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1 Introdu
tion

Obje
t-oriented languages su
h as Java en
ourage programmers to separate their programs into very

short fun
tions, in
urring a high run-time overhead due to the frequent fun
tion 
alls. This overhead


an be redu
ed by inlining appropriate fun
tion 
all sites. However, inlining 
an also in
rease 
ode

size, so inlining sites must be 
arefully sele
ted.

Inlining has se
ondary e�e
ts, whi
h are poorly understood but sometimes signi�
ant to per-

forman
e. For example, an inlined 
all site may provide opportunities for an optimizing 
ompiler

to perform optimizations whi
h it would otherwise not be able to perform. Also, inlined fun
tions

may open up opportunities for further inlining. On the other hand, even a modest in
rease in 
ode

size may have hard-to-predi
t e�e
ts on performan
e 
aused by in
reased pressure on the instru
-

tion 
a
he of the pro
essor. Also, inlining may have unpredi
table e�e
ts on register utilization.

An algorithm 
onsidering these e�e
ts 
ould potentially provide better inlining de
isions than the

heuristi
s 
urrently in use. Be
ause the e�e
ts are poorly understood, ma
hine learning appears

to be a promising approa
h. Also, be
ause the pro�tability of inlining depends on the other opti-

mizations that a 
ompiler supports, a generi
 ma
hine learning approa
h 
ould be used to 
reate

heuristi
s spe
i�
 to parti
ular 
ompilers.

2 Existing Work

I am not aware of any published appli
ations of ma
hine learning to inlining de
isions. Ma
hine

learning has been applied to stati
 bran
h predi
tion [2℄. A summary of the possible bene�ts and

drawba
ks of inlining, as well as 
ommonly used heuristi
s, is given in [5℄. Several papers on heuristi
s

for inlining de
isions, some of them quite sophisti
ated, have been published. A good summary of

the short
omings of 
ommon inlining de
ision heuristi
s appears in [6℄. An experimental study of

various heuristi
s applied to Java is given in [1℄. The inlining de
ision algorithm presented in [3℄ takes

into a

ount estimates of the potential for 
ompiler optimization opportunities 
reated by inlining.

The Soot byte
ode optimization framework is des
ribed and experimentally evaluated in [7℄. This

in
ludes a des
ription and evaluation of the inlining heuristi
s implemented in Soot.

3 The Learner

The goal of the learner is to 
onstru
t an ora
le whi
h, for ea
h inlinable 
all site in a program being


ompiled, de
ides whether or not that site should be inlined.

The information about ea
h 
all site is summarized in ten real-valued attributes of the site, whi
h

are believed to be relevant to inlining de
isions:

Size of fun
tion to be inlined (hen
eforth 
allee)

Many inlining heuristi
s only allow short 
allees to be inlined. For example, the standard

heuristi
 used by Soot inlines only 
allees 
onsisting of at most twenty statements of Jimple,

the intermediate representation used in Soot. In this proje
t, the size of the 
allee is measured

as the logarithm of the number of Jimple statements.

Size of fun
tion 
ontaining the 
all site (hen
eforth 
aller)

Some inlining heuristi
s only allow inlining into 
allers smaller than a 
ertain threshold. The
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standard heuristi
 used by Soot inlines only into 
allers 
onsisting of at most 5000 statements

of Jimple. In this proje
t, the size of the 
aller is measured as the logarithm of the number of

Jimple statements.

Expansion fa
tor of 
aller and 
allee due to inlining

Many inlining heuristi
s 
onsider the amount of 
ode growth 
aused by inlining a site, 
ompared

to the original size of the uninlined 
ode for the 
aller and 
allee. The standard Soot heuristi


inlines 
all sites where the expansion fa
tor is at most three. The expansion fa
tor is de�ned

as

e+r

r

, where e is the number of Jimple statements in the 
allee, and r is the number of Jimple

statements in the 
aller.

Number of arguments to 
allee

The arguments to a method 
all must be passed when 
alling it, so their number a�e
ts the

overhead of the 
all whi
h is eliminated by inlining.

Number of 
onstants passed as arguments

When 
ompile-time 
onstants are passed as arguments to a method, the method 
an be spe-


ialized to those arguments when it is inlined, possibly 
reating additional optimization op-

portunities. Intra-pro
edural 
onstant propagation is done before 
ounting the number of


ompile-time 
onstants whi
h are passed in the 
all.

Number of pla
es in the program where 
allee is 
alled

If a method is 
alled in only a small number of pla
es in the program, it 
an be inlined at all

the 
all sites with little 
ode growth. Be
ause this number has su
h a wide range, its logarithm

rather than the a
tual number is used as input to the learner.

Number of 
all sites in 
allee

This is another measure of the size of the 
allee. The learner uses the logarithm of the number

of 
all sites in the 
allee.

Number of 
all sites in 
aller

This is another measure of the size of the 
aller. The learner uses the logarithm of the number

of 
all sites in the 
aller.

Number of live lo
al variables before 
all site

Inlining a 
all site gives the JIT 
ompiler in the virtual ma
hine more 
exibility in allo
ating

registers to the values used in the 
aller and 
allee. The number of lo
al variables whi
h are

live before the 
all site a�e
ts the number of values whi
h need to be allo
ated to the limited

number of registers. Be
ause this number has su
h a wide range, its logarithm rather than the

a
tual number is used as input to the learner.

Loop nesting level of 
all site

Call sites within loops are likely to be 
alled more times than 
all sites whi
h are not in loops,

so their 
umulative method 
all overhead is likely to be higher. As Mu
hni
k [5℄ points out, it

is not always possible to determine the loop nesting level in the sour
e 
ode from the byte
ode

(whi
h is the input to Soot). Therefore, the loop nesting level is approximated by the number

of targets of ba
k edges 
rossing the 
all site, whi
h in most typi
al Java methods is equal to

the loop nesting level [4℄.
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The fun
tion to be learned, is represented by f : R

10

! R, mapping the attributes of ea
h 
all

site to a real number representing the logarithm of the speedup expe
ted from inlining the 
all site.

The learner approximates the fun
tion as:

^

f(x) = w




+

X

a2attributes

(w

a

1

x

a

+ w

a

2

x

2

a

)

where x

a

is the value of attribute a for this 
all site, and the w's are the twenty-one weights whi
h

the learner is to learn. A site is 
onsidered pro�table to inline if the speedup from inlining it as at

least one (its logarithm is non-negative).

The algorithm used for learning is based on the gradient des
ent update rule

w  w � �rE[w℄(x)

where � is the learning rate, andrE[w℄(x) is the gradient of the error fun
tion at the attribute ve
tor

x. The error is measured by measuring the logarithm of the speedup of the program being optimized

from inlining the 
all site, and subtra
ting it from the logarithm of the speedup as estimated by

the fun
tion being learned,

^

f(x). To minimize the e�e
t of other pro
esses running on the ma
hine,

the median of three measurements is used ea
h time the runtime of the program is measured. This

should eliminate most spurious speedups or slowdowns 
aused by external fa
tors.

In order to measure the speedup from inlining a 
all site in a realisti
 environment, we must

inline not only that one 
all site, but also the other 
all sites in the program, using an inlining

heuristi
 similar to the fun
tion being learned. For this reason, the learning algorithm uses an

�-greedy strategy to de
ide whi
h 
all sites to inline. For ea
h trial, the 
urrent estimate of the

inlining fun
tion is used to inline the sites for whi
h inlining is deemed to be pro�table, but with

a probability of � for ea
h site, the estimate is 
ipped, and the site is inlined if and only if it is

not pro�table to inline it. In all experiments done for this proje
t, the value of � used was 0:125.

Using this strategy, we get a program inlined approximately a

ording to the 
urrent estimate of

pro�tability, but with enough variation in the sites that are inlined to allow the learner to explore

the e�e
t of inlining sites that may not seem pro�table to inline.

The running time of ea
h trial is 
ompared to the running time of the pre
eding trial to measure

the speedup from inlining and uninlining the sites whi
h were inlined and uninlined between the two

trials. The expe
ted speedup from the sites that were 
hanged must be estimated using the fun
tion

being learned so that the weights 
an be updated. This fun
tion, however, only provides the speedup

for a single 
all site, so the values from the multiple 
all sites whi
h were 
hanged must somehow be


ombined. It may seem logi
al at �rst to simply add all the values, sin
e they represent logarithms

of speedup ratios. However, this would overestimate the 
ombined speedup. If ea
h of two 
all sites

speeds the program up by a fa
tor of two when inlined individually, inlining both of them is likely

to speed up the program by mu
h less than four-fold, due to Amdahl's Law. Unfortunately, the


hosen representation of the program as attributes of individual 
all sites gives us no information

about the relationships between 
all sites, and therefore the 
ombined e�e
t of inlining a number

of them. We 
an use the average of the estimates instead of the sum to get an underestimate of

the speedup, rather than an overestimate. An underestimate is more desirable, be
ause it avoids

the exponential explosion of the weights toward in�nite values that the overestimate 
auses. The


ombined e�e
t is therefore estimated by the average of the estimated speedups from all the sites

that 
hanged between two su

essive trials.
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Additional measures need to be taken to prevent exponential explosion of weights. Spe
i�
ally,

the learning rate, �, needs to be kept low (at 0:01), and even lower (at 0:001), for updating the

weights 
orresponding to squares of the attributes, as these 
an have larger values.

4 Other Learner Designs

In this se
tion, I des
ribe other learners whi
h I tried before 
hoosing the learner des
ribed in the

pre
eding se
tion.

The �rst learner modelled the problem as a Markov de
ision pro
ess. Its state was the program

being inlined, with some subset of its inlinable 
all sites inlined. Possible a
tions were inlining any

parti
ular 
all site, and a stop a
tion, indi
ating that all the sites that the learner had wanted to

inline were already inlined. The state was des
ribed to the learner as the 
ode size growth ratio


ompared to the original program with no sites inlined. A
tions were des
ribed by the ten attributes

presented in the previous se
tion. The a
tion value Q fun
tion was approximated by a CMAC, in

whi
h ea
h attribute was dis
retized into ten possible tiles, and a sum of the trained weights of

the relevant tiles, added to the state (growth) multiplied by a trained weight, was taken as an

approximation to Q. At ea
h step, exa
tly one 
all site was 
hosen �-greedily to be inlined, and the

Q value updated a

ording to the Sarsa learning algorithm based on the speedup from that 
all site.

The main problem with this approa
h was its slowness: be
ause only one site was inlined at a time,

the learner was not even able to observe all the 
all sites. Also, representing the state as the growth

of the program violated the Markov assumption, sin
e it is the spe
i�
 set of sites that were inlined

that in
uen
es running time, rather than the total amount of growth of the program. Additionally,

the dis
retization of the attributes made it diÆ
ult for the learner to generalize from the limited

number of observed 
all sites.

My other attempt at a learner was motivated by the exponentially exploding weights in the

gradient des
ent learner. Believing that too many unobserved fa
tors in
uen
e the speedup due to

inlining any spe
i�
 
all site, I de
ided to not try to estimate the a
tual speedup from the 
all site,

but simply to learn some fun
tion whi
h would be positive if the 
all site was pro�table to inline,

and negative otherwise. Instead of updating the weights based on the error between the predi
ted

speedup and the a
tual speedup, I updated them based only on the a
tual speedup. This avoided

the exponential explosion in the weights, and seemed to perform 
omparably to the gradient des
ent

learner in preliminary tests. However, this learner had no theoreti
al basis to suggest 
onvergen
e,

be
ause it had no spe
i�
 de�nition of a fun
tion to 
onverge to. I therefore abandoned it in

favour of the gradient des
ent learner on
e I tuned the latter to prevent its weights from exploding

exponentially.

5 Experiment Design

The learning algorithm was tested on three ben
hmark programs, matrix and illness from the Ashes

ben
hmark suite, and 
ompress from the Spe
JVM ben
hmark suite. These ben
hmarks were se-

le
ted for their moderate number of inlinable 
all sites, be
ause they were small enough to qui
kly

analyze using Soot, and be
ause they were known to bene�t from inlining using existing heuristi
s.

Ben
hmarks with too few inlinable 
all sites would provide little information to learn from, while

ben
hmarks with too many inlinable 
all sites would make it diÆ
ult for the learner to �nd the
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signi�
ant ones in the limited time that the experiment runs. The following table summarizes the

ben
hmarks:

Ben
hmark Number of inlinable sites Speedup using Soot inlining heuristi


matrix 37 1.43

illness 109 1.18


ompress 60 1.23

A three-fold 
ross-validation study was performed, in whi
h the learner was evaluated on ea
h

ben
hmark after learning for 500 trials on ea
h of the other two ben
hmarks. For 
omparison,

the learner was also evaluated on ea
h ben
hmark after having learned for 500 trials on that same

ben
hmark.

The experiment was 
ondu
ted on shadow, a Spar
-based ma
hine with 1GB of memory, using

the Java virtual ma
hine from the Sun JDK 1.2 with inlining by the JIT 
ompiler disabled. It ran

for approximately 48 hours.

6 Results

The results of the experiment are given in the following table, and in the plots at the end of this

paper.

Ben
hmark Original Soot

Optimized

Soot

Inlined

Fully

Inlined

Ma
hine

Learning

(Cross)

Ma
hine

Learning

(Same)

Best

En
ountered

Matrix 3.34 3.44 2.33 2.22 2.21 1.6 1.56

Illness 1.41 1.39 1.2 1.38 1.22 1.2 1.08

Compress 19.1 18.63 15.64 16.56 16.2 17.92 15.07

The table gives the running times in se
onds of ea
h ben
hmark after inlining using various

inlining de
ision makers. The �rst 
olumn is the name of the ben
hmark. The se
ond 
olumn is

the running time of the original ben
hmark, with no optimization. The third 
olumn is the running

time of the ben
hmark after it has been optimized using the whole-program optimizations of Soot,

but with inlining turned o�. The fourth 
olumn is the running time after the ben
hmark has been

inlined using the heuristi
 in Soot, and optimized with Soot. The �fth 
olumn is the running time

after all 
all sites that 
ould be inlined have been inlined, and optimized with Soot. The sixth


olumn is the running time after the ben
hmark has been inlined using a learner trained on the

other two ben
hmarks, and optimized with Soot. The seventh 
olumn is the running time after the

ben
hmark has been inlined using a learner trained on that same ben
hmark, and optimized with

Soot. Finally, the eighth 
olumn is the shortest running time ever en
ountered on that ben
hmark

during training. Be
ause training is done on many randomly sele
ted sets of sites to be inlined, this

is likely to be a reasonable approximation to the performan
e of the best possible inlining strategy.

The numbers in this table are presented in a bar graph at the end of this paper.

Also presented at the end of this paper are plots of the weights that were learned from training on

the various 
ombinations of the ben
hmarks, along with histograms of the distribution of attribute

values in the ben
hmarks of the Ashes and Spe
JVM ben
hmark suites. For ea
h attribute a, the

value w




+ w

a

1

x

a

+ w

a

2

x

2

a

(the 
ontribution of the attribute to the estimated speedup) is plotted
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against x

a

, the value of the attribute. The weights are plotted after training on ea
h ben
hmark

and ea
h pair of ben
hmarks.

Finally, there are plots showing the error during training.

7 Interpretation of Results

The runtime measurements 
on�rm that the optimizations performed by Soot bene�t greatly from

inlining. They also 
on�rm that inlining is not always bene�
ial, sin
e the fully inlined version is

not the fastest for any of the three ben
hmarks. When it 
omes to the ma
hine learning approa
h,

the results are mixed.

On the matrix ben
hmark, both ma
hine learning results are better than the heuristi
 used by

Soot. The learner that learned on the matrix ben
hmark itself shows an overwhelming speedup over

the Soot heuristi
, and even the speedup for the 
ross-validation learner is signi�
ant. I am guessing

that the learning algorithm found some small number of 
all sites whi
h lead to a large improvement

when inlined, and that the Soot heuristi
 was not able to �nd them for some reason. I have tried

adjusting the parameters of the heuristi
 in Soot to try to mat
h the performan
e of the learner, so

far without su

ess. I will take a 
loser look at the sites that the learner and Soot inlined to try to

explain the large performan
e improvement, and hopefully improve the heuristi
 used by Soot.

On the illness ben
hmark, the learner mat
hed the performan
e of Soot, with the 
ross-validation

learner marginally slower. Slightly better running times o

urred during training of the learner in a

non-negligible number of the training runs. This seems to indi
ate that the learner was not able to

express the set of 
all sites whi
h would have to be inlined for this slight additional improvement.

On the 
ompress ben
hmark, the learner was unable to mat
h the performan
e of Soot, whi
h

was 
lose to the best observed performan
e during training. Surprisingly, the 
ross-validation learner

did signi�
antly better than the learner trained on the 
ompress ben
hmark itself. This 
ould be


aused by a number of reasons. Unlike the other two ben
hmarks, the 
ompress ben
hmark has a

large test harness, whi
h probably has little e�e
t on the running time, but 
ontains a large number

of 
all sites whi
h may 
onfuse the learner. The learner probably learned better on the other two

ben
hmarks whi
h did not have these 
onfusing sites. Sadly, most real-world programs have large

numbers of 
all sites, many of them having little e�e
t on their running time, so the 
ompress

ben
hmark re
e
ts real-world programs better than the other two.

The plots of the weights suggest that the learner was not able to express the 
orrelation that

there may be between the attributes that were measured and the e�e
t of inlining the 
all sites.

First, the 
onstant weight w




was in all 
ases very 
lose to zero. If a good linear approximation to

the fun
tion being learned exists, it is unlikely that its value should be zero pre
isely at the point

where all the attribute values are zero, espe
ially sin
e many of the attributes are never zero for any


all site. This suggests that the 
onstant weight w




was not suÆ
iently trained. Se
ond, the slopes

of the approximation are very di�erent depending on the ben
hmark or ben
hmarks on whi
h the

learner was trained. In the arguments plot, for example, two of the 
urves suggest that sites with

higher numbers of arguments provide a speedup, one suggests a slowdown, and three suggest no

e�e
t.

All of the plots are very linear, suggesting that perhaps the x

2

a

terms in the approximation were

unne
essary. However, another plausible explanation is that the weights on the x

2

a

terms were not

suÆ
iently trained, probably be
ause the learning rate used for them was so low.

Finally, the plots of the error over time are very noisy, and show no sign of settling down. This
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ould be due to the randomness introdu
ed by the �-greedy approa
h used to 
hoose the training

data, but it 
ould also 
on�rm the suspi
ion that the learner was not able to settle on a good

approximation to the fun
tion.

8 Con
lusion

The signi�
ant speedup on one of the ben
hmarks shows that a ma
hine learning approa
h to

inlining has a hope of improving on existing heuristi
s. However, the experiment also shows that the

approa
h used in this study needs improvement before it will be useful on real-world programs. This

is only a preliminary study; any study that 
ould be 
onsidered signi�
ant would have to in
lude a

larger number of ben
hmarks bearing more similarity to real-world programs.

9 Future Work

The simplest way to extend this work would be to perform the same experiment on a wider range

of ben
hmarks. However, I fear that this would only 
on�rm the 
aws in the 
urrent learner. The

learner should be improved before a more signi�
ant study is done.

The disappointing results on the 
ompress ben
hmark (and, to some extent, the illness ben
h-

mark) 
ould be 
aused by any of many reasons, in
luding:

1. The 
all site attributes observed may not 
orrelate in general with the speedup due to inlining,

and a ma
hine learning approa
h based on these attributes therefore may have no hope of

working.

2. The linear-quadrati
 approximation to the fun
tion may not be expressive enough to represent

the true relationship between the 
all site attributes and the speedup.

3. The use of the average speedup may be an inappropriate way of 
ombining the predi
ted

speedup from inlining a number of 
all sites.

4. The gradient des
ent learner may not have had enough training to approximate the fun
tion

well.

Little 
an be done to alleviate the �rst problem, short of exploring a 
ompletely di�erent approa
h

to inlining de
ision making. It is even diÆ
ult to determine whether the �rst problem was one of

the a
tual 
auses of the poor performan
e.

The se
ond problem 
ould be explored by repeating the experiment using more expressive ap-

proximations. However, a more expressive approximation would be diÆ
ult to train with the small

number of 
all sites available for training, and there would be a risk of over�tting.

The third problem 
ould be explored by trying other ways to 
ombine predi
ted speedup from

multiple 
all sites. A more systemati
 approa
h would be to modify the algorithm to only inline

one 
all site at a time. Unfortunately, this would require very long training times in order for the

learner to be observe the e�e
ts of inlining all the sites.

The fourth problem seems to be the most likely 
ause of the poor performan
e, and it is also the

easiest to explore further. The 
urrent algorithm performs a single gradient des
ent update step for

ea
h time the ben
hmark is inlined and run. This is a huge waste of the pre
ious data 
olle
ted from

7



running the ben
hmark (pre
ious be
ause its 
olle
tion represents the overwhelming majority of the

time used by the system). A gradient des
ent learner does not use all the information present in the

training data in just a single pass over it. The learner 
ould easily be improved by iterating over the


olle
ted data many times. Be
ause the data would only be 
olle
ted on
e, this would not take mu
h

longer than the learner 
urrently takes. Unfortunately, if the learner learned from data only after it

was 
olle
ted, it would not be able to in
uen
e the sets of 
all sites inlined during the 
olle
tion of

data. A se
ond modi�
ation would therefore be for the learner to iterate over the 
olle
ted data as

it is being 
olle
ted. For example, the learner 
ould keep tra
k of the running time of the last 100

inlinings, and before measuring the running time of the next inlining, it 
ould make many training

passes over this previously observed data.
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