Dominators

Definition

In a CFG, node *a* dominates *b* if every path from the start node to *b* passes through *a*. Node *a* is a dominator of *b*.

Property

The dominance relation is a partial order.

Definition

Node a strictly dominates b if $a \neq b$ and a dominates b.

Dominators

Theorem

IF a and b both dominate c,

THEN either a dominates b or b dominates a.

Dominators

$\mathsf{Theorem}$

IF a and b both dominate c,

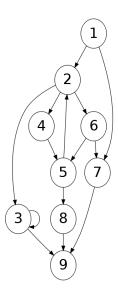
THEN either a dominates b or b dominates a.

Corollary

Every node n has at most one immediate dominator idom(n) such that

- idom $(n) \neq n$
- idom(n) dominates n, and
- idom(n) does not dominate any other dominator of n.

Dominator Example



Computing Dominators

As a dataflow analysis

- Forwards
- **2** Lattice is $(\mathcal{P}(Stmts), \supseteq)$
- **3**
- $\bullet \mathsf{out}_\ell = \mathsf{in}_\ell \cup \{\ell\}$
- start node value is {}
- \bullet $\perp = \{$ all statements $\}$

Computing Dominators

As a dataflow analysis

- Forwards
- **2** Lattice is $(\mathcal{P}(Stmts), \supseteq)$
- **3**
- \bullet out_{ℓ} = in_{ℓ} \cup { ℓ }
- start node value is {}
- \bullet $\perp = \{$ all statements $\}$

More efficient approaches

- Lengauer-Tarjan: see Appel book section 19.2
- Cooper, Harvey, Kennedy: http://www.hipersoft.rice.edu/grads/ publications/dom14.pdf

Dominance Frontier

Definition

A node w is in the dominance frontier of x if:

- x does not strictly dominate w, and
- x dominates a predecessor of w.

Computing Dominance Frontier

 $DF_{local}(x)$: the successors of x not strictly dominated by x. $DF_{up}(y)$: nodes in DF(y) not strictly dominated by idom(y). $DF(x) = DF_{local}(x) \cup \bigcup_{\{y \mid idom(y) = x\}} DF_{up}(y)$.

Computing Dominance Frontier

```
Algorithm DF(x):
 1: S = \{\}
 2: for all nodes w \in \text{succ}(x) do
 3: if idom(w) \neq x then
 4: S \cup = \{w\}
 5: /* S is now DF_{local}(x) */
 6: for all nodes y for which idom(y) = x do
    /* below we compute DF_{\mu\nu}(y) */
    for all nodes w \in DF(y) do
        if x does not dominate w or x = w then
           S \cup = \{w\}
10:
11: return S
```

Computing Dominance Frontier (Alternative)

Restatement of definition of DF

 $w \in DF(x)$ for every x that dominates a predecessor of w, but does not strictly dominate w.

Algorithm Compute DFs():

- 1: **for all** nodes w **do**
- 2: **for all** $p \in \operatorname{preds}(w)$ **do**
- 3: x = p
- 4: **while** $x \neq idom(w)$ **do**
- 5: $DF(x) \cup = \{w\}$
- 6: x = idom(x)