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Abstract — Predicting future behavior reliably and efficiently 
is key for systems that manage virtual services; such systems 
must be able to balance loads within a cloud environment to 
ensure that service level agreements (SLAs) are met at a 
reasonable expense, and they must be able to facilitate longer 
term reconfiguration of the system to support future anticipated 
demand. In principle accurate predictions can be achieved by 
mining a variety of data sources, which describe the historic 
behavior of the services, the requirements of the programs 
running on them, and the evolving demands placed on the cloud 
by end users.  Of particular importance is accurate prediction of 
maximal loads likely to be observed in the short term, and the 
accurate estimation of long term peak behavioral trends. 
However, standard approaches to modeling system behavior, by 
analyzing the totality of the observed data, tend to predict 
average rather than exceptional computer behavior and ignore 
important patterns of change over time.  Consequently, these 
predictions are of limited use in providing warnings of future 
“storms”  within  a  cloud  environment.    In  this  paper,  we  present  
several mechanisms for improving such predictions, derived from 
standard prediction techniques, which we have found more 
accurately predict these storms. 

Index Terms— Regression, time-series, prediction, cloud 
environments 

I. INTRODUCTION 
Large collections of computers cooperatively providing 

distributed services so as to support demand for these services 
are becoming the norm.  Single computers hosting multiple 
virtual machines are now also common.  And parallel 
computing techniques offer the potential for very time 
consuming computation to be distributed across multiple 
machines, thus delivering results from a single computation to 
the consumer much more rapidly.  In each case decoupling of 
computer software from the underlying hardware, permits 
greater utilization of the hardware, under more balanced 
workloads, with improvements in response times, and dramatic 
reduction in costs.  In addition the ability to replicate services 
over multiple machines permits greater scalability, combined 
with more robustness than would otherwise be possible.   

 
However, if the demands placed on the hardware by the 

software exceed the capabilities of the hardware, thrashing will 
occur, response time’s rise, and customer satisfaction will 
plummet.  Therefore it is essential [23] to ensure that software 
is appropriately provisioned across the available hardware in 

the short to medium term, and that appropriate levels of 
hardware and software are purchased and installed to support 
the collective future end user requirements in the longer term  
[11, 17, 22]. 

 
Without good forecasts, data center managers are forced to 

over-configure their pools of resources to achieve required 
availability, in order to honor service level agreements (SLAs).  
This is expensive, and can still fail to consistently satisfy SLAs.  
Absent good forecasts, system management software tends to 
operate in a reactive mode and can become ineffective and 
even disruptive [18]. In this paper we present modifications to 
standard prediction techniques, which are better able to predict 
when utilization of a service will be high.  Knowing this it 
becomes possible to predict when storms will occur. 

 

II. MOTIVATION 
This research is motivated by CA Technologies [3] need to 

develop industrial solutions for effectively predicting workload 
of   their   clients’   cloud   services, both in the short term 
(measured in hours), and in the longer term (measured in 
months).  Good short term predictions permit better adaptive 
job scheduling, while longer term predictions permit 
appropriate and financially effective proactive provisioning of 
resources within the cloud environment. 

 
We were provided with a substantive body of performance 

data relating to a single large cloud computing environment 
running a large number of virtual services over a six month 
period. In total there were 2,133 independent entities whose 
performance was being captured every six minutes.  These 
included 1,572 virtual machines and 495 physical machines.  
The physical machines provided support for 56 VMware hosts. 
On average 53% of the monitored services were active at any 
time, with a maximum of 85% (Fig. 1). The data captured 
described CPU workloads, memory usage, disk I/O and 
network traffic.  This data was each consolidated into average 
and maximum hourly performance figures, and it was the 
hourly CPU workload data that our research was predicated on.   

 
At least 423 services were dedicated to providing virtual 

desktop environments, while the cloud was also proving 
support for web based services, transaction processing, 
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database support, placement of virtual services on hosts, and 
other services such as performance monitoring and backup.  

 

 
Figure 1. Fraction of 2,133 services being monitored over time 

 
As is typically the case in desktop environments, individual 

computer utilization varies dramatically.  Much of the time 
little if any intensive work is being done on a virtual desktop 
and the virtual service appears almost idle.  However, for any 
virtual desktop there are periods of intense activity, when CPU, 
memory, disk I/O, and/or network traffic peaks.  Similarly 
within transaction processing environments, there will be a 
wide variety of behaviors, depending on the overall demand 
placed on such systems. 

 
The average utilization across all services was at most 20% 

(except for the weekly backup when average utilization rose to 
almost 50%), but the maximum utilization across all services, 
was almost invariably very close to 100% (Fig. 2).  

 

 
Figure 2. Cloud utilization over time 

 
The frequency distribution of the utilizations actually 

observed, was highly skewed, with the vast majority of 
utilizations (83.5%) not exceeding 25%. The exponential 
utilization curve was approximated by 100*(2-u)13.5 (Fig. 3). 

 
To explore what trends [24] exist within peak usage, we 

collapsed the time series by deleting all hours where utilization 
was less than 25%.   Then, within the shortened time series, we 
computed separately for each virtual service the trend line (as 
the standard linear regression slope [6]) for the training period 

(first half of the data), and separately the testing period (second 
half of the data). Finally we looked for change in the trend line 
between these two periods for each virtual service (Fig. 4). 

 

 
Figure 3. Distribution of utilizations 

 

 
Figure 4. Linear trend within data sources 

 
The majority of the data sources had no conspicuous trend 

either during the testing or the training period, and the overall 
trend line (y = 0.0639x - 0.00009) within the scatter plot was 
itself almost flat, suggesting that trend was more conspicuous 
in the training period than in the testing period.  The lack of 
trend is perhaps not as surprising as it might at first appear, 
since while one might hope for increased utilization of business 
software over time, it is to be expected that individual usage of 
virtual desktops will not change radically over time. 

 
Given this overall picture, our challenge was to resolve how 

one might reasonably predict in the short term (next hour) 
when a given service was likely to be heavily utilized, so as to 
permit it to be provided with necessary resources, while also 
avoiding conflicts between multiple heavily utilized activities, 
or the resources they depended on, in an environment where 
typically services would not be expected to be heavily utilized. 

 
In this context, accurate predictions that an idle service will 

remain idle most of the time, while very occasionally as 
consequence being wrong, are useless. What are required are 
predictions which (with a reasonable degree of confidence) 
indicate when future loads will be high, even if such 
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predictions do not mathematically fit the totality of observed 
and future data as closely as other statistical approaches. 

 
Over a longer time frame (measured in weeks or months) 

we wished to be able to accurately predict expected workloads, 
so that a cloud data center could be appropriately managed. 
Without such long term predictions it becomes difficult to 
ensure in a timely fashion that a computing center is provided 
with adequate power and hardware, and to predict what the 
future cost of operating the facilities will be.  

 

III. RELATED WORK 
Andreolini et. al. proposed using moving averages to 

smooth the input time series, and then using linear 
extrapolation on two of the smoothed values to predict the 
next [1]. Dinda et. al. compared the ability of a variety of 
ARIMA like models to predict futures [5].  Nathuji et. al. 
proposed evaluating virtual machines in isolation, and then 
predicted their behavior when run together using multiple 
input signals to produce multiple predictive outputs using 
difference equations (exponential smoothing) [17].  

 
Istin et. al.  divided the time series into multiple series using 

different sampling steps, obtained predictions from each 
subseries, and then used neural networks to derive a final 
prediction [14]. Khan et. al. also used multiple time series (but 
derived from distinct workloads) and hidden markov models, 
to discover correlations between workloads which can then be 
used to predict variations in workload patterns [15]. 

 
Huhtal et. al. proposed that similarity between related time 

series might be discovered by using wavelets [12]. Ganapathi 
discovered linear mappings from related information (such as 
workload and performance data), which produced maximum 
correlations between this distinct data, and then exploited the 
discovered similarities between the input data, before 
recovering actual predictions through inverting these 
transformations [10]. 

 
Povinelli proposed mapping data points at fixed temporal 

lags into n-dimensional phase space, clustering the resulting 
points on their Euclidian distance, and then employing a user 
specified goal function for each point within a cluster to 
discover (using genetic programming techniques) unknown 
patterns/clusters strongly predictive of future events deemed 
interesting [20]. Srinivasan et. al. also used genetic algorithms, 
but translated the time series into substrings, with symbols 
within the string representing the various types of behavior 
within the time series [21]. 

 
More generally, Nikolov proposed that performance might 

be understood as consequence of given underlying patterns 
that determined behavior, and clustered observed behavior 
according to the pattern it was most similar to, using a simple 
distance metric.  Behavior might then be predicted, because of 
the discovered similarity with an understood behavioral 

pattern [19].  Magnusson proposed that simple underlying 
short term patterns be detected and that larger longer term 
composite patterns then be discovered through a hierarchical 
composition of these simpler patterns recursively [16]. 

 

IV. LINEAR REGRESSION 
We focused on predicting physical and virtual CPU 

utilizations.  For each data series, the observed utilizations 
were partitioned into small intervals in increments of 0.05, and 
for each such partition the average absolute difference between 
observed and predicted values were obtained.  This provides a 
clear picture of how closely prediction matches observed 
utilization across the spectrum. Then these averages are 
themselves averaged across the set of data series.   

 
Unchanged: Since there was at least a 30% probability that 

utilizations would remain essentially unchanged from one hour 
to the next (Fig. 5), as a trivial baseline measurement we 
predicted that there would never be change in the utilization 
observed during the previous hour.  As expected this approach 
did not perform as well as any of the other approaches (Fig. 8).  

 

 
Figure 5. Next  hour’s  utilization  distribution given this hour’s value 

 
We then obtained correlograms from the provided data, by 

computing the auto-correlation of each time series with each 
lagged version of the same time series (Fig. 6). This indicated 
the strongest auto-correlation was at the hourly (1,676 sources), 
weekly (247), daily (106) and bi-weekly (41) levels, with these 
correlations degraded only slowly over longer intervals.  

 
MVLR: Using the discovered significant lags, multivariate 

linear regression [6] was then applied using 10 lags of 1 and 2 
hour, 1 and 2 day, 1, 2, 3 and 4 week, and 1 and 2 months, to 
identify coefficients which when applied to this strongly 
correlated lagged data, linearly fit observed data, with minimal 
least squared residue error.  This provided good general 
predictability across the data sources. The resulting linear 
equation  was  then  used  to  predict  the  next  hour’s  utilization. 

 
Two minor problems required special consideration. The 

first was that the provided time series data contained missing 
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data. Short gaps were approximated by prior value, while 769 
time series having more missing data than actual data were 
discarded as they might otherwise have unreasonably skewed 
our results.  The second was that due to the difficulties 
associated with monitoring the utilization of virtual processes 
1% of the data points exceeded their expected upper bound of 
1.  This was attributed to Intel Turbo Boost/up clocking being 
enabled and was resolved by reducing excessive values to 1. 

 

 
Figure 6. Example correlogram for one timeseries 

 
While visually predictions appeared to fit observed data 

reasonably well (Fig. 7), close examination revealed that often 
sudden rises in observed utilizations were not anticipated by 
the regression. 

 

 
Figure 7. Example Multivariate Linear Regression 

 
Instead of predicting such events, the regression exploited 

observed peaks in the data to produce higher predicted 
utilizations one hour later [13]. The regression was thus not 
predicting as yet unobserved trends.  In addition, because the 
regression was linearly fitting to least squared residues of all 
the data points, and the vast majority of data points were 
associated with idle time, it could not hope to fit well to 
maximal values occurring within the time series storms. 

 
Windowed MVLR: We next restricted the multivariate 

linear regression to employ a 5 week window, with some 
resulting improvement (Fig. 8). 

 

 
Figure 8. Multivariate Linear Regression 

 
Scaled MVLR: We next computed the running average 

and variance in the data seen, and scaling the predicted values 
to have the same average and variance as the till then observed 
data.  This improved the fit to high utilizations, at very small 
expense of fit to small utilization values (Fig. 8).   

 
Weighted MVLR: Within the regression summations we 

then weighted [8] each data point.  Because the overall 
distribution of utilizations was observed to be exponential (Fig. 
3), we employed exponential weighting in which a data point 
having utilization u as well as all lags associated with this data 
point were multiplied by (1+u)c. This naturally assigned higher 
utilizations a significantly greater weight, thus skewing the 
predictions towards higher values, while simultaneously 
bounding them by the highest values (Fig. 9). As can be seen a 
value of c=12 provided the most consistent average absolute 
error across all of the data sources. 

 

 
Figure 9. Weighting Regression by (1+u)c 

 
Power MVLR: We then presented as input values to the 

multivariate linear regression uc, rather than u.  The regression 
subsequently used these modified input values in all internal 
computations.  The final prediction obtained from this modified 
regression, was then recovered by taking the cth root of the 
value obtained by the regression.   

 
As an informal justification for this approach, consider a set 

of non-negative points ai with 1≤i≤n. The average of this set of 
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points   is   Σai/n.  Applying the above transformation for c=2, 
gives a revised average value  of  √(  Σai

2/n).  The difference of 
the square of the revised value to the square of the actual 
average is simply the variance in the sample.   

 
Since the variance cannot be negative, and neither can our 

summations, this implies that the revised average can be no 
smaller than the original average, and can agree only when the 
variance in the original sample is 0.  Further, the revised value 
must remain less than or equal to the maximal original point, 
with equality reached again, only if the variance in the original 
sample is 0. 

 
This argument can be used repeatedly for c=2k (Table 1), 

suggesting that the shift towards maximal values in the set 
examined, is a monotonically increasing function, for 
increasing values of k.  The proposed transformation has 
minimal impact on collections of small values, but for large 
variations, the shift upwards is quite dramatic (Fig.10), and 
does provide a much better fit to high observed utilizations, by 
shifting predictions upwards, while producing a very poor fit to 
the majority of observed low observed utilizations. 

 
Table 1. Examples of adjustment using powers 

Sample 
Values 

Power of the input 
c=1 c=2  c=10 c=20 c=30 

{0,0.05,0.1} 0.05 0.0645 0.0896 0.0947 0.0964 
{0,0.1,0.2} 0.10 0.1291 0.1792 0.1893 0.1928 
{0,0.15,0.3} 0.15 0.1936 0.2688 0.2840 0.2892 
{0,0.2,0.4} 0.20 0.2582 0.3584 0.3786 0.3856 
{0,0.25,0.5} 0.25 0.3227 0.4480 0.4733 0.4820 
{0,0.3,0.6} 0.30 0.3873 0.5376 0.5679 0.5784 
{0,0.35,0.7} 0.35 0.4518 0.6272 0.6626 0.6748 
{0,0.4,0.8} 0.40 0.5164 0.7168 0.7572 0.7712 
{0,0.45,0.9} 0.45 0.5809 0.8064 0.8519 0.8676 
{0,0.5,1.0} 0.50 0.6455 0.8960 0.9466 0.9640 

 

 
Figure 10. Impact of power MVLR for varying c (the input power) 

 
Similarities clearly exist between the results observed by 

weighting (changing the regression algorithm itself), and by 
raising inputs to powers (changing the inputs to the algorithm).  
Both,  provide  the  most  consistent  average  error  when  c≈12. 

 

Across a wide range of parameterization of c the weighted 
regression produced a consistently lower average absolute error 
(Fig. 11), and appears to be the better strategy for predicting 
large utilizations (Fig. 12 and 13). It also has the advantage of 
not requiring that input values be in the range 0-1.   

 

 
Figure 11. Comparison of power .v. weighting 

 

 
Figure 12. Comparison of power .v. weighting for c=12 

 

 
Figure 13. Comparison of power .v. weighting for c=20 

 

V. SEASONALITY  
To achieve good long term predictions, one must consider 

not only changing trends, modelled reasonably well by the 
approaches suggested above, but also longer term seasonal 
contributions. 
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Fourier: Fourier transforms [9] were exploited in an effort 
to discover obvious cyclic patterns within the data.  Strong 
patterns were observed at the daily and weekly level. Graphing 
the summation of the ten sine waves with the largest 
amplitudes, which are the terms that describe the most 
dominant variability within the input data, fit the overall 
seasonality within the provided data well, but failed to fit the 
peaks in the data at all well (Fig. 14).  

 

 
Figure 14. Sample Fourier Fit 

 
We extended this computed transform into the future and 

used its value at each given hour to predict, which worked well 
for small utilizations, but not for large utilizations irrespective 
of the number of sine waves summed (Fig. 15). 

 

 
Figure 15. Fourier fit to future data 

 
  Scaled Seasonality: To account for the terms not included 

in the contribution to our prediction, it is reasonable to attempt 
to scale the Fourier transform to better fit the utilization. 

 
One way of better fitting peaks is to apply a linear 

transformation to the computed Fourier transform, ignoring all 
values below some suitable cutoff (ie. maximum – 0.05).  We 
arrange for the minimum to remain unchanged by subtracting 
it, and then simply scale by mean(observed)/mean(predicted) 
before adding the minimum back in.  

 
The difference between the scaled Fourier function, and 

observed data within one representative data source, scaling 

using the formula y = 1.51284 * (prediction – 0.145927) + 
0.145927  is shown in Figure 16. 

 

 
Figure 16. Residue for one data source after scaling seasonality 

 
Using this approach across all data sources was suprisingly 

effective.  Across all of our data sources the average absolute 
error associated with using a fourier transform to predict 
future behaviour was visually halved for large utilizations 
when the fourier transform was suitably scaled (Fig 17). 

 
MVLR did provide better predictive accuracy for low 

utilizations, and weighted MVLR for high utilizations, but 
using scaled seasonality to predict future seasonality was 
competitive with linear regression at high utilizations, and 
remained so over much longer time frames measured not in 
hours but in months.  This is exciting since long term 
prediction is inherently difficult. 

 

 
Figure 17. Improvement through scaling seasonality 

 
In general, one cannot assume that seasonal behaviour of 

machines within a cloud will remain sufficiently static to 
provide such long term predictability.  And clearly, further 
improvement in predictions may be achieved by developing a 
hybrid algorithm that exploits both fourier transforms and 
linear regression simultaneously.  

 
Subtracted Seasonality: We then subtracts the scaled 

seasonality from the observed utilizations, performing MVLR 
(as before) on the resulting residue, and then adding the 
seasonality back in to the resulting prediction (Fig.18). 
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Figure 18. Further improvement using subtracted seasonality 

 
By subtracting the seasonality from the original data we 

removed much of the variability in the original data, making it 
more linear, and thus making it fit better with linear prediction 
models.  The results obtained were significantly better than 
using either fourier transforms, or multivariate linear 
regression alone. This approach reducted the average absolute 
error across all inputs for large utilizations by a third, and 
halved the overall average absolute error. 

 
Table 2: Accuracy of subtracted seasonality prediction 

Observed Utilization
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 0.590 0.046 0.004 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001
0.05 0.254 0.518 0.070 0.012 0.006 0.005 0.004 0.003 0.003 0.002 0.002

0.1 0.073 0.244 0.379 0.083 0.025 0.015 0.011 0.009 0.007 0.006 0.005
0.15 0.032 0.084 0.236 0.237 0.081 0.032 0.021 0.018 0.014 0.012 0.010

0.2 0.015 0.042 0.127 0.210 0.210 0.086 0.041 0.032 0.022 0.018 0.012
0.25 0.009 0.022 0.074 0.165 0.188 0.222 0.109 0.058 0.037 0.029 0.019

0.3 0.006 0.012 0.041 0.109 0.154 0.185 0.224 0.130 0.066 0.041 0.028
0.35 0.004 0.008 0.023 0.067 0.121 0.140 0.162 0.208 0.130 0.069 0.042

0.4 0.004 0.005 0.013 0.040 0.080 0.101 0.124 0.170 0.248 0.132 0.062
0.45 0.003 0.005 0.008 0.023 0.050 0.068 0.094 0.116 0.153 0.230 0.134

0.5 0.002 0.004 0.006 0.013 0.027 0.046 0.069 0.081 0.106 0.182 0.270
0.55 0.002 0.003 0.004 0.009 0.015 0.031 0.046 0.060 0.077 0.095 0.166

0.6 0.001 0.002 0.004 0.006 0.010 0.020 0.031 0.042 0.054 0.067 0.087
0.65 0.001 0.002 0.003 0.004 0.007 0.014 0.019 0.025 0.034 0.037 0.052

0.7 0.001 0.002 0.002 0.004 0.005 0.009 0.012 0.014 0.015 0.024 0.035
0.75 0.001 0.001 0.002 0.003 0.004 0.007 0.010 0.009 0.009 0.016 0.027

0.8 0.001 0.001 0.002 0.003 0.004 0.005 0.006 0.006 0.007 0.015 0.018
0.85 0.001 0.000 0.002 0.003 0.003 0.004 0.005 0.006 0.005 0.009 0.012

0.9 0.000 0.000 0.001 0.002 0.003 0.003 0.004 0.005 0.005 0.006 0.008
0.95 0.000 0.000 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.006

1 0.000 0.000 0.000 0.002 0.002 0.003 0.005 0.003 0.004 0.005 0.005
Good 0.844 0.808 0.685 0.531 0.479 0.493 0.496 0.509 0.531 0.544 0.570
Fair 0.106 0.126 0.204 0.287 0.306 0.288 0.280 0.287 0.286 0.273 0.243
Bad 0.051 0.067 0.111 0.182 0.215 0.219 0.224 0.204 0.183 0.184 0.188  

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000

0.05 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.000
0.1 0.005 0.005 0.004 0.004 0.004 0.004 0.003 0.002 0.004 0.001

0.15 0.009 0.006 0.006 0.004 0.004 0.004 0.008 0.003 0.005 0.003
0.2 0.017 0.009 0.010 0.008 0.006 0.004 0.004 0.003 0.007 0.004

0.25 0.020 0.015 0.013 0.011 0.007 0.006 0.007 0.004 0.004 0.004
0.3 0.027 0.021 0.016 0.012 0.008 0.008 0.008 0.005 0.004 0.004

0.35 0.035 0.027 0.025 0.018 0.013 0.012 0.011 0.008 0.005 0.005
0.4 0.051 0.037 0.023 0.020 0.012 0.015 0.012 0.009 0.007 0.005

0.45 0.082 0.050 0.035 0.025 0.019 0.016 0.013 0.008 0.003 0.008
0.5 0.159 0.084 0.048 0.037 0.025 0.024 0.018 0.011 0.007 0.008

0.55 0.231 0.153 0.080 0.051 0.027 0.030 0.026 0.014 0.010 0.011
0.6 0.149 0.266 0.148 0.079 0.044 0.034 0.037 0.017 0.015 0.014

0.65 0.068 0.133 0.212 0.146 0.066 0.051 0.042 0.021 0.019 0.018
0.7 0.040 0.062 0.128 0.257 0.137 0.078 0.056 0.032 0.026 0.023

0.75 0.032 0.045 0.103 0.163 0.365 0.212 0.097 0.039 0.033 0.028
0.8 0.024 0.026 0.060 0.073 0.137 0.265 0.175 0.072 0.050 0.041

0.85 0.021 0.024 0.037 0.038 0.058 0.125 0.246 0.145 0.124 0.076
0.9 0.013 0.019 0.028 0.027 0.035 0.061 0.146 0.411 0.266 0.146

0.95 0.008 0.009 0.012 0.014 0.018 0.028 0.053 0.146 0.303 0.278
1 0.007 0.008 0.012 0.011 0.013 0.021 0.036 0.050 0.107 0.322

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Good 0.539 0.553 0.488 0.565 0.639 0.567 0.567 0.702 0.676 0.601
Fair 0.241 0.239 0.291 0.242 0.203 0.218 0.241 0.160 0.174 0.222
Bad 0.220 0.208 0.221 0.193 0.158 0.215 0.192 0.138 0.150 0.177  

The most significant drawback of using fourier transforms 
was that unlike regression which could quickly start providing 
predictions from initially observed results, a substantial 
amount of prior data must be available, in order to discover 
seasonality within an input time series.  In practice it is 
proposed that early predictions are predicated on regression 
alone, while periodically as sufficient data becomes available 
a fast fourier transform is employed to repeatedly discover 
seasonality with the input data. 

 
The results certainly appear promising.  As a validation of 

our approach to attempting to predict future values (across the 
spectrum of possible utilizations, we tabulate for all input 
sources and each utilization partition, the percentage of the 
time predictions obtained using scaled seasonality were 
associated with each utilization partition in Table 2. 

 
Across all the data provided us our subtracted seasonality 

algorithm was able to correctly predict future utilizations 30% 
of the time, 59% of the time within ±0.05, (good in Table 2) 
and 81% of the time within ±0.15 (good+fair in Table 2).  
Prediction was out by 0.5 or more 2.1% of the time, and by 
0.75 or more 0.3% of the time. 

 

VI. LONG TERM PREDICTIONS 
For long term scheduling of resources, utilization is not a 

very useful predictive quantity.  Instead of asking how busy a 
machine is likely to be (which presumes that the number of 
machines in the system is to remain static) it is far more useful 
to ask how much work must be handled by the system.  This 
permits some exploration as to how best to accommodate this 
total work load, through purchase of additional resources, or 
reductions in the online availability of these resources. 

  
Fortunately, since utilization is simply observed workload 

divided by maximal workload, predicted workload can be 
trivially recovered from predicted utilizations.  Simply permit 
utilization predictions to potentially exceed 1.0, and multiply 
the resulting prediction by the known maximal workload 
available during the predicted period.  

 
Being interested in the accuracy of scaling the predicted 

seasonality, over a prolonged period, so as to facilitate long 
term forecasting, the average absolute error across all data 
sources is plotted using scaled seasonality (Fig. 19). 

 
Scaled seasonality appears from the graph below to be a 

good long term predictor of future system performance.  There 
is no systemic weakening of the prediction algorithm over 
time, even though predictions in week 19 are derived from 
data obtained between three and six months earlier. 

 
The results indicated that the average absolute error, across 

all input sources was typically around 0.1, dropping to 
approximately 0.01 in some cases where there were very few 
inputs.   
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Figure 19. Correlation between active services and scaled seasonality residue 

 
There appeared to be a correlation (0.469) between the 

average absolute error residue, and the number of services 
being monitored per hour.  This is interesting because the 
prediction algorithm is applied independently to each service, 
and is not itself aware of any service but its own.  So it cannot 
know how many services are active. 

 
One plausible explanation for this is that when few services 

are being monitored, as result of reduced demand, there are as 
consequence fewer heavily loaded services within the system, 
with resulting improvement in the observed residues, since we 
are better at predicting the behavior of under-utilized services.  
There does appear to be an underlying correlation (0.479) 
between number of services being monitored and the average 
utilization of these services (Fig. 20).   

 

 
Figure 20. Average overall utilization across time 

 
Subtracted seasonality provides some further improvement 

over scaled seasonality (Fig. 21).  However, sometimes wildly 
inaccurate and obviously false predictions are generated by the 
regression algorithm.  These are believed to be consequence of 
near singularities (linear dependence between input lags) 
within the input being processed by the regression algorithm. 
This should be addressed by better detecting such near 
singularities in the lags, and while detected reducing the 
number of lags used. 

 
Figure 21. Reduction in residue using subtracted seasonality 

 

VII. ANOMALIES 
We are interested in cases where a wide disparity exists 

between observed and predicted behaviour [4].  Using the 
scaled seasonality, we plot the frequency of predictions which 
differ from observed utilization by at least 0.75.  During the 
training period (Fig. 22) when seasonality is being derived, 
such anomalies highlight potential issues not accounted for, 
while during the testing period (Fig. 23) they highlight 
significant departures from expected seasonality.  

 
The maximum number of services displaying an anomaly 

during the training period in any one hour was  161 (ie. 11.8%), 
while the average was 3.1 (ie. 0.23%). The maximum number 
of services displaying an anomaly in the testing period during 
any one hour was  163 (ie. 12%), while the average was 11.5 
(ie. 0.8%). Thus anomalies are comparatively rare.  

 

 
Figure 22. Frequency of anomalies during the training period 

 
To our surprise, there appear to be strong patterns within the 

anomalies observed during the testing period.  Firstly there 
appeared a strong correlation between over predicting some 
services, while within the same hour under predicting others.  
This may be consequence of heavier than expected utilised 
services bottlenecking the system, denying needed resources to 
other services.  In this case we would under predict the heavily 
loaded services, and over predict the other services. 
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Figure 23.  Frequency of anomaly during testing period 

 
Secondly, as shown using the grid lines, anomalies across a 

large numbers of services during the testing period seem 
generally to arise approximately every 116 hours.  It is not 
known what causes such a consistent pattern, but it may 
perhaps be that some very demanding activity performed 
approximately every 5 days only during the testing period, or 
some other change to scheduled software execution (such as a 
backup) was not factored into the earlier constructed 
seasonality model.  

 
This anomaly may also be an emergent characteristic of the 

initially computed seasonality across all services, since the 
discrepancy between predicted and observed values can only 
exceed 0.75, when predictions or utilizations are either less 
than 0.25 or greater than 0.75 (Fig. 24). Strangely, within the 
Fourier series and scaled seasonality there are clear patterns 
every week (168 hours) as would perhaps be expected, but not 
every 116 hours. 

 

 
Figure 24. Maximum number of services that might display an anomaly 

 

VIII. THREATS TO VALIDITY 
This research was predicated on a single source of data that 

described performance of a very large number of physical and 
virtual services, running in a cloud environment, during a 
comparatively short six month interval.  While there was 
considerable variability in the behaviour of these services, as a 

collective they appeared for the most part to be idle.  This may 
not be typical within all cloud computing environments. 

 
The appearance that these machines were not heavily 

utilized might be flawed.  Average utilization computed hourly, 
can potentially be low, even if there are bursts of intense 
activity within that hour.  Performance information was 
sometimes unavailable, as consequence of either the machines 
being deactivated, or the monitoring software being disabled.  
It is not known how such disruptions impacted upon the 
averages provided us.  

 
We made a best effort to accommodate missing data, but 

assumptions as to what missing values might have been, 
necessarily compromise predictive algorithms.  Our decision to 
truncate utilizations greater than 1.0 to 1.0, and to set an upper 
bound on predicted utilizations at 1.0, helped ensure that 
prediction appeared closer to high actual utilizations than might 
otherwise have been the case. 

 
While multivariate linear regression can be expected to 

respond appropriately to changing trends, our presumption 
(predicated on studying the data) was that no trend would be 
present within long term seasonality.  If trends were present 
within the observed seasonality, it would be necessary to 
attempt to scale the seasonality using something more complex 
than a simple linear equation. 

 
A final caveat is perhaps in order.  No matter how good a 

predictive algorithm is, it is inevitable that it will sometimes 
give misleading results.  And it is possible that a few 
misleading results will more than undermine the benefits of 
relying on such algorithms.  That question lies beyond the 
scope of this paper. 

 

IX. CONCLUSIONS AND FURTHER WORK 
System utilization can peak both as a consequence of 

regular seasonality considerations, and as a consequence of a 
variety of anomalies, that are inherently hard to anticipate.  It 
is not clear that the optimal way of predicting such peak 
system activity is through approaches such as multivariate 
linear regression, since such prediction is predicated on the 
totality of the data observed, and tends to produced smoothed 
results rather than results that emphasize the likelihood of 
system usage exceeding capacity.   

 
We have presented a number of modifications to standard 

multivariate linear regression, and to Fourier transforms, 
which individually and potentially collectively do improve the 
ability of multivariate linear regression to predict peak 
utilizations with reasonably small average absolute error [2]. 
 

Using windowing; scaling the results; weighting the inputs; 
and exploiting knowledge about seasonality, each produce 
improvement in the ability to accurately fit predictions to peak 
utilizations [7].  Applying multivariate linear regression to 
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powers of the input data, and employing weighted linear 
regression, both proved to be good techniques for fitting 
predictions to large subsequently observed utilizations, but 
resulted in worse fits against low utilizations. 
 

We have also explored prediction using Fourier analysis 
and have suggested mechanisms for improving the predictive 
capability of this analysis.  We finally presented algorithms 
that leveraged both Fourier analysis, and multivariate linear 
regression, to improve our predictive capabilities further, 
which provided near optimal results, when compared to all 
other approaches, across the spectrum of observed utilizations.  
 

With the data provided us, we were able to obtain good 
short term (future hour) predictions of system utilization and 
to achieve good prediction of longer term trends (measured in 
months).  Both are important.  We have also exploited our 
results to better understand the nature of anomalies that 
occurred within them. 
 

Significantly, the approaches presented permitted 
construction of a relatively flat distribution of average absolute 
errors, across all observed utilizations, even though great 
asymmetry existed between the frequencies of high and low 
utilizations. 

 
Within the data provided us, there was often comparatively 

narrow crossover regions where particular algorithms could be 
seen to transition from providing better performance than the 
competition to worse performance.  Armed with the predictive 
ability to determine which side of the crossover system 
performance was likely to be, it would be very tempting to 
develop hybrid algorithms, which adaptively decided to 
employ differing predictive strategies, predicated on results 
seen to date.  This remains an opportunity for further research. 
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