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Abstract

Code cloning is the practice of duplicating existing source code for use elsewhere within

a software system. Within the research community, conventional wisdom has asserted

that code cloning is generally a bad practice, and that code clones should be removed or

refactored where possible. While there is significant anecdotal evidence that code cloning

can lead to a variety of maintenance headaches — such as code bloat, duplication of bugs,

and inconsistent bug fixing — there has been little empirical study on the frequency,

severity, and costs of code cloning with respect to software maintenance.

This dissertation seeks to improve our understanding of code cloning as a common

development practice through the study of several widely adopted, medium-sized open

source software systems. We have explored the motivations behind the use of code cloning

as a development practice by addressing several fundamental questions: For what reasons

do developers choose to clone code? Are there distinct identifiable patterns of cloning?

What are the possible short- and long-term term risks of cloning? What management

strategies are appropriate for the maintenance and evolution of clones? When is the “cure”

(refactoring) likely to cause more harm than the “disease” (cloning)?

There are three major research contributions of this dissertation. First, we propose a

set of requirements for an effective clone analysis tool based on our experiences in clone

analysis of large software systems. These requirements are demonstrated in an example

implementation which we used to perform the case studies prior to and included in this

thesis. Second, we present an annotated catalogue of common code cloning patterns that

we observed in our studies. Third, we present an empirical study of the relative frequencies

and likely harmfulness of instances of these cloning patterns as observed in two medium-

sized open source software systems, the Apache web server and the Gnumeric spreadsheet

application. In summary, it appears that code cloning is often used as a principled engi-

neering technique for a variety of reasons, and that as many as 71% of the clones in our

study could be considered to have a positive impact on the maintainability of the software

system. These results suggest that the conventional wisdom that code clones are generally

harmful to the quality of a software system has been proven wrong.
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Chapter 1

Introduction

1.1 Motivation

This thesis examines the phenomenon of “code cloning” — the intentional or unintentional

introduction of similar code segments — as it occurs in medium-sized to large software

systems. Most software systems contain a significant amount of code cloning; typically

10–15% of the source code in large software systems is part of one or more code clones

[51, 54]. While copy-and-paste is often used as the canonical example of code cloning

activity, code cloning is not a result of this activity alone. Code clones may be introduced

as programming idioms related to language or libraries, common usage of framework or

library APIs, or even implementations based on common examples. Similarly, not all copy-

and-paste activities should be considered code cloning. Copy-and-pasting trivial segments

of code, such as boiler-plating of for loops or variable names, is not generally considered

code cloning, as the resulting code segments typically share little interesting semantic

content.

The effects of code cloning on the quality of source code are not well understood. In

much of the literature on the topic, code cloning is considered detrimental to the quality

of the source code, as it is generally believed that code clones can cause additional main-

tenance effort [7, 15, 26, 44, 47, 61, 74]. For example, changes to one segment of code may

need to be propagated to several others, escalating maintenance costs [29]. Furthermore,

locating and maintaining these code clones pose additional problems if the clones do not

1



2 Toward an Understanding of Software Code Cloning as a Development Practice

evolve synchronously. Examples such as this have led Fowler to proclaim code clones as

the most pernicious “bad smell” in source code [27]. With this in mind, methods for au-

tomatic refactoring have been suggested [9, 15], and tools specifically to aid developers in

the manual refactoring of code clones have also been developed [38].

There is no doubt that code cloning can be an indication of sloppy design and in such

cases should be considered to be a kind of development “bad smell”. However, we have

found that there are many instances where this is simply not the case. For example,

cloning may be used to introduce experimental optimizations to core subsystems without

negatively affecting the stability of the main code base [53, 55]. These experimental changes

can be used as part of the production system, allowing end users to easily switch between

experimental features and stable ones. Cloning can also be used to avoid overly complex

code resulting from interleaving two or more segments of similar but non-identical code

segments. It is examples such as these that motivated much of the work that is presented

in this dissertation. The common view we found in the literature that code cloning is

inevitably harmful to code quality and should be eradicated whenever possible — which

we informally termed “cloning considered harmful” — seemed wrong to us, even “harmful”

itself. Anecdotally, we had found that cloning could be employed in a number of ways and

for a number of reasons, many of which seemed like principled engineering decisions to

us. We therefore sought to systematically investigate the phenomenon of code cloning in

real-world software systems. Using a tool we built, called the Clone Interpretation and

Classification System (CLICS), to aid in the detection, analysis, and categorization of

code cloning we performed several exploratory case studies of medium-sized to large open

source software systems that are in wide use. The results of these studies revealed code

cloning patterns, which we have documented in an annotated catalogue. We examined the

frequency and judged the “harmfulness” of these patterns within the studied systems and

found that many code clones could be deemed to have beneficial impacts on the source

code quality. Based on this work, the thesis statement of this dissertation can be given as:

Software cloning can be and is used as a principled design technique to achieve

desired engineering goals.

Or informally, “‘Cloning considered harmful’ considered harmful”.
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If we accept the proposition that not all clones are harmful, then a variety of concerns

— such as stability, code ownership, and design clarity — need to be explicitly considered

before refactoring is attempted; a software developer or maintainer should try to under-

stand the reason behind creating the code clone before deciding what action (if any) to

take. To aid these decisions, a catalogue describing common uses of code clones should be

constructed, similar to the catalogues used to describe design patterns [28] or anti-patterns

[17]. However, the current literature does not provide guidance for practitioners on how to

manage code clones if they are to exist in the system for extended periods of time. This

thesis lays the groundwork for such guidance, and provides evidence to suggest the stigma

surrounding code cloning may not be well founded.

1.2 Thesis Overview

While clone detection is an area of active research, and several tools exist to facilitate code

clone detection, until recently there has been relatively little empirical research on the

types of clones that are found, where they are found within the design of the system, or

how they are used in the context of building and maintaining software. Most research has

explicitly or implicitly assumed that code cloning is harmful and has focused on methods for

refactoring or removing code clones from the source code without considering the original

decisions leading to the code clone.

With a focus on detecting and removing clones without first understanding how they

are used, we are left with few means of evaluating the effectiveness or benefits of code clone

removal on long-term maintenance. Additionally, without an understanding as to why and

how developers use code clones, we cannot address the underlying issues that result in code

cloning. Thus, we are led to three fundamental research questions raised in this thesis:

Question 1 What are the common motivations for developers to use code clones?

If clones are the result of lazy or careless programming practices then we would ex-

pect that the resulting code clones are likely to negatively impact the system. However, if

developers intentionally create code clones for principled engineering reasons such as mit-

igating risk, supporting flexible evolution, or preventing fragmentation of concepts, then

code cloning may have a positive impact on the system quality.



4 Toward an Understanding of Software Code Cloning as a Development Practice

Whether developers are intentionally using cloning as a calculated part of software

design or to avoid short term cognitive costs we must ask: in what scenarios are they using

code cloning? Is there a regular or repeated use of code clones, both negative and positive,

that can be discovered? This raises our second research question:

Question 2 Are there common patterns of code cloning that occur in the development of

software systems?

Understanding the types of cloning that occur in software systems may help provide a

better understanding towards the various types of maintenance challenges they present. For

example, clones that are likely to be subject to different evolutionary forces, such as plat-

form dependencies, are likely to require careful consideration when propagating changes.

More concretely, bug fixes must be carefully considered. Bugs related to communicating

with a specific platform are unlikely to appear throughout a set of code clones. However,

bugs in a segment of code implementing interaction with the internal software system may

be present in all or some of the code clones based on that code. In this case, the type of

software bug and the type of code clone will dictate the maintenance tasks required.

If patterns can be discovered, can we measure the relative frequency with which they

occur? As with any design practice, context will determine the appropriate actions. What

can we learn about the harmfulness of cloning in software in relation to code cloning

patterns? This leads us to our third question:

Question 3 How are code cloning patterns used in practice, and to what extent is their

use appropriate?

Measuring the frequency or extent to which code cloning patterns appear in software

can provide an indication of the relevancy of the clone patterns to software practitioners

and code clone maintenance research. Investigating this question can also provide insight

into the problems associated with using code cloning, even when using it in a principled

way. If we discover that code clones are repeatedly used with good intent but lead to

poor design over time, this would suggest that the well-intentioned use of code cloning is

difficult and code cloning should simply be avoided.
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Throughout our studies we have found that patterns of code cloning, such as the exam-

ple of experimental forking described below (Section 1.4), are repeated in software systems.

During recent case studies we observed several occurrences of code clones as useful arti-

facts for extending the features of a software system and hence they should not be removed

[50, 51, 54]. Further analysis into cloning in software reveals that many of these “good”

clones are created for similar reasons and in similar ways [53, 55]. While answering the first

two questions, this thesis presents a set of patterns of code cloning as discovered in real

software systems. Included in these patterns are the rationale for creating many of these

clones and the corresponding development and maintenance trade-offs. These patterns

are intended to be used to guide future maintenance activities involving cloned code. This

guidance is aimed to help software practitioners make more efficient and effective decisions,

in turn possibly contributing to a higher level of software quality.

To address the third question, this thesis presents the results of an evaluation of the

use of code clones in two widely used, medium-sized software systems. By categorizing a

sample of clones in two software systems and ranking their perceived harmfulness, we can

obtain a measure of the overall quality of code clone use. These results show that a large

number of code clones should not be viewed as harmful. The results in this thesis also

suggest the percentage of good clones will vary with each software system studied.

1.3 A Definition of Code Cloning

Despite the growing research interest in the topic, a broadly accepted concrete definition of

code cloning remains elusive. Even the general concept — code clones are similar segments

of code that arise due to groups of problems that require the same or similar solutions —

is not agreed upon. This shortcoming is even evident in the title of a recent workshop

organized to bring together the experts on the topic: “Duplication, Redundancy, and

Similarity in Software” [63]. Code cloning does not even appear in the title and it would

seem code cloning is some form of conjunction of duplication, redundancy, and similarity in

source code. Are code clones limited to intentionally duplicated code? Duplication implies

a deliberate act, but some would suggest that duplication, such as copy-and-pasting, is only

one way that code clones are produced. Is redundancy a criterion for a code clone? If it is,
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that would imply that code that cannot be refactored (and is therefore not redundant) is

not a code clone even though it will likely be subject to the same maintenance challenges

code clones face. How is similar code related to code cloning? The building of user

interfaces is often similar within a software system: the mechanism and order of adding

buttons, text editors and displays, and event notification is restricted by the API provided

by the toolkit being used. However, to what degree are these code segments code clones?

Disappointingly, one conclusion of the before mentioned workshop is that “code clone”

may not be a suitable term for our topic of research; however, no other term has achieved

acceptance in the research community as of this writing [91].

A small survey of experts in the field indicated that agreement was low when deciding

whether or not pairs of segments of code were code clones [48]. Because of this disagree-

ment, many problems arise when one tries to precisely define the terms code clone and

code cloning. What aspects of source code contribute to the definition of code clones?

Given a small set of candidate code clones, code clone researchers were asked to decide if

each candidate was in fact a code clone and to give a supporting rationale. Aspects of the

segments of code that contributed to the decisions included:

• the degree of similarity (number and kinds of differences between the code segments),

• the size of the code segments,

• the type of code comprising the code segments,

• the mechanism for creating the possible code clone,

• the code structure,

• if the code segments were interesting or not,

• the difficulty in refactoring the code, and

• the context of the segments in the source code.

Disagreement on whether or not a candidate was a code clone tended to arise on two fronts:

the importance of a particular attribute and the threshold of the aspect in determining

whether or not a candidate is a code clone. When evaluating the importance of a certain
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attribute some experts might deem the context or location of a candidate code clone more

important than the changes made to it, while another expert might make the opposite

decision. Concerning the threshold of an attribute, one expert might consider the segments

in the candidate similar enough to be a code clone while another expert would claim

they are too dissimilar. During the survey, decisions were made based on contradictory

evaluations of the same attributes. This situation makes it particularly difficult to derive

a precise and commonly accepted definition of code cloning.

With the conflicts in the decision making process, it is clear that we cannot provide

a definition of the term code clone that will be inclusive of all or most of the prior work

on the topic. However, we can provide our own interpretation of the general concept of

code cloning to provide the context in which the results of this thesis were produced. In

the most general sense, we consider a code clone to be two or more segments of code

that are similar structurally, have a similar intended use or semantics, and represent the

reuse/re-implementation of a recurring problem.

Definition 1 A code clone (a.k.a. clone) is two segments of code that are similar in both

form and function, and represent the replication of a solution to a recurring problem.

Similarity of two segments of code can be measured from two perspectives: represen-

tation (form) and semantics (function) [92]. In the scope of the research presented in

this thesis, representational similarity includes syntactic and lexical representation. If one

ignores the interpretation of the meaning of the identifiers used to specify variables, con-

stants, etc. syntax can be considered to be the structure of the code: if two segments of

code have a one-to-one mapping of identifiers and their keywords, and if operators and

separators are the same then these segments can be considered syntactically isomorphic.

Lexical representation adds extra information about the code: the similarity of identifiers

often has some correlation to the similarity or relationship of the code segments’ intended

interpretation. Formatting of code, such as indentation and line separation, can often be

a matter of style for individual developers and, in the opinion of the author, should be

ignored as part of the lexical representation. It is often the case that a developer will

reformat a clone to match their own style preferences. While an uncommon style of coding

that appears multiple times may be an indicator of cloning, we have considered this outside

the scope of this thesis and our definitions.
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Semantic similarity is a measure of the likeness of the intended interpretation of the

meaning of two or more code segments. The interpretation of the meaning of a code segment

could come in the form of an analysis of input and output, the operations comprising the

code segment, the meaning of the lexicons used to encode the identifiers, or a combination

of all three. For example, the two sorting algorithms Quicksort and Heapsort produce sim-

ilar output given the same input. Both sorting algorithms could be used interchangeably

in specific scenarios and therefore might be considered to have similar semantics exter-

nally. Quicksort and Heapsort behave quite differently internally. Differences in internal

operations, data structures, and worst case complexity can make choosing one algorithm

over the other essential, implying that, in some instances, their internal behaviours are

an important aspect of measuring their semantic similarity. The lexical representation,

including comments and identifiers, can provide insight into the intended usage of a code

segment which in turn adds to its semantics. If two sorting algorithms are implemented

to sort BucketsOfFish and GrainsOfSand, one might use their lexical contents to predict

the characteristics of the intended input of each function. We can expect GrainsOfSand

will be an extremely large input and as such one would want to avoid the O(n2) worst-case

of Quicksort. While programmatic interpretation of the semantics of two code segments

is likely difficult, Walenstein et al. suggest that a measure of semantic similarity can be

approximated using several program representation analysis techniques such as execution

curve similarity, abstraction equivalence distance, program dependence graph similarity,

and Levenshtein distance on the segments’ operations [92].

According to the above definition, a code clone requires both representational and se-

mantic similarity. This definition excludes the re-implementation of the same concept in

two very different ways. For instance, two implementations of Quicksort, one using recur-

sive calls, and another using a queue, would not be considered a code clone even though

they are implementing the same concept. This may be considered a form of redundancy,

but was not considered a code clone in the scope of the research presented here.

Structurally similar code that does not share a semantic relationship is also excluded

by the above definition. Examples of such code occur in and around (but are not restricted

to) language features that have a limited form of common usages (switch statements

in C/C++ are classic examples of this). Structurally similar but semantically distinct
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segments of code are not considered code clones in this thesis because they are artifacts of

the language rather than reuse/re-implementation of a specific problem and solution.

The distinction between segments of code that share only one form of similarity and

those that share both is important. Segments of code that are similar semantically but not

representationally are unlikely to manifest the same development and maintenance concerns

as segments that are similar both semantically and representationally. It is more likely to

be the case that segments of code that share both forms of similarity were developed,

intentionally or not, with the same underlying assumptions and intended behaviours. For

the duration of time that these code segments maintain similarity there will be shared

maintenance concerns such as propagating changes occurring in one segment to other

segments in the code clone relationship.

A related definition of cloning was described by Bellon et al., who defined three types

of code clones based on the degree and type of similarities [16]. Type 1 clones are segments

of code that are lexically identical. Type 2 clones are segments of code that are lexically

identical if one ignores identifier names. Type 3 clones are adjacent sets of type 1 and

type 2 clones, separated by lines that are not syntactically isomorphic (i.e., “gapped”

clones). These definitions of clones are restricted to the representational similarity of code

clones, and are more closely tied to clone detection results than the definition of code clone

described here.

The cardinality of the code clone relationship is based on the classical definition of

code clones used throughout literature on the topic [3, 6, 15, 4, 26, 44, 43, 47, 60, 61, 74].

However, groups of code clones can also be formed. To group or cluster code clones, the

code clone relationship is often considered to be an equivalence relation, especially in the

case of sub-string matching algorithms. In this case, rules of symmetry, transitivity and

reflexivity are assumed to hold. Using this definition of the clone relationship groups of

clones, often called clone classes, can be formed [74], also referred to as clone groups,

or more recently clone multiplications [11]. This relation does not always hold for all

types of clones. Segments of code that are considered clones may have large changes, such

as insertions of statements, and these changes may break transitivity without affecting

symmetry and reflexivity.
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Definition 2 A clone class is a group of code clones formed according to the transitive

closure of the code clone relationship, which is assumed to be an equivalence relation.

Definition 1 does not restrict the size or importance of the code segments in question,

only that the segments provide a solution to a recurring problem. This implies that even

the most simple tasks could be considered code clones, including programming idioms such

as the allocation of memory and initialization of memory on the heap. In our investigation

of code clones in the Apache httpd web server, we observed several clones of this type

with many variations on the overall implementation. While these clones were very simple,

perhaps even trivially so, they comprised several instances of an idiom with incomplete

implementations. Examples such as these underscore the importance of a definition of

code clone that does not exclude even the most basic code fragments.

The above definition is purposely imprecise in its description of similarity. The field of

code clone detection and analysis has several open questions that have yet to be solved.

Evaluating similarity, at the current state-of-the-art of code clone detection, and determin-

ing whether or not two code fragments are code clones remains a subjective process that

relies on an individual’s knowledge about the software system under study as well as soft-

ware development in general. Measuring lexical and syntactic similarity can be performed

programmatically — algorithms such Levenshtein distance and parametric string matching

were developed for this purpose — but the evaluation of the importance of individual sim-

ilarities and differences is not well understood. For example, there is no generally accepted

definition of how lexically similar two segments of code should be before being deemed

code clones. Further, should operators, separators, and keywords be included in the edit

distance metric? Or more generally, what attributes of the source code can provide us with

a metric, in a reasonable amount of time, of the representational and semantic similarity

of two pieces of code?

Many techniques have been proposed to address the problem of measuring similarity

to find code clones. These techniques, described in Chapter 2.4, can be referred to as

code clone detection. For the purpose of this thesis, we now define code clone detection as

follows.

Definition 3 Code clone detection is a process of identifying similar segments of code

within a body of source code according to a precise, technique-specific, definition of
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similarity, and reporting these detected segments as candidate code clones.

Definitions 1 and 3 have an important technical difference. It is often the case that

two segments of code are code clones if they are detected by a code clone detector. Defi-

nition 1 defines a code clone using an unspecified measure of similarity but maintains the

requirement of both semantic and representational similarity. On the other hand, Defini-

tion 3 does not require both semantic and representational similarity, but instead imposes

a specific measure of similarity that depends on the particular detection technique em-

ployed. Ideally, code clone detection techniques would use criteria that encompass both

forms of similarity. However, as stated above, this area of research is still developing. Code

clone detection techniques try to approximate a measure of similarity through a variety of

textual or graph-based methods that primarily measure representational similarity. This

difference in definitions leads to both false positives — the incorrect identification of seg-

ments of code as code clones — and false negatives — the omission of code clones from the

set of reported code clones. Because these techniques do not identify code clones based on

a generally accepted definition of a code clone, they only present candidate code clones.

The verification of the correctness of each set of similar segments of code is left to the

investigator.

Finally, we must define what it means to create a code clone.

Definition 4 Code cloning is the intentional or unintentional replication of the solution

to a recurring problem in the form of a code clone.

Code cloning is not restricted to the canonical example of copy-and-pasting code to reuse

a pre-existing implementation of a solution. Other ways code clones can arise might be

implementing solutions based on common examples, using a common API, or even using a

mental conception of a solution formed by solving a similar problem in the past [15]. This

notion of allowing both intentional and unintentional actions to form code clones allows

us to study a group of artifacts that are likely to have common maintenance concerns

regardless of whether or not the developers are aware of the artifacts.
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1.4 Examples of Cloning

To motivate our study, we now present several examples of what we consider to be be-

nign code clones. When a portion of source code within a software system is required to

support several deployment environments, such as operating systems or hardware devices,

the system architect often has two basic architectural choices: maintain a single version

that can accommodate all possible environments, or find a common interface with the rest

of the software system and fork several versions of the deployment-specific code. When

the latter approach is taken, as is often the case for many long-lived successful systems,

behaviour of the individual deployment-specific code bases will be similar to each other

at a high level; however, complex variations are often also necessary. In other words, the

interaction between the cloned code and the rest of the software system will be similar

but the interaction with the external environment will be different. Completely separating

these internal and external interactions can often result in complex, difficult to maintain

code. Alternatively, the system designer may “fork” existing code by first duplicating it

and then specializing it for the particular environment. If these environments evolve sepa-

rately, changes to the cloned code are less likely to affect the operation of the original code.

In this way the testing and maintenance risks associated with continual development of

the independent interfaces is decoupled. If these code clones are refactored, changes made

to support the evolution of one interface may affect the compatibility with the other inter-

faces, coupling the testing and maintenance risks. This pattern of code cloning is common

when supporting multiple operating systems or external software entities such as database

management systems. In these cases the interfaces are expected to evolve independently

as well as impose unique requirements on the communication. Examples of this are found

throughout the Apache httpd web server [54] where, for example, concepts such as process

synchronization require operating system dependent components such as process or thread

creation, semaphores, etc.

Another example of benign code cloning is cloning to avoid complex abstractions. Often

complex abstractions are required to consolidate the variability in two similar solutions.

In these cases, code is cloned and parameters are changed and/or statements are added or

removed. When the added or removed statements are distributed throughout the cloned

code, the control flow of a refactored solution can become increasingly complicated. Lan-
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guage or paradigm limitations may be a contributing factor to this complex abstraction,

especially in the cases where polymorphism cannot be used.

There are also cases where code is copied and then modified to closely tie an imple-

mented solution to a complex concept such as mathematical formulae. A common form

of code cloning found in Gnumeric, a spreadsheet application, is templating. In this case,

the only changes made are to the identifiers for variables and functions, while the variable

and parameter types are left unchanged. While the code clone in many cases can be easily

removed using an obvious abstraction, such as function pointers, the developers choose

to duplicate the code in order to achieve traceability of the code to the external concept.

We consider this to be a benign form of code cloning because the resulting code is more

comprehensible and maintainable. It is a principled use of code cloning to achieve a clearer

and more maintainable design.

1.5 Thesis Contributions

This thesis introduces the notion of cataloguing patterns of code cloning in a similar fashion

to the cataloguing of design patterns [28] or anti-patterns [17]. There are several benefits

that can be gained from this characterization of code cloning. First, it provides a flexible

framework on top of which we can document our knowledge about how and why code

clones occur in software. This documentation crystallizes a vocabulary that researchers

and practitioners can use to communicate about cloning.

This vocabulary partially addresses the problem of forming a generally accepted def-

inition of code clones. As has been previously noted by Walenstein [93] and the author

[48], there is no general agreement within the research community of what exactly con-

stitutes a code clone. While the general idea of what constitutes a clone is simple and

non-controversial — i.e., a code clone is two similar segments of code — there is little

agreement on a concrete definition. Often factors such as the rationale behind creating the

similar code, future maintenance strategies, and a specific definition of similarity play a

role in an individual’s definition of what a code clone is.

Using a very general definition of a code clone, we construct patterns of code cloning

that encompass many of these varying interpretations of the general definition. By con-
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structing the patterns of different types of code clones, this nascent description framework

is expandable, allowing the accommodation of new patterns of code cloning, resulting in a

growing vocabulary that can be used to discuss code clones in a clear and objective manner

[53, 55].

This documentation of code cloning patterns is a first step towards formally defining

these patterns to aid in automated detection and classification. These classifications can

then be used to define metrics concerning code quality and maintenance effort associated

with code clones, enabling developers to make informed decisions about how code clone

maintenance should be carried out, including whether a particular code clone is still useful

or should be refactored. Automatic classifications may also provide us with better ways

to measure code cloning in software systems and better ways to gauge the severity of the

problem in general.

Another contribution of this thesis is the insight it provides into how and why devel-

opers create code clones rather than forming higher level abstractions. These insights will

have applications in the clone detection and analysis research community. A better un-

derstanding of the types of code clones that exist in source code will help focus work on

improving clone detection methodologies. For example, we may be able to provide insight

into the types of changes that are made when forming different types of code clones. Un-

derstanding common ways that developers use code clones in software systems will also

aid in developing tools and methods to better manage code clones as they are created. If

we can understand when it is deemed necessary to create code clones, we may be able to

provide insights into improved languages, development environments, and API design.

Throughout the investigation of cloning in software we gained insights into the problem

of analyzing code clones in software [31, 50, 49, 51, 52, 53, 54, 55]. These insights led to a

high level description of the requirements of an effective clone analysis environment and the

development of a prototype [52, 54]. In this work, an additional categorization of cloning

is introduced. This categorization is a taxonomy of code clones in software systems that

takes into account the location of the code clones within the software architecture, the

type of code the code clones reside in, and the similarity of the regions the code clones

reside in. This work is novel and has been an important step toward fully understanding

the problems involved with the management of code clones in software systems. Our clone
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navigation tool, the Clone Interpretation and Classification System (CLICS), incorporates

the taxonomy as a way of displaying code clones. The taxonomy also provides a method

of classification and filtering of code clones.

1.6 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the terminology,

background, related work, and our own innovations in the topic of clone detection and

analysis. Chapter 3 provides an overview of the motivating research questions and the

tools and methodologies that were used to carry out the studies for this thesis. Chapter 4

describes a set of code cloning patterns discovered through in-depth investigations of code

cloning in software. Chapter 5 presents a case study evaluating code cloning in software

and the use of the patterns described in Chapter 4. Chapter 6 discusses the answers to the

three questions of this thesis and describes a possible application of code cloning patterns

in software maintenance. Chapter 7 summarizes the contributions of this work.



Chapter 2

An Overview of Clone Detection and

Analysis

2.1 Introduction

Existing literature on the topic of code cloning gives us little understanding of how and

why code cloning is used as part of software development. Code cloning research has, until

recently, focused primarily on detection and removal. While those works are important

they may not help developers make day-to-day decisions on how to write better, more

maintainable software. The focus of this dissertation, and the works leading up to it, is

to analyze and document code clones in real software to further our understanding of how

and why code cloning is used as a software development practice. To identify and motivate

the questions of this dissertation, this chapter outlines code clone detection techniques and

studies of code cloning in software, including our own, leading to the results presented in

Chapter 4 and Chapter 5.

Before proceeding further, however, we must distinguish between code clone detection

and code clone analysis. As defined in Chapter 1, code clone detection is the process of

locating segments of similar source code, according to a precise definition of similarity,

within a software system. Code clone analysis uses those results to examine code cloning

in a software system. The goal of clone analysis is understanding the use of code cloning,

either macroscopically, studying code cloning throughout the whole software system, or

16
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microscopically, studying individual code clones. Until recently, most research has focused

on the former rather than the latter. The work described in this thesis focuses on clone

analysis rather than detection. A survey of clone detection techniques is provided in Section

2.4, and a survey of clone analysis techniques is provided in Section 2.6.

The rest of this chapter is organized as follows. Section 2.2 discusses current views on

code cloning as a development practice and defines the terminology that has been used to

describe this phenomenon. Section 2.3 provides an overview of the process of detecting

and analyzing code clones in a software system. Section 2.4 describes, at a high level, the

various techniques available to detect code clones and the characteristics of the code clones

they can find. Section 2.5 describes the various kinds of postprocessing that have been

used to filter and analyze the candidate code clone sets. Section 2.6 describes the tools

and approaches that have been used to analyze code cloning in software systems. Section

2.7 summarizes the current methods proposed to manage clones in software. Section 2.8

describes the work that has been done to further understand code cloning in software

systems. Section 2.9 discusses the open problems that remain to be analyzed in the field

of code cloning in software systems.

2.2 Code Cloning — Use and Abuse

The literature on the topic has described many situations that can lead to the introduction

of code clones within a software system [7, 15, 44, 47, 61, 74]. Many of these can be

considered harmful uses of code cloning. For example, developers may copy-and-paste

code because the short term cost of forming the proper abstractions may outweigh the cost

of copying code. Developers may also clone code when they do not fully understand the

problem or the solution, but are aware of code that can provide some or all of the required

functionality. These examples attribute code cloning to programmer laziness. Code clones

can also be introduced as a side effect of programmers’ memories; programmers may repeat

a common solution, unconsciously introducing code clones into the software system [15].

Code clones can also be introduced with good engineering intentions. In particular,

there are four categories of motivations that can be readily identified: improving code un-

derstandability, improving code evolvability, technology limitations, and external business
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forces. Code clones created for improved code understandability will be created to enhance

readability, conceptual cohesion/coupling, and traceability. Code cloning can, in some sit-

uations, be used to keep software architectures clean and understandable. Code clones can

also be used to keep unreadable, complicated abstractions from entering the system.

Improving code evolvability concerns the difficulty of introducing changes to existing

code to address evolving requirements. Code that is abstracted to address two or more

similar but separately evolving requirements may be difficult to modify. For example, a

virtualization layer that is used to interact with several similar operating systems will need

to maintain compatibility with each operating system as it evolves. As these operating

systems evolve, the compatibility requirements may diverge or even conflict. Changes

made to address one set of requirements may affect the code’s fitness with the other sets

of requirements. This kind of evolutionary force can lead to the forking clones described

in Chapter 4. Clones of this type may be used for change decoupling to limit the scope of

the impact of changes.

Technology limitations affecting developers’ ability to reuse code through encapsulation

or modularization often appear in the form of limited or cumbersome tools for abstraction,

in some cases caused by lack of expressiveness of a programming language. In these cases,

limitations of a given programming language may lead to the use of “boiler-plated” solu-

tions for particular problems [93], or even source code generation. This kind of technique

is common in COBOL development, for example, and can lead to templating clones, de-

scribed in Chapter 4. In these cases, the use of code cloning is typically well understood

by the developers, and the aim is to prevent errors by re-using trusted solutions in new

contexts.

External business forces may necessitate the use of code cloning. Cordy notes that

financial institutions consider code quality the most important concern when maintaining

software because the cost of errors in software can dwarf software maintenance costs [22].

Fixing or modifying an abstraction can introduce risks of breaking existing code and re-

quires that any dependent code, code calling directly and indirectly the changed code, be

extensively tested, a process that is both costly and time consuming. Code cloning is a

common method of risk minimization used by financial institutions that allows code to be

maintained and modified separately, containing the risk of introducing errors to a single
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system or module. Another external business force is time-to-market and opportunity cost.

In some cases the long term cost of maintaining source code may be greatly outweighed

by the short term opportunity cost of a lengthy time-to-market, especially in emerging

markets where technology adopters may be difficult to attract once they have invested in a

competing implementation. Code cloning is a practice that can be used to rapidly develop

similar yet distinct sets of features. This motivation is one possible factor in the relatively

high levels of code cloning found in web-based applications [78, 79].

Several software maintenance problems have been associated with the use of code

cloning. In the long term, clones can unintentionally diverge if not carefully managed [72].

Code cloning can also lead to an unnecessary increase in code size [7, 44]. Code cloning

code can lead to unused, or “dead”, code in the system when the desired solution does not

require all of the functionality provided by the clone (for example, not all branches of the

original code may be used in the code clone’s new context). Left unchecked, this unused

code can cause problems with code comprehensibility, readability, and maintainability over

the life time of the software system [44]. These long-term maintenance problems require

tools and processes to track and manage cloned software entities over the evolution of a

software system.

There are other maintenance risks associated with the use of code cloning. If a bug is

identified within code that has been cloned, then care must be taken to ensure that the bug

is fixed in every clone instance. This may be both time consuming and risky: in addition

to the extra effort required to fix the same bug several times, the location of the clones

may not have been recorded explicitly, and differing contexts may make it hard to simply

copy-and-paste the fix.

When code cloning is performed without a solid understanding of the original code and

its context, bugs can be introduced. For example, variables may be shared and modified

unknowingly [44]. Program comprehensibility can be negatively effected by the need to

understand the differences between the code clones.

However, despite these known problems, we have found that developers can and do use

code cloning as a design tool when they judge that the benefits outweigh the risks; that is,

these developers believe that the use of code cloning can improve the design of the code. For

example, aggressive refactoring can sometimes create abstractions that are complex, overly
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subtle, and non-intuitive; in this case, modified code clones may be easier to understand

and maintain than a solution that employs abstraction, as the study performed by Toomim

et al. suggests [87].

When clones are used to minimize exposure to risk or support alternative external

requirements, the scope of the impact of a change is reduced, improving modifiability

and testability attributes. Rajapakse et al. found that reducing code clones in a web

application not only had negative effects on the modifiability of an application — after

significantly reducing the size of the source code a single change required testing of a vastly

larger portion of the system — and also reported that avoiding code cloning during initial

development could contribute to a significant overhead [79]. Code cloning can, in specific

cases, enable faster time-to-market which may have significant market share benefits. These

characteristics of clones are also useful in exploratory development, where the reuse of

behaviour can be used to fast track development of a new feature but the eventual path of

evolution is too uncertain to be able to anticipate the appropriate abstractions.

Evaluating the likely positive and negative effects of code cloning is a continuous balanc-

ing act. Code clones that improve comprehensibility (and thereby improve maintainability)

may also increase the amount of effort required to extend or change code (thereby decreas-

ing maintainability). Similar to many development decisions, developers must assess the

overall cost of code cloning and decide on an individual basis the overall expected gain

versus cost. The patterns detailed in Section 4 are intended to provide some guidance,

and to enable developers to make decisions based on qualities of the problem domain, the

development and deployment environments, and the code itself.

2.3 Clone Detection and Analysis

Code clone detection and analysis can be modelled as a three step process, as shown in

Figure 2.1: generating a list of candidate clones, post-processing the results, and analyz-

ing the clones. Clone detection has been extensively studied and is described in detail in

Section 2.4. A high level view of the clone detection process is depicted in the box “Clone

Detection” in Figure 2.1. The first step is to transform the source code into a represen-

tation that will be processed by the code clone detection algorithm. The transformation
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Figure 2.1: Process of clone detection and analysis
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is intentionally lossy: details that are thought to be unimportant or a hindrance to clone

detection are removed or ignored. For example, detection methods that use token streams

typically keep only operators, non-white space separators, identifiers, and keywords. De-

tection of the clones within the transformed code is then performed using a variety of data

mining techniques. The specific method to do this is dependent of the source code repre-

sentation (further discussion can be found in Section 2.4). After detection is performed,

the results are transformed to directly reference the original source code.

After candidate code clones are identified, the results are post-processed to remove

clones that are not of interest, and the remaining code clones are further analyzed and

categorized. Filtering may be done for a variety of reasons including removal of false pos-

itives, trivial code clones, or code clones that are not similar within a specified threshold.

Categorization can be done using constraints [8, 51, 62, 74] and pattern-matching [13].

These steps are shown as a loop in Figure 2.1 because categorization can feed back into

filtering. For example, different regions of code tend to have different types of false posi-

tives. We have found in our case studies [50, 51, 52, 54] that categorization is a useful tool

for applying clone-type specific filters because these filters can be more strict when applied

to specific types of source code.

The final step of the process is to analyze the remaining candidate code clones. Analysis

can be comprised of automatic high-level metrics gathering, semi-automatic identification

of interesting clones, and manual analysis of cloning within the software system. The

process is shown in the box “Clone Analysis” in Figure 2.1. The clone analysis shown

in the figure more closely reflects manual analysis as we describe it in [52, 54]. In-depth

analysis of code cloning in a software system is usually iterative in nature. Information

about the overall cloning in the system, such as frequency of clone types and location of

clones, contributes to the context of the clones being analyzed. This context provides a

guide for the investigator to study the details of cloning within the subsystems of the source

code. It enables the investigator to make informed decisions about filtering the view of

the clones in the analysis. As the investigator continues the analysis, more information is

added to the cloning context contributing to an overall understanding of code cloning in

the software system. Details on the various approaches to clone analysis are provided in

Section 2.6.
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2.4 Code Clone Detection

This section summarizes the current literature on clone detection methodologies in detail.

Clone detection has been an active topic of research since the early 1980s. In the early

1980s, this research tried to find ways to detect plagiarism in students’ assignments [35,

37, 40, 73]. In this application, similarity detection methodologies used techniques such as

comparing metrics of the overall program (common examples are use of operators, variable

access, and order of procedure calls) [35, 37] or comparing the static call graphs of the two

programs [40].

In the early 1990s, focus shifted toward finding code clones within software systems as

a software engineering problem. A variety of new techniques are now available, ranging

from language independent approaches such as line-by-line comparisons [26, 43, 44] to more

language dependent approaches such as program metrics comparison [60, 74]. These code

clone detection methods can be compared based on their source representation resulting

from the transformation shown in Figure 2.1. These representations include abstract syntax

trees (ASTs) [15, 61, 74], program dependence graphs (PDGs) [59, 64], normalized lines

of code [26, 43, 44], and parameterized token streams [7, 6, 47]. All of these approaches

to clone detection primarily use representational similarity as a basis for comparison. The

key difference between these techniques is the level of textual and syntactic analysis that

is used to detect the clones. ASTs and PDGs use deeper syntactic analysis of the source

code. Normalized lines of code use only textual analysis. Parameterized token streams use

mostly textual analysis with some syntactic analysis. The following subsections describes

these code clone detection categories in more detail.

Throughout this section two key terms from the field of information retrieval will be

used when discussing the characteristics of the candidate code clones returned by a clone

detector: precision and recall. Precision refers to the quality of the candidates returned

by the detection method: high precision indicates the candidate code clones are mostly

correctly identified as code clones (i.e., there are few false positives) and low precision

indicates the candidate code clones contain many candidates that are not actual code

clones (i.e., there are many false positives). Recall refers to the overall percentage of

artifacts that exist in the source code that have been detected by the clone detector: high

recall indicates most of the code clones in the source code have been found (i.e., there
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are few false negatives), low recall indicates most of the code clones in the source code

have not been found (i.e., there are many false negatives). When comparing code clone

detection techniques, precision and recall are often referenced as measures of the accuracy

and completeness of the candidate code clones. It should be noted that classifying a

candidate code clone as being correctly or incorrectly identified (as a true or false positive)

is a highly subjective task, making accurate measures of precision and recall difficult to

obtain. Recall is particularly hard to estimate as it requires that we already know the

complete set of code clones in a software system. In Section 2.4.5 we discuss the studies

that have measured and compared the precision and recall of code clone detectors.

2.4.1 Normalized Lines of Code

The goal of normalizing source code is to remove trivial or irrelevant elements of source code

to enable direct comparison of the relevant portions of source lines of code. Formatting,

typically in the form of indentation and other white space, is used to make the code

more readable but has no formal semantic value. Comments serve a similar purpose.

Formatting code to reflect nesting depth or developer preference is often done when copying

source code but reformatted code clones cannot be found when directly comparing lines of

code. Normalizing the source code by removing formatting and commenting ensures that

syntactically identical lines of code will have the same textual representation. As described

in this section, there are several methods that can be used to find clones using this simple

data structure.

Methods

Ducasse et al. describe a clone detection algorithm with two steps [26]. The first step is

to transform the code. To maintain maximum language independence, only a very simple

transformation is made: only white space and comments are removed. While removing

comments is language dependent, the process is usually trivial and poses no serious chal-

lenges. For example:

if (CAR_IS_FAST && (brakes == NULL)) you_are_toast = 1;

transforms to:
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if(CAR_IS_FAST&&(brakes==NULL))you_are_toast=1;

Further normalization was considered by Ducasse et al. [25]. Constants, identifiers,

and function names can also be normalized. As one might expect, as the amount of

normalization increases, the precision decreases. In their study, Ducasse et al. found that

these forms of normalization dropped precision from 94% to 70% in one case study and

from 42% to 11.5% in another. On the other hand, this normalization improved recall by

as much as 20% [25].

The next step compares each non-empty line of the source code to every other non-

empty line. The comparison value is stored in a matrix where the coordinates are the line

position of each compared line. The complexity of such an algorithm with an input of n

lines is Ω(n2 ). To improve the performance of their algorithm, Ducasse et al. hash the

strings into B buckets and compared within the buckets, reducing the runtime by a factor

of B.

An alternative to this matching approach is to generate a sequence of hash values for

the program by hashing each line of code. Using this sequence of hashes, a suffix tree can

be built. The advantage of this approach over that described by Ducasse et al. is that

suffix trees can be built in O(n) time, and all maximal matches, matches that would break

if they were extended one character in either direction, can be found in O(n + z) where n

is the number of lines and z is the number matching pairs of sequences of lines.

As a final step in the approach described by Ducasse et al. [26], pattern matching is

used to post-process the results to find sequences of matches with breaks. This can happen

when a line of code is changed after a code clone is created. The pattern matcher looks for

diagonal lines in the matrix with a predefined threshold of percentage of breaks in the line.

Wettel et al. [94] details a simple pattern matcher for chaining together smaller matches.

Another post processing step is to remove accidental clones that arise from programming

idioms or recurring program structures, such as the break statement.

Johnson describes an approach to finding matching substrings within source using sub-

string fingerprints [43]. A nearly identical approach was later described by Schleimer et

al. [83] in their description of the MOSS system for source code plagiarism detection. The

process starts by normalizing the source code and then generating fingerprints for each

substring. An ideal fingerprint is a function that maps data to a set of fingerprints such
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that f(x) = f(y) only if x = y and f(x) "= f(y) only if x "= y. Using integer values as

fingerprints reduces the space and time requirements of comparing lines of code in large

software systems. In this approach the fingerprint of all possible substrings of size l are

generated with a maximum of M characters and a minimum of m characters. Substrings

are only chosen at the start and end of lines.

Johnson uses the fingerprinting algorithm described by Karp and Rabin [84], where

each substring is treated as numeral N encoded in some base r (r is 256 in ASCII text).

The fingerprint is then calculated as N mod p and can be encoded in #log2p$ bits. The

constant p must be decided at the start of the execution. Discussion on choosing p can be

found in detail in [43].

To reduce the number of fingerprints to be compared at a later stage, some fingerprints

are culled during their computation. For any given segment of size c characters, a substring

is chosen to represent it. In Johnson’s work the substring that covers the segment and has

the largest fingerprint is chosen. This culling will lose small matches but matches of size

2∗M − c are guaranteed to contain at least one matching fingerprint. Setting c to 1 causes

the maximum amount of culling while setting it to M causes no culling to be done.

After all fingerprints are computed, they are sorted and grouped. A group of matches

is a set of substrings with the same fingerprint. To reduce the size of the results matching

groups can be combined. A set of groups that occur consecutively or overlap can be joined

as one group.

Another variation using normalized lines of code is the island grammar [77] approach

introduced by Cordy et al. [23]. The method begins by extracting interesting syntactic

structures from the source code, called islands. Non-interesting code is consider water. In

their validation Cordy et al. examined tables and forms in HTML source code for interesting

syntactic structures [23]. In imperative programming languages such as C or Java islands

could be procedures. Extracted islands are pretty printed and stored in text files. The

final detection process is line-based, so the pretty printing aims to separate meaningful

programming structures on separate lines. In many ways this is analogous to creating a

token stream except that here more than one token could be considered as a single unit.

Finally, after pretty printing, the islands are compared using the Unix program diff. Islands

are considered to be clones if they overlap by a certain threshold (this threshold may vary
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according to the specific project or programming language [23]). The number of potential

comparisons is quadratic but the problem space can be greatly reduced by intelligently

selecting the files to compare. For example, islands must be of similar size, within 50%,

to be likely matches. As another optimization, once a pair of islands are considered to

be clones, one of the islands is used as an exemplar and the other is not used for further

comparison. These two optimizations have the potential to reduce the recall of the method

but are necessary to make the approach feasible.

Discussion

Methods using normalized lines of code have the key advantage of being largely language

independent and lightweight. This flexibility makes them easy to apply in large, multi-

language software systems. However, due to the simplicity of the source code transforma-

tions only exact or near-exact code clones are likely to be found, while modifications to

identifiers or literals can cause matches to be missed. Splitting or merging lines of code

also poses a particular problem. Our own investigations have shown that a large number

of code clones do not fit into the simple formula of similarity these methods are targeted

toward.

While the approach of Cordy et al. is not strictly normalized lines of code, its simple

transformation is essentially normalizing code and removing newlines characters. This

extra transformation enables their method to overcome missed clones caused by changes

on multiple lines. However, their method of comparison is close to quadratic, both in

the number of islands to compare and the method of comparing the islands. The second

optimization assumes that the cloning relationship is transitive, but in the case of inserted

or deleted lines this is not the case. It is conceivable that an exemplar A may match an

island B but not match island C which B could match based on their definition of a match.

2.4.2 Parameterized String Matching

During the reformatting of code, it is common that lines will be merged and split or

variables will be renamed. For example, a developer using the C programming language

may prefer to have an opening brace alone on a new line or on the same line as the statement
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the block will be dependent on. When this type of reformatting operation is performed

on a code clone, line-based detection methods will not detect the match. Parameterized

string matching methods use token streams as their underlying data structure making them

insensitive to reformatting. By replacing identifiers and literals with placeholders, methods

using this data structure are largely insensitive to changes in variable names and literals.

Methods

Parameterized string matching was first introduced by Baker [6] and further improved by

Kamiya et al. [47]. In the course of our research we have primarily used the tool CCFinder,

developed by Kamiya et al. [47] and have now developed our own parameterized string

matching tool.

The tool CCFinder, which is in wide use within the cloning research community, begins

by performing a lexical analysis of the source code, resulting in the creation of a list of

tokens based on the syntax of the given programming language. The tokens of all the

files are concatenated into a single array of tokens. As part of the code transformation,

all white space and comments are ignored. Next, several language specific transformation

rules are applied [47]. Then type, variable, and constant identifiers are replaced by a special

identifier (such as $P [47] or a unique ID for each identifier type [70]).

Once the source code has been transformed into this abstract token stream, an exact

match algorithm is performed to find maximal matching strings within the transformed

code. This is done by constructing a suffix tree, which has O(n) complexity, and locating

matching substrings within the tree, as proposed by Baker [7, 6].

After the exact matches have been found, parameter matching is performed to filter the

results [47]. That is, starting from the beginning of a pair of exactly matched transformed

strings, CCFinder begins one-to-one matching of the identifiers. As the identifiers are

mapped, if a conflict is found but a sufficiently large number of tokens have been matched

the current match up to this point is reported, and parameter matching begins again.

CP-Miner, created by Li et al. [70] uses frequent sub-sequence mining techniques from

data mining to find code clones. The process begins by scanning the source code and

generating a generalized token stream where all identifiers and constants of the same type

are given the same placeholder. Then, each program statement is hashed and the pro-
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gram is turned into a sequence of hash values. A sequence database is created using the

hashes. As a performance optimization, the sequences that are recorded are limited to

basic programming blocks rather than entire files. Using the CloSpan algorithm, common

sub-sequences are mined. Because these sub-sequences can have arbitrarily large gaps that

would be meaningless in the context of clone detection Li et al. modify CloSpan to mine

only sequences with a user-specified maximum gapping distance.

After mining the common sub-sequences, the candidate clones are filtered in a similar

way to the one-to-one mapping used by CCFinder. In the case of CP-Miner, however, the

one-to-one mapping does not need to be exact. The user can specify a threshold that allows

for a certain percentage of mismatches. Overlapping and small clones are also filtered from

the results. After this filtering is performed, the remaining clones are grouped or joined

to their neighbouring clones if possible. The newly formed clones must pass the filtering

requirements of the smaller clones otherwise the smaller clones are kept ungrouped. The

major advantage of this method over suffix tree methods is that it easily overcomes insertion

and deletion of statements.

Discussion

Tokenization and parameterization is considerably less computationally intensive than com-

plete parsing and computing the AST of a software system. Clone detection based on pa-

rameterized strings uses only structural information, making it flexible enough to handle

small changes introduced in the code clones. Sub-sequence matching is more flexible in

handling line insertions and deletions, something substring matching cannot easily do.

Semantic analysis can be approximated when identifiers are mapped. In many cases, if

a sequence of identifiers can be mapped one-to-one, a similar operation is being performed

in each code segment. However, many false positives slip though even this filter. For

example,

int x = z; x = pow(x, 4) + x;

and

long factor = INIT_VAL; factor = recursive_call(y, depth) + y;
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both transform to

$P $P = $P; $P = $P($P, $P) + $P;

and have a one-to-one mapping. Therefore the above code snippets match according to the

definition of parametric matching but it is very likely these segments are not code clones.

Our own experience has shown that false positives occur in areas of source code comprised

of a simple structure, such as initialization lists and switch statements. Many of these

false positives can be filtered using strict filters on clones found in specific regions of code

[52, 54]. To avoid the need for this type of filter, our own implementation of parameterized

string matching does not parameterize source code that resides outside of procedure bodies.

This source code is most often comprised of data type definitions, procedure declarations,

basic macro definitions, and other simple, repetitive structures that lead to false positives.

2.4.3 Abstract Syntax Tree Methods

An abstract syntax tree (AST) is an abstract representation of the program source com-

monly used as an intermediate data structure in a compiler and is a common structure

used in program analysis. It represents the abstract syntax of the language and includes

only elements of the language that affect the program semantics. For example, the paren-

theses that determine the order of operations are removed as this order is encoded into the

structure of the tree. This representation is insensitive to formatting and less sensitive to

coding styles such as variable naming, particularly when the structure of the tree is the

focus of the detection process.

Methods

This group of clone detection techniques can be divided into two sub-groups: sub-tree hash

comparison and sub-tree node comparison. Sub-tree hashing first appeared as program-

ming block metrics comparison. Metrics-based clone detection methods use sets of metrics

to generate “fingerprints” for each code block or function in the source code. These met-

rics are often gathered using both the program source, as in the case of number of lines of

comments, and from an AST, as in the case of cyclomatic complexity. Metrics-based clone
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Scale Name Layout Expression Control Flow

ExactCopy = = = =

DistinctName "= = = =

SimilarLayout X ∼ = =

DistinctLayout X "= = =

SimilarExpression X X ∼ =

DistinctExpression X X "= =

SimilarControlFlow X X X ∼

DistinctControlFlow X X X "=

Table 2.1: Mayrand et al. categorization

detection was introduced by Mayrand et al. [74] and Kontogiannis et al. [61], and further

studies have used function metrics as a basis of clone detection [3, 4, 8, 10, 9, 60, 88].

In general, metrics-based approaches begin with gathering metrics for blocks of code.

The granularity for the blocks of code is either statements residing between opening and

closing separators, or whole functions. The choice of metrics that are used may vary, but

generally metrics relating to layout, control flow, interface, and expressions are used so

as to get better coverage of orthogonal properties of the code. These metrics become the

fingerprint of the block, and the basis for comparison.

Mayrand et al. [74] uses these metrics to classify program fragments as code clones on

an ordinal scale ranging from Exact Copy to DistinctControlFlow, shown in Table 2.1. They

define four orthogonal categories of comparison and describe metrics to be used in each

category: the name of the function, the layout, the expressions, and the control flow. Each

metric of comparison has a threshold delta associated with it that specifies the maximum

difference for two metric values to be considered similar. Metric values that exceed such a

delta are considered distinct. These deltas are used in the ranking of function similarity,

as summarized in Table 2.1. In the table “=” signifies all metrics match for that point,

“∼” signifies at least one metric value pair is not equal but is similar, “ "=” signifies that at

least on metric value pair is distinct, and “X” signifies that this comparison point is not

considered for this clone type.
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Kontogiannis et al. describes an AST-based approach that uses a metrics matcher to

find a set of candidate clones and filters these results by measuring the similarity of the

code segments using a dynamic programming algorithm [61]. Their metrics matcher uses

two alternative approaches to grouping possible cloned blocks. The first uses the Euclidean

distance of the metrics of two code blocks. The second clusters all functions according to

each computed metric and iteratively builds clusters of cloned functions by taking the

intersections of each cluster. The clustering is done by grouping functions whose metrici

differ by less than di where di is a parameter specified by the user, similar to the approach

used by Mayrand et al. [74].

Once a set of candidate code blocks is selected using the metrics matching algorithm,

a similarity measure is computed using dynamic programming. The similarity measure

is computed by measuring the optimal alignment of the two code fragments and comput-

ing the number of insertions and deletions of statements required to make one fragment

the same as the other. This is very similar to computing the Edit Distance of a string

[69]. However, the elements of the string are statements rather than characters and the

comparison is done on a feature vector computed using the AST. Three possible feature

vectors were suggested: definitions and uses of variables and literals, definitions and uses of

data structures, and metrics used in the metrics matching phase. The method was further

refined by Balazinska et al. to use tokens rather than statements [8].

Jiang et al. have recently introduced a parse-tree based method similar to the AST-

based methods previously described [42]. A parse tree represents the rules used to parse a

segment of code. As opposed to an AST whose nodes are the meaningful syntactic units

found in the source code, a parse tree’s internal nodes represent the non-terminal rules

of the parsing grammar and the terminal (leaf) nodes represent the syntactic unit. As

a consequence, a parse tree usually includes all tokens found in the source. Parse trees

may be used as an intermediate step to producing an AST, and generally have a lower

computational cost to produce. For each sub-tree, a characteristic vector v = 〈v1, v2, ..., vn〉

of integers is computed. Each element vi is the count of the number of the ith atomic tree

pattern found in the sub-tree. Jiang et al. describe a q-level atomic tree pattern as a

complete labelled binary tree with labels from set £ (there are |£|2
|£|−1

unique trees).

Jiang et al. use 1-level atomic tree patterns where the trees are node types considered



Chapter 2: An Overview of Clone Detection and Analysis 33

relevant to code clone detection. Relevant nodes are those that have semantic value or, in

other words, nodes that appear in an AST. Irrelevant nodes are nodes such as parentheses

and braces. Vectors are not generated for all possible sub-trees, only for those sub-tree

types considered relevant. This can be configured by the user.

Once vectors are generated for the sub-trees, merged sub-tree vectors are formed. This

is done to find larger clones that may cover more than one sub-tree. Sibling sub-tree forests

are serialized and a moving window of size k nodes creates a characteristic vector for each

set of possible merged sub-trees by summing their characteristic vectors.

To detect clones, the vectors are clustered according to their Euclidean distance. To

avoid the quadratic problem of pairwise comparison of vectors, the problem can be formu-

lated as a nearest neighbour problem. Using Locality Sensitive Hashing (LSH) [42] clone

clusters can be found efficiently. Given (p1, p2, r, c), LSH generates a family of hashes for

the vectors such that if the distance between a pair of vectors v1 and v2 is less than r, the

hash of v1 will equal the hash of v2 with a probability greater than p1. If their distance is

greater than cr, the hash will be equal with a probability less than p2. Using LSH hash

tables, all clone clusters can be found in in O(dnρ+1 log n) where d is the dimension of

the vectors (the number of q-level atomic tree patterns), n is the number of vectors, and

ρ = logp2
p1 < 1

c
. To allow for larger difference between larger clones, vectors are placed in

overlapping groups according to size. LSH is then applied on each group with appropriate

constraints according to size and the final results are merged.

The approach of Jiang et al. bears some similarity to that of Kontogiannis et al..

In both approaches feature vectors are used to compare sub-trees. The original approach

suggested by Kontogiannis et al. allows for a variety of feature vectors to be used. However,

the approach by Jiang et al. introduces the simple metric of the number q-level atomic tree

patterns and an efficient approach to clustering according to Euclidean distance.

Clone detection using sub–tree matching of a program’s AST was first introduced by

Baxter et al. [15]. This method uses well proven compiler technology to build the AST

and several simple algorithms for clone detection. Their tool produces macros that can be

used to remove the clones without affecting the operation of the system.

The first step to the process finds sub-trees in the AST that are similar. Baxter describes

similarity as a function of the nodes that are shared in the sub-trees and those that are
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different, as shown in Equation 2.1. S is the number of nodes common between the two

sub-trees, L and R are the number of nodes that differ between sub-trees.

Similarity = 2 ∗ S/(2 ∗ S + L + R) (2.1)

Because comparing every sub-tree to every other sub-tree is infeasible, Baxter reduces the

number of comparisons by first hashing each sub-tree into a bucket and then comparing

only members of the buckets. Baxter suggests that many clones come from a copy, paste,

and edit process where changes tend to be small, therefore only affecting small sub-trees

of the full AST. A hash function that does not consider small sub-trees of the sub-tree

being hashed is therefore required to avoid hashing near miss clones into different buckets;

in this case, the leaves of the tree were ignored [15].

Special attention must be given to certain code sequences, such as declarations or

“straight line code” (i.e., a sequence of statements at the same logical nesting level).

Straight-line code tends to produce left or right leaning sub-trees with a sequencing op-

erator as the root [15]. Sequences are taken care of by searching the AST for sequence

nodes and storing them in a list with the hash values of their sub-trees. The sequences are

put into buckets according to their hash and then compared using the similarity function

described in Equation 2.1. This process is different from the general sub–tree comparison

in that the general sub–tree comparison may find each element of a sequence as a separate

clone while the sequence algorithm will find them as a single clone.

The final phase in detecting clones is to look for more general near miss clones. This

is done by comparing the parent trees in each pair of cloned sub-trees using the similarity

function. This helps detect clones where more changes have been made. During this phase,

clones in sub-trees of the larger code clones are removed from the result set, removing non-

maximally matching clones.

Another approach to directly comparing the sub-trees of an AST using suffix trees was

recently introduced by Koschke et al. [62]. In this approach the AST is serialized using the

AST nodes and an attribute specifying the number of child sub-trees for each node. Sub-

trees are serialized in the order they appear in the actual source code, preventing spurious

false positives or false negatives. Ukkonen’s suffix tree algorithm [90] is then used to build
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a suffix tree of the serialized representation of the AST and using the suffix tree maximal

matches are found. These matches are then post-processed to contain only syntactic units:

clones that are not split across code blocks or statements. This approach is faster than

Baxter’s method. Matches using suffix trees can be found efficiently in O(n + z) where n

is the number of nodes in the input and z is the number of matches. This compares very

favourably to Baxter’s approach which has complexity of O(n2) for each bucket where n

is the number of sub-trees in the bucket, although in practice they have found the cost is

much closer to O(n) with optimization. The suffix tree approach also has the advantage

of being able to compare all possible sub-tree-pairings as it does not depend on a hashing

function to group sub-trees.

Discussion

Using abstract syntax trees as the core data structure has many advantages. The foremost

advantage is that the effect of programming style is largely reduced because of the high level

of abstraction. However, there are several key disadvantages. First, a properly constructed

AST may not include all of the program code, particularly when working with languages

that use preprocessor directives, a problem noted by Casazza et al. [4]. Secondly, ASTs are

time consuming to create. Koschke et al. assume that the AST is already generated when

comparing the running time of their approach to non-AST-based clone detection methods

[62]. Finally, this approach requires a language-dependent parser. This may pose serious

challenges when applying this technique to large legacy systems for which parsers may not

be easily available, or for systems composed of multiple languages [26].

The approach to clone detection described by Jiang et al. is perhaps more flexible than

full AST methods while still using only nodes that would appear in an AST [42]. Jiang et

al. found their approach handled files with syntax errors better than the tool created by

Baxter et al. [42].

2.4.4 Program Dependence Graphs

A program dependence graph (PDG) is an attributed, directed graph representation of

source code where vertices are individual statements and predicates, and edges represent
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control and data dependencies amongst the vertices [39]. A statement X is control depen-

dent on statement Y if Y causes X to be executed. A statement X is data dependent on Y

if Y defines or modifies data that X will use. Unlike the edges of an AST, the sequence of

statements found in the source code is not encoded in the graph, making this data struc-

ture more resilient to simple modifications of code clones such as statement reordering. In

fact, clones that are found using this approach may not be contiguous sets of statements.

Insertions and deletions of statements have a reduced impact on the clone detection process

as they may not affect both the control or data dependencies of other statements.

Methods

Clone detection methods based on a Program Dependence Graph (PDG) have been studied

by Komondoor [59] and Krinke [64]. Krinke [64] uses a modified dependence graph called

a Fine-Grained Program Dependence Graph that is similar to both the AST and the tra-

ditional PDG. The similarity to ASTs is found in the correspondences of the vertices that

appear in both. These graphs retain the key advantage of PDGs by only using control and

data dependencies as edges in the graphs.

In general, an algorithm for locating clones in software using PDGs attempts to find

isomorphic subgraphs of a pair of PDGs. Two graphs are isomorphic if they are structurally

similar irrespective of the vertex and edge labels. PDGs are structurally similar when their

edges map bijectively onto each other, and the attributes of the matching edges and vertices

are the same. This can be done by starting at every pair of matching nodes (nodes with

the same attributes) and growing the subgraph in a breadth-first manner. Rather than

starting a match with all nodes with matching attributes, a problem that is quadratic in

complexity, Krinke use a subset of these nodes [64]. This subset should be based on the

feature of the data and is therefore programming language specific. Krinke used predicate

vertices for his implementation to locate code fragments [64].

Subgraphs can be built in various ways. Krinke builds subgraphs inductively from two

matching nodes in a pair of PDGs summarized by the following algorithm:

1. Given a pair of vertices v and v’ in graphs G and G’.

2. Add to the subgraphs g and g’ the vertices v and v’.
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3. Let the edges leaving v and v’ be e and e’. Put e and e’ into equivalence classes ei

and e′i, where edges are equivalent when their attributes match and the attributes of

their end vertices match.

4. For each equivalence class ei and the corresponding class e′i add each edge to g and

g’.

5. For each set of end vertices vi and v′

i reached by the edge equivalence classes continue

this process recursively.

Komondoor et al. used a different algorithm for building subgraphs. Rather than mov-

ing forward through the edges, they used backward slices. First, all vertices in the PDGs

are put into equivalence classes based on the syntactic structure the represent. Then, for

each pair of vertices in an equivalence class, a pair of isomorphic subgraphs is produced.

This is done by backward slicing in lock step from the vertex pair. For each step, if a node

that has been reached has a matching node in the other graph, the node and the edge are

added to the slice. If a loop or if-then-else predicate is reached, a single forward slice is

made to add the matching control-dependent successors.

Discussion

With either algorithm, the clone detection is not sensitive to the re-ordering of statements

within a code clone, unlike AST-based or text based algorithms. However, because they

are performing subgraph comparisons, their complexity is quadratic making them slower

than the non-graph based approaches. Additionally, these techniques are highly language

dependent and suffer from the same parsing challenges that AST-based techniques face.

2.4.5 Comparisons of Detection Tools

There are several aspects to be considered when evaluating and comparing clone detection

methodologies, including applicability, accuracy and scalability. Applicability can be mea-

sured in two ways: the ease of applying a method to various software systems, and the

utility of the results it provides. Language dependence plays a major role in determining

the applicability. Legacy software systems or web applications can be comprised of several
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languages, making detection of clones using language-dependent approaches more costly.

Clone detection tools that return matches that are often trivial or uninteresting are also

less useful in industrial settings. Accuracy is often measured as the number of false pos-

itives the methodology is likely to report; other important metrics include precision and

recall, defined earlier in this chapter. Scalability measures how well the detection tech-

nique performs as the size of the input increases. Software systems can range in sizes from

tens of thousands of lines of code to several million. Depending on the size of the system,

accuracy and scale may become a tradeoff.

Rysselberghe et al. evaluated a representative technique for three of the four groups of

clone detection techniques described above [81]. Using metrics matching, parametric line

matching, parametric token matching, and simple line matching they evaluated portability,

accuracy, relevance and scalability of the methods. Portability and relevance contribute

to the evaluation of a method’s applicability. As expected, metrics matching was the least

portable, followed by parameterized token matching, parameterized line matching, and

then simple line matching.

In terms of accuracy, they found that both simple line matching and parametric to-

ken matching return few false positives. However, this result contradicts our own findings

[51, 52, 54] and those of Bellon et al. [16] where parameterized token matching was found

to return many false positives. Rysselberghe et al. report parametric line matching re-

turns few false positives. Metric matching returns slightly more false positives when using

functions as the level of granularity, and returns many false positives when using blocks of

code. This is consistent with our own results [50], where we found the main cause of the

false positives to be short blocks or procedures.

Rysselberghe et al. found that simple string matching returned many useless results,

that is, results that were considered to be not worth refactoring or maintaining. Because

extract string matching returns code clones that are identical or very similar, this is a

surprising result. It is likely due to the fact they did not use minimum length restrictions

for this technique: many of the useless results were single lines that were the same. Met-

rics matching found many useless results when using a granularity of programming blocks.

Using method bodies produced fewer but still many useless results. On the other hand,

metrics did return the most recognizable matches. This was closely followed by parameter-
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ized token and line matching. Simple line matching returned the least recognizable results.

The metric of “recognizable” was evaluated based on how easy it was to decide whether or

not the code clone would likely be of interest to a software maintainer.

In their study Rysselberghe et al. also evaluated scalability [81]. They found simple line

matching to be the least scalable because of its quadratic space and time requirements. Pa-

rameterized line matching was considered more scalable than parameterized token match-

ing because of the large memory consumption of suffix trees. Metrics matching was also

considered more scalable than parameterized token matching for similar reasons.

Burd and Bailey evaluated five clone detection techniques for use in maintenance [19].

MOSS, JPlag, CloneDr, Covet, and CCFinder were tested on a small open source software

system, GraphTool. MOSS detects similarity in normalized lines of code; JPlag uses token

streams while CCFinder uses parameterized token streams; CloneDr uses AST sub-tree

comparison as described by Baxter et al. and Covet uses metrics matching to locate function

clones. In the study, the clone detection tools identified a total of 1463 clones, 563 were

judged to be false positives. The union of these clones was deemed to represent all of, or

the majority of, the clones in the subject system. Using this set of manually evaluated

clones, the precision and recall was measured for each tool. CCFinder exhibited the highest

recall at 72% with the next highest being Covet at 12%. CloneDr was reported to have

perfect precision but the lowest recall at only 9%. CCFinder reported results with only 72%

precision, MOSS had 73%, Covet had 63%, and JPlag had 82%. From these results it would

appear that CCFinder has a very favourable trade off between precision and recall but this

may not be the case. The construction of the data set assumed the combination of the

results of all tools would result in a complete set of clones but this may not have been true.

However, it is highly likely that there were clones in the data set that were not found by

any of the evaluated tools. CCFinder reported approximately 1000 clones that each of the

other tools did not report, strongly biasing the recall metric in CCFinder’s favour. This bias

may be less favourable if a complete set of clones was identified. Also, recall and precision

are both difficult to evaluate as the reliable, reproducible identification of false positives is

difficult as judges do not agree on the definition/concept of a clone [48, 93]. While general

trends are clear, it is difficult to determine the accuracy of the end results and the impact

of misclassification.



40 Toward an Understanding of Software Code Cloning as a Development Practice

Bellon [16] and Koschke et al. [62] also measured the precision and recall of clone

detection tools. Bellon created a benchmark set of clones by randomly sampling and

evaluating a random subset of the union of clones detected by all detectors in the study.

This resulted in an oracled set of clones known to be true positives. Each reference clone was

classified into one of three types: exact clones (Type 1); parameterized clones (Type 2); and

clones with additional changes (Type 3). Six clone detection tools were used in the study:

Dup (token-based), CCFinder (token-based), CloneDr (AST sub–tree), Duplix (PDG), CLAN

(AST metrics), and Duploc (normalized lines of code). Recall was measured by calculating

the number of clones in the reference set that were found by each tool. Token-based and

line-based tools performed much better for overall recall than graph-based approaches.

CCFinder and Dup had a total recall of 67% and 33% respectively. CCFinder had a recall

of 84% for Type 1 and Type 2 clones, but only a recall of 19% for Type 3 clones. This is

not surprising as CCFinder searches for contiguous series of parameterized matches. Type

3 clones may have additional lines added, breaking the match for CCFinder. Duplix was

the only tool that reported a higher recall for Type 3 clones (36%) but its overall recall

was quite low for other clone types.1 AST-based methods displayed a low recall. CloneDr

exhibited a recall of just 9% and CLAN had just 5%. The precision results were nearly the

inverse of the recall. AST-based approaches had the highest precision, distantly trailed

by token-, line-, and PDG-based approaches. This result is more difficult to evaluate,

however. Precision is calculated as the ratio of references from the oracle set found by

the tool divided by the total number of candidates found by the tool. This is a somewhat

misleading metric as the oracled references may not contain all clones. Many of the clones

found by the tool may in fact be un-oracled clones rather than false positives, skewing the

results of the precision metric. The token- and line-based approaches report many more

candidate code clones than other detection techniques, making this metric biased against

them.

Koschke et al. found that the recall of AST-based methods can be dramatically im-

proved depending on the implementation [62]. In their study, they continued the use of the

Bellon benchmark to compare the accuracy of their AST suffix tree approach, cpdetector,

1A private discussion with the Krinke revealed a bug was found in the tool and the recall is much higher

now.



Chapter 2: An Overview of Clone Detection and Analysis 41

described above as well as a variation of the Baxter et al. approach, ccdiml. An additional

1% of the clones in the benchmark were oracled. ccdiml exhibited a recall of 53% compared

to a recall of 61% for CCFinder and the average of 30% for all AST methods (including

CloneDr, the tool of Baxter et al.). CloneDr reported a recall of only 10%. The precision

of ccdiml was comparable to that of the token-based approaches in the benchmark. The

tradeoff for higher recall and precision comes at the cost of scalability. On PostgreSQL, a

medium-sized open source relational database system, ccdiml required almost five hours to

detect clones compared to 62 seconds for cpdetector.

Both the Bellon and Koschke et al. studies have the same weakness as the Burd and

Bailey study. The categorized clones are subjectively evaluated by human reviewers, a

process that has been shown to be error prone. Walenstein studied inter-rater agreement

when rating function clones for the purpose of refactoring [93]. Using candidate clones

from the Bellon study, groups of clones were randomly sampled from groups of clones that

constituted similar code of more than 50%, 75% and 95% of the code between functions

from three software systems. Raters were asked to decide if a clone was relevant for

refactoring tasks. Over four trials the parameters of the study were refined. During the

first two trials, the software system WELTAB was used as the study subject. Inter-rater

reliability was typically above 80%. The study subject Cook was added in the second

phase. Inter-rater agreement was low, only 48.9%. This lack of agreement stemmed from

the unconventional style of the C programming used in Cook and disagreement about

refactoring functions that acted as constructors and destructors. SNNS was used in the

third phase, this time with an additional judge. Overall agreement was again under 80%.

In the final phase, raters were asked to judge the clones based only on the information

in the source code. Using SNNS again, agreement reached 93.2%. Because of the low

agreement in the second and third phases of the study, it may be difficult to judge the

reliability of single-rater studies concerning code clones in software.

2.5 Result Post-Processing

Clone detection techniques, in particular parametric string matching, can return very large

numbers of potential code clones. Tens of thousands of code clones may be detected for even
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a medium-sized software system of several hundred thousand lines of code. Clone analysis

on such large data sets is hardly tractable unless measures are taken to identify code

clones that are relevant to the clone analysis task at hand. In some cases, language specific

filtering might be used to reduce the size of the overall result set. Automatic classification

of code clones based on a variety of attributes can also aid in identifying code clones that

are relevant to a specific clone analysis task. This section describes filtering approaches

we have used to improve the accuracy of parameterized string matching techniques and

classification approaches that have been used for various clone analysis tasks, including

code clone refactoring.

2.5.1 Filtering Results

Clone detection methods return only pairs (or groups) of suspected code clones. These

results can suffer from many false positives [50, 51, 52, 54, 62]. We have found that many

false positives can be removed from data sets returned by parameterized string matching

techniques by noting that certain regions of code contribute a large number of false matches.

By strictly filtering code falling in these regions we can improve the quality of the candidate

code clone set. In particular the filters applied to the clones returned by our clone detection

tool are (described in more detail in Chapter 3):

1. Non-function filter. This filter operates on structs, union, type definitions, vari-

ables, and prototypes. If a clone falls into a region of code comprised of the previously

mentioned types, it must have a minimum of 60% of its lines match exactly. These

lines can be matched in any order. This filter is not used with our own clone detector,

part of the CLICS toolkit, but was used in our prior studies with CCFinder.

2. Simple call filter. Clones occurring on statements that are “simple function calls”

can often contribute to many false positives when using parametric string matching

algorithms. Regions of code that are “simple function calls” are sequences of code of

the form

function name(token [, token]*).
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3. Logical-structures filter. We found that clones within simple logical structures,

such as switch statements are often false positives. By enforcing a stricter similarity

metric, we are able to remove many false positives.

4. Overlap filter. Clones whose two segments of code overlap by more than 30%

of their length are also removed as such candidates represent only the structural

similarity of simple, repeating code (much like the code clones found in switch

statements or declarations of variables).

2.5.2 Categorizations of Code Clones

This section describes the various categorizations of code clones that have been proposed

in the literature. One problem with code clone analysis is that clone detection tools may

return a large set of suspected clones, but provide little or no additional information about

them to aid the user in their interpretation. This makes clone analysis cumbersome at best

and intractable in general. Viewing and classifying thousands of clones manually is time

consuming and impractical, but it is necessary if one hopes to manage clones successfully;

for example, in our Apache httpd case study [52, 54], a naive use of the clone detection tool

CCFinder resulted in 13,062 clone pairs. As a result, little work has been done concerning

the in-depth investigation of cloning as it occurs in software systems.

One of the first categorizations of clones in software was proposed by Mayrand et

al. [74]. This categorization, summarized in Table 2.1 classifies candidate code clones

according to the types and degrees of differences between code segments. The types of

differences considered are function names, layout, expressions, and control flow. Using

these attributes, clones are categorized in to eight types, described earlier in this chapter

and shown in Table 2.1.

Balazinska et al. [8] created a schema for classifying various cloned methods based

on the differences between the two functions that are cloned, summarized in Table 2.2.

The differences accounted for are in five groups. Changes that do not affect the output or

behaviour of a function, called Identical and Superficial Changes are in Group 1. Differences

affecting only one lexical token at a time, types three through nine, are in Group 2. Clones

that differ in several of the categories in Group 2 are grouped as types ten through twelve.
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1 1 Identical

2 Superficial Changes

2 3 Called methods

4 Global variables

5 Return type

6 Parameters types

7 Local variables

8 Constants

9 Type usage

3 10 Interface changes

11 Implementation changes

12 Interface and Implementation changes

4 13 One long difference

14 Two long differences

15 Several long differences

5 16 One long difference, interface and implementation

17 Two long differences, interface and implementation

18 Several long differences, interface and implementation

Table 2.2: Balazinska’s categorization

Interface changes includes changes to called methods, global variables, parameter types,

and/or return types. Implementation changes includes changes to local variable types,

constants, and/or type usage. Methods where one or more entities are completely different,

types thirteen through fifteen, are in Group 4. Here a difference would be considered a

changed statement or expression. Methods differing in several aspects such as interface

and a long difference, types sixteen through eighteen, are Group 5. These categories are

used by Balazinska et al. to produce software aided re–engineering systems for code clone

elimination [9, 10].

A major limitation of the categorizations proposed by Mayrand et al. and Balazinska

et al. are their limitation to function clones. Our previous case studies show that only
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accounting for function clones may miss a significant portion of other clones in the software

system. We have found that function clones may account for only 30% to 50% [50] of

the cloning activity in software, indicating that categorization of other types of clones is

required to maintain significant coverage of cloning in a software system.

To facilitate our analysis of cloning in software systems, we have proposed our own

taxonomy of cloning in software, further described in Chapter 3 and Appendix A. This

work differs from Mayrand et al. and Balazinska et al. in that our classification scheme is

based on different attributes of the clone including: similarity; locality within the software

system; scope of the cloned code; degree of similarity of regions the clones exist in; and the

type of region the clone occurs in. We feel that it is important to consider the location of

clones in a system as it provides a useful metric for analysis of how cloning is carried out in

a system. Additionally, the locality of clones is also an indication of other attributes, such

as similarity or rationale for cloning, that can be used to evaluate the severity of cloning

in a software system. The purpose of our taxonomy is to be a general categorization of

clones that occur in industrial software systems. The goal of Balazinska et al.’s work was

to produce a categorization for the purpose of refactoring of software systems.

Koschke et al. define another clone classification using only the types of differences

between clones [62]. In this classification only three types of clones are considered, as

described above for its use in the Bellon benchmark.

Basit et al. [12] have produced a clone classification scheme that groups clones according

to higher level structures such as files or classes. Using the data mining technique “market

basket analysis” they search for frequently co-occurring clones. In their model, each file

is a basket and each clone class in that file is an item. Their goal is to identify clone

classes that occur together frequently and in this way they identify patterns of cloning.

Using this technique they classify clones as cloned classes and files, which they call “clone

patterns”. These patterns can then be further clustered according to the clone classes

contained within them and the degree of similarity between the files.
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2.6 Code Clone Analysis

Clone analysis is the task of investigating and understanding code clones within a software

system after a candidate set of code clones has been detected. This section describes the

current work (excluding much of the work of the author which is described in Chapter 3.7)

on analyzing code clones in the context of software systems.

Several tools have been developed to aid users in the analysis of clones. Visualization of

clones is commonly done using scatter-plots to present matched lines of code [7, 26, 80, 89].

These scatter-plots, shown in Figure 2.2, provide the ability to select and view clones, as

well as zoom in on regions of the plot. In practice, we have found scatter-plots do not scale

well with medium to large software systems, as the points become so small that it is difficult

to pick out all but the most extensive regions of similar code. Additionally, scatter-plots

do not easily lend themselves to providing the context of cloning from an architectural

perspective. However, scatter-plots are useful when providing views of subsystems or

highlighting particularly large regions of suspected code cloning.

Johnson used Hasse diagrams to visualize cloning relationships and investigate changes

in software between two versions of GCC, shown in Figure 2.3 [45], and later proposed the

use of hyper-linked documents to navigate cloning relationships [46]. In this system users

can view groups of similar clones, jump to segments of code in a file, and view clusters

of files with matching segments of code. This work provides a structure for navigation of

code clones, but does not include architectural views of the software system, nor does it

provide metrics to guide users to points of interest. Additionally, there is no way to modify

the data set to remove false positives as they are found.

Reiger et al. describes five polymetric views with the goal of showing what parts of

the system are connected via code clones and what parts are cloned the most [80]. These

views have been designed to aid the user in learning about the code clones in a software

system at different levels of abstraction, providing progressively more information about

the code clones in the software. Reiger et al. describe the details of each view, its inten-

tion, symptoms it highlights, scalability, and over-plotting concerns. The first view, the

Duplication Web, arranges files in a circle and draws edges connecting files with clones

between them. The width of the node shows the degree of cloning within a file, and the

width of an edge indicates the amount of cloning between files. This view is intended to
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Figure 2.2: Scatter-plot of cloning between two files (taken from [26])
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Figure 2.3: Hasse diagram of clone relationships (taken from [45])
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indicate the number of files in the system and relate this to the amount of cloning between

them. The second view, the Clone Scatter-plot, places the same nodes of the Duplication

Web onto a scatter-plot ordered using LOC and lines of similar code. Edges connect nodes

with cloning between them. The key advantage of this view is that it illustrates the ratio

of cloning in the file to its size. Clones close to the diagonal contain a high percentage of

code that is part of a code clone. The third view, the Duplication Aggregation Tree Map, is

intended to show the ratio of internal versus external code cloning. The tree is generated

according to directory structure and node width illustrates external cloning while height

indicates internal cloning. The fourth view, the System Model View, visualizes the system

as a tree based on directory or inheritance structure. Nodes represent either files or direc-

tories and are sized according to the degree of external and internal cloning. Node height

indicates external cloning and node width indicates internal cloning. The fifth view, the

Clone Class Family Enumeration, models the relationship between files and clone classes.

Using a nodes-and-edges diagram that is split in the middle, clone classes at the top are

connected to files at the bottom. Classes are arranged according to the number of files they

include and the number of lines that have been cloned, and files are arranged according

to the LOC they contain and the number of clone classes they participate in. CLICS has

an analogous view to each of these visualizations with the exception of the Clone Class

Family Enumeration. Unlike CLICS these tools do not provide filtering, metrics reporting,

or querying facilities.

Gemini [89] and Aries [38] are two tools that use CCFinder as their core clone detection

mechanism. In addition to the scatter-plot described above, Gemini also provides visual-

ization through metrics graphs and file similarity tables. It allows users to browse clones

either pair-wise, or using clone classes. Clone classes can be browsed and filtered using a

graph displaying four metrics: the length of the path to the lowest common ancestor in

the directory path (RAD(C)), the number of files containing segments of the clone class

(POP(C)), the length of the cloned segment in tokens (LEN(C)) and the number of tokens

the program would be reduced by if the clone were eliminated (DFL(C)). This system

provides guiding metrics and a system overview but does not tie code clones to a concrete

architecture. Also, it does not provide querying support or the ability to modify the data

set.
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Aries is a refactoring support environment for code clones [38]. It groups clones based on

dependencies between them. Yoshida et al. define relationships between methods based on

call dependencies of shared variables. They call these methods chained methods. Clones

are then grouped based on the chained methods they cover. For example, if Clone A

occurs in Method A1 and Method A2, and Clone B occurs in Method B1 and Method B2

then Clone A and Clone B are chained clones. The intuition behind this grouping is that

if one clone is refactored, both should likely be refactored. Aries supports this form of

refactoring by grouping clones in this way and computing metrics to indicate how each

chained clone is distributed throughout the system. Based on the inheritance hierarchy,

Aries can recommend a refactoring method to use based on the metrics of the code clones.

While Aries provides the capability to refine the displayed clones using queries, it does not

support data set refinement or views mapping clones to concrete architecture.

2.7 Management of Code Clones

Management of clones has been a relatively undeveloped research area in clone detection.

This is partially due to the implicit assumption that code clones should be refactored out

of the software system. Most clone detection researchers prescribe clone refactoring or uni-

fication in one form or another [10, 15, 13, 27]. Basit et al. propose a solution to managing

clones using meta-programming [13]. Using the meta-programming language XVCL, Basit

et al. show how clones that cannot be refactored using standard programming language

constructs, such as templates and generics, can be refactored using code generation based

on meta-programming. In their solution, generic meta-components are created with vari-

ation points marked as variables. Then, a specific instantiation of that meta-component

can be generated using a specification file. This specification file allows for the insertion

of statements, parameters, etc. making it much more robust than conventional parametric

generics. However, this form of meta-component development and instantiation require

the developer to have a very strong sense of the abstractions required to create a set of

components and the foresight to know the differences between them. Understanding and

anticipating non-parametric variations of components is likely to be a daunting task. Also,

this method of refactoring adds an additional layer of abstraction separating the developer



Chapter 2: An Overview of Clone Detection and Analysis 51

from the source code which could be prohibitive during debugging of the generated source

code or even the generation of the source code.

Baxter et al. propose the use of macros to eliminate clones [15]. These can be automat-

ically generated by their tool CloneDr. This approach is rather limited as many languages

do not support a macro language. Also macros can also be difficult to debug as they also

result in generated code.

Balazinska et al. used Strategy [9] and Template method [10] design patterns to ad-

dress cloning in Java programs. Using context analysis, the differences between clones

are analyzed and in some cases can be automatically refactored using the design patterns.

Balazinska et al. also propose another approach that allows computer-aided refactoring

rather than automatic refactoring, allowing the user to choose the end method of removing

the code clone. While this approach does effectively reduce the size of the code for certain

types of clones, the complex design introduced by the refactoring may in fact negatively

impact the overall design. In particular, the refactoring introduces an orthogonal set of

classes to the original code specifically for handling the differences in the clones, separat-

ing the differences in each code clone from the original classes. While this in some ways

alleviates the problems associated with discerning the differences between clones during

maintenance, it introduces the decoupling of the problem specific details from the problem

solution, possibly breaking conceptual models of the developers.

Toomim et al. proposed a method of managing clones through simultaneous editing,

called Linked Editing [87]. In this approach, copied code can be persistently “linked”.

This allows users to easily view common segments of code and consistently edit code

clones. The linked editor aids the user in propagating changes to clones across all linked

code clones. Propagating changes through semi-automated mechanisms rather than those

that are fully-automated allows developers to have the flexibility of modifying code as it is

applied and provides context in which the developer can make appropriate decisions about

the effects of the changes on other clones. Important features include real-time explicit

display of differences in clones, selective simultaneous editing and change propagation,

and clone removal/introductions support. A major drawback to this work is it requires a

central repository of linked code for distributed development environments or additional

mechanisms to update the linking database during code check-ins and updates. Corporate



52 Toward an Understanding of Software Code Cloning as a Development Practice

settings would add additional challenges as code ownership may affect how change prop-

agation can take place. Through user studies, Toomim et al. found that linked editing

took only 2% of the time needed to form an abstraction to reduce code clones. All users

in the study group ranked linked editing above abstraction in all areas of maintenance:

maintainability, understandability, changeability, editing speed, and editing effort [87].

Duala-Ekoko et al. also use linked editing to maintain clones within a software system

[24]. Similar to Toomim et al. they link segments of code as clones, but in their approach

they propose the use of clone region descriptions (CRDs) rather than line numbers to locate

clones in subsequent versions of the system. In this way, the limitations of line number

links in a distributed development environment are overcome. Using the file and class

name, method signature, and a block signature they can search the AST of subsequent

versions of the system for the clone segments. If the file or class name changes they

search the class space for a similar class. Once the appropriate method is found, the code

block containing the clone is located using the block signature which is composed of an

identifier string, block type, nesting level, and a corroboration metric. In the case where

several methods or blocks may be possible matches the corroboration metric is used as

further evidence for selecting the appropriate match. In their implementation, they chose

to use cyclomatic complexity as a corroboration metric. On a very small test set they have

shown this approach can work for locating the clone segments across several versions of

a software system. This approach and its solution is very similar to the origin analysis

problem described by Godfrey and Zou [34].

Software product-line engineering is a related field of study [20]. The purpose of software

product-line engineering is to enable rapid, efficient instantiation of distinct products based

on a core set of components implementing common functionality. One goal of software

product-line engineering is maximizing reuse and minimizing duplication of code. Creating

a new product is a problem of configuration and customization. Variability is managed

through variation points whose role is to provide specific points of extension to the base

component, with direct analogies to variation points in XVCL. One problem with managing

code clones is managing variations over time. Software product-lines deal with several

dimensions of variability over time [67], but these solutions are intended for the end result of

a product-line (i.e. a set of distinct products). Code clones may need to vary independently
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within the same versioning system and branches, and changes to the shared code base

may make this difficult as this results in forced change propagation. Software product-

lines engineering has also discussed the tradeoffs of generalizing components early and

anticipating many requirements before they are needed (proactive software product-lines)

versus refactoring only once a clear understanding of shared core requirements in a product-

line or component is attained (reactive software product-lines) [18]. Buhrdorf et al. present

a case study of a software company implementing the reactive model of software product-

line development. In their study they noted that forming generalized solutions early has a

higher overhead than waiting for clear requirements to evolve into the system. By waiting

for a fuller understanding of the commonalities and requirements of similar components,

effort is not wasted on code that will never be needed or code that has not captured

the full set of requirements completely. This has direct analogies to avoiding code clones

in early stages of development which can lead to evolving a complex abstraction without

understanding what the end requirements can be. Toomim et al. have shown that managing

abstractions may lead to significant development overheads [87], and managing them too

early will increase the cost of software extension.

2.8 Code Cloning Case Studies

2.8.1 Cloning in Software

Kamiya et al. [47] performed tests on the Java Development Kit (JDK) version 1.3.0 to

search for clones within the system, and also studied the cloning behaviour between Linux

2.4.0, FreeBSD 4.0, and NetBSD 1.5. While they observed that clones in the JDK seem

to occur in nearby directories or files based on a visual inspection of the scatter plot their

tool presents, no quantitative data analysis is discussed concerning this point.

Balazinska et al. measured the refactoring opportunities of cloning. Balazinska et al.

measured the types of differences between clone classes in five Java applications using

the classification scheme shown in Table 2.2 [8]. From their study they found that the

largest group of clones is typically identical clones followed by one long difference, interface

and implementation, called method and global variable. This contribution is important as
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it indicates that while there are many clones that are exact copies, a large portion of

them have had subsequent non-trivial changes. This has implications on refactoring and

detection results. Balazinska et al. further measured the refactoring opportunities of clones

by measuring their coupling to their local context [10]. In this study they analyzed JDK

version 1.1.5. They found that while most code clones do not contain context dependent

operations or dependencies, there is a large portion of clones that do. This analysis is

important from a refactoring perspective: when refactoring clones, those clones without

context dependent operations will present fewer challenges than those that do. Quantitative

results from this study cannot be generalized as only one system was examined, but it

does introduce the importance of understanding difference in clones when measuring or

estimating the cost of refactoring software systems. Another key issue with this study is

that there is no reporting of the accuracy of the clone methodology used. While the authors

report they did not consider methods smaller than six lines because of the high rate of false

positives, it is difficult to evaluate the applicability of the results without further analysis.

Balazinska et al. produced an automatic refactoring system based on their analysis of

differences in clones [9]. A major shortcoming of these studies on cloning is that there is

little or no qualitative investigation into the clones themselves. The main assumption is

that cloning is harmful and should be removed. Without considering the rationale behind

the cloning this assumption can be harmful to the overall structure of the software system.

Basit et al. have studied the deficiencies of using generics to eliminate clones [13, 14].

Studying the cloning in the Java buffer libraries and the C++ Standard Template Libraries,

Basit et al. found many situations where the generics supported by the language were not

flexible enough to remove many forms of cloning. For example, non-parametric clones, such

as in the cases where methods are added are removed from a class, cannot be supported by

Java generics. Non-type parametric changes are also not typically supported; for example,

constants or keyword modifiers. Additionally, Basit et al. noticed that Java has type

restrictions on their generics. In Java, primitive types cannot be used in parameterization.

Rajapakse and Jarzabek have studied the use of cloning in web applications [78, 79].

Modern web applications are developed in a broad range of programming languages. In

fact it is commonplace for a single web application to contain code in several programming

languages. In their studies, they found that web applications contain a high level of code
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cloning [78]. Only one of 17 web applications analyzed contained less than 20% of the

LOC in a code clone, and the average rate of code cloning found was 41%. These results

are somewhat higher than those reported for traditional applications [78]. Rajapakse and

Jarzabek measured the effective cloning in web-specific languages compared to the general

purpose languages that were found in the web applications. In general the web-specific

languages contained more cloning than the general purpose languages but the general

purpose languages still exhibited high cloning levels. They concluded the amount of cloning

in web applications is higher than that of traditional applications. By measuring the degree

of cloning over subsequent releases of several web applications Rajapakse and Jarzabek

found that the percentage of lines cloned increases over time.

Continuing their work, Rajapakse and Jarzabek performed a case study on the trade-

offs of using server pages to reduce clones in web applications [79]. In their study, they

initially built a web application based on the requirements of an industrial partner and then

proceeded through two stages of clone elimination. The goal of the initial implementation

was to produce a working web application that is representative of a project developed

under industrial time pressure. Maintainability concerns, including reducing the amount

of cloned code, had a low priority. They then proceeded to unify clones within modules

using design patterns. In the final stage they unified the code clones amongst the modules,

reducing six modules to one. The overall reduction in size from the initial implementation

was 75%. This large reduction in code size is largely attributed to how the system was

initially built and extended. New modules were added by cloning and extending func-

tionality from existing modules. This enabled rapid development of the initial working

system. Several important tradeoffs that concern software development in general were

noted. First, performance was greatly affected by the reduction of code clones: the final

reduced code base ran up to three times slower than the initial implementation. Platform

and framework conformance also became an issue when removing clones; Rajapakse and

Jarzabek provided two examples where removing clones either could not be done or the

framework itself had to be modified to remove cloning. They also note that the effort

spent on avoiding using code clones will slow the development process, a costly sacrifice

in the competitive market of web services. They also note that the evolvability of a web

application is adversely affected by clone unification. In their case study, six modules were
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unified into one. If an extension or change in functionality is needed for one of the core

functionalities, the entire web application needs to be re-tested. Source code packaging

can also be negatively affected by removing clones using generalized functions that contain

control branches for specific instances of a problem. When repackaging the source code

to distribute portions of the overall system, unnecessary code is inadvertently distributed.

Later, when updates to the code base are rolled out, systems may be temporarily brought

down in order to update code that is in fact unused.

2.8.2 Copy-and-paste

Kim et al. studied how developers used copy-and-paste features of the Eclipse IDE [57].

In this study, they noted that developers often use copy-and-paste to structure and guide

the task of extending a software system. For example, they noted that developers will

sometimes copy a parent or sibling class to use as a template for writing a new sibling class.

They also observed that developers used copy-and-paste to duplicate control structures

patterns.

Balint et al. have also studied how developers copy-and-paste code [11]. In their study

they focused on analyzing who creates clones and what their relationship is to the original

code. They describe five patterns of activity demonstrating how clones are created and

maintained. The first pattern is the case where an author creates a family of clones from

his/her own code and consistently maintains this code over time. This was considered the

least harmful case for cloning. A similar case is where multiple developers clone the same

segment of code without modifying it. This case was considered to be harmful because of

the risk of future maintenance issues. The third case is when a clone or set of clones is

maintained by several authors. In this case individual authors propagate their own changes

across all clones in a clone class. This scenario usually involves only a few developers. The

final two cases of cloning they observed were inconsistent fixes by a single or multiple

authors. In these cases, changes to a segment of code in a clone class are not propagated

immediately. In some cases the author introducing the change eventually propagates the

change to all of the clones, in other cases these changes are propagated by other authors.

This study reveals interesting insights into how clones are managed. However, it only

observes how clones are managed and does not consider how the clones are used. Balint
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et al. argue that these patterns of cloning are all harmful essentially with the argument

that updates may be made inconsistently, leading to bugs or future maintenance problems

relating to diverging code clones. One could also argue that with appropriate tool support,

such as linked editing, these risks could largely be mitigated.

2.8.3 Evolution

Clone detection case studies have been performed on the Linux kernel [3, 4, 32]. A pre-

liminary investigation of cloning among Linux SCSI drivers was performed [33]. Casazza

et al. use metrics-based clone detection to detect cloned functions within the Linux kernel

[4]. They performed analysis across the major subsystems, and then on the architecture-

dependent code of the memory management subsystem and the kernel core. To evaluate

the degree to which cloning occurs, they define a common ratio between two files, which is

the percentage of functions in one file that are cloned in another with respect to the number

of functions in the first. As noted by Antoniol et al., this common ratio must be used with

great care and absolute values should be also be acknowledged, as large disparities in file

sizes can make the ratio misleading [3]. The conclusions of this study were that in general

the addition of similar subsystems was done through code reuse rather than code cloning,

and more recently introduced subsystems tended to have more cloning activity. Antoniol

et al. performed a similar study [3], evaluating the evolution of code cloning in the Linux

kernel. They too used function metrics clone detection as their detection method and their

conclusions were similar, adding that the structure of the Linux kernel did not appear to

be degrading due to code cloning activity. The above studies analyzed only clones meeting

the DistinctName criteria shown in Table 2.1. In our own studies, we found these matching

criteria were insufficient for finding function clones as its restrictions are too rigid to detect

clones with non-trivial modifications [50]. To detect function clones, we used the following

set of metrics:

1. Line counts: total number of lines, blank lines, lines of code, declaration lines, lines

of executable code, commented lines.

2. Number of parameters, number of global variables used.

3. Number of parameters or global variables modified.
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4. Cyclomatic complexity.

5. Maximum level of nesting.

The metrics we chose are slightly different from those used in other studies [61, 74] but

as stated by Antoniol et al., in large systems the choice of metrics does not significantly

affect the results [3]. We have used a subset of metrics used in previous work [61, 74], and

we expected that our returned pairs would have low precision but high recall as the number

of distinguishing data points was lower. Manual inspection of several hundred of the clone

pairs revealed that false matches were rare in medium-sized clones, confirming that the

choice of metrics did not seem to affect the results and that metrics-based clone detection

can be a precise method for detecting clones. However, in the study we demonstrated

that clone detection using the DistinctName criteria, while being precise for a small range

of clones, had disappointing recall for large clones compared to function clones found by

parametric string matching. We concluded that the cloning described by Antoniol et al.

[3] and Casazza et al. [4] likely includes only copy-and-paste cloning with little or no

modifications, and therefore is at best a lower bound of the actual cloning in the Linux

kernel.

Recent research has suggested that refactoring clones is not a major concern in the

maintenance process. While studying the use of refactorings in the evolution of Tomcat,

Rysselberghe and Demeyer compared the use of move method refactorings for removing

code clones and encapsulating similar functionality [82]. Their findings show that devel-

opers are much more concerned with grouping functionality than removing cloned code.

Kim et al. studied the evolution of code clones over time [58]. Using CCFinder, de-

scribed above, they detected clones across several versions of two small software systems

(≤ 20KLOC). They grouped clones into clone classes and measured how often they were

changed together over a series of CVS checkins. They found that in many cases, clones

remained in the source code for only a few days, and that many long-lived clones could

not easily be refactored for a variety of reasons: standard refactoring techniques could not

be used, changes to the design would be required, or because of programming language

limitations. They concluded that aggressive refactoring of clones was not always the cor-

rect management decision for cloning and that many clones cannot be refactored. They

also suggest other maintenance techniques should be considered for this class of clones.
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While this work does provide insight into the evolution of clones, there are several serious

drawbacks to their approach. Clones that are split because of inconsistent additions or

changes in the middle of the cloned code can cause the clone to no longer be detectable,

effectively disappearing from view. If changes in subsequent CVS checkins cause the clones

to re-emerge as a single clone class, their analysis would view these clones as new entities

added to the clone class. Also, the method used is prone to a high number of false positives.

Our work differs in that we consider a single version of a public release of a software sys-

tem. Therefore we do not consider short-lived clones, likely only to be part of a developer’s

intermediate product, in this work or our classification. We only analyze clones that have

become integrated into the system. Also, we evaluate clones based on their harmfulness or

helpfulness in maintaining software systems. This rating of the harmfulness is not limited

to the feasibility of refactoring the clones, although it is one part of our criteria. Rather,

we investigate how clones are actually used from an architectural perspective.

2.8.4 Bugs

Li et al. have proposed an approach to detect copy-and-paste related bugs in source code

using the clones uncovered by CP-Miner [70]. They do this by searching for clones with

inconsistent renaming of variables. Inconsistent renaming could be an indication that the

cloned code has not been modified or updated correctly. In their study of Linux, FreeBSD,

Apache httpd, and PostgreSQL, Li et al. detected 421, 443, 17, and 74 possible copy-

and-paste related bugs. Of those possible bugs, few were verifiable bugs, shown in Table

2.3. For Linux and FreeBSD 21 and 8 potential bugs respectively were deemed careless

programming. The rest of the potential bugs were false alarms. Their results show 99.9%

(or more) of code cloning is likely to have been reused correctly by their definition. While

Li et al. interpret these results as evidence that copy-and-paste activity is risky, we see it

as no more risky than adding a single line of code. If we accept that the industry average

bugs per line is approximately 15-20 per KLOC [75], adding a single line of code has a

1.5% chance of introducing a bug. By comparison, the results found by Li et al. indicate

0.1% of modified code clones contain bugs.
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System Detected Clones Possible bugs Verifiable Bugs

Linux 122,282 421 28

FreeBSD 101,699 443 23

Apache 4,155 17 5

PostgreSQL 12,105 74 2

Table 2.3: Potential copy and paste bugs found by CP-Miner

2.8.5 Sharing Knowledge

Several studies have examined the reuse of code across software systems [2, 47, 71]. Kamiya

et al. analyzed cloning across three popular open source operating systems: Linux, NetBSD,

and FreeBSD. In their study, they found that less than 1% of the code was common between

Linux, FreeBSD, and NetBSD [47]. In contrast, FreeBSD and NetBSD share 20% of their

code. This is not a surprising result as FreeBSD and NetBSD originate from the same code

base and have subsequently diverged.

Al-Ekram et al. (including the author) performed an in-depth study of cloning across

software systems in two application domains to investigate knowledge sharing in open

source software [2]. We found that most cloning was “Cloning by Accident”; these clones

are fragments of code that appear to be very similar not because they are intentional

code clones but rather because of the inherent form of the solution to a problem. For

text editors, most clones across software systems involved GUI code, specifically the setup

of the interface. Accidental clones across X window managers involved initialization of

structures to interact with the X environment. There were few examples of actual code

sharing between systems. Several of the text editors share a regular expression library.

Two window managers shared a file for gradients, and another pair shared a specific file

for animating the resizing of windows. This study demonstrated that sharing of knowledge

in open source software is often not done through sharing of source code but rather by

writing code that uses the same library APIs. The findings support the results of Kamiya

et al.. In the study, only 0.5% of the total code was shared amongst text editors and 0.2%

of the code was shared amongst window managers.

Livieri et al. studied cloning across all software systems comprising the FreeBSD dis-
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tribution [71]. Their results further support the results of the previous two studies. Most

clones were the result of multiple versions of the same software system. An example of this

is Apache httpd 1.3 and 2.0 being included as part of the distribution. FreeBSD supports

both in order accommodate users of each branch of the web server. Other clones across

software projects occur because of the inclusion of entire source trees of library source, such

as php4 and php5. When comparing FreeBSD to a single internally developed software

project, SPARS-J, Livieri et al. found many clones related to a file for parsing command

line options, getopt.c. This instance of code cloning is similar to the regular expression

libraries we detected [2]. They also found that the project reused code from two projects

in FreeBSD for handling CGI scripts. This is evidence that some code sharing does occur

through open source software.

2.9 Summary

This chapter has described the state of the art in software cloning research. We have

described the many different approaches for detecting clones. We have also discussed

proposed approaches to analyzing and managing clones in software. Finally, we summarized

previous studies investigating cloning in software.

While there has been recent quantitative study of code cloning in software, little work

has qualitatively investigated how developers use clones as a form of reuse. Section 2.2

proposes several plausible answers to the first question of this thesis — What are the

common motivations for developers to use code clones? — but all of these are anecdotal,

leaving all three questions of this thesis open to further research. In particular, the largest

and most pressing problem in current code clone literature is the contention that code

clones in software pose serious maintenance problems. While it seems clear that code

clones can sometimes pose maintenance problems, research has not established that cloning

is generally a bad practice. Indeed, our experience suggests that the opposite is true: code

cloning can sometimes be used advantageously within a disciplined software engineering

development process.

In an effort to understand how code clones are used in software, Question 2 of this

thesis, the copy-and-paste mechanisms of development environments have been monitored.
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The results of that work provide insight into only a single mechanism for creating code

clones, ignoring other mechanisms such as file copying or visually copying code through

character-by-character input. The study of the evolution of code clones also lacks a well

rounded view of how developers actually use code clones, providing no insight into the

motivations of the developers.

Finally, no prior work has addressed the issue of investigating or rating the appropri-

ateness of existing code clones in software, Question 3 of this thesis. Correlating code

clones to bugs has shown only that a small percentage of code clones contain bugs due to

incorrect or incomplete modifications of copied code. These results suggest that we need

better tools to create and manage code clones, but does not indicate their actual use is

inappropriate.

Empirically investigating these questions will help to evaluate the contention that all

cloning is harmful, and will provide insights into the tools needed to find and manage code

clones. Understanding how clones are used as part of software will also provide deeper

insight into how developers create source code, valuable information that can be used to

direct software engineering research in a direction to better enable software developers in

processes that are natural and efficient.
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Questions and Methodology

3.1 Introduction

In the previous chapter we discussed the open questions regarding code clones within

software systems. In particular, how and why code clones are used in software systems

is not well understood. Consider the following scenario: You are the manager of a large

software project and one of your quality assurance personnel informs you that 25% of the

lines of code in a core subsystem are cloned code. What should your reaction be? Is this

bad? Is the subsystem in question on the road to skyrocketing maintenance costs? How

can you evaluate this report?

To understand the value of the many metrics reported by the clone detection and

analysis literature we must first understand what code clones really are and how they are

used in software systems. Currently, we have little understanding about how and why

code clones are created, used, and maintained in industrial software. The lack of this base

knowledge severely limits our capability to analyze, evaluate, and discuss the reported

results. Ultimately, this limits our understanding of maintenance challenges and benefits

created by code clones in software.

This chapter describes the research questions that we have investigated for this thesis

and the analysis tools that we have developed to answer these questions. This chapter is

organized as follows: Section 3.2 discusses the research questions addressed in this thesis,

Section 3.3 describes the research methodology of this thesis, Section 3.4 describes the main

63
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study subjects we used to build our understanding of code clones, Section 3.5 describes the

code clone detection method used to collect candidate code clones, Section 3.6 describes

the post-processing performed on the candidate code clones, Section 3.7 describes the

code clone analysis tools used for the investigations presented in this thesis and a set

of requirements for clone analysis tools, and Section 3.8 summarizes our overall research

methodology.

3.2 Research Questions

As discussed in Chapter 2 there have been several studies that attempt to measure quali-

tative properties of code clones and code clone evolution. However, for the most part these

studies do not provide a complete picture as to how code clones are used within the various

software systems. Section 2.2 lists many reasons cited as to why developers clone code,

but no study has attempted to evaluate the relevance or accuracy of these intuitive but

unconfirmed anecdotes. Work concerning the evolution of clones in software has generally

measured the number of clones or how they change [3, 4, 58]. For example, while Kim et

al. have investigated how clones change over time, their study focused on how clones were

updated and did not address the specific details of how cloning was being used [58]. In

their studies of cloning in the Linux kernel Antoniol et al. and Casazza et al. reported the

total number of clones in the code base, but did not investigate the types of code clones

that were actually found [3, 4].

Investigations into code cloning in software systems have generally been limited in

scope. Balazinska et al. focused mostly on measuring the similarity of clones found. Basit

et al. noted that generics in programming languages are typically insufficient for abstracting

clones, but this is only one type of situation where cloning is necessary. Rajapakse and

Jarzabek studied cloning in a particular application domain, web services, and showed that

the rate of cloning is typically higher than in traditional applications. This observation

provides little insight into why the developers create code clones, although there is some

indication that the code cloning is related to the choice of implementation language.

Kim et al. studied how developers copy and paste, but aside from semantic templates,

there is little insight into the rationale of why developers introduce code clones into source
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code. Balint et al. describe how clones are maintained, but this again does not tell us

how clones are being used. Understanding how developers maintain clones is an important

topic of research but is only one part of a larger picture. The evaluation of the maintenance

challenges is an aspect of code cloning that is important for the creation of tools and tech-

niques to efficiently develop and maintain high quality code. However, this understanding

describes only the costs of cloning, it does not provide information about the benefits. This

somewhat one-sided view of the problem biases research and leads to statements such as:

Many such duplications can be attributed to poor programming practice since

programmers often copy-paste code to quickly duplicate functionality. [42]

Such a statement makes negative implications about code cloning activity, not to men-

tion developer work ethic. Is such a statement justified? Are code clones part of “poor

programming practice”? With uncertainty about the conventional wisdom that cloning is

harmful as well as the ever present questions about what cloning really looks like in soft-

ware systems (motivated in part by scepticism expressed by industry contacts), our initial

research question was formed:

How and why is code cloning used in industrial software systems?

In other words, the current literature does not contain a deep analysis of how clones

are used in software. Our initial investigations and case studies of code cloning were

motivated by the above question. As we analyzed and compared code clones in several

software systems, three research questions arose:

Question 1 What are the common motivations for developers to use code clones?

If code clones are the result of lazy programming then we would expect that the resulting

code clones are likely to have negative impacts on the system. However, if developers

intentionally create code clones for engineering reasons such as mitigating risk, supporting

flexible evolution, or avoiding fragmented code within the system, then code cloning may

have a positive impact on the system quality.

Whether developers are intentionally using cloning as a conscious design decision or

to avoid short term cognitive costs we must ask: in what scenarios are they using code
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cloning? Are there regular or repeated patterns of use of code clones, both negative and

positive, that can be discovered? This raises our second research question:

Question 2 Are there common patterns of code cloning that occur in the development of

software systems?

Discovering common patterns of cloning can aid in several aspects of clone detection

research. Understanding the types of cloning that occur in software systems provides a bet-

ter understanding towards the various types of maintenance challenges they present. For

example, clones that are likely to be subject to different evolutionary forces, such as plat-

form dependencies, are likely to require careful consideration when propagating changes.

More concretely, bug fixes must be carefully considered. Bugs related to communicating

with a specific platform are unlikely to appear throughout a set of code clones. However,

bugs related to the interaction with the internal software system may be present in all or

some of the code clones. In this case, the type of software bug and the type of code clone

will dictate the maintenance tasks required.

If patterns can be discovered, can we measure the relative frequency with which they

occur? As with any design practice, context will determine the appropriate actions. What

can we learn about the harmfulness of cloning in software in relation to code cloning

patterns?

Question 3 How are code cloning patterns used in practice, and to what extent is their

use appropriate?

Measuring the frequency or extent to which code cloning patterns appear in software

will provide an indication of the relevance of the clone patterns to the reality of software

development and maintenance. Investigating this question also leads to an understanding

of how difficult it is to use code cloning in a positive way. If we discover that code clones

are repeatedly used with good intent but lead to poor design, over time this would be an

indication that the correct use of code cloning is difficult and code cloning should avoided.
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3.3 Research Overview

Answering the initial research question requires a thorough, qualitative understanding of

code cloning as it occurs within a realistic development environment. Specifically, we must

investigate code cloning in source code that is of a reasonable size and has been developed

with industry-level quality in mind. For such an investigation, we require:

1. a mixed qualitative/quantitative research methodology,

2. appropriate study subjects,

3. the ability to detect clones, and

4. the ability to analyze and comprehend clones from a design and architectural per-

spective.

The following sections describe how each of these criteria were met. In particular, we

outline the availability of case study subjects, detections tools, and analysis tools. To start,

however, we begin with a description of the qualitative research methodology we used to

answer the questions in this thesis.

3.3.1 Study Overview and Methodology

The method used to study code clones in this thesis was a series of case studies involving

manual analysis of candidate code clones detected in open source software systems. This

does not follow the more common research approach of statistical hypothesis testing. We

chose this approach because the goal of this research is to generate a deeper understanding

of how code clones are used in software, something we do not feel is well addressed by

hypothesis testing. In the hypothesis testing approach, one might form the null hypothesis

that code cloning is generally used in a principled way. Then we could empirically test this

by evaluating a large set of clones, and if we find that within a sufficiently large sample of

clones there is a statistically significant number of clones used in an unprincipled way, we

could reject the hypothesis that clones are used in a principled way. This finding would

provide evidence that not all code clones are produced for justifiable reasons, but would
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not tell us anything about how the code clones are actually used, or if there are some

clones that are used in a principled way. In the unlikely event that we could not reject this

hypothesis, it would not tell us that the hypothesis is correct (that we could accept it),

only that our sample could not falsify it so therefore the hypothesis could not be rejected.

With either result, little information about actual uses of cloning in software is uncovered.

There are other shortcomings with using hypothesis testing to answer the initial ques-

tion raised in this thesis. An acceptable experiment to test the hypothesis would require a

large, accurate sample to analyze. This would require a precise clone detection tool with

high recall, something that does not currently exist. One could use a tool with high recall

and manually filter the code clones but any rejection of a hypothesis using this subjective

filtering would be highly questionable, as there is no generally accepted definition of what

comprises a code clone. Additionally, no tools prior to this work would have provided suf-

ficient mechanisms to evaluate clones within the software context that they exist, further

hampering the credibility of any null hypothesis testing.

Another problem with hypothesis testing is that with little understanding of the phe-

nomenon to be studied, it is difficult to form a reasonable null hypothesis to test. This is a

problem because if the hypothesis has no basis on the underlying phenomenon, rejecting it

will only help you understand the phenomenon in small increments. For these reasons, we

have chosen to study the phenomenon of code cloning in detail with the goal of generating

accurate descriptions of code cloning that are based on actual instances within software

(rather than intuition and general experience with code cloning that are often used to

motivate code cloning as a serious problem in software). In the future, these descriptions

may provide some of the required information for constructing useful experiments.

Case study research, as a methodology oriented toward developing an accurate view

of a phenomenon, can use a combination of quantitative and qualitative data, which is a

requirement of our research goals. Question 1 aims to produce qualitative evidence about

how cloning is used, and Questions 2 and 3 require both qualitative and quantitative

evidence to answer them. In practice, case studies can be used to achieve five different

goals [95]:

1. explain presumed causal links of real life phenomena,

2. describe a real life phenomena,
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3. illustrate specific aspects of a phenomena,

4. explore a phenomenon that is not well understood, and

5. meta-evaluation (study of an evaluation).

Of the five possible goals of case studies, (2) description and (4) exploration of a phenomena

are directly related to the questions posed in this thesis. Prior literature does not present

enough evidence to aid in understanding how code clones are used, making our initial case

studies exploratory in nature. With the goal of documenting how code clones are used in

real software systems, the case studies leading to the results of this thesis were always of

a descriptive nature. The overall research methodology used for this thesis is a multi-case

holistic case study composed of exploratory single-case and multi-case, holistic case studies

and a multi-case descriptive case study (described in Chapter 5).

To answer Question 1 and understand code cloning during initial investigations, the

exploratory case studies leading to the results presented in this thesis had a dual purpose:

(1) to build an understanding of code clones within software and (2) to understand and

address the problem of analyzing code clones in software. Our initial case study was

a holistic single subject case study [49, 50]. The unit of study was a subsystem of a

larger software system. The experience of this case study lead to refined data collection

and analysis tools (described below), subsequently used in a holistic multiple subject case

study [51]. The unit of study in the next work was a subsystem of a software system and

a whole software system. Both studies were motivated by Question 1 with no propositions

regarding the nature of code cloning. The main results of these three initial case studies are

the identification of specific instances of cloning and an understanding of the relationship

of these instances of cloning to the software as a whole. Cloning rationales were identified

and explained according to the context of code cloning within the software system. Key

distinguishing properties of code clones, such as the location of the code segments in the

software and the particular code involved, were identified. Later on, this information

contributed to the formulation of the patterns detailed in Chapter 4.

Following these initial case studies we produced a tool to facilitate more effective in-

depth analysis of a software system. This tool was applied in a holistic single subject

case study with the goal of characterizing how code cloning was used in the context of
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the whole software system [52, 54]. No propositions about the nature of cloning in the

study subject were made beforehand. We identified and described code cloning at various

levels of abstraction, including the general use of cloning across subsystems and specific

instances of cloning across subsystems, within subsystems, and within files. The rationales

of the code clones were inferred and documented based on the consideration of source code

and design documentation, clone locality (the location of the segments in the source code),

code similarity, and number of related clones. The results of this study were a deeper,

more refined analysis of code cloning in software. In both this case study and prior case

studies we had identified instances of “harmful” and “good” code cloning.

With a deeper understanding of code cloning, we discovered recurring patterns of code

cloning in our study subjects. Through iterative, comparative analysis of code clones in

the previous study subjects we produced a list of patterns, described in Chapter 4. This

list of patterns was then verified through a descriptive case study, described in Chapter 5.

The study was a multi-subject, holistic case study. The propositions of the final case study

were that the code cloning patterns exist generally in software and that code clones are

not always harmful. The results of this study, described in detail in Chapter 5, confirmed

both propositions.

3.4 Study subjects

To study how code clones are used in software systems we must study cloning in software

that is representative of much of the source code produced for industrial use. To maxi-

mize the impact and applicability of the results of our investigations, it is important that

the study subjects are typical software development projects. There are several aspects

one should evaluate when selecting a study subject that represents typical software. In

particular, we must consider:

1. if the software was developed in a commonly used development language,

2. if the software was developed with a quality level typical of industry standards,

3. if it is a widely adopted technology or if is satisfies a relatively small niche,
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4. if the software is of non-trivial size, and

5. if the source code is publicly available.

We can determine what programming languages are commonly used by referring to pub-

licly available measures of language popularity: development languages commonly used in

industrial settings include C, C++, and Java according to the TIOBE Programming Com-

munity Index [85]. Studying software systems that use popular programming languages

provides us with a large selection of candidates to choose from and ensures our results

reflect the current state of software development. Determining a common development

methodology is more difficult, especially with the many variations used in development

today (eXtreme Programming, agile software development, waterfall, big design up front,

etc.). We have chosen to ignore this aspect of software development not only because of

the difficulty of determining what methodologies are common but also because we feel that

programming language and team dynamics will play a much larger role in how code is

reused.

Selecting study subjects that meet industry-level standards is a subjective decision,

largely because what is considered to be high quality software is not clearly defined and

because rating the quality of open source software is also likely to be subjective. Instead

we will consider software systems that have been widely adopted to be high quality under

the premise that in most cases only high quality software systems will be embraced by the

community. Other metrics for quality could be used to measure the source code quality of

the software system; for example, bug reports, number of bugs per line, average complexity,

and the ratio of comments to code can all be used to measure various aspects of code

quality. This fails to measure whether a given software system meets industry quality

standards, however, because data concerning generally accepted values for these metrics is

mostly unavailable. According to obvious market mechanisms we would expect high quality

software to move rapidly into widespread use. The advantage of using this criterion is that

it indirectly measures quality in terms of what is important to the user.

Source code size is important to consider as small software projects are not likely to

have the same maintenance constraints and pressures as larger ones. For this reason, we

wish to consider software projects of at least 100,000 lines of code. We have found that

projects smaller than this often have little or no organized software architecture, which
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would inhibit the assessment of cloning on the high-level design of the system. Larger

projects, on the other hand, tend to have a more deliberate source code organization, often

with subsystems corresponding to directories in the file-system.

Reproducibility of the study must also be considered. Key factors in this are the

accessibility of software systems and the availability of results, and so for this thesis, only

open source software systems will be studied. In recent studies we have investigated cloning

in four open source systems: the file-system subsystem of the Linux operating system kernel

[50], the Apache httpd web server [52, 54], the Gnumeric spread sheet application, and the

PostgreSQL database management system [51]. In more detail:

• The Linux kernel file-system subsystem is the portion of the Linux kernel that sup-

ports file I/O. It implements support for 42 file system formats that are managed

through a Virtual Filesystem Switch. It consists of 280,177 LOC with 537 source

files. The version of the Linux kernel studied was 2.4.19. The Linux kernel is one of

the largest distributed software development projects in the world, with thousands

of developers contributing changes and source code [66].

• Apache httpd is an open source web-server designed to run on a wide variety of

platforms: BeOS, *BSD, Linux, Netware, OS/2, Unix, and MS-Windows. The core

development team of Apache consists of approximately 25 developers who contribute

a large majority of new features (88% of new code in 2000 [76]). As of version

2.2.4, Apache consists of 312,460 LOC across 783 files. Our initial studies analyze

code clones in version 2.0.49 [52, 54] and the study described in Chapter 5 analyzes

version 2.2.4.

• Gnumeric is an open source spreadsheet application, part of the GNOME Desktop

environment. It supports a variety of platforms but this platform support is imple-

mented in the libraries it links to (i.e., the various ports of GTK), rather than directly

in the main body of the source code of Gnumeric. Using svn blame to measure who

last modified all of the lines of code in Gnumeric in the last five years reveals that

more than 88% of the LOC have been modified by only three developers. This finding

is confirmed by documentation distributed with the source code. Gnumeric contains

326,895 LOC across 530 files. The version studied is 1.6.3.
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• PostgreSQL is a multi-platform database management system written in C/C++. It

has been actively extended and maintained since 1986. Currently the development

team includes seven core developers, 24 major contributors, and 32 minor contrib-

utors [1]. The version used in the studies is 7.4.2. It consists of 543,387 LOC and

1097 source files.

3.5 Clone Detection

This section describes, in greater detail than Chapter 2, the clone detection tools we used

during our case studies and the post-processing steps we took to refine the detection results.

The clone detection method we used is parameterized token matching using suffix trees.

The choice to use parameterized string matching is motivated by the consistent findings of

its high recall [16, 19, 62, 81]. Recall is the most important consideration for this study as

we are concerned with observing a large variety of clones rather than observing only true

positives. Observing a large variety of clones provides more chances to observe otherwise

unseen cloning scenarios. The method of analysis will be largely manual, making precision

of automatic detection tools less of a concern. With manual inspection, we can identify

and remove false positives from the data set as we analyze the software system.

While precision is of less concern to us than recall, there are several filters that can

greatly improve the overall precision of the clone detection results without decreasing the

recall, described in Chapter 2.5. In our initial case study we used the clone detection tool

CCFinder and manually filtered results. To improve the tractability of the analysis, we

introduced post-processing filters to refine the results of clone detection in areas of source

code prone to false positives, including structs, and series of simple if/else statements.

These filters were tuned to remove only clones that were false positives with a high proba-

bility. The tuning process was an iterative process of reducing the sensitivity of the filters

until no true positives were removed from a sample set of clones. We found that these

filters reduced the number of candidate code clones by up to 60% [51, 52, 54].

Parameterized string matching begins by creating an abstract representation of the

source code. For each file of the source code, a tokenized string is produced and all identi-

fiers that occur within the boundaries of a function are replaced with a generic placeholder,
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int main () {

printf ("Hello world!");

}

(a) snippet0.c

int mainClone () {

printf("Hello Parallel World!");

}

(b) snippet1.c

Figure 3.1: An example source code snippets

P P ( ) { P ( P ) ; }

(a) transformed snippet0.c

P P ( ) { P ( P ) ; }

(b) transformed snippet1.c

Figure 3.2: Result of preprocessing snippets shown in Figure 3.1

such as $P. The resulting string, containing keywords, operators and separators, and place

holders, is called a p-string. It is a representation of the underlying structure of the source

code. In previous studies [51, 52, 54] we found that parameterizing tokens outside of func-

tions leads to a high number of false positives that requires strict filtering on the resulting

clone set. By not parameterizing these tokens in the pre-processing phase, most of the false

positives of this type are avoided. This was the approach used in the case study detailed in

Chapter 5. Figure 3.2 shows the result of preprocessing the two snippets of C code shown

in Figure 3.1 (the reader should note that the representation is identical).

Using the p-strings as input, a generalized suffix tree is constructed and maximal repeats

are then extracted from the tree. Suffix trees — trees that are used to store and access

every suffix of an input string — are an efficient data structure used for searching strings
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for sub-strings or locating recurring strings. They can be built in O(n) time where n is the

length of the string and they can be used to efficiently find sub-strings in the input text.

From this data structure, sub-strings that exist in the input string can be extracted in O(l)

where l is the length of the desired text. The resulting suffix tree representing the p-strings

found in Figure 3.2 is shown in Figure 3.3. Figure 3.3 depicts a suffix tree for multiple

input strings, also known as a generalized suffix tree. When using generalized suffix trees,

each input string is appended with a unique character that does not occur in the input

text. In Figure 3.3 these unique characters are represented by |0| and |1|. The edges of the

suffix tree represent a sub-string that occurs at least once in the input string. For example,

the edge connecting nodes 1 and 2 represents the sub-string “P (){P (P ); }”. Edges along

a path from the root to node i represent a prefix of two or more suffixes, and the node i

represents the point where the remaining portion of the suffixes is different. For example,

the path 0 − 1 − 5 represents the string “P (” which is the prefix of “P (){P (P ); }|0|”,

“P (){P (P ); }|1|”, “P (P ); }|0|”, and “P (P ); }|1|”. From this example we immediately see

the power of the suffix tree: by walking the edges from the root, we can extract all repeated

sub-strings in the input strings. In this example we can see that “P (” occurs four times in

the text. To build suffix trees efficiently in memory, edges store the start index and length

of a sub-string rather than the sub-string itself.

In the application of code clone detection, we wish to find maximal repeats: sub-strings

with the property that if the sub-strings were extended one character to the right or left

they will no longer be an exact match. Only those maximal repeats that are at least as

long as a user-specified size are extracted from the tree. In this case, the minimum length is

specified as the shortest sequence of tokens that can be considered a code clone. Maximal

repeats can be found in O(n + z) where z is the number of maximal repeats. For details

on suffix trees and their uses refer to [36, 90].

The maximal repeats are then filtered by checking for an ordered one-to-one mapping

between the identifiers of the two repeated strings. For example, x = 1; f(x, y); has an

ordered one-to-one mapping with the string a = 1; g(a, b); but does not have an ordered

one-to-one mapping with b = 1; g(a, b); even though the p-string representations of these

three examples are identical. This enforces a stronger structural similarity between the

two strings, eliminating many false positives from the results. Stepping through the string
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starting from the first token of each string, the mapping is constructed. If a token that

breaks the mapping is found then the maximal repeat is split, and the process is restarted at

the point of the mismatch. Any sub-matches that are longer than the predefined minimum

length are reported as clones found in the source code, and sub-matches that do not meet

the minimum length are discarded.

The advantage of using this mapping rather than searching for exact matches is that

copied code whose identifiers have been changed can still be detected. In practice, we have

found that strictly enforcing this one-to-one mapping may cause the detection process to

miss code clones that have not been systematically changed. To account for this, the

CLICS clone detection tool allows for up to 7% (1 in 15) mismatches in a given sequence

of code.

Finally, the detected matches are mapped from tokens to files, lines, and columns in

the original source code. This information is output into a structured text file.

3.6 Post-processing

One disadvantage of using parameterized string matching for clone detection is that it

produces a high number of false positives, even after enforcing the identifier mapping

described above. In particular, sections of code with relatively little structural complexity

do not contain enough distinguishing features to differentiate between them. Examples

of these types of code are initialization lists, sequences of simple assignments, and switch

statements. To improve the accuracy of our candidate code clones we filter the candidate

code clone set by enforcing stricter requirements for a match in this type of code. In

particular the following additional filters are applied to the clones [54]:

1. Simple call filter. Candidate code clones occurring on statements that are “simple

function calls” can often contribute to many false positives when using parametric

string matching algorithms. Regions of code that are “simple function calls” are

sequences of code of the form

function name(token [, token]*).

The criterion for a match is that 70% of the function names in either region must be

similar. Two function names are similar when their edit distance, as computed by
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the Levenshtein Distance algorithm, is less than half the length of the shortest of the

two function names being compared. This threshold was determined by examining

the edit difference of function calls in a sample of confirmed code clones. This sample

was taken from a set of clones found in Apache, Gnumeric, and PostgreSQL that were

primarily composed of function calls. In such cases, we found that the edit distance

was generally less then 50% of the total length of the function names that were

considered similar by the author. During our studies, we found that typical clones

of a series of function calls would use mostly the same or similar functions, but did

occasionally contain calls to completely unrelated functions. To accommodate this,

we adjusted the percentage of function names that must match until true clones were

not removed from the data set.

2. Logical-structures filter. We found that candidate code clones within simple

logical structures such as switch statements are often false positives. To filter clones

in these areas, we require that 50% of the tokens in these areas be identical and in the

same order. Clones in simple if-then-else blocks are also filtered in this way. Initial

values for this percentage match were found by analyzing cloning in these regions,

and counting the number of tokens that remain unchanged in a true clone. We then

tuned the filter by making it less strict until we found no true positives were removed

from the data set.

3. Overlap filter. Candidate code clones whose two segments of code overlap by more

than 30% of their length are also removed. This value was determined through

observation of overlapping clones, and counting the maximum overlap of true clones.

The value was then adjusted through several trials.

Prior to using our own detection tool, we used the parameterized string matching

tool CCFinder. CCFinder parameterizes all source code, not just code contained within

procedures, resulting in a large number of false positives in the somewhat structurally

simple code of structs and unions. To filter the results from CCFinder we applied an

additional filter to the candidate code clones:

4. Non-function filter. This filter operates on structs, union, type definitions, vari-

ables, and prototypes. If a candidate code clone occurs between a region of the
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previously mentioned types and any other region of code, any clone in this relation-

ship must have a minimum of 60% of its lines match exactly. These lines can be

matched in any order.

It is important to note the goal when tuning these filters was to improve precision

without impacting the recall of the clone detection tool. The constraints on these filters

could be made stricter if the goal was to minimize false positives.

During this filtering step candidate code clones are also grouped by the regions of

the source code they occur in. Regions are non-overlapping, contiguous lines of code

grouped according to syntax. There are eight types of regions: consecutive type definitions,

prototypes, and variables; individual macros, structs, unions, enumerations, and functions.

Comments are ignored in the analysis. Regions are extracted using a modified version of

the open source tool ctags that reports the start and end of important syntactic elements

in the code, particularly: macro definitions, type definitions, prototypes, variables, structs,

unions, enumerators, and functions. Each line of code in the system maps to a region

(regions contain one or more lines). Code clones are split at region boundaries. For

example, two identical files containing three procedures each would have three separate

clones. This splitting of code clones is similar to that by Koschke et al. [62] and Kamiya

et al. [47] where clones are split at the boundary of methods or procedures.

If two regions have cloning between them, we say they have a cloning relationship. For

example, a code clone between two procedures forms a cloning relationship between the

procedures. To help in clone analysis, for each pair of regions with a cloning relationship

we group together all the clones between the pair, calling this a Regional Group of Clones

(RGC). An RGC represents the cloning relationship strictly between two regions as code

clones do not cross region boundaries in our analysis. For example, each identical statement

shared in the procedures shown in Figure 3.4 might be considered a code clone, constituting

six code clones forming a cloning relationship between the two procedures. These six code

clones are grouped as a single RGC in our analysis. It is our experience that the concept

of an RGC is useful for both visualizing and filtering clones. We have found that it is

much easier to understand the context of a single clone when we can easily see all of the

code clones in an RGC. In addition, it is often the case that multiple candidate code clones

represent a single code cloning action. RGCs help visualize this relationship.
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int logging_sums(int a, int b, int c, int d, int e)

{

int sum = a;

printlog("Sum = %d\n", sum);

sum += b;

printlog("Sum = %d\n", sum);

sum += c;

printlog("Sum = %d\n", sum);

sum += d;

printlog("Sum = %d\n", sum);

sum += e;

printlog("Sum = %d\n", sum);

return sum;

}

(a)

int sums(int a, int b, int c, int d, int e)

{

int sum = a;

sum += b;

sum += c;

sum += d;

sum += e;

return sum;

}

(b)

Figure 3.4: Two procedures with six “cloned” lines grouped as one RGC
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3.7 Clone Analysis

In this section we briefly outline our general criteria for a tool used to navigate and under-

stand cloning in a software system. We then describe in more detail the features needed

to meet these criteria. This set of criteria and features is derived from much manual work

by the author in attempting to understanding cloning in software systems, starting with

our studies of the Linux kernel file-system subsystem and the database server PostgreSQL

[50, 51]. Some features were also taken from suggestions by students in a senior level grad-

uate course who used the tool Gemini [89] and CLICS, the tool described in this thesis, to

perform an analysis of code clones within the Linux kernel source code.

3.7.1 Criteria

The core challenge to the maintenance and management of cloning in software systems

is comprehending the actual types of clones and the dependencies they create within the

software system. To complete such a task, the code clones must first be detected, and

then evaluated throughout the system at different levels of abstraction. However, clone

detection tools can return large result sets and viewing every possible clone is generally

infeasible. To address this problem, tools and processes need to be developed to help guide

the software maintainer (or code clone researcher) toward the information they require to

complete their task. We consider that any tool designed to help navigate and understand

code cloning in a software system should provide:

1. facilities to evaluate the overall cloning situation,

2. mechanisms to guide users toward code clones that are most relevant to their task,

and

3. methods for filtering and refining the analysis of the code clones.

Each of these criteria is described in more detail below.
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Overall System Evaluation

As a first step in understanding code cloning within a software system, regardless of the

end goal, maintainers must have a general understanding of the code cloning with respect

to where code cloning is used and how often it is used. This understanding will allow the

user to evaluate the extent and the severity of the code cloning to estimate the cost and/or

necessity of the code clone analysis task.

Several mechanisms can be used to evaluate cloning from a high level. Visualization

methods, such as scatter-plots [7, 26, 47, 80, 89], are useful for the discovery of highly

related sub-systems and high levels of cloning within a subsystem. They are also useful for

detecting unusual types of cloning, such as cloning from system libraries to other parts of

the software system. Metric–oriented reports, such as reporting the percent of lines cloned,

average length of the clone, etc. are useful for directing users to points in the system where

the most cloning is occurring, or where cloning activities are unusually high in relation to

subsystem size.

Guide and Empower the User

The potentially large sets of candidate code clones returned by the clone detection methods

make it infeasible to look at each individual clone. For this reason it is important to provide

both static views of candidate code clones as well as interactive query facilities. Metrics

can be used to query the data set [38]. Some examples of metrics that might be used

are the size of the clone, the types of changes made to the clone, and types of external

dependencies a code segment has. Such a method can direct users to promising refactoring

opportunities.

Other methods of querying the data set can also be used, such as querying based on the

location of the clones in the software and the type of source code entity in which the clone

exists. For example, a user might be concerned about cloning of macros originating in a

particular file. Querying mechanisms provide flexible analysis, allowing users to leverage

their own knowledge about the software and cloning, making the user more effective in

their task.

Upon an initial survey of a software system, users may not be fully aware of what

information they want or need. Query facilities can suffer from this weakness and strong
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static analysis of the data set is also required. Static analysis should provide low-level

metrics about cloning activities in the system. Additionally, the tool should provide a

method of navigating through clones that leverages general knowledge about cloning. An

example of this would be the categorization of clones as is done in [10, 51] and described

in Chapter 2. This will provide a method of education for novice users, and guide experts

more quickly to clones relevant to their task.

It is important to provide views that describe cloning in terms of the concrete architec-

ture and source code organization. We believe that relating code cloning and architecture

can have great benefits to comprehension of cloning. Cloning is a type of implicit archi-

tectural dependency, and as such can provide information about the high-level design of

the system. This also enables users to use their own knowledge of the architecture of the

system when evaluating clones (such as the appropriateness of code clones between two

subsystems).

Analysis Refinement

Due to the subjective nature of the analysis of clones, from the perspective of the user

there will always be candidate code clones that are not relevant to their role or current

undertaking. For this reason, it is important that tools supporting the comprehension of

cloning provide mechanisms to remove and filter clones from the analysis.

3.7.2 Meeting the Criteria For a Clone Navigation Tool

The following section summarizes the features that we implemented to meet the criteria

we described for a clone comprehension tool. It is a proof–of–concept implementation. For

a more detailed description and an example of its uses in a comprehensive study of code

cloning in a software system please refer to [52].

Overall System Evaluation

To provide a general system overview, we compute a series of metrics encompassing several

aspects of the system: system size, percentage of system cloning, and frequency of clone

types. The metrics detailing system size include the number of files and LOC.
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Figure 3.5: CLICS view of the relationship between imap and the two subsystems contrib

and pine in the email client Pine.

Metrics describing the percentage of system cloning include the percentage of lines that

have a clone, the percentage of functions containing a clone, and the percentage of files

containing a clone. To describe the frequency of different types of clones in a software

system, we list the the number of occurrences of each clone type in the taxonomy.

Guide and Empower the User

CLICS uses several mechanisms to enable the user to perform an in-depth analysis of clones

in the system. These mechanisms include visualization of clone relationships between

subsystems using a hierarchical containment graph, metrics for entities at all levels of
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architectural abstraction, clone navigation through the taxonomy, clone navigation through

the subsystem tree, and query facilities.

To visualize cloning as it relates to the system’s architecture we use LSEdit, which

is part of the architecture recovery toolkit, SWAGKit [86]. LSEdit is a graph visualiza-

tion tool that is designed for the exploration of software “landscapes”, which are graphs

that represent software architectures and their relationships. The nodes of the graphs are

software artifacts such as subsystems, files, and methods, and the edges of the graph are

relationships between two software artifacts, in this case candidate code clones. Graph

entities can be hierarchically contained, allowing varying levels of abstraction during anal-

ysis.

Complementary to the LSEdit visualization, navigation through the system architecture

can also be done through the system navigation tree, shown in Figure 3.5. The structure

of the tree models the subsystem containment hierarchy of the software. In addition to

showing the degree of relationship between subsystems, as shown in Figure 3.5, metrics

summarizing cloning within the software entity are also provided. For each software artifact

within the selected entity, the following metrics are shown in the Stats tab (not shown in

Figure 3.5):

• number of code clones involving only sub-entities within the referenced entity,

• number of code clones with one segment within the referenced entity, and one segment

somewhere else in the software system,

• percentage of lines of code of the software system contained within the given entity,

and

• percentage of total code clones that are involved with the referenced entity.

These metrics give the user information to quickly locate any cloning “hotspots”, which

are software entities (subsystems, files, methods, etc.) that contain a substantially larger

portion of code clones than other entities near it. For example, during our Apache httpd

case study we found that the server subsystem contains 38.8% of the overall clones in the

system, but only has 17% of the lines of code [52, 54].
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Using the clone taxonomy described in Appendix A, users can explore the clones in the

system by code clone type using the clone type navigation tree. Users can view clones in

each category, and remove any clones they believe to be false positives. This method of

navigation is especially useful when performing the initial analysis of clones in the system

as it can provide insight into what types clones are most frequent within the software

system. Furthermore, inexperienced users can use this navigation method as a way to

become familiar with the clone classifications. This navigation tree is also used to sort the

results from the queries described below.

Visualization of a code clone pair is shown in Figure 3.6. On the right we see two

segments of source code. These are code clones that occur within two procedures. To make

the scope of the regions the code clone is found in more evident, the procedure bodies are

highlighted with red text. In this figure, we have selected to show the differences of the two

regions rather than just the detected code clone. The common tokens and differing tokens

are highlighted with different colours to make the overall similarity clear. Other clones

occurring in the file are also highlighted to provide additional context in understanding

the candidate code clone presented. The lower left panel is used to annotate the clone

according to the code cloning patterns described in Chapter 4.

Currently only limited query support is implemented in CLICS. CLICS supports query-

ing code clones based on location, clones’ relations to code segments, and size. Queries

of code clones based on location include clones strictly within a given entity, clones going

from one entity to another, and clones that have at least one of its code segments in the

entity. Querying for clones related to a region of code includes queries for clones that are

directly related to the code, and for clones that are related transitively. Transitive closure

queries often uncover code clone relations that are too dissimilar to be detected by the

code clone detection tool. Clone relationships that are found in this way typically have

several changes in each of the code segments. This happens when changes are introduced

to the code segments that make the code segments more dissimilar to some of the related

code segments than others. Because of the varying levels of dissimilarity, only a portion of

the relationships are detected.
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Figure 3.6: Sample visualization of a clone pair
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Analysis Refinement

Refinement facilities in CLICS currently allow the manual removal of clones and removal/ad-

dition of files from the analysis. Users can remove individual clones, whole RGCs, and clone

classes. They can also select files to be excluded from the analysis. More advanced filtering

mechanisms are currently being developed.

3.8 Summary

This chapter revisits the questions raised by this thesis. These questions, which can be

summarized as why and how do software practitioners create and maintain code clones,

have been largely overlooked by the clone detection and analysis research community.

Conventional wisdom asserts that code clones are harmful to the quality of software but

there has been little or no qualitative or quantitative research to determine the accuracy

of this. The development of code clone analysis tools and a series of case studies on code

cloning in well-known software systems has led to the discovery of a set of common code

cloning scenarios, which will be described in Chapter 4.

There are three contributions of the work presented in this chapter. First, we outline an

example of an approach to studying a phenomenon in software that is not well understood

and for which analysis tools do not exist. In the approach used for this thesis, case studies

were performed to improve our understanding of code clones and that understanding was

used to build and enhance a tool for further analysis. More concretely, an initial question

of how and why code clones were used in software motivated initial studies that lead to the

second and third questions of this thesis. As we improved our understanding of how code

clones were used we further refined our analysis tools and our questions, leading to the set

of requirements for code clone analysis tools, code cloning patterns described in Chapter

4 and analysis of the use of these patterns described in Chapter 5. The overall process of

this approach and the goal of reaching an understanding of a phenomenon through obser-

vation of reality is very similar to the qualitative research methodology of grounded theory

[30]. Further investigation into a general research methodology for studying ubiquitous

phenomena, such as code clones, in source code is needed. While the idea of using several

case studies to better understand a phenomena is not novel, the particular combination of
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case studies that has taken the author from a general question to a set of common uses and

an empirical evaluation of those uses can be used to efficiently answer similar questions.

This chapter also contributes a set of filters for a well-known code clone detection

methodology. These filters are specific to parameterized string matching and were created

to address particular weaknesses of the approach. The parameters suggested in this work

are of a conservative nature: we wished to remove no true positives from the set of candidate

code clones. These parameters are specific to the desired characteristics of the candidate

code clones: the candidate code clones should contain a large variety of types of code

cloning. Adjusting these parameters may improve precision with some impact on recall.

The relationship of recall and precision with respect to these filters is the topic of continuing

work.

Another contribution is the set of requirements for a code clone analysis tool. The

code clone analysis tool presented in this chapter provides key insights regarding analyzing

code clones in software. In particular, we have found there is a need for high level metrics

relating the phenomena to source code organization as a means of enhancing tractability

of the analysis. The work presented in this thesis was the first to present code clones

as implicit relationships within a software architecture. Categorization and grouping is

also introduced as a means of improving tractability. Code clone analysis tools preceding

CLICS do not include a means of refining the candidate code clone set either by removing

false positives or by hiding instances not currently of interest.

In the following chapters, the results of our case studies into the nature of code cloning

are presented. Chapter 4 describes how code clones are used in software in the form of

code clone patterns. Chapter 5 evaluates these patterns to determine the prevalence of

harmful code cloning and the applicability of the patterns to characterizing code clones in

software.



Chapter 4

Patterns of Cloning

4.1 Introduction

As we see in Chapter 2, much anecdotal evidence about the nature of code cloning has

been described in the literature. However, most research has focused on clone detection

techniques or quantitative analysis of results, with little or no emphasis on the qualitative

characterization of code cloning as it exists in software. While these are necessary avenues

of research (this thesis would not be possible without them), focused, in-depth, qualitative

analysis of code cloning is necessary if we are to evaluate the applicability and relevancy of

previous and future code cloning research to software developers and maintainers. Quan-

titative results citing that 15% of a software system contains cloning provides little useful

information without some understanding of the rationale behind those clones and the over-

all impact on future software development and maintenance. For example, 10% of those

clones could be intentionally created to protect system stability while developing new fea-

tures in a replacement subsystem. In the Linux kernel, the implementation of the Linux

filesystem ext3 was in fact cloned from ext2 to add features such as journaling [50].

There is a lack of qualitative research supporting or rejecting the commonly held belief

that code cloning is harmful to the maintainability and extendability qualities of software.

With this shortcoming in mind, the first question of this thesis, posed in Chapter 3 as:

90
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Question 1 What are the common motivations for developers to use code

clones?

becomes unavoidable if we are to continue this field of study in a productive direction.

With this question in mind, the work presented here began with in-depth studies of code

cloning in a variety of software systems developed in C/C++. The study subjects of these

initial investigations were the Linux operating system kernel, the PostgreSQL RDBMS, and

the Apache httpd web server (Apache was also used as a study subject in the validation

described in this thesis). While the initial investigations were not explicitly intended to

examine patterns of code cloning, during the analysis we discovered several recurring ways

in which developers created and used code clones. Further organization of this information

resulted in the formulation of the patterns of code cloning that appear to recur in software

systems.

This chapter introduces the notion of categorizing high-level patterns of code cloning

in a similar fashion to the cataloguing of design patterns [28] or anti-patterns [17]. There

are several benefits that can be gained from this characterization of code cloning. First,

it provides a flexible framework on top of which we can document our knowledge about

how and why cloning occurs in software. This documentation may help in crystallizing a

vocabulary that researchers and practitioners can use to communicate about cloning. By

using the general definition of code cloning defined in Chapter 1 and refining it to specific

types of code cloning observed in software, we hope to provide a set of terms that more

broadly defines code clones. It is our hope that this broader set of terms includes many or

most of the view points of code clone researchers, and in doing so improves our ability to

agree on whether or not two segments are code clones.

This categorization is a first step towards formally defining these patterns to aid in

automated detection and classification. These classifications can then be used to define

metrics concerning code quality and maintenance efforts. Automatic classifications would

also provide us with better measures of code cloning in software systems and the severity of

the problem in general. For example, a software system that contains many clones that are

intended to evolve separately, such as experimental variation clones described in later in

this chapter, will require different maintenance strategies and tools compared to a software

system containing many clones that need to be maintained synchronously, such as those
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clones introduced because of language limitations.

The following sections describe the cloning patterns that have been discovered in the

study subjects. These patterns are defined by what artifact is cloned and why, and to

some extent the mechanisms of the creation of the code clones. More specifically, the

patterns described here concern both cloning of large architectural artifacts, such as files or

subsystems, and finer-grained cloning, such as functions or code snippets. The reasons why

developers use these patterns range from difficulty in abstracting the code to minimizing

the risk of breaking a working software system. These reasons are inferred from the code

clones and how they are being used, and the role of the cloned code in the software system.

In some cases, documentation, either in the source code or externally, explicitly states the

reasons for code cloning. While this is a subjective assessment, the author has experience

as a developer and has a strong understanding of software design and maintainability. In

regards to how the code clones are created in a pattern, the description includes what

the new artifacts will be rather than the tools that are used to perform the code cloning.

The information described in these patterns is drawn from the case studies the author has

performed.

To describe code cloning patterns the following template will be used:

• Name. Describes the pattern in a few words.

• Intent. The intention for using the code cloning pattern.

• Motivation. Why developers might use this cloning pattern rather than other forms

of reuse.

• Advantages. Description of the benefits of this pattern of cloning compared to

other methods of reusing behaviour.

• Disadvantages. Description of the negative impacts of this pattern of cloning.

• Management. Advice on how this type of cloning can be managed.

• Long-term issues. Issues to be aware of when deciding to use a cloning pattern as

a long-term solution.
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• Structural manifestations. How this type of cloning pattern occurs in the system.

This section describes the scope and type of code copied, as well as the types of

changes that are expected to be made.

• Examples. Examples from real software systems, such as the GNU spreadsheet

application Gnumeric version 1.2.12 (observed during the case study described in

Chapter 5), the RDBMS PostgreSQL 8.0.1, the web server Apache httpd 2.0.49, and

the Java mail client Columba version 1.2.

The code cloning patterns have been divided into four related groups: Forking, Tem-

plating, Customization and Exact match. This partitioning is based on the high-level

motivation for the cloning pattern. Forking is cloning used to bootstrap the development

of similar solutions, with the expectation that evolution of the code will occur somewhat

independently, at least in the short term. A major motivation for forking is to protect

system stability, such as allowing for experimentation to occur away from the stable core

of the system. In these types of clones, the original code is copied to a new source file

and then independently developed. Templating is used as a method to directly copy be-

haviour of existing code when appropriate abstraction mechanisms, such as inheritance or

generics, are unavailable or insufficient. Templating is used when there is a common set

of requirements shared by the clones, such as behaviour requirements or the use of a par-

ticular library. When these requirements change, all clones must be maintained together.

Customization occurs when currently existing code does not adequately meet a new set of

requirements. The existing code is cloned and tailored to solve this new problem. Exact

match code cloning is typically used to replicate, verbatim, simple solutions or repetitive

concerns within the source code.

4.2 Forking

Forking patterns often involve large portions of code with the intention that the resulting

code clones will need to evolve independently. This pattern of code cloning can be used

as a “springboard” from which to start development and works well in situations where

the commonalities and differences of the end solutions are not clear. At a later time when
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the new code has matured, it may be reasonable to refactor any remaining code clones.

This section describes three forking patterns that have been observed in software systems:

hardware variation, platform variation, and experimental variation.

4.2.1 Hardware variation.

Intent. Rapidly develop support for new hardware devices while maintaining backwards

compatibility with related pre-existing hardware devices.

Motivation. When creating a new driver for a hardware family, a similar hardware

family may already have an existing driver. However, there are often non-trivial

differences in the functionality and features between families of hardware, making it

difficult and risky to modify the existing code while preserving compatibility for the

original target.

Advantages. Through code cloning, evolvability and testability of code can be improved

over changing the existing driver as testing the driver on older hardware devices can

be difficult and time consuming. Cloning the existing driver prevents the need for

this type of testing.

Disadvantages. Maintainability can be negatively affected by code growth. This can

be a particular issue with this pattern of cloning because entire files or subsystems

are copied. In addition to the general maintenance issues such as propagating bug

fixes, cloned drivers may introduce unexpected feature interactions, particularly in

the realm of resource management.

Management. Groups of cloned drivers should be clearly identified to facilitate propa-

gation of bug fixes within the group.

Long-term issues. Dead code can slowly creep into the system unless care is taken to

monitor which drivers are still actively supported.

Structural manifestations. Drivers are commonly packaged into a single file. Develop-

ers usually copy the entire file, which is then modified to implement the specifications

of new device.
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Examples. The Linux SCSI driver subsystem has several examples of this pattern of

cloning [32]. In one example, the file NCR5380.c was copied to the file atari NCR5380.c

and adapted for the Atari hardware device. This new file was then cloned as

sun3 NCR5380.c to be adapted to the Sun 3 platform. Another example of driver

cloning is the file esp.c which has been copied and modified in NCR53C9x.c. What

is interesting in the Linux SCSI drivers is that the authors creating the new file ex-

plicitly reference the file they have cloned within the source code comments, making

the chain of replications easily verified.

4.2.2 Platform variation.

Intent. Reduce code complexity introduced by supporting different APIs and reduce

change coupling when supporting the independent evolution of external dependencies.

Motivation. When porting software to new platforms, low-level functionality responsible

for interaction with the platform will need to change. Rather than writing portable

code using branching or pre-processor directives, it is sometimes easier, faster, and

safer to clone the code and make a small number of platform-specific changes. In

addition, the complexity of the possibly interleaved platform-specific code may be

much higher than several versions of the cloned code, making code cloning a better

choice for maintenance. Hardware variation may, in some respects, be considered

a more specific example of platform variation. We have chosen to include the two

patterns separately as the body of code that is maintained in the two instances

is often quite different in form. Often, drivers are comprised of lower-level source

code, intermixed with large portions of assembly or device specific protocols (such as

operations on a SCSI or USB attached scanner). In contrast, source code specialized

to support a specific software platform, such as an operating system, is comprised of

interactions with an API that can be compiled and linked against. The differences

in the type of source code in these artifacts raises different types of maintenance

concerns. For example, hardware drivers often contain a large portion of constants,

often in the form of arrays of hexadecimal values, used to communicate commands

and configurations to hardware devices. Managing changes between code clones in the



96 Toward an Understanding of Software Code Cloning as a Development Practice

case of hardware variations includes managing these constants whose values cannot

be tested without the physical hardware or a considerably complex testing harness.

Advantages. Comprehensibility and maintainability of source code may be improved

because complex code, inherent to platform-optimized code that is interleaved, is

avoided. Evolvability is also enhanced because stability for currently supported plat-

forms is maintained. As platforms are likely to evolve independently, maintaining

support for one platform will not affect the stability of the code for other platforms.

Disadvantages. Maintainability can also can also be negatively affected. The code will

evolve along two dimensions: the requirements of the software and the support of

the platform. Bug fixes may be difficult to propagate as it may not be clear how or

if the bugs are present in each version of the code. Changes to the interface of the

platform-specific code become more problematic because these changes will need to

be performed across several versions of the library.

Management. The platform-specific interaction should be factored out as much as

possible to minimize the amount of cloning necessary. When creating the code clones,

the variations should be well documented to facilitate bug fix propagation.

Long-term issues. As groups of platform-specific code clones grow, the interface they

expose to the software internals will become more brittle and difficult to change

because of the number of places where changes will need to be made. While this is

a common problem that can be said for most code clones, it is particularly relevant

here as platform variation clones will, in many cases, be part of an abstraction layer

that advertises a concise set of behaviours. As a consequence it is vital to ensure that

the observable behaviour (from the perspective of the source code dependent on the

API) from each of the clones remains consistent. This is not to say that the internal

workings of the code clones will not diverge, but their side effects and post-requisites

must be consistent with each other.

Structural manifestations. Platform-specific variations often exist in the same sub-

system. They often manifest as either cloned files or subsystems.
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Examples. Platform variation cloning is apparent in several subsystems within Apache’s

portable library, the Apache Portable Runtime (APR). This subsystem is a portable

implementation of functionality that is typically platform dependent, such as file and

network access. Two examples of this type of cloning are the fileio and threadproc

subsystems. In these two subsystems, there are four directories: netware, os2, unix,

and win32. threadproc has an additional subsystem beos. All of these directories

share some cloning that is easily detected by a clone detection tool, but there are also

code clones that are sufficiently different that clone detection tools do not detect the

similarity. In these cases, changes are typically characterized as insertions of addi-

tional error checking or API calls. With these changes, overall structure remains the

same, and in several cases cloned documentation exists providing further information

about the cloning.

4.2.3 Experimental variation.

Intent. Spring-board development of related or optimized features where the end com-

monalities are unclear and/or the cost of bug introduction in the core code is high.

Motivation. Developers may wish to optimize or extend pre-existing code but do not

want to risk stability of the core code. By forking the existing code, users can choose

to run the experimental code or the trusted stable code at deployment.

Advantages. This pattern can contribute to evolvability. The stability of the software

system is protected while still allowing users access to leading edge development.

Further, this eases product distribution by avoiding version control branches that

would require multiple releases to be downloaded by users if they wanted to switch

between the stable and experimental versions of a feature. Changes made to the

experimental fork can be merged with or replace the stable version at a later time.

Risk exposure and time-to-market may also be reduced in some cases.

Disadvantages. Merging code at a later point may be difficult if the corresponding stable

version continues to evolve independently, although this may not be a problem if the

experimental version is meant to be a replacement rather than a coexisting feature.
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Management. Care should be taken to maintain and synchronize the experimental ver-

sion closely with the stable version. Changes to the external behaviour of the existing

stable module will need to be monitored and introduced in the cloned experimental

code to maintain a consistent interface.

Long-term issues. As the original and cloned code evolves, consistent maintenance may

become more difficult. Documentation of the differences should be maintained to aid

program comprehension.

Structural manifestations. The cloning pattern will appear as a cloned file, subsystem

or class. It may even be labelled as an experimental development effort, as in the

case of several Apache modules [54].

Examples. An example of experimental variation can be found in the Apache httpd

web server. In the multi-process management subsystem, the subsystem worker was

cloned multiple times as threadpool and leader [54]. The cloned subsystems are

experimental variations of worker that are designed to provide better performance.

Because they are separated from worker, the web server remains stable while opti-

mizations are being developed.

4.3 Templating

Templating occurs when the desired behaviour is already known and an existing solution

closely satisfies this need. Often templating is a matter of parametrization, as opposed to

the complex insertions and deletions present in forking patterns. For example, one might

use this pattern of cloning to achieve the same behaviour for floats and shorts in the C

programming language. In this case, the expected changes to the code are only the variable

types. When developers use cloning patterns of this type, the evolution of the clones is

often expected to be closely related. In the sections that follow four templating patterns are

discussed: boiler-plating due to language inexpressiveness, API/Library protocols, general

language or algorithmic idioms, and parameterized code.
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4.3.1 Boiler-plating due to language inexpressiveness.

Intent. Overcome language limitations for behaviour reuse when language features are

unavailable or unsuitable to permit a maintainable abstraction of the original source

code.

Motivation. Due to language constraints, reusing trusted and tested code may be diffi-

cult to achieve when the supported data structures of the target code do not match

existing implementations. This can occur when polymorphism cannot be used.

Advantages. Technology limitations that hinder reuse are overcome. This pattern can

make reuse of trusted code possible. It allows for consistent behaviour for related

concepts, improving program comprehensibility.

Disadvantages. Maintainability can be negatively affected due to code growth and

change propagation, possibly leading to increased maintenance effort. These code

clones will be expected to evolve very closely, and any maintenance efforts increase

with each code clone. With appropriate tool support, one would expect changes to

one code clone could be automatically applied to all code clones.

Management. Documentation or other forms of an explicit link to all code clones is

important to ensure that all clones are modified together. As suggested by Duala et

al., these links should be tracked over the evolution of the software system [24]. Tools

and methodologies such as Linked Editing [87] should be used to ensure consistent

changes are made to all code clones. Another approach to managing these clones is

to create the code at build time using a source code generator [41]; in this case, the

code clones do not come into existence until the system is being built.

Long-term issues. If maintenance is not performed rigorously, the code clones may

become unintentionally different making debugging and testing difficult.

Structural manifestations. Typically these code clones are closely located in the soft-

ware system, either in the same file or in the same subsystem, with names that are

also very similar.
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Examples. Boiler-plating can be readily found in most software systems. An example of

where this pattern was used in PostgreSQL is the contrib/btree gist subsystem

where there are a great deal of code clones whose only modification is the data type

of the procedure parameters. Figure 4.1 demonstrates an example of this pattern of

cloning.

4.3.2 API/Library protocols.

Intent. Use existing source code as a template for a task that is repeated and parame-

terizable but may be difficult to refactor because it is context dependent.

Motivation. Often the use of particular application program interfaces (APIs) require

an ordered series of procedure calls to achieve desired behaviours. For example, when

creating a button using the Java Swing API, a common order of activities is to create

the button, add it to a container, and assign the action listeners. Similar orderings

are common with other libraries as well. The order of activities to successfully set

up a network socket in C on Unix systems is well established. Developers will often

copy-and-paste these sequences and then parameterize them appropriately for their

particular problem.

Advantages. Development time can be improved as novice users of the API or library

can learn from existing code using cloned code as a form of recipe. Experienced users

can reduce coding effort by quickly copying and modifying the code. The copied code

can flexibly be changed, and often the size of the code clones may not warrant further

abstractions.

Disadvantages. Evolvability in terms of maintaining compatibility with newer API

versions can be negatively affected as the impact of changes to the library or API is

increased with every clone.

Management. Locate prevalent cloning of this type and extend the API or library with

appropriate abstractions or create wrapper libraries when modification of the library

is not possible. For code clones of this type, rigorous review of the code clones can
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static PyObject *

py_new_RangeRef_object (const GnmRangeRef *range_ref)

{

py_RangeRef_object *self;

self = PyObject_NEW (py_RangeRef_object, &py_RangeRef_object_type);

if (self == NULL) {

return NULL;

}

self->range_ref = *range_ref;

return (PyObject *) self;

}

(a)

static PyObject *

py_new_Range_object (GnmRange const *range)

{

py_Range_object *self;

self = PyObject_NEW (py_Range_object, &py_Range_object_type);

if (self == NULL) {

return NULL;

}

self->range = *range;

return (PyObject *) self;

}

(b)

Figure 4.1: An example of boiler-plating in Gnumeric
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ensure that the cloned code likely to be used as an exemplar is of high quality and

conforms to the API/library use best practices.

Long-term issues. Changes to the API will require changes at multiple sites, and

these changes may be problematic in terms of consistency and testing. Using the

appropriate abstractions may decrease the maintenance effort by centralizing the

required changes.

Structural manifestations. Code clones created using this pattern are typically scat-

tered throughout the source code, and are often small in size.

Examples. In the mail client Columba, this pattern is readily found in the GUI code

where buttons are added. A sequence of three operations that create a button, set its

action listener, and set its action command is present throughout the Columba system

where GUI code is present. An example from the Gnumeric case study presented in

Chapter 5 is shown in Figure 4.2.

4.3.3 General language or algorithmic idioms.

Intent. Reuse a generally accepted solution to a ubiquitous problem (e.g. allocating

memory and checking the returned value).

Motivation. Programming idioms are clear and concise implementations of particular

solutions. These idioms tend to be self documenting for language experts as they

implicitly, through a generally accepted interpretation, provide information as to

how and why the implementation is done in this way. Idioms are well known in

both research and industrial publications. Entire books have been written on them

[21], and they remain a popular topic on web-based discussion forums. They can be

conventional wisdom in the programming community, such as checking the return

value after allocating memory in C programming, or personal dialects of individual

developers.

Advantages. Idioms provide structured, standardized solutions to common problems.

These solutions become self documenting, improving program comprehensibility.
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w = glade_xml_get_widget (state->gui, "ok");

g_signal_connect_swapped (G_OBJECT (w),

"clicked",

G_CALLBACK (cb_do_print_ok), state);

w = glade_xml_get_widget (state->gui, "print");

g_signal_connect_swapped (G_OBJECT (w),

"clicked",

G_CALLBACK (cb_do_print), state);

w = glade_xml_get_widget (state->gui, "preview");

g_signal_connect_swapped (G_OBJECT (w),

"clicked",

G_CALLBACK (cb_do_print_preview), state);

w = glade_xml_get_widget (state->gui, "cancel");

(a)

button = glade_xml_get_widget (state->gui, "ok_button");

g_signal_connect (GTK_OBJECT (button),

"clicked",

G_CALLBACK (cb_ok_button_clicked), state);

button = glade_xml_get_widget (state->gui, "apply_button");

g_signal_connect (GTK_OBJECT (button),

"clicked",

G_CALLBACK (cb_apply_button_clicked), state);

button = glade_xml_get_widget (state->gui, "cancel_button");

g_signal_connect (GTK_OBJECT (button),

"clicked",

G_CALLBACK (cb_cancel_button_clicked), state);

/* Make <Ret> in entry fields invoke default */

entry = glade_xml_get_widget (state->gui, "entry1");

(b)

Figure 4.2: An example of API/Library protocols in Gnumeric
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Disadvantages. This code pattern can lead to bug introduction if not carefully used.

Inconsistencies or faulty implementations of programming idioms may be easily over-

looked. Incorrect or inefficient idioms (also known as anti-idioms) can also be copied,

degrading the quality of the code.

Management. Anti-idioms — that is, idioms that contribute to poor quality such as

inefficiency — should be located and removed. Correct idioms should be located and

verified for consistent implementation.

Long-term issues. None.

Structural manifestations. These idioms tend to be distributed throughout the code,

as code snippets.

Examples. A common idiom in Apache is how a pointer to a platform-specific data

structure is set in the memory pool, shown in Figure 4.3. At least 15 occurrences

of this idiom can be found in the Apache APR subsystem. First, the code checks if

the data structure containing the pointer exists in the memory pool, and if not space

is allocated for it, then the platform-specific pointer is assigned. This idiom exists

because the APR library uses similarly defined data structures to point to platform-

specific ones, pthreads for example. These structures also store platform-specific

data that is relevant to the concept, such as the exit status of the thread. A slight

variation to this idiom is that in some cases the code checks if the memory pool

exists, and returns an error if it does not. The lack of such error checking in other

related code clones is likely a bug.

4.3.4 Parameterized code

Intent. Reuse an existing solution that could be parameterized as a function.

Motivation. When implementing a solution to a common problem, it is often the case

that this solution can be modified to solve a new problem by changing only a few

identifiers or literals in the code. This commonly occurs when implementing basic

solutions for very similar problems, such as opening a file descriptor that points to
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if (pool == NULL) {

return APR_ENOPOOL;

}

if ((*key) == NULL) {

(*key) = (apr_threadkey_t *)apr_pcalloc(pool, sizeof(apr_threadkey_t));

(*key)->pool = pool;

}

(a)

(*new) = (apr_thread_t *)apr_palloc(pool, sizeof(apr_thread_t));

if ((*new) == NULL) {

return APR_ENOMEM;

}

(*new)->pool = pool;

(b)

Figure 4.3: Two examples of idioms in Apache httpd
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stdout, stderr, or stdin. In this case, developers may implement a parameterized

function that takes an argument that indicates which descriptor to open. On the other

hand, developers may create a new function for each of the three file descriptors.

Advantages. Improves comprehensibility. In some cases, this type of cloning can be

used to ensure variable names closely match the semantics of the data they represent.

This is particularly true with mathematical equations that have commonly accepted

variable naming conventions.

Disadvantages. Maintainability of the source code may be decreased. This type of code

may contribute to unnecessary growth of the software system when used excessively.

Unlike boiler-plating due to language inexpressiveness whose use may be unavoidable,

parameterized code can often be avoided using trivial abstractions. Unlike idioms

whose use is likely associated with small code snippets, it parameterized code may

represent larger code fragments with larger impacts on source code size.

Management. The behaviour of these clones is expected to evolve together. Refactoring

the code is recommended if such an action does not reduce comprehensibility or

traceability. Otherwise documentation of the clone relationship should be attached

to the clones.

Long-term issues. These clones most often contribute to needless code growth, some-

thing that can negatively affect the comprehensibility of the source code.

Structural manifestations. These clones most commonly involve entire functions that

are within very close proximity of each other.

Examples. An example of this cloning pattern is shown in Figure 4.4. This example

comes from plugins/fn-eng/functions.c in Gnumeric.

4.4 Customization

Customization often arises when existing code solves a problem that is very similar to the

current task at hand, but additional or differing requirements create the need for extension
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gnumeric_oct2bin (FunctionEvalInfo *ei, GnmValue const * const *argv)

{

return val_to_base (ei, argv[0], argv[1],

8, 2,

0, GNM_const(7777777777.0),

V2B_STRINGS_MAXLEN | V2B_STRINGS_BLANK_ZERO);

}

(a)

gnumeric_hex2bin (FunctionEvalInfo *ei, GnmValue const * const *argv)

{

return val_to_base (ei, argv[0], argv[1],

16, 2,

0, GNM_const(9999999999.0),

V2B_STRINGS_MAXLEN | V2B_STRINGS_BLANK_ZERO);

}

(b)

Figure 4.4: An example of parameterized code in Gnumeric
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or modification of the behaviour. In some cases, such as concerns about system stability

or code ownership, existing code cannot be modified in place to encompass the additional

behaviour. In these cases, code may be cloned and customized to suit the specific develop-

ment task. These patterns differ from templating in that customization requires more than

simple parametric changes to the copied code. For example, lines of code may be inserted

or removed from the clone. While other forms of cloning, such as templating and forking

typically have the goal of maintaining the original behaviour, customization is a reuse of

behaviour often without requirements that force the observable behaviour to remain the

same or similar. The sometimes unstructured editing that occurs in customization clones

sets them apart from other clones in important ways: their differences can be harder to

spot, the effects of the changes on behaviour may be harder to understand, and the code

clones may be harder to detect. In this section we describe two customization patterns:

bug workarounds, and replicate and specialize.

4.4.1 Bug workarounds.

Intent. Overload existing code to fix a bug that for some reason cannot be addressed

directly.

Motivation. Due to code ownership issues or unacceptable exposure to risk, it may

be difficult to fix a bug within the original source, so workarounds may be neces-

sary. Copying the code and fixing the bug to overload the broken code may be the

only available solution. In other situations, it may be possible to guard the points

where the buggy code is used. This guard is then copied as part of the usage of the

procedure.

Advantages. Improves time-to-market. Problems can be solved without requiring re-

testing of other code that may be external to the organization. This solution can

allow for progress in development, although it should only be a temporary measure.

Disadvantages. Maintainability is reduced and evolvability may also be reduced. The

source of the bug is not addressed, causing further replication of code or, even worse,

new code may not even address the existence of the bug. Also, changes to the
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behaviour of the buggy code, such as fixing the bug, may cause confusion if this

pattern of code cloning is not made explicit.

Management. Once the original bug is fixed, remove any code clones associated with the

bug. Planning for this will minimize issues for clone removal, in particular detection

of the code clones.

Long-term issues. The code clone may not be removed when the bug is fixed. This

forgotten fix may confuse maintenance efforts later on.

Structural manifestations. These clones can appear as locally overloaded procedures

or methods, or as procedures with very similar names to the original source. Cloned

guarding statements may appear at points where buggy source code must be used.

Examples. The supervising professor of this dissertation, Michael W. Godfrey, wrote

a Java fact extractor that was built around the internals of Sun’s javac compiler.

When he found a small bug in the javac source code, he cloned the offending code

into a descendant class and fixed the bug there. Because he didn’t have write access

to the class that contained the offending method, he could not make bug fix directly

in the javac code-base (he created a bug report instead).

In PostgreSQL there exists an example of code cloning of a guard for the event

of an error due to bugs. In this case, the source code is dependent on MinGW,

an external set of libraries required for platform compatibility. This library has

a bug in it that has not been fixed for the current release. Because of this, the

PostgreSQL developers cloned a three line solution three times in three different

files: backend/commands/tablespace.c, port/copydir.c, and

backend/access/transam/xlog.c.

4.4.2 Replicate and specialize.

Intent. Adapt an existing solution to solve a new problem that requires similar but

distinct behaviours.



110 Toward an Understanding of Software Code Cloning as a Development Practice

Motivation. As developers implement solutions, they may find code in the software

system that solves a similar problem to the one they are solving. However, this

code may not be the exact solution, and modifications may be required. While the

developer could generalize the original code, this may have a high cost in testing

and refactoring in the short term. Code cloning may appear to be a more attractive

alternative, and is commonly used in practice to minimize costs associated with risk

[22].

Advantages. Maintainability is improved when this pattern is used to avoid complex ab-

stractions that may have a high cognitive cost during development and maintenance

[87]. Time-to-market and risk exposure can also be affected. This pattern reduces

immediate costs in testing and refactoring existing code that may be entrenched in

the software system.

Disadvantages. Maintainability can also be negatively affected, particularly in the cases

of change propagation. The long-term costs of finding and maintaining these code

clones could outweigh the short term gains.

Management. Creators of the newly cloned code should carefully document the inten-

tion of the specializations. If the appropriate abstractions cannot be made, explicitly

linking the code clones through documentation or tool support can help to ensure

consistent maintenance. Because the behaviour of the original code has been changed,

any refactorings to remove the code clone should include stringent regression testing.

Alternatively, deprecating the original code and transitioning to the abstraction will

defer testing costs and protect system stability.

Long-term issues. In this pattern, differences in the code clones may make locating

them difficult, making maintenance of these code clones more costly. The differences

between cloned segments of code may mean there is no clean way of unifying them.

This can make the refactoring process error prone, so it is advisable that a strong

testing mechanism be in place before refactoring is performed. In many cases, the

difficulty of abstracting the code clones will require alternative solutions. Long-term

maintenance of these code clones can be greatly facilitated by linking all cloned
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segments of code, either via documentation or meta-data that can be used to strictly

enforce careful maintenance.

Structural manifestations. These code clones are often snippets or procedures located

near each other, but can be more widely distributed as well. In some cases these

clones can be particularly hard to detect due to the changes that have been made.

Often the copied code contains control structures, suggesting that developers use

code clones to reuse complex logic, an observation also noted by Kim et al. [57].

Examples. This pattern is a common form of cloning that we have found in our

studies. In one example in Gnumeric, we see this pattern in use for developing

the procedures that build the locale and character encoding selection menus. The

procedures can be found in the files src/widgets/widget-charmap-selector.c

and src/widgets/widget-locale-selector.c. The control flow of both proce-

dures is very similar but distinct. Another example of this pattern is shown in

Figure 4.5. This example is taken from the httpd study described in this the-

sis, located in the files httpd-2.2.4/srclib/apr/file io/unix/readwrite.c and

httpd-2.2.4/srclib/apr/network io/unix/sendrecv.c. Here we see the action

within the do/while loop has been changed. Because of the small size of the clone,

the changes made to it, and their near proximity within the source code, these clones

are considered good. Their proximity leads us to believe that updates to the clones

are unlikely to be overlooked. The abstraction would be not only be non-trivial to

implement, but would also unnecessarily create dependencies on a higher level library

call that would be used only for these two subsystems, possibly cluttering the higher

level system design.

4.5 Exact Matches

Exact matches often arise when a particular problem is repeated within the software system

but it is either too small to make the creation of an abstraction worthwhile or is incomplete

when taken out of the context of its neighbouring source code. In this section two exact

match clone patterns will be discussed: cross-cutting concerns and verbatim snippets.
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apr_status_t arv = apr_wait_for_io_or_timeout(thefile, NULL, 1);

if (arv != APR_SUCCESS) {

*nbytes = bytes_read;

return arv;

}

else {

do {

rv = read(thefile->filedes, buf, *nbytes);

} while (rv == -1 && errno == EINTR);

}

(a)

apr_status_t arv = apr_wait_for_io_or_timeout(NULL, sock, 1);

if (arv != APR_SUCCESS) {

*len = 0;

return arv;

} else {

do {

rv = recvfrom(sock->socketdes, buf, (*len), flags,

(struct sockaddr*)&from->sa, &from->salen);

} while (rv == -1 && errno == EINTR);

}

(b)

Figure 4.5: An example of replicate and specialize in Apache httpd
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4.5.1 Cross-cutting concerns

Intent. Replicate pervasive semantic properties throughout the system.

Motivation. Cross-cutting concerns are semantic properties of the software systems

that cut across otherwise unrelated functionality. Typical examples of cross-cutting

concerns are access control, logging, and debugging [56]. Clones involving these

concerns are typically unavoidable in programming languages based on traditional

programming paradigms, such as C or Java, because they do not have the appropriate

language mechanisms to abstract this code.

Advantages. There is little advantage to cloning cross-cutting concerns: they are typi-

cally unavoidable. However, like idioms, cross-cutting concerns can clearly document

semantics of the code, improving comprehensibility. In the case of cross-cutting

concerns checking assertions, cross-cutting concerns document the preconditions or

post-conditions of the code they are near.

Disadvantages. Evolvability can be negatively affected. Clones of cross-cutting concerns

can entrench design decisions as they create repeated dependencies on the concern

and its current design. Changes to the design of the modules on which the concern

is dependent on will have broad reaching impacts to all the clones involving it.

Management. Aspect-oriented programming is a recent solution to this type of cloning.

In this case, the clones are completely removed from the main application code, and

are maintained in central location, separate from the rest of the code; when the system

is later compiled, the language processing tools weave each aspect into appropriate

areas in the source. This solution may remove certain types of maintenance problems

but also removes the implicit documentation that exact match cross-cutting concerns

provide. Transformation languages and linked editing can also be used to maintain

the code. These methods have the advantage of leaving the code in place and with

it the implicit documentation.

Long-term issues. The more often these concerns are cloned, the more brittle the

concern will become making improvements and design changes increasingly difficult.
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const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);

if (err != NULL) {

return err;

}

Figure 4.6: An example of a cross-cutting concern in Apache httpd

Structural manifestations. These code clones are often snippets scattered throughout

the software system. The examples that we have seen are are exact copies and are

small fragments of code.

Examples. A common example in Apache is the checking of the command context before

executing security sensitive functionality. This clone is copied verbatim throughout

the software system. An example of a cross-cutting concern that is used throughout

the server subsystem of Apache httpd is shown in Figure 4.6. This concern ensures

the correct security requisites are met before continuing to execute a function.

4.5.2 Verbatim snippets

Intent. Reuse the exact solution of an existing problem with no modification (neither

parameterized nor customized) required.

Motivation. Often small repetitive fragments of logic must be reused throughout the

source code (e.g. branching control). These fragments, not having significant se-

mantics on their own, will be copied rather than implemented as reusable functions.

These differ from cross-cutting concerns in that they do not implement a specific

aspect or property of the system, rather they are general purpose fragments.

Advantages. Comprehensibility is improved in the form of conceptual cohesion. Con-

ceptual integrity of modules or functions is maintained by keeping code simple and

close together. This pattern can also help to reduce interface bloat by avoiding the

accumulation of a many small procedures.



Chapter 4: Patterns of Cloning 115

Disadvantages. As with all code, assumptions are made about the data that is being

manipulated. Because these clones can be difficult to find due to their small size,

changes that affect these assumptions may be difficult to propagate.

Management. Often these snippets cannot be refactored. Because they often constitute

only incomplete concepts and are small in size, it is unlikely this form of code cloning

poses a serious maintenance risk. If it becomes apparent that certain segments of

code that do constitute complete concepts are copied often, they should be factored

out as helper functions or macros.

Long-term issues. In most cases these code clones are small and probably do not have

a large impact on the overall system design. However, over time this cloned code can

build up making it difficult to remove, or making data structures difficult to change

due to the amount of code that is dependent on them.

Structural manifestations. These clones generally appear as small fragments of code

scattered throughout the code base. Typically the number of similar code fragments

is low.

Examples. These clones are readily found in many software systems. Common examples

include the initial lines of for loops and fragments of error or condition checking. An

example of such a clone is shown in Figure 4.7, taken from Apache httpd 2.2.4, in

the file httpd-2.2.4/srclib/pcre/pcretest.c. Verbatim snippets can also occur

as cloned data structures where the entire region is copied and pasted.

4.6 Summary

To evaluate and maintain code clones within a software system, it is necessary to under-

stand the decisions behind creating individual code clones, an area of research that has

largely been overlooked in the literature. Over-simplified generalizations about the harm-

fulness of cloning does little to aid developers and maintainers deal with existing clones

or understand the trade offs associated with creating new ones. To better understand
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for (i = 0; i < sizeof(utf8_table1)/sizeof(int); i++)

if (cvalue <= utf8_table1[i]) break;

(a)

for (j = 0; j < sizeof(utf8_table1)/sizeof(int); j++)

if (d <= utf8_table1[j]) break;

(b)

Figure 4.7: An example of verbatim in httpd

code cloning as it exists in real software systems and to help software practitioners make

justifiable decisions, this chapter presents common patterns of code cloning, derived from

qualitative analysis of several open source software systems, along with qualitative advan-

tages and disadvantages, management trade offs, and real life examples of cloning. These

patterns are intended to provide a more descriptive view of code cloning resulting in a

richer vocabulary to discuss the topic as well as evaluate the quality of software systems

in practice.

These patterns may be used to provide guidance in software development and mainte-

nance decisions regarding code clones. While code abstraction, polymorphism, and other

generally accepted methods of behaviour reuse are taught by most software development

educators, their negative qualities (such as high code complexity) and limitations seem to

be overlooked. Until now, patterns such as boiler-plating due to language inexpressiveness

and experimental variation have not been discussed as plausible solutions to code reuse in

the appropriate settings. This oversight may leave software developers without the nec-

essary tools to most effectively solve particular types of behavioural reuse problems. Not

unlike design patterns, documented code cloning patterns provide more information and

context to developers and help them avoid reinventing the decision making process.

The patterns presented in this chapter may also be useful as an additional metric for

code quality evaluations. Categorizing code clones according to these patterns can provide

a means of determining whether or not the code clones are useful or harmful artifacts.

Platform variation clones of essentially identical, co-evolving platform dependent code
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may be considered unreasonable. On the other hand, if the two platforms are quite similar

but are not expected to evolve together the decision to produce a code clone is likely

well founded. Understanding the rationale behind the clone, in this example trying to

implement similar behaviour on two similar platforms, provides clues to how to evaluate

the quality of the decision.

This catalogue of code cloning patterns is not presented as a complete, final set of

cloning patterns. Further studies may reveal new patterns of cloning. The format and

organization of the patterns is intended to permit flexible growth. New patterns can either

be added to the existing groups of patterns, or new groups of patterns can be added. As

a means of facilitating referencing and understanding code cloning patterns, the catalogue

prescribes the structure of the pattern documentation with the intention that patterns are

consistently documented. Future work in this area is required to test effectiveness of this

structure in both teaching the patterns to software practitioners as well as facilitating the

addition of new ones.



Chapter 5

Empirical Evaluation

5.1 Introduction

In this thesis we present a set of code cloning patterns that recur in source code. Prior to

this work, there was little research to improve our understanding of code clones in software

and their implications on software development and maintenance. The literature gives us

little or no concrete evidence about the common motivations behind code clone usage: most

motivations cited in literature appear as either anecdotes or plausible scenarios without

empirical or concrete support (see e.g., [15, 26, 44]). Further, many of these motivations

cast a negative light on code clones, often presenting code cloning as a severe problem in

software systems. Beginning with an exploration into the motivations behind code cloning

in real software systems, we discovered a recurring set of similar code cloning activities

that we presented as code cloning patterns in Chapter 4. These patterns present common

forms of cloning, connecting motivations to various manifestations of the phenomena, with

concrete examples to support their relevance to real software development activities. These

patterns are intended to further our knowledge about how code cloning occurs in software

and provide structure for analyzing code cloning in software systems. The patterns provide

some indication that not all clones are equally “bad” and provide a means to measure the

extent of cloning in a software system and the severity of code cloning (if it is a problem

at all).

While these patterns are supported by concrete examples found in real software systems,

118
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as yet we have not shown that these patterns are relevant or recurring outside of the

examples listed in the previous chapter, evidence that is necessary to answer the second

question of this thesis:

Question 2 Are there common patterns of code cloning that occur in the development of

software systems?

To answer this question, we must measure the degree to which the code cloning patterns

listed in Chapter 4 recur in a software system. As part of this evaluation, we also investigate

the third question of this thesis:

Question 3 How are code cloning patterns used in practice, and to what extent is their

use appropriate?

By evaluating whether code clones in each pattern are harmful to the quality of the

source code of a software system, we can gain insights into whether or not certain patterns

of cloning are harmful and whether or not code clones are harmful in general.

The study described in this chapter provides empirical evidence to support the propo-

sition that the cloning patterns described in this thesis are relevant to software systems

in the real world. We have also found that the widely accepted belief that code clones

are harmful is not true for all code clones. The study results suggest certain patterns of

cloning are often used in constructive ways while other patterns are often used to create

harmful clones.

The rest of this chapter is organized as follows: Section 5.2 reviews the clone detection

and analysis tools used to evaluate the patterns described in Chapter 4 as well as the

classification criteria used to classify each sample, Section 5.3 describes the two study

subjects, Section 5.4 describes the sample selection used, Section 5.5 describes the results

of the case study, Section 5.6 relates the study results to the thesis questions, Section 5.7

discusses the threats to the validity of the case study presented in this chapter, and Section

5.8 concludes this chapter.
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5.2 Study Setup

The purpose of this study is to demonstrate the degree to which the patterns presented in

Chapter 4 exist in software systems and to assess the relative harmfulness of code clones.

To measure the prevalence of the cloning patterns in source code we performed a case

study of cloning in two open source software systems: Apache httpd and Gnumeric. The

study performed was a multiple case, descriptive case study [95]. Two propositions were

formulated:

1. Not all code cloning is harmful; cloning may be used in sound design decisions.

2. The cloning patterns described in Chapter 4 appear with non-trivial frequencies in

software systems.

We began the study using the set of cloning patterns that were described in our original

report on this work [53], and we set out to categorize a random sample of candidate code

clones from each of the study subjects. However, as a result of performing this study we

discovered several new cloning patterns: parameterized code clones, cross-cutting concerns,

and verbatim snippets. We subsequently added these to our revised pattern set — the one

described in Chapter 4 — and revised the results of the study to be consistent with the

revised set.

In this section four aspects of the study setup are discussed: the clone detection method-

ology, the granularity of the sampling and analysis, the clone presentation, and the classi-

fication criteria.

5.2.1 Clone Detection

The candidate clones were detected using the CLone Interpretation and Classification Sys-

tem (CLICS) clone detection tool described in Section 3.5. This tool locates common

sub-strings within the code using a parameterized string matching method based on suffix

trees similar to the clone detection tools CCFinder [47] and clones [62] described in Chap-

ter 2. We chose to use parameterized sub-string matching based on parameterized token

streams because this method has been shown to have the highest recall compared to other

clone detection methods [16, 62]. We chose recall as the most important property when
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choosing a clone detection tool because we wanted to ensure that we were able to sample

a large variety of clones at the cost of a more time consuming study.

5.2.2 Sample Selection and Clone Presentation

In this study we chose to use Regional Group of Clones (RGCs), described in Section 3.5,

as the unit of analysis rather than individual clones. In our previous work, we found that

cloned code is often modified in non-trivial ways, causing the clone detection tools to detect

several individual clones with breaks between them. These groups of clones in reality are

part of a single larger clone. RGCs are better representations of cloning than individual

code clones because they present these groups of clones as a single clone, providing more

context for each code clone as well as results that more accurately reflect the cloning

occurring in a software system. For example, a large number of small segments of code can

often be the result of a single code cloning action. The choice of analyzing clones in this

way is not directly related to how the candidate code clones are detected, but rather how

they are presented, as most clone detection techniques identify segments of similar code,

leaving differences as breaks in between the segments.

To sample the RGCs for categorization, we used a uniform random sample of the RGCs

that do not occur in the same region. We chose to not sample clones that occur in the

same region as experience suggests they are most often segments that would not be likely

candidates for refactoring or would be considered false positives. Figure 5.1 shows two

segments of code taken from the same procedure in the Apache httpd source code. In this

example, CLICS identified these code fragments as candidate clones. However, while they

follow similar logic, the fragments test different conditions, and assign different values and

return using different variables. While this is not a false positive, it is not a clone that

would be likely considered for refactoring. Because of their relatively high frequency in the

clone sets, using them in the studies would bias our results toward “good” clones.

The randomly sampled RGCs were presented in the CLICS graphical user interface

described in Chapter 3. Key features of the tool that were relevant to this study include

the ability to query for clones related to the ones being presented, visualization of the

differences in the code comprising the selected clone or RGC, highlighting of other clones

occurring between the two files, and automatic classification of clones via a taxonomy
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if (ret != 0) {

if (sql->trans) {

sql->trans->errnum = ret;

}

return ret;

}

if (!*results) {

*results = apr_pcalloc(pool, sizeof(apr_dbd_results_t));

}

(*results)->res = res;

(*results)->ntuples =

(a)

if (rv == 0) {

if (sql->trans) {

sql->trans->errnum = 1;

}

return 1;

}

if (!*results) {

*results = apr_pcalloc(pool, sizeof(apr_dbd_results_t));

}

(*results)->random = seek;

(*results)->handle =

(b)

Figure 5.1: Two clones occurring in the same region
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described in [52, 54]. Combined, these features provide contextual information to aid the

evaluation of cloning in a software system.

For the purposes of this study, the tool presents to the user a single randomly selected

RGC at a time. Figure 3.6 in Chapter 3 shows an example of how a random RGC is

presented to the user. In the upper left a tree indicates the automatic classification of the

cloning between the two regions. This classification indicates the relative location of the

clones in the software system, the type of region they occur in, the degree of similarity

between the two regions and possibly the type of code the clones occur in. For example,

the code clone shown in the figure occurs in the same file and the category function clone

indicates the detected clone covers more than 60% of the functions it occurs in.

On the right of Figure 3.6 we see the code encompassed within the two regions of the

RGC indicated by highlighted text. Using CLICS we can show the differences between

the two regions in addition to displaying the detected clone. The common tokens and

differing tokens are highlighted with different colours to make the changes in the candidate

code clone clear to the user. CLICS also highlights other clones occurring in the file

to provide additional context in understanding the clone presented (this feature is not

shown here). The lower left panel is used to annotate the clone according to the cloning

patterns described in Chapter 4. From this point, we can use the various features of CLICS

(described in Chapter 3) to understand the context and motivations of the clone.

5.2.3 Classification Criteria

In the case study, we performed a subjective classification of each of the randomly selected

RGCs. For each RGC presented, we rated four attributes of the RGC:

1. The likely effect of the clone on the quality of the software system.

2. The scope of the cloning (Does it cover the majority of the two regions in the RGC

or is the candidate code clone only a fragment of code?).

3. The high-level classification of the clone (forking, templating, customization, or exact

matches).

4. The low-level classification (the specific pattern).
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Rating how a code clone is likely to affect the software system is undoubtedly the

most controversial aspect of this study, and also the most subjective. We used a nominal

scale of four values: incidental, good, harmless, and harmful. Incidental clones are those

that cannot be refactored as they are already at the highest possible level of abstraction

and therefore are neither good nor harmful. Examples of these code clones that we have

observed reference a single function or multiple calls to the same function, and the param-

eters to that function are changed in a non-systematic way. In contrast, good, harmless,

and harmful code clones can be refactored. Good clones are clones we believed to have an

overall positive effect on maintenance and development. In the study below, if a code clone

was deemed to be good, we felt that certain quality attributes that were improved by the

clone, such as comprehensibility or evolvability, and the degree to which they were improved

had a larger contribution to overall source code quality than the quality attributes that

were negatively affected, such as the bug fix propagation. Harmful clones are the opposite

of good clones. Such clones we believe will have a negative effect on the maintainability

of software system. In our study, a clone was deemed to be harmful when we judged that

the overall negative effects on quality attributes of the source code outweighed the positive

effects. In effect, this is an assessment of the perceived net gain/loss to source code quality.

Harmless code clones are those clones that are likely to have no impact on maintenance

or development. In other words, there is no intrinsic value in abstracting the code clone,

nor does code cloning solve quality attributes such as evolvability or understandability of

the source code. Usually these code clones are small fragments, as small as a variable

assignment and single function call. We chose the term “harmless” as these code clones

are not strictly necessary (as many boiler-plating clones are) yet there is no advantage to

removing them.

In our rating of the harmfulness of the candidate code clone we tried to take into account

several considerations including the likelihood of the clones requiring co-evolution and how

difficult this would be to maintain, the likely complexity of abstract refactored code, and the

likely effects of code clones on understandability of the code. First, we asked how probable

it was that changes in one code segment of the clone would need to be propagated to the

other. This question is often most easily answered by determining what requirements the

code is most dependent on, and how many of those requirements are shared between the
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cloned code segments. If the cloned code involves concepts internal to the system (such

as managing memory, parsing data streams, converting arguments to the appropriate type

for a function call, etc.) then it is likely that the clones are strongly dependent on a similar

set of requirements and these segments of code will need to evolve together. For example,

clones that implement adding and removing items from a request queue will be comprised

of standard queue operations, plus error checking and data conversion code. In most

cases, these clones will need to maintain similar if not identical behaviour. Conversely, if

the cloned code acts primarily as an interface to independent external systems, then the

requirements of the cloned code segments are less likely to evolve together because it is

unlikely the two external systems are evolving together. An example of an external set

of requirements is the interface with database management systems such as PostgreSQL,

MySQL, and Oracle. While interaction with these systems is very similar, each system

has its own protocol for connection management and implements its own flavour of SQL.

Also, each system will add, remove, and change features independently. The developer of a

virtualization layer supporting these systems will have to decide how these commonalities

will be dealt with. In this case, code cloning is less likely to be harmful and more likely to

be beneficial as it enables maintainers to freely evolve the code. On the other hand, in the

case of the internal example the code clone is more likely to be harmful because changes

to the internal concepts will need to be reflected in all of the cloned code. Further, if the

source code in the segments of a code clone support a single external system, they should

be treated the same as an internal dependency as they will be expected to evolve together

in a similar fashion.

Our second consideration was evaluating the complexity of forming an abstraction to

refactor the code. There is evidence that abstractions can be harder to maintain than

managing code clones [87]. Forming abstractions for replicate and specialize clones can be

difficult if the modifications have been interleaved with the cloned code. In cases where the

code is already complex, forming abstractions may only exacerbate the complexity. On the

other hand, when an obvious abstraction exists, such as when the specialization is restricted

to the end of the code clone, it is likely harder to maintain the clone than maintaining the

straightforward abstraction. It is important to note that the task of unifying the candidate

code clone must be considered in the context of all related code clones (the code clone class)
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rather than just the two segments comprising the code clone being inspected. If several

code clones exist with unique specializations in varying locations the logical branches to

deal with these variations can become very complex, and the end result of unifying these

code clones may have high maintenance cost due to high complexity.

Our third consideration was evaluating how refactoring the clone would affect the un-

derstandability of the code it occurred in. This is particularly important when evaluating

candidate code clones that are code fragments rather than complete syntactic units of code

(such as function definitions). In several cases in Gnumeric variable names are changed

to closely reflect the common mathematical notation the functions represent, such as the

parameters for statistical distributions. This type of cloning acts as a form of documen-

tation to ensure that future maintainers will immediately grasp the meaning of the code.

Refactoring some of this code may in fact break the conceptual ties the variable names

create. Another example where code cloning aids understandability is the cloning of small

code fragments. These fragments do not have meaning on their own and refactoring would

result in breaking the conceptual cohesiveness of source code.

Evaluating the scope of the code cloning — whether the RGC involves a fragment of

code or the majority of the two regions in the region pair — is done by examining all of

the common code between the two regions. In cases where the code clones in the clone

relationship covered most or all of the two regions they occur between, the scope of the

code clone was considered to be the whole region. In cases where the clone detector found

several fragments of code, the region differencing utility was used to visualize the overall

similarity. If a large portion of the two regions in question was found to be shared, the

scope of the clone was considered to be the whole of the regions. If the degree of similarity

between regions pairs was restricted to fragments of code, the scope of the cloning is

considered to be a fragment.

Classifying the code clones into patterns was done manually, based on the descrip-

tions we have documented in Chapter 4. The high-level classification was one of the four

clone pattern groups: Forking, Templating, Customization and Exact match. The low-

level classification is chosen from one of the patterns in the group of patterns specified

by the high-level classification. The primary mechanism for classification was to infer the

motivation for the code clone. This required an understanding of the intent of the pro-
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grammer for each code fragment individually and also the types of changes made to the

cloned code. To determine the purpose of the source code fragments, we analyzed the

code fragments in the context of the software system. Relevant documentation (either

found within the source code or distributed with the source code), data structures, and

data flow were referenced to gain as much information about the source code as possi-

ble. Documentation can provide a clearer picture of the external behaviour of a segment

of code (pre- and post-conditions for example). Data structures used by both segments

of code often enriched this information by making more explicit the low level behaviour

requirements, such as the range of valid values for a variable. Data flow, included calling

and called functions or procedures, provides more information about how the segments of

code manipulate data, enriching the view of how the procedures operate. The goal of this

analysis is to arrive at an improved understanding of the intent of the programmers for

each segment of code individually. Next we analyzed the differences between the clones.

These differences include not only the textual differences of the cloned code fragments, but

also the differences in the intent of the programmer uncovered in our analysis of the pur-

pose of the code. For example, we analyzed the differences in the data structures used by

the two code fragments. In a few cases, this required referencing external documentation

relevant to shared libraries provided by external projects. We also analyzed the purpose of

the file and subsystems containing the clones. Combining information about the intent of

individual code fragments with an understanding of their differences, we could then assess

individual attributes, such as forces that will affect evolution of the source code and the

difficulty of forming a more general abstraction, to infer the motivation for forming the

code clone. With this information, we then compare the information we compiled with the

various patterns listed in Chapter 4. This process was time consuming in the beginning

of the sample analysis of each system, but progressively the process became easier as we

could reuse much of the knowledge about the system we gained over time.

5.3 Study Subjects

The study subjects were described in Chapter 3 and the description is restated here for

clarity. The two study subjects of this experiment were Apache httpd, version 2.2.4, and
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Gnumeric, version 1.6.3. Both software systems are of medium size: Apache is 312,460

LOC across 783 files and Gnumeric is 326,895 LOC across 530 files. Apache httpd is an

open source web-server designed to run on a wide variety of platforms: BeOS, *BSD, Linux,

Netware, OS/2, Unix, and MS-Windows. The core development team of Apache consists

of approximately 25 developers who contribute a large majority of new features (88% of

new code in 2000 [76]). While there is no explicit policy on code ownership, contributors

tend to defer decisions concerning changes to more experienced developers. As a result,

small groups, rather than individual developers, modify modules and files [76].

Gnumeric is an open source spread sheet application, part of the GNOME Desktop

environment. It supports a variety of platforms but this platform support is not imple-

mented directly in the source code, but rather in the libraries it depends on (i.e., the GTK

framework, which has been ported to many different OSs). Using svn blame to measure

who last modified all of the lines of code in Gnumeric in the last five years reveals that

more than 88% of the LOC have been modified by only three developers. This finding is

confirmed by documentation distributed with the source code.

5.4 Sample Set

Two sets of clones were detected for each study subject. Several patterns of cloning de-

scribed in Section 4 are typically only present as small fragments of cloned code and there-

fore are detectable only when the minimum threshold for a match is set to a low value. To

detect these types of clones we ran the clone detector searching for clones with a minimum

length of 30 tokens. When this is done, however, many false positives are detected as well

as many small code fragments that would normally not be considered for refactoring, cre-

ating a bias in the results. To detect and sample both smaller cloning patterns and larger

ones, we chose to detect two sets of clones for each subject using two minimum lengths:

30 and 60 tokens. The resulting clones detected with a minimum length of 60 tokens is a

direct subset of the results returned when detecting clones with a minimum length of 30

tokens. This is because we are only setting the minimum size of an acceptable code clone,

and therefore any clone larger than the minimum will also be returned in the result set.

A summary of the total number of clones returned by the clone detector is shown in
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Table 5.1. In the table, the columns “RGCs” indicates the number of RGCs that were

detected by CLICS and sampled by us, and the columns “Clones” indicates the number

of clones that were detected and sampled as part of the RGC sampling selection. For

each data set, we categorized the maximum of 100 RGCs or 1% of the total RGCs. The

minimum of 100 RGCs was chosen to ensure we observed a large number of code clones

throughout the systems. For the data sets where a minimum clone size of 30 tokens was

used, we randomly sampled 0.93% of the total RGCs in Apache and 0.99% of the RGCs

in Gnumeric. For the clone sets detected with a minimum size of 60 tokens we randomly

selected 6.3% of the RGCs in Apache and 2.9% for Gnumeric. One can see from Table 5.1

that there is a significant difference in the number of clones detected when adjusting the

minimum length, especially in the case of the Gnumeric clone sets. As will be presented

in the results, this large difference in clones is mainly comprised of false positives but also

contains many of the smaller clones that contribute to larger groups of code clones such as

in the case of Replicate and Specialize code clones, which are overlooked in the sample set

of larger clones.

The total number of false positives found in the sample sets are shown in Table 5.2.

This table shows the number of RGCs from the clone sample set that were considered to

be false positives. As one might expect, the number of false positives was dramatically

reduced after increasing the minimum length of a clone to 60 tokens.

5.5 Results

The results of the subjective categorizations are summarized in Tables 5.3 - 5.6. Each row

in the tables indicates a clone pattern and the frequency of good, incidental, harmless and

harmful RGCs seen in the sample set. The column “Total” indicates the total number of

RGCs classified as that pattern of cloning. The bottom row of each table indicates the

total number of good, incidental, harmless, and harmful RGCs.

In this section we will discuss the specific results of each study subject and compare

the results obtained from the two different samples extracted from each subject.
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System 30 Tokens

RGCs Clones

# found # sampled # found # sampled

Apache 10,657 100 61,481 204

Gnumeric 23,129 230 84,028 807

60 Tokens

RGCs Clones

# found # sampled # found # sampled

Apache 1580 100 21,270 2655

Gnumeric 3437 100 11,400 405

Table 5.1: Detected clones in Apache and Gnumeric

Min. Clone Size

30 60

System RGCs % of sample RGCs % of sample

Apache 41 41% 7 7%

Gnumeric 159 69% 29 29%

Table 5.2: False positives in sample sets
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5.5.1 Cloning in Apache httpd

When comparing the results of the two clone sets sampled for Apache httpd, shown in

Table 5.3 and Table 5.4, perhaps the most striking result is the very large difference in

the number of harmful RGCs. In the Apache case study where the minimum clone length

was 30 tokens, we judged 71% of the 59 true positive RGCs were deemed to be good and

only 14% were deemed harmful. In the sample set where the minimum clone length was

60 tokens, 42% of the clones were judged as good and 39% were judged as harmful. We

believe this difference is caused by the types of clones found when increasing the minimum

clone size. The code clones in the sample of larger clones tend to be more similar and

clones with complex changes are overlooked by the matching algorithm. Line insertions

and deletions are more likely to cause clones to be overlooked when a higher minimum

length is used. This observation is supported by the large increase in the number of RGCs

classed as templating clones. This biases the sample set toward simplistic clones that can

be clearly refactored with simple abstractions, and are unlikely to provide benefit as code

clones in the system.

The clone sets for Apache httpd contain a total of 19 RGCs for platform variation.

Additionally, four RGCs in the set of larger clones were related to experimental variation.

In each of these cases we felt that the code clones were beneficial to the comprehensibility

and evolvability of the source code.

Boiler-plating due to language constraints was present in both sets of clones. These were

exclusively due to changes in the data types. Several of these clones could be refactored

using a combination of anonymous pointers and passing individual members of composite

data types to the functions. However it was felt that the added complexity to both the ab-

stracted function and the source code dependent on the function outweighed the advantage

of reduced code size.

Idioms were observed only in the sample of larger clones of Apache httpd. This is

a surprising result as we expected the opposite to be true. Two examples of the idioms

found are shown in Figure 5.2. Both idioms allocate memory for a pointer in a memory

pool. In the first example, the existence of the pool is asserted, then if the variable key is

NULL, memory is allocated for it and a pointer to the memory pool it has been allocated

in is set. In the second example, memory is allocated for the variable new. The return
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Pattern Good Incidental Harmless Harmful Total

# % # % # % # %

Forking 9 100% 0 0% 0 0% 0 0% 9

Hardware variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Platform variation 9 100% 0 0% 0 0% 0 0% 9

Experimental variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Templating 9 40.9% 7 31.8% 0 0% 6 27.3% 22

Boiler-plating 8 100% 0 0% 0 0% 0 0% 8

API 0 0% 7 87.5% 0 0% 1 12.5% 8

Idioms 0 n/a 0 n/a 0 n/a 0 n/a 0

Parameterized 1 16.7% 0 0% 0 0% 5 83.3% 6

Customize 10 76.9% 0 0% 1 7.7% 2 15.4% 13

Replicate and Specialize 10 76.9% 0 0% 1 7.7% 2 15.4% 13

Bug Workarounds 0 n/a 0 n/a 0 n/a 0 n/a 0

Exact Match 14 93.3% 0 0% 1 6.7% 0 0% 15

Cross-cutting 12 92.3% 0 0% 1 7.7% 0 0% 13

Verbatim snippets 2 100% 0 0% 0 0% 0 0% 2

Total 42 71.2% 7 11.9% 2 3.4% 8 13.6% 59

Table 5.3: Clones by type - Apache httpd 2.2.4 - 30 Tokens
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Pattern Good Incidental Harmless Harmful Total

# % # % # % # %

Forking 14 100% 0 0% 0 0% 0 0% 14

Hardware variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Platform variation 10 100% 0 0% 0 0% 0 0% 10

Experimental variation 4 100% 0 0% 0 0% 0 0% 4

Templating 10 19.2% 17 32.7% 1 1.9% 24 46.2% 52

Boiler-plating 5 100% 0 0% 0 0% 0 0% 5

API 0 0% 17 100% 0 0% 0 0% 17

Idioms 0 0% 0 0% 0 0% 12 100% 12

Parameterized 5 27.8% 0 0% 1 5.6% 12 66.7% 18

Customize 12 75.0% 0 0% 0 0% 4 25.0% 16

Replicate and Specialize 12 75% 0 0% 0 0% 4 25% 16

Bug Workarounds 0 n/a 0 n/a 0 n/a 0 n/a 0

Exact Match 3 27.3% 0 0% 0 0% 8 72.7% 11

Cross-cutting 2 100% 0 0% 0 0% 0 0% 2

Verbatim snippets 1 11.1% 0 0% 0 0% 8 88.9% 9

Total 39 41.9% 17 18.3% 1 1.1% 36 38.7% 93

Table 5.4: Clones by type - Apache httpd 2.2.4 - 60 Tokens
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if (pool == NULL) {

return APR_ENOPOOL;

}

if ((*key) == NULL) {

(*key) = (apr_threadkey_t *)apr_pcalloc(pool, sizeof(apr_threadkey_t));

(*key)->pool = pool;

}

(a)

(*new) = (apr_thread_t *)apr_palloc(pool, sizeof(apr_thread_t));

if ((*new) == NULL) {

return APR_ENOMEM;

}

(*new)->pool = pool;

(b)

Figure 5.2: Two examples of idioms in Apache httpd
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value of the allocation method is checked, and if memory cannot be allocated the function

returns an error code. If there is no error, the pointer to the memory pool is set. Both

idioms occur frequently in the source code. While these idioms were detected separately,

we noticed that they are related. The second idiom, Figure 5.2(b) should be implemented

using the first. That is to say, the first idiom should check the return of the allocation

method before attempting to assign a value to a member of the newly allocated variable.

Also, the second idiom should check that pool is not NULL before attempting to allocate

memory from it. In both cases, attempting to assign a value to a NULL pointer will result

in a segmentation fault. We felt that both instances of these idioms are incomplete and

are therefore harmful. All idioms we found were clones of these two examples, and were

rated as harmful to the software system.

The API clones in both studies that were deemed incidental were part of a test suite.

In these clones, the same function is repeatedly called to build a test suite and then the

test suite is returned. In all cases, the function call was used in the same way, with the

only variation being the function pointer passed as an argument. We deemed this type

of cloning incidental because the API usage is already abstracted to the highest level,

resulting in the series of repeated function calls to the same function.

Parameterized code clones were found in both clone sets for Apache httpd. We judged

only 25% of these clones were to be good. Samples rated as good clones were code fragments

that were cloned very few times in the system (typically, once) or would have become

complex if abstracted due to the presence of ifdefs or switch statements. In one case the

parameterized code fragment was cloned between two subsystems. We felt this small clone

was more beneficial if left where it was. More commonly, these types of clones were judged

to be harmful as they involved simple code that could be trivially abstracted. In these

cases, the code would be more compact and easier to understand if the clones were removed.

The clones classified as the replicate and specialize pattern were rated as good 76% of

the time. In all cases this was because the complexity introduced by unifying the code

clones would make the code difficult to understand and maintain. In these cases, non-trivial

changes were interleaved throughout the cloned regions. Examples of these changes were

adding or removing statements, unsystematic changes to identifiers, and changes to data

types. Several clones of this pattern were rated as harmful because obvious abstractions
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were available and were deemed to make the code more clear if used. In these cases, the

specialization could be neatly modularized into a single block of code or could be guarded

by control flow statements.

In the sample set of the small clones, 12 cross-cutting concern patterns were rated as

good. These were aspects related to security, in particular checking that the command

was safe to run in the current program context. These code clones were judged to be

good as they explicitly stated that the function was security sensitive, something that was

not included in the source code documentation. A single RGC of this type was rated as

a harmless clone because it comprised of a single procedure call. Cross-cutting concerns

appeared very infrequently in the sample set of the larger clones. This was not surprising

because this type of clone typically appears as small portions of code. The clones of this

type were found essentially by chance: the subsequent code to the aspect was structurally

similar enough to be matched by the code clone detection but was not actually cloned

code.

The verbatim snippets clones found in the sample set of smaller candidate code clones

were code fragments involving control flow. It was deemed that these code clones were

good as abstracting them would adversely affect the conceptual cohesion of the functions

they appeared in. Verbatim snippets clones found in the set code clones with a minimum

size of 60 tokens were mostly deemed to be harmful. In these cases, the snippets consisted

of complete conceptual units of code, such as initializing a data structure and then error

checking, or dealing with differences in how a new line is represented in various operating

systems. In one particular case of verbatim cloning, a whole file (abts.c) was cloned.

5.5.2 Cloning in Gnumeric

The results from the categorization of the clones in Gnumeric are summarized in Table

5.5 and Table 5.6. The sample size for the data shown in Table 5.5 was 71 RGCs and

the sample size of the data shown in Table 5.6 was 71 RGCs. In Table 5.5 we see that

57% of the RGCs sampled were judged to be harmful. This does not sharply contrast

the results of the second sample set of the larger clones, where 42% of the clones were

judged to be harmful. The Gnumeric source code has a large amount of mathematical

computations. The interface between the spreadsheet and the mathematical computations
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Pattern Good Incidental Harmless Harmful Total

# % # % # % # %

Forking 0 n/a 0 n/a 0 n/a 0 n/a 0

Hardware variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Platform variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Experimental variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Templating 10 31.3% 5 15.6% 0 0% 17 53.1% 32

Boiler-plating 3 100% 0 0% 0 0% 0 0% 3

API 0 0% 5 83.3% 0 0% 1 16.7% 6

Idioms 2 100% 0 0% 0 0% 0 0% 2

Parameterized 5 23.8% 0 0% 0 0% 16 76.2% 21

Customize 9 56.3% 0 0% 0 0% 7 43.8% 16

Replicate and Specialize 9 56.3% 0 0% 0 0% 7 43.8% 16

Bug Workarounds 0 n/a 0 n/a 0 n/a 0 n/a 0

Exact Match 4 18.2% 0 0% 2 9.1% 16 72.7% 22

Cross-cutting 2 50% 0 0% 0 0% 2 50% 4

Verbatim snippets 2 10.5% 0 0% 3 15.8% 14 73.7% 19

Total 23 32.9% 5 7.1% 2 2.9% 40 57.1% 71

Table 5.5: Clones by type - Gnumeric 1.6.3 - 30 Tokens
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Pattern Good Incidental Harmless Harmful Total

# % # % # % # %

Forking 0 n/a 0 n/a 0 n/a 0 n/a 0

Hardware variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Platform variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Experimental variation 0 n/a 0 n/a 0 n/a 0 n/a 0

Templating 17 33.3% 8 15.7% 0 0% 26 51.0% 51

Boiler-plating 6 85.7% 0 0% 0 0% 1 14.3% 7

API 0 0% 8 88.9% 0 0% 1 11.1% 9

Idioms 1 100% 0 0% 0 0% 0 0% 1

Parameterized 10 29.4% 0 0% 0 0% 24 70.6% 34

Customize 15 93.8% 0 0% 0 0% 1 6.25% 16

Replicate and Specialize 15 93.8% 0 0% 0 0% 1 6.25% 16

Bug Workarounds 0 n/a 0 n/a 0 n/a 0 n/a 0

Exact Match 1 25% 0 0% 0 0% 3 75% 4

Cross-cutting 0 n/a 0 n/a 0 n/a 0 n/a 0

Verbatim snippets 1 25% 0 0% 0 0% 3 75% 4

Total 33 46.5% 8 11.3% 0 0% 30 42.3% 71

Table 5.6: Clones by type - Gnumeric 1.6.3 - 60 Tokens
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requires a function that initially converts the values of the cell data to data types that can

be used for mathematical computations (such as integers and floating point numbers). A

typical scenario we found in both sample sets was cloning that consisted of the unchanged

duplication of the initialization of variables and then the identifier naming the procedure

to be called was changed. This high percentage of “harmful” cloning is a reflection of this

type of scenario. The interface between computation functions and the spreadsheet also

contributed to the high percentage of false positives in this study. When the long series

of cell conversions are abstracted to a p-string, they become identical, and because they

usually do not repeat identifiers in the assignment, the one-to-one mapping almost always

succeeds. This points out a particular weakness in the method of clone detection used in

this case study.

The reader will note that no forking patterns were found in this study. This is likely

due to the fact that there are few external dependencies on other systems such as databases

or operating systems in this source code.

Boiler-plating clones found in the Gnumeric study were generally rated as good clones

with one exception. These clones were again caused by changes to data types. An example

of this type of cloning is shown in Figure 5.3. Refactoring these segments of code would

require not only wrapper functions to provide explicit type information but also a deeper

refactoring of the data structures of py RangeRef object and py Range object to allow the

reuse of the assignment of the member range ref and range. Due to considerations such

as this, we felt that the clarity of these simple code clones likely outweigh the benefits of

unifying the code. The single exception rated harmful had an obvious abstraction that

could be made without adding complexity.

Most cloning categorized as API/Library protocol clones were rated as incidental for

the same reason as they were in the Apache clone samples. In this case, the cloning

involves the connection of UI signals to actions. These clones cannot be abstracted further

because they are already calling a single function. While there is high degree of similarity

between many individual clone pairs of this type, the overall variability of the total set

make it very difficult to create an appropriate abstraction that would reduce code size

without introducing a very high degree of complexity. The two exceptional cases where

this pattern of cloning was judged to be harmful were clone pairs that appeared frequently
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static PyObject *

py_new_RangeRef_object (const GnmRangeRef *range_ref)

{

py_RangeRef_object *self;

self = PyObject_NEW (py_RangeRef_object, &py_RangeRef_object_type);

if (self == NULL) {

return NULL;

}

self->range_ref = *range_ref;

return (PyObject *) self;

}

(a)

static PyObject *

py_new_Range_object (GnmRange const *range)

{

py_Range_object *self;

self = PyObject_NEW (py_Range_object, &py_Range_object_type);

if (self == NULL) {

return NULL;

}

self->range = *range;

return (PyObject *) self;

}

(b)

Figure 5.3: An example of boiler-plating in Gnumeric
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in the system and had an obvious abstraction using macros. Frequency can be a concern

when assessing the overall maintenance time that might be saved by reducing all of the

clones to a single, simple abstraction.

Only three idioms were found in the sample sets for the study subject Gnumeric. These

idioms were rated as good because they were relatively simple and provided context to what

the code was doing. One idiom involved differing data types that could not be refactored.

In the other two cases the idioms were deemed to be good because they were not at risk

of being poorly implemented contrary to the case in Apache and provided clear context of

the code responsibility.

Parameterized code clones were judged to be harmful 76% of the time in the sample

of small clones, and 71% of the time in the sample of large clones. In nearly all of these

cases, passing a function pointer as an argument to a single function would remove many

of these clones without negatively impacting the comprehensibility created by the variable

names in the functions. Fifteen of the clones of this type were judged to be good. In

these cases, the identifiers were changed to reflect the standard notation of the variables in

the mathematical functions they represented. We deemed this to be a good type of clone

because it provided traceability from the code to the documentation (the mathematical

function). In cases where parameterized code clones were judged to be harmful, we found

that the parameterized code represented such similar concepts (such as related numerical

functions) that there would likely be no loss in conceptual traceability of the code if it were

to be abstracted.

When assessing replicate and specialize clones in the sample of small clones, nearly 44%

of the RGCs were judged to be harmful. Three of these clones were variations on the type of

parameterized code clones described above, with additional error checking added. In these

cases, the abstraction was obvious. Three cases of harmful replication and specialization

were the creation of a dialogue. The additional code added to one function could be

factored out and the clones could be parameterized and merged.

Good cloning of the type replicate and specialize had non-trivial changes. While these

changes were typically smaller than the ones seen in Apache httpd, we deemed them to be

beneficial because of the semantic traceability they created to the mathematical equations

they represent. A clone of this type is shown in Figure 5.4.
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gnumeric_randnegbinom (FunctionEvalInfo *ei, GnmValue const * const *argv)

{

gnm_float p = value_get_as_float (argv[0]);

int failures = value_get_as_int (argv[1]);

if (p < 0 || p > 1 || failures < 0)

return value_new_error_NUM (ei->pos);

return value_new_float (random_negbinom (p, failures));

}

(a)

gnumeric_tinv (FunctionEvalInfo *ei, GnmValue const * const *argv)

{

gnm_float p = value_get_as_float (argv[0]);

int dof = value_get_as_int (argv[1]);

if (p < 0 || p > 1 || dof < 1)

return value_new_error_NUM (ei->pos);

return value_new_float (qt (p / 2, dof, FALSE, FALSE));

}

(b)

Figure 5.4: An example of replicate and specialize in Gnumeric
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There were four cross-cutting concerns seen in the sample set from the small clones.

The two that were judged to be good performed assertion checks of the parameters of the

function and, implemented as macros, caused the function to return if they failed. The

RGCs of this type that were deemed to be harmful were fragments of code consisting of

several steps responsible for removing references to dynamically allocated variables. In

these cases, removing references involved a call to a function that decrements the number

of references to the data and then sets the pointer to NULL. We felt this could be better

encapsulated as a macro or procedure call. This would avoid the risk of missing the step

of setting the pointer to NULL.

As with the Apache study subject, most of the verbatim snippets clones were judged to

be harmful, in this case 74%. Only clones that were small fragments were deemed to be

good as the code was small and incomplete on its own. We felt the resulting abstraction

would have degraded the understandability of the procedure they were found in.

5.6 Case Study Discussion

In the case study presented in this chapter, we try to answer Questions two and three of

this thesis:

Question 2 Are there common patterns of code cloning that occur in the development of

software systems?

Question 3 How are code cloning patterns used in practice, and to what extent is their

use appropriate?

While Chapter 4 partially answers Question two, it is necessary to measure how often

these patterns appear in source code. The results clearly show that these patterns appear

with non-trivial frequencies in the two study subjects we investigated, with the exception

of bug-workarounds and hardware variations. In the case of bug-workarounds this exception

is possibly an indication of the rarity of such a pattern and that examples of its use may

be special cases. While this form of cloning has been observed during prior case studies,

it may not be as common as first believed and may not be justified as a pattern. To

investigate this further, one direction of future work is to detect and analyze more clones



144 Toward an Understanding of Software Code Cloning as a Development Practice

of this type. In the case of hardware variation it was not expected to be sampled as

neither software system directly interacts with a hardware device. However, from previous

work we know that this pattern is easily discernible in other systems, such as the Linux

kernel [32, 53]. Chapter 4.2.1 lists two families of drivers that demonstrate this pattern.

To properly evaluate this pattern, studies focusing on the analysis of driver code must be

performed. Candidate study subjects might include Xorg, Linux, FreeBSD, and sane.

Comparing Table 5.3 and Table 5.4 we can see that, in most cases, specific types

of clones were classified similarly in both sample sets. Two notable exceptions to this

observation are the idiom clones and the verbatim snippets clones. In the case of idiom

clones, as mentioned previously, this is a surprising result as we expected to find idioms

in the sample set of clones detected using a minimum token length of 30. In the case

of the two verbatim snippets seen in the sample with a minimum clone size of 30 tokens,

they were considered good because these were very small fragments contributing to control

flow and not complete fragments of code on their own. In the sample set of clones with

a minimum size of 60 tokens, eight of the clones were large, identical clones representing

complete conceptual units that had obvious abstractions that would improve the code.

Only one clone of this type was classified as good in the sample set. This is not surprising

as one would expect that in many cases large, identical blocks of code would be more easily

maintained when refactored into a single unit. Because the set of clones with a minimum

size of 60 tokens is a subset of the set of clones with a minimum size of 30 tokens, increasing

the number RGCs sampled from latter set would have likely revealed these clones.

The total number of verified code clones sampled varies largely between the two samples

in Apache (Table 5.3 and Table 5.4) but does not vary between the samples in Gnumeric

(Table 5.5 and Table 5.6). This is due to the larger number of RGCs sampled out of the

clones detected in Gnumeric with a minimum size of 30 tokens. The lack of precision of the

sample sets with a smaller minimum threshold, shown in Table 5.2 and highlighted in the

comparison of the number of actual clones sampled, demonstrates a particular weakness of

parameterized string matching. Smaller sequences of tokens become increasingly similar

as less information is provided to differentiate them. Tokens become “anonymous” when

they are unique within a sequence because there are no back references to them, removing

any information about order. Smaller sequences of code are more likely to contain a high
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percentage of unique tokens, making these sequences appear to be clones. The imprecision

of the clone sample sets, particularly when using a minimum token size of 30, had a large

impact on the tractability of our study. While precision is greatly increased when the

minimum threshold is increased, certain observations, such as the difference between the

classification of replicate and specialize in Gnumeric, could not have be made unless we

had sampled the set of smaller clones. This observation and the results shown in Table 5.2

emphasize the need for more sophisticated filtering of clone detection results.

Cloning in Apache httpd and Gnumeric appears to be qualitatively different. Figure 5.5

and Figure 5.6 summarize the percentage of RGCs categorized into each of the four groups

of cloning patterns. Forking did not appear in Gnumeric, and the templating patterns

appear to be a much larger contributing factor to the overall cloning when looking at the

larger clones. This high number of templating clones appears to be largely due to the

interface between the spreadsheet and the mathematical functions. The differences in the

types of cloning found in the two study subjects can be seen as a reflection of the differences

in design and purpose of the software systems. The focus of Apache httpd is to be a highly

stable, portable web server. The focus on stability implies changes to stable core code

will be done cautiously, or even avoided, when adding new functionality. This can lead

developers to clone and change rather than modify working code. The focus on portability

requires the implementation of a large set of common functionalities for many different

platforms, with each of these common functionalities differing in implementation in non-

trivial ways, again leading to cloning to avoid inter-dependencies amongst largely unrelated

platform-specific code. The focus of Gnumeric is to be a broadly featured spreadsheet

application. This functionality is accessed through a common interface, the cells of the

spreadsheet, and the code using this interface, not surprisingly, will have much in common.

In both studies templating clearly represents the majority of patterns sampled when

considering the sample set of larger clones. We feel this phenomenon is largely due to

the type of clone detector we are using. Specifically, the type of clone that parameterized

string matching finds is the templating pattern because of the definition of a match: a

sub-string whose identifiers have a bijective mapping. Structural or logical changes will

not match. We feel that the results from the sample sets using smaller clones are a better

representation of their relative frequencies because smaller clones have been grouped to
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(a) (b)

Figure 5.5: Percentage of clone types in Apache.

form larger clones, and this grouping is less sensitive to changes in logic and structure.

As can be seen in Figure 5.5 and Figure 5.6, the ratio of exact matches decreases

dramatically when the minimum clone size is increased to 60 tokens. This indicates that

developers are less likely to directly copy-and-paste large segments of code if they do not

require enhancement or modification. In contrast, customization patterns did not decrease

in relative frequency, indicating that the size of the code plays a role in developers’ decisions

to create a code clone or abstract.

Although there are differences in the overall frequency of the clone patterns in the study

subjects, all clones sampled were categorized using the catalogue of clone patterns. Also,

most patterns were found in the samples demonstrating their relevance to real software

systems. The absence of hardware variation clones and the qualitative difference in the

types of clones found in the two study subjects suggests that factors such as the design and

purpose of the software can affect the types of code clones one can expect to find. Future

work in characterizing software systems and the relative occurrences of these patterns will

benefit software practitioners as it can provide a point of comparison to assess the quality

of their own code.

Tables 5.7 - 5.8 summarize the scope of the clones for each cloning pattern found in
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(a) (b)

Figure 5.6: Percentage of clone types in Gnumeric.

the sample sets. In these tables, the column “Scope” refers to the scope cloning was

considered to have over the region. “Full” indicates that the cloning covered the majority

of the regions and “Fragment” indicates the cloning covered a fragment of the regions.

As can been seen in the tables, in general the intuition in the pattern descriptions is

supported by the evidence collected in the case study, with a few exceptions. In the cases

where verbatim snippets is “Full” scope, the cloning either occurs in very small functions,

data structures, or preprocessor directives, the last being the most frequent case. These

tables indicate that the cloning we observed often involves entire regions, usually functions.

This is likely due to the ease of finding and duplicating entire functions as opposed to code

fragments. Code fragments are more likely to be re-implemented rather than sought out

for cloning and this re-implementation will be more difficult to detect as it will likely only

have semantic and not representational similarity.

By rating the harmfulness of code clones, we address Question three of this thesis.

Our results show that a non-trivial number of RGCs can be categorized, according to our

criteria and our judgement, as good forms of cloning: in Apache 71% were classified as

good in the sample set of clones with a minimum length threshold of 30 tokens and 42%

were classified as good in the sample set of clones with a minimum length of 60 tokens,
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30 Tokens 60 Tokens

Pattern Scope Count % in sample Count % in sample

Forking Full 9 100% 14 100%

Fragment 0 0% 0 0%

Experimental variation Full 0 N/A 4 100%

Fragment 0 N/A 0 0%

Platform variation Full 9 100% 10 100%

Fragment 0 0% 0 0%

Templating Full 17 77.3% 37 71.2%

Fragment 5 22.7% 15 28.8%

Boiler-plating Full 7 87.5% 5 100%

Fragment 1 12.2% 0 0%

API Full 6 75% 17 100%

Fragment 2 25% 0 0%

Idioms Full 0 N/A 0 0%

Fragment 0 N/A 12 100%

Parameterized Full 4 66.7% 15 83.3%

Fragment 2 33.3% 3 16.7%

Customize Full 10 76.9% 16 100%

Fragment 3 23.1% 0 0%

Replicate and Specialize Full 10 76.9% 16 100%

Fragment 3 23.1% 0 0%

Exact Match Full 0 0% 4 36.4%

Fragment 15 100% 7 63.6%

Verbatim snippets Full 0 0% 4 44.4%

Fragment 2 100% 5 55.6%

Cross-Cutting Full 0 0% 0 0%

Fragment 13 100% 2 100%

Table 5.7: Scope of clones by type - Apache httpd 2.2.4 - 30 Tokens and 60 Tokens
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30 Tokens 60 Tokens

Pattern Scope Count % in sample Count % in sample

Templating Full 21 65.6% 50 98%

Fragment 11 34.4% 1 2%

Boiler-plating Full 3 100% 7 100%

Fragment 0 0% 0 0%

API Full 1 16.7% 9 100%

Fragment 5 83.3% 0 0%

Parameterized Full 16 76.2% 34 100%

Fragment 5 23.8% 0 0%

Idioms Full 1 50% 0 0%

Fragment 1 50% 1 100%

Customize Full 14 87.5% 16 100%

Fragment 2 12.5% 0 0%

Replicate and Specialize Full 14 87.5% 16 100%

Fragment 2 12.5% 0 0%

Exact Match Full 6 26.1% 3 75%

Fragment 17 73.9% 1 25%

Cross-cutting Full 0 0% 0 N/A

Fragment 4 100% 0 N/A

Verbatim snippets Full 6 31.6% 3 75%

Fragment 13 68.4% 1 25%

Table 5.8: Scope of clones by type - Gnumeric 1.6.3 - 30 Tokens and 60 Tokens
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and in Gnumeric 33% were classified as good in the sample set of clones with a minimum

length of 30 tokens and 57% were classified as good in the sample set of clones with a

minimum length of 60 tokens. In other words, we have empirically evaluated the generally

accepted wisdom “Cloning considered harmful” and found it to not be generally true.

While a non-trivial number of clones were judged to be good it should be noted that, as

described in the patterns listed in Chapter 4, these clones were not judged to be free of

maintenance risk either. As with any principle of design or development, there are trade-

offs and maintenance concerns that should always be evaluated while developing software

systems.

Table 5.3 through Table 5.6 also show that specific types of clones’ harmfulness were

classified fairly consistently, with the notable exception of replicate and specialize clones.

The larger replicate and specialize clones found in the Gnumeric set of clones with a min-

imum size of 60 tokens had more non-trivial changes compared to many of the clones

sampled in the sample set with a lower minimum size. From these results we can see

that in cases where larger clones are non systematically modified the complexity of the

abstraction makes cloning a better alternative to refactoring.

5.7 Threats to Validity

There are several threats to the internal validity of this analysis. First, the RGCs were

judged by a single expert observer who is the author of this thesis. Without additional

judges in this study there is no way to measure bias. However, experts in code cloning

research are uncommon making a larger study much more difficult and costly to conduct.

Further, disagreement on the definition of code clone within the research community re-

mains an obstacle to overcome before a group study of this nature can be performed.

The choice of detector and analysis environment is another threat to internal validity as

it may bias the results of the studies. The CLICS clone detector uses parameterized string

matching and does not find clones with reordered statements or statements added and re-

moved. These types of clones would be customization clones. The number of missed clones

is difficult to estimate; however, by examining the clones using a small minimum size for a

clone match we have provided a reasonable estimate of the lower bound on the percentage
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of RGCs in a software system that would be regarded as customization clones. Grouping

smaller clones, as in the case of the sample sets of candidate code clones of a minimum

size of 30 tokens, largely overcomes statement insertions and deletions when several lines

remain structurally similar on either side of the changes. Clone detection methodologies

using program dependence graphs overcome this limitation [64] but tools implementing

this technology were not available to us for this study. However, parameterized sub-string

matching is one of the top clone detection methods in terms of recall [16, 62] and we feel

it is well suited for the goals of our study.

The choice of study subjects is a threat to the external validity of this analysis. Both are

medium-sized (just over 300,000 LOC) software systems, and the results may change when

analyzing larger systems. Also, these study subjects are open-source software projects with

many developers distributed throughout the world. Management and organizational par-

titions of responsibility that are present in closed-source software projects may not be mir-

rored in open-source software projects. The typical development model for these projects

does not restrict developers from modifying code throughout the system. However, in the

case of Apache we see that most changes to the source code are made by relatively few

developers and there appears to be an implicit agreement of ownership within the devel-

opment community [76]. In the case of Gnumeric, we found that the code is maintained

by few developers. In both cases, these scenarios are unlikely to differ by a large degree

from closed-source development environments. Without further study into the qualitative

similarities and differences of open-source and closed-source software systems, generalizing

results is difficult. More broadly speaking, a better understanding and characterization of

attributes of software is required before these results, or the result of many studies of soft-

ware, can be applied or generalized to groups of software systems. For example, what is the

effect of the problem domain on the overall design? This question has direct implications

regarding the types of clones we can expect to find in a software system.

5.8 Summary

To better understand code cloning as it occurs in practice, we carried out qualitative

investigations of code cloning in widely-adopted, medium-sized to large software systems,



152 Toward an Understanding of Software Code Cloning as a Development Practice

which led to the discovery and documentation of the code clone patterns presented in

Chapter 4. This chapter presented an empirical study of the prevalence of these patterns

in software systems, showing that most patterns occur frequently in both study subjects

and answering the second question of this thesis: yes, there are patterns of code cloning

present in software systems.

This study also revealed that in many cases code clones are used appropriately. This

suggests that the conventional wisdom the code clones are “bad” is not generally true.

Further, popular maintenance advice to refactor code clones may be counterproductive.

Benefits provided by code clones, when correctly used, will be lost by refactoring. Further,

refactoring may result in introducing artifacts that that the code clone was used to avoid,

such as complex code or dependencies between unrelated subsystems.

While many code clones in the study were judged to be good, the majority were still

deemed to have a negative impact on the quality of the software system. This does suggest

that code cloning is still a problem that must be managed. However, this problem may

in part be the result of a lack of decision making tools regarding code cloning or even a

lack of understanding of the tradeoffs for different types of clones: both situations may, in

part, be the result of overly simplified views of cloning that have persisted in the software

development community and education system.



Chapter 6

Discussion

6.1 Introduction

Throughout this thesis it has been mentioned that there have been relatively few investiga-

tions into how and why developers use code cloning. Most research prior to this work has

focused on detecting, refactoring, and, more recently, tracking clones in software. While

these are important avenues of research, we need a deeper understanding of how and why

code clones are used in real software systems before we can evaluate the effectiveness of code

clone detectors and proposed code clone maintenance techniques. To provide more insight

into how code clones are used in software, this thesis presents a set of code cloning patterns

found in real software systems. The descriptions of these patterns include motivations for

creating code clones, anticipated maintenance concerns, and suggested maintenance activ-

ities regarding each clone pattern.

With a documented set of patterns of usage we not only hope to improve our un-

derstanding of how code clones are used in software, but we also hope to aid software

practitioners in making better decisions about using code cloning. The belief that code

clones are always bad in software is clearly false, in the general sense, to experienced soft-

ware developers and maintainers. However, it may not be as clear to these same developers

when the use of code clones is appropriate, as is indicated by the large number of harmful

code clones sampled in Chapter 5. As code cloning patterns are further investigated and

developed, they may help to enable software practitioners to make more informed decisions

153
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and possibly make the decision making process faster. Furthermore, these code cloning

patterns could be used to document existing code cloning activities. This documentation

would facilitate maintenance decisions to be made in the future.

This chapter revisits the three motivating questions of this thesis and discusses the

answers found through our case studies of code cloning. This chapter will also discuss

some of the possible maintenance implications specific to individual cloning patterns and

addresses these issues with suggestions for tool support and development processes. Finally,

we introduce a novel design for a tool, integrated with source code control systems, to track

and document code clones and provide maintenance advice according to the code cloning

patterns described in this thesis.

6.2 Research Questions

Chapter 1 raised three questions about code cloning in software. This section summarizes

the findings regarding those questions, as observed in the case studies performed by the

author.

6.2.1 What are the Common Motivations for Cloning?

Question 1 What are the common motivations for developers to use code clones?

From our prior case studies it can be concluded that not all motivations for code cloning

are negative reflections on the developers [49, 50, 51, 52, 54, 53]. While programmer lazi-

ness, lack of understanding, or quick fixes may contribute to some code cloning activities,

we have found repeated examples where this is not the case. Common motivations that

have been observed in the case studies discussed in this thesis indicate that many develop-

ers have principled engineering intentions in mind when duplicating code. A few of these

motivations include:

• risk avoidance, a contributing factor to code cloning when new code to be introduced

may affect the stability of the core or stable functionality of a working system;

• change decoupling, found when code clones are not expected to evolve synchronously

such as in the case of platform variation;
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• language constraints, occurring when a programming language does not provide the

required abstraction facilities to create a unified solution;

• common code usages, such as idioms and API usage patterns, are often self-explanatory

or generally understood and may not have useful abstractions;

• avoiding complex and hard-to-maintain code, as code clones may in some cases be

easier to understand and change than a complex unification of the various similar

problems;

• copying a temporary solution for work-arounds, which may not warrant refactoring

of code when the work-around is inserted on a temporary basis;

• avoiding code fragmentation, a particular problem when code clones are comprised

of small code snippets that have little or no meaning outside of their current context;

and

• implementations of latent semantic properties of the software system (i.e., cross cut-

ting concerns).

We have drawn this list of motivations for creating code clones from concrete sources

such as in-line source code documentation and external design documentation. We have

also made inferences about the motivations for creating clones based on the context of

code clones within the overall software. For example, when examining the code cloning

between the file-system implementations of the ext2 and ext3 file-systems, it is likely that

cloning ext2 and modifying it to add the new features for ext3 was safer than modifying

ext2 to support both file-systems [50]. In this case one would consider this motivation to

be risk avoidance. Instances of cloning between subsystems in Apache httpd that sup-

port operating-system-specific data types and behavioural nuances are likely motivated by

change decoupling and avoidance of complex abstractions. Changes to Linux threading

could create a multitude of testing and debugging problems if the code to support Linux

and *BSD platforms were unified.

While we claim that many code clones are created with sound engineering goals in

mind, we do not suggest that all such code clones are so easily justifiable. Code clones
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created with good intentions may have negative maintenance consequences, such as chal-

lenges with change propagation, or run-time side effects, such as increased memory usage.

As with any design decision code cloning must balance the negative and positive effects of

the action in the context of the overall software system and its environment. For example,

in software projects where the cost of the risk associated with a change is high, develop-

ers may disregard maintainability concerns completely when considering the use of code

cloning. With this in mind, the evaluation of whether or not it is appropriate to use code

clones in software must be made within the context of the particular software system, its

development environment, and any other relevant engineering and business concerns.

6.2.2 Are there Common Patterns of Code Cloning?

Question 2 Are there common patterns of code cloning that occur in the development of

software systems?

During the progression of the case studies conducted to answer the first question of

this thesis, we noticed recurring patterns in how software practitioners used code cloning.

Repeated patterns of cloning would suggest there are specific problems developers are

trying to solve with this development “tool”. The case studies we conducted revealed a

set of code cloning patterns, described in Chapter 4. The evidence provided in Chapter

5 suggests patterns of code cloning do occur in software, though their relative frequencies

vary between software systems.

The patterns of code cloning described in this thesis demonstrate a relationship between

the problem the code cloning is solving, the intent of creating a code clone, and the mani-

festation of the code clone. For example, experimental variation will often encompass entire

files or subsystems while boiler-plating generally encompasses only procedures. Replicate

and specialize patterns of cloning exhibit different types of changes as compared to general

language idioms. Each of these patterns has its own set of advantages and disadvantages,

with some overlap, and in many cases, different maintenance strategies are required. This

suggests investigations and evaluations of code cloning within a software system cannot be

restricted to the measurement of code cloning as a single homogeneous entity but should

be finer grained, possibly considering the various aspects of the patterns discussed in this
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thesis.

We do not assert the patterns described in this work are exhaustive. The case study

described in Chapter 5 confirms the patterns we describe occur in software systems, but

also demonstrates that the list of patterns we originally reported [53] was incomplete.

During the study described in Chapter 5, three new patterns were added. This list of

patterns may grow as more case studies are performed, and this is one focus of future work

on this topic.

6.2.3 How are Code Cloning Patterns Used?

Question 3 How are code cloning patterns used in practice, and to what extent is their

use appropriate?

We have found that the use of code cloning patterns in software varies from system

to system. It appears that factors affecting their use include the software domain, the

programming language used, the use of external dependencies such as libraries, and external

forces such as market pressures. For example, a software system that depends largely

on external software devices (such as an operating system or video decoder) is expected

to contain hardware variation more than office processing software. Languages such as

COBOL are not known to have the same abstraction features as C or C++, perhaps

leading to more boiler-plating. Most modern applications must use external sources of

code and behaviour to meet project goals efficiently. For example, libraries such as Qt and

GTK+ provide platform abstraction to aid in writing more portable code. If these libraries

do not provide a high level of abstraction in their interface, or their default behaviours do

not fit the target application, one might expect to find more API/Library protocol clones

than one might when using a library with a higher level of abstraction or one whose default

behaviour better matches the target application’s requirements.

In our studies we found that a significant portion of the code clones in software systems

are using cloning patterns appropriately. We have identified motivations for code cloning

and common code cloning patterns found in software. From these patterns and motivations

we see that developers often use code cloning as an alternative to other forms of reuse when

the overall benefits of code cloning are perceived to outweigh the negative. While many
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code clones appear to be created with good intentions, it is important to know what

proportion of code clones are not actually harmful to the quality of the software systems.

Our analysis of sample sets of code clones, taken from two software systems, shows that

a significant portion of code clones may have a beneficial impact on source code quality.

The results of the case study described in Chapter 5 show a range of 13.6% to 57.1% of the

code clones in the sample sets were judged to be harmful. This indicates that a significant

number of code clones are either good, incidental, or harmless. These findings provide

strong evidence that code clones should not be deemed to be generally harmful to software

systems.

6.2.4 Use and Maintenance of Code Clones in Software

The discovery of code cloning patterns in source code, and the evidence supporting that

they are often used appropriately, has implications on the interpretation of past code clone

research as well as the direction of future research. While it has been suggested that code

cloning is a serious problem in industrial software [3, 6, 15, 4, 26, 44, 43, 47, 60, 61, 74],

this dissertation provides evidence that this is not always the case. Furthermore, the large

number of code clones we deemed to be good or harmless suggests further research is needed

regarding when and how factoring techniques, such as those proposed by Baxter [15],

Balazinska et al. [8], Basit et al. [13], or Higo et al. [38], should be applied. For example,

if code clones have been introduced to avoid complex code or design, the particular use of

design patterns suggested by Balazinska et al. may contradict this rationale [8]. In other

cases, such as the parameterized code clones we deemed harmful, automated refactoring

tools could greatly reduce the effort required to consolidate the code clones.

The cloning patterns described in this dissertation also suggest the need for strong

tool support for maintaining code clones, especially in the case where code clones should

persist in the source code. The code cloning patterns also suggest that there are differ-

ent management strategies required for each of the patterns. For example, experimental

variation requires developers to monitor changes to the external interface of a cloned sub-

system to make decisions on whether or not to propagate changes to the duplicated code.

On the other hand, boiler-plating requires close synchronization of the maintenance effort,

possibly through an automated approach such as source code generation. These varying
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maintenance strategies require a variety of different tools.

Templating patterns strongly suggest a need for synchronous editing, as suggested by

Toomim et al. [87], to manage code clones where evolution between the duplicates should

be tightly coupled but abstraction is not possible. Even in the cases where abstractions are

possible, such as in the case of API and Library Protocols, Toomim et al. provides evidence

to suggest that there is less cognitive load required to manage the duplicated code with

Linked Editing than performing the traditionally accepted abstraction.

In cases of duplication where the evolution of the duplicates may not be so tightly

coupled, as in the cases of forking patterns, architectural and historical dependencies of

cloning can guide developers to related points in the software system that should be taken

into consideration during a maintenance operation. In [50, 51, 54] the author used cloning

relationships visualized as architectural relationships as aids to locate several examples of

these forking patterns. To support continued maintenance of these clones, these relation-

ships should be part of the source code documentation, or even development environment,

throughout the lifetime of the forked code.

In addition to locating forking cloning patterns, it is important that development tools

also explicitly outline the similarities and differences in code clones. During our case

studies, we noted that while it was easy to see similarities in code, it was far more difficult to

find and understand the differences in the code. Identifying and understanding differences

in the code clones is important as it affects decisions of how and when to propagate changes

across code clones.

In the cases of customization patterns, the tool requirements are a combination of

forking and templating patterns. In extreme cases of customization, automated tool support

may not be possible for editing, and may not be desirable. Semi-automated approaches

for patching code clones may be necessary, especially in cases of large groups of code

clones. Such a tool would iterate over all candidate code clones and selectively patch

clones according to human (expert) decisions.

While we believe that not all clones require refactoring, we also believe there are situa-

tions that warrant the effort. In cases where code is directly copied to duplicate behaviour,

such as in sibling classes of an object-oriented program, refactorings should be performed

if the language supports this. In situations where the behaviour of the clones is similar but
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not the same, the effect of the costs of refactoring, such as effects on program comprehen-

sion and exposure to risk, should be measured against the expected gain in maintainability

or extendability of the system.

6.2.5 Harmfulness of Code Cloning in Recent Work

To empirically measure the common belief that cloning is harmful due to the possibility of

inconsistent updates, Aversano et al. closely analyzed how clones are modified over time [5].

Defining a set of evolutionary patterns based on the work of Kim et al. [58], they analyzed

how maintenance activities affected clone classes. In particular, they investigated how and

why some code clone classes changed together and others did not. Their findings show

that in the majority of cases, clone classes are changed together (classified as a consistent

change pattern [5]), particularly in the case of bug fixes and other forms of maintenance

where it would be risky to not propagate changes to all clones. Aversano et al. note that

non-risky changes (such as modifying visibility of class members) may not be propagated

immediately but may be delayed (classified as a late propagation pattern [5]). They also

found a large number of clones evolved independently, indicating developers use cloning as

a development practice for starting new code [5].

Lozano et al. measured the consistency of changes between procedures that share code

clones in DNSJava, a software system also analyzed in the two studies mentioned above [72].

Lozano et al. reported that procedures with clones between them change inconsistently,

suggesting code clones may be harmful as they may pose a risk of inconsistent updating.

They report that most procedures that share a code clone do not change together, and

those procedures that do contain clones tend to change more often, presumably because

the developers are not aware of clone relationships between procedures. This result would

suggest that developers do not update clones together. This result sharply contrasts the

findings of Aversano et al., who found that in the case of DNSJava 74% of clones change

together. The differences in these results may be caused by the differences in the clone

detection tools used. In the case of Aversano et al. an AST-based clone detection tool

similar to the method proposed by Baxter et al. [15] was used. This method of clone

detection has been shown to have high precision but low recall [16, 62]. This may have

resulted in overlooking clones that have several changes, which one might speculate are
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more likely to have inconsistent changes over time. Lozano et al. chose to use CCFinder

as a detection tool[47], a parameterized suffix tree approach similar to the one presented

in this thesis. This approach is shown to have high recall but low precision [16, 62]. It is

the experience of the author, supported by the findings in Table 5.2 in Chapter 5, that the

low precision of this approach will falsely indicate that many procedures have a cloning

relationship. These false positives will skew the overall number of procedures with a cloning

relationship that are not consistently changed, and could perhaps have contributed to their

conclusions.

Krinke suggests that when code clones are not changed consistently bugs may be intro-

duced into the source code [65]. In studying changes made to code clones in five open-source

systems over the period of 200 weeks Krinke found that code clones were changed consis-

tently (changes were propagated to all code clones in a clone class) only half of the time.

While it was suggested this may indicate that code clones are difficult to maintain, the code

cloning patterns presented in this thesis may offer another explanation. Certain patterns

of code cloning, such as Forking or Customization patterns, would not be expected to be

changed consistently. Krinke also found that changes were not propagated later in time,

suggesting that code clones remain inconsistent once an inconsistent change is made. This

again is not unexpected for code cloning patterns where code is added or removed. How-

ever, if this is an indication that developers have difficulty changing code clones because

they are unaware of their existence then tools should be provided to aid in the continued

maintenance of code clones.

While interviewing and surveying developers and how they develop software, LaToza

et al. uncovered six patterns of cloning based on motivation: repeated work, example,

scattering, fork, branch, and language [68]. Repeated work occurs when two or more de-

velopers unknowingly duplicate effort to solve a similar problem. Example cloning is similar

to our idioms and API patterns. Scattering directly maps to our cross-cutting concerns.

Fork clones are similar to our replication and customization and forking patterns. Branch

is not strictly a clone, but represents the repeated work required to propagate changes

across branches of the entire source tree. Language involves implementing the same code

in multiple languages. Two patterns, repeated work and language, are not covered by our

cloning patterns. This is likely due to the fact that clone detection algorithms are unlikely
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to find these types of clones. The implementation details, either due to developer design

decisions or syntactic differences, vary enough that representational similarity matching

will not uncover this type of duplication. Based on these patterns, LaToza et al. found

that developers rarely clone code in the basic copy-and-paste fashion cited in much of the

literature. For each pattern, LaToza et al. found that less than half of the developers

interviewed thought the pattern was a problem. The findings of LaToza et al. are another

indication that not all cloning is created due to poor development practice. The overall

similarity of their patterns to our own provides additional support for the accuracy and

relevance of the cloning patterns described in this thesis.

6.3 An Application of Cloning Patterns in Software

Development

As a direct consequence of code clones requiring varied maintenance tools and strategies,

code clones in a software system must be identified and categorized accordingly. To aid

in maintenance decisions, suggestions should be given by the development environment

about how to proceed with future maintenance. We believe that the code cloning patterns

described in this thesis can help to address this problem. In this section we propose a

high-level approach to integrating the identification and maintenance of code clones using

a maintenance advisor based on categorization according to the patterns described in this

thesis.

In this application of code cloning patterns, the maintenance advisor provides sugges-

tions to the user about maintaining code clones based on the maintenance suggestions

given in Chapter 4. Based on the type of code cloning pattern identified, this maintenance

advice might be the automatic propagation of changes, as would be the case in boiler-

plating clones, or suggestions regarding refactoring when the differences and similarities

between code clones stabilize, as would be the case in experimental variation. The tool

would also provide advice when the original intent of a code clone becomes less relevant or

in retrospect is determined to be incorrect. The benefit to developers would be the auto-

mated support for maintaining code clones, an informed decision-making process based on

clone-pattern-specific information, semantics attached to implicit software dependencies,
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a trail of documentation when changes are not propagated, and an iterative process for

identifying and classifying code clones that is much more tractable than the current process

of analyzing a single snapshot of the source code.

To begin our discussion of an application of code clone patterns, consider the following

scenario:

1. A developer has worked on a portion of source code, and now wants to commit it to

a versioning system.

2. The developer runs the command to commit the code, and a clone detector runs on

all the changed files (comparing changed files to themselves and to the set of files that

have not changed). The detected clones are compared to a database (repository) of

known clones.

(a) Clones that have disappeared are further analyzed to determine if the disap-

pearance was a result of refactoring or that the extent of changes have made

the code clone impossible to detect.

(b) New clones would be compared against existing clones to determine if a clone

class has been expanded.

(c) Old clones that still exist would be analyzed to see if changes have been made

to any of the segments of code contained within them.

3. Based on the above the analysis, several actions will be required from the user:

(a) New clones will need to be annotated and classified by the user.

(b) Clones that disappeared should be confirmed by the user.

(c) Clone classes that are expanding should be analyzed and a maintenance effort

metric computed. If the maintenance appears to be growing more expensive,

refactoring should be considered.

(d) Code clones with changed segments of code, depending on their type, should

be analyzed for potential change propagation. In cases where changes have not

been propagated to all cloned segments of code, the user should be prompted

to do so or document why the change is not to be propagated.
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(e) Metrics concerning code volatility should be computed for code clones that

have been changed. Code clones changing often and changing synchronously

can either be refactored or remain in the code, depending on the type of clone.

(Platform variation may never be refactored, where as experimental variation

may be refactored once changes involving common code are being propagated

most of the time).

4. After the user completes the analysis process, all results are stored in a central

repository.

In the above example, the advisor uses historical data and the cloning patterns to

suggest maintenance advice. This proposed solution requires a code clone detection tool,

tools to track changes in files and clones, a user interface for classifying detected clones,

and a data storage mechanism for storing data about the categorized code clones that can

be accessed with the source code repository.

To maintain code clones in software, the clone detection tool requires high recall. It

is better to have the user mark false positives than to miss clones that should be tracked.

While parameterized string matching is one of the best detection methods with respect to

recall, it is still not perfect. An improvement to the detection algorithm might be to use

copy-and-paste activities as hints for closer scrutiny, along with the standard algorithm.

Such an approach would log all copy-and-pastes and use this information to perform fine-

grained analysis, such as common sub-sequence extraction, of the source code in and around

copy-and-paste activities. Because code clones may not always arise through copy-and-

paste within the development environment traditional clone detection should still be used.

Detecting new clones and analyzing the history of existing clones requires tools for re-

trieving previous versions of the source files. Tracking changes in source code can be done

using source code versioning systems. These systems provide mechanisms for efficiently

storing submitted, or committed, versions of files over time. Mechanisms to retrieve copies

of specific versions are always included as part of these systems. Versioning systems can

either be centralized (e.g., cvs and subversion) or distributed (e.g., bazaar, git, and mer-

curial). Centralized versioning systems store the source code versions in a central location

and have the advantage that those with access can see all commits as soon as they are

performed. Distributed versioning systems store all of the versioning information locally
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on an developer’s/maintainer’s computer and committed versions are only made public if

they are transferred and imported into another developer’s source tree. These types of

systems have the advantage of allowing disconnected development where commits are only

made public when the developer is ready. Distributed version control systems are rising in

popularity, and thus the maintenance tool proposed here should support this functionality.

One problem with tracking changes that is not solved by source code control is deter-

mining if changes are the result of creating new code or if the code has been moved from

elsewhere, a problem known as origin analysis [34]. When code is moved, it appears as if

one segment of code has been removed while another has been added. When analyzing and

tracking code clones found in the original segment of code it would appear as if clones have

been removed and new ones have been added to the software. While source code versioning

can provide access to previous versions of the source code, they do not provide mechanisms

for interpreting the differences between two versions. Early work on origin analysis iden-

tifies the origin of procedures, taking advantage of call graphs, procedure signatures, and

text similarity [34]. The approach described by Zou and Godfrey is only semi-automated

and would require improvements to automate the process.

The interface presented to the user does not require many of the aspects of clone

analysis discussed in Chapter 3.7 as they should already be familiar with the code they

are maintaining and adding to the system. The interface should present a list of new

code clones to the user and for each code clone allow them to select the cloning pattern

used, the motivation behind creating the clone, and the intended duration of the code

clone’s existence (which may be inferred by the motivation for creating the code clone).

All of these attributes should be predefined as they are used to determine how future

maintenance of the code clone should be carried out. Pre-existing clones that have been

modified should also be displayed to the user. For each code clone, the maintenance history

should be accessible, including prior maintenance decisions regarding the code clones, and

the system should provide maintenance advice whenever possible. There should be facilities

to document any decisions made.

Code clones and their annotations must have the same degree of accessibility as the

versioning system. In the case of centralized versioning systems, information about code

clones may be stored in a central database. For large systems with many code clones it
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may be necessary to take advantage of the optimizations modern database management

systems provide for data processing. Distributed version control systems would be limited

by a central database. For such systems, the data storage would have to be part of the

versioning meta-data so that it can be imported and exported to other copies of the source

tree. In both cases, the code clones and their annotations must support all operations that

the chosen version control system provides for manipulating the source code, including

renames, commits, rollbacks, branch merging, etc.

Duala-Ekoko and Robillard have also described a tool that will track clones across

versions and notify the user when clones are not modified consistently [24]. The tool

proposed here improves on their idea by suggesting that code clones can be documented

when they are initially added to the software system. Also, maintenance advice can be

given by generating advice specific to each code clone, based on historical metrics and

identified code cloning patterns.

6.4 Summary

To improve our understanding of code clones, we have investigated three open questions

concerning the use of code cloning in software systems. In this chapter, we discuss our first

question: what are common motivations for code cloning? Our investigations into code

clones leading up to and including this thesis have revealed a number of motivating factors

when using code clones. In this chapter we discussed these motivations and discovered that

many reasons to create code clones relate to maintaining an extendable, understandable,

and testable code base.

While answering our second question, are there recurring ways in which code cloning is

used in software, we have described a catalogue of cloning patterns. This catalogue, derived

from case studies into code cloning in real software systems, connects specific motivations

for creating code clones with typical manifestations of the pattern in source code and

maintenance implications that should be evaluated. We have shown these patterns are

repeated in two software systems, with varying degrees of frequency. We expect that this

catalogue of patterns will grow in the future as applications in different domains and states

of maturity are investigated.
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To understand how code cloning patterns are used, and the appropriateness of their use,

we subjectively evaluated a sample set of code clones and their effects on software quality.

We concluded that a large number of code clones are used appropriately and their use

improves source code quality. However, there remains a similar number of code clones that

are harmful to overall source code quality, leading us to believe that software practitioners

may require more guidance on the use of code cloning as a principled engineering practice.

Based on the evaluation of code cloning patterns in software systems, we found that

specific maintenance strategies are advisable for each cloning pattern. In general, we

believe that code cloning can be used as a principled engineering practice if the appropriate

maintenance tools are utilized. In the preceding text we have suggested possible tools for

maintaining specific patterns of code cloning and outlined some of the desirable features

these tools should have.

Finally, we suggested a novel process to complement source code control in managing

and documenting code clones as they are created or committed into the source code. We

outlined the behaviour of a source code advisor that would track and advise on maintenance

actions for code clones created using each type of code cloning pattern. In doing so, we

suggested requirements for such a tool as well as a possible architecture for integration

with modern source code control systems.
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Conclusions

Prior to the work presented here, code clone research had largely ignored the question of

how the practice of code cloning is employed in developing software systems. In particular,

there was little evidence supporting the conventional wisdom about the harmfulness of code

clones, nor was there much investigation into the types of code clones present in software.

The work presented in this thesis tries to address these questions through investigations

of code clones in real software systems. We found evidence that software practitioners

often use code cloning in a principled way. By identifying code cloning patterns, we

identified common code cloning motivations and manifestations. We also evaluated the

appropriateness of the use of the code cloning patterns in two open-source software systems.

Our evaluation provides strong evidence that a large portion of code clones in software

systems are the results of sound engineering decisions.

The code cloning patterns presented in this thesis are a step toward building a language

for discussion that can be further used to evaluate and interpret research in this area. This

language, in the form of code cloning patterns, endeavours to provide a flexible framework

on top of which we can document our knowledge about how and why cloning occurs in

software and how resulting code clones should be maintained over the life of a software

system. It is our hope that this documentation will crystallize a vocabulary that researchers

and practitioners can use to communicate about cloning.

These patterns may also help to address the problem of forming a generally accepted

definition of a code clone. While the high-level concept of what constitutes a clone is
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generally accepted — a code clone is two or more similar segments of code — there is little

agreement on a more concrete definition. Often factors such as code cloning rationale,

future maintenance strategies, and a specific definition of similarity play a role in deciding

what a code clone is. The patterns of code cloning presented in this thesis encompass

many of these varying interpretations of the general definition as specific instances of code

cloning. This has the advantage over the generic term “code cloning” as each pattern can

be defined more precisely without the risk of excluding an individual’s definition of code

cloning; a definition of code cloning not covered by the patterns presented here is likely to

be yet another code cloning pattern.

The list of patterns presented in this thesis is not asserted to be complete. Further

studies may reveal code cloning patterns that we have not yet observered. For instance, we

can forsee code cloning patterns in scenarios where multiple languages are used. Another

source of additional code cloning patterns is in the domain of functional programming,

something this work has not addressed.

A major contribution of this thesis is the insights it provides into how and why devel-

opers clone code rather than forming higher level abstractions. These insights are based

on evidence taken from real software systems and has applications in the clone detection

and analysis research community. This understanding of the types of clones that exist

in source code may help focus work on improving clone detection methodologies. Under-

standing common ways that developers use code clones may also aid in developing tools

and methods to better manage code clones as they are created or discovered. One such

tool is suggested in Chapter 6.

We also described a set of observations that can provide guidance into the design of

future code clone analysis tools. Throughout the investigation of cloning in software we

gained insights into the problem of analyzing clones in large systems [31, 50, 49, 51, 52, 54,

53]. These insights led to a high-level description of the requirements of an effective clone

analysis environment and the development of a prototype [52, 54] currently being used in

on-going research.

Furthermore, in this work, an additional categorization of cloning is introduced and

discussed in Appendix A. This categorization is a taxonomy of clones in software systems

that takes into account the locality of the clones within the software architecture, the type
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of code the clones reside in, and the similarity of the regions the clones reside in. This

has not been done in previous work and was an important step toward understanding the

problems involved with the management of code clones in software systems. Our clone

navigation tool, the Clone Interpretation and Classification System (CLICS), incorporates

the taxonomy as a way of displaying clones, as well as a method of filtering clones.

7.1 Future Work

We see two main streams of future work. Recent experience in industry by the author has

made it evident that code cloning in large, multi-project software systems is a common

method of reusing behaviour. While investigations into code cloning amongst projects in

the open-source community have been undertaken, these studies analyzed projects that

were generally not tightly coupled. In the context of large inter-communicating projects,

code cloning can be employed as a method to reuse input and output behaviour, separate

runtime or build time dependencies, and enable backwards compatibility with deprecated

products or services. While these code cloning patterns have been observed, and used, by

the author, their prevalence and usefulness over other forms of reuse must be evaluated.

How does code cloning across tightly coupled software projects compare qualitatively to

code cloning within a single large software system?

In the case studies leading up to and including this thesis, the study subjects have

been primarily written in the programming language C or C++. Further investigations are

required to compare code cloning in other languages, including fourth generation languages

such as SQL that have not been discussed in prior literature. In addition, the identification

of language features that assist in avoiding potentially harmful code cloning may lead to

better design of new languages, and enhancement of existing languages.
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A Taxonomy of Clones

A.1 Introduction

The following appendix describes one of the major tools in our analysis of code cloning

in software, a taxonomy of clones. This taxonomy has been created through manual

inspection of thousands of code clones from several large software systems. The resulting

artifact has been validated and used in several case studies [49, 51, 50, 52, 53, 54].

Such an artifact is useful for several purposes. In this thesis, we use the taxonomy

to gain more insight into the clones we are investigating. The taxonomy is a method of

displaying clones for exploration, as shown in Chapter 3. The taxonomy provides additional

information about the clones such as location and scope that can be used when identifying

maintenance opportunities. A design-centric taxonomy, such as the one presented here, was

essential in growing insights into what, where, and how code clones are used in software.

By partitioning code clones into identifiable groups, such as function clones and clone

blocks, we are able to ask more directed questions thereby facilitating the growth of our

understanding of code clones. For example, by further analyzing clone blocks — code

clones that comprise only small portions of a function — we identified the use of code

cloning for initialization and verification of preconditions for functions.

The taxonomy is also used for filtering code clones, as discussed in Section 2.5. Each

clone type has its own characteristics of layout and complexity, making each type of code

clone susceptible to different types of false positives. Sorting clones into a taxonomy
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provides opportunities to use specialized filters that are designed based on the structure of

the code in question [51].

This appendix describes the structure of our code clone taxonomy, including a descrip-

tion of each code clone category, the subgroups contained in each category where applicable,

and observations we have made throughout our case studies.

A.2 The Code Clone Taxonomy

The code clone taxonomy is a hierarchical classification of code clones, shown in Figure

A.1. Dark arrows indicate subgroups and dotted lines connecting dark arrows indicate that

the connected groups are also included as subgroups. For example Same File Clones con-

tains Same Region Clones, Function to Function Clones, Structure Clones, Macro Clones,

Heterogeneous Clones, and Misc. Clones.

The categorization of clone types at higher levels of the taxonomy are grouped according

to the pairs of regions they reside within. This group is called a Regional Group of Clones

(RGC). A RGC is a group of clones that share the same two regions. For example, all clones

between Function A and Function B will be grouped as a single RGC. In some cases, these

RGCs can be used form a single large clone when the two regions are sufficiently similar.

For example, two functions that have 60% of their tokens in common with each other are

considered Function Clones.

The rest of this chapter is organized as follows. Each subsection describes a specific

level in the taxonomy and the clone types that it are contained within it. Each subsection

includes a description of how clones are categorized at this level, an informal description of

each group in that level, and several observations we have made about each group. When

it is appropriate, we provide examples of the types of clones found.

A.2.1 Partition by Location

Description

At the first level of the taxonomy, clones are partitioned based on the location of the two

code segments within the software architecture. We consider software to be structured as
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a set of subsystems hierarchically contained. This partitioning of clones is done according

to the location of the code segments in terms of files and subsystems. For example, one

code segment of a clone could appear in Directory X, File Y, and the other code segment

in Directory A, File B. In this case, the closest common ancestor is computed, determining

the family tree relationship of the files. If A == X, then the clones are sibling files, or

0th cousin clones, also referred to as Same Directory Clones. If one file is located deeper

in system hierarchy then the other, we show this difference by computing the difference of

the depth of the files from the root of the architecture. The difference in the depth of two

files is referred to as the number of generations removed. For example, consider a clone

with segments of code in the following two locations:

1. httpd/server/core.c and

2. httpd/modules/experimental/mod example.c.

In this case, the clone would be considered a second cousin clone, once removed. It is a

second cousin because the closest ancestor (httpd) is two levels away from core.c. The

clone is once removed because the depth of core.c is one level less than mod example.c.

Groups

Clones that occur in the same region of the same file are called Same Region Clones.

Clones that have both code segments within the same file are called Same File Clones,

while clones that span different files but in the same directory are called in Same Directory

Clones. Clones where the code segments are in different directories are considered nth

cousins, m removed as described above.

Observations

This partitioning is significant as we have found that the dominant traits of each of these

groups are different. For example, clones in the group Same Directory Clones tend to be

function clones, clones occurring in different subsystems tend not to be function clones,

and the Function Clones that are in different subsystems appear to have larger differences

than those function clones that occur in the same directory or same file. In several of our
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case studies we have found that a large percentage of clone pairs (70 - 80%) are either

Same File Clones or Same Directory Clones, indicating that either clones occurring across

subsystems are less frequent or they are harder to detect due to the larger changes.

A.2.2 Partition by Region

Description

The next level of the taxonomy partitions each of the above groups, with exception of

Same Region Clones, by the types of regions the code clones occur in. For example, a list

of declarations and a function are two different types of regions. A code segment is said

to belong to the region type that makes up the majority of the lines of code in the clone.

For example, if we have a code segment containing 50 tokens of function prototypes and 7

tokens in a struct, the segment is considered to be a prototype.

Groups

There are five groups: clones between two functions are called Function to Function Clones;

clones between two programming structure regions such as unions, enumerators and structs

are called Structure Clones; clones between macros are called Macro Clones; clones between

two regions of different types are classified as Heterogeneous Clones; clones between external

variable definitions, prototypes, and type defines are considered Misc. Clones. A clone

with one segment in a function and the other segment as part of a macro is classified as a

Heterogeneous Clone.

Observations

Detected clones that are not Function to Function Clones are often false positives in pa-

rameterized string matching algorithms. Because of this phenomenon, strict filters such

as exact match line matching must be used to remove these false positives. In the case of

parameterized string matching methods, we were able to remove up to 65% of the reported

clone pairs using stricter filters, without removing many, if any, true clones.

After filtering, Function to Function Clones make up the bulk of the detected clones.

Less than 1% of the clone pairs reported were not Function to Function Clones.
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A.2.3 Function to Function Clones

Description

Function to Function Clones are those clones that occur between two functions. At this

level of the taxonomy we partition the RGCs, as described above, by the degree to which

the code is considered cloned between two functions.

Groups

Function to Function Clones are divided into four subtypes: Function Clones, Partial

Function Clones, Cloned Function Body and Cloned Blocks. Function Clones are functions

that share a minimum of 60% of each function’s tokens. Partial Function Clones are

near miss function clones. These function pairs must have one function with at least 40%

and less than 60% of its code shared with the other, and the other function must have

a minimum of 60% shared code. Cloned Function Body Clones are functions where one

smaller function has been copied into a considerably larger one. This class of clones requires

one function to share a minimum of 60% of its code with a function where less than 40%

of the function code is cloned. Cloned blocks are blocks of code that are not large enough

or numerous enough to be in one of the above clone classifications. At this point, clones

are individually classified within their RGC. Cloned blocks is further subdivided as shown

below.

Observations

Function Clones appear to be the most promising points of refactoring of all the clone

types. They are larger and tend to have a significant amount of code in common. Function

Clones and Partial Function Clones can account for up to 80% of the clone pairs found by

CCFinder in a software system [49, 51, 50]. Partial Function Clones tend to be functions

where one function has been cloned and extended slightly.
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A.2.4 Cloned Blocks

Description

Cloned Blocks can exist in various parts in a function and can have many different roles.

This group has been subdivided based on the functional properties of the code in the

clones. In this group we try to capture the function or structure of the code that is cloned.

Groups

Cloned Blocks are subdivided into 14 groups of clones. Here we describe their rational and

the constraints we use to classify them.

Clones that occur at the beginning of functions are called Initialization Clones. Ini-

tialization Clones start in the first 5 lines of a function and finish before the middle of the

function.

Clones occurring at the end of functions are called Finalization Clones. Finalization

Clones start after the middle of the function and end within the last 5 lines. For this group

we have found that restricting only one clone to fit this criteria is still accurate but allows

for functions where labelled sections of code have been appended at the end.

There are several clone types associated with loops in our taxonomy. Loop Clones are

code clones that cover at least 60% of the length of the loop and the loop must cover at

least 60% of the clone. This clone type allows multiple loops to be part of the clone, as long

as 60% of the clone is covered by loops and 60% of the total loops are covered. Starting

Loop Clones are typically clones of initialization at the beginning of a loop. These clones

start before the first three lines of a loop, and cover less than half of the loop. Partial Loop

Clones are loops where one loop is cloned and then extended. The criteria for a clone in

this categorization is that at least one of the loops must contain at least 60% cloned code.

Clones occurring in switch statements are called Clones in Switch. The only criteria

for this type of clones is that 60% of the tokens of both segments of the clone pair must

be within a switch statement.

Conditional Clones are code clones that occur within if/else statements. These clones

must cover at least 60% of the tokens of the block forming the if/else and the block must

cover at least 60% of the code clone. In this clone type, if and else blocks are considered
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either as separate entities or as a single unit, which ever decision favours placing the clone

in this group. Multi-Conditional Clones are similar to the previous clone type but allows

multiple control-flow statements to be involved. This is useful when regions of many single

if statements are strung together and cloned. Partial Match Conditionals are similar to

Cloned Function Body Clones. They are clones where the body of an if statement has

been copied and used in a section of code that is not a conditional or when one smaller

if statement is copied into a larger one. Clones of this type must have one clone covering

60% of a conditional and the conditional must cover 60% of the code clone. The thresholds

reported here were tuned based on several study subjects.

The next group of clones we discuss involve calling functions: Simple Call Clones and

Less Simple Call Clones. These clones are sequences of function calls, often cloned as a

template. Simple Call Clones are clones where at least 70% of the tokens are part of very

simple function calls. A simple function call is defined as:

functionCall := [assignment] function_name (parameter [, parameter]*);

function_name := token && !"if"

parameter := token

assignment := token =

token := alphanumeric[alpanumeric]*

alphanumeric := a-z|A-Z|0-9|_

This group of clones is particularly susceptible to false positives so filtering must be

done. Currently we have constraints that require the function calls to be similar in name.

Less Simple Call Clones is a group of clones where the parameters of a function call

can be statements in addition to tokens. Similar to Simple Call Clones, Less Simple Call

Clones require that 70% of the tokens in a clone be part of a function call. In this case the

function call is defined as follows:

functionCall := [assignment] function_name (params);

function_name := token && ! "if"

params := NOT ";"

assignment := token =

token := alphanumeric[alphanumeric]*
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alphanumeric := a-z|A-Z|0-9|_

The final Cloned Blocks clone we will discuss is Clone Islands. While the other clones in

this group have attributes related to the source code and their location in it, these clones

do not. They are clones that are the only cloned between two functions. Clones of this

type are often non-trivial fragments that occur as a result of a generic task, such as calling

a function and checking its return value. For clones which cannot be easily placed we put

them in a group called Unclassified.

Observations

Initialization Clones and Finalization Clones are an interesting set of code clones. Many of

these clones embody the logic for ensuring preconditions and post-conditions for entering

and exiting a function are met. Such clones would be difficult to remove, as they often

appear to be modified, but are important to be aware of as they often handle issues of

memory management and exit conditions.

Loop Clones appear much less often than first anticipated. We in fact found very few

such clones in our case studies.

Clones in Switch is an interesting group of clones. They appear to difficult to refactor

as switches with clones very often have insertions and deletions of cases and refactoring

would make the code quite unreadable. We feel this group of clones is a good candidate

for documentation rather than refactoring.

A.2.5 Structure Clones, Macro Clones, Misc. Clones, and Het-

erogeneous Clones

Description

These groups of clones are partitioned based on their degree of similarity.

Groups

These groups of clones are sub-grouped as Identical, Nearly Identical , Similar and Structs

with Cloning. Identical Clones are structural entities that are 100% duplicates of each other.



180 Toward an Understanding of Software Code Cloning as a Development Practice

Nearly Identical are 80% duplicates, and Similar are at least 60% duplicated. Structs with

Cloning share less than 60% of their code.

Observation

Code segments that fall into these types of regions in source code are often of simple

structure and are very prone to false positives, especially in the case of parameterized

string matching, For example, the following two structs would produce a clone match:

struct { struct {

int a; char ch1;

int b; char ch;

float f int clock;

char c; float elapsed;

char* charstar; float* intervals;

} struct1; } struct2;

Because of this, filters should be applied to clones of these types.

A.3 Extensions

There are several points of extension that can be made to this framework which will be

addressed in future work. Function Clones can be further divided to reflect the closeness

of the match and the types of differences in the code clones. Balazinska has described

such a categorization that could be used to further extend our description of function

clones [8, 74]. This is an important extension that should be addressed as it will aid users

in differentiating between functions that should be refactored to remove redundancy and

functions that are dissimilar enough to require documentation. A similar extension should

be made for Partial Function Matches and Cloned Function Body clones.
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