore, the loop nesting level is approximated by the number

of targets of bak edges rossing the all site, whih in most typial Java methods is equal to

the loop nesting level [4℄.
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The funtion to be learned, is represented by f : R

10

! R, mapping the attributes of eah all

site to a real number representing the logarithm of the speedup expeted from inlining the all site.

The learner approximates the funtion as:

^

f(x) = w
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where x

a

is the value of attribute a for this all site, and the w's are the twenty-one weights whih

the learner is to learn. A site is onsidered pro�table to inline if the speedup from inlining it as at

least one (its logarithm is non-negative).

The algorithm used for learning is based on the gradient desent update rule

w  w � �rE[w℄(x)

where � is the learning rate, andrE[w℄(x) is the gradient of the error funtion at the attribute vetor

x. The error is measured by measuring the logarithm of the speedup of the program being optimized

from inlining the all site, and subtrating it from the logarithm of the speedup as estimated by

the funtion being learned,

^

f(x). To minimize the e�et of other proesses running on the mahine,

the median of three measurements is used eah time the runtime of the program is measured. This

should eliminate most spurious speedups or slowdowns aused by external fators.

In order to measure the speedup from inlining a all site in a realisti environment, we must

inline not only that one all site, but also the other all sites in the program, using an inlining

heuristi similar to the funtion being learned. For this reason, the learning algorithm uses an

�-greedy strategy to deide whih all sites to inline. For eah trial, the urrent estimate of the

inlining funtion is used to inline the sites for whih inlining is deemed to be pro�table, but with

a probability of � for eah site, the estimate is ipped, and the site is inlined if and only if it is

not pro�table to inline it. In all experiments done for this projet, the value of � used was 0:125.

Using this strategy, we get a program inlined approximately aording to the urrent estimate of

pro�tability, but with enough variation in the sites that are inlined to allow the learner to explore

the e�et of inlining sites that may not seem pro�table to inline.

The running time of eah trial is ompared to the running time of the preeding trial to measure

the speedup from inlining and uninlining the sites whih were inlined and uninlined between the two

trials. The expeted speedup from the sites that were hanged must be estimated using the funtion

being learned so that the weights an be updated. This funtion, however, only provides the speedup

for a single all site, so the values from the multiple all sites whih were hanged must somehow be

ombined. It may seem logial at �rst to simply add all the values, sine they represent logarithms

of speedup ratios. However, this would overestimate the ombined speedup. If eah of two all sites

speeds the program up by a fator of two when inlined individually, inlining both of them is likely

to speed up the program by muh less than four-fold, due to Amdahl's Law. Unfortunately, the

hosen representation of the program as attributes of individual all sites gives us no information

about the relationships between all sites, and therefore the ombined e�et of inlining a number

of them. We an use the average of the estimates instead of the sum to get an underestimate of

the speedup, rather than an overestimate. An underestimate is more desirable, beause it avoids

the exponential explosion of the weights toward in�nite values that the overestimate auses. The

ombined e�et is therefore estimated by the average of the estimated speedups from all the sites

that hanged between two suessive trials.
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Additional measures need to be taken to prevent exponential explosion of weights. Spei�ally,

the learning rate, �, needs to be kept low (at 0:01), and even lower (at 0:001), for updating the

weights orresponding to squares of the attributes, as these an have larger values.

4 Other Learner Designs

In this setion, I desribe other learners whih I tried before hoosing the learner desribed in the

preeding setion.

The �rst learner modelled the problem as a Markov deision proess. Its state was the program

being inlined, with some subset of its inlinable all sites inlined. Possible ations were inlining any

partiular all site, and a stop ation, indiating that all the sites that the learner had wanted to

inline were already inlined. The state was desribed to the learner as the ode size growth ratio

ompared to the original program with no sites inlined. Ations were desribed by the ten attributes

presented in the previous setion. The ation value Q funtion was approximated by a CMAC, in

whih eah attribute was disretized into ten possible tiles, and a sum of the trained weights of

the relevant tiles, added to the state (growth) multiplied by a trained weight, was taken as an

approximation to Q. At eah step, exatly one all site was hosen �-greedily to be inlined, and the

Q value updated aording to the Sarsa learning algorithm based on the speedup from that all site.

The main problem with this approah was its slowness: beause only one site was inlined at a time,

the learner was not even able to observe all the all sites. Also, representing the state as the growth

of the program violated the Markov assumption, sine it is the spei� set of sites that were inlined

that inuenes running time, rather than the total amount of growth of the program. Additionally,

the disretization of the attributes made it diÆult for the learner to generalize from the limited

number of observed all sites.

My other attempt at a learner was motivated by the exponentially exploding weights in the

gradient desent learner. Believing that too many unobserved fators inuene the speedup due to

inlining any spei� all site, I deided to not try to estimate the atual speedup from the all site,

but simply to learn some funtion whih would be positive if the all site was pro�table to inline,

and negative otherwise. Instead of updating the weights based on the error between the predited

speedup and the atual speedup, I updated them based only on the atual speedup. This avoided

the exponential explosion in the weights, and seemed to perform omparably to the gradient desent

learner in preliminary tests. However, this learner had no theoretial basis to suggest onvergene,

beause it had no spei� de�nition of a funtion to onverge to. I therefore abandoned it in

favour of the gradient desent learner one I tuned the latter to prevent its weights from exploding

exponentially.

5 Experiment Design

The learning algorithm was tested on three benhmark programs, matrix and illness from the Ashes

benhmark suite, and ompress from the SpeJVM benhmark suite. These benhmarks were se-

leted for their moderate number of inlinable all sites, beause they were small enough to quikly

analyze using Soot, and beause they were known to bene�t from inlining using existing heuristis.

Benhmarks with too few inlinable all sites would provide little information to learn from, while

benhmarks with too many inlinable all sites would make it diÆult for the learner to �nd the
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signi�ant ones in the limited time that the experiment runs. The following table summarizes the

benhmarks:

Benhmark Number of inlinable sites Speedup using Soot inlining heuristi

matrix 37 1.43

illness 109 1.18

ompress 60 1.23

A three-fold ross-validation study was performed, in whih the learner was evaluated on eah

benhmark after learning for 500 trials on eah of the other two benhmarks. For omparison,

the learner was also evaluated on eah benhmark after having learned for 500 trials on that same

benhmark.

The experiment was onduted on shadow, a Spar-based mahine with 1GB of memory, using

the Java virtual mahine from the Sun JDK 1.2 with inlining by the JIT ompiler disabled. It ran

for approximately 48 hours.

6 Results

The results of the experiment are given in the following table, and in the plots at the end of this

paper.

Benhmark Original Soot

Optimized

Soot

Inlined

Fully

Inlined

Mahine

Learning

(Cross)

Mahine

Learning

(Same)

Best

Enountered

Matrix 3.34 3.44 2.33 2.22 2.21 1.6 1.56

Illness 1.41 1.39 1.2 1.38 1.22 1.2 1.08

Compress 19.1 18.63 15.64 16.56 16.2 17.92 15.07

The table gives the running times in seonds of eah benhmark after inlining using various

inlining deision makers. The �rst olumn is the name of the benhmark. The seond olumn is

the running time of the original benhmark, with no optimization. The third olumn is the running

time of the benhmark after it has been optimized using the whole-program optimizations of Soot,

but with inlining turned o�. The fourth olumn is the running time after the benhmark has been

inlined using the heuristi in Soot, and optimized with Soot. The �fth olumn is the running time

after all all sites that ould be inlined have been inlined, and optimized with Soot. The sixth

olumn is the running time after the benhmark has been inlined using a learner trained on the

other two benhmarks, and optimized with Soot. The seventh olumn is the running time after the

benhmark has been inlined using a learner trained on that same benhmark, and optimized with

Soot. Finally, the eighth olumn is the shortest running time ever enountered on that benhmark

during training. Beause training is done on many randomly seleted sets of sites to be inlined, this

is likely to be a reasonable approximation to the performane of the best possible inlining strategy.

The numbers in this table are presented in a bar graph at the end of this paper.

Also presented at the end of this paper are plots of the weights that were learned from training on

the various ombinations of the benhmarks, along with histograms of the distribution of attribute

values in the benhmarks of the Ashes and SpeJVM benhmark suites. For eah attribute a, the

value w
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a

2

x

2
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(the ontribution of the attribute to the estimated speedup) is plotted
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against x

a

, the value of the attribute. The weights are plotted after training on eah benhmark

and eah pair of benhmarks.

Finally, there are plots showing the error during training.

7 Interpretation of Results

The runtime measurements on�rm that the optimizations performed by Soot bene�t greatly from

inlining. They also on�rm that inlining is not always bene�ial, sine the fully inlined version is

not the fastest for any of the three benhmarks. When it omes to the mahine learning approah,

the results are mixed.

On the matrix benhmark, both mahine learning results are better than the heuristi used by

Soot. The learner that learned on the matrix benhmark itself shows an overwhelming speedup over

the Soot heuristi, and even the speedup for the ross-validation learner is signi�ant. I am guessing

that the learning algorithm found some small number of all sites whih lead to a large improvement

when inlined, and that the Soot heuristi was not able to �nd them for some reason. I have tried

adjusting the parameters of the heuristi in Soot to try to math the performane of the learner, so

far without suess. I will take a loser look at the sites that the learner and Soot inlined to try to

explain the large performane improvement, and hopefully improve the heuristi used by Soot.

On the illness benhmark, the learner mathed the performane of Soot, with the ross-validation

learner marginally slower. Slightly better running times ourred during training of the learner in a

non-negligible number of the training runs. This seems to indiate that the learner was not able to

express the set of all sites whih would have to be inlined for this slight additional improvement.

On the ompress benhmark, the learner was unable to math the performane of Soot, whih

was lose to the best observed performane during training. Surprisingly, the ross-validation learner

did signi�antly better than the learner trained on the ompress benhmark itself. This ould be

aused by a number of reasons. Unlike the other two benhmarks, the ompress benhmark has a

large test harness, whih probably has little e�et on the running time, but ontains a large number

of all sites whih may onfuse the learner. The learner probably learned better on the other two

benhmarks whih did not have these onfusing sites. Sadly, most real-world programs have large

numbers of all sites, many of them having little e�et on their running time, so the ompress

benhmark reets real-world programs better than the other two.

The plots of the weights suggest that the learner was not able to express the orrelation that

there may be between the attributes that were measured and the e�et of inlining the all sites.

First, the onstant weight w



was in all ases very lose to zero. If a good linear approximation to

the funtion being learned exists, it is unlikely that its value should be zero preisely at the point

where all the attribute values are zero, espeially sine many of the attributes are never zero for any

all site. This suggests that the onstant weight w



was not suÆiently trained. Seond, the slopes

of the approximation are very di�erent depending on the benhmark or benhmarks on whih the

learner was trained. In the arguments plot, for example, two of the urves suggest that sites with

higher numbers of arguments provide a speedup, one suggests a slowdown, and three suggest no

e�et.

All of the plots are very linear, suggesting that perhaps the x

2

a

terms in the approximation were

unneessary. However, another plausible explanation is that the weights on the x

2

a

terms were not

suÆiently trained, probably beause the learning rate used for them was so low.

Finally, the plots of the error over time are very noisy, and show no sign of settling down. This
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ould be due to the randomness introdued by the �-greedy approah used to hoose the training

data, but it ould also on�rm the suspiion that the learner was not able to settle on a good

approximation to the funtion.

8 Conlusion

The signi�ant speedup on one of the benhmarks shows that a mahine learning approah to

inlining has a hope of improving on existing heuristis. However, the experiment also shows that the

approah used in this study needs improvement before it will be useful on real-world programs. This

is only a preliminary study; any study that ould be onsidered signi�ant would have to inlude a

larger number of benhmarks bearing more similarity to real-world programs.

9 Future Work

The simplest way to extend this work would be to perform the same experiment on a wider range

of benhmarks. However, I fear that this would only on�rm the aws in the urrent learner. The

learner should be improved before a more signi�ant study is done.

The disappointing results on the ompress benhmark (and, to some extent, the illness benh-

mark) ould be aused by any of many reasons, inluding:

1. The all site attributes observed may not orrelate in general with the speedup due to inlining,

and a mahine learning approah based on these attributes therefore may have no hope of

working.

2. The linear-quadrati approximation to the funtion may not be expressive enough to represent

the true relationship between the all site attributes and the speedup.

3. The use of the average speedup may be an inappropriate way of ombining the predited

speedup from inlining a number of all sites.

4. The gradient desent learner may not have had enough training to approximate the funtion

well.

Little an be done to alleviate the �rst problem, short of exploring a ompletely di�erent approah

to inlining deision making. It is even diÆult to determine whether the �rst problem was one of

the atual auses of the poor performane.

The seond problem ould be explored by repeating the experiment using more expressive ap-

proximations. However, a more expressive approximation would be diÆult to train with the small

number of all sites available for training, and there would be a risk of over�tting.

The third problem ould be explored by trying other ways to ombine predited speedup from

multiple all sites. A more systemati approah would be to modify the algorithm to only inline

one all site at a time. Unfortunately, this would require very long training times in order for the

learner to be observe the e�ets of inlining all the sites.

The fourth problem seems to be the most likely ause of the poor performane, and it is also the

easiest to explore further. The urrent algorithm performs a single gradient desent update step for

eah time the benhmark is inlined and run. This is a huge waste of the preious data olleted from
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running the benhmark (preious beause its olletion represents the overwhelming majority of the

time used by the system). A gradient desent learner does not use all the information present in the

training data in just a single pass over it. The learner ould easily be improved by iterating over the

olleted data many times. Beause the data would only be olleted one, this would not take muh

longer than the learner urrently takes. Unfortunately, if the learner learned from data only after it

was olleted, it would not be able to inuene the sets of all sites inlined during the olletion of

data. A seond modi�ation would therefore be for the learner to iterate over the olleted data as

it is being olleted. For example, the learner ould keep trak of the running time of the last 100

inlinings, and before measuring the running time of the next inlining, it ould make many training

passes over this previously observed data.
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