
Recommending Posts Concerning API Issues
in Developer Q&A Sites
Wei Wang, Haroon Malik, and Michael W. Godfrey

David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada

Email: {w65wang, hmalik, migod}@uwaterloo.ca

Abstract—API design is known to be a challenging craft, as API
designers must balance their elegant ideals against “real-world”
concerns, such as utility, performance, backwards compatibility,
and unforeseen emergent uses. However, to date, there is no
principled method to collect or analyze API usability information
that incorporates input from typical developers. In practice,
developers often turn to Q&A websites such as stackoverflow.com
(SO) when seeking expert advice on API use; the popularity of
such sites has thus led to a very large volume of unstructured
information that can be searched with diligence for answers to
specific questions. The collected wisdom within such sites could,
in principle, be of great help to API designers to better support
developer needs, if only it could be collected, analyzed, and
distilled for practical use.

In this paper, we present a methodology that combines several
techniques, including social network analysis and topic mining, to
recommend SO posts that are likely to concern API design-related
issues. To establish a comparison baseline, we introduce two more
recommendation approaches: a reputation-based recommender
and a random recommender. We have found that when applied
to Q&A discussion of two popular mobile platforms, Android
and iOS, our methodology achieves up to 93% accuracy and is
more stable with its recommendations when compared to the two
baseline techniques.

I. INTRODUCTION

Modern software developers rely heavily on pre-defined
libraries, frameworks, and services to implement much of the
infrastructure of their systems. The application programming
interface, or API, not only defines the services that are
provided, it also specifies the protocols for their use. An
effective API allows service providers, such as Google, Apple,
Amazon, and Facebook, to give their clients controlled access
to vast amounts of data and powerful building blocks in
creating their own third-party systems; the explosion in this
style of development have given rise to what is called the
“API economy” [24].

Since the business success of an API provider ties closely
to the existence of a large and enthusiastic user base, it is
key that such APIs be carefully maintained to be responsive
to the needs of the developers. As “issues” relating to bugs,
performance, or usability are identified by the user community,
the API provider/designers must strive to fix bugs quickly,
accommodate changing requirements, support backward com-
patibility, help to overcome “learning obstacles”, improve
documentation, and support unexpected usages [34], [16],
[31], [12]. For example, Linares et al. have studied how bug-

free, stable APIs can affect successful application development
within the Android technical ecosphere [19].

A starting point in addressing API-related issues is to
quickly identify their context and underlying causes. API-
related issues can be inferred by mining bug repositories [42],
newsgroups [15], programmer posts [33], and e-mails [14].
Q&A websites, such as Stack Overflow (SO), hold particular
promise as they contain discussions of the real-world issues
encountered by millions of developers.

While the information contained within Q&A sites may
be invaluable to API designers, these sites are designed to
support the discussion and subsequent browsing of very de-
tailed design questions rather than summarizing the knowledge
contained within; additionally, much of the volume of API-
related discussion concern repetitive “newbie” questions that
are generally less informative to API designers. Consequently,
if API designers want to infer API-related issues from posts
in Q&A sites, posts must be analyzed, organized, and fil-
tered. Recent empirical work on exploring the contents of
SO has concentrated on the developer’s role: identifying the
contributions of individual developers [26], crowd-sourced
documentation [36], knowledge dissemination [11], and the
evolution of the software system [14]. Our work here aims to
assist API designers to identify SO posts that are relevant to
them, to better support their goals.

In this paper, we present a methodology that distills and
ranks posts of Q&A sites that are likely to concern API-
related issues, so that these posts can be studied in detail
by API designers. More specifically, we make the following
contributions:

1) We present an approach to assist API designers
finding API issues faced by the SO community.
Currently, API designers may spend considerable time
skimming through all SO posts to identify API issues.
Our approach uses textual data (questions and answers)
and meta-data (such as “posted-by”, “posted-time”, and
“#-of-views”) as input. The output is a set of SO posts
that are ranked by the perceived severity of API issues.

2) We present a technique to identify experts on Q&A
websites. The majority of the important questions and
accepted answers (pointing to bugs and API usability
issues) are provided by expert members [6]. We auto-
matically identify experts by modeling the Q&A forum
as a directed graph, where each user is represented by a

TABLE I: Data corpus under study

Date Distinct Total Accepted Total
Users Posts Answers Answers

iOS 2011 17,808 51,192 35,846 93,333
Android 2011 28,330 90,132 54,764 157,864

node; and for a user B who answers a question posted
by user A, a direct edge is linked from A to B. By
leveraging the connectivity of the graph, we identify
users who actively participate in SO discussions and
related moderation activities, but do ask few questions
themselves. We found the proposed model to be effective
in removing up to 39% of non-technical posts, most of
which are “how-to” questions, usually asked by novice
developers.

3) We show how generative models can be applied to
reduce the dimensionality of SO data. We use Latent
Dirichlet Allocation (LDA) to reduce the dimensionality
of SO posts, thereby allowing API designers to organize
the posts along topics that capture the interests/concerns
of a large developer base. Analyzing SO posts relative to
the topic of interest allows designers to quickly uncover
latent issues within the discussions.

4) We present a simple statistical technique to expedite
SO post selection. SO posts that are answered late or
quickly relative to the time of their original posting can
be indicative of issues such as a known bug, confirma-
tion for API usability issues, and a workaround for a
buggy API. We use a Control Chart (CC) to automati-
cally define what constitutes as ‘late’ or ‘quickly’ with
respect to a topic’s temporal trend.

5) We propose a metric to rank SO posts. To assess the
difficulty of a question posed in SO, we have derived a
formula that aggregates a number of different measures
(i.e., the extent of experts’ participation on a question,
their resolution rates, and meta-data related to posts)
that are likely to be indicative of the importance of
the underlying issues. Furthermore, we rank the SO
questions based on the perceived difficulty. A question
with multiple answers, resolution pending, heavy expert
participation, and high number of comments from SO
community, is likely to contain a difficult API related
issue and is of more interest to API designers in contrast
to a question posted at the same time with a few answers.

6) We compare our approach with two baseline rec-
ommendation techniques. We performed a case study
on posts related to the APIs of two popular mobile
platforms: Apple’s iOS and Google’s Android. Man-
ual validation of 1,200 posts threads (1,200 questions
along with their answers) reveals that the proposed
methodology has 34% less noise, (i.e., how-to and
implementation-specific questions) and is more stable
with its recommendations compared to the baseline
recommendation techniques.

II. BACKGROUND

A. Stackoverflow

Stackoverfow.com is a popular Q&A website dedicated
to discussing questions related to programming, including
general purpose algorithms, platform and language-specific
features, and commonly used APIs. SO is actively used by
millions of programmers to ask questions and discuss possible
answers. Its contents are openly accessible to public, and
posting a question generally requires only that the user have
successfully created a free account on the SO website. Since
users are registered, one can track the questions/answers on a
per-user basis.

For each posted question, a user may include a title and
textual description of the problem including code snippets in
the body. Tags are used to organize the questions. Users must
attach at least one tag and may attach up to five tags when
asking a question. For each question, multiple answers can
be given by different users. The user who asked the original
question can then either post a summative comment or indicate
one of the answers as correct. Other users can also rate whether
they like either the questions and/or the answers.

The SO community itself is responsible for assuring the
quality of the questions and answers: if a question or an answer
is considered relevant, thorough, or correct, users “up-vote” it;
if not, they “down-vote” it. Users who posted those up-voted
questions/answers receive “reputation points”. Consequently,
building reputation within the community is a key motivator
for individual contribution to SO.

At time of writing, the data and community of the SO are
continuing to grow at an exponential rate; a total of 4,125,638
questions in 2009 [6] to 7,249,728 questions posted to date, 4.4
million answers, and 3.2 million comments. The site served
more than 8.7 million visitors. After its first year, SO had
around 53 thousand members. The membership grew rapidly
and reached close to 1.3 million by 2012 [5] and 2.9 million
by year 2013. The success of StackOverflow is fueled by a
number of factors:

1) High answer rate: 92.6% of questions receive at least
one answer [21]. This rate exceeds those reported from
users of Yahoo! Answers (88.2% [13]) and KiN (66%
[25]).

2) Fast response: The median time to the first answer for
a question is 11 minutes; the median time to an answer
accepted by the questioner is 21 minutes [21].

3) Expert participation: There is a heavy expert participa-
tion both from developers, designers, and architects.

B. Scope of Research

In this paper, we investigate methods to distill and rank
Q&A posts with API-related issues. API-related issues span a
spectrum of severity, from API bugs as the most severe issues
to minor problems such as lack of proper API documentation.
In this paper, we investigate only the five kinds of API-
related issues that were investigated by an API usability model
by Zibran et al.[42]. These API-related issues are: 1) API
correctness (for example, unexpected behavior of API1); 2)
memory management issues (some issues have been officially
confirmed2); 3) missing error handling (such as “errors in
GPS lookup”3); 4) backward compatibility issues (especially
when platforms are upgrading quickly4); 5) lack of proper
API documentation (such as outdated documentation5). This
scope of API-related issues is used both in establishing the
ground truth and in assessing the performance of our proposed
methodology. The details of deciding whether a Q&A post
discusses any of the API-related issues can be found in
Section VI-A.

C. Data corpus

For the purpose of assessing the performance of our pro-
posed methodology for distilling and ranking Q&A posts, we
conduct a case study on SO posts. This case study choose all
Q&A posts for Android and iOS topics posted in 2011, as
shown in Table I. We choose Android and iOS posts since
both platforms have established a large developer community.
Moreover, unlike other technical issues, we think posts for
Android or iOS topics are more likely to concern APIs
compared to posts for a specific programming language. We
perform our case study only on the posts logged in the year
2011 since both Android and iOS were in a relatively nascent
stage where many API-related issues were yet to be fixed.

III. ANALYZING STACKOVERFLOW POSTS:
CURRENT PRACTICE

API designers from major software platform providers,
including Facebook [3] and Google [2], [1], already use
SO posts to support API maintenance. API maintainers may
participate in discussions to support platform developers, while
API designers are continuously monitoring SO to capture posts
containing issues that are likely candidates for corrective and
perfective maintenance. Such issues include developer requests
for new feature, APIs performance enhancement, usability
issues and bugs.

When API designers wish to browse the SO content for
issues perceived as problematic by the SO community, they
may enter into what we call the “dark side” of the SO
knowledge base, where there is no or little agreement on
issues under discussion. For example, it makes sense that API
designers may wish to first examine posts that are unanswered

1http://stackoverflow.com/questions/8044476/
2http://stackoverflow.com/questions/5358219/
3http://stackoverflow.com/questions/6487727/
4http://stackoverflow.com/questions/4658021/
5http://stackoverflow.com/questions/4922750/

so far. Of course, an unanswered post may simply be new,
poorly worded, or a duplicate of a common issue that has not
yet been flagged as such. On the other hand, an unanswered
question may also be indicative of a particularly subtle or
complex question, or an issue that is rarely encountered.

In the second tier of importance might be questions with
only a pending resolution, i.e., those with no generally ac-
cepted answer. This may be indicative of a well-considered
question for which there is no clear and generally accepted
answer. And in the third tier, API maintainers may look for
late-answered questions, where the eventual answer appears
long after the original question; this may also be indicative of
issues that took thought and discussion to resolve on the part
of the SO community.

IV. ANALYZING STACKOVERFLOW POSTS: CHALLENGES

We believe that the current practice of analyzing SO posts
to capture maintainability issues is manual, error prone, and
faces many challenges:

Uncertainty: Analyzing unanswered questions — those for
which the SO community has so far failed to provide a
consensus solution — seems at first glance to be a straightfor-
ward proxy for capturing API-related issues. However, using
unanswered questions cause a few problems. Most importantly,
an empirical study [5] indicates that most of these unanswered
questions are how-to questions, largely from novice or low-
reputation members . Questions at SO often remain unan-
swered due to the fact they are poorly phrased, the problem
is too generic [21], [25], the issue is too new or not strongly
relevant to most developers [5], or lacks sufficient visibility
[10], [38]. These unanswered questions are often later deleted
by moderators and experienced users after a timeout period of
several months [11].

Similarly, many of the questions on SO (∼31% [4], for
instance, Android (241,987; 33%) and iOS (299,201; 45%)
questions do not receive satisfactory answers because accord-
ing to SO conventions, declaring an answer as “accepted” is
a voluntary act. In practice, many SO members do not bother
to formally endorse good answers as accepted; these users
tend to be “information seekers”, who have a single question
but do not remain in the SO community once they acquire
a workable answer. Also, since response turnaround in SO is
very fast [21], information seekers and novice members often
expect answers within a short time frame; if an answer is
longer in forthcoming, they may simply abandon the posting
[5].

Thus, we can see that a question that falls into the “dark
side” may not capture a legitimate API-related issue that
requires the attention of an API designer; however, the API
designer must still wade through these posts. Filtering such
questions — ideally, automatically — would thus be of clear
benefit.

Large volume: The average number of Android related
questions posted monthly on SO was 12,515 during 2012,
and this grew to 19,767 by April 2014 [20]. This amounts to
around 700 new questions (i.e., not including answers posts)

Experts

Identification
“Bow-Tie”

Post Selection
“Control Chart

Ranking
Formula SO

Recommendations Dimension
Reduction

“LDA”

Fig. 1: Workflow of Proposed Methodology.

per day. The average ratio between question and answer posts
of questions to answers is 1:3, resulting into 2,100 posts. The
minimum average length of answer post is 3 lines of text [35].
Thus, an analyst must skim through more than 6,300 lines
of textual contents to identify APIs that require perfective or
corrective maintenance.

Limited time:

A. Internal pressure — Highly competitive markets and the
consumerization of mobile apps have put pressure on API
designers and maintainers to proactively provide updates
and reduce release cycle times. For example, Android
APIs are evolving at the rate 115 updates per month on
average [23]; also, a major version of Android is released
as often as every one to six months [18]. Identifying post-
release API issues from crowd-sourcing is always the first
step in an already tight maintenance schedule. Hence,
managers are usually eager to reduce the time allocated
for performing analytics of crowdsource information, i.e.,
Q&A website and allocate more time in fixing and testing
API issues.

B. Slow process — In SO, the task of ensuring the quality
of discussions is left to the crowd. Poor-quality posts are
identified by community moderators, who have the power
to close or delete questions. The process of deleting low-
quality posts is determined by a voting mechanism and
the review process to decide upon its quality is extremely
slow [29]. Around 80% of the questions takes at least a
month to receive their first delete vote [11].

Risk of error: The process of analyzing SO posts is error-
prone for several reasons. First, an API designer who is mon-
itoring the posts may have only limited domain knowledge.
Second, the underlying process for selecting posts of interest is
largely manual, tedious, and so subject to human misjudgment.
For example, the SO community is capable of generating rich
source of both questions and answers about the Android APIs,
covering 87% of the all APIs [10]. However, there is often
no single person in a given evolving large software system
who has complete and authoritative knowledge about the
entire working of the system and its encompassing technical
ecosphere. Consequently, for example, an API designer with
good knowledge about the Android Location API may quickly
uncover valid problematic issues related to maps, GPS, motion,
position or environment sensors in SO posts. However, the
API designer may fail to envision the criticality of many of
the underlying issues in posts that relate to the telephony API.
Further, SO provides only a limited set of tags for marking
questions. Therefore, API designers may select a post for a
more in-depth analysis by doing low-level textual searching
for specific keywords like “fail”, “error”, “crash” and “usable”.

Of course, not all posts containing the “fail” and “error” are
worth investigating; false positives are likely to be common.
API designers may choose to follow domain trends, i.e., to
look into only posts that are relevant to APIs with a history
of heavy use, or to APIs that are known to be error prone.

Due to these challenges, we believe that the current practices
for analyzing SO posts are grossly inadequate for current
needs. API designers need an approach that is better designed
to assist them to find posts concerning API-related issues
in an authoritative, scalable, timely, accurate, and systematic
manner.

V. METHODOLOGY

The main objective of our proposed methodology is to distill
and rank SO posts so that those concerning API-related issues
can be efficiently processed by API designers. Our approach
takes SO posts and related meta-data as an input, and filters
out most of the noise, i.e., how-to questions, closed questions,
ill-posed, generic, and low-quality posts that fail to provide
designers an insight to API-related issues. The goal is to
produce a reduced set of posts that are more likely concern
API issues, and that are ranked by the level of perceived
difficulty by the SO community. Analyzing reduced, relevant,
and ranked set of posts allows API designers to spent less time
reading through raw text to find issues of interest to them, and
thus allowing more time to work on solutions to API-related
issues.

Figure 1 shows the high-level overview of the steps involved
in our proposed methodology. The first step is to automatically
identify the experts. Retaining only the question posts of
experts eliminates how-to question from novice users.

The second step further reduces the dimensionality of
SO posts by organizing them along topics that capture the
interest/concern of a large developer base. This provides API
designers with the grounds to delegate SO posts to relevant
designers. Analyzing posts relative to the topic of interest
allow designers and corresponding developers quickly grasp
fine-grained issues of SO crowd.

The third step automatically identifies questions that are
answered quickly or late with respect to temporal trends —
such as the popularity of an API and available corresponding
expertise at SO — within an observed time span. Questions
answered quickly relative to the time of their original posting
can be indicative of issues such as known bugs or confirmation
of API usability issues. Identifying late questions with respect
to temporal trends enables API designer to disseminate timely
support to the developers.

The last step of our methodology ranks posts, by the level of
difficulty-to-resolve as perceived by the SO community, based
on a set of metrics derived from the SO meta-data. We now
detail each step of our methodology.

A. Experts Identification

Identifying experts out of novice and beginner users elimi-
nates most how-to questions. An empirical study [21] shows
that beginner SO users are often “information-seekers”, who

 Extracted Derived
Po

st
s

Post ID of Stack Overflow (PID) No. of answers received
Questions revised (Y/N) Time it took to get a first answer
No. of up votes received Time it took to get an accepted answer
No. of down votes received Number of experts
No. of user who viewed the post
Favorite

M
em

be
rs

 Member ID Member’s Avg. time to post answers
Member reputation Member’s Avg. time to accept answers
Total answers posted by a member Resolution rate of a member
Total accepted answers of a member Reputation score of a member
 Member’s dual expertise (Y/N)

TABLE II: Meta-data Variables

ask more how-to questions but provide few answers them-
selves. Novice SO users often ignore explicit guidelines on
both posting and answering questions[5]. The majority of the
important questions and accepted answers (pointing to bugs
and API usability issues) are provided by expert users[6].
For Q&A sites, a straightforward proxy for expertise — the
reputation of user accounts — reflects only in part the expertise
since a reputation score is often associated with promptness of
providing answers [8]. To overcome this limitation, we identify
experts by “bow-tie” analysis proposed by Broder et al. [9].
The “bow-tie” analysis leverages connectivity of a question-
answer graph for all users by characterizing a Q&A forum as
a directed graph, where each user is represented by a node;
and for a user B who answers a question posted by user A,
a directed edge is constructed from A to B. By analyzing the
connectivity of this graph G, we identify the largest strongly
connected component C within G, which we call the “core”
component; the core represents users who actively ask and
answer questions for each other. After determining C, we can
then quickly determine the set of users who only ask questions
(i.e., all nodes that link to C, the “in” component in bow-tie
structure), and the set of users who only answer questions (i.e.,
all nodes that are linked to by nodes in C, the “out” component
in bow-tie structure).

We propose that the “out” component can be considered
as experts, since these users answer questions of the active
users (“core”), yet they do not ask questions to “core” users.
A similar approach [40] was used to identify expertise in
other types of social network relationship. For iOS-related
posts, we identify 3,027 distinctive accounts belonging to the
“out” component. For Android related posts, there are 5,098
distinctive account belonging to the “out” component. The
posts related to “out” component only are retained in this step.

B. Dimension Reduction

This step of our methodology uses a topic modeling tech-
nique called Latent Dirichlet Allocation (LDA). We use LDA
to further reduce the volume of SO post in a systematic
manner, i.e., by finding dominant SO discussion topics and
associated posts. LDA is a statistical topic modeling technique
suitable for natural language documents such as SO posts.
LDA represents topics as probability distributions over the
words in the corpus. Moreover, it also represents topics

FIG. 3: AN EXAMPLE OF CONTROL CHART

TABLE 5: TOPK TOPIC

Topic Post

Num Probability ID Membership Probability

38 0. 2991 272584 0.765

20 0. 2821 308081 0.835

18
0. 2820 264140 0.698

0. 1522 255846 0.532

21
0.1697 300048 0.788

0.1216 300793 0.865

1 0.1092 313018 0.900

⁞ ⁞ ⁞ ⁞

0 0.01221 327082 0.213

respectively. The rest of the components explain less variance
than a single metadata variable. To further trim the data we use
‘% Cumulative Variability’ in selecting the number of Topk
components. Using ‘% Cumulative Variability’ of 90% is
adequate to explain most of the data with minimal loss in
information [30]. This means, we only need to take into
account the two PCs as shown in TABLE 3. API designers and
maintainers are interested in SO posts not principal
components. We now decompose principal components of iOS
meta-data using the eigenvectors technique to map the PCs
back to meta-data rows, i.e., posts [32]. Each row (post) of
meta-data is given a weight in accordance to its association
with a PC. The larger the weight of a post, the more it
contributes to a PC. The posts that do not have significant
association with their respective Topk dimension are removed.
A Norman cut-off criterion [30] is utilized to decide on the
level of importance of a post to corresponding dimension:

,

 Where the loading value is considered 5.152 only if we have

more than 100 samples and N represents number of samples.

Once the Topk posts belonging to the Topk PC are identified,

we further rank posts to enhance the usefulness of our

approach. Identifying important variables (posts in our case)

has been made possible in the literature by exploiting loading

values in a strict manner. In past literature loading value of 0.7

is used as cutoff criteria to obtain important variables [33].

Hair et al. call loadings above .6 "high" and those below .4

"low" to rank important variables [34]. Raubenheimer pointed

out 0.4 for the central PC and 0.25 for the other PC [35].

However, we believe the cut-off level to identify the Topk

posts should not be fixed. It should be tunable on the basis of

domain demands. If an API designers is tight on time he/she

may want our methodology to suggest few of the Topk post. In

a situation where a designer wants to conduct any fine grained

analysis, designer may require our methodology to increase

the span of Topk posts in its suggestion. To server these

different needs, we incorporated loading as tunable parameter.

We set the loading value to 0.7. With the loading parameter

value set to 0.7, our PCA methodology identifies 7 out of 22

important posts along different dimensions, thereby achieving

a 68% data reduction. TABLE 4 shows the posts ranked in the

order of importance, i.e., loading values.

2) Topic Modeling
We used the popular topic modeling technique called latent

Dirichlet allocation (LDA), to find dominant discussion topic
(and associated posts) in natural language documents [-]. LDA
is a statistical topic modeling technique, which means that
LDA represents topics as probability distributions over the
words in the corpus, and it represents topics as probability
distributions over the discovered topics. LDA crates topic
when it finds set of words that tend to co-occur frequently in
the documents of the corpus. Often, the words in a discovered
topics are semantically related, which gives meaning to topic as
whole, For example, the words with highest probability in a
topic might be “server”, “client”, “request”, “host” and
“network” (because these words tend to occur together in
documents), indicating that this topic is related to database. We
use implementation of the LDA model provided by MALLET
[36] which is an implantation of the Gibbs sampling algorithm.
The quality of topics generated by LDA greatly depends upon
its configuration. Panichella et al. provided an optimal
configuration for LDA to work with text in software artifacts
[37], which has different properties as compared to the natural
language text in SO posts. Therefore, we use the following
parameters based on our experimentation with LDA: 40 topics
(since it has worked wonders with SO data), 40 iterations (for
convergence), and for the hyper parameters, we choose
standard values used in information retrieval community on
natural language corpora: α = 0.01 and β = 0.01. The low value
of α enables us discover dominant topics, i.e., high variability
among topics. Each topic contains around 60 words, as we are
able to label the topics effectively under this setting. (though
labeling is not the aim of our methodology).

Due to probabilistic nature of LDA, some topics are
assigned small but non-zero (e.g., 0.01) probabilistic value;
hamper noise, and are not effective. Therefore, we use δ
threshold as a topic cutoff; we keep only the main topics which
have topic probability of 0.10 or higher. Table 5 shows the
Topk topics of iOS for September 2008 ranked by their topic
probability values. The δ threshold yields five main topics, i.e.,
Topics (38, 20, 18, 21 and 1). Each post is assigned
probabilistic membership values for topics; which is somehow,
analogues to ‘loadings’ values of posts for a PC. We assigned
each post to the topic for which it has the highest probabilistic
membership value. This result in Table 5 shows that LDA we

Fig. 2: A Sample Control Chart for Analyzing Stackoverflow
Posts.

as probability distributions over the discovered topics. LDA
creates topic when it finds a set of words that tend to co-
occur frequently in the documents of the corpus. Often, the
words in a discovered topics are semantically related, which
gives meaning to topic as whole, For example, the words with
the highest probability in a topic might be “server”, “client”,
“request”, “host” and “network” (because these words tend
to occur together in documents), indicating that this topic is
related to database.

We use implementation of the LDA model provided by
MALLET [22]. The quality of topics generated by LDA
greatly depends upon its configuration parameters. Panichella
et al. [28] provide an optimal configuration for LDA to work
with text in software artifacts, which has different properties
as compared to the natural language text in SO posts. In
this paper, we use the following parameters based on our
experimentation with LDA: 40 topics, 40 iterations (for con-
vergence), and for the hyper parameters, we choose standard
values used in the information retrieval community for natural
language corpora: α = 0.01 and β = 0.01. The low value of
α enables us to discover dominant topics, i.e., high variability
among topics. Each topic contains around 60 words, as we are
able to label the topics effectively under this setting.

Due to the probabilistic nature of LDA, some topics are
assigned small but non-zero (e.g., 0.01) probabilistic value.
Therefore, we use δ threshold as a topic cutoff. We keep only
the main topics which have a topic probability of 0.10 or
higher. Each post is assigned probabilistic membership values
for topics, as shown in Table III. We assigned each post to the
topic for which it has the highest probabilistic membership
value.

C. SO Post Selection

With a set of SO posts relative to topic of interest in
hand, customarily, an analyst (i.e., an API designer) starts by
analyzing unanswered posts first, followed by late-answered
posts. The analyst uses his/her personal judgment to determine

Topic Post

Num Probability ID Membership Probability

38 0. 2991 272584 0.765
20 0. 2821 308081 0.835

18 0. 2820 264140 0.698
0. 1522 255846 0.532

21 0.1697 300048 0.788
0.1216 300793 0.865

1 0.1092 313018 0.900
⁞ ⁞ ⁞ ⁞
0 0.01221 327082 0.213

TABLE III: An example of topics with probabilistic member-
ship values.

what constitutes as a late answer and filters out the respective
SO posts. On the other hand, it is difficult to define what
‘late’ means in absolute terms and relatively depends upon
the popularity of the APIs and a number of corresponding
expertise available on SO.

An effective way to identify late answered question is to use
3-sigma (3σ) rule on SO meta-data. However, the temporal
data about SO posts is not normally distributed (according
to results of a Shapiro-Wilk test [32]). Therefore, we use
a statistical quality control technique called control charts
to expedite and automate the identification and selection of
questions that are answered late. We use a control chart due to
its previous success in analyzing software engineering related
data [27]. In a control chart, the control limits represent the
limits of variation that should be expected from answering
questions at SO, within a given time span. Violation of
control limits is considered as an anomaly (i.e., posts with late
answers). Control limits include a Central Limit (CL), which is
the median of all the value of a variable, Upper Control Limit
(UCL) and Lower Control Limit (LCL) are the upper/lower
limits of the range of a variable. A common choice is to use
10th and 90th percentiles to identify LCL and UCL [27].

We explain the use of a control chart to identifying
late answers at SO with an example. Figure 2 shows
the number of days it took to get an accepted answer
<4,10,18,15,22,12,16,18,19,30,25> for eleven SO posts. Thus
CL, LCL, and UCL are 18, 10, and 25, respectively. The
violations (i.e., late answered posts) are with values that are
greater than UCL (25) or smaller than its LCL (10). Hence, in
this example, posts (1 and 11) are recommended for manual
inspection since they violate the control limits.

One of the advantages of using a control chart is that not
only it identifies the late answer post relative to the time span,
it also pinpoints the posts that are answered very quickly. Ten
minutes appear to be the minimum time for knowledgeable
programmers to reply [21]. Thus, posts violating LCL can
reveal issues such as a known bugconfirmation of API usability
issue, and a workaround for the imperfect API.

TABLE IV: Variables used in constructing Question Score
(QS) metric

No. Variables Motivation and Rationale Reputation

1 #Up
Votes
(UV)

A higher number of people liking the question
implies that the topic of discussion is important
to the community

15

2 #Down
Votes
(DV)

A higher number of people who dislike the
question implies incorrectness. Down votes help
to remove the noisy questions from SO.

125

3 #Comments
Received
(C)

A High number of comments implies popularity
of a topic. Comments are mostly used to request
clarification from the author of the questions, to
offer suggestions to improve the post, and to add
relevant but minor or transient information to a
post.

50

4 #Answers
(A)

Number of answers serve as a proxy to the
importance of a question. A question with many
answers yet no accepted answer implies that
there may not exist a direct solution.

0

5 #Views
(V)

A high view count implies popularity of a post. 0

6 Favorite
count (F)

A high favorite count implies that the topic is of
interest to SO members and the question invites
continued attention from these members.

0

7 #Experts
(E)

Experts tend to answer questions that require
advanced knowledge. Heavy expert participation
in post indicates the importance of the question
and the severity of the problem (if exists). We
did not use the reputation member score pro-
vided by stack overflow since the member score
can be earned by answering simple questions or
community contribution on Stack Overflow. In-
stead we derived the following metrics intuitive
to describe the expert level.

Nil

8 Resolution
Rate (R)

This metric reflects the ratio between the number
of answers provided by expert and number of
answers that get accepted.

Nil

9 Dual Ex-
pert (M)

This metric reflects whether a member has
knowledge about more than one platform (in
this paper: both Android and iOS). The dual
expertise provides an edge to a member to
leverage expertise for cross-platform questions.

Nil

D. Ranking

To further improve the cost-effectiveness for API designers
in terms of maximizing their analytic potential, we also rank
the posts based on the level of perceived difficulty by SO
community. We consider that a higher level of difficulty
implies that underlying issue is likely to be relatively serious.
We propose a metric called Questions Score (QS) to model the
question difficulty along the two dimensions listed in Table II,
whereas Table IV lists the motivation and rationale behind
selecting the variables used to construct the QS.

QS = Ps +Ms (i)

Question Score (QS) is the sum of Post Score (Ps) and
Member Score (Ms). We calculate the Post Score using the
meta-variables shown in the following equation:

Ps = 15UV + 125DV + 50C +A+ F + V + E (ii)

We normalize the meta-data variables related to posts in
equation (ii) to avoid any single variable from dominating the
outcome of the post score. Take view count (V) as an example;
it is normalized by the average of the number of view count
of all the posts, as a result of applying the “bow-tie” model.
To give credibility to our Ps metric, the meta-data variables
in equation (ii) are assigned weights based on the value of
reputation require to perform corresponding activities on SO
6. The member score (Ms) is calculated using the equation
below:

Ms =
∑

n
θi∈P
i=1

Rθi . (iii)

In this equation, θ denotes an expert belonging to a post (P)
and R is the resolution rate for an expert (which on average is
36% for Android and 34% for iOS). The value of M indicates
the number of systems in which expertise is held. For example,
if an expert has provided answers for both Android and iOS
platforms on SO, the expert’s M value is two.

VI. CASE STUDY

To evaluate our methodology, we have performed a case
study using all iOS and Android-related posts from 2011.
For the purpose of evaluation, we establish a ground truth
concerning API-related posts by manual examination. We
also introduce two methodologies to establish a baseline for
evaluating the performance of our methodology.
• A reputation-based approach that recommends SO posts

to API designers based on the reputation score of the
member posting a question. This approach is inspired by
a study [25] that found a correlation between members’
reputation and the difficulty level of questions.

• A random approach that randomly selects SO posts and
recommends them to the API Designer for inspection.
The motivation here is to use the most basic recommen-
dation approach for comparing the performance of our
proposed recommendation methodology.

A. Establishing Ground Truth

To validate whether each post in the recommendation sets
of reputation-based and random approach contains API-related
issues, we randomly selected 600 SO posts for each of Android
and iOS (along with their answers) for manual categorization
before running our case study. To decide whether a post
contains an API issue, we create a taxonomy based on the API
usability model proposed by Zibran et al.[42]. Specifically, we
consider the following issues to be API related:
• API correctness — The discussion of the posts appears

to reach consensus that a bug of a specific API is being

6http://stackoverflow.com/help/privileges?tab=
creation

Season System Total Questions Bow-Tie LDA

S-1 iOS 9,132 885 858
Android 17,380 1,192 1,114

S-2 iOS 12,283 885 858
Android 22,497 1,432 1,360

S-3 iOS 14,641 902 883
Android 24,752 1,843 1,750

S-4 iOS 16,136 995 965
Android 25,503 1,380 1,324

!
TABLE V: Number of posts remained after each step.

discussed; usually, these threads also offer a work-around
solution.

• Memory management — Developers report that the API
uses excessive memory or has memory-related errors.

• Missing error handling — Developers agree that an API
lacks appropriate error handling or diagnostics mecha-
nisms.

• Backward compatibility — A user reports that an
updated API fails to deliver previously expected func-
tionality.

• Lack of proper API documentation — Developers
agree that the official API documentation is insufficient
or misleading.

We consider posts that do not fall into any of these cate-
gories to be unrelated to API issues, and thus are “noise”. In
practice, we found that most noisy posts are either “how-to”
questions or implementation-specific questions.

Two of the authors performed a manual categorization of
all posts. In cases where they did not agree, the categorization
decision was made by a third party from outside the lab who
was an experienced mobile application developer.

Finally, to gain a better granularity of the dataset, we
account for data seasonality by splitting the Android and iOS
SO posts from 2011 into four-month periods. This allows our
approach to discover seasonal topics, to construct a recommen-
dation set that can provide API designers with insights into the
developers’ interests and issues at a finer grain [37], and to
provide grounds to evaluate the consistency of the approaches
with their recommendations across seasons.

VII. CASE STUDY FINDINGS

Table V shows the number of posts retained after applying
the expert identification and dimension reduction (LDA). We
report the viability of our proposed approach, and contrast its
performance with that of the “Reputation-based” and “Ran-
dom” approaches, using top-200 posts in their corresponding
recommendation sets, across three dimensions: accuracy, sta-
bility, and overhead.

A. Accuracy

The accuracy of a recommendation approach is the ratio
of posts concerning API-related issues to the total number
of posts in the recommendation set. The accuracy of the
recommendation approaches, across seasons, is shown in the

0

10

20

30

40

50

60

70

80

90

100

121416181101121141161181

Ac
cu

ra
cy

 (%
)

Number of Selected Question Posts

Proposed
Reputation
Random

0

10

20

30

40

50

60

70

80

90

100

121416181101121141161181

Ac
cu

ra
cy

 (%
)

Number of Selected Question Posts

Proposed
Reputation
Random

Android

iOS

Fig. 3: Stability of three approaches for iOS and Android

Figure 5. We found that our proposed approach achieved up to
93% accuracy. By contrast, the recommendation set produced
by reputation-based approach had 17% noise rate for iOS and
21% for the Android. As expected, the random approach was
the least accurate, with up to 36% noise rate for iOS and 41%
noise rate for Android.

In our investigation, we found that the noisy posts identified
in the recommendation sets by the proposed methodology
were primarily implementation-specific questions having a
high number of views, QS score, and member reputation.
By comparison, on average across the four seasons 31%
posts for iOS and 39% posts for Android, identified in the
recommendations set of the “Random” methodology were
noise and had the low QS score, and member reputation. Upon
manual inspection, we found that most members responsible
for noisy posts are information seekers, who confessed to be
a novice or beginner (see Table VI).

The recommendation set by the proposed approach has
34% less noise compared to the random approach. We
found that authors of noisy posts are often information
seekers, who confessed to be novices (see Table VI.) The
proposed approach successfully eliminated most of the
SO posts of the novice members.

B. Stability

Stability is defined as the ability of a methodology to main-
tain its accuracy when reducing the size of its recommendation
set. A stable method is preferred as it guarantees accuracy
while shrinking the size of a recommendation set.

To investigate the stability of the various approaches, we
plotted the ratios for all three approaches while decreasing
the size of their recommendation sets. For each approach, we
found the results to be consistent across the seasons. Due to
space constraints, we show only the stability graph for all
the approaches when applied to the iOS and Android for the
first season in in Figure 3. Figure 3 shows that the proposed
approach is more stable than the ‘reputation-based’ and the
‘random’ approach. This means a change in the size of its
recommendation set does not drastically affect the proportion
of the posts of interest.

Figure 3 also shows that for both Android and iOS, the
line trajectory of the proposed methodology exhibits a smooth
increase when shrinking recommendation set. By comparison,
the line trajectory of the “reputation-based” approach and
that of “random” approach both exhibit a sharp increase in
robustness over the removal of last sixty posts and then and
then gradually taper off. For both techniques, there are also
drastically sharp trajectory drops for the stability curve while
reducing the recommendation set size beyond the first thirty
posts.

Such instability of the “reputation-based” and “random”
techniques with respect to reducing the recommendations set
of posts affects their practicality. As a first step to explore the
stability differences between the approaches, we looked into
the text and the attribute values (Table II) associated with the
posts. We find that the proposed approach is stable due mainly
to its post selection mechanism, which filters out noisy posts,
while retaining relevant posts at the top. We examined the
last sixty posts — i.e., the tail — in the recommendation sets
of the proposed methodology, along all the seasons and for
both the Android and iOS. We found that tail contains around
5% noise for iOS (4% implementations specific questions and
1% how-to questions 1%) and about 9% for Android (8 %
implementations specific questions and 1% how-to questions).

In case of the reputation-based approach, the tail consists
of 18% implementation-specific questions and 5% “how-
to” questions for both iOS and Android. For the random
approach, the tail contains about 32% “how-to” questions
and about 11% implementation questions. In Fig. 3, the
removal of noisy posts in the tails resulted in a sharp increase
in stability curves for the “reputation-based” and “random”

0

5

10

15

20

#Q
u

es
ti

o
n

s
P

o
st

s

S1 S2 S3 S4

iOS Android

Fig. 4: Number of overhead posts

approach. To better understand the rationale behind a drastic
drop of the stability curves for both “reputation-based” and
“random” approaches, we analyzed the first thirty posts in
their corresponding recommendation sets. For both iOS and
Android, we found that noise accounted for 41% of the
posts recommended by the “reputation-based” approach, and
59% for the “random” approach. More specifically, for the
“reputation-based” methodology, we found 37% of the first
thirty post were implementation-specific questions from high-
reputation members; often, these members would later provide
the eventual answer also, which was also highly viewed.7 We
noted this to be a recurring behavioral pattern: An expert
developer finds an interesting problem, and then later answers
it authoritatively; they tag their own answer as acceptable,
thereby also increasing their own reputation.8 We found this
behavior was not only acceptable, but officially encouraged;
there are even SO “badges” for it.9.

We observe that the random approach contains 52% “how-
to” questions among the first thirty posts in its recommen-
dation set. Since there was no robust filtering and ranking
mechanism attached with these two baseline approaches, the
arbitrary removal of the post attributed to the drastic decline
of robustness trajectory.

The proposed approach is very stable due to its strong
post selection mechanism, which filters out noisy posts
and ranks them in an order that is likely useful to API
designers.

7http://stackoverflow.com/help/self-answer
8http://meta.stackexchange.com/questions/17463/can-i-answer-my-own-

questions-even-if-i-knew-the-answer-before-asking
9http://blog.stackoverflow.com/2011/07/its-ok-to-ask-and-answer-your-

own-questions/

IX. CASE STUDY FINDINGS

A. Robustness

An approach is robust if its recommended set of posts has no

noise (i.e., How-to and implementation specific questions).

The percentage of noisy and relevant questions posts across

each season for the three approaches is shown in Fig. 6. On

average (for the four seasons), recommendation set by the

proposed approach for the iOS and Android have 7% and 10%

noise. Whereas, the recommendation set by ‘Able’ approach

consisted of 17% noise for iOS and 21% noise for the

Android. As expected, the recommendation set of ‘Random’

approach was most ineffective, i.e., contains 36% noise for

iOS and 41% noise for the Android.

Table 5: Self-admitted confession in How-to SO posts

Post ID Question Post

7457029 I'm a beginner xcode developer and using the xcode 4 trying
follow a xcode 3.2 tutorial the IDE show me the error;

5210535 I'm new to iOS and Objective-C and the whole MVC

paradigm and I'm stuck with the following:

5331697 I’m a beginner Objective-c programmer and stuck at this point. I
Created an App from the View Template, then edited the view.

4602739 I am new to android, when I create a project with 1.5 to 2.1, i

gives me the same error that proguard is missing from there path

B. Stability

We refer to “stability” as the ability of an approach to

maintain its degree of robustness (quantitative relation, i.e.,

ratio, between the relevant posts and that of the total posts)

while its recommendation set is reduced. We find that our

proposed approach is more stable than the ‘Able’ and

‘Random’ approach. This means slight increase of decrease in

the size of its recommendation set do not drastically increase

of decrease its robustness. To investigate the stability of the

approaches we plotted the degree of robustness for all three

approaches across all four seasons. For each approach, we

found results to be consistent across the seasons. Due to space

constraint, we show in Fig. 6, the stability graph for all the

approaches when applied on the iOS and Android posts for the

first season.

The proposed approach trajectory Fig. 6, for both Android and

iOS, exhibits a very smooth increase (stable), when the

recommendation set is reduced. Whereas, ‘Able’ and

‘Random’ technique exhibit a sharp increase in stability

trajectory over the removal of last sixty posts and then,

gradually tappers off, i.e., decreases. For both techniques,

there is also drastically sharp trajectory drops for stability

curve when reducing the recommendation set size beyond the

thirty posts.

Instability of ‘Able’ and ‘Random’ technique with respect to

reducing the recommendations set of posts effects their

practicality. As a first step to explore the stability difference

between the approaches, we looked into the text and the

attribute values (listed in TABLE 2) associated with the posts.

We find that the proposed approach is very stable due to its

strong post selection and ranking mechanism which filters out

the noisy posts and rank them in an order important to API

designer and maintainers. The last sixty posts (i.e., tail) in the

recommendation sets by the proposed approach contained 5%

noise for the iOS (implementations specific questions 4% and

how-to Questions 1%). For Android, the noise is 9%

(implementations specific questions 8% and how-to Questions

1%).

In case of ‘Able’ approach, the tail consisted for 18%

implementation specific questions and 5% how-to questions

for both iOS and Android. For the Random approach, tail had

32% how-to Questions and 11% implementation questions.

The removal of noisy post resulted in the sharp increase in

stability curve for ‘Able’ and ‘Random’ approach.

 To understand the rationale behind drastic drop of stability

curve for ‘Able and ‘Random’ approaches we analyzed the

first thirty questions posts in their corresponding

recommendation sets. We found 41% posts of ‘Able’ approach

were noise. Whereas, ‘Random’ approach had 59 % noise for

both iOS and Andriod. Removal of the noisy post attributed to

the drastic decline of robustness trajectory.

 More specifically, for ‘Able’ approach, 37 % of the first

thirty post were implementation specific questions.

Interestingly, the developers with high reputation, who posted

these implantation specific questions, self-provided the

answer, which are mostly highly viewed. It feels that expert

developers when find an implementation of their specific

problem challenging, they post it as a question, self-answer it

and in many cases, tag it as an accepted answer thereby

increasing their SO reputation score. The Radom approach had

52 % how-to questions among the first thirty posts, mostly

from information seeker who self- confessed to be a novice as

listed in Table 5.

C. Overhead

We refer to “overhead” as the number of SO post drilled-down

by designer to uncover an issue relevant to them. In case study

context, an issue can be either a usability issue or a feature

request. Overhead dimension helps us to validate the propose

QS mechanism to rank the posts in a recommendation set. Fig.

5 is the bar chart based of overhead incurred for the four

season for each of the approach. Proposed approach has a

zero-overhead except for the third season where the first

question post was an implementation specific question.

Radom technique incurred the most overhead with 22 noisy

post followed by the able approach with 12 noisy posts.

 Proposed Approach Reputation Approach Random Approach

 Y-axis: Question post (%); X:axis: Seasons; :Valid :Noise

Fig. 6: Robustness of Approached Across Four Seasons

0

20

40

60

80

100

S-
1

S-
2

S-
3

S-
4

S-
1

S-
2

S-
3

S-
4

Android iOS

S-
1

S-
2

S-
3

S-
4

S-
1

S-
2

S-
3

S-
4

Android iOS

S-
1

S-
2

S-
3

S-
4

S-
1

S-
2

S-
3

S-
4

 Android iOS

Fig. 5: Accuracy of three distilling approaches for four seasons

TABLE VI: Self-admitted novices confess in “how-to” posts

Post ID Question Post

7457029 I’m a beginner Xcode developer and using the Xcode 4 trying
follow a Xcode 3.2 tutorial the IDE show me the error.

5210535 I’m new to iOS and Objective-C and the whole MVC
paradigm and I’m stuck...

5331697 I’m a beginner Objective-c programmer and stuck at this
point. I created an app from the View Template, then edited
the view.

4602739 I am new to android, when I create a project with 1.5 to 2.1,
I gives me the same error that proguard is missing from there
path.

C. Overhead

Overhead is defined as the number of posts that are ranked
above the first post with API-related issue by our ranking
method. Measuring overhead helps to validate the proposed
ranking approach of the recommendation set. Figure 4 shows
the overhead incurred for the four seasons for each approach.

According to Figure 4, the proposed approach incurred
up to 1% of overhead for either Android or iOS. For both
projects, the first two questions in the recommendation set of
the third season (S3) were implementation-specific questions.
The random technique incurred the most overhead: 11% (22
noise posts) followed by the reputation-based approach with
up to 6% (12 noise posts).

There is little overhead associated with the use of the
proposedrecommendation methodology to support API
designers quickly find posts that are likely to concern
API-related issues.

VIII. RELATED WORK

Stack Overflow has been extensively studied and analyzed
for a wide variety of empirical studies. Treude et al. [38] are
among the pioneers who analyzed SO posts. In their study,
they manually investigate a few hundred posts and explore the
factors to well-answered questions. Nesehi et al. [26] analyze
questions on SO to understand the quality of code examples.
They find nine attributes of a good questions like concise code,
link to extra resources and online documentation. Similarly,
Ravi et al.[30] use LDA to automatically predict the quality

of questions based on their contents at SO. Both Nesehi et al.
[26] and Ravi et al. [30] focus on helping developers construct
a good question that can attract large number of answers from
SO community. In contrast, our work focuses on helping API
designers pinpoint posts that are likely to be indicative of API-
related issues instead of improving presentation quality. Barua
et al. [7] use LDA to automatically infer the main topics of
discussion by developers at SO. Similarly, Wang and Godfrey
[39] analyze iOS and Android developer questions on SO to
detect API usage obstacles. Similar to our work, they also
used topic models to summarize possible scenarios from all
the posts related to previously identified API classes.

Kintab et al.[17] propose a recommendation system which
identifies expert developers by mining both source code repos-
itories and social networks. Zhou et al. [41] propose methods
that use machine learning techniques to provide content cate-
gorization for SO. Such a categorization is important for SO
moderators, since they need to assign pre-defined semantic
categorizes to API discussion. Moreover, such content cat-
egorization of API discussion assists developers to search
for useful information. Asaduzzaman et al. [5] conducted a
quantitative study to categorize unanswered questions at SO.
In their study, they used a fixed threshold (a month) to qualify
a posted question as unanswered. Contrarily, our methodology
dynamically constructs the threshold for identifying a late
answered question taking into account the temporal trends.
Work of Panichella et al. [29] is the closest to the work of
this paper in a sense that they propose a classification approach
to reduce the size of review queues by identifying posts that
are misclassified as low quality posts by SO members with a
high reputation. Similar to our work, they also rely on post
metrics and related metadata to construct their classification
model. However, their research goal is to provide relief to SO
moderators and expert users from manually responsible for
identifying and reviewing lower quality posts.

IX. THREATS TO VALIDITY

External Validity: An external threat to the validity of our
results is that we focus on a single website, Stack Overflow.
Nevertheless, SO is currently one of the most popular and
largest Q&A websites for software developers. Moreover, the
generalizability of our findings could be regarded as one
of the limitation. Nevertheless, the techniques used in our
methodology have some overlaps with some other studies
using SO data [3], [5], [38]. This suggests that our proposed
methodology could be generalized to some extent.

Internal Validity:
• error and bias — This study requires various sets of data

analysis (data handling and graph analysis to construct
“bow-tie” structure) and implementations (LDA for topic
modeling and control chart). Therefore, we have tried
to minimize the source of error and bias by the use of
existing and mature tools (e.g., Mallet for implementing
LDA) and packages (e.g., R statistic package for control
chart implementation, and “bow-tie” structure analysis).
Likewise, the majority of the steps of our methodology

— such as expert identification, and post selection — was
automated.

• Human Intervention — in this study, we rely on the
manual effort to read the SO posts for the iOS and
Android to identify API-related issues. Due to the sub-
jectivity of manual effort, bias may be introduced into
the study. To avoid such impact, we cross-validated the
findings of the two developers, manually analyzing the
SO posts. A third programmer settled disagreements on
a few posts.

Conclusion Validity:
• Imbalanced construction — We randomly constructed

and inspected small samples of SO posts to identify
the underlying issues. However, when the sample size is
small, randomization may lead to Simpson Paradox. We
tried to mitigate the construct validity by: i) selecting
random posts from SO dump without replacement to
construct five samples, and ii) establishing an identical
time horizon (four months) for all the samples. Despite,
the immense difference between the approaches might
be by chance due to the random nature of the sample.
We plan to extend the study by: i) increasing the sample
size of SO posts to confiscate Simpson paradox, and ii)
use suitable statistical techniques to lower the risk of
constructing a non-representative sample.

• Irrelevancies in the dataset — Treude et al. [38]
report that nearly 5% of all SO posts are non-technical
questions. We believe that the threat introduced by these
non-technical posts are in large diminished since we filter
out posts that do not contain API-related tags.

• Poor tagging — Another internal threat is that many SO
users may use obscure or generic tags (e.g. “iOS”) when
posting questions relating only to one API class.

• Optimal Setting — Choosing the optimal parameter set-
ting for LDA has no known general solutions. Although,
we have experimented with different values from the
number of topics (K) and found (K = 40) to be the best
for us, we still cannot be sure that our chosen value is
optimal for the analysis we performed. Additionally, our
cut-off threshold for document membership (δ) affects the
result of our study.

Construct Validity: We have designed a new metric “QS”
to rank the questions by order of their difficulty. Ranked
questions provide a head start to API designers so that API
designers can analyze difficult questions first. However, our
proposed metric is based upon variables provided solely by
SO. For these variables, their data quality or data integrity are
therefore determined by SO. Any data management mistakes
of SO may cause threats to this study.

X. CONCLUSIONS

Programmer Q&A websites such as StackOverflow serve as
convenient and vast repositories of broad development expe-
rience and expertise. In particular, API designers who wish to
understand how their work is perceived by the community at

large would do well to mine these repositories for useful feed-
back on usability, bugs, and unexpected usage. Consequently,
automated — or even semi-automated — techniques that can
analyze the vast data and provide timely and high-quality
recommendation sets of posts that discuss API-related issues
would likely be of great value to API developers. In this paper,
we propose such an automated methodology, and evaluate its
effectiveness against two baseline techniques. We find that the
proposed approach is more accurate with its recommendation
set with 41% less noise in comparison to baseline approaches.
Moreover, due its post-selection mechanism, the proposed
approach is more stable in the sense that the proportion of the
post of interest is indepentant of the size of its recommendation
set. Additionally, the proposed approach incurred a 1% of
overhead while the overhead for the reputation-based and
random approach are 11% and 6% respectively.

REFERENCES

[1] Ask a question about the google drive sdk. https://developers.google.
com/drive/support, accessed in Jan. 2015.

[2] Google taps stackoverflow as offical andriod dev support for
noobs. http://readwrite.com/2009/12/20/stackoverflow-android-support\
#awesm=~oCRlpsKottvxVi, accessed in Jan. 2015.

[3] Supporting developers on stack overflow. https://developers.facebook.
com/blog/post/545/, accessed in Jan. 2015.

[4] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec. Discover-
ing value from community activity on focused question answering sites:
A case study of stack overflow. KDD ’12, pages 850–858, 2012.

[5] M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider.
Answering questions about unanswered questions of stack overflow.
MSR ’13, pages 97–100.

[6] K. Bajaj, K. Pattabiraman, and A. Mesbah. Mining questions asked by
web developers. MSR ’14, pages 112–121.

[7] A. Barua, S. W. Thomas, and A. E. Hassan. What are developers talking
about? An analysis of topics and trends in stack overflow. 19(3):619–
654, 2014.

[8] A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver, and N. A.
Kraft. Building reputation in stackoverflow: An empirical investigation.
MSR ’13, pages 89–92, Piscataway, NJ, USA, 2013. IEEE Press.

[9] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Proceedings of
the 9th International World Wide Web Conference on Computer Net-
works : The International Journal of Computer and Telecommunications
Netowrking, pages 309–320, 2000.

[10] L. G. C. Parnin, C. Treude and M. Storey. Crowd documentation:
Exploring the coverage and the dynamics of API discussions on stack
overflow. 2012.

[11] D. Correa and A. Sureka. Chaff from the wheat: Characterization and
modeling of deleted questions on stack overflow. WWW ’14, pages
631–642, 2014.

[12] B. E. Cossette and R. J. Walker. Seeking the ground truth: A retroactive
study on the evolution and migration of software libraries. FSE ’12,
pages 55:1–55:11, New York, NY, USA, 2012. ACM.

[13] F. M. Harper, D. Moy, and J. A. Konstan. Facts or friends?: Distinguish-
ing informational and conversational questions in social q & a sites. CHI
’09, pages 759–768.

[14] A. Hindle, M. Godfrey, and R. Holt. What’s hot and what’s not:
Windowed developer topic analysis. ICSM ’09, pages 339–348, Sept
2009.

[15] D. Hou and L. Li. Obstacles in using frameworks and APIs: An
exploratory study of programmers’ newsgroup discussions. ICPC, pages
91–100, June 2011.

[16] M. Kechagia. Improvement of applications’ stability through robust
APIs. ASE ’14, pages 907–910, New York, NY, USA, 2014. ACM.

[17] G. A. Kintab, C. Roy, and G. McCalla. Recommending software experts
using code similarity and social heuristics. CASCON 2014, pages 4–18.
IBM Corp.

[18] M. Linares-Vásquez. Supporting evolution and maintenance of android
apps. ICSE Companion ’14, pages 714–717, 2014.

[19] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. API change and fault proneness: A
threat to the success of android apps. ESEC/FSE 2013, pages 477–487,
New York, NY, USA, 2013. ACM.

[20] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and D. Poshy-
vanyk. How do API changes trigger stack overflow discussions? a study
on the android sdk. ICPC ’14, pages 83–94, 2014.

[21] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann.
Design lessons from the fastest Q & A site in the west. CHI ’11, pages
2857–2866, 2011.

[22] A. K. McCallum. Mallet: A machine learning for language toolkit. 2002.
[23] T. McDonnell, B. Ray, and M. Kim. An empirical study of API stability

and adoption in the android ecosystem. ICSM ’13, pages 70–79, 2013.
[24] R. Medrano. Welcome to the API economy. http://www.forbes.

com/sites/ciocentral/2012/08/29/welcome-to-the-api-economy/, Forbes,
accessed in Jan. 2015.

[25] K. K. Nam, M. S. Ackerman, and L. A. Adamic. Questions in,
knowledge in?: A study of naver’s question answering community. CHI
’09, pages 779–788.

[26] S. Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code
example?: A study of programming Q & A in stackoverflow. ICSM ’12,
pages 25–34, Sept. 2012.

[27] T. Nguyen, B. Adams, Z. M. Jiang, A. Hassan, M. Nasser, and P. Flora.
Automated verification of load tests using control charts. Software
Engineering Conference (APSEC), 2011 18th Asia Pacific, pages 282–
289, Dec 2011.

[28] A. Panichella, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia. How to effectively use topic models for software
engineering tasks? An approach based on genetic algorithms. ICSE
’13, pages 522–531, 2013.

[29] L. Ponzanelli, A. Mocci, A. Bacchelli, M. Lanza, and D. Fullerton.
Improving low quality stack overflow post detection. (ICSME), 2014,
pages 541–544. IEEE, 2014.

[30] S. Ravi, B. Pang, V. Rastogi, and R. Kumar. Great question! question
quality in community q&a. Eighth International AAAI Conference on
Weblogs and Social Media, 2014.

[31] M. Robillard and R. DeLine. A field study of API learning obstacles.
16(6):703–732, 2011.

[32] P. Royston. Approximating the shapiro-wilk w-test for non-normality.
2(3):117–119, 1992.

[33] C. R. Rupakheti and D. Hou. Evaluating forum discussions to inform
the design of an API critic. ICPC, pages 53–62, 2012.

[34] J. Stylos, B. A. Myers, and Z. Yang. Jadeite: Improving API documen-
tation using usage information. CHI ’09 Extended Abstracts on Human
Factors in Computing Systems, pages 4429–4434, 2009.

[35] S. Subramanian and R. Holmes. Making sense of online code snippets.
MSR ’13, pages 85–88, Piscataway, NJ, USA, 2013. IEEE Press.

[36] S. Subramanian, L. Inozemtseva, and R. Holmes. Live API documen-
tation. Proceedings of the 36th International Conference on Software
Engineering, pages 643–652. ACM, 2014.

[37] S. Thomas. Mining software repositories using topic models. ICSE
’2011, pages 1138–1139, May 2011.

[38] C. Treude, O. Barzilay, and M.-A. Storey. How do programmers ask and
answer questions on the web? (NIER Track). ICSE ’11, pages 804–807,
2011.

[39] W. Wang and M. W. Godfrey. Detecting API usage obstacles: A study of
ios and android developer questions. MSR ’13, pages 61–64, Piscataway,
NJ, USA, 2013. IEEE Press.

[40] J. Zhang, M. S. Ackerman, and L. Adamic. Expertise networks in online
communities: Structure and algorithms. WWW ’07, pages 221–230,
New York, NY, USA, 2007. ACM.

[41] B. Zhou, X. Xia, D. Lo, C. Tian, and X. Wang. Towards more accurate
content categorization of api discussions. Proceedings of the 22nd
International Conference on Program Comprehension, pages 95–105.
ACM, 2014.

[42] M. Zibran, F. Eishita, and C. Roy. Useful, but usable? Factors affecting
the usability of APIs. WCRE ’11, pages 151–155, Oct 2011.

